2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION
);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any
;
77 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
78 MODULE_PARM_DESC(hpsa_allow_any
,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode
;
81 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
82 MODULE_PARM_DESC(hpsa_simple_mode
,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id
[] = {
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x334D},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1920},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
123 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
124 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
128 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
130 /* board_id = Subsystem Device ID & Vendor ID
131 * product = Marketing Name for the board
132 * access = Address of the struct of function pointers
134 static struct board_type products
[] = {
135 {0x3241103C, "Smart Array P212", &SA5_access
},
136 {0x3243103C, "Smart Array P410", &SA5_access
},
137 {0x3245103C, "Smart Array P410i", &SA5_access
},
138 {0x3247103C, "Smart Array P411", &SA5_access
},
139 {0x3249103C, "Smart Array P812", &SA5_access
},
140 {0x324A103C, "Smart Array P712m", &SA5_access
},
141 {0x324B103C, "Smart Array P711m", &SA5_access
},
142 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
143 {0x3350103C, "Smart Array P222", &SA5_access
},
144 {0x3351103C, "Smart Array P420", &SA5_access
},
145 {0x3352103C, "Smart Array P421", &SA5_access
},
146 {0x3353103C, "Smart Array P822", &SA5_access
},
147 {0x334D103C, "Smart Array P822se", &SA5_access
},
148 {0x3354103C, "Smart Array P420i", &SA5_access
},
149 {0x3355103C, "Smart Array P220i", &SA5_access
},
150 {0x3356103C, "Smart Array P721m", &SA5_access
},
151 {0x1921103C, "Smart Array P830i", &SA5_access
},
152 {0x1922103C, "Smart Array P430", &SA5_access
},
153 {0x1923103C, "Smart Array P431", &SA5_access
},
154 {0x1924103C, "Smart Array P830", &SA5_access
},
155 {0x1926103C, "Smart Array P731m", &SA5_access
},
156 {0x1928103C, "Smart Array P230i", &SA5_access
},
157 {0x1929103C, "Smart Array P530", &SA5_access
},
158 {0x21BD103C, "Smart Array", &SA5_access
},
159 {0x21BE103C, "Smart Array", &SA5_access
},
160 {0x21BF103C, "Smart Array", &SA5_access
},
161 {0x21C0103C, "Smart Array", &SA5_access
},
162 {0x21C1103C, "Smart Array", &SA5_access
},
163 {0x21C2103C, "Smart Array", &SA5_access
},
164 {0x21C3103C, "Smart Array", &SA5_access
},
165 {0x21C4103C, "Smart Array", &SA5_access
},
166 {0x21C5103C, "Smart Array", &SA5_access
},
167 {0x21C7103C, "Smart Array", &SA5_access
},
168 {0x21C8103C, "Smart Array", &SA5_access
},
169 {0x21C9103C, "Smart Array", &SA5_access
},
170 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
173 static int number_of_controllers
;
175 static struct list_head hpsa_ctlr_list
= LIST_HEAD_INIT(hpsa_ctlr_list
);
176 static spinlock_t lockup_detector_lock
;
177 static struct task_struct
*hpsa_lockup_detector
;
179 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
180 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
181 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
182 static void start_io(struct ctlr_info
*h
);
185 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
188 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
189 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
);
190 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
191 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
);
192 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
193 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
196 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
197 static void hpsa_scan_start(struct Scsi_Host
*);
198 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
199 unsigned long elapsed_time
);
200 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
201 int qdepth
, int reason
);
203 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
204 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
205 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
206 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
208 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
209 static int check_for_unit_attention(struct ctlr_info
*h
,
210 struct CommandList
*c
);
211 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
212 struct CommandList
*c
);
213 /* performant mode helper functions */
214 static void calc_bucket_map(int *bucket
, int num_buckets
,
215 int nsgs
, int *bucket_map
);
216 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
217 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
218 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
219 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
221 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
222 unsigned long *memory_bar
);
223 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
224 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
226 static inline void finish_cmd(struct CommandList
*c
);
227 #define BOARD_NOT_READY 0
228 #define BOARD_READY 1
230 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
232 unsigned long *priv
= shost_priv(sdev
->host
);
233 return (struct ctlr_info
*) *priv
;
236 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
238 unsigned long *priv
= shost_priv(sh
);
239 return (struct ctlr_info
*) *priv
;
242 static int check_for_unit_attention(struct ctlr_info
*h
,
243 struct CommandList
*c
)
245 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
248 switch (c
->err_info
->SenseInfo
[12]) {
250 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
251 "detected, command retried\n", h
->ctlr
);
254 dev_warn(&h
->pdev
->dev
, HPSA
"%d: LUN failure "
255 "detected, action required\n", h
->ctlr
);
257 case REPORT_LUNS_CHANGED
:
258 dev_warn(&h
->pdev
->dev
, HPSA
"%d: report LUN data "
259 "changed, action required\n", h
->ctlr
);
261 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
262 * target (array) devices.
266 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
267 "or device reset detected\n", h
->ctlr
);
269 case UNIT_ATTENTION_CLEARED
:
270 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
271 "cleared by another initiator\n", h
->ctlr
);
274 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
275 "unit attention detected\n", h
->ctlr
);
281 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
283 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
284 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
285 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
287 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
291 static ssize_t
host_store_rescan(struct device
*dev
,
292 struct device_attribute
*attr
,
293 const char *buf
, size_t count
)
296 struct Scsi_Host
*shost
= class_to_shost(dev
);
297 h
= shost_to_hba(shost
);
298 hpsa_scan_start(h
->scsi_host
);
302 static ssize_t
host_show_firmware_revision(struct device
*dev
,
303 struct device_attribute
*attr
, char *buf
)
306 struct Scsi_Host
*shost
= class_to_shost(dev
);
307 unsigned char *fwrev
;
309 h
= shost_to_hba(shost
);
310 if (!h
->hba_inquiry_data
)
312 fwrev
= &h
->hba_inquiry_data
[32];
313 return snprintf(buf
, 20, "%c%c%c%c\n",
314 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
317 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct Scsi_Host
*shost
= class_to_shost(dev
);
321 struct ctlr_info
*h
= shost_to_hba(shost
);
323 return snprintf(buf
, 20, "%d\n", h
->commands_outstanding
);
326 static ssize_t
host_show_transport_mode(struct device
*dev
,
327 struct device_attribute
*attr
, char *buf
)
330 struct Scsi_Host
*shost
= class_to_shost(dev
);
332 h
= shost_to_hba(shost
);
333 return snprintf(buf
, 20, "%s\n",
334 h
->transMethod
& CFGTBL_Trans_Performant
?
335 "performant" : "simple");
338 /* List of controllers which cannot be hard reset on kexec with reset_devices */
339 static u32 unresettable_controller
[] = {
340 0x324a103C, /* Smart Array P712m */
341 0x324b103C, /* SmartArray P711m */
342 0x3223103C, /* Smart Array P800 */
343 0x3234103C, /* Smart Array P400 */
344 0x3235103C, /* Smart Array P400i */
345 0x3211103C, /* Smart Array E200i */
346 0x3212103C, /* Smart Array E200 */
347 0x3213103C, /* Smart Array E200i */
348 0x3214103C, /* Smart Array E200i */
349 0x3215103C, /* Smart Array E200i */
350 0x3237103C, /* Smart Array E500 */
351 0x323D103C, /* Smart Array P700m */
352 0x40800E11, /* Smart Array 5i */
353 0x409C0E11, /* Smart Array 6400 */
354 0x409D0E11, /* Smart Array 6400 EM */
355 0x40700E11, /* Smart Array 5300 */
356 0x40820E11, /* Smart Array 532 */
357 0x40830E11, /* Smart Array 5312 */
358 0x409A0E11, /* Smart Array 641 */
359 0x409B0E11, /* Smart Array 642 */
360 0x40910E11, /* Smart Array 6i */
363 /* List of controllers which cannot even be soft reset */
364 static u32 soft_unresettable_controller
[] = {
365 0x40800E11, /* Smart Array 5i */
366 0x40700E11, /* Smart Array 5300 */
367 0x40820E11, /* Smart Array 532 */
368 0x40830E11, /* Smart Array 5312 */
369 0x409A0E11, /* Smart Array 641 */
370 0x409B0E11, /* Smart Array 642 */
371 0x40910E11, /* Smart Array 6i */
372 /* Exclude 640x boards. These are two pci devices in one slot
373 * which share a battery backed cache module. One controls the
374 * cache, the other accesses the cache through the one that controls
375 * it. If we reset the one controlling the cache, the other will
376 * likely not be happy. Just forbid resetting this conjoined mess.
377 * The 640x isn't really supported by hpsa anyway.
379 0x409C0E11, /* Smart Array 6400 */
380 0x409D0E11, /* Smart Array 6400 EM */
383 static int ctlr_is_hard_resettable(u32 board_id
)
387 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
388 if (unresettable_controller
[i
] == board_id
)
393 static int ctlr_is_soft_resettable(u32 board_id
)
397 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
398 if (soft_unresettable_controller
[i
] == board_id
)
403 static int ctlr_is_resettable(u32 board_id
)
405 return ctlr_is_hard_resettable(board_id
) ||
406 ctlr_is_soft_resettable(board_id
);
409 static ssize_t
host_show_resettable(struct device
*dev
,
410 struct device_attribute
*attr
, char *buf
)
413 struct Scsi_Host
*shost
= class_to_shost(dev
);
415 h
= shost_to_hba(shost
);
416 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
419 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
421 return (scsi3addr
[3] & 0xC0) == 0x40;
424 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
427 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429 static ssize_t
raid_level_show(struct device
*dev
,
430 struct device_attribute
*attr
, char *buf
)
433 unsigned char rlevel
;
435 struct scsi_device
*sdev
;
436 struct hpsa_scsi_dev_t
*hdev
;
439 sdev
= to_scsi_device(dev
);
440 h
= sdev_to_hba(sdev
);
441 spin_lock_irqsave(&h
->lock
, flags
);
442 hdev
= sdev
->hostdata
;
444 spin_unlock_irqrestore(&h
->lock
, flags
);
448 /* Is this even a logical drive? */
449 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
450 spin_unlock_irqrestore(&h
->lock
, flags
);
451 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
455 rlevel
= hdev
->raid_level
;
456 spin_unlock_irqrestore(&h
->lock
, flags
);
457 if (rlevel
> RAID_UNKNOWN
)
458 rlevel
= RAID_UNKNOWN
;
459 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
463 static ssize_t
lunid_show(struct device
*dev
,
464 struct device_attribute
*attr
, char *buf
)
467 struct scsi_device
*sdev
;
468 struct hpsa_scsi_dev_t
*hdev
;
470 unsigned char lunid
[8];
472 sdev
= to_scsi_device(dev
);
473 h
= sdev_to_hba(sdev
);
474 spin_lock_irqsave(&h
->lock
, flags
);
475 hdev
= sdev
->hostdata
;
477 spin_unlock_irqrestore(&h
->lock
, flags
);
480 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
481 spin_unlock_irqrestore(&h
->lock
, flags
);
482 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
483 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
484 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
487 static ssize_t
unique_id_show(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
491 struct scsi_device
*sdev
;
492 struct hpsa_scsi_dev_t
*hdev
;
494 unsigned char sn
[16];
496 sdev
= to_scsi_device(dev
);
497 h
= sdev_to_hba(sdev
);
498 spin_lock_irqsave(&h
->lock
, flags
);
499 hdev
= sdev
->hostdata
;
501 spin_unlock_irqrestore(&h
->lock
, flags
);
504 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
505 spin_unlock_irqrestore(&h
->lock
, flags
);
506 return snprintf(buf
, 16 * 2 + 2,
507 "%02X%02X%02X%02X%02X%02X%02X%02X"
508 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
509 sn
[0], sn
[1], sn
[2], sn
[3],
510 sn
[4], sn
[5], sn
[6], sn
[7],
511 sn
[8], sn
[9], sn
[10], sn
[11],
512 sn
[12], sn
[13], sn
[14], sn
[15]);
515 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
516 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
517 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
518 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
519 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
520 host_show_firmware_revision
, NULL
);
521 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
522 host_show_commands_outstanding
, NULL
);
523 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
524 host_show_transport_mode
, NULL
);
525 static DEVICE_ATTR(resettable
, S_IRUGO
,
526 host_show_resettable
, NULL
);
528 static struct device_attribute
*hpsa_sdev_attrs
[] = {
529 &dev_attr_raid_level
,
535 static struct device_attribute
*hpsa_shost_attrs
[] = {
537 &dev_attr_firmware_revision
,
538 &dev_attr_commands_outstanding
,
539 &dev_attr_transport_mode
,
540 &dev_attr_resettable
,
544 static struct scsi_host_template hpsa_driver_template
= {
545 .module
= THIS_MODULE
,
548 .queuecommand
= hpsa_scsi_queue_command
,
549 .scan_start
= hpsa_scan_start
,
550 .scan_finished
= hpsa_scan_finished
,
551 .change_queue_depth
= hpsa_change_queue_depth
,
553 .use_clustering
= ENABLE_CLUSTERING
,
554 .eh_abort_handler
= hpsa_eh_abort_handler
,
555 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
557 .slave_alloc
= hpsa_slave_alloc
,
558 .slave_destroy
= hpsa_slave_destroy
,
560 .compat_ioctl
= hpsa_compat_ioctl
,
562 .sdev_attrs
= hpsa_sdev_attrs
,
563 .shost_attrs
= hpsa_shost_attrs
,
569 /* Enqueuing and dequeuing functions for cmdlists. */
570 static inline void addQ(struct list_head
*list
, struct CommandList
*c
)
572 list_add_tail(&c
->list
, list
);
575 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
578 struct reply_pool
*rq
= &h
->reply_queue
[q
];
581 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
582 return h
->access
.command_completed(h
, q
);
584 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
585 a
= rq
->head
[rq
->current_entry
];
587 spin_lock_irqsave(&h
->lock
, flags
);
588 h
->commands_outstanding
--;
589 spin_unlock_irqrestore(&h
->lock
, flags
);
593 /* Check for wraparound */
594 if (rq
->current_entry
== h
->max_commands
) {
595 rq
->current_entry
= 0;
601 /* set_performant_mode: Modify the tag for cciss performant
602 * set bit 0 for pull model, bits 3-1 for block fetch
605 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
607 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
608 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
609 if (likely(h
->msix_vector
))
610 c
->Header
.ReplyQueue
=
611 raw_smp_processor_id() % h
->nreply_queues
;
615 static int is_firmware_flash_cmd(u8
*cdb
)
617 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
621 * During firmware flash, the heartbeat register may not update as frequently
622 * as it should. So we dial down lockup detection during firmware flash. and
623 * dial it back up when firmware flash completes.
625 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
626 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
627 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
628 struct CommandList
*c
)
630 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
632 atomic_inc(&h
->firmware_flash_in_progress
);
633 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
636 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
637 struct CommandList
*c
)
639 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
640 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
641 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
644 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
645 struct CommandList
*c
)
649 set_performant_mode(h
, c
);
650 dial_down_lockup_detection_during_fw_flash(h
, c
);
651 spin_lock_irqsave(&h
->lock
, flags
);
654 spin_unlock_irqrestore(&h
->lock
, flags
);
658 static inline void removeQ(struct CommandList
*c
)
660 if (WARN_ON(list_empty(&c
->list
)))
662 list_del_init(&c
->list
);
665 static inline int is_hba_lunid(unsigned char scsi3addr
[])
667 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
670 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
672 if (!h
->hba_inquiry_data
)
674 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
679 static int hpsa_find_target_lun(struct ctlr_info
*h
,
680 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
682 /* finds an unused bus, target, lun for a new physical device
683 * assumes h->devlock is held
686 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
688 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
690 for (i
= 0; i
< h
->ndevices
; i
++) {
691 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
692 __set_bit(h
->dev
[i
]->target
, lun_taken
);
695 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
696 if (i
< HPSA_MAX_DEVICES
) {
705 /* Add an entry into h->dev[] array. */
706 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
707 struct hpsa_scsi_dev_t
*device
,
708 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
710 /* assumes h->devlock is held */
713 unsigned char addr1
[8], addr2
[8];
714 struct hpsa_scsi_dev_t
*sd
;
716 if (n
>= HPSA_MAX_DEVICES
) {
717 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
722 /* physical devices do not have lun or target assigned until now. */
723 if (device
->lun
!= -1)
724 /* Logical device, lun is already assigned. */
727 /* If this device a non-zero lun of a multi-lun device
728 * byte 4 of the 8-byte LUN addr will contain the logical
729 * unit no, zero otherise.
