mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blobbc5307f9367f2301b7413c3fad1ba6347d8c4d90
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
29 #include "xhci.h"
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
42 struct xhci_segment *seg;
43 dma_addr_t dma;
44 int i;
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
48 return NULL;
50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
53 return NULL;
56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= TRB_CYCLE;
62 seg->dma = dma;
63 seg->next = NULL;
65 return seg;
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
74 kfree(seg);
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 struct xhci_segment *first)
80 struct xhci_segment *seg;
82 seg = first->next;
83 while (seg != first) {
84 struct xhci_segment *next = seg->next;
85 xhci_segment_free(xhci, seg);
86 seg = next;
88 xhci_segment_free(xhci, first);
92 * Make the prev segment point to the next segment.
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 struct xhci_segment *next, enum xhci_ring_type type)
101 u32 val;
103 if (!prev || !next)
104 return;
105 prev->next = next;
106 if (type != TYPE_EVENT) {
107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 cpu_to_le64(next->dma);
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 val &= ~TRB_TYPE_BITMASK;
113 val |= TRB_TYPE(TRB_LINK);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci) ||
117 (type == TYPE_ISOC &&
118 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 val |= TRB_CHAIN;
120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 struct xhci_segment *first, struct xhci_segment *last,
130 unsigned int num_segs)
132 struct xhci_segment *next;
134 if (!ring || !first || !last)
135 return;
137 next = ring->enq_seg->next;
138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 xhci_link_segments(xhci, last, next, ring->type);
140 ring->num_segs += num_segs;
141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 &= ~cpu_to_le32(LINK_TOGGLE);
146 last->trbs[TRBS_PER_SEGMENT-1].link.control
147 |= cpu_to_le32(LINK_TOGGLE);
148 ring->last_seg = last;
152 /* XXX: Do we need the hcd structure in all these functions? */
153 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
155 if (!ring)
156 return;
158 if (ring->first_seg)
159 xhci_free_segments_for_ring(xhci, ring->first_seg);
161 kfree(ring);
164 static void xhci_initialize_ring_info(struct xhci_ring *ring,
165 unsigned int cycle_state)
167 /* The ring is empty, so the enqueue pointer == dequeue pointer */
168 ring->enqueue = ring->first_seg->trbs;
169 ring->enq_seg = ring->first_seg;
170 ring->dequeue = ring->enqueue;
171 ring->deq_seg = ring->first_seg;
172 /* The ring is initialized to 0. The producer must write 1 to the cycle
173 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
174 * compare CCS to the cycle bit to check ownership, so CCS = 1.
176 * New rings are initialized with cycle state equal to 1; if we are
177 * handling ring expansion, set the cycle state equal to the old ring.
179 ring->cycle_state = cycle_state;
180 /* Not necessary for new rings, but needed for re-initialized rings */
181 ring->enq_updates = 0;
182 ring->deq_updates = 0;
185 * Each segment has a link TRB, and leave an extra TRB for SW
186 * accounting purpose
188 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
191 /* Allocate segments and link them for a ring */
192 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
193 struct xhci_segment **first, struct xhci_segment **last,
194 unsigned int num_segs, unsigned int cycle_state,
195 enum xhci_ring_type type, gfp_t flags)
197 struct xhci_segment *prev;
199 prev = xhci_segment_alloc(xhci, cycle_state, flags);
200 if (!prev)
201 return -ENOMEM;
202 num_segs--;
204 *first = prev;
205 while (num_segs > 0) {
206 struct xhci_segment *next;
208 next = xhci_segment_alloc(xhci, cycle_state, flags);
209 if (!next) {
210 prev = *first;
211 while (prev) {
212 next = prev->next;
213 xhci_segment_free(xhci, prev);
214 prev = next;
216 return -ENOMEM;
218 xhci_link_segments(xhci, prev, next, type);
220 prev = next;
221 num_segs--;
223 xhci_link_segments(xhci, prev, *first, type);
224 *last = prev;
226 return 0;
230 * Create a new ring with zero or more segments.
232 * Link each segment together into a ring.
233 * Set the end flag and the cycle toggle bit on the last segment.
234 * See section 4.9.1 and figures 15 and 16.
236 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
237 unsigned int num_segs, unsigned int cycle_state,
238 enum xhci_ring_type type, gfp_t flags)
240 struct xhci_ring *ring;
241 int ret;
243 ring = kzalloc(sizeof *(ring), flags);
244 if (!ring)
245 return NULL;
247 ring->num_segs = num_segs;
248 INIT_LIST_HEAD(&ring->td_list);
249 ring->type = type;
250 if (num_segs == 0)
251 return ring;
253 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
254 &ring->last_seg, num_segs, cycle_state, type, flags);
255 if (ret)
256 goto fail;
258 /* Only event ring does not use link TRB */
259 if (type != TYPE_EVENT) {
260 /* See section 4.9.2.1 and 6.4.4.1 */
261 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
262 cpu_to_le32(LINK_TOGGLE);
264 xhci_initialize_ring_info(ring, cycle_state);
265 return ring;
267 fail:
268 kfree(ring);
269 return NULL;
272 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
273 struct xhci_virt_device *virt_dev,
274 unsigned int ep_index)
276 int rings_cached;
278 rings_cached = virt_dev->num_rings_cached;
279 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
280 virt_dev->ring_cache[rings_cached] =
281 virt_dev->eps[ep_index].ring;
282 virt_dev->num_rings_cached++;
283 xhci_dbg(xhci, "Cached old ring, "
284 "%d ring%s cached\n",
285 virt_dev->num_rings_cached,
286 (virt_dev->num_rings_cached > 1) ? "s" : "");
287 } else {
288 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
289 xhci_dbg(xhci, "Ring cache full (%d rings), "
290 "freeing ring\n",
291 virt_dev->num_rings_cached);
293 virt_dev->eps[ep_index].ring = NULL;
296 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
297 * pointers to the beginning of the ring.
299 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
300 struct xhci_ring *ring, unsigned int cycle_state,
301 enum xhci_ring_type type)
303 struct xhci_segment *seg = ring->first_seg;
304 int i;
306 do {
307 memset(seg->trbs, 0,
308 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
309 if (cycle_state == 0) {
310 for (i = 0; i < TRBS_PER_SEGMENT; i++)
311 seg->trbs[i].link.control |= TRB_CYCLE;
313 /* All endpoint rings have link TRBs */
314 xhci_link_segments(xhci, seg, seg->next, type);
315 seg = seg->next;
316 } while (seg != ring->first_seg);
317 ring->type = type;
318 xhci_initialize_ring_info(ring, cycle_state);
319 /* td list should be empty since all URBs have been cancelled,
320 * but just in case...
322 INIT_LIST_HEAD(&ring->td_list);
326 * Expand an existing ring.
327 * Look for a cached ring or allocate a new ring which has same segment numbers
328 * and link the two rings.
330 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
331 unsigned int num_trbs, gfp_t flags)
333 struct xhci_segment *first;
334 struct xhci_segment *last;
335 unsigned int num_segs;
336 unsigned int num_segs_needed;
337 int ret;
339 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
340 (TRBS_PER_SEGMENT - 1);
342 /* Allocate number of segments we needed, or double the ring size */
343 num_segs = ring->num_segs > num_segs_needed ?
344 ring->num_segs : num_segs_needed;
346 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
347 num_segs, ring->cycle_state, ring->type, flags);
348 if (ret)
349 return -ENOMEM;
351 xhci_link_rings(xhci, ring, first, last, num_segs);
352 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
353 "ring expansion succeed, now has %d segments",
354 ring->num_segs);
356 return 0;
359 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
361 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
362 int type, gfp_t flags)
364 struct xhci_container_ctx *ctx;
366 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
367 return NULL;
369 ctx = kzalloc(sizeof(*ctx), flags);
370 if (!ctx)
371 return NULL;
373 ctx->type = type;
374 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
375 if (type == XHCI_CTX_TYPE_INPUT)
376 ctx->size += CTX_SIZE(xhci->hcc_params);
378 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
379 if (!ctx->bytes) {
380 kfree(ctx);
381 return NULL;
383 memset(ctx->bytes, 0, ctx->size);
384 return ctx;
387 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
388 struct xhci_container_ctx *ctx)
390 if (!ctx)
391 return;
392 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
393 kfree(ctx);
396 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
397 struct xhci_container_ctx *ctx)
399 if (ctx->type != XHCI_CTX_TYPE_INPUT)
400 return NULL;
402 return (struct xhci_input_control_ctx *)ctx->bytes;
405 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
406 struct xhci_container_ctx *ctx)
408 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
409 return (struct xhci_slot_ctx *)ctx->bytes;
411 return (struct xhci_slot_ctx *)
412 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
415 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
416 struct xhci_container_ctx *ctx,
417 unsigned int ep_index)
419 /* increment ep index by offset of start of ep ctx array */
420 ep_index++;
421 if (ctx->type == XHCI_CTX_TYPE_INPUT)
422 ep_index++;
424 return (struct xhci_ep_ctx *)
425 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
429 /***************** Streams structures manipulation *************************/
431 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
432 unsigned int num_stream_ctxs,
433 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
435 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
437 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
438 dma_free_coherent(&pdev->dev,
439 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
440 stream_ctx, dma);
441 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
442 return dma_pool_free(xhci->small_streams_pool,
443 stream_ctx, dma);
444 else
445 return dma_pool_free(xhci->medium_streams_pool,
446 stream_ctx, dma);
450 * The stream context array for each endpoint with bulk streams enabled can
451 * vary in size, based on:
452 * - how many streams the endpoint supports,
453 * - the maximum primary stream array size the host controller supports,
454 * - and how many streams the device driver asks for.
