2 * Copyright (C) 2001-2004 by David Brownell
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* this file is part of ehci-hcd.c */
21 /*-------------------------------------------------------------------------*/
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
41 /*-------------------------------------------------------------------------*/
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
46 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
47 size_t len
, int token
, int maxpacket
)
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
54 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
55 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
56 if (likely (len
< count
)) /* ... iff needed */
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i
= 1; count
< len
&& i
< 5; i
++) {
65 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
66 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
69 if ((count
+ 0x1000) < len
)
75 /* short packets may only terminate transfers */
77 count
-= (count
% maxpacket
);
79 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
85 /*-------------------------------------------------------------------------*/
88 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
90 struct ehci_qh_hw
*hw
= qh
->hw
;
92 /* writes to an active overlay are unsafe */
93 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
95 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
96 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
103 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, QH_TOGGLE_CTL
))) {
104 unsigned is_out
, epnum
;
107 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh
->dev
, epnum
, is_out
))) {
109 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
110 usb_settoggle (qh
->dev
, epnum
, is_out
, 1);
114 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
122 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
124 struct ehci_qtd
*qtd
;
126 qtd
= list_entry(qh
->qtd_list
.next
, struct ehci_qtd
, qtd_list
);
129 * first qtd may already be partially processed.
130 * If we come here during unlink, the QH overlay region
131 * might have reference to the just unlinked qtd. The
132 * qtd is updated in qh_completions(). Update the QH
135 if (qh
->hw
->hw_token
& ACTIVE_BIT(ehci
))
136 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
138 qh_update(ehci
, qh
, qtd
);
141 /*-------------------------------------------------------------------------*/
143 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
145 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
146 struct usb_host_endpoint
*ep
)
148 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
149 struct ehci_qh
*qh
= ep
->hcpriv
;
152 spin_lock_irqsave(&ehci
->lock
, flags
);
154 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
155 && ehci
->rh_state
== EHCI_RH_RUNNING
)
156 qh_link_async(ehci
, qh
);
157 spin_unlock_irqrestore(&ehci
->lock
, flags
);
160 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
161 struct urb
*urb
, u32 token
)
164 /* If an async split transaction gets an error or is unlinked,
165 * the TT buffer may be left in an indeterminate state. We
166 * have to clear the TT buffer.
168 * Note: this routine is never called for Isochronous transfers.
170 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
171 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
172 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
174 "clear tt buffer port %d, a%d ep%d t%08x\n",
175 urb
->dev
->ttport
, urb
->dev
->devnum
,
176 usb_pipeendpoint(urb
->pipe
), token
);
177 #endif /* DEBUG || CONFIG_DYNAMIC_DEBUG */
178 if (!ehci_is_TDI(ehci
)
179 || urb
->dev
->tt
->hub
!=
180 ehci_to_hcd(ehci
)->self
.root_hub
) {
181 if (usb_hub_clear_tt_buffer(urb
) == 0)
185 /* REVISIT ARC-derived cores don't clear the root
186 * hub TT buffer in this way...
192 static int qtd_copy_status (
193 struct ehci_hcd
*ehci
,
199 int status
= -EINPROGRESS
;
201 /* count IN/OUT bytes, not SETUP (even short packets) */
202 if (likely (QTD_PID (token
) != 2))
203 urb
->actual_length
+= length
- QTD_LENGTH (token
);
205 /* don't modify error codes */
206 if (unlikely(urb
->unlinked
))
209 /* force cleanup after short read; not always an error */
210 if (unlikely (IS_SHORT_READ (token
)))
213 /* serious "can't proceed" faults reported by the hardware */
214 if (token
& QTD_STS_HALT
) {
215 if (token
& QTD_STS_BABBLE
) {
216 /* FIXME "must" disable babbling device's port too */
218 /* CERR nonzero + halt --> stall */
219 } else if (QTD_CERR(token
)) {
222 /* In theory, more than one of the following bits can be set
223 * since they are sticky and the transaction is retried.
224 * Which to test first is rather arbitrary.
226 } else if (token
& QTD_STS_MMF
) {
227 /* fs/ls interrupt xfer missed the complete-split */
229 } else if (token
& QTD_STS_DBE
) {
230 status
= (QTD_PID (token
) == 1) /* IN ? */
231 ? -ENOSR
/* hc couldn't read data */
232 : -ECOMM
; /* hc couldn't write data */
233 } else if (token
& QTD_STS_XACT
) {
234 /* timeout, bad CRC, wrong PID, etc */
235 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
237 usb_pipeendpoint(urb
->pipe
),
238 usb_pipein(urb
->pipe
) ? "in" : "out");
240 } else { /* unknown */
249 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
250 __releases(ehci
->lock
)
251 __acquires(ehci
->lock
)
253 if (usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
254 /* ... update hc-wide periodic stats */
255 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
258 if (unlikely(urb
->unlinked
)) {
259 COUNT(ehci
->stats
.unlink
);
261 /* report non-error and short read status as zero */
262 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
264 COUNT(ehci
->stats
.complete
);
267 #ifdef EHCI_URB_TRACE
269 "%s %s urb %p ep%d%s status %d len %d/%d\n",
270 __func__
, urb
->dev
->devpath
, urb
,
271 usb_pipeendpoint (urb
->pipe
),
272 usb_pipein (urb
->pipe
) ? "in" : "out",
274 urb
->actual_length
, urb
->transfer_buffer_length
);
277 /* complete() can reenter this HCD */
278 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
279 spin_unlock (&ehci
->lock
);
280 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
281 spin_lock (&ehci
->lock
);
284 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
287 * Process and free completed qtds for a qh, returning URBs to drivers.