731 if (device
->scsi3addr
[4] == 0) {
732 /* This is not a non-zero lun of a multi-lun device */
733 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
734 device
->bus
, &device
->target
, &device
->lun
) != 0)
739 /* This is a non-zero lun of a multi-lun device.
740 * Search through our list and find the device which
741 * has the same 8 byte LUN address, excepting byte 4.
742 * Assign the same bus and target for this new LUN.
743 * Use the logical unit number from the firmware.
745 memcpy(addr1
, device
->scsi3addr
, 8);
747 for (i
= 0; i
< n
; i
++) {
749 memcpy(addr2
, sd
->scsi3addr
, 8);
751 /* differ only in byte 4? */
752 if (memcmp(addr1
, addr2
, 8) == 0) {
753 device
->bus
= sd
->bus
;
754 device
->target
= sd
->target
;
755 device
->lun
= device
->scsi3addr
[4];
759 if (device
->lun
== -1) {
760 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
761 " suspect firmware bug or unsupported hardware "
770 added
[*nadded
] = device
;
773 /* initially, (before registering with scsi layer) we don't
774 * know our hostno and we don't want to print anything first
775 * time anyway (the scsi layer's inquiries will show that info)
777 /* if (hostno != -1) */
778 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
779 scsi_device_type(device
->devtype
), hostno
,
780 device
->bus
, device
->target
, device
->lun
);
784 /* Update an entry in h->dev[] array. */
785 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
786 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
788 /* assumes h->devlock is held */
789 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
791 /* Raid level changed. */
792 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
793 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
794 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
795 new_entry
->target
, new_entry
->lun
);
798 /* Replace an entry from h->dev[] array. */
799 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
800 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
801 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
802 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
804 /* assumes h->devlock is held */
805 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
806 removed
[*nremoved
] = h
->dev
[entry
];
810 * New physical devices won't have target/lun assigned yet
811 * so we need to preserve the values in the slot we are replacing.
813 if (new_entry
->target
== -1) {
814 new_entry
->target
= h
->dev
[entry
]->target
;
815 new_entry
->lun
= h
->dev
[entry
]->lun
;
818 h
->dev
[entry
] = new_entry
;
819 added
[*nadded
] = new_entry
;
821 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
822 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
823 new_entry
->target
, new_entry
->lun
);
826 /* Remove an entry from h->dev[] array. */
827 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
828 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
830 /* assumes h->devlock is held */
832 struct hpsa_scsi_dev_t
*sd
;
834 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
837 removed
[*nremoved
] = h
->dev
[entry
];
840 for (i
= entry
; i
< h
->ndevices
-1; i
++)
841 h
->dev
[i
] = h
->dev
[i
+1];
843 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
844 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
848 #define SCSI3ADDR_EQ(a, b) ( \
849 (a)[7] == (b)[7] && \
850 (a)[6] == (b)[6] && \
851 (a)[5] == (b)[5] && \
852 (a)[4] == (b)[4] && \
853 (a)[3] == (b)[3] && \
854 (a)[2] == (b)[2] && \
855 (a)[1] == (b)[1] && \
858 static void fixup_botched_add(struct ctlr_info
*h
,
859 struct hpsa_scsi_dev_t
*added
)
861 /* called when scsi_add_device fails in order to re-adjust
862 * h->dev[] to match the mid layer's view.
867 spin_lock_irqsave(&h
->lock
, flags
);
868 for (i
= 0; i
< h
->ndevices
; i
++) {
869 if (h
->dev
[i
] == added
) {
870 for (j
= i
; j
< h
->ndevices
-1; j
++)
871 h
->dev
[j
] = h
->dev
[j
+1];
876 spin_unlock_irqrestore(&h
->lock
, flags
);
880 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
881 struct hpsa_scsi_dev_t
*dev2
)
883 /* we compare everything except lun and target as these
884 * are not yet assigned. Compare parts likely
887 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
888 sizeof(dev1
->scsi3addr
)) != 0)
890 if (memcmp(dev1
->device_id
, dev2
->device_id
,
891 sizeof(dev1
->device_id
)) != 0)
893 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
895 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
897 if (dev1
->devtype
!= dev2
->devtype
)
899 if (dev1
->bus
!= dev2
->bus
)
904 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
905 struct hpsa_scsi_dev_t
*dev2
)
907 /* Device attributes that can change, but don't mean
908 * that the device is a different device, nor that the OS
909 * needs to be told anything about the change.
911 if (dev1
->raid_level
!= dev2
->raid_level
)
916 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
917 * and return needle location in *index. If scsi3addr matches, but not
918 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
919 * location in *index.
920 * In the case of a minor device attribute change, such as RAID level, just
921 * return DEVICE_UPDATED, along with the updated device's location in index.
922 * If needle not found, return DEVICE_NOT_FOUND.
924 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
925 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
929 #define DEVICE_NOT_FOUND 0
930 #define DEVICE_CHANGED 1
931 #define DEVICE_SAME 2
932 #define DEVICE_UPDATED 3
933 for (i
= 0; i
< haystack_size
; i
++) {
934 if (haystack
[i
] == NULL
) /* previously removed. */
936 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
938 if (device_is_the_same(needle
, haystack
[i
])) {
939 if (device_updated(needle
, haystack
[i
]))
940 return DEVICE_UPDATED
;
943 return DEVICE_CHANGED
;
948 return DEVICE_NOT_FOUND
;
951 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
952 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
954 /* sd contains scsi3 addresses and devtypes, and inquiry
955 * data. This function takes what's in sd to be the current
956 * reality and updates h->dev[] to reflect that reality.
958 int i
, entry
, device_change
, changes
= 0;
959 struct hpsa_scsi_dev_t
*csd
;
961 struct hpsa_scsi_dev_t
**added
, **removed
;
962 int nadded
, nremoved
;
963 struct Scsi_Host
*sh
= NULL
;
965 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
966 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
968 if (!added
|| !removed
) {
969 dev_warn(&h
->pdev
->dev
, "out of memory in "
970 "adjust_hpsa_scsi_table\n");
974 spin_lock_irqsave(&h
->devlock
, flags
);
976 /* find any devices in h->dev[] that are not in
977 * sd[] and remove them from h->dev[], and for any
978 * devices which have changed, remove the old device
979 * info and add the new device info.
980 * If minor device attributes change, just update
981 * the existing device structure.
986 while (i
< h
->ndevices
) {
988 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
989 if (device_change
== DEVICE_NOT_FOUND
) {
991 hpsa_scsi_remove_entry(h
, hostno
, i
,
993 continue; /* remove ^^^, hence i not incremented */
994 } else if (device_change
== DEVICE_CHANGED
) {
996 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
997 added
, &nadded
, removed
, &nremoved
);
998 /* Set it to NULL to prevent it from being freed
999 * at the bottom of hpsa_update_scsi_devices()
1002 } else if (device_change
== DEVICE_UPDATED
) {
1003 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1008 /* Now, make sure every device listed in sd[] is also
1009 * listed in h->dev[], adding them if they aren't found
1012 for (i
= 0; i
< nsds
; i
++) {
1013 if (!sd
[i
]) /* if already added above. */
1015 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1016 h
->ndevices
, &entry
);
1017 if (device_change
== DEVICE_NOT_FOUND
) {
1019 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1020 added
, &nadded
) != 0)
1022 sd
[i
] = NULL
; /* prevent from being freed later. */
1023 } else if (device_change
== DEVICE_CHANGED
) {
1024 /* should never happen... */
1026 dev_warn(&h
->pdev
->dev
,
1027 "device unexpectedly changed.\n");
1028 /* but if it does happen, we just ignore that device */
1031 spin_unlock_irqrestore(&h
->devlock
, flags
);
1033 /* Don't notify scsi mid layer of any changes the first time through
1034 * (or if there are no changes) scsi_scan_host will do it later the
1035 * first time through.
1037 if (hostno
== -1 || !changes
)
1041 /* Notify scsi mid layer of any removed devices */
1042 for (i
= 0; i
< nremoved
; i
++) {
1043 struct scsi_device
*sdev
=
1044 scsi_device_lookup(sh
, removed
[i
]->bus
,
1045 removed
[i
]->target
, removed
[i
]->lun
);
1047 scsi_remove_device(sdev
);
1048 scsi_device_put(sdev
);
1050 /* We don't expect to get here.
1051 * future cmds to this device will get selection
1052 * timeout as if the device was gone.
1054 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1055 " for removal.", hostno
, removed
[i
]->bus
,
1056 removed
[i
]->target
, removed
[i
]->lun
);
1062 /* Notify scsi mid layer of any added devices */
1063 for (i
= 0; i
< nadded
; i
++) {
1064 if (scsi_add_device(sh
, added
[i
]->bus
,
1065 added
[i
]->target
, added
[i
]->lun
) == 0)
1067 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1068 "device not added.\n", hostno
, added
[i
]->bus
,
1069 added
[i
]->target
, added
[i
]->lun
);
1070 /* now we have to remove it from h->dev,
1071 * since it didn't get added to scsi mid layer
1073 fixup_botched_add(h
, added
[i
]);
1082 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1083 * Assume's h->devlock is held.
1085 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1086 int bus
, int target
, int lun
)
1089 struct hpsa_scsi_dev_t
*sd
;
1091 for (i
= 0; i
< h
->ndevices
; i
++) {
1093 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1099 /* link sdev->hostdata to our per-device structure. */
1100 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1102 struct hpsa_scsi_dev_t
*sd
;
1103 unsigned long flags
;
1104 struct ctlr_info
*h
;
1106 h
= sdev_to_hba(sdev
);
1107 spin_lock_irqsave(&h
->devlock
, flags
);
1108 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1109 sdev_id(sdev
), sdev
->lun
);
1111 sdev
->hostdata
= sd
;
1112 spin_unlock_irqrestore(&h
->devlock
, flags
);
1116 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1118 /* nothing to do. */
1121 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1125 if (!h
->cmd_sg_list
)
1127 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1128 kfree(h
->cmd_sg_list
[i
]);
1129 h
->cmd_sg_list
[i
] = NULL
;
1131 kfree(h
->cmd_sg_list
);
1132 h
->cmd_sg_list
= NULL
;
1135 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1139 if (h
->chainsize
<= 0)
1142 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1144 if (!h
->cmd_sg_list
)
1146 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1147 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1148 h
->chainsize
, GFP_KERNEL
);
1149 if (!h
->cmd_sg_list
[i
])
1155 hpsa_free_sg_chain_blocks(h
);
1159 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1160 struct CommandList
*c
)
1162 struct SGDescriptor
*chain_sg
, *chain_block
;
1165 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1166 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1167 chain_sg
->Ext
= HPSA_SG_CHAIN
;
1168 chain_sg
->Len
= sizeof(*chain_sg
) *
1169 (c
->Header
.SGTotal
- h
->max_cmd_sg_entries
);
1170 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_sg
->Len
,
1172 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1173 /* prevent subsequent unmapping */
1174 chain_sg
->Addr
.lower
= 0;
1175 chain_sg
->Addr
.upper
= 0;
1178 chain_sg
->Addr
.lower
= (u32
) (temp64
& 0x0FFFFFFFFULL
);
1179 chain_sg
->Addr
.upper
= (u32
) ((temp64
>> 32) & 0x0FFFFFFFFULL
);
1183 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1184 struct CommandList
*c
)
1186 struct SGDescriptor
*chain_sg
;
1187 union u64bit temp64
;
1189 if (c
->Header
.SGTotal
<= h
->max_cmd_sg_entries
)
1192 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1193 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
1194 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
1195 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
1198 static void complete_scsi_command(struct CommandList
*cp
)
1200 struct scsi_cmnd
*cmd
;
1201 struct ctlr_info
*h
;
1202 struct ErrorInfo
*ei
;
1204 unsigned char sense_key
;
1205 unsigned char asc
; /* additional sense code */
1206 unsigned char ascq
; /* additional sense code qualifier */
1207 unsigned long sense_data_size
;
1210 cmd
= (struct scsi_cmnd
*) cp
->scsi_cmd
;
1213 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1214 if (cp
->Header
.SGTotal
> h
->max_cmd_sg_entries
)
1215 hpsa_unmap_sg_chain_block(h
, cp
);
1217 cmd
->result
= (DID_OK
<< 16); /* host byte */
1218 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1219 cmd
->result
|= ei
->ScsiStatus
;
1221 /* copy the sense data whether we need to or not. */
1222 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1223 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1225 sense_data_size
= sizeof(ei
->SenseInfo
);
1226 if (ei
->SenseLen
< sense_data_size
)
1227 sense_data_size
= ei
->SenseLen
;
1229 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1230 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1232 if (ei
->CommandStatus
== 0) {
1234 cmd
->scsi_done(cmd
);
1238 /* an error has occurred */
1239 switch (ei
->CommandStatus
) {
1241 case CMD_TARGET_STATUS
:
1242 if (ei
->ScsiStatus
) {
1244 sense_key
= 0xf & ei
->SenseInfo
[2];
1245 /* Get additional sense code */
1246 asc
= ei
->SenseInfo
[12];
1247 /* Get addition sense code qualifier */
1248 ascq
= ei
->SenseInfo
[13];
1251 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1252 if (check_for_unit_attention(h
, cp
)) {
1253 cmd
->result
= DID_SOFT_ERROR
<< 16;
1256 if (sense_key
== ILLEGAL_REQUEST
) {
1258 * SCSI REPORT_LUNS is commonly unsupported on
1259 * Smart Array. Suppress noisy complaint.
1261 if (cp
->Request
.CDB
[0] == REPORT_LUNS
)
1264 /* If ASC/ASCQ indicate Logical Unit
1265 * Not Supported condition,
1267 if ((asc
== 0x25) && (ascq
== 0x0)) {
1268 dev_warn(&h
->pdev
->dev
, "cp %p "
1269 "has check condition\n", cp
);
1274 if (sense_key
== NOT_READY
) {
1275 /* If Sense is Not Ready, Logical Unit
1276 * Not ready, Manual Intervention
1279 if ((asc
== 0x04) && (ascq
== 0x03)) {
1280 dev_warn(&h
->pdev
->dev
, "cp %p "
1281 "has check condition: unit "
1282 "not ready, manual "
1283 "intervention required\n", cp
);
1287 if (sense_key
== ABORTED_COMMAND
) {
1288 /* Aborted command is retryable */
1289 dev_warn(&h
->pdev
->dev
, "cp %p "
1290 "has check condition: aborted command: "
1291 "ASC: 0x%x, ASCQ: 0x%x\n",
1293 cmd
->result
|= DID_SOFT_ERROR
<< 16;
1296 /* Must be some other type of check condition */
1297 dev_dbg(&h
->pdev
->dev
, "cp %p has check condition: "
1299 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1300 "Returning result: 0x%x, "
1301 "cmd=[%02x %02x %02x %02x %02x "
1302 "%02x %02x %02x %02x %02x %02x "
1303 "%02x %02x %02x %02x %02x]\n",
1304 cp
, sense_key
, asc
, ascq
,
1306 cmd
->cmnd
[0], cmd
->cmnd
[1],
1307 cmd
->cmnd
[2], cmd
->cmnd
[3],
1308 cmd
->cmnd
[4], cmd
->cmnd
[5],
1309 cmd
->cmnd
[6], cmd
->cmnd
[7],
1310 cmd
->cmnd
[8], cmd
->cmnd
[9],
1311 cmd
->cmnd
[10], cmd
->cmnd
[11],
1312 cmd
->cmnd
[12], cmd
->cmnd
[13],
1313 cmd
->cmnd
[14], cmd
->cmnd
[15]);
1318 /* Problem was not a check condition
1319 * Pass it up to the upper layers...
1321 if (ei
->ScsiStatus
) {
1322 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1323 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1324 "Returning result: 0x%x\n",
1326 sense_key
, asc
, ascq
,
1328 } else { /* scsi status is zero??? How??? */
1329 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1330 "Returning no connection.\n", cp
),
1332 /* Ordinarily, this case should never happen,
1333 * but there is a bug in some released firmware
1334 * revisions that allows it to happen if, for
1335 * example, a 4100 backplane loses power and
1336 * the tape drive is in it. We assume that
1337 * it's a fatal error of some kind because we
1338 * can't show that it wasn't. We will make it
1339 * look like selection timeout since that is
1340 * the most common reason for this to occur,
1341 * and it's severe enough.