456 * The stream context array must be a power of 2, and can be as small as
457 * 64 bytes or as large as 1MB.
459 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
460 unsigned int num_stream_ctxs, dma_addr_t *dma,
461 gfp_t mem_flags)
463 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
465 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
466 return dma_alloc_coherent(&pdev->dev,
467 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
468 dma, mem_flags);
469 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
470 return dma_pool_alloc(xhci->small_streams_pool,
471 mem_flags, dma);
472 else
473 return dma_pool_alloc(xhci->medium_streams_pool,
474 mem_flags, dma);
477 struct xhci_ring *xhci_dma_to_transfer_ring(
478 struct xhci_virt_ep *ep,
479 u64 address)
481 if (ep->ep_state & EP_HAS_STREAMS)
482 return radix_tree_lookup(&ep->stream_info->trb_address_map,
483 address >> TRB_SEGMENT_SHIFT);
484 return ep->ring;
487 struct xhci_ring *xhci_stream_id_to_ring(
488 struct xhci_virt_device *dev,
489 unsigned int ep_index,
490 unsigned int stream_id)
492 struct xhci_virt_ep *ep = &dev->eps[ep_index];
494 if (stream_id == 0)
495 return ep->ring;
496 if (!ep->stream_info)
497 return NULL;
499 if (stream_id > ep->stream_info->num_streams)
500 return NULL;
501 return ep->stream_info->stream_rings[stream_id];
505 * Change an endpoint's internal structure so it supports stream IDs. The
506 * number of requested streams includes stream 0, which cannot be used by device
507 * drivers.
509 * The number of stream contexts in the stream context array may be bigger than
510 * the number of streams the driver wants to use. This is because the number of
511 * stream context array entries must be a power of two.
513 * We need a radix tree for mapping physical addresses of TRBs to which stream
514 * ID they belong to. We need to do this because the host controller won't tell
515 * us which stream ring the TRB came from. We could store the stream ID in an
516 * event data TRB, but that doesn't help us for the cancellation case, since the
517 * endpoint may stop before it reaches that event data TRB.
519 * The radix tree maps the upper portion of the TRB DMA address to a ring
520 * segment that has the same upper portion of DMA addresses. For example, say I
521 * have segments of size 1KB, that are always 64-byte aligned. A segment may
522 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
523 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
524 * pass the radix tree a key to get the right stream ID:
526 * 0x10c90fff >> 10 = 0x43243
527 * 0x10c912c0 >> 10 = 0x43244
528 * 0x10c91400 >> 10 = 0x43245
530 * Obviously, only those TRBs with DMA addresses that are within the segment
531 * will make the radix tree return the stream ID for that ring.
533 * Caveats for the radix tree:
535 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
536 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
537 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
538 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
539 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
540 * extended systems (where the DMA address can be bigger than 32-bits),
541 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
543 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
544 unsigned int num_stream_ctxs,
545 unsigned int num_streams, gfp_t mem_flags)
547 struct xhci_stream_info *stream_info;
548 u32 cur_stream;
549 struct xhci_ring *cur_ring;
550 unsigned long key;
551 u64 addr;
552 int ret;
554 xhci_dbg(xhci, "Allocating %u streams and %u "
555 "stream context array entries.\n",
556 num_streams, num_stream_ctxs);
557 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
558 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
559 return NULL;
561 xhci->cmd_ring_reserved_trbs++;
563 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
564 if (!stream_info)
565 goto cleanup_trbs;
567 stream_info->num_streams = num_streams;
568 stream_info->num_stream_ctxs = num_stream_ctxs;
570 /* Initialize the array of virtual pointers to stream rings. */
571 stream_info->stream_rings = kzalloc(
572 sizeof(struct xhci_ring *)*num_streams,
573 mem_flags);
574 if (!stream_info->stream_rings)
575 goto cleanup_info;
577 /* Initialize the array of DMA addresses for stream rings for the HW. */
578 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
579 num_stream_ctxs, &stream_info->ctx_array_dma,
580 mem_flags);
581 if (!stream_info->stream_ctx_array)
582 goto cleanup_ctx;
583 memset(stream_info->stream_ctx_array, 0,
584 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
586 /* Allocate everything needed to free the stream rings later */
587 stream_info->free_streams_command =
588 xhci_alloc_command(xhci, true, true, mem_flags);
589 if (!stream_info->free_streams_command)
590 goto cleanup_ctx;
592 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
594 /* Allocate rings for all the streams that the driver will use,
595 * and add their segment DMA addresses to the radix tree.
596 * Stream 0 is reserved.
598 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
599 stream_info->stream_rings[cur_stream] =
600 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
601 cur_ring = stream_info->stream_rings[cur_stream];
602 if (!cur_ring)
603 goto cleanup_rings;
604 cur_ring->stream_id = cur_stream;
605 /* Set deq ptr, cycle bit, and stream context type */
606 addr = cur_ring->first_seg->dma |
607 SCT_FOR_CTX(SCT_PRI_TR) |
608 cur_ring->cycle_state;
609 stream_info->stream_ctx_array[cur_stream].stream_ring =
610 cpu_to_le64(addr);
611 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
612 cur_stream, (unsigned long long) addr);
614 key = (unsigned long)
615 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
616 ret = radix_tree_insert(&stream_info->trb_address_map,
617 key, cur_ring);
618 if (ret) {
619 xhci_ring_free(xhci, cur_ring);
620 stream_info->stream_rings[cur_stream] = NULL;
621 goto cleanup_rings;
624 /* Leave the other unused stream ring pointers in the stream context
625 * array initialized to zero. This will cause the xHC to give us an
626 * error if the device asks for a stream ID we don't have setup (if it
627 * was any other way, the host controller would assume the ring is
628 * "empty" and wait forever for data to be queued to that stream ID).
631 return stream_info;
633 cleanup_rings:
634 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
635 cur_ring = stream_info->stream_rings[cur_stream];
636 if (cur_ring) {
637 addr = cur_ring->first_seg->dma;
638 radix_tree_delete(&stream_info->trb_address_map,
639 addr >> TRB_SEGMENT_SHIFT);
640 xhci_ring_free(xhci, cur_ring);
641 stream_info->stream_rings[cur_stream] = NULL;
644 xhci_free_command(xhci, stream_info->free_streams_command);
645 cleanup_ctx:
646 kfree(stream_info->stream_rings);
647 cleanup_info:
648 kfree(stream_info);
649 cleanup_trbs:
650 xhci->cmd_ring_reserved_trbs--;
651 return NULL;
654 * Sets the MaxPStreams field and the Linear Stream Array field.
655 * Sets the dequeue pointer to the stream context array.
657 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
658 struct xhci_ep_ctx *ep_ctx,
659 struct xhci_stream_info *stream_info)
661 u32 max_primary_streams;
662 /* MaxPStreams is the number of stream context array entries, not the
663 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
664 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
666 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
667 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
668 "Setting number of stream ctx array entries to %u",
669 1 << (max_primary_streams + 1));
670 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
671 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
672 | EP_HAS_LSA);
673 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
677 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
678 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
679 * not at the beginning of the ring).
681 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
682 struct xhci_ep_ctx *ep_ctx,
683 struct xhci_virt_ep *ep)
685 dma_addr_t addr;
686 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
687 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
688 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
691 /* Frees all stream contexts associated with the endpoint,
693 * Caller should fix the endpoint context streams fields.