288 * Chases up to qh->hw_current. Returns nonzero if the caller should
292 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
294 struct ehci_qtd
*last
, *end
= qh
->dummy
;
295 struct list_head
*entry
, *tmp
;
299 struct ehci_qh_hw
*hw
= qh
->hw
;
301 /* completions (or tasks on other cpus) must never clobber HALT
302 * till we've gone through and cleaned everything up, even when
303 * they add urbs to this qh's queue or mark them for unlinking.
305 * NOTE: unlinking expects to be done in queue order.
307 * It's a bug for qh->qh_state to be anything other than
308 * QH_STATE_IDLE, unless our caller is scan_async() or
311 state
= qh
->qh_state
;
312 qh
->qh_state
= QH_STATE_COMPLETING
;
313 stopped
= (state
== QH_STATE_IDLE
);
317 last_status
= -EINPROGRESS
;
318 qh
->dequeue_during_giveback
= 0;
320 /* remove de-activated QTDs from front of queue.
321 * after faults (including short reads), cleanup this urb
322 * then let the queue advance.
323 * if queue is stopped, handles unlinks.
325 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
326 struct ehci_qtd
*qtd
;
330 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
333 /* clean up any state from previous QTD ...*/
335 if (likely (last
->urb
!= urb
)) {
336 ehci_urb_done(ehci
, last
->urb
, last_status
);
337 last_status
= -EINPROGRESS
;
339 ehci_qtd_free (ehci
, last
);
343 /* ignore urbs submitted during completions we reported */
347 /* hardware copies qtd out of qh overlay */
349 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
351 /* always clean up qtds the hc de-activated */
353 if ((token
& QTD_STS_ACTIVE
) == 0) {
355 /* Report Data Buffer Error: non-fatal but useful */
356 if (token
& QTD_STS_DBE
)
358 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
360 usb_endpoint_num(&urb
->ep
->desc
),
361 usb_endpoint_dir_in(&urb
->ep
->desc
) ? "in" : "out",
362 urb
->transfer_buffer_length
,
366 /* on STALL, error, and short reads this urb must
367 * complete and all its qtds must be recycled.
369 if ((token
& QTD_STS_HALT
) != 0) {
371 /* retry transaction errors until we
372 * reach the software xacterr limit
374 if ((token
& QTD_STS_XACT
) &&
375 QTD_CERR(token
) == 0 &&
376 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
379 "detected XactErr len %zu/%zu retry %d\n",
380 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
382 /* reset the token in the qtd and the
383 * qh overlay (which still contains
384 * the qtd) so that we pick up from
387 token
&= ~QTD_STS_HALT
;
388 token
|= QTD_STS_ACTIVE
|
389 (EHCI_TUNE_CERR
<< 10);
390 qtd
->hw_token
= cpu_to_hc32(ehci
,
393 hw
->hw_token
= cpu_to_hc32(ehci
,
399 /* magic dummy for some short reads; qh won't advance.
400 * that silicon quirk can kick in with this dummy too.
402 * other short reads won't stop the queue, including
403 * control transfers (status stage handles that) or
404 * most other single-qtd reads ... the queue stops if
405 * URB_SHORT_NOT_OK was set so the driver submitting
406 * the urbs could clean it up.
408 } else if (IS_SHORT_READ (token
)
409 && !(qtd
->hw_alt_next
410 & EHCI_LIST_END(ehci
))) {
414 /* stop scanning when we reach qtds the hc is using */
415 } else if (likely (!stopped
416 && ehci
->rh_state
>= EHCI_RH_RUNNING
)) {
419 /* scan the whole queue for unlinks whenever it stops */
423 /* cancel everything if we halt, suspend, etc */
424 if (ehci
->rh_state
< EHCI_RH_RUNNING
)
425 last_status
= -ESHUTDOWN
;
427 /* this qtd is active; skip it unless a previous qtd
428 * for its urb faulted, or its urb was canceled.