1344 cmd
->result
= DID_NO_CONNECT
<< 16;
1348 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1350 case CMD_DATA_OVERRUN
:
1351 dev_warn(&h
->pdev
->dev
, "cp %p has"
1352 " completed with data overrun "
1356 /* print_bytes(cp, sizeof(*cp), 1, 0);
1358 /* We get CMD_INVALID if you address a non-existent device
1359 * instead of a selection timeout (no response). You will
1360 * see this if you yank out a drive, then try to access it.
1361 * This is kind of a shame because it means that any other
1362 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1363 * missing target. */
1364 cmd
->result
= DID_NO_CONNECT
<< 16;
1367 case CMD_PROTOCOL_ERR
:
1368 cmd
->result
= DID_ERROR
<< 16;
1369 dev_warn(&h
->pdev
->dev
, "cp %p has "
1370 "protocol error\n", cp
);
1372 case CMD_HARDWARE_ERR
:
1373 cmd
->result
= DID_ERROR
<< 16;
1374 dev_warn(&h
->pdev
->dev
, "cp %p had hardware error\n", cp
);
1376 case CMD_CONNECTION_LOST
:
1377 cmd
->result
= DID_ERROR
<< 16;
1378 dev_warn(&h
->pdev
->dev
, "cp %p had connection lost\n", cp
);
1381 cmd
->result
= DID_ABORT
<< 16;
1382 dev_warn(&h
->pdev
->dev
, "cp %p was aborted with status 0x%x\n",
1383 cp
, ei
->ScsiStatus
);
1385 case CMD_ABORT_FAILED
:
1386 cmd
->result
= DID_ERROR
<< 16;
1387 dev_warn(&h
->pdev
->dev
, "cp %p reports abort failed\n", cp
);
1389 case CMD_UNSOLICITED_ABORT
:
1390 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1391 dev_warn(&h
->pdev
->dev
, "cp %p aborted due to an unsolicited "
1395 cmd
->result
= DID_TIME_OUT
<< 16;
1396 dev_warn(&h
->pdev
->dev
, "cp %p timedout\n", cp
);
1398 case CMD_UNABORTABLE
:
1399 cmd
->result
= DID_ERROR
<< 16;
1400 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1403 cmd
->result
= DID_ERROR
<< 16;
1404 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1405 cp
, ei
->CommandStatus
);
1408 cmd
->scsi_done(cmd
);
1411 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1412 struct CommandList
*c
, int sg_used
, int data_direction
)
1415 union u64bit addr64
;
1417 for (i
= 0; i
< sg_used
; i
++) {
1418 addr64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1419 addr64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1420 pci_unmap_single(pdev
, (dma_addr_t
) addr64
.val
, c
->SG
[i
].Len
,
1425 static int hpsa_map_one(struct pci_dev
*pdev
,
1426 struct CommandList
*cp
,
1433 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1434 cp
->Header
.SGList
= 0;
1435 cp
->Header
.SGTotal
= 0;
1439 addr64
= (u64
) pci_map_single(pdev
, buf
, buflen
, data_direction
);
1440 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
1441 /* Prevent subsequent unmap of something never mapped */
1442 cp
->Header
.SGList
= 0;
1443 cp
->Header
.SGTotal
= 0;
1446 cp
->SG
[0].Addr
.lower
=
1447 (u32
) (addr64
& (u64
) 0x00000000FFFFFFFF);
1448 cp
->SG
[0].Addr
.upper
=
1449 (u32
) ((addr64
>> 32) & (u64
) 0x00000000FFFFFFFF);
1450 cp
->SG
[0].Len
= buflen
;
1451 cp
->Header
.SGList
= (u8
) 1; /* no. SGs contig in this cmd */
1452 cp
->Header
.SGTotal
= (u16
) 1; /* total sgs in this cmd list */
1456 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
1457 struct CommandList
*c
)
1459 DECLARE_COMPLETION_ONSTACK(wait
);
1462 enqueue_cmd_and_start_io(h
, c
);
1463 wait_for_completion(&wait
);
1466 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
1467 struct CommandList
*c
)
1469 unsigned long flags
;
1471 /* If controller lockup detected, fake a hardware error. */
1472 spin_lock_irqsave(&h
->lock
, flags
);
1473 if (unlikely(h
->lockup_detected
)) {
1474 spin_unlock_irqrestore(&h
->lock
, flags
);
1475 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
1477 spin_unlock_irqrestore(&h
->lock
, flags
);
1478 hpsa_scsi_do_simple_cmd_core(h
, c
);
1482 #define MAX_DRIVER_CMD_RETRIES 25
1483 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
1484 struct CommandList
*c
, int data_direction
)
1486 int backoff_time
= 10, retry_count
= 0;
1489 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
1490 hpsa_scsi_do_simple_cmd_core(h
, c
);
1492 if (retry_count
> 3) {
1493 msleep(backoff_time
);
1494 if (backoff_time
< 1000)
1497 } while ((check_for_unit_attention(h
, c
) ||
1498 check_for_busy(h
, c
)) &&
1499 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
1500 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
1503 static void hpsa_scsi_interpret_error(struct CommandList
*cp
)
1505 struct ErrorInfo
*ei
;
1506 struct device
*d
= &cp
->h
->pdev
->dev
;
1509 switch (ei
->CommandStatus
) {
1510 case CMD_TARGET_STATUS
:
1511 dev_warn(d
, "cmd %p has completed with errors\n", cp
);
1512 dev_warn(d
, "cmd %p has SCSI Status = %x\n", cp
,
1514 if (ei
->ScsiStatus
== 0)
1515 dev_warn(d
, "SCSI status is abnormally zero. "
1516 "(probably indicates selection timeout "
1517 "reported incorrectly due to a known "
1518 "firmware bug, circa July, 2001.)\n");
1520 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1521 dev_info(d
, "UNDERRUN\n");
1523 case CMD_DATA_OVERRUN
:
1524 dev_warn(d
, "cp %p has completed with data overrun\n", cp
);
1527 /* controller unfortunately reports SCSI passthru's
1528 * to non-existent targets as invalid commands.
1530 dev_warn(d
, "cp %p is reported invalid (probably means "
1531 "target device no longer present)\n", cp
);
1532 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1536 case CMD_PROTOCOL_ERR
:
1537 dev_warn(d
, "cp %p has protocol error \n", cp
);
1539 case CMD_HARDWARE_ERR
:
1540 /* cmd->result = DID_ERROR << 16; */
1541 dev_warn(d
, "cp %p had hardware error\n", cp
);
1543 case CMD_CONNECTION_LOST
:
1544 dev_warn(d
, "cp %p had connection lost\n", cp
);
1547 dev_warn(d
, "cp %p was aborted\n", cp
);
1549 case CMD_ABORT_FAILED
:
1550 dev_warn(d
, "cp %p reports abort failed\n", cp
);
1552 case CMD_UNSOLICITED_ABORT
:
1553 dev_warn(d
, "cp %p aborted due to an unsolicited abort\n", cp
);
1556 dev_warn(d
, "cp %p timed out\n", cp
);
1558 case CMD_UNABORTABLE
:
1559 dev_warn(d
, "Command unabortable\n");
1562 dev_warn(d
, "cp %p returned unknown status %x\n", cp
,
1567 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1568 unsigned char page
, unsigned char *buf
,
1569 unsigned char bufsize
)
1572 struct CommandList
*c
;
1573 struct ErrorInfo
*ei
;
1575 c
= cmd_special_alloc(h
);
1577 if (c
== NULL
) { /* trouble... */
1578 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1582 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
1583 page
, scsi3addr
, TYPE_CMD
)) {
1587 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1589 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1590 hpsa_scsi_interpret_error(c
);
1594 cmd_special_free(h
, c
);
1598 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
)
1601 struct CommandList
*c
;
1602 struct ErrorInfo
*ei
;
1604 c
= cmd_special_alloc(h
);
1606 if (c
== NULL
) { /* trouble... */
1607 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1611 /* fill_cmd can't fail here, no data buffer to map. */
1612 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
,
1613 NULL
, 0, 0, scsi3addr
, TYPE_MSG
);
1614 hpsa_scsi_do_simple_cmd_core(h
, c
);
1615 /* no unmap needed here because no data xfer. */
1618 if (ei
->CommandStatus
!= 0) {
1619 hpsa_scsi_interpret_error(c
);
1622 cmd_special_free(h
, c
);
1626 static void hpsa_get_raid_level(struct ctlr_info
*h
,
1627 unsigned char *scsi3addr
, unsigned char *raid_level
)
1632 *raid_level
= RAID_UNKNOWN
;
1633 buf
= kzalloc(64, GFP_KERNEL
);
1636 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0xC1, buf
, 64);
1638 *raid_level
= buf
[8];
1639 if (*raid_level
> RAID_UNKNOWN
)
1640 *raid_level
= RAID_UNKNOWN
;
1645 /* Get the device id from inquiry page 0x83 */
1646 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1647 unsigned char *device_id
, int buflen
)
1654 buf
= kzalloc(64, GFP_KERNEL
);
1657 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0x83, buf
, 64);
1659 memcpy(device_id
, &buf
[8], buflen
);
1664 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
1665 struct ReportLUNdata
*buf
, int bufsize
,
1666 int extended_response
)
1669 struct CommandList
*c
;
1670 unsigned char scsi3addr
[8];
1671 struct ErrorInfo
*ei
;
1673 c
= cmd_special_alloc(h
);
1674 if (c
== NULL
) { /* trouble... */
1675 dev_err(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1678 /* address the controller */
1679 memset(scsi3addr
, 0, sizeof(scsi3addr
));
1680 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
1681 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
1685 if (extended_response
)
1686 c
->Request
.CDB
[1] = extended_response
;
1687 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1689 if (ei
->CommandStatus
!= 0 &&
1690 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1691 hpsa_scsi_interpret_error(c
);
1695 cmd_special_free(h
, c
);
1699 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
1700 struct ReportLUNdata
*buf
,
1701 int bufsize
, int extended_response
)
1703 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
, extended_response
);
1706 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
1707 struct ReportLUNdata
*buf
, int bufsize
)
1709 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
1712 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
1713 int bus
, int target
, int lun
)
1716 device
->target
= target
;
1720 static int hpsa_update_device_info(struct ctlr_info
*h
,
1721 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
1722 unsigned char *is_OBDR_device
)
1725 #define OBDR_SIG_OFFSET 43
1726 #define OBDR_TAPE_SIG "$DR-10"
1727 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1728 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1730 unsigned char *inq_buff
;
1731 unsigned char *obdr_sig
;
1733 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
1737 /* Do an inquiry to the device to see what it is. */
1738 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
1739 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
1740 /* Inquiry failed (msg printed already) */
1741 dev_err(&h
->pdev
->dev
,
1742 "hpsa_update_device_info: inquiry failed\n");
1746 this_device
->devtype
= (inq_buff
[0] & 0x1f);
1747 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
1748 memcpy(this_device
->vendor
, &inq_buff
[8],
1749 sizeof(this_device
->vendor
));
1750 memcpy(this_device
->model
, &inq_buff
[16],
1751 sizeof(this_device
->model
));
1752 memset(this_device
->device_id
, 0,
1753 sizeof(this_device
->device_id
));
1754 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
1755 sizeof(this_device
->device_id
));
1757 if (this_device
->devtype
== TYPE_DISK
&&
1758 is_logical_dev_addr_mode(scsi3addr
))
1759 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
1761 this_device
->raid_level
= RAID_UNKNOWN
;
1763 if (is_OBDR_device
) {
1764 /* See if this is a One-Button-Disaster-Recovery device
1765 * by looking for "$DR-10" at offset 43 in inquiry data.
1767 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
1768 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
1769 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
1770 OBDR_SIG_LEN
) == 0);
1781 static unsigned char *ext_target_model
[] = {
1790 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1794 for (i
= 0; ext_target_model
[i
]; i
++)
1795 if (strncmp(device
->model
, ext_target_model
[i
],
1796 strlen(ext_target_model
[i
])) == 0)
1801 /* Helper function to assign bus, target, lun mapping of devices.
1802 * Puts non-external target logical volumes on bus 0, external target logical
1803 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1804 * Logical drive target and lun are assigned at this time, but
1805 * physical device lun and target assignment are deferred (assigned
1806 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1808 static void figure_bus_target_lun(struct ctlr_info
*h
,
1809 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
1811 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
1813 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
1814 /* physical device, target and lun filled in later */
1815 if (is_hba_lunid(lunaddrbytes
))
1816 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
1818 /* defer target, lun assignment for physical devices */
1819 hpsa_set_bus_target_lun(device
, 2, -1, -1);
1822 /* It's a logical device */
1823 if (is_ext_target(h
, device
)) {
1824 /* external target way, put logicals on bus 1
1825 * and match target/lun numbers box
1826 * reports, other smart array, bus 0, target 0, match lunid
1828 hpsa_set_bus_target_lun(device
,
1829 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
1832 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
1836 * If there is no lun 0 on a target, linux won't find any devices.
1837 * For the external targets (arrays), we have to manually detect the enclosure
1838 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1839 * it for some reason. *tmpdevice is the target we're adding,
1840 * this_device is a pointer into the current element of currentsd[]
1841 * that we're building up in update_scsi_devices(), below.
1842 * lunzerobits is a bitmap that tracks which targets already have a
1844 * Returns 1 if an enclosure was added, 0 if not.
1846 static int add_ext_target_dev(struct ctlr_info
*h
,
1847 struct hpsa_scsi_dev_t
*tmpdevice
,
1848 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
1849 unsigned long lunzerobits
[], int *n_ext_target_devs
)
1851 unsigned char scsi3addr
[8];
1853 if (test_bit(tmpdevice
->target
, lunzerobits
))
1854 return 0; /* There is already a lun 0 on this target. */
1856 if (!is_logical_dev_addr_mode(lunaddrbytes
))
1857 return 0; /* It's the logical targets that may lack lun 0. */
1859 if (!is_ext_target(h
, tmpdevice
))
1860 return 0; /* Only external target devices have this problem. */
1862 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
1865 memset(scsi3addr
, 0, 8);
1866 scsi3addr
[3] = tmpdevice
->target
;
1867 if (is_hba_lunid(scsi3addr
))
1868 return 0; /* Don't add the RAID controller here. */
1870 if (is_scsi_rev_5(h
))
1871 return 0; /* p1210m doesn't need to do this. */
1873 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
1874 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
1875 "target devices exceeded. Check your hardware "
1880 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
1882 (*n_ext_target_devs
)++;
1883 hpsa_set_bus_target_lun(this_device
,
1884 tmpdevice
->bus
, tmpdevice
->target
, 0);
1885 set_bit(tmpdevice
->target
, lunzerobits
);
1890 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1891 * logdev. The number of luns in physdev and logdev are returned in
1892 * *nphysicals and *nlogicals, respectively.
1893 * Returns 0 on success, -1 otherwise.
1895 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
1897 struct ReportLUNdata
*physdev
, u32
*nphysicals
,
1898 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
1900 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, reportlunsize
, 0)) {
1901 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
1904 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 8;
1905 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
1906 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded."
1907 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1908 *nphysicals
- HPSA_MAX_PHYS_LUN
);
1909 *nphysicals
= HPSA_MAX_PHYS_LUN
;
1911 if (hpsa_scsi_do_report_log_luns(h
, logdev
, reportlunsize
)) {
1912 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
1915 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
1916 /* Reject Logicals in excess of our max capability. */
1917 if (*nlogicals
> HPSA_MAX_LUN
) {
1918 dev_warn(&h
->pdev
->dev
,
1919 "maximum logical LUNs (%d) exceeded. "
1920 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
1921 *nlogicals
- HPSA_MAX_LUN
);
1922 *nlogicals
= HPSA_MAX_LUN
;
1924 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
1925 dev_warn(&h
->pdev
->dev
,
1926 "maximum logical + physical LUNs (%d) exceeded. "
1927 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1928 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
1929 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
1934 u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
, int i
,
1935 int nphysicals
, int nlogicals
, struct ReportLUNdata
*physdev_list
,
1936 struct ReportLUNdata
*logdev_list
)
1938 /* Helper function, figure out where the LUN ID info is coming from
1939 * given index i, lists of physical and logical devices, where in
1940 * the list the raid controller is supposed to appear (first or last)
1943 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
1944 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
1946 if (i
== raid_ctlr_position
)
1947 return RAID_CTLR_LUNID
;
1949 if (i
< logicals_start
)
1950 return &physdev_list
->LUN
[i
- (raid_ctlr_position
== 0)][0];
1952 if (i
< last_device
)
1953 return &logdev_list
->LUN
[i
- nphysicals
-
1954 (raid_ctlr_position
== 0)][0];
1959 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
1961 /* the idea here is we could get notified
1962 * that some devices have changed, so we do a report
1963 * physical luns and report logical luns cmd, and adjust
1964 * our list of devices accordingly.