695 void xhci_free_stream_info(struct xhci_hcd *xhci,
696 struct xhci_stream_info *stream_info)
698 int cur_stream;
699 struct xhci_ring *cur_ring;
700 dma_addr_t addr;
702 if (!stream_info)
703 return;
705 for (cur_stream = 1; cur_stream < stream_info->num_streams;
706 cur_stream++) {
707 cur_ring = stream_info->stream_rings[cur_stream];
708 if (cur_ring) {
709 addr = cur_ring->first_seg->dma;
710 radix_tree_delete(&stream_info->trb_address_map,
711 addr >> TRB_SEGMENT_SHIFT);
712 xhci_ring_free(xhci, cur_ring);
713 stream_info->stream_rings[cur_stream] = NULL;
716 xhci_free_command(xhci, stream_info->free_streams_command);
717 xhci->cmd_ring_reserved_trbs--;
718 if (stream_info->stream_ctx_array)
719 xhci_free_stream_ctx(xhci,
720 stream_info->num_stream_ctxs,
721 stream_info->stream_ctx_array,
722 stream_info->ctx_array_dma);
724 if (stream_info)
725 kfree(stream_info->stream_rings);
726 kfree(stream_info);
730 /***************** Device context manipulation *************************/
732 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
733 struct xhci_virt_ep *ep)
735 init_timer(&ep->stop_cmd_timer);
736 ep->stop_cmd_timer.data = (unsigned long) ep;
737 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
738 ep->xhci = xhci;
741 static void xhci_free_tt_info(struct xhci_hcd *xhci,
742 struct xhci_virt_device *virt_dev,
743 int slot_id)
745 struct list_head *tt_list_head;
746 struct xhci_tt_bw_info *tt_info, *next;
747 bool slot_found = false;
749 /* If the device never made it past the Set Address stage,
750 * it may not have the real_port set correctly.
752 if (virt_dev->real_port == 0 ||
753 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
754 xhci_dbg(xhci, "Bad real port.\n");
755 return;
758 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
759 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
760 /* Multi-TT hubs will have more than one entry */
761 if (tt_info->slot_id == slot_id) {
762 slot_found = true;
763 list_del(&tt_info->tt_list);
764 kfree(tt_info);
765 } else if (slot_found) {
766 break;
771 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
772 struct xhci_virt_device *virt_dev,
773 struct usb_device *hdev,
774 struct usb_tt *tt, gfp_t mem_flags)
776 struct xhci_tt_bw_info *tt_info;
777 unsigned int num_ports;
778 int i, j;
780 if (!tt->multi)
781 num_ports = 1;
782 else
783 num_ports = hdev->maxchild;
785 for (i = 0; i < num_ports; i++, tt_info++) {
786 struct xhci_interval_bw_table *bw_table;
788 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
789 if (!tt_info)
790 goto free_tts;
791 INIT_LIST_HEAD(&tt_info->tt_list);
792 list_add(&tt_info->tt_list,
793 &xhci->rh_bw[virt_dev->real_port - 1].tts);
794 tt_info->slot_id = virt_dev->udev->slot_id;
795 if (tt->multi)
796 tt_info->ttport = i+1;
797 bw_table = &tt_info->bw_table;
798 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
799 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
801 return 0;
803 free_tts:
804 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
805 return -ENOMEM;
809 /* All the xhci_tds in the ring's TD list should be freed at this point.
810 * Should be called with xhci->lock held if there is any chance the TT lists
811 * will be manipulated by the configure endpoint, allocate device, or update
812 * hub functions while this function is removing the TT entries from the list.
814 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
816 struct xhci_virt_device *dev;
817 int i;
818 int old_active_eps = 0;
820 /* Slot ID 0 is reserved */
821 if (slot_id == 0 || !xhci->devs[slot_id])
822 return;
824 dev = xhci->devs[slot_id];
825 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
826 if (!dev)
827 return;
829 if (dev->tt_info)
830 old_active_eps = dev->tt_info->active_eps;
832 for (i = 0; i < 31; ++i) {
833 if (dev->eps[i].ring)
834 xhci_ring_free(xhci, dev->eps[i].ring);
835 if (dev->eps[i].stream_info)
836 xhci_free_stream_info(xhci,
837 dev->eps[i].stream_info);
838 /* Endpoints on the TT/root port lists should have been removed
839 * when usb_disable_device() was called for the device.
840 * We can't drop them anyway, because the udev might have gone
841 * away by this point, and we can't tell what speed it was.
843 if (!list_empty(&dev->eps[i].bw_endpoint_list))
844 xhci_warn(xhci, "Slot %u endpoint %u "
845 "not removed from BW list!\n",
846 slot_id, i);
848 /* If this is a hub, free the TT(s) from the TT list */
849 xhci_free_tt_info(xhci, dev, slot_id);
850 /* If necessary, update the number of active TTs on this root port */
851 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
853 if (dev->ring_cache) {
854 for (i = 0; i < dev->num_rings_cached; i++)
855 xhci_ring_free(xhci, dev->ring_cache[i]);
856 kfree(dev->ring_cache);
859 if (dev->in_ctx)
860 xhci_free_container_ctx(xhci, dev->in_ctx);
861 if (dev->out_ctx)
862 xhci_free_container_ctx(xhci, dev->out_ctx);
864 kfree(xhci->devs[slot_id]);
865 xhci->devs[slot_id] = NULL;
868 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
869 struct usb_device *udev, gfp_t flags)
871 struct xhci_virt_device *dev;
872 int i;
874 /* Slot ID 0 is reserved */
875 if (slot_id == 0 || xhci->devs[slot_id]) {
876 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
877 return 0;
880 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
881 if (!xhci->devs[slot_id])
882 return 0;
883 dev = xhci->devs[slot_id];
885 /* Allocate the (output) device context that will be used in the HC. */
886 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
887 if (!dev->out_ctx)
888 goto fail;
890 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
891 (unsigned long long)dev->out_ctx->dma);
893 /* Allocate the (input) device context for address device command */
894 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
895 if (!dev->in_ctx)
896 goto fail;
898 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
899 (unsigned long long)dev->in_ctx->dma);
901 /* Initialize the cancellation list and watchdog timers for each ep */
902 for (i = 0; i < 31; i++) {
903 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
904 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
905 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
908 /* Allocate endpoint 0 ring */
909 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
910 if (!dev->eps[0].ring)
911 goto fail;
913 /* Allocate pointers to the ring cache */
914 dev->ring_cache = kzalloc(
915 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
916 flags);
917 if (!dev->ring_cache)
918 goto fail;
919 dev->num_rings_cached = 0;
921 init_completion(&dev->cmd_completion);
922 INIT_LIST_HEAD(&dev->cmd_list);
923 dev->udev = udev;
925 /* Point to output device context in dcbaa. */
926 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
927 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
928 slot_id,
929 &xhci->dcbaa->dev_context_ptrs[slot_id],
930 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
932 return 1;
933 fail:
934 xhci_free_virt_device(xhci, slot_id);
935 return 0;
938 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
939 struct usb_device *udev)
941 struct xhci_virt_device *virt_dev;
942 struct xhci_ep_ctx *ep0_ctx;
943 struct xhci_ring *ep_ring;
945 virt_dev = xhci->devs[udev->slot_id];
946 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
947 ep_ring = virt_dev->eps[0].ring;
949 * FIXME we don't keep track of the dequeue pointer very well after a
950 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
951 * host to our enqueue pointer. This should only be called after a
952 * configured device has reset, so all control transfers should have
953 * been completed or cancelled before the reset.
955 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
956 ep_ring->enqueue)
957 | ep_ring->cycle_state);
961 * The xHCI roothub may have ports of differing speeds in any order in the port
962 * status registers. xhci->port_array provides an array of the port speed for
963 * each offset into the port status registers.
965 * The xHCI hardware wants to know the roothub port number that the USB device
966 * is attached to (or the roothub port its ancestor hub is attached to). All we
967 * know is the index of that port under either the USB 2.0 or the USB 3.0
968 * roothub, but that doesn't give us the real index into the HW port status
969 * registers. Call xhci_find_raw_port_number() to get real index.