430 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
434 * If this was the active qtd when the qh was unlinked
435 * and the overlay's token is active, then the overlay
436 * hasn't been written back to the qtd yet so use its
437 * token instead of the qtd's. After the qtd is
438 * processed and removed, the overlay won't be valid
441 if (state
== QH_STATE_IDLE
&&
442 qh
->qtd_list
.next
== &qtd
->qtd_list
&&
443 (hw
->hw_token
& ACTIVE_BIT(ehci
))) {
444 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
445 hw
->hw_token
&= ~ACTIVE_BIT(ehci
);
447 /* An unlink may leave an incomplete
448 * async transaction in the TT buffer.
449 * We have to clear it.
451 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
455 /* unless we already know the urb's status, collect qtd status
456 * and update count of bytes transferred. in common short read
457 * cases with only one data qtd (including control transfers),
458 * queue processing won't halt. but with two or more qtds (for
459 * example, with a 32 KB transfer), when the first qtd gets a
460 * short read the second must be removed by hand.
462 if (last_status
== -EINPROGRESS
) {
463 last_status
= qtd_copy_status(ehci
, urb
,
465 if (last_status
== -EREMOTEIO
467 & EHCI_LIST_END(ehci
)))
468 last_status
= -EINPROGRESS
;
470 /* As part of low/full-speed endpoint-halt processing
471 * we must clear the TT buffer (11.17.5).
473 if (unlikely(last_status
!= -EINPROGRESS
&&
474 last_status
!= -EREMOTEIO
)) {
475 /* The TT's in some hubs malfunction when they
476 * receive this request following a STALL (they
477 * stop sending isochronous packets). Since a
478 * STALL can't leave the TT buffer in a busy
479 * state (if you believe Figures 11-48 - 11-51
480 * in the USB 2.0 spec), we won't clear the TT
481 * buffer in this case. Strictly speaking this
482 * is a violation of the spec.
484 if (last_status
!= -EPIPE
)
485 ehci_clear_tt_buffer(ehci
, qh
, urb
,
490 /* if we're removing something not at the queue head,
491 * patch the hardware queue pointer.
493 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
494 last
= list_entry (qtd
->qtd_list
.prev
,
495 struct ehci_qtd
, qtd_list
);
496 last
->hw_next
= qtd
->hw_next
;
499 /* remove qtd; it's recycled after possible urb completion */
500 list_del (&qtd
->qtd_list
);
503 /* reinit the xacterr counter for the next qtd */
507 /* last urb's completion might still need calling */
508 if (likely (last
!= NULL
)) {
509 ehci_urb_done(ehci
, last
->urb
, last_status
);
510 ehci_qtd_free (ehci
, last
);
513 /* Do we need to rescan for URBs dequeued during a giveback? */
514 if (unlikely(qh
->dequeue_during_giveback
)) {
515 /* If the QH is already unlinked, do the rescan now. */
516 if (state
== QH_STATE_IDLE
)
519 /* Otherwise the caller must unlink the QH. */
522 /* restore original state; caller must unlink or relink */
523 qh
->qh_state
= state
;
525 /* be sure the hardware's done with the qh before refreshing
526 * it after fault cleanup, or recovering from silicon wrongly
527 * overlaying the dummy qtd (which reduces DMA chatter).
529 * We won't refresh a QH that's linked (after the HC
530 * stopped the queue). That avoids a race:
531 * - HC reads first part of QH;
532 * - CPU updates that first part and the token;
533 * - HC reads rest of that QH, including token
534 * Result: HC gets an inconsistent image, and then
535 * DMAs to/from the wrong memory (corrupting it).
537 * That should be rare for interrupt transfers,
538 * except maybe high bandwidth ...
540 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
))
543 /* Let the caller know if the QH needs to be unlinked. */
544 return qh
->exception
;
547 /*-------------------------------------------------------------------------*/
549 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
550 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
551 // ... and packet size, for any kind of endpoint descriptor
552 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
555 * reverse of qh_urb_transaction: free a list of TDs.
556 * used for cleanup after errors, before HC sees an URB's TDs.
558 static void qtd_list_free (
559 struct ehci_hcd
*ehci
,
561 struct list_head
*qtd_list
563 struct list_head
*entry
, *temp
;
565 list_for_each_safe (entry
, temp
, qtd_list
) {
566 struct ehci_qtd
*qtd
;
568 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
569 list_del (&qtd
->qtd_list
);
570 ehci_qtd_free (ehci
, qtd
);
575 * create a list of filled qtds for this URB; won't link into qh.