1966 * The scsi3addr's of devices won't change so long as the
1967 * adapter is not reset. That means we can rescan and
1968 * tell which devices we already know about, vs. new
1969 * devices, vs. disappearing devices.
1971 struct ReportLUNdata
*physdev_list
= NULL
;
1972 struct ReportLUNdata
*logdev_list
= NULL
;
1975 u32 ndev_allocated
= 0;
1976 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
1978 int reportlunsize
= sizeof(*physdev_list
) + HPSA_MAX_PHYS_LUN
* 8;
1979 int i
, n_ext_target_devs
, ndevs_to_allocate
;
1980 int raid_ctlr_position
;
1981 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
1983 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1984 physdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1985 logdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1986 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
1988 if (!currentsd
|| !physdev_list
|| !logdev_list
|| !tmpdevice
) {
1989 dev_err(&h
->pdev
->dev
, "out of memory\n");
1992 memset(lunzerobits
, 0, sizeof(lunzerobits
));
1994 if (hpsa_gather_lun_info(h
, reportlunsize
, physdev_list
, &nphysicals
,
1995 logdev_list
, &nlogicals
))
1998 /* We might see up to the maximum number of logical and physical disks
1999 * plus external target devices, and a device for the local RAID
2002 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
2004 /* Allocate the per device structures */
2005 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
2006 if (i
>= HPSA_MAX_DEVICES
) {
2007 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
2008 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
2009 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
2013 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
2014 if (!currentsd
[i
]) {
2015 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
2016 __FILE__
, __LINE__
);
2022 if (unlikely(is_scsi_rev_5(h
)))
2023 raid_ctlr_position
= 0;
2025 raid_ctlr_position
= nphysicals
+ nlogicals
;
2027 /* adjust our table of devices */
2028 n_ext_target_devs
= 0;
2029 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
2030 u8
*lunaddrbytes
, is_OBDR
= 0;
2032 /* Figure out where the LUN ID info is coming from */
2033 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
2034 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
2035 /* skip masked physical devices. */
2036 if (lunaddrbytes
[3] & 0xC0 &&
2037 i
< nphysicals
+ (raid_ctlr_position
== 0))
2040 /* Get device type, vendor, model, device id */
2041 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
2043 continue; /* skip it if we can't talk to it. */
2044 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
2045 this_device
= currentsd
[ncurrent
];
2048 * For external target devices, we have to insert a LUN 0 which
2049 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2050 * is nonetheless an enclosure device there. We have to
2051 * present that otherwise linux won't find anything if
2052 * there is no lun 0.
2054 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
2055 lunaddrbytes
, lunzerobits
,
2056 &n_ext_target_devs
)) {
2058 this_device
= currentsd
[ncurrent
];
2061 *this_device
= *tmpdevice
;
2063 switch (this_device
->devtype
) {
2065 /* We don't *really* support actual CD-ROM devices,
2066 * just "One Button Disaster Recovery" tape drive
2067 * which temporarily pretends to be a CD-ROM drive.
2068 * So we check that the device is really an OBDR tape
2069 * device by checking for "$DR-10" in bytes 43-48 of
2081 case TYPE_MEDIUM_CHANGER
:
2085 /* Only present the Smartarray HBA as a RAID controller.
2086 * If it's a RAID controller other than the HBA itself
2087 * (an external RAID controller, MSA500 or similar)
2090 if (!is_hba_lunid(lunaddrbytes
))
2097 if (ncurrent
>= HPSA_MAX_DEVICES
)
2100 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
2103 for (i
= 0; i
< ndev_allocated
; i
++)
2104 kfree(currentsd
[i
]);
2106 kfree(physdev_list
);
2110 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2111 * dma mapping and fills in the scatter gather entries of the
2114 static int hpsa_scatter_gather(struct ctlr_info
*h
,
2115 struct CommandList
*cp
,
2116 struct scsi_cmnd
*cmd
)
2119 struct scatterlist
*sg
;
2121 int use_sg
, i
, sg_index
, chained
;
2122 struct SGDescriptor
*curr_sg
;
2124 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
2126 use_sg
= scsi_dma_map(cmd
);
2131 goto sglist_finished
;
2136 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
2137 if (i
== h
->max_cmd_sg_entries
- 1 &&
2138 use_sg
> h
->max_cmd_sg_entries
) {
2140 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
2143 addr64
= (u64
) sg_dma_address(sg
);
2144 len
= sg_dma_len(sg
);
2145 curr_sg
->Addr
.lower
= (u32
) (addr64
& 0x0FFFFFFFFULL
);
2146 curr_sg
->Addr
.upper
= (u32
) ((addr64
>> 32) & 0x0FFFFFFFFULL
);
2148 curr_sg
->Ext
= 0; /* we are not chaining */
2152 if (use_sg
+ chained
> h
->maxSG
)
2153 h
->maxSG
= use_sg
+ chained
;
2156 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
2157 cp
->Header
.SGTotal
= (u16
) (use_sg
+ 1);
2158 if (hpsa_map_sg_chain_block(h
, cp
)) {
2159 scsi_dma_unmap(cmd
);
2167 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
2168 cp
->Header
.SGTotal
= (u16
) use_sg
; /* total sgs in this cmd list */
2173 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd
*cmd
,
2174 void (*done
)(struct scsi_cmnd
*))
2176 struct ctlr_info
*h
;
2177 struct hpsa_scsi_dev_t
*dev
;
2178 unsigned char scsi3addr
[8];
2179 struct CommandList
*c
;
2180 unsigned long flags
;
2182 /* Get the ptr to our adapter structure out of cmd->host. */
2183 h
= sdev_to_hba(cmd
->device
);
2184 dev
= cmd
->device
->hostdata
;
2186 cmd
->result
= DID_NO_CONNECT
<< 16;
2190 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
2192 spin_lock_irqsave(&h
->lock
, flags
);
2193 if (unlikely(h
->lockup_detected
)) {
2194 spin_unlock_irqrestore(&h
->lock
, flags
);
2195 cmd
->result
= DID_ERROR
<< 16;
2199 spin_unlock_irqrestore(&h
->lock
, flags
);
2201 if (c
== NULL
) { /* trouble... */
2202 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2203 return SCSI_MLQUEUE_HOST_BUSY
;
2206 /* Fill in the command list header */
2208 cmd
->scsi_done
= done
; /* save this for use by completion code */
2210 /* save c in case we have to abort it */
2211 cmd
->host_scribble
= (unsigned char *) c
;
2213 c
->cmd_type
= CMD_SCSI
;
2215 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
2216 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
2217 c
->Header
.Tag
.lower
= (c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
2218 c
->Header
.Tag
.lower
|= DIRECT_LOOKUP_BIT
;
2220 /* Fill in the request block... */
2222 c
->Request
.Timeout
= 0;
2223 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
2224 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
2225 c
->Request
.CDBLen
= cmd
->cmd_len
;
2226 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
2227 c
->Request
.Type
.Type
= TYPE_CMD
;
2228 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2229 switch (cmd
->sc_data_direction
) {
2231 c
->Request
.Type
.Direction
= XFER_WRITE
;
2233 case DMA_FROM_DEVICE
:
2234 c
->Request
.Type
.Direction
= XFER_READ
;
2237 c
->Request
.Type
.Direction
= XFER_NONE
;
2239 case DMA_BIDIRECTIONAL
:
2240 /* This can happen if a buggy application does a scsi passthru
2241 * and sets both inlen and outlen to non-zero. ( see
2242 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2245 c
->Request
.Type
.Direction
= XFER_RSVD
;
2246 /* This is technically wrong, and hpsa controllers should
2247 * reject it with CMD_INVALID, which is the most correct
2248 * response, but non-fibre backends appear to let it
2249 * slide by, and give the same results as if this field
2250 * were set correctly. Either way is acceptable for
2251 * our purposes here.
2257 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
2258 cmd
->sc_data_direction
);
2263 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
2265 return SCSI_MLQUEUE_HOST_BUSY
;
2267 enqueue_cmd_and_start_io(h
, c
);
2268 /* the cmd'll come back via intr handler in complete_scsi_command() */
2272 static DEF_SCSI_QCMD(hpsa_scsi_queue_command
)
2274 static void hpsa_scan_start(struct Scsi_Host
*sh
)
2276 struct ctlr_info
*h
= shost_to_hba(sh
);
2277 unsigned long flags
;
2279 /* wait until any scan already in progress is finished. */
2281 spin_lock_irqsave(&h
->scan_lock
, flags
);
2282 if (h
->scan_finished
)
2284 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2285 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
2286 /* Note: We don't need to worry about a race between this
2287 * thread and driver unload because the midlayer will
2288 * have incremented the reference count, so unload won't
2289 * happen if we're in here.
2292 h
->scan_finished
= 0; /* mark scan as in progress */
2293 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2295 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
2297 spin_lock_irqsave(&h
->scan_lock
, flags
);
2298 h
->scan_finished
= 1; /* mark scan as finished. */
2299 wake_up_all(&h
->scan_wait_queue
);
2300 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2303 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
2304 unsigned long elapsed_time
)
2306 struct ctlr_info
*h
= shost_to_hba(sh
);
2307 unsigned long flags
;
2310 spin_lock_irqsave(&h
->scan_lock
, flags
);
2311 finished
= h
->scan_finished
;
2312 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2316 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
2317 int qdepth
, int reason
)
2319 struct ctlr_info
*h
= sdev_to_hba(sdev
);
2321 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2327 if (qdepth
> h
->nr_cmds
)
2328 qdepth
= h
->nr_cmds
;
2329 scsi_adjust_queue_depth(sdev
, scsi_get_tag_type(sdev
), qdepth
);
2330 return sdev
->queue_depth
;
2333 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
2335 /* we are being forcibly unloaded, and may not refuse. */
2336 scsi_remove_host(h
->scsi_host
);
2337 scsi_host_put(h
->scsi_host
);
2338 h
->scsi_host
= NULL
;
2341 static int hpsa_register_scsi(struct ctlr_info
*h
)
2343 struct Scsi_Host
*sh
;
2346 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
2353 sh
->max_channel
= 3;
2354 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
2355 sh
->max_lun
= HPSA_MAX_LUN
;
2356 sh
->max_id
= HPSA_MAX_LUN
;
2357 sh
->can_queue
= h
->nr_cmds
;
2358 sh
->cmd_per_lun
= h
->nr_cmds
;
2359 sh
->sg_tablesize
= h
->maxsgentries
;
2361 sh
->hostdata
[0] = (unsigned long) h
;
2362 sh
->irq
= h
->intr
[h
->intr_mode
];
2363 sh
->unique_id
= sh
->irq
;
2364 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
2371 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
2372 " failed for controller %d\n", __func__
, h
->ctlr
);
2376 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
2377 " failed for controller %d\n", __func__
, h
->ctlr
);
2381 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
2382 unsigned char lunaddr
[])
2386 int waittime
= 1; /* seconds */
2387 struct CommandList
*c
;
2389 c
= cmd_special_alloc(h
);
2391 dev_warn(&h
->pdev
->dev
, "out of memory in "
2392 "wait_for_device_to_become_ready.\n");
2396 /* Send test unit ready until device ready, or give up. */
2397 while (count
< HPSA_TUR_RETRY_LIMIT
) {
2399 /* Wait for a bit. do this first, because if we send
2400 * the TUR right away, the reset will just abort it.
2402 msleep(1000 * waittime
);
2405 /* Increase wait time with each try, up to a point. */
2406 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
2407 waittime
= waittime
* 2;
2409 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2410 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
2411 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
2412 hpsa_scsi_do_simple_cmd_core(h
, c
);
2413 /* no unmap needed here because no data xfer. */
2415 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2418 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
2419 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
2420 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
2421 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
2424 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
2425 "for device to become ready.\n", waittime
);
2426 rc
= 1; /* device not ready. */
2430 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
2432 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
2434 cmd_special_free(h
, c
);
2438 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2439 * complaining. Doing a host- or bus-reset can't do anything good here.
2441 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
2444 struct ctlr_info
*h
;
2445 struct hpsa_scsi_dev_t
*dev
;
2447 /* find the controller to which the command to be aborted was sent */
2448 h
= sdev_to_hba(scsicmd
->device
);
2449 if (h
== NULL
) /* paranoia */
2451 dev
= scsicmd
->device
->hostdata
;
2453 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
2454 "device lookup failed.\n");
2457 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
2458 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2459 /* send a reset to the SCSI LUN which the command was sent to */
2460 rc
= hpsa_send_reset(h
, dev
->scsi3addr
);
2461 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
2464 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
2468 static void swizzle_abort_tag(u8
*tag
)
2472 memcpy(original_tag
, tag
, 8);
2473 tag
[0] = original_tag
[3];
2474 tag
[1] = original_tag
[2];
2475 tag
[2] = original_tag
[1];
2476 tag
[3] = original_tag
[0];
2477 tag
[4] = original_tag
[7];
2478 tag
[5] = original_tag
[6];
2479 tag
[6] = original_tag
[5];
2480 tag
[7] = original_tag
[4];
2483 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2484 struct CommandList
*abort
, int swizzle
)
2487 struct CommandList
*c
;
2488 struct ErrorInfo
*ei
;
2490 c
= cmd_special_alloc(h
);
2491 if (c
== NULL
) { /* trouble... */
2492 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2496 /* fill_cmd can't fail here, no buffer to map */
2497 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
,
2498 0, 0, scsi3addr
, TYPE_MSG
);
2500 swizzle_abort_tag(&c
->Request
.CDB
[4]);
2501 hpsa_scsi_do_simple_cmd_core(h
, c
);
2502 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2503 __func__
, abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2504 /* no unmap needed here because no data xfer. */
2507 switch (ei
->CommandStatus
) {
2510 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
2514 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2515 __func__
, abort
->Header
.Tag
.upper
,
2516 abort
->Header
.Tag
.lower
);
2517 hpsa_scsi_interpret_error(c
);
2521 cmd_special_free(h
, c
);
2522 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
2523 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2528 * hpsa_find_cmd_in_queue
2530 * Used to determine whether a command (find) is still present
2531 * in queue_head. Optionally excludes the last element of queue_head.
2533 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2534 * not yet been submitted, and so can be aborted by the driver without
2535 * sending an abort to the hardware.
2537 * Returns pointer to command if found in queue, NULL otherwise.
2539 static struct CommandList
*hpsa_find_cmd_in_queue(struct ctlr_info
*h
,
2540 struct scsi_cmnd
*find
, struct list_head
*queue_head
)
2542 unsigned long flags
;
2543 struct CommandList
*c
= NULL
; /* ptr into cmpQ */
2547 spin_lock_irqsave(&h
->lock
, flags
);
2548 list_for_each_entry(c
, queue_head
, list
) {
2549 if (c
->scsi_cmd
== NULL
) /* e.g.: passthru ioctl */
2551 if (c
->scsi_cmd
== find
) {
2552 spin_unlock_irqrestore(&h
->lock
, flags
);
2556 spin_unlock_irqrestore(&h
->lock
, flags
);
2560 static struct CommandList
*hpsa_find_cmd_in_queue_by_tag(struct ctlr_info
*h
,
2561 u8
*tag
, struct list_head
*queue_head
)
2563 unsigned long flags
;
2564 struct CommandList
*c
;
2566 spin_lock_irqsave(&h
->lock
, flags
);
2567 list_for_each_entry(c
, queue_head
, list
) {
2568 if (memcmp(&c
->Header
.Tag
, tag
, 8) != 0)
2570 spin_unlock_irqrestore(&h
->lock
, flags
);
2573 spin_unlock_irqrestore(&h
->lock
, flags
);
2577 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2578 * tell which kind we're dealing with, so we send the abort both ways. There
2579 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2580 * way we construct our tags but we check anyway in case the assumptions which
2581 * make this true someday become false.