971 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
972 struct usb_device *udev)
974 struct usb_device *top_dev;
975 struct usb_hcd *hcd;
977 if (udev->speed >= USB_SPEED_SUPER)
978 hcd = xhci->shared_hcd;
979 else
980 hcd = xhci->main_hcd;
982 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
983 top_dev = top_dev->parent)
984 /* Found device below root hub */;
986 return xhci_find_raw_port_number(hcd, top_dev->portnum);
989 /* Setup an xHCI virtual device for a Set Address command */
990 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
992 struct xhci_virt_device *dev;
993 struct xhci_ep_ctx *ep0_ctx;
994 struct xhci_slot_ctx *slot_ctx;
995 u32 port_num;
996 u32 max_packets;
997 struct usb_device *top_dev;
999 dev = xhci->devs[udev->slot_id];
1000 /* Slot ID 0 is reserved */
1001 if (udev->slot_id == 0 || !dev) {
1002 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1003 udev->slot_id);
1004 return -EINVAL;
1006 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1007 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1009 /* 3) Only the control endpoint is valid - one endpoint context */
1010 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1011 switch (udev->speed) {
1012 case USB_SPEED_SUPER_PLUS:
1013 case USB_SPEED_SUPER:
1014 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1015 max_packets = MAX_PACKET(512);
1016 break;
1017 case USB_SPEED_HIGH:
1018 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1019 max_packets = MAX_PACKET(64);
1020 break;
1021 /* USB core guesses at a 64-byte max packet first for FS devices */
1022 case USB_SPEED_FULL:
1023 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1024 max_packets = MAX_PACKET(64);
1025 break;
1026 case USB_SPEED_LOW:
1027 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1028 max_packets = MAX_PACKET(8);
1029 break;
1030 case USB_SPEED_WIRELESS:
1031 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1032 return -EINVAL;
1033 break;
1034 default:
1035 /* Speed was set earlier, this shouldn't happen. */
1036 return -EINVAL;
1038 /* Find the root hub port this device is under */
1039 port_num = xhci_find_real_port_number(xhci, udev);
1040 if (!port_num)
1041 return -EINVAL;
1042 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1043 /* Set the port number in the virtual_device to the faked port number */
1044 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1045 top_dev = top_dev->parent)
1046 /* Found device below root hub */;
1047 dev->fake_port = top_dev->portnum;
1048 dev->real_port = port_num;
1049 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1050 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1052 /* Find the right bandwidth table that this device will be a part of.
1053 * If this is a full speed device attached directly to a root port (or a
1054 * decendent of one), it counts as a primary bandwidth domain, not a
1055 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1056 * will never be created for the HS root hub.
1058 if (!udev->tt || !udev->tt->hub->parent) {
1059 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1060 } else {
1061 struct xhci_root_port_bw_info *rh_bw;
1062 struct xhci_tt_bw_info *tt_bw;
1064 rh_bw = &xhci->rh_bw[port_num - 1];
1065 /* Find the right TT. */
1066 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1067 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1068 continue;
1070 if (!dev->udev->tt->multi ||
1071 (udev->tt->multi &&
1072 tt_bw->ttport == dev->udev->ttport)) {
1073 dev->bw_table = &tt_bw->bw_table;
1074 dev->tt_info = tt_bw;
1075 break;
1078 if (!dev->tt_info)
1079 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1082 /* Is this a LS/FS device under an external HS hub? */
1083 if (udev->tt && udev->tt->hub->parent) {
1084 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1085 (udev->ttport << 8));
1086 if (udev->tt->multi)
1087 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1089 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1090 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1092 /* Step 4 - ring already allocated */
1093 /* Step 5 */
1094 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1096 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1097 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1098 max_packets);
1100 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1101 dev->eps[0].ring->cycle_state);
1103 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1105 return 0;
1109 * Convert interval expressed as 2^(bInterval - 1) == interval into
1110 * straight exponent value 2^n == interval.
1113 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1114 struct usb_host_endpoint *ep)
1116 unsigned int interval;
1118 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1119 if (interval != ep->desc.bInterval - 1)
1120 dev_warn(&udev->dev,
1121 "ep %#x - rounding interval to %d %sframes\n",
1122 ep->desc.bEndpointAddress,
1123 1 << interval,
1124 udev->speed == USB_SPEED_FULL ? "" : "micro");
1126 if (udev->speed == USB_SPEED_FULL) {
1128 * Full speed isoc endpoints specify interval in frames,
1129 * not microframes. We are using microframes everywhere,
1130 * so adjust accordingly.
1132 interval += 3; /* 1 frame = 2^3 uframes */
1135 return interval;
1139 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1140 * microframes, rounded down to nearest power of 2.
1142 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1143 struct usb_host_endpoint *ep, unsigned int desc_interval,
1144 unsigned int min_exponent, unsigned int max_exponent)
1146 unsigned int interval;
1148 interval = fls(desc_interval) - 1;
1149 interval = clamp_val(interval, min_exponent, max_exponent);
1150 if ((1 << interval) != desc_interval)
1151 dev_warn(&udev->dev,
1152 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1153 ep->desc.bEndpointAddress,
1154 1 << interval,
1155 desc_interval);
1157 return interval;
1160 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1161 struct usb_host_endpoint *ep)
1163 if (ep->desc.bInterval == 0)
1164 return 0;
1165 return xhci_microframes_to_exponent(udev, ep,
1166 ep->desc.bInterval, 0, 15);
1170 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1171 struct usb_host_endpoint *ep)
1173 return xhci_microframes_to_exponent(udev, ep,
1174 ep->desc.bInterval * 8, 3, 10);
1177 /* Return the polling or NAK interval.
1179 * The polling interval is expressed in "microframes". If xHCI's Interval field
1180 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1182 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1183 * is set to 0.
1185 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1186 struct usb_host_endpoint *ep)
1188 unsigned int interval = 0;
1190 switch (udev->speed) {
1191 case USB_SPEED_HIGH:
1192 /* Max NAK rate */
1193 if (usb_endpoint_xfer_control(&ep->desc) ||
1194 usb_endpoint_xfer_bulk(&ep->desc)) {
1195 interval = xhci_parse_microframe_interval(udev, ep);
1196 break;
1198 /* Fall through - SS and HS isoc/int have same decoding */
1200 case USB_SPEED_SUPER_PLUS:
1201 case USB_SPEED_SUPER:
1202 if (usb_endpoint_xfer_int(&ep->desc) ||
1203 usb_endpoint_xfer_isoc(&ep->desc)) {
1204 interval = xhci_parse_exponent_interval(udev, ep);
1206 break;
1208 case USB_SPEED_FULL:
1209 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1210 interval = xhci_parse_exponent_interval(udev, ep);
1211 break;
1214 * Fall through for interrupt endpoint interval decoding
1215 * since it uses the same rules as low speed interrupt
1216 * endpoints.
1219 case USB_SPEED_LOW:
1220 if (usb_endpoint_xfer_int(&ep->desc) ||
1221 usb_endpoint_xfer_isoc(&ep->desc)) {
1223 interval = xhci_parse_frame_interval(udev, ep);
1225 break;
1227 default:
1228 BUG();
1230 return EP_INTERVAL(interval);
1233 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1234 * High speed endpoint descriptors can define "the number of additional
1235 * transaction opportunities per microframe", but that goes in the Max Burst
1236 * endpoint context field.
1238 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1239 struct usb_host_endpoint *ep)
1241 if (udev->speed < USB_SPEED_SUPER ||
1242 !usb_endpoint_xfer_isoc(&ep->desc))
1243 return 0;
1244 return ep->ss_ep_comp.bmAttributes;
1247 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1248 struct usb_host_endpoint *ep)
1250 int in;
1251 u32 type;
1253 in = usb_endpoint_dir_in(&ep->desc);
1254 if (usb_endpoint_xfer_control(&ep->desc)) {
1255 type = EP_TYPE(CTRL_EP);
1256 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1257 if (in)
1258 type = EP_TYPE(BULK_IN_EP);
1259 else
1260 type = EP_TYPE(BULK_OUT_EP);
1261 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1262 if (in)
1263 type = EP_TYPE(ISOC_IN_EP);
1264 else
1265 type = EP_TYPE(ISOC_OUT_EP);
1266 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1267 if (in)
1268 type = EP_TYPE(INT_IN_EP);
1269 else
1270 type = EP_TYPE(INT_OUT_EP);
1271 } else {
1272 type = 0;
1274 return type;
1277 /* Return the maximum endpoint service interval time (ESIT) payload.
1278 * Basically, this is the maxpacket size, multiplied by the burst size
1279 * and mult size.