577 static struct list_head
*
579 struct ehci_hcd
*ehci
,
581 struct list_head
*head
,
584 struct ehci_qtd
*qtd
, *qtd_prev
;
586 int len
, this_sg_len
, maxpacket
;
590 struct scatterlist
*sg
;
593 * URBs map to sequences of QTDs: one logical transaction
595 qtd
= ehci_qtd_alloc (ehci
, flags
);
598 list_add_tail (&qtd
->qtd_list
, head
);
601 token
= QTD_STS_ACTIVE
;
602 token
|= (EHCI_TUNE_CERR
<< 10);
603 /* for split transactions, SplitXState initialized to zero */
605 len
= urb
->transfer_buffer_length
;
606 is_input
= usb_pipein (urb
->pipe
);
607 if (usb_pipecontrol (urb
->pipe
)) {
609 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
610 sizeof (struct usb_ctrlrequest
),
611 token
| (2 /* "setup" */ << 8), 8);
613 /* ... and always at least one more pid */
616 qtd
= ehci_qtd_alloc (ehci
, flags
);
620 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
621 list_add_tail (&qtd
->qtd_list
, head
);
623 /* for zero length DATA stages, STATUS is always IN */
625 token
|= (1 /* "in" */ << 8);
629 * data transfer stage: buffer setup
631 i
= urb
->num_mapped_sgs
;
632 if (len
> 0 && i
> 0) {
634 buf
= sg_dma_address(sg
);
636 /* urb->transfer_buffer_length may be smaller than the
637 * size of the scatterlist (or vice versa)
639 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
642 buf
= urb
->transfer_dma
;
647 token
|= (1 /* "in" */ << 8);
648 /* else it's already initted to "out" pid (0 << 8) */
650 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
653 * buffer gets wrapped in one or more qtds;
654 * last one may be "short" (including zero len)
655 * and may serve as a control status ack
660 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, this_sg_len
, token
,
662 this_sg_len
-= this_qtd_len
;
667 * short reads advance to a "magic" dummy instead of the next
668 * qtd ... that forces the queue to stop, for manual cleanup.
669 * (this will usually be overridden later.)
672 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
674 /* qh makes control packets use qtd toggle; maybe switch it */
675 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
678 if (likely(this_sg_len
<= 0)) {
679 if (--i
<= 0 || len
<= 0)
682 buf
= sg_dma_address(sg
);
683 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
687 qtd
= ehci_qtd_alloc (ehci
, flags
);
691 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
692 list_add_tail (&qtd
->qtd_list
, head
);
696 * unless the caller requires manual cleanup after short reads,
697 * have the alt_next mechanism keep the queue running after the
698 * last data qtd (the only one, for control and most other cases).
700 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
701 || usb_pipecontrol (urb
->pipe
)))
702 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
705 * control requests may need a terminating data "status" ack;
706 * other OUT ones may need a terminating short packet
709 if (likely (urb
->transfer_buffer_length
!= 0)) {
712 if (usb_pipecontrol (urb
->pipe
)) {
714 token
^= 0x0100; /* "in" <--> "out" */
715 token
|= QTD_TOGGLE
; /* force DATA1 */
716 } else if (usb_pipeout(urb
->pipe
)
717 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
718 && !(urb
->transfer_buffer_length
% maxpacket
)) {
723 qtd
= ehci_qtd_alloc (ehci
, flags
);
727 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
728 list_add_tail (&qtd
->qtd_list
, head
);
730 /* never any data in such packets */
731 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
735 /* by default, enable interrupt on urb completion */
736 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
737 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
741 qtd_list_free (ehci
, urb
, head
);
745 /*-------------------------------------------------------------------------*/
747 // Would be best to create all qh's from config descriptors,
748 // when each interface/altsetting is established. Unlink
749 // any previous qh and cancel its urbs first; endpoints are
750 // implicitly reset then (data toggle too).
751 // That'd mean updating how usbcore talks to HCDs. (2.7?)
755 * Each QH holds a qtd list; a QH is used for everything except iso.
757 * For interrupt urbs, the scheduler must set the microframe scheduling
758 * mask(s) each time the QH gets scheduled. For highspeed, that's
759 * just one microframe in the s-mask. For split interrupt transactions
760 * there are additional complications: c-mask, maybe FSTNs.
762 static struct ehci_qh
*
764 struct ehci_hcd
*ehci
,
768 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
769 u32 info1
= 0, info2
= 0;
772 struct usb_tt
*tt
= urb
->dev
->tt
;
773 struct ehci_qh_hw
*hw
;
779 * init endpoint/device data for this QH
781 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
782 info1
|= usb_pipedevice (urb
->pipe
) << 0;
784 is_input
= usb_pipein (urb
->pipe
);
785 type
= usb_pipetype (urb
->pipe
);
786 maxp
= usb_maxpacket (urb
->dev
, urb
->pipe
, !is_input
);
788 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
789 * acts like up to 3KB, but is built from smaller packets.
791 if (max_packet(maxp
) > 1024) {
792 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", max_packet(maxp
));
796 /* Compute interrupt scheduling parameters just once, and save.
797 * - allowing for high bandwidth, how many nsec/uframe are used?
798 * - split transactions need a second CSPLIT uframe; same question
799 * - splits also need a schedule gap (for full/low speed I/O)
800 * - qh has a polling interval
802 * For control/bulk requests, the HC or TT handles these.