2583 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
2584 unsigned char *scsi3addr
, struct CommandList
*abort
)
2587 struct CommandList
*c
;
2588 int rc
= 0, rc2
= 0;
2590 /* we do not expect to find the swizzled tag in our queue, but
2591 * check anyway just to be sure the assumptions which make this
2592 * the case haven't become wrong.
2594 memcpy(swizzled_tag
, &abort
->Request
.CDB
[4], 8);
2595 swizzle_abort_tag(swizzled_tag
);
2596 c
= hpsa_find_cmd_in_queue_by_tag(h
, swizzled_tag
, &h
->cmpQ
);
2598 dev_warn(&h
->pdev
->dev
, "Unexpectedly found byte-swapped tag in completion queue.\n");
2599 return hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2601 rc
= hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2603 /* if the command is still in our queue, we can't conclude that it was
2604 * aborted (it might have just completed normally) but in any case
2605 * we don't need to try to abort it another way.
2607 c
= hpsa_find_cmd_in_queue(h
, abort
->scsi_cmd
, &h
->cmpQ
);
2609 rc2
= hpsa_send_abort(h
, scsi3addr
, abort
, 1);
2613 /* Send an abort for the specified command.
2614 * If the device and controller support it,
2615 * send a task abort request.
2617 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
2621 struct ctlr_info
*h
;
2622 struct hpsa_scsi_dev_t
*dev
;
2623 struct CommandList
*abort
; /* pointer to command to be aborted */
2624 struct CommandList
*found
;
2625 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
2626 char msg
[256]; /* For debug messaging. */
2629 /* Find the controller of the command to be aborted */
2630 h
= sdev_to_hba(sc
->device
);
2632 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2635 /* Check that controller supports some kind of task abort */
2636 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
2637 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
2640 memset(msg
, 0, sizeof(msg
));
2641 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2642 h
->scsi_host
->host_no
, sc
->device
->channel
,
2643 sc
->device
->id
, sc
->device
->lun
);
2645 /* Find the device of the command to be aborted */
2646 dev
= sc
->device
->hostdata
;
2648 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
2653 /* Get SCSI command to be aborted */
2654 abort
= (struct CommandList
*) sc
->host_scribble
;
2655 if (abort
== NULL
) {
2656 dev_err(&h
->pdev
->dev
, "%s FAILED, Command to abort is NULL.\n",
2661 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ",
2662 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2663 as
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
2665 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
2666 as
->cmnd
[0], as
->serial_number
);
2667 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
2668 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
2669 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2671 /* Search reqQ to See if command is queued but not submitted,
2672 * if so, complete the command with aborted status and remove
2675 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->reqQ
);
2677 found
->err_info
->CommandStatus
= CMD_ABORTED
;
2679 dev_info(&h
->pdev
->dev
, "%s Request SUCCEEDED (driver queue).\n",
2684 /* not in reqQ, if also not in cmpQ, must have already completed */
2685 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2687 dev_dbg(&h
->pdev
->dev
, "%s Request SUCCEEDED (not known to driver).\n",
2693 * Command is in flight, or possibly already completed
2694 * by the firmware (but not to the scsi mid layer) but we can't
2695 * distinguish which. Send the abort down.
2697 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
2699 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
2700 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2701 h
->scsi_host
->host_no
,
2702 dev
->bus
, dev
->target
, dev
->lun
);
2705 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
2707 /* If the abort(s) above completed and actually aborted the
2708 * command, then the command to be aborted should already be
2709 * completed. If not, wait around a bit more to see if they
2710 * manage to complete normally.
2712 #define ABORT_COMPLETE_WAIT_SECS 30
2713 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
2714 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2719 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2720 msg
, ABORT_COMPLETE_WAIT_SECS
);
2726 * For operations that cannot sleep, a command block is allocated at init,
2727 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2728 * which ones are free or in use. Lock must be held when calling this.
2729 * cmd_free() is the complement.
2731 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
2733 struct CommandList
*c
;
2735 union u64bit temp64
;
2736 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2737 unsigned long flags
;
2739 spin_lock_irqsave(&h
->lock
, flags
);
2741 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
2742 if (i
== h
->nr_cmds
) {
2743 spin_unlock_irqrestore(&h
->lock
, flags
);
2746 } while (test_and_set_bit
2747 (i
& (BITS_PER_LONG
- 1),
2748 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
2749 spin_unlock_irqrestore(&h
->lock
, flags
);
2751 c
= h
->cmd_pool
+ i
;
2752 memset(c
, 0, sizeof(*c
));
2753 cmd_dma_handle
= h
->cmd_pool_dhandle
2755 c
->err_info
= h
->errinfo_pool
+ i
;
2756 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2757 err_dma_handle
= h
->errinfo_pool_dhandle
2758 + i
* sizeof(*c
->err_info
);
2762 INIT_LIST_HEAD(&c
->list
);
2763 c
->busaddr
= (u32
) cmd_dma_handle
;
2764 temp64
.val
= (u64
) err_dma_handle
;
2765 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2766 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2767 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2773 /* For operations that can wait for kmalloc to possibly sleep,
2774 * this routine can be called. Lock need not be held to call
2775 * cmd_special_alloc. cmd_special_free() is the complement.
2777 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
)
2779 struct CommandList
*c
;
2780 union u64bit temp64
;
2781 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2783 c
= pci_alloc_consistent(h
->pdev
, sizeof(*c
), &cmd_dma_handle
);
2786 memset(c
, 0, sizeof(*c
));
2790 c
->err_info
= pci_alloc_consistent(h
->pdev
, sizeof(*c
->err_info
),
2793 if (c
->err_info
== NULL
) {
2794 pci_free_consistent(h
->pdev
,
2795 sizeof(*c
), c
, cmd_dma_handle
);
2798 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2800 INIT_LIST_HEAD(&c
->list
);
2801 c
->busaddr
= (u32
) cmd_dma_handle
;
2802 temp64
.val
= (u64
) err_dma_handle
;
2803 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2804 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2805 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2811 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
2814 unsigned long flags
;
2816 i
= c
- h
->cmd_pool
;
2817 spin_lock_irqsave(&h
->lock
, flags
);
2818 clear_bit(i
& (BITS_PER_LONG
- 1),
2819 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
2820 spin_unlock_irqrestore(&h
->lock
, flags
);
2823 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
)
2825 union u64bit temp64
;
2827 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
2828 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
2829 pci_free_consistent(h
->pdev
, sizeof(*c
->err_info
),
2830 c
->err_info
, (dma_addr_t
) temp64
.val
);
2831 pci_free_consistent(h
->pdev
, sizeof(*c
),
2832 c
, (dma_addr_t
) (c
->busaddr
& DIRECT_LOOKUP_MASK
));
2835 #ifdef CONFIG_COMPAT
2837 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
, void *arg
)
2839 IOCTL32_Command_struct __user
*arg32
=
2840 (IOCTL32_Command_struct __user
*) arg
;
2841 IOCTL_Command_struct arg64
;
2842 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
2846 memset(&arg64
, 0, sizeof(arg64
));
2848 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2849 sizeof(arg64
.LUN_info
));
2850 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2851 sizeof(arg64
.Request
));
2852 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2853 sizeof(arg64
.error_info
));
2854 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2855 err
|= get_user(cp
, &arg32
->buf
);
2856 arg64
.buf
= compat_ptr(cp
);
2857 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2862 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, (void *)p
);
2865 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2866 sizeof(arg32
->error_info
));
2872 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
2875 BIG_IOCTL32_Command_struct __user
*arg32
=
2876 (BIG_IOCTL32_Command_struct __user
*) arg
;
2877 BIG_IOCTL_Command_struct arg64
;
2878 BIG_IOCTL_Command_struct __user
*p
=
2879 compat_alloc_user_space(sizeof(arg64
));
2883 memset(&arg64
, 0, sizeof(arg64
));
2885 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2886 sizeof(arg64
.LUN_info
));
2887 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2888 sizeof(arg64
.Request
));
2889 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2890 sizeof(arg64
.error_info
));
2891 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2892 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
2893 err
|= get_user(cp
, &arg32
->buf
);
2894 arg64
.buf
= compat_ptr(cp
);
2895 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2900 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, (void *)p
);
2903 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2904 sizeof(arg32
->error_info
));
2910 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
2913 case CCISS_GETPCIINFO
:
2914 case CCISS_GETINTINFO
:
2915 case CCISS_SETINTINFO
:
2916 case CCISS_GETNODENAME
:
2917 case CCISS_SETNODENAME
:
2918 case CCISS_GETHEARTBEAT
:
2919 case CCISS_GETBUSTYPES
:
2920 case CCISS_GETFIRMVER
:
2921 case CCISS_GETDRIVVER
:
2922 case CCISS_REVALIDVOLS
:
2923 case CCISS_DEREGDISK
:
2924 case CCISS_REGNEWDISK
:
2926 case CCISS_RESCANDISK
:
2927 case CCISS_GETLUNINFO
:
2928 return hpsa_ioctl(dev
, cmd
, arg
);
2930 case CCISS_PASSTHRU32
:
2931 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
2932 case CCISS_BIG_PASSTHRU32
:
2933 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
2936 return -ENOIOCTLCMD
;
2941 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2943 struct hpsa_pci_info pciinfo
;
2947 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
2948 pciinfo
.bus
= h
->pdev
->bus
->number
;
2949 pciinfo
.dev_fn
= h
->pdev
->devfn
;
2950 pciinfo
.board_id
= h
->board_id
;
2951 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
2956 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2958 DriverVer_type DriverVer
;
2959 unsigned char vmaj
, vmin
, vsubmin
;
2962 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
2963 &vmaj
, &vmin
, &vsubmin
);
2965 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
2966 "unrecognized.", HPSA_DRIVER_VERSION
);
2971 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
2974 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
2979 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2981 IOCTL_Command_struct iocommand
;
2982 struct CommandList
*c
;
2984 union u64bit temp64
;
2989 if (!capable(CAP_SYS_RAWIO
))
2991 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
2993 if ((iocommand
.buf_size
< 1) &&
2994 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
2997 if (iocommand
.buf_size
> 0) {
2998 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
3001 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
3002 /* Copy the data into the buffer we created */
3003 if (copy_from_user(buff
, iocommand
.buf
,
3004 iocommand
.buf_size
)) {
3009 memset(buff
, 0, iocommand
.buf_size
);
3012 c
= cmd_special_alloc(h
);
3017 /* Fill in the command type */
3018 c
->cmd_type
= CMD_IOCTL_PEND
;
3019 /* Fill in Command Header */
3020 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3021 if (iocommand
.buf_size
> 0) { /* buffer to fill */
3022 c
->Header
.SGList
= 1;
3023 c
->Header
.SGTotal
= 1;
3024 } else { /* no buffers to fill */
3025 c
->Header
.SGList
= 0;
3026 c
->Header
.SGTotal
= 0;
3028 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
3029 /* use the kernel address the cmd block for tag */
3030 c
->Header
.Tag
.lower
= c
->busaddr
;
3032 /* Fill in Request block */
3033 memcpy(&c
->Request
, &iocommand
.Request
,
3034 sizeof(c
->Request
));
3036 /* Fill in the scatter gather information */
3037 if (iocommand
.buf_size
> 0) {
3038 temp64
.val
= pci_map_single(h
->pdev
, buff
,
3039 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
3040 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3041 c
->SG
[0].Addr
.lower
= 0;
3042 c
->SG
[0].Addr
.upper
= 0;
3047 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
3048 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
3049 c
->SG
[0].Len
= iocommand
.buf_size
;
3050 c
->SG
[0].Ext
= 0; /* we are not chaining*/
3052 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3053 if (iocommand
.buf_size
> 0)
3054 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
3055 check_ioctl_unit_attention(h
, c
);
3057 /* Copy the error information out */
3058 memcpy(&iocommand
.error_info
, c
->err_info
,
3059 sizeof(iocommand
.error_info
));
3060 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
3064 if (iocommand
.Request
.Type
.Direction
== XFER_READ
&&
3065 iocommand
.buf_size
> 0) {
3066 /* Copy the data out of the buffer we created */
3067 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
3073 cmd_special_free(h
, c
);
3079 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
3081 BIG_IOCTL_Command_struct
*ioc
;
3082 struct CommandList
*c
;
3083 unsigned char **buff
= NULL
;
3084 int *buff_size
= NULL
;
3085 union u64bit temp64
;
3091 BYTE __user
*data_ptr
;
3095 if (!capable(CAP_SYS_RAWIO
))
3097 ioc
= (BIG_IOCTL_Command_struct
*)
3098 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
3103 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
3107 if ((ioc
->buf_size
< 1) &&
3108 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
3112 /* Check kmalloc limits using all SGs */
3113 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
3117 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
3121 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
3126 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
3131 left
= ioc
->buf_size
;
3132 data_ptr
= ioc
->buf
;
3134 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
3135 buff_size
[sg_used
] = sz
;
3136 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
3137 if (buff
[sg_used
] == NULL
) {
3141 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
3142 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
3147 memset(buff
[sg_used
], 0, sz
);
3152 c
= cmd_special_alloc(h
);
3157 c
->cmd_type
= CMD_IOCTL_PEND
;
3158 c
->Header
.ReplyQueue
= 0;
3159 c
->Header
.SGList
= c
->Header
.SGTotal
= sg_used
;
3160 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
3161 c
->Header
.Tag
.lower
= c
->busaddr
;
3162 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
3163 if (ioc
->buf_size
> 0) {
3165 for (i
= 0; i
< sg_used
; i
++) {
3166 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
],
3167 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
3168 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3169 c
->SG
[i
].Addr
.lower
= 0;
3170 c
->SG
[i
].Addr
.upper
= 0;
3172 hpsa_pci_unmap(h
->pdev
, c
, i
,
3173 PCI_DMA_BIDIRECTIONAL
);
3177 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3178 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3179 c
->SG
[i
].Len
= buff_size
[i
];
3180 /* we are not chaining */
3184 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3186 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
3187 check_ioctl_unit_attention(h
, c
);
3188 /* Copy the error information out */
3189 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
3190 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
3191 cmd_special_free(h
, c
);
3195 if (ioc
->Request
.Type
.Direction
== XFER_READ
&& ioc
->buf_size
> 0) {
3196 /* Copy the data out of the buffer we created */
3197 BYTE __user
*ptr
= ioc
->buf
;
3198 for (i
= 0; i
< sg_used
; i
++) {
3199 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
3200 cmd_special_free(h
, c
);
3204 ptr
+= buff_size
[i
];
3207 cmd_special_free(h
, c
);
3211 for (i
= 0; i
< sg_used
; i
++)
3220 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
3221 struct CommandList
*c
)
3223 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
3224 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
3225 (void) check_for_unit_attention(h
, c
);
3230 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
3232 struct ctlr_info
*h
;
3233 void __user
*argp
= (void __user
*)arg
;
3235 h
= sdev_to_hba(dev
);
3238 case CCISS_DEREGDISK
:
3239 case CCISS_REGNEWDISK
:
3241 hpsa_scan_start(h
->scsi_host
);
3243 case CCISS_GETPCIINFO
:
3244 return hpsa_getpciinfo_ioctl(h
, argp
);
3245 case CCISS_GETDRIVVER
:
3246 return hpsa_getdrivver_ioctl(h
, argp
);
3247 case CCISS_PASSTHRU
:
3248 return hpsa_passthru_ioctl(h
, argp
);
3249 case CCISS_BIG_PASSTHRU
:
3250 return hpsa_big_passthru_ioctl(h
, argp
);
3256 static int hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3259 struct CommandList
*c
;
3264 /* fill_cmd can't fail here, no data buffer to map */
3265 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
3266 RAID_CTLR_LUNID
, TYPE_MSG
);
3267 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
3269 enqueue_cmd_and_start_io(h
, c
);
3270 /* Don't wait for completion, the reset won't complete. Don't free
3271 * the command either. This is the last command we will send before
3272 * re-initializing everything, so it doesn't matter and won't leak.