1281 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1282 struct usb_device *udev,
1283 struct usb_host_endpoint *ep)
1285 int max_burst;
1286 int max_packet;
1288 /* Only applies for interrupt or isochronous endpoints */
1289 if (usb_endpoint_xfer_control(&ep->desc) ||
1290 usb_endpoint_xfer_bulk(&ep->desc))
1291 return 0;
1293 if (udev->speed >= USB_SPEED_SUPER)
1294 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1296 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1297 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1298 /* A 0 in max burst means 1 transfer per ESIT */
1299 return max_packet * (max_burst + 1);
1302 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1303 * Drivers will have to call usb_alloc_streams() to do that.
1305 int xhci_endpoint_init(struct xhci_hcd *xhci,
1306 struct xhci_virt_device *virt_dev,
1307 struct usb_device *udev,
1308 struct usb_host_endpoint *ep,
1309 gfp_t mem_flags)
1311 unsigned int ep_index;
1312 struct xhci_ep_ctx *ep_ctx;
1313 struct xhci_ring *ep_ring;
1314 unsigned int max_packet;
1315 unsigned int max_burst;
1316 enum xhci_ring_type type;
1317 u32 max_esit_payload;
1318 u32 endpoint_type;
1320 ep_index = xhci_get_endpoint_index(&ep->desc);
1321 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1323 endpoint_type = xhci_get_endpoint_type(udev, ep);
1324 if (!endpoint_type)
1325 return -EINVAL;
1326 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1328 type = usb_endpoint_type(&ep->desc);
1329 /* Set up the endpoint ring */
1330 virt_dev->eps[ep_index].new_ring =
1331 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1332 if (!virt_dev->eps[ep_index].new_ring) {
1333 /* Attempt to use the ring cache */
1334 if (virt_dev->num_rings_cached == 0)
1335 return -ENOMEM;
1336 virt_dev->num_rings_cached--;
1337 virt_dev->eps[ep_index].new_ring =
1338 virt_dev->ring_cache[virt_dev->num_rings_cached];
1339 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1340 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1341 1, type);
1343 virt_dev->eps[ep_index].skip = false;
1344 ep_ring = virt_dev->eps[ep_index].new_ring;
1345 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1347 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1348 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1350 /* FIXME dig Mult and streams info out of ep companion desc */
1352 /* Allow 3 retries for everything but isoc;
1353 * CErr shall be set to 0 for Isoch endpoints.
1355 if (!usb_endpoint_xfer_isoc(&ep->desc))
1356 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1357 else
1358 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1360 /* Set the max packet size and max burst */
1361 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1362 max_burst = 0;
1363 switch (udev->speed) {
1364 case USB_SPEED_SUPER_PLUS:
1365 case USB_SPEED_SUPER:
1366 /* dig out max burst from ep companion desc */
1367 max_burst = ep->ss_ep_comp.bMaxBurst;
1368 break;
1369 case USB_SPEED_HIGH:
1370 /* Some devices get this wrong */
1371 if (usb_endpoint_xfer_bulk(&ep->desc))
1372 max_packet = 512;
1373 /* bits 11:12 specify the number of additional transaction
1374 * opportunities per microframe (USB 2.0, section 9.6.6)
1376 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1377 usb_endpoint_xfer_int(&ep->desc)) {
1378 max_burst = (usb_endpoint_maxp(&ep->desc)
1379 & 0x1800) >> 11;
1381 break;
1382 case USB_SPEED_FULL:
1383 case USB_SPEED_LOW:
1384 break;
1385 default:
1386 BUG();
1388 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1389 MAX_BURST(max_burst));
1390 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1391 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1394 * XXX no idea how to calculate the average TRB buffer length for bulk
1395 * endpoints, as the driver gives us no clue how big each scatter gather
1396 * list entry (or buffer) is going to be.
1398 * For isochronous and interrupt endpoints, we set it to the max
1399 * available, until we have new API in the USB core to allow drivers to
1400 * declare how much bandwidth they actually need.
1402 * Normally, it would be calculated by taking the total of the buffer
1403 * lengths in the TD and then dividing by the number of TRBs in a TD,
1404 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1405 * use Event Data TRBs, and we don't chain in a link TRB on short
1406 * transfers, we're basically dividing by 1.
1408 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1409 * should be set to 8 for control endpoints.
1411 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1412 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1413 else
1414 ep_ctx->tx_info |=
1415 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1417 /* FIXME Debug endpoint context */
1418 return 0;
1421 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1422 struct xhci_virt_device *virt_dev,
1423 struct usb_host_endpoint *ep)
1425 unsigned int ep_index;
1426 struct xhci_ep_ctx *ep_ctx;
1428 ep_index = xhci_get_endpoint_index(&ep->desc);
1429 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431 ep_ctx->ep_info = 0;
1432 ep_ctx->ep_info2 = 0;
1433 ep_ctx->deq = 0;
1434 ep_ctx->tx_info = 0;
1435 /* Don't free the endpoint ring until the set interface or configuration
1436 * request succeeds.
1440 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1442 bw_info->ep_interval = 0;
1443 bw_info->mult = 0;
1444 bw_info->num_packets = 0;
1445 bw_info->max_packet_size = 0;
1446 bw_info->type = 0;
1447 bw_info->max_esit_payload = 0;
1450 void xhci_update_bw_info(struct xhci_hcd *xhci,
1451 struct xhci_container_ctx *in_ctx,
1452 struct xhci_input_control_ctx *ctrl_ctx,
1453 struct xhci_virt_device *virt_dev)
1455 struct xhci_bw_info *bw_info;
1456 struct xhci_ep_ctx *ep_ctx;
1457 unsigned int ep_type;
1458 int i;
1460 for (i = 1; i < 31; ++i) {
1461 bw_info = &virt_dev->eps[i].bw_info;
1463 /* We can't tell what endpoint type is being dropped, but
1464 * unconditionally clearing the bandwidth info for non-periodic
1465 * endpoints should be harmless because the info will never be
1466 * set in the first place.
1468 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1469 /* Dropped endpoint */
1470 xhci_clear_endpoint_bw_info(bw_info);
1471 continue;
1474 if (EP_IS_ADDED(ctrl_ctx, i)) {
1475 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1476 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1478 /* Ignore non-periodic endpoints */
1479 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1480 ep_type != ISOC_IN_EP &&
1481 ep_type != INT_IN_EP)
1482 continue;
1484 /* Added or changed endpoint */
1485 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1486 le32_to_cpu(ep_ctx->ep_info));
1487 /* Number of packets and mult are zero-based in the
1488 * input context, but we want one-based for the
1489 * interval table.
1491 bw_info->mult = CTX_TO_EP_MULT(
1492 le32_to_cpu(ep_ctx->ep_info)) + 1;
1493 bw_info->num_packets = CTX_TO_MAX_BURST(
1494 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1495 bw_info->max_packet_size = MAX_PACKET_DECODED(
1496 le32_to_cpu(ep_ctx->ep_info2));
1497 bw_info->type = ep_type;
1498 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1499 le32_to_cpu(ep_ctx->tx_info));
1504 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1505 * Useful when you want to change one particular aspect of the endpoint and then
1506 * issue a configure endpoint command.
1508 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1509 struct xhci_container_ctx *in_ctx,
1510 struct xhci_container_ctx *out_ctx,
1511 unsigned int ep_index)
1513 struct xhci_ep_ctx *out_ep_ctx;
1514 struct xhci_ep_ctx *in_ep_ctx;
1516 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1517 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1519 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1520 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1521 in_ep_ctx->deq = out_ep_ctx->deq;
1522 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1525 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1526 * Useful when you want to change one particular aspect of the endpoint and then
1527 * issue a configure endpoint command. Only the context entries field matters,
1528 * but we'll copy the whole thing anyway.