804 if (type
== PIPE_INTERRUPT
) {
805 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
807 hb_mult(maxp
) * max_packet(maxp
)));
808 qh
->start
= NO_FRAME
;
810 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
814 qh
->period
= urb
->interval
>> 3;
815 if (qh
->period
== 0 && urb
->interval
!= 1) {
816 /* NOTE interval 2 or 4 uframes could work.
817 * But interval 1 scheduling is simpler, and
818 * includes high bandwidth.
821 } else if (qh
->period
> ehci
->periodic_size
) {
822 qh
->period
= ehci
->periodic_size
;
823 urb
->interval
= qh
->period
<< 3;
828 /* gap is f(FS/LS transfer times) */
829 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
830 is_input
, 0, maxp
) / (125 * 1000);
832 /* FIXME this just approximates SPLIT/CSPLIT times */
833 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
834 qh
->c_usecs
= qh
->usecs
+ HS_USECS (0);
835 qh
->usecs
= HS_USECS (1);
836 } else { // SPLIT+DATA, gap, CSPLIT
837 qh
->usecs
+= HS_USECS (1);
838 qh
->c_usecs
= HS_USECS (0);
841 think_time
= tt
? tt
->think_time
: 0;
842 qh
->tt_usecs
= NS_TO_US (think_time
+
843 usb_calc_bus_time (urb
->dev
->speed
,
844 is_input
, 0, max_packet (maxp
)));
845 qh
->period
= urb
->interval
;
846 if (qh
->period
> ehci
->periodic_size
) {
847 qh
->period
= ehci
->periodic_size
;
848 urb
->interval
= qh
->period
;
853 /* support for tt scheduling, and access to toggles */
857 switch (urb
->dev
->speed
) {
859 info1
|= QH_LOW_SPEED
;
863 /* EPS 0 means "full" */
864 if (type
!= PIPE_INTERRUPT
)
865 info1
|= (EHCI_TUNE_RL_TT
<< 28);
866 if (type
== PIPE_CONTROL
) {
867 info1
|= QH_CONTROL_EP
; /* for TT */
868 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
872 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
874 /* Some Freescale processors have an erratum in which the
875 * port number in the queue head was 0..N-1 instead of 1..N.
877 if (ehci_has_fsl_portno_bug(ehci
))
878 info2
|= (urb
->dev
->ttport
-1) << 23;
880 info2
|= urb
->dev
->ttport
<< 23;
882 /* set the address of the TT; for TDI's integrated
883 * root hub tt, leave it zeroed.
885 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
886 info2
|= tt
->hub
->devnum
<< 16;
888 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
892 case USB_SPEED_HIGH
: /* no TT involved */
893 info1
|= QH_HIGH_SPEED
;
894 if (type
== PIPE_CONTROL
) {
895 info1
|= (EHCI_TUNE_RL_HS
<< 28);
896 info1
|= 64 << 16; /* usb2 fixed maxpacket */
897 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
898 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
899 } else if (type
== PIPE_BULK
) {
900 info1
|= (EHCI_TUNE_RL_HS
<< 28);
901 /* The USB spec says that high speed bulk endpoints
902 * always use 512 byte maxpacket. But some device
903 * vendors decided to ignore that, and MSFT is happy
904 * to help them do so. So now people expect to use
905 * such nonconformant devices with Linux too; sigh.
907 info1
|= max_packet(maxp
) << 16;
908 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
909 } else { /* PIPE_INTERRUPT */
910 info1
|= max_packet (maxp
) << 16;
911 info2
|= hb_mult (maxp
) << 30;
915 ehci_dbg(ehci
, "bogus dev %p speed %d\n", urb
->dev
,
918 qh_destroy(ehci
, qh
);
922 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
924 /* init as live, toggle clear */
925 qh
->qh_state
= QH_STATE_IDLE
;
927 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
928 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
929 qh
->is_out
= !is_input
;
930 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
934 /*-------------------------------------------------------------------------*/
936 static void enable_async(struct ehci_hcd
*ehci
)
938 if (ehci
->async_count
++)
941 /* Stop waiting to turn off the async schedule */
942 ehci
->enabled_hrtimer_events
&= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC
);
944 /* Don't start the schedule until ASS is 0 */
946 turn_on_io_watchdog(ehci
);
949 static void disable_async(struct ehci_hcd
*ehci
)
951 if (--ehci
->async_count
)
954 /* The async schedule and unlink lists are supposed to be empty */
955 WARN_ON(ehci
->async
->qh_next
.qh
|| !list_empty(&ehci
->async_unlink
) ||
956 !list_empty(&ehci
->async_idle
));
958 /* Don't turn off the schedule until ASS is 1 */
962 /* move qh (and its qtds) onto async queue; maybe enable queue. */
964 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
966 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
967 struct ehci_qh
*head
;
969 /* Don't link a QH if there's a Clear-TT-Buffer pending */
970 if (unlikely(qh
->clearing_tt
))
973 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
975 /* clear halt and/or toggle; and maybe recover from silicon quirk */
976 qh_refresh(ehci
, qh
);
978 /* splice right after start */
980 qh
->qh_next
= head
->qh_next
;
981 qh
->hw
->hw_next
= head
->hw
->hw_next
;
984 head
->qh_next
.qh
= qh
;
985 head
->hw
->hw_next
= dma
;
987 qh
->qh_state
= QH_STATE_LINKED
;
990 /* qtd completions reported later by interrupt */
995 /*-------------------------------------------------------------------------*/
998 * For control/bulk/interrupt, return QH with these TDs appended.