3277 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
3278 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
3281 int pci_dir
= XFER_NONE
;
3282 struct CommandList
*a
; /* for commands to be aborted */
3284 c
->cmd_type
= CMD_IOCTL_PEND
;
3285 c
->Header
.ReplyQueue
= 0;
3286 if (buff
!= NULL
&& size
> 0) {
3287 c
->Header
.SGList
= 1;
3288 c
->Header
.SGTotal
= 1;
3290 c
->Header
.SGList
= 0;
3291 c
->Header
.SGTotal
= 0;
3293 c
->Header
.Tag
.lower
= c
->busaddr
;
3294 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
3296 c
->Request
.Type
.Type
= cmd_type
;
3297 if (cmd_type
== TYPE_CMD
) {
3300 /* are we trying to read a vital product page */
3301 if (page_code
!= 0) {
3302 c
->Request
.CDB
[1] = 0x01;
3303 c
->Request
.CDB
[2] = page_code
;
3305 c
->Request
.CDBLen
= 6;
3306 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3307 c
->Request
.Type
.Direction
= XFER_READ
;
3308 c
->Request
.Timeout
= 0;
3309 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
3310 c
->Request
.CDB
[4] = size
& 0xFF;
3312 case HPSA_REPORT_LOG
:
3313 case HPSA_REPORT_PHYS
:
3314 /* Talking to controller so It's a physical command
3315 mode = 00 target = 0. Nothing to write.
3317 c
->Request
.CDBLen
= 12;
3318 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3319 c
->Request
.Type
.Direction
= XFER_READ
;
3320 c
->Request
.Timeout
= 0;
3321 c
->Request
.CDB
[0] = cmd
;
3322 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
3323 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
3324 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
3325 c
->Request
.CDB
[9] = size
& 0xFF;
3327 case HPSA_CACHE_FLUSH
:
3328 c
->Request
.CDBLen
= 12;
3329 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3330 c
->Request
.Type
.Direction
= XFER_WRITE
;
3331 c
->Request
.Timeout
= 0;
3332 c
->Request
.CDB
[0] = BMIC_WRITE
;
3333 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
3334 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
3335 c
->Request
.CDB
[8] = size
& 0xFF;
3337 case TEST_UNIT_READY
:
3338 c
->Request
.CDBLen
= 6;
3339 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3340 c
->Request
.Type
.Direction
= XFER_NONE
;
3341 c
->Request
.Timeout
= 0;
3344 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
3348 } else if (cmd_type
== TYPE_MSG
) {
3351 case HPSA_DEVICE_RESET_MSG
:
3352 c
->Request
.CDBLen
= 16;
3353 c
->Request
.Type
.Type
= 1; /* It is a MSG not a CMD */
3354 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3355 c
->Request
.Type
.Direction
= XFER_NONE
;
3356 c
->Request
.Timeout
= 0; /* Don't time out */
3357 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
3358 c
->Request
.CDB
[0] = cmd
;
3359 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
3360 /* If bytes 4-7 are zero, it means reset the */
3362 c
->Request
.CDB
[4] = 0x00;
3363 c
->Request
.CDB
[5] = 0x00;
3364 c
->Request
.CDB
[6] = 0x00;
3365 c
->Request
.CDB
[7] = 0x00;
3367 case HPSA_ABORT_MSG
:
3368 a
= buff
; /* point to command to be aborted */
3369 dev_dbg(&h
->pdev
->dev
, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3370 a
->Header
.Tag
.upper
, a
->Header
.Tag
.lower
,
3371 c
->Header
.Tag
.upper
, c
->Header
.Tag
.lower
);
3372 c
->Request
.CDBLen
= 16;
3373 c
->Request
.Type
.Type
= TYPE_MSG
;
3374 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3375 c
->Request
.Type
.Direction
= XFER_WRITE
;
3376 c
->Request
.Timeout
= 0; /* Don't time out */
3377 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
3378 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
3379 c
->Request
.CDB
[2] = 0x00; /* reserved */
3380 c
->Request
.CDB
[3] = 0x00; /* reserved */
3381 /* Tag to abort goes in CDB[4]-CDB[11] */
3382 c
->Request
.CDB
[4] = a
->Header
.Tag
.lower
& 0xFF;
3383 c
->Request
.CDB
[5] = (a
->Header
.Tag
.lower
>> 8) & 0xFF;
3384 c
->Request
.CDB
[6] = (a
->Header
.Tag
.lower
>> 16) & 0xFF;
3385 c
->Request
.CDB
[7] = (a
->Header
.Tag
.lower
>> 24) & 0xFF;
3386 c
->Request
.CDB
[8] = a
->Header
.Tag
.upper
& 0xFF;
3387 c
->Request
.CDB
[9] = (a
->Header
.Tag
.upper
>> 8) & 0xFF;
3388 c
->Request
.CDB
[10] = (a
->Header
.Tag
.upper
>> 16) & 0xFF;
3389 c
->Request
.CDB
[11] = (a
->Header
.Tag
.upper
>> 24) & 0xFF;
3390 c
->Request
.CDB
[12] = 0x00; /* reserved */
3391 c
->Request
.CDB
[13] = 0x00; /* reserved */
3392 c
->Request
.CDB
[14] = 0x00; /* reserved */
3393 c
->Request
.CDB
[15] = 0x00; /* reserved */
3396 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
3401 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
3405 switch (c
->Request
.Type
.Direction
) {
3407 pci_dir
= PCI_DMA_FROMDEVICE
;
3410 pci_dir
= PCI_DMA_TODEVICE
;
3413 pci_dir
= PCI_DMA_NONE
;
3416 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
3418 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
3424 * Map (physical) PCI mem into (virtual) kernel space
3426 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3428 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3429 ulong page_offs
= ((ulong
) base
) - page_base
;
3430 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
3433 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3436 /* Takes cmds off the submission queue and sends them to the hardware,
3437 * then puts them on the queue of cmds waiting for completion.
3439 static void start_io(struct ctlr_info
*h
)
3441 struct CommandList
*c
;
3442 unsigned long flags
;
3444 spin_lock_irqsave(&h
->lock
, flags
);
3445 while (!list_empty(&h
->reqQ
)) {
3446 c
= list_entry(h
->reqQ
.next
, struct CommandList
, list
);
3447 /* can't do anything if fifo is full */
3448 if ((h
->access
.fifo_full(h
))) {
3449 dev_warn(&h
->pdev
->dev
, "fifo full\n");
3453 /* Get the first entry from the Request Q */
3457 /* Put job onto the completed Q */
3460 /* Must increment commands_outstanding before unlocking
3461 * and submitting to avoid race checking for fifo full
3464 h
->commands_outstanding
++;
3465 if (h
->commands_outstanding
> h
->max_outstanding
)
3466 h
->max_outstanding
= h
->commands_outstanding
;
3468 /* Tell the controller execute command */
3469 spin_unlock_irqrestore(&h
->lock
, flags
);
3470 h
->access
.submit_command(h
, c
);
3471 spin_lock_irqsave(&h
->lock
, flags
);
3473 spin_unlock_irqrestore(&h
->lock
, flags
);
3476 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
3478 return h
->access
.command_completed(h
, q
);
3481 static inline bool interrupt_pending(struct ctlr_info
*h
)
3483 return h
->access
.intr_pending(h
);
3486 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
3488 return (h
->access
.intr_pending(h
) == 0) ||
3489 (h
->interrupts_enabled
== 0);
3492 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
3495 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3496 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3502 static inline void finish_cmd(struct CommandList
*c
)
3504 unsigned long flags
;
3506 spin_lock_irqsave(&c
->h
->lock
, flags
);
3508 spin_unlock_irqrestore(&c
->h
->lock
, flags
);
3509 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
3510 if (likely(c
->cmd_type
== CMD_SCSI
))
3511 complete_scsi_command(c
);
3512 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3513 complete(c
->waiting
);
3516 static inline u32
hpsa_tag_contains_index(u32 tag
)
3518 return tag
& DIRECT_LOOKUP_BIT
;
3521 static inline u32
hpsa_tag_to_index(u32 tag
)
3523 return tag
>> DIRECT_LOOKUP_SHIFT
;
3527 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
3529 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3530 #define HPSA_SIMPLE_ERROR_BITS 0x03
3531 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
3532 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
3533 return tag
& ~HPSA_PERF_ERROR_BITS
;
3536 /* process completion of an indexed ("direct lookup") command */
3537 static inline void process_indexed_cmd(struct ctlr_info
*h
,
3541 struct CommandList
*c
;
3543 tag_index
= hpsa_tag_to_index(raw_tag
);
3544 if (!bad_tag(h
, tag_index
, raw_tag
)) {
3545 c
= h
->cmd_pool
+ tag_index
;
3550 /* process completion of a non-indexed command */
3551 static inline void process_nonindexed_cmd(struct ctlr_info
*h
,
3555 struct CommandList
*c
= NULL
;
3556 unsigned long flags
;
3558 tag
= hpsa_tag_discard_error_bits(h
, raw_tag
);
3559 spin_lock_irqsave(&h
->lock
, flags
);
3560 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3561 if ((c
->busaddr
& 0xFFFFFFE0) == (tag
& 0xFFFFFFE0)) {
3562 spin_unlock_irqrestore(&h
->lock
, flags
);
3567 spin_unlock_irqrestore(&h
->lock
, flags
);
3568 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3571 /* Some controllers, like p400, will give us one interrupt
3572 * after a soft reset, even if we turned interrupts off.
3573 * Only need to check for this in the hpsa_xxx_discard_completions
3576 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
3578 if (likely(!reset_devices
))
3581 if (likely(h
->interrupts_enabled
))
3584 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
3585 "(known firmware bug.) Ignoring.\n");
3591 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3592 * Relies on (h-q[x] == x) being true for x such that
3593 * 0 <= x < MAX_REPLY_QUEUES.
3595 static struct ctlr_info
*queue_to_hba(u8
*queue
)
3597 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
3600 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
3602 struct ctlr_info
*h
= queue_to_hba(queue
);
3603 u8 q
= *(u8
*) queue
;
3606 if (ignore_bogus_interrupt(h
))
3609 if (interrupt_not_for_us(h
))
3611 h
->last_intr_timestamp
= get_jiffies_64();
3612 while (interrupt_pending(h
)) {
3613 raw_tag
= get_next_completion(h
, q
);
3614 while (raw_tag
!= FIFO_EMPTY
)
3615 raw_tag
= next_command(h
, q
);
3620 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
3622 struct ctlr_info
*h
= queue_to_hba(queue
);
3624 u8 q
= *(u8
*) queue
;
3626 if (ignore_bogus_interrupt(h
))
3629 h
->last_intr_timestamp
= get_jiffies_64();
3630 raw_tag
= get_next_completion(h
, q
);
3631 while (raw_tag
!= FIFO_EMPTY
)
3632 raw_tag
= next_command(h
, q
);
3636 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
3638 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
3640 u8 q
= *(u8
*) queue
;
3642 if (interrupt_not_for_us(h
))
3644 h
->last_intr_timestamp
= get_jiffies_64();
3645 while (interrupt_pending(h
)) {
3646 raw_tag
= get_next_completion(h
, q
);
3647 while (raw_tag
!= FIFO_EMPTY
) {
3648 if (likely(hpsa_tag_contains_index(raw_tag
)))
3649 process_indexed_cmd(h
, raw_tag
);
3651 process_nonindexed_cmd(h
, raw_tag
);
3652 raw_tag
= next_command(h
, q
);
3658 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
3660 struct ctlr_info
*h
= queue_to_hba(queue
);
3662 u8 q
= *(u8
*) queue
;
3664 h
->last_intr_timestamp
= get_jiffies_64();
3665 raw_tag
= get_next_completion(h
, q
);
3666 while (raw_tag
!= FIFO_EMPTY
) {
3667 if (likely(hpsa_tag_contains_index(raw_tag
)))
3668 process_indexed_cmd(h
, raw_tag
);
3670 process_nonindexed_cmd(h
, raw_tag
);
3671 raw_tag
= next_command(h
, q
);
3676 /* Send a message CDB to the firmware. Careful, this only works
3677 * in simple mode, not performant mode due to the tag lookup.
3678 * We only ever use this immediately after a controller reset.
3680 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
3684 struct CommandListHeader CommandHeader
;
3685 struct RequestBlock Request
;
3686 struct ErrDescriptor ErrorDescriptor
;
3688 struct Command
*cmd
;
3689 static const size_t cmd_sz
= sizeof(*cmd
) +
3690 sizeof(cmd
->ErrorDescriptor
);
3692 uint32_t paddr32
, tag
;
3693 void __iomem
*vaddr
;
3696 vaddr
= pci_ioremap_bar(pdev
, 0);
3700 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3701 * CCISS commands, so they must be allocated from the lower 4GiB of
3704 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3710 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3716 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3717 * although there's no guarantee, we assume that the address is at
3718 * least 4-byte aligned (most likely, it's page-aligned).
3722 cmd
->CommandHeader
.ReplyQueue
= 0;
3723 cmd
->CommandHeader
.SGList
= 0;
3724 cmd
->CommandHeader
.SGTotal
= 0;
3725 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3726 cmd
->CommandHeader
.Tag
.upper
= 0;
3727 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3729 cmd
->Request
.CDBLen
= 16;
3730 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3731 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3732 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3733 cmd
->Request
.Timeout
= 0; /* Don't time out */
3734 cmd
->Request
.CDB
[0] = opcode
;
3735 cmd
->Request
.CDB
[1] = type
;
3736 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
3737 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(*cmd
);
3738 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3739 cmd
->ErrorDescriptor
.Len
= sizeof(struct ErrorInfo
);
3741 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3743 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
3744 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3745 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr32
)
3747 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
3752 /* we leak the DMA buffer here ... no choice since the controller could
3753 * still complete the command.
3755 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
3756 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
3761 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3763 if (tag
& HPSA_ERROR_BIT
) {
3764 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
3769 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
3774 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3776 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
3777 void * __iomem vaddr
, u32 use_doorbell
)
3783 /* For everything after the P600, the PCI power state method
3784 * of resetting the controller doesn't work, so we have this
3785 * other way using the doorbell register.
3787 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
3788 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
3789 } else { /* Try to do it the PCI power state way */
3791 /* Quoting from the Open CISS Specification: "The Power
3792 * Management Control/Status Register (CSR) controls the power
3793 * state of the device. The normal operating state is D0,
3794 * CSR=00h. The software off state is D3, CSR=03h. To reset
3795 * the controller, place the interface device in D3 then to D0,
3796 * this causes a secondary PCI reset which will reset the
3799 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3802 "hpsa_reset_controller: "
3803 "PCI PM not supported\n");
3806 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
3807 /* enter the D3hot power management state */
3808 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3809 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3811 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3815 /* enter the D0 power management state */
3816 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3818 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3821 * The P600 requires a small delay when changing states.
3822 * Otherwise we may think the board did not reset and we bail.
3823 * This for kdump only and is particular to the P600.
3830 static void init_driver_version(char *driver_version
, int len
)
3832 memset(driver_version
, 0, len
);
3833 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
3836 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
3838 char *driver_version
;
3839 int i
, size
= sizeof(cfgtable
->driver_version
);
3841 driver_version
= kmalloc(size
, GFP_KERNEL
);
3842 if (!driver_version
)
3845 init_driver_version(driver_version
, size
);
3846 for (i
= 0; i
< size
; i
++)
3847 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
3848 kfree(driver_version
);
3852 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
3853 unsigned char *driver_ver
)
3857 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
3858 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
3861 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
3864 char *driver_ver
, *old_driver_ver
;
3865 int rc
, size
= sizeof(cfgtable
->driver_version
);
3867 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
3868 if (!old_driver_ver
)
3870 driver_ver
= old_driver_ver
+ size
;
3872 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3873 * should have been changed, otherwise we know the reset failed.
3875 init_driver_version(old_driver_ver
, size
);
3876 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
3877 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
3878 kfree(old_driver_ver
);
3881 /* This does a hard reset of the controller using PCI power management
3882 * states or the using the doorbell register.
3884 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
3888 u64 cfg_base_addr_index
;
3889 void __iomem
*vaddr
;
3890 unsigned long paddr
;
3891 u32 misc_fw_support
;
3893 struct CfgTable __iomem
*cfgtable
;
3896 u16 command_register
;
3898 /* For controllers as old as the P600, this is very nearly
3901 * pci_save_state(pci_dev);
3902 * pci_set_power_state(pci_dev, PCI_D3hot);
3903 * pci_set_power_state(pci_dev, PCI_D0);
3904 * pci_restore_state(pci_dev);
3906 * For controllers newer than the P600, the pci power state
3907 * method of resetting doesn't work so we have another way
3908 * using the doorbell register.