1530 void xhci_slot_copy(struct xhci_hcd *xhci,
1531 struct xhci_container_ctx *in_ctx,
1532 struct xhci_container_ctx *out_ctx)
1534 struct xhci_slot_ctx *in_slot_ctx;
1535 struct xhci_slot_ctx *out_slot_ctx;
1537 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1538 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1540 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1541 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1542 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1543 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1546 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1547 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1549 int i;
1550 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1551 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1553 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1554 "Allocating %d scratchpad buffers", num_sp);
1556 if (!num_sp)
1557 return 0;
1559 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1560 if (!xhci->scratchpad)
1561 goto fail_sp;
1563 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1564 num_sp * sizeof(u64),
1565 &xhci->scratchpad->sp_dma, flags);
1566 if (!xhci->scratchpad->sp_array)
1567 goto fail_sp2;
1569 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1570 if (!xhci->scratchpad->sp_buffers)
1571 goto fail_sp3;
1573 xhci->scratchpad->sp_dma_buffers =
1574 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1576 if (!xhci->scratchpad->sp_dma_buffers)
1577 goto fail_sp4;
1579 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1580 for (i = 0; i < num_sp; i++) {
1581 dma_addr_t dma;
1582 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1583 flags);
1584 if (!buf)
1585 goto fail_sp5;
1587 xhci->scratchpad->sp_array[i] = dma;
1588 xhci->scratchpad->sp_buffers[i] = buf;
1589 xhci->scratchpad->sp_dma_buffers[i] = dma;
1592 return 0;
1594 fail_sp5:
1595 for (i = i - 1; i >= 0; i--) {
1596 dma_free_coherent(dev, xhci->page_size,
1597 xhci->scratchpad->sp_buffers[i],
1598 xhci->scratchpad->sp_dma_buffers[i]);
1600 kfree(xhci->scratchpad->sp_dma_buffers);
1602 fail_sp4:
1603 kfree(xhci->scratchpad->sp_buffers);
1605 fail_sp3:
1606 dma_free_coherent(dev, num_sp * sizeof(u64),
1607 xhci->scratchpad->sp_array,
1608 xhci->scratchpad->sp_dma);
1610 fail_sp2:
1611 kfree(xhci->scratchpad);
1612 xhci->scratchpad = NULL;
1614 fail_sp:
1615 return -ENOMEM;
1618 static void scratchpad_free(struct xhci_hcd *xhci)
1620 int num_sp;
1621 int i;
1622 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1624 if (!xhci->scratchpad)
1625 return;
1627 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1629 for (i = 0; i < num_sp; i++) {
1630 dma_free_coherent(&pdev->dev, xhci->page_size,
1631 xhci->scratchpad->sp_buffers[i],
1632 xhci->scratchpad->sp_dma_buffers[i]);
1634 kfree(xhci->scratchpad->sp_dma_buffers);
1635 kfree(xhci->scratchpad->sp_buffers);
1636 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1637 xhci->scratchpad->sp_array,
1638 xhci->scratchpad->sp_dma);
1639 kfree(xhci->scratchpad);
1640 xhci->scratchpad = NULL;
1643 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1644 bool allocate_in_ctx, bool allocate_completion,
1645 gfp_t mem_flags)
1647 struct xhci_command *command;
1649 command = kzalloc(sizeof(*command), mem_flags);
1650 if (!command)
1651 return NULL;
1653 if (allocate_in_ctx) {
1654 command->in_ctx =
1655 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1656 mem_flags);
1657 if (!command->in_ctx) {
1658 kfree(command);
1659 return NULL;
1663 if (allocate_completion) {
1664 command->completion =
1665 kzalloc(sizeof(struct completion), mem_flags);
1666 if (!command->completion) {
1667 xhci_free_container_ctx(xhci, command->in_ctx);
1668 kfree(command);
1669 return NULL;
1671 init_completion(command->completion);
1674 command->status = 0;
1675 INIT_LIST_HEAD(&command->cmd_list);
1676 return command;
1679 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1681 if (urb_priv) {
1682 kfree(urb_priv->td[0]);
1683 kfree(urb_priv);
1687 void xhci_free_command(struct xhci_hcd *xhci,
1688 struct xhci_command *command)
1690 xhci_free_container_ctx(xhci,
1691 command->in_ctx);
1692 kfree(command->completion);
1693 kfree(command);
1696 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1698 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1699 struct xhci_cd *cur_cd, *next_cd;
1700 int size;
1701 int i, j, num_ports;
1703 /* Free the Event Ring Segment Table and the actual Event Ring */
1704 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1705 if (xhci->erst.entries)
1706 dma_free_coherent(&pdev->dev, size,
1707 xhci->erst.entries, xhci->erst.erst_dma_addr);
1708 xhci->erst.entries = NULL;
1709 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1710 if (xhci->event_ring)
1711 xhci_ring_free(xhci, xhci->event_ring);
1712 xhci->event_ring = NULL;
1713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1715 if (xhci->lpm_command)
1716 xhci_free_command(xhci, xhci->lpm_command);
1717 xhci->cmd_ring_reserved_trbs = 0;
1718 if (xhci->cmd_ring)
1719 xhci_ring_free(xhci, xhci->cmd_ring);
1720 xhci->cmd_ring = NULL;
1721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1722 list_for_each_entry_safe(cur_cd, next_cd,
1723 &xhci->cancel_cmd_list, cancel_cmd_list) {
1724 list_del(&cur_cd->cancel_cmd_list);
1725 kfree(cur_cd);
1728 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1729 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1730 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1731 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1732 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1733 while (!list_empty(ep))
1734 list_del_init(ep->next);
1738 for (i = 1; i < MAX_HC_SLOTS; ++i)
1739 xhci_free_virt_device(xhci, i);
1741 if (xhci->segment_pool)
1742 dma_pool_destroy(xhci->segment_pool);
1743 xhci->segment_pool = NULL;
1744 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1746 if (xhci->device_pool)
1747 dma_pool_destroy(xhci->device_pool);
1748 xhci->device_pool = NULL;
1749 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1751 if (xhci->small_streams_pool)
1752 dma_pool_destroy(xhci->small_streams_pool);
1753 xhci->small_streams_pool = NULL;
1754 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1755 "Freed small stream array pool");
1757 if (xhci->medium_streams_pool)
1758 dma_pool_destroy(xhci->medium_streams_pool);
1759 xhci->medium_streams_pool = NULL;
1760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1761 "Freed medium stream array pool");
1763 if (xhci->dcbaa)
1764 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1765 xhci->dcbaa, xhci->dcbaa->dma);
1766 xhci->dcbaa = NULL;
1768 scratchpad_free(xhci);
1770 if (!xhci->rh_bw)
1771 goto no_bw;
1773 for (i = 0; i < num_ports; i++) {
1774 struct xhci_tt_bw_info *tt, *n;
1775 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1776 list_del(&tt->tt_list);
1777 kfree(tt);
1781 no_bw:
1782 xhci->num_usb2_ports = 0;
1783 xhci->num_usb3_ports = 0;
1784 xhci->num_active_eps = 0;
1785 kfree(xhci->usb2_ports);
1786 kfree(xhci->usb3_ports);
1787 kfree(xhci->port_array);
1788 kfree(xhci->rh_bw);
1789 kfree(xhci->ext_caps);
1791 xhci->usb2_ports = NULL;
1792 xhci->usb3_ports = NULL;
1793 xhci->port_array = NULL;
1794 xhci->rh_bw = NULL;
1795 xhci->ext_caps = NULL;
1797 xhci->page_size = 0;
1798 xhci->page_shift = 0;
1799 xhci->bus_state[0].bus_suspended = 0;
1800 xhci->bus_state[1].bus_suspended = 0;
1803 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1804 struct xhci_segment *input_seg,
1805 union xhci_trb *start_trb,
1806 union xhci_trb *end_trb,
1807 dma_addr_t input_dma,
1808 struct xhci_segment *result_seg,
1809 char *test_name, int test_number)
1811 unsigned long long start_dma;
1812 unsigned long long end_dma;
1813 struct xhci_segment *seg;
1815 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1816 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1818 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1819 if (seg != result_seg) {
1820 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1821 test_name, test_number);
1822 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1823 "input DMA 0x%llx\n",
1824 input_seg,
1825 (unsigned long long) input_dma);
1826 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1827 "ending TRB %p (0x%llx DMA)\n",
1828 start_trb, start_dma,
1829 end_trb, end_dma);
1830 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1831 result_seg, seg);
1832 return -1;
1834 return 0;
1837 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1838 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1840 struct {
1841 dma_addr_t input_dma;
1842 struct xhci_segment *result_seg;
1843 } simple_test_vector [] = {
1844 /* A zeroed DMA field should fail */
1845 { 0, NULL },
1846 /* One TRB before the ring start should fail */
1847 { xhci->event_ring->first_seg->dma - 16, NULL },
1848 /* One byte before the ring start should fail */
1849 { xhci->event_ring->first_seg->dma - 1, NULL },
1850 /* Starting TRB should succeed */
1851 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1852 /* Ending TRB should succeed */
1853 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1854 xhci->event_ring->first_seg },
1855 /* One byte after the ring end should fail */
1856 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1857 /* One TRB after the ring end should fail */
1858 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1859 /* An address of all ones should fail */
1860 { (dma_addr_t) (~0), NULL },
1862 struct {
1863 struct xhci_segment *input_seg;