999 * Allocates and initializes the QH if necessary.
1000 * Returns null if it can't allocate a QH it needs to.
1001 * If the QH has TDs (urbs) already, that's great.
1003 static struct ehci_qh
*qh_append_tds (
1004 struct ehci_hcd
*ehci
,
1006 struct list_head
*qtd_list
,
1011 struct ehci_qh
*qh
= NULL
;
1012 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1014 qh
= (struct ehci_qh
*) *ptr
;
1015 if (unlikely (qh
== NULL
)) {
1016 /* can't sleep here, we have ehci->lock... */
1017 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1020 if (likely (qh
!= NULL
)) {
1021 struct ehci_qtd
*qtd
;
1023 if (unlikely (list_empty (qtd_list
)))
1026 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1029 /* control qh may need patching ... */
1030 if (unlikely (epnum
== 0)) {
1032 /* usb_reset_device() briefly reverts to address 0 */
1033 if (usb_pipedevice (urb
->pipe
) == 0)
1034 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1037 /* just one way to queue requests: swap with the dummy qtd.
1038 * only hc or qh_refresh() ever modify the overlay.
1040 if (likely (qtd
!= NULL
)) {
1041 struct ehci_qtd
*dummy
;
1045 /* to avoid racing the HC, use the dummy td instead of
1046 * the first td of our list (becomes new dummy). both
1047 * tds stay deactivated until we're done, when the
1048 * HC is allowed to fetch the old dummy (4.10.2).
1050 token
= qtd
->hw_token
;
1051 qtd
->hw_token
= HALT_BIT(ehci
);
1055 dma
= dummy
->qtd_dma
;
1057 dummy
->qtd_dma
= dma
;
1059 list_del (&qtd
->qtd_list
);
1060 list_add (&dummy
->qtd_list
, qtd_list
);
1061 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1063 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1066 /* hc must see the new dummy at list end */
1068 qtd
= list_entry (qh
->qtd_list
.prev
,
1069 struct ehci_qtd
, qtd_list
);
1070 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1072 /* let the hc process these next qtds */
1074 dummy
->hw_token
= token
;
1082 /*-------------------------------------------------------------------------*/
1086 struct ehci_hcd
*ehci
,
1088 struct list_head
*qtd_list
,
1092 unsigned long flags
;
1093 struct ehci_qh
*qh
= NULL
;
1096 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1098 #ifdef EHCI_URB_TRACE
1100 struct ehci_qtd
*qtd
;
1101 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1103 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1104 __func__
, urb
->dev
->devpath
, urb
,
1105 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1106 urb
->transfer_buffer_length
,
1107 qtd
, urb
->ep
->hcpriv
);
1111 spin_lock_irqsave (&ehci
->lock
, flags
);
1112 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci
)))) {
1116 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1120 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1121 if (unlikely(qh
== NULL
)) {
1122 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1127 /* Control/bulk operations through TTs don't need scheduling,
1128 * the HC and TT handle it when the TT has a buffer ready.
1130 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1131 qh_link_async(ehci
, qh
);
1133 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1134 if (unlikely (qh
== NULL
))
1135 qtd_list_free (ehci
, urb
, qtd_list
);
1139 /*-------------------------------------------------------------------------*/
1140 #ifdef CONFIG_USB_HCD_TEST_MODE
1142 * This function creates the qtds and submits them for the
1143 * SINGLE_STEP_SET_FEATURE Test.