3911 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
3912 if (rc
< 0 || !ctlr_is_resettable(board_id
)) {
3913 dev_warn(&pdev
->dev
, "Not resetting device.\n");
3917 /* if controller is soft- but not hard resettable... */
3918 if (!ctlr_is_hard_resettable(board_id
))
3919 return -ENOTSUPP
; /* try soft reset later. */
3921 /* Save the PCI command register */
3922 pci_read_config_word(pdev
, 4, &command_register
);
3923 pci_save_state(pdev
);
3925 /* find the first memory BAR, so we can find the cfg table */
3926 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
3929 vaddr
= remap_pci_mem(paddr
, 0x250);
3933 /* find cfgtable in order to check if reset via doorbell is supported */
3934 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
3935 &cfg_base_addr_index
, &cfg_offset
);
3938 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3939 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
3944 rc
= write_driver_ver_to_cfgtable(cfgtable
);
3948 /* If reset via doorbell register is supported, use that.
3949 * There are two such methods. Favor the newest method.
3951 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
3952 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
3954 use_doorbell
= DOORBELL_CTLR_RESET2
;
3956 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
3958 dev_warn(&pdev
->dev
, "Soft reset not supported. "
3959 "Firmware update is required.\n");
3960 rc
= -ENOTSUPP
; /* try soft reset */
3961 goto unmap_cfgtable
;
3965 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
3967 goto unmap_cfgtable
;
3969 pci_restore_state(pdev
);
3970 pci_write_config_word(pdev
, 4, command_register
);
3972 /* Some devices (notably the HP Smart Array 5i Controller)
3973 need a little pause here */
3974 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
3976 /* Wait for board to become not ready, then ready. */
3977 dev_info(&pdev
->dev
, "Waiting for board to reset.\n");
3978 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
3980 dev_warn(&pdev
->dev
,
3981 "failed waiting for board to reset."
3982 " Will try soft reset.\n");
3983 rc
= -ENOTSUPP
; /* Not expected, but try soft reset later */
3984 goto unmap_cfgtable
;
3986 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
3988 dev_warn(&pdev
->dev
,
3989 "failed waiting for board to become ready "
3990 "after hard reset\n");
3991 goto unmap_cfgtable
;
3994 rc
= controller_reset_failed(vaddr
);
3996 goto unmap_cfgtable
;
3998 dev_warn(&pdev
->dev
, "Unable to successfully reset "
3999 "controller. Will try soft reset.\n");
4002 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
4014 * We cannot read the structure directly, for portability we must use
4016 * This is for debug only.
4018 static void print_cfg_table(struct device
*dev
, struct CfgTable
*tb
)
4024 dev_info(dev
, "Controller Configuration information\n");
4025 dev_info(dev
, "------------------------------------\n");
4026 for (i
= 0; i
< 4; i
++)
4027 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
4028 temp_name
[4] = '\0';
4029 dev_info(dev
, " Signature = %s\n", temp_name
);
4030 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
4031 dev_info(dev
, " Transport methods supported = 0x%x\n",
4032 readl(&(tb
->TransportSupport
)));
4033 dev_info(dev
, " Transport methods active = 0x%x\n",
4034 readl(&(tb
->TransportActive
)));
4035 dev_info(dev
, " Requested transport Method = 0x%x\n",
4036 readl(&(tb
->HostWrite
.TransportRequest
)));
4037 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
4038 readl(&(tb
->HostWrite
.CoalIntDelay
)));
4039 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
4040 readl(&(tb
->HostWrite
.CoalIntCount
)));
4041 dev_info(dev
, " Max outstanding commands = 0x%d\n",
4042 readl(&(tb
->CmdsOutMax
)));
4043 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
4044 for (i
= 0; i
< 16; i
++)
4045 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
4046 temp_name
[16] = '\0';
4047 dev_info(dev
, " Server Name = %s\n", temp_name
);
4048 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
4049 readl(&(tb
->HeartBeat
)));
4050 #endif /* HPSA_DEBUG */
4053 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
4055 int i
, offset
, mem_type
, bar_type
;
4057 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
4060 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
4061 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
4062 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
4065 mem_type
= pci_resource_flags(pdev
, i
) &
4066 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
4068 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
4069 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
4070 offset
+= 4; /* 32 bit */
4072 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
4075 default: /* reserved in PCI 2.2 */
4076 dev_warn(&pdev
->dev
,
4077 "base address is invalid\n");
4082 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
4088 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4089 * controllers that are capable. If not, we use IO-APIC mode.
4092 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
4094 #ifdef CONFIG_PCI_MSI
4096 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
4098 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
4099 hpsa_msix_entries
[i
].vector
= 0;
4100 hpsa_msix_entries
[i
].entry
= i
;
4103 /* Some boards advertise MSI but don't really support it */
4104 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
4105 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
4106 goto default_int_mode
;
4107 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
4108 dev_info(&h
->pdev
->dev
, "MSIX\n");
4109 err
= pci_enable_msix(h
->pdev
, hpsa_msix_entries
,
4112 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4113 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
4118 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
4119 "available\n", err
);
4120 goto default_int_mode
;
4122 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n",
4124 goto default_int_mode
;
4127 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
4128 dev_info(&h
->pdev
->dev
, "MSI\n");
4129 if (!pci_enable_msi(h
->pdev
))
4132 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
4135 #endif /* CONFIG_PCI_MSI */
4136 /* if we get here we're going to use the default interrupt mode */
4137 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
4140 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
4143 u32 subsystem_vendor_id
, subsystem_device_id
;
4145 subsystem_vendor_id
= pdev
->subsystem_vendor
;
4146 subsystem_device_id
= pdev
->subsystem_device
;
4147 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
4148 subsystem_vendor_id
;
4150 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
4151 if (*board_id
== products
[i
].board_id
)
4154 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
4155 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
4157 dev_warn(&pdev
->dev
, "unrecognized board ID: "
4158 "0x%08x, ignoring.\n", *board_id
);
4161 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
4164 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
4165 unsigned long *memory_bar
)
4169 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4170 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4171 /* addressing mode bits already removed */
4172 *memory_bar
= pci_resource_start(pdev
, i
);
4173 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4177 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4181 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4187 iterations
= HPSA_BOARD_READY_ITERATIONS
;
4189 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
4191 for (i
= 0; i
< iterations
; i
++) {
4192 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4193 if (wait_for_ready
) {
4194 if (scratchpad
== HPSA_FIRMWARE_READY
)
4197 if (scratchpad
!= HPSA_FIRMWARE_READY
)
4200 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
4202 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4206 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4207 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4210 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4211 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4212 *cfg_base_addr
&= (u32
) 0x0000ffff;
4213 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4214 if (*cfg_base_addr_index
== -1) {
4215 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
4221 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
4225 u64 cfg_base_addr_index
;
4229 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4230 &cfg_base_addr_index
, &cfg_offset
);
4233 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4234 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
4237 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
4240 /* Find performant mode table. */
4241 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4242 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4243 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4244 sizeof(*h
->transtable
));
4250 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4252 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4254 /* Limit commands in memory limited kdump scenario. */
4255 if (reset_devices
&& h
->max_commands
> 32)
4256 h
->max_commands
= 32;
4258 if (h
->max_commands
< 16) {
4259 dev_warn(&h
->pdev
->dev
, "Controller reports "
4260 "max supported commands of %d, an obvious lie. "
4261 "Using 16. Ensure that firmware is up to date.\n",
4263 h
->max_commands
= 16;
4267 /* Interrogate the hardware for some limits:
4268 * max commands, max SG elements without chaining, and with chaining,
4269 * SG chain block size, etc.
4271 static void hpsa_find_board_params(struct ctlr_info
*h
)
4273 hpsa_get_max_perf_mode_cmds(h
);
4274 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4275 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
4277 * Limit in-command s/g elements to 32 save dma'able memory.
4278 * Howvever spec says if 0, use 31
4280 h
->max_cmd_sg_entries
= 31;
4281 if (h
->maxsgentries
> 512) {
4282 h
->max_cmd_sg_entries
= 32;
4283 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
+ 1;
4284 h
->maxsgentries
--; /* save one for chain pointer */
4286 h
->maxsgentries
= 31; /* default to traditional values */
4290 /* Find out what task management functions are supported and cache */
4291 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
4294 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
4296 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
4297 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4303 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4304 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info
*h
)
4309 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4311 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4315 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4316 * in a prefetch beyond physical memory.
4318 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
4322 if (h
->board_id
!= 0x3225103C)
4324 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4325 dma_prefetch
|= 0x8000;
4326 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4329 static void hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
4333 unsigned long flags
;
4335 /* under certain very rare conditions, this can take awhile.
4336 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4337 * as we enter this code.)
4339 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
4340 spin_lock_irqsave(&h
->lock
, flags
);
4341 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
4342 spin_unlock_irqrestore(&h
->lock
, flags
);
4343 if (!(doorbell_value
& CFGTBL_ChangeReq
))
4345 /* delay and try again */
4346 usleep_range(10000, 20000);
4350 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
4354 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
4355 if (!(trans_support
& SIMPLE_MODE
))
4358 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
4359 /* Update the field, and then ring the doorbell */
4360 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
4361 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
4362 hpsa_wait_for_mode_change_ack(h
);
4363 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
4364 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
4365 dev_warn(&h
->pdev
->dev
,
4366 "unable to get board into simple mode\n");
4369 h
->transMethod
= CFGTBL_Trans_Simple
;
4373 static int hpsa_pci_init(struct ctlr_info
*h
)
4375 int prod_index
, err
;
4377 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
4380 h
->product_name
= products
[prod_index
].product_name
;
4381 h
->access
= *(products
[prod_index
].access
);
4383 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
4384 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
4386 err
= pci_enable_device(h
->pdev
);
4388 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
4392 /* Enable bus mastering (pci_disable_device may disable this) */
4393 pci_set_master(h
->pdev
);
4395 err
= pci_request_regions(h
->pdev
, HPSA
);
4397 dev_err(&h
->pdev
->dev
,
4398 "cannot obtain PCI resources, aborting\n");
4401 hpsa_interrupt_mode(h
);
4402 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4404 goto err_out_free_res
;
4405 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4408 goto err_out_free_res
;
4410 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4412 goto err_out_free_res
;
4413 err
= hpsa_find_cfgtables(h
);
4415 goto err_out_free_res
;
4416 hpsa_find_board_params(h
);
4418 if (!hpsa_CISS_signature_present(h
)) {
4420 goto err_out_free_res
;
4422 hpsa_enable_scsi_prefetch(h
);
4423 hpsa_p600_dma_prefetch_quirk(h
);
4424 err
= hpsa_enter_simple_mode(h
);
4426 goto err_out_free_res
;
4431 iounmap(h
->transtable
);
4433 iounmap(h
->cfgtable
);
4436 pci_disable_device(h
->pdev
);
4437 pci_release_regions(h
->pdev
);
4441 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
4445 #define HBA_INQUIRY_BYTE_COUNT 64
4446 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
4447 if (!h
->hba_inquiry_data
)
4449 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
4450 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
4452 kfree(h
->hba_inquiry_data
);
4453 h
->hba_inquiry_data
= NULL
;
4457 static int hpsa_init_reset_devices(struct pci_dev
*pdev
)
4460 void __iomem
*vaddr
;
4465 /* kdump kernel is loading, we don't know in which state is
4466 * the pci interface. The dev->enable_cnt is equal zero
4467 * so we call enable+disable, wait a while and switch it on.
4469 rc
= pci_enable_device(pdev
);
4471 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
4474 pci_disable_device(pdev
);
4475 msleep(260); /* a randomly chosen number */
4476 rc
= pci_enable_device(pdev
);
4478 dev_warn(&pdev
->dev
, "failed to enable device.\n");
4481 pci_set_master(pdev
);
4483 vaddr
= pci_ioremap_bar(pdev
, 0);
4484 if (vaddr
== NULL
) {
4488 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
4491 /* Reset the controller with a PCI power-cycle or via doorbell */
4492 rc
= hpsa_kdump_hard_reset_controller(pdev
);
4494 /* -ENOTSUPP here means we cannot reset the controller
4495 * but it's already (and still) up and running in
4496 * "performant mode". Or, it might be 640x, which can't reset
4497 * due to concerns about shared bbwc between 6402/6404 pair.
4500 if (rc
!= -ENOTSUPP
) /* just try to do the kdump anyhow. */
4505 /* Now try to get the controller to respond to a no-op */
4506 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
4507 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
4508 if (hpsa_noop(pdev
) == 0)
4511 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4512 (i
< 11 ? "; re-trying" : ""));
4517 pci_disable_device(pdev
);
4521 static int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
4523 h
->cmd_pool_bits
= kzalloc(
4524 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
4525 sizeof(unsigned long), GFP_KERNEL
);
4526 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
4527 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
4528 &(h
->cmd_pool_dhandle
));
4529 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
4530 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
4531 &(h
->errinfo_pool_dhandle
));
4532 if ((h
->cmd_pool_bits
== NULL
)
4533 || (h
->cmd_pool
== NULL
)
4534 || (h
->errinfo_pool
== NULL
)) {
4535 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
4541 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
4543 kfree(h
->cmd_pool_bits
);
4545 pci_free_consistent(h
->pdev
,
4546 h
->nr_cmds
* sizeof(struct CommandList
),
4547 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4548 if (h
->errinfo_pool
)
4549 pci_free_consistent(h
->pdev
,
4550 h
->nr_cmds
* sizeof(struct ErrorInfo
),
4552 h
->errinfo_pool_dhandle
);
4555 static int hpsa_request_irq(struct ctlr_info
*h
,
4556 irqreturn_t (*msixhandler
)(int, void *),
4557 irqreturn_t (*intxhandler
)(int, void *))
4562 * initialize h->q[x] = x so that interrupt handlers know which
4565 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4568 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
) {
4569 /* If performant mode and MSI-X, use multiple reply queues */
4570 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4571 rc
= request_irq(h
->intr
[i
], msixhandler
,
4575 /* Use single reply pool */
4576 if (h
->msix_vector
|| h
->msi_vector
) {
4577 rc
= request_irq(h
->intr
[h
->intr_mode
],
4578 msixhandler
, 0, h
->devname
,
4579 &h
->q
[h
->intr_mode
]);
4581 rc
= request_irq(h
->intr
[h
->intr_mode
],
4582 intxhandler
, IRQF_SHARED
, h
->devname
,
4583 &h
->q
[h
->intr_mode
]);
4587 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
4588 h
->intr
[h
->intr_mode
], h
->devname
);
4594 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
4596 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
4597 HPSA_RESET_TYPE_CONTROLLER
)) {
4598 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
4602 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
4603 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
4604 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
4608 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
4609 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
4610 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
4611 "after soft reset.\n");
4618 static void free_irqs(struct ctlr_info
*h
)
4622 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
4623 /* Single reply queue, only one irq to free */
4625 free_irq(h
->intr
[i
], &h
->q
[i
]);
4629 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4630 free_irq(h
->intr
[i
], &h
->q
[i
]);
4633 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
4636 #ifdef CONFIG_PCI_MSI
4637 if (h
->msix_vector
) {
4638 if (h
->pdev
->msix_enabled
)
4639 pci_disable_msix(h
->pdev
);
4640 } else if (h
->msi_vector
) {
4641 if (h
->pdev
->msi_enabled
)
4642 pci_disable_msi(h
->pdev
);
4644 #endif /* CONFIG_PCI_MSI */
4647 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
4649 hpsa_free_irqs_and_disable_msix(h
);
4650 hpsa_free_sg_chain_blocks(h
);
4651 hpsa_free_cmd_pool(h
);
4652 kfree(h
->blockFetchTable
);
4653 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
4654 h
->reply_pool
, h
->reply_pool_dhandle
);
4658 iounmap(h
->transtable
);
4660 iounmap(h
->cfgtable
);
4661 pci_disable_device(h
->pdev
);
4662 pci_release_regions(h
->pdev
);
4666 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info
*h
)
4668 assert_spin_locked(&lockup_detector_lock
);
4669 if (!hpsa_lockup_detector
)
4671 if (h
->lockup_detected
)
4672 return; /* already stopped the lockup detector */
4673 list_del(&h
->lockup_list
);
4676 /* Called when controller lockup detected. */
4677 static void fail_all_cmds_on_list(struct ctlr_info
*h
, struct list_head
*list
)
4679 struct CommandList
*c
= NULL
;
4681 assert_spin_locked(&h
->lock
);
4682 /* Mark all outstanding commands as failed and complete them. */
4683 while (!list_empty(list
)) {
4684 c
= list_entry(list
->next
, struct CommandList
, list
);
4685 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4690 static void controller_lockup_detected(struct ctlr_info
*h
)
4692 unsigned long flags
;
4694 assert_spin_locked(&lockup_detector_lock
);
4695 remove_ctlr_from_lockup_detector_list(h
);
4696 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4697 spin_lock_irqsave(&h
->lock
, flags
);
4698 h
->lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4699 spin_unlock_irqrestore(&h
->lock
, flags
);
4700 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
4701 h
->lockup_detected
);
4702 pci_disable_device(h
->pdev
);
4703 spin_lock_irqsave(&h
->lock
, flags
);
4704 fail_all_cmds_on_list(h
, &h
->cmpQ
);
4705 fail_all_cmds_on_list(h
, &h
->reqQ
);
4706 spin_unlock_irqrestore(&h
->lock
, flags
);
4709 static void detect_controller_lockup(struct ctlr_info
*h
)
4713 unsigned long flags
;
4715 assert_spin_locked(&lockup_detector_lock
);
4716 now
= get_jiffies_64();
4717 /* If we've received an interrupt recently, we're ok. */
4718 if (time_after64(h
->last_intr_timestamp
+
4719 (h
->heartbeat_sample_interval
), now
))
4723 * If we've already checked the heartbeat recently, we're ok.