1864 union xhci_trb *start_trb;
1865 union xhci_trb *end_trb;
1866 dma_addr_t input_dma;
1867 struct xhci_segment *result_seg;
1868 } complex_test_vector [] = {
1869 /* Test feeding a valid DMA address from a different ring */
1870 { .input_seg = xhci->event_ring->first_seg,
1871 .start_trb = xhci->event_ring->first_seg->trbs,
1872 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1873 .input_dma = xhci->cmd_ring->first_seg->dma,
1874 .result_seg = NULL,
1876 /* Test feeding a valid end TRB from a different ring */
1877 { .input_seg = xhci->event_ring->first_seg,
1878 .start_trb = xhci->event_ring->first_seg->trbs,
1879 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1880 .input_dma = xhci->cmd_ring->first_seg->dma,
1881 .result_seg = NULL,
1883 /* Test feeding a valid start and end TRB from a different ring */
1884 { .input_seg = xhci->event_ring->first_seg,
1885 .start_trb = xhci->cmd_ring->first_seg->trbs,
1886 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1887 .input_dma = xhci->cmd_ring->first_seg->dma,
1888 .result_seg = NULL,
1890 /* TRB in this ring, but after this TD */
1891 { .input_seg = xhci->event_ring->first_seg,
1892 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1893 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1894 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1895 .result_seg = NULL,
1897 /* TRB in this ring, but before this TD */
1898 { .input_seg = xhci->event_ring->first_seg,
1899 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1900 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1901 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1902 .result_seg = NULL,
1904 /* TRB in this ring, but after this wrapped TD */
1905 { .input_seg = xhci->event_ring->first_seg,
1906 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1907 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1908 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1909 .result_seg = NULL,
1911 /* TRB in this ring, but before this wrapped TD */
1912 { .input_seg = xhci->event_ring->first_seg,
1913 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1914 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1915 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1916 .result_seg = NULL,
1918 /* TRB not in this ring, and we have a wrapped TD */
1919 { .input_seg = xhci->event_ring->first_seg,
1920 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1921 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1922 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1923 .result_seg = NULL,
1927 unsigned int num_tests;
1928 int i, ret;
1930 num_tests = ARRAY_SIZE(simple_test_vector);
1931 for (i = 0; i < num_tests; i++) {
1932 ret = xhci_test_trb_in_td(xhci,
1933 xhci->event_ring->first_seg,
1934 xhci->event_ring->first_seg->trbs,
1935 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1936 simple_test_vector[i].input_dma,
1937 simple_test_vector[i].result_seg,
1938 "Simple", i);
1939 if (ret < 0)
1940 return ret;
1943 num_tests = ARRAY_SIZE(complex_test_vector);
1944 for (i = 0; i < num_tests; i++) {
1945 ret = xhci_test_trb_in_td(xhci,
1946 complex_test_vector[i].input_seg,
1947 complex_test_vector[i].start_trb,
1948 complex_test_vector[i].end_trb,
1949 complex_test_vector[i].input_dma,
1950 complex_test_vector[i].result_seg,
1951 "Complex", i);
1952 if (ret < 0)
1953 return ret;
1955 xhci_dbg(xhci, "TRB math tests passed.\n");
1956 return 0;
1959 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1961 u64 temp;
1962 dma_addr_t deq;
1964 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1965 xhci->event_ring->dequeue);
1966 if (deq == 0 && !in_interrupt())
1967 xhci_warn(xhci, "WARN something wrong with SW event ring "
1968 "dequeue ptr.\n");
1969 /* Update HC event ring dequeue pointer */
1970 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1971 temp &= ERST_PTR_MASK;
1972 /* Don't clear the EHB bit (which is RW1C) because
1973 * there might be more events to service.
1975 temp &= ~ERST_EHB;
1976 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1977 "// Write event ring dequeue pointer, "
1978 "preserving EHB bit");
1979 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1980 &xhci->ir_set->erst_dequeue);
1983 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1984 __le32 __iomem *addr, u8 major_revision, int max_caps)
1986 u32 temp, port_offset, port_count;
1987 int i;
1989 if (major_revision > 0x03) {
1990 xhci_warn(xhci, "Ignoring unknown port speed, "
1991 "Ext Cap %p, revision = 0x%x\n",
1992 addr, major_revision);
1993 /* Ignoring port protocol we can't understand. FIXME */
1994 return;
1997 /* Port offset and count in the third dword, see section 7.2 */
1998 temp = xhci_readl(xhci, addr + 2);
1999 port_offset = XHCI_EXT_PORT_OFF(temp);
2000 port_count = XHCI_EXT_PORT_COUNT(temp);
2001 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2002 "Ext Cap %p, port offset = %u, "
2003 "count = %u, revision = 0x%x",
2004 addr, port_offset, port_count, major_revision);
2005 /* Port count includes the current port offset */
2006 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2007 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2008 return;
2010 /* cache usb2 port capabilities */
2011 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2012 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2014 /* Check the host's USB2 LPM capability */
2015 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2016 (temp & XHCI_L1C)) {
2017 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2018 "xHCI 0.96: support USB2 software lpm");
2019 xhci->sw_lpm_support = 1;
2022 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2023 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2024 "xHCI 1.0: support USB2 software lpm");
2025 xhci->sw_lpm_support = 1;
2026 if (temp & XHCI_HLC) {
2027 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2028 "xHCI 1.0: support USB2 hardware lpm");
2029 xhci->hw_lpm_support = 1;
2033 port_offset--;
2034 for (i = port_offset; i < (port_offset + port_count); i++) {
2035 /* Duplicate entry. Ignore the port if the revisions differ. */
2036 if (xhci->port_array[i] != 0) {
2037 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2038 " port %u\n", addr, i);
2039 xhci_warn(xhci, "Port was marked as USB %u, "
2040 "duplicated as USB %u\n",
2041 xhci->port_array[i], major_revision);
2042 /* Only adjust the roothub port counts if we haven't
2043 * found a similar duplicate.
2045 if (xhci->port_array[i] != major_revision &&
2046 xhci->port_array[i] != DUPLICATE_ENTRY) {
2047 if (xhci->port_array[i] == 0x03)
2048 xhci->num_usb3_ports--;
2049 else
2050 xhci->num_usb2_ports--;
2051 xhci->port_array[i] = DUPLICATE_ENTRY;
2053 /* FIXME: Should we disable the port? */
2054 continue;
2056 xhci->port_array[i] = major_revision;
2057 if (major_revision == 0x03)
2058 xhci->num_usb3_ports++;
2059 else
2060 xhci->num_usb2_ports++;
2062 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2066 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2067 * specify what speeds each port is supposed to be. We can't count on the port
2068 * speed bits in the PORTSC register being correct until a device is connected,
2069 * but we need to set up the two fake roothubs with the correct number of USB
2070 * 3.0 and USB 2.0 ports at host controller initialization time.
2072 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2074 __le32 __iomem *addr, *tmp_addr;
2075 u32 offset, tmp_offset;
2076 unsigned int num_ports;
2077 int i, j, port_index;
2078 int cap_count = 0;
2080 addr = &xhci->cap_regs->hcc_params;
2081 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2082 if (offset == 0) {
2083 xhci_err(xhci, "No Extended Capability registers, "
2084 "unable to set up roothub.\n");
2085 return -ENODEV;
2088 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2089 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2090 if (!xhci->port_array)
2091 return -ENOMEM;
2093 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2094 if (!xhci->rh_bw)
2095 return -ENOMEM;
2096 for (i = 0; i < num_ports; i++) {
2097 struct xhci_interval_bw_table *bw_table;
2099 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2100 bw_table = &xhci->rh_bw[i].bw_table;
2101 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2102 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2106 * For whatever reason, the first capability offset is from the
2107 * capability register base, not from the HCCPARAMS register.
2108 * See section 5.3.6 for offset calculation.
2110 addr = &xhci->cap_regs->hc_capbase + offset;
2112 tmp_addr = addr;
2113 tmp_offset = offset;
2115 /* count extended protocol capability entries for later caching */
2116 do {
2117 u32 cap_id;
2118 cap_id = xhci_readl(xhci, tmp_addr);
2119 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2120 cap_count++;
2121 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2122 tmp_addr += tmp_offset;
2123 } while (tmp_offset);
2125 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2126 if (!xhci->ext_caps)
2127 return -ENOMEM;
2129 while (1) {
2130 u32 cap_id;
2132 cap_id = xhci_readl(xhci, addr);
2133 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2134 xhci_add_in_port(xhci, num_ports, addr,
2135 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2136 cap_count);
2137 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2138 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2139 == num_ports)
2140 break;
2142 * Once you're into the Extended Capabilities, the offset is
2143 * always relative to the register holding the offset.