1144 * This is done in two parts: first SETUP req for GetDesc is sent then
1145 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1147 * is_setup : i/p arguement decides which of the two stage needs to be
1148 * performed; TRUE - SETUP and FALSE - IN+STATUS
1149 * Returns 0 if success
1151 static int submit_single_step_set_feature(
1152 struct usb_hcd
*hcd
,
1156 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
1157 struct list_head qtd_list
;
1158 struct list_head
*head
;
1160 struct ehci_qtd
*qtd
, *qtd_prev
;
1165 INIT_LIST_HEAD(&qtd_list
);
1168 /* URBs map to sequences of QTDs: one logical transaction */
1169 qtd
= ehci_qtd_alloc(ehci
, GFP_KERNEL
);
1172 list_add_tail(&qtd
->qtd_list
, head
);
1175 token
= QTD_STS_ACTIVE
;
1176 token
|= (EHCI_TUNE_CERR
<< 10);
1178 len
= urb
->transfer_buffer_length
;
1180 * Check if the request is to perform just the SETUP stage (getDesc)
1181 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1182 * 15 secs after the setup
1186 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
1187 sizeof(struct usb_ctrlrequest
),
1188 token
| (2 /* "setup" */ << 8), 8);
1190 submit_async(ehci
, urb
, &qtd_list
, GFP_ATOMIC
);
1191 return 0; /*Return now; we shall come back after 15 seconds*/
1195 * IN: data transfer stage: buffer setup : start the IN txn phase for
1196 * the get_Desc SETUP which was sent 15seconds back
1198 token
^= QTD_TOGGLE
; /*We need to start IN with DATA-1 Pid-sequence*/
1199 buf
= urb
->transfer_dma
;
1201 token
|= (1 /* "in" */ << 8); /*This is IN stage*/
1203 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, 0));
1205 qtd_fill(ehci
, qtd
, buf
, len
, token
, maxpacket
);
1208 * Our IN phase shall always be a short read; so keep the queue running
1209 * and let it advance to the next qtd which zero length OUT status
1211 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
1213 /* STATUS stage for GetDesc control request */
1214 token
^= 0x0100; /* "in" <--> "out" */
1215 token
|= QTD_TOGGLE
; /* force DATA1 */
1218 qtd
= ehci_qtd_alloc(ehci
, GFP_ATOMIC
);
1222 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
1223 list_add_tail(&qtd
->qtd_list
, head
);
1225 /* dont fill any data in such packets */
1226 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
1228 /* by default, enable interrupt on urb completion */
1229 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
1230 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
1232 submit_async(ehci
, urb
, &qtd_list
, GFP_KERNEL
);
1237 qtd_list_free(ehci
, urb
, head
);
1240 #endif /* CONFIG_USB_HCD_TEST_MODE */
1242 /*-------------------------------------------------------------------------*/
1244 static void single_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1246 struct ehci_qh
*prev
;
1248 /* Add to the end of the list of QHs waiting for the next IAAD */
1249 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
1250 list_add_tail(&qh
->unlink_node
, &ehci
->async_unlink
);
1252 /* Unlink it from the schedule */
1254 while (prev
->qh_next
.qh
!= qh
)
1255 prev
= prev
->qh_next
.qh
;
1257 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1258 prev
->qh_next
= qh
->qh_next
;
1259 if (ehci
->qh_scan_next
== qh
)
1260 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1263 static void start_iaa_cycle(struct ehci_hcd
*ehci
)
1265 /* Do nothing if an IAA cycle is already running */
1266 if (ehci
->iaa_in_progress
)
1268 ehci
->iaa_in_progress
= true;
1270 /* If the controller isn't running, we don't have to wait for it */
1271 if (unlikely(ehci
->rh_state
< EHCI_RH_RUNNING
)) {
1272 end_unlink_async(ehci
);
1274 /* Otherwise start a new IAA cycle */
1275 } else if (likely(ehci
->rh_state
== EHCI_RH_RUNNING
)) {
1277 /* Make sure the unlinks are all visible to the hardware */
1280 ehci_writel(ehci
, ehci
->command
| CMD_IAAD
,
1281 &ehci
->regs
->command
);
1282 ehci_readl(ehci
, &ehci
->regs
->command
);
1283 ehci_enable_event(ehci
, EHCI_HRTIMER_IAA_WATCHDOG
, true);
1287 /* the async qh for the qtds being unlinked are now gone from the HC */
1289 static void end_unlink_async(struct ehci_hcd
*ehci
)
1294 if (ehci
->has_synopsys_hc_bug
)
1295 ehci_writel(ehci
, (u32
) ehci
->async
->qh_dma
,
1296 &ehci
->regs
->async_next
);
1298 /* The current IAA cycle has ended */
1299 ehci
->iaa_in_progress
= false;
1301 if (list_empty(&ehci
->async_unlink
))
1303 qh
= list_first_entry(&ehci
->async_unlink
, struct ehci_qh
,
1304 unlink_node
); /* QH whose IAA cycle just ended */
1307 * If async_unlinking is set then this routine is already running,
1308 * either on the stack or on another CPU.
1310 early_exit
= ehci
->async_unlinking
;
1312 /* If the controller isn't running, process all the waiting QHs */
1313 if (ehci
->rh_state
< EHCI_RH_RUNNING
)
1314 list_splice_tail_init(&ehci
->async_unlink
, &ehci
->async_idle
);
1317 * Intel (?) bug: The HC can write back the overlay region even
1318 * after the IAA interrupt occurs. In self-defense, always go
1319 * through two IAA cycles for each QH.