4724 * This could happen if someone sends us a signal. We
4725 * otherwise don't care about signals in this thread.
4727 if (time_after64(h
->last_heartbeat_timestamp
+
4728 (h
->heartbeat_sample_interval
), now
))
4731 /* If heartbeat has not changed since we last looked, we're not ok. */
4732 spin_lock_irqsave(&h
->lock
, flags
);
4733 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
4734 spin_unlock_irqrestore(&h
->lock
, flags
);
4735 if (h
->last_heartbeat
== heartbeat
) {
4736 controller_lockup_detected(h
);
4741 h
->last_heartbeat
= heartbeat
;
4742 h
->last_heartbeat_timestamp
= now
;
4745 static int detect_controller_lockup_thread(void *notused
)
4747 struct ctlr_info
*h
;
4748 unsigned long flags
;
4751 struct list_head
*this, *tmp
;
4753 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL
);
4754 if (kthread_should_stop())
4756 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4757 list_for_each_safe(this, tmp
, &hpsa_ctlr_list
) {
4758 h
= list_entry(this, struct ctlr_info
, lockup_list
);
4759 detect_controller_lockup(h
);
4761 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4766 static void add_ctlr_to_lockup_detector_list(struct ctlr_info
*h
)
4768 unsigned long flags
;
4770 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
4771 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4772 list_add_tail(&h
->lockup_list
, &hpsa_ctlr_list
);
4773 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4776 static void start_controller_lockup_detector(struct ctlr_info
*h
)
4778 /* Start the lockup detector thread if not already started */
4779 if (!hpsa_lockup_detector
) {
4780 spin_lock_init(&lockup_detector_lock
);
4781 hpsa_lockup_detector
=
4782 kthread_run(detect_controller_lockup_thread
,
4785 if (!hpsa_lockup_detector
) {
4786 dev_warn(&h
->pdev
->dev
,
4787 "Could not start lockup detector thread\n");
4790 add_ctlr_to_lockup_detector_list(h
);
4793 static void stop_controller_lockup_detector(struct ctlr_info
*h
)
4795 unsigned long flags
;
4797 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4798 remove_ctlr_from_lockup_detector_list(h
);
4799 /* If the list of ctlr's to monitor is empty, stop the thread */
4800 if (list_empty(&hpsa_ctlr_list
)) {
4801 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4802 kthread_stop(hpsa_lockup_detector
);
4803 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4804 hpsa_lockup_detector
= NULL
;
4806 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4809 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4812 struct ctlr_info
*h
;
4813 int try_soft_reset
= 0;
4814 unsigned long flags
;
4816 if (number_of_controllers
== 0)
4817 printk(KERN_INFO DRIVER_NAME
"\n");
4819 rc
= hpsa_init_reset_devices(pdev
);
4821 if (rc
!= -ENOTSUPP
)
4823 /* If the reset fails in a particular way (it has no way to do
4824 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4825 * a soft reset once we get the controller configured up to the
4826 * point that it can accept a command.
4832 reinit_after_soft_reset
:
4834 /* Command structures must be aligned on a 32-byte boundary because
4835 * the 5 lower bits of the address are used by the hardware. and by
4836 * the driver. See comments in hpsa.h for more info.
4838 #define COMMANDLIST_ALIGNMENT 32
4839 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
4840 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
4845 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
4846 INIT_LIST_HEAD(&h
->cmpQ
);
4847 INIT_LIST_HEAD(&h
->reqQ
);
4848 spin_lock_init(&h
->lock
);
4849 spin_lock_init(&h
->scan_lock
);
4850 rc
= hpsa_pci_init(h
);
4854 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
4855 h
->ctlr
= number_of_controllers
;
4856 number_of_controllers
++;
4858 /* configure PCI DMA stuff */
4859 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4863 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4867 dev_err(&pdev
->dev
, "no suitable DMA available\n");
4872 /* make sure the board interrupts are off */
4873 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4875 if (hpsa_request_irq(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
4877 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
4878 h
->devname
, pdev
->device
,
4879 h
->intr
[h
->intr_mode
], dac
? "" : " not");
4880 if (hpsa_allocate_cmd_pool(h
))
4882 if (hpsa_allocate_sg_chain_blocks(h
))
4884 init_waitqueue_head(&h
->scan_wait_queue
);
4885 h
->scan_finished
= 1; /* no scan currently in progress */
4887 pci_set_drvdata(pdev
, h
);
4889 h
->scsi_host
= NULL
;
4890 spin_lock_init(&h
->devlock
);
4891 hpsa_put_ctlr_into_performant_mode(h
);
4893 /* At this point, the controller is ready to take commands.
4894 * Now, if reset_devices and the hard reset didn't work, try
4895 * the soft reset and see if that works.
4897 if (try_soft_reset
) {
4899 /* This is kind of gross. We may or may not get a completion
4900 * from the soft reset command, and if we do, then the value
4901 * from the fifo may or may not be valid. So, we wait 10 secs
4902 * after the reset throwing away any completions we get during
4903 * that time. Unregister the interrupt handler and register
4904 * fake ones to scoop up any residual completions.
4906 spin_lock_irqsave(&h
->lock
, flags
);
4907 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4908 spin_unlock_irqrestore(&h
->lock
, flags
);
4910 rc
= hpsa_request_irq(h
, hpsa_msix_discard_completions
,
4911 hpsa_intx_discard_completions
);
4913 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
4918 rc
= hpsa_kdump_soft_reset(h
);
4920 /* Neither hard nor soft reset worked, we're hosed. */
4923 dev_info(&h
->pdev
->dev
, "Board READY.\n");
4924 dev_info(&h
->pdev
->dev
,
4925 "Waiting for stale completions to drain.\n");
4926 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4928 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4930 rc
= controller_reset_failed(h
->cfgtable
);
4932 dev_info(&h
->pdev
->dev
,
4933 "Soft reset appears to have failed.\n");
4935 /* since the controller's reset, we have to go back and re-init
4936 * everything. Easiest to just forget what we've done and do it
4939 hpsa_undo_allocations_after_kdump_soft_reset(h
);
4942 /* don't go to clean4, we already unallocated */
4945 goto reinit_after_soft_reset
;
4948 /* Turn the interrupts on so we can service requests */
4949 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4951 hpsa_hba_inquiry(h
);
4952 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
4953 start_controller_lockup_detector(h
);
4957 hpsa_free_sg_chain_blocks(h
);
4958 hpsa_free_cmd_pool(h
);
4966 static void hpsa_flush_cache(struct ctlr_info
*h
)
4969 struct CommandList
*c
;
4971 flush_buf
= kzalloc(4, GFP_KERNEL
);
4975 c
= cmd_special_alloc(h
);
4977 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
4980 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
4981 RAID_CTLR_LUNID
, TYPE_CMD
)) {
4984 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
4985 if (c
->err_info
->CommandStatus
!= 0)
4987 dev_warn(&h
->pdev
->dev
,
4988 "error flushing cache on controller\n");
4989 cmd_special_free(h
, c
);
4994 static void hpsa_shutdown(struct pci_dev
*pdev
)
4996 struct ctlr_info
*h
;
4998 h
= pci_get_drvdata(pdev
);
4999 /* Turn board interrupts off and send the flush cache command
5000 * sendcmd will turn off interrupt, and send the flush...
5001 * To write all data in the battery backed cache to disks
5003 hpsa_flush_cache(h
);
5004 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
5005 hpsa_free_irqs_and_disable_msix(h
);
5008 static void hpsa_free_device_info(struct ctlr_info
*h
)
5012 for (i
= 0; i
< h
->ndevices
; i
++)
5016 static void hpsa_remove_one(struct pci_dev
*pdev
)
5018 struct ctlr_info
*h
;
5020 if (pci_get_drvdata(pdev
) == NULL
) {
5021 dev_err(&pdev
->dev
, "unable to remove device\n");
5024 h
= pci_get_drvdata(pdev
);
5025 stop_controller_lockup_detector(h
);
5026 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
5027 hpsa_shutdown(pdev
);
5029 iounmap(h
->transtable
);
5030 iounmap(h
->cfgtable
);
5031 hpsa_free_device_info(h
);
5032 hpsa_free_sg_chain_blocks(h
);
5033 pci_free_consistent(h
->pdev
,
5034 h
->nr_cmds
* sizeof(struct CommandList
),
5035 h
->cmd_pool
, h
->cmd_pool_dhandle
);
5036 pci_free_consistent(h
->pdev
,
5037 h
->nr_cmds
* sizeof(struct ErrorInfo
),
5038 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
5039 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5040 h
->reply_pool
, h
->reply_pool_dhandle
);
5041 kfree(h
->cmd_pool_bits
);
5042 kfree(h
->blockFetchTable
);
5043 kfree(h
->hba_inquiry_data
);
5044 pci_disable_device(pdev
);
5045 pci_release_regions(pdev
);
5046 pci_set_drvdata(pdev
, NULL
);
5050 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
5051 __attribute__((unused
)) pm_message_t state
)
5056 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
5061 static struct pci_driver hpsa_pci_driver
= {
5063 .probe
= hpsa_init_one
,
5064 .remove
= hpsa_remove_one
,
5065 .id_table
= hpsa_pci_device_id
, /* id_table */
5066 .shutdown
= hpsa_shutdown
,
5067 .suspend
= hpsa_suspend
,
5068 .resume
= hpsa_resume
,
5071 /* Fill in bucket_map[], given nsgs (the max number of
5072 * scatter gather elements supported) and bucket[],
5073 * which is an array of 8 integers. The bucket[] array
5074 * contains 8 different DMA transfer sizes (in 16
5075 * byte increments) which the controller uses to fetch
5076 * commands. This function fills in bucket_map[], which
5077 * maps a given number of scatter gather elements to one of
5078 * the 8 DMA transfer sizes. The point of it is to allow the
5079 * controller to only do as much DMA as needed to fetch the
5080 * command, with the DMA transfer size encoded in the lower
5081 * bits of the command address.
5083 static void calc_bucket_map(int bucket
[], int num_buckets
,
5084 int nsgs
, int *bucket_map
)
5088 /* even a command with 0 SGs requires 4 blocks */
5089 #define MINIMUM_TRANSFER_BLOCKS 4
5090 #define NUM_BUCKETS 8
5091 /* Note, bucket_map must have nsgs+1 entries. */
5092 for (i
= 0; i
<= nsgs
; i
++) {
5093 /* Compute size of a command with i SG entries */
5094 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
5095 b
= num_buckets
; /* Assume the biggest bucket */
5096 /* Find the bucket that is just big enough */
5097 for (j
= 0; j
< 8; j
++) {
5098 if (bucket
[j
] >= size
) {
5103 /* for a command with i SG entries, use bucket b. */
5108 static void hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 use_short_tags
)
5111 unsigned long register_value
;
5113 /* This is a bit complicated. There are 8 registers on
5114 * the controller which we write to to tell it 8 different
5115 * sizes of commands which there may be. It's a way of
5116 * reducing the DMA done to fetch each command. Encoded into
5117 * each command's tag are 3 bits which communicate to the controller
5118 * which of the eight sizes that command fits within. The size of
5119 * each command depends on how many scatter gather entries there are.
5120 * Each SG entry requires 16 bytes. The eight registers are programmed
5121 * with the number of 16-byte blocks a command of that size requires.
5122 * The smallest command possible requires 5 such 16 byte blocks.
5123 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5124 * blocks. Note, this only extends to the SG entries contained
5125 * within the command block, and does not extend to chained blocks
5126 * of SG elements. bft[] contains the eight values we write to
5127 * the registers. They are not evenly distributed, but have more
5128 * sizes for small commands, and fewer sizes for larger commands.
5130 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
5131 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
5132 /* 5 = 1 s/g entry or 4k
5133 * 6 = 2 s/g entry or 8k
5134 * 8 = 4 s/g entry or 16k
5135 * 10 = 6 s/g entry or 24k
5138 /* Controller spec: zero out this buffer. */
5139 memset(h
->reply_pool
, 0, h
->reply_pool_size
);
5141 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
5142 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
5143 SG_ENTRIES_IN_CMD
, h
->blockFetchTable
);
5144 for (i
= 0; i
< 8; i
++)
5145 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
5147 /* size of controller ring buffer */
5148 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
5149 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
5150 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
5151 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
5153 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5154 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
5155 writel(h
->reply_pool_dhandle
+
5156 (h
->max_commands
* sizeof(u64
) * i
),
5157 &h
->transtable
->RepQAddr
[i
].lower
);
5160 writel(CFGTBL_Trans_Performant
| use_short_tags
|
5161 CFGTBL_Trans_enable_directed_msix
,
5162 &(h
->cfgtable
->HostWrite
.TransportRequest
));
5163 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
5164 hpsa_wait_for_mode_change_ack(h
);
5165 register_value
= readl(&(h
->cfgtable
->TransportActive
));
5166 if (!(register_value
& CFGTBL_Trans_Performant
)) {
5167 dev_warn(&h
->pdev
->dev
, "unable to get board into"
5168 " performant mode\n");
5171 /* Change the access methods to the performant access methods */
5172 h
->access
= SA5_performant_access
;
5173 h
->transMethod
= CFGTBL_Trans_Performant
;
5176 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
5181 if (hpsa_simple_mode
)
5184 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
5185 if (!(trans_support
& PERFORMANT_MODE
))
5188 h
->nreply_queues
= h
->msix_vector
? MAX_REPLY_QUEUES
: 1;
5189 hpsa_get_max_perf_mode_cmds(h
);
5190 /* Performant mode ring buffer and supporting data structures */
5191 h
->reply_pool_size
= h
->max_commands
* sizeof(u64
) * h
->nreply_queues
;
5192 h
->reply_pool
= pci_alloc_consistent(h
->pdev
, h
->reply_pool_size
,
5193 &(h
->reply_pool_dhandle
));
5195 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5196 h
->reply_queue
[i
].head
= &h
->reply_pool
[h
->max_commands
* i
];
5197 h
->reply_queue
[i
].size
= h
->max_commands
;
5198 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
5199 h
->reply_queue
[i
].current_entry
= 0;
5202 /* Need a block fetch table for performant mode */
5203 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
5204 sizeof(u32
)), GFP_KERNEL
);
5206 if ((h
->reply_pool
== NULL
)
5207 || (h
->blockFetchTable
== NULL
))
5210 hpsa_enter_performant_mode(h
,
5211 trans_support
& CFGTBL_Trans_use_short_tags
);
5217 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5218 h
->reply_pool
, h
->reply_pool_dhandle
);
5219 kfree(h
->blockFetchTable
);
5223 * This is it. Register the PCI driver information for the cards we control
5224 * the OS will call our registered routines when it finds one of our cards.
5226 static int __init
hpsa_init(void)
5228 return pci_register_driver(&hpsa_pci_driver
);
5231 static void __exit
hpsa_cleanup(void)
5233 pci_unregister_driver(&hpsa_pci_driver
);
5236 module_init(hpsa_init
);
5237 module_exit(hpsa_cleanup
);