1321 else if (qh
->qh_state
== QH_STATE_UNLINK_WAIT
) {
1322 qh
->qh_state
= QH_STATE_UNLINK
;
1326 /* Otherwise process only the first waiting QH (NVIDIA bug?) */
1328 list_move_tail(&qh
->unlink_node
, &ehci
->async_idle
);
1330 /* Start a new IAA cycle if any QHs are waiting for it */
1331 if (!list_empty(&ehci
->async_unlink
))
1332 start_iaa_cycle(ehci
);
1335 * Don't allow nesting or concurrent calls,
1336 * or wait for the second IAA cycle for the next QH.
1341 /* Process the idle QHs */
1342 ehci
->async_unlinking
= true;
1343 while (!list_empty(&ehci
->async_idle
)) {
1344 qh
= list_first_entry(&ehci
->async_idle
, struct ehci_qh
,
1346 list_del(&qh
->unlink_node
);
1348 qh
->qh_state
= QH_STATE_IDLE
;
1349 qh
->qh_next
.qh
= NULL
;
1351 if (!list_empty(&qh
->qtd_list
))
1352 qh_completions(ehci
, qh
);
1353 if (!list_empty(&qh
->qtd_list
) &&
1354 ehci
->rh_state
== EHCI_RH_RUNNING
)
1355 qh_link_async(ehci
, qh
);
1356 disable_async(ehci
);
1358 ehci
->async_unlinking
= false;
1361 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
1363 static void unlink_empty_async(struct ehci_hcd
*ehci
)
1366 struct ehci_qh
*qh_to_unlink
= NULL
;
1369 /* Find the last async QH which has been empty for a timer cycle */
1370 for (qh
= ehci
->async
->qh_next
.qh
; qh
; qh
= qh
->qh_next
.qh
) {
1371 if (list_empty(&qh
->qtd_list
) &&
1372 qh
->qh_state
== QH_STATE_LINKED
) {
1374 if (qh
->unlink_cycle
!= ehci
->async_unlink_cycle
)
1379 /* If nothing else is being unlinked, unlink the last empty QH */
1380 if (list_empty(&ehci
->async_unlink
) && qh_to_unlink
) {
1381 start_unlink_async(ehci
, qh_to_unlink
);
1385 /* Other QHs will be handled later */
1387 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1388 ++ehci
->async_unlink_cycle
;
1392 /* The root hub is suspended; unlink all the async QHs */
1393 static void __maybe_unused
unlink_empty_async_suspended(struct ehci_hcd
*ehci
)
1397 while (ehci
->async
->qh_next
.qh
) {
1398 qh
= ehci
->async
->qh_next
.qh
;
1399 WARN_ON(!list_empty(&qh
->qtd_list
));
1400 single_unlink_async(ehci
, qh
);
1402 start_iaa_cycle(ehci
);
1405 /* makes sure the async qh will become idle */
1406 /* caller must own ehci->lock */
1408 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1410 /* If the QH isn't linked then there's nothing we can do. */
1411 if (qh
->qh_state
!= QH_STATE_LINKED
)
1414 single_unlink_async(ehci
, qh
);
1415 start_iaa_cycle(ehci
);
1418 /*-------------------------------------------------------------------------*/
1420 static void scan_async (struct ehci_hcd
*ehci
)
1423 bool check_unlinks_later
= false;
1425 ehci
->qh_scan_next
= ehci
->async
->qh_next
.qh
;
1426 while (ehci
->qh_scan_next
) {
1427 qh
= ehci
->qh_scan_next
;
1428 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1430 /* clean any finished work for this qh */
1431 if (!list_empty(&qh
->qtd_list
)) {
1435 * Unlinks could happen here; completion reporting
1436 * drops the lock. That's why ehci->qh_scan_next
1437 * always holds the next qh to scan; if the next qh
1438 * gets unlinked then ehci->qh_scan_next is adjusted
1439 * in single_unlink_async().
1441 temp
= qh_completions(ehci
, qh
);
1442 if (unlikely(temp
)) {
1443 start_unlink_async(ehci
, qh
);
1444 } else if (list_empty(&qh
->qtd_list
)
1445 && qh
->qh_state
== QH_STATE_LINKED
) {
1446 qh
->unlink_cycle
= ehci
->async_unlink_cycle
;
1447 check_unlinks_later
= true;
1453 * Unlink empty entries, reducing DMA usage as well
1454 * as HCD schedule-scanning costs. Delay for any qh
1455 * we just scanned, there's a not-unusual case that it
1456 * doesn't stay idle for long.
1458 if (check_unlinks_later
&& ehci
->rh_state
== EHCI_RH_RUNNING
&&
1459 !(ehci
->enabled_hrtimer_events
&
1460 BIT(EHCI_HRTIMER_ASYNC_UNLINKS
))) {
1461 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1462 ++ehci
->async_unlink_cycle
;