2145 addr += offset;
2148 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2149 xhci_warn(xhci, "No ports on the roothubs?\n");
2150 return -ENODEV;
2152 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2153 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2154 xhci->num_usb2_ports, xhci->num_usb3_ports);
2156 /* Place limits on the number of roothub ports so that the hub
2157 * descriptors aren't longer than the USB core will allocate.
2159 if (xhci->num_usb3_ports > 15) {
2160 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2161 "Limiting USB 3.0 roothub ports to 15.");
2162 xhci->num_usb3_ports = 15;
2164 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2165 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2166 "Limiting USB 2.0 roothub ports to %u.",
2167 USB_MAXCHILDREN);
2168 xhci->num_usb2_ports = USB_MAXCHILDREN;
2172 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2173 * Not sure how the USB core will handle a hub with no ports...
2175 if (xhci->num_usb2_ports) {
2176 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2177 xhci->num_usb2_ports, flags);
2178 if (!xhci->usb2_ports)
2179 return -ENOMEM;
2181 port_index = 0;
2182 for (i = 0; i < num_ports; i++) {
2183 if (xhci->port_array[i] == 0x03 ||
2184 xhci->port_array[i] == 0 ||
2185 xhci->port_array[i] == DUPLICATE_ENTRY)
2186 continue;
2188 xhci->usb2_ports[port_index] =
2189 &xhci->op_regs->port_status_base +
2190 NUM_PORT_REGS*i;
2191 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192 "USB 2.0 port at index %u, "
2193 "addr = %p", i,
2194 xhci->usb2_ports[port_index]);
2195 port_index++;
2196 if (port_index == xhci->num_usb2_ports)
2197 break;
2200 if (xhci->num_usb3_ports) {
2201 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2202 xhci->num_usb3_ports, flags);
2203 if (!xhci->usb3_ports)
2204 return -ENOMEM;
2206 port_index = 0;
2207 for (i = 0; i < num_ports; i++)
2208 if (xhci->port_array[i] == 0x03) {
2209 xhci->usb3_ports[port_index] =
2210 &xhci->op_regs->port_status_base +
2211 NUM_PORT_REGS*i;
2212 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2213 "USB 3.0 port at index %u, "
2214 "addr = %p", i,
2215 xhci->usb3_ports[port_index]);
2216 port_index++;
2217 if (port_index == xhci->num_usb3_ports)
2218 break;
2221 return 0;
2224 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2226 dma_addr_t dma;
2227 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2228 unsigned int val, val2;
2229 u64 val_64;
2230 struct xhci_segment *seg;
2231 u32 page_size, temp;
2232 int i;
2234 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2236 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 "Supported page size register = 0x%x", page_size);
2239 for (i = 0; i < 16; i++) {
2240 if ((0x1 & page_size) != 0)
2241 break;
2242 page_size = page_size >> 1;
2244 if (i < 16)
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246 "Supported page size of %iK", (1 << (i+12)) / 1024);
2247 else
2248 xhci_warn(xhci, "WARN: no supported page size\n");
2249 /* Use 4K pages, since that's common and the minimum the HC supports */
2250 xhci->page_shift = 12;
2251 xhci->page_size = 1 << xhci->page_shift;
2252 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253 "HCD page size set to %iK", xhci->page_size / 1024);
2256 * Program the Number of Device Slots Enabled field in the CONFIG
2257 * register with the max value of slots the HC can handle.
2259 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2260 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2261 "// xHC can handle at most %d device slots.", val);
2262 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2263 val |= (val2 & ~HCS_SLOTS_MASK);
2264 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265 "// Setting Max device slots reg = 0x%x.", val);
2266 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2269 * Section 5.4.8 - doorbell array must be
2270 * "physically contiguous and 64-byte (cache line) aligned".
2272 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2273 GFP_KERNEL);
2274 if (!xhci->dcbaa)
2275 goto fail;
2276 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2277 xhci->dcbaa->dma = dma;
2278 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2279 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2280 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2281 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2284 * Initialize the ring segment pool. The ring must be a contiguous
2285 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2286 * however, the command ring segment needs 64-byte aligned segments,
2287 * so we pick the greater alignment need.
2289 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2290 TRB_SEGMENT_SIZE, 64, xhci->page_size);
2292 /* See Table 46 and Note on Figure 55 */
2293 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2294 2112, 64, xhci->page_size);
2295 if (!xhci->segment_pool || !xhci->device_pool)
2296 goto fail;
2298 /* Linear stream context arrays don't have any boundary restrictions,
2299 * and only need to be 16-byte aligned.
2301 xhci->small_streams_pool =
2302 dma_pool_create("xHCI 256 byte stream ctx arrays",
2303 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2304 xhci->medium_streams_pool =
2305 dma_pool_create("xHCI 1KB stream ctx arrays",
2306 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2307 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2308 * will be allocated with dma_alloc_coherent()
2311 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2312 goto fail;
2314 /* Set up the command ring to have one segments for now. */
2315 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2316 if (!xhci->cmd_ring)
2317 goto fail;
2318 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2319 "Allocated command ring at %p", xhci->cmd_ring);
2320 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2321 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2323 /* Set the address in the Command Ring Control register */
2324 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2325 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2326 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2327 xhci->cmd_ring->cycle_state;
2328 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2329 "// Setting command ring address to 0x%x", val);
2330 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2331 xhci_dbg_cmd_ptrs(xhci);
2333 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2334 if (!xhci->lpm_command)
2335 goto fail;
2337 /* Reserve one command ring TRB for disabling LPM.
2338 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2339 * disabling LPM, we only need to reserve one TRB for all devices.
2341 xhci->cmd_ring_reserved_trbs++;
2343 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2344 val &= DBOFF_MASK;
2345 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346 "// Doorbell array is located at offset 0x%x"
2347 " from cap regs base addr", val);
2348 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2349 xhci_dbg_regs(xhci);
2350 xhci_print_run_regs(xhci);
2351 /* Set ir_set to interrupt register set 0 */
2352 xhci->ir_set = &xhci->run_regs->ir_set[0];
2355 * Event ring setup: Allocate a normal ring, but also setup
2356 * the event ring segment table (ERST). Section 4.9.3.
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2359 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2360 flags);
2361 if (!xhci->event_ring)
2362 goto fail;
2363 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2364 goto fail;
2366 xhci->erst.entries = dma_alloc_coherent(dev,
2367 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2368 GFP_KERNEL);
2369 if (!xhci->erst.entries)
2370 goto fail;
2371 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372 "// Allocated event ring segment table at 0x%llx",
2373 (unsigned long long)dma);
2375 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2376 xhci->erst.num_entries = ERST_NUM_SEGS;
2377 xhci->erst.erst_dma_addr = dma;
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2380 xhci->erst.num_entries,
2381 xhci->erst.entries,
2382 (unsigned long long)xhci->erst.erst_dma_addr);
2384 /* set ring base address and size for each segment table entry */
2385 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2386 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2387 entry->seg_addr = cpu_to_le64(seg->dma);
2388 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2389 entry->rsvd = 0;
2390 seg = seg->next;
2393 /* set ERST count with the number of entries in the segment table */
2394 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2395 val &= ERST_SIZE_MASK;
2396 val |= ERST_NUM_SEGS;
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2399 val);
2400 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2402 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403 "// Set ERST entries to point to event ring.");
2404 /* set the segment table base address */
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 "// Set ERST base address for ir_set 0 = 0x%llx",
2407 (unsigned long long)xhci->erst.erst_dma_addr);
2408 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2409 val_64 &= ERST_PTR_MASK;
2410 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2411 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2413 /* Set the event ring dequeue address */
2414 xhci_set_hc_event_deq(xhci);
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "Wrote ERST address to ir_set 0.");
2417 xhci_print_ir_set(xhci, 0);
2420 * XXX: Might need to set the Interrupter Moderation Register to
2421 * something other than the default (~1ms minimum between interrupts).
2422 * See section 5.5.1.2.
2424 init_completion(&xhci->addr_dev);
2425 for (i = 0; i < MAX_HC_SLOTS; ++i)
2426 xhci->devs[i] = NULL;
2427 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2428 xhci->bus_state[0].resume_done[i] = 0;
2429 xhci->bus_state[1].resume_done[i] = 0;
2430 /* Only the USB 2.0 completions will ever be used. */
2431 init_completion(&xhci->bus_state[1].rexit_done[i]);
2434 if (scratchpad_alloc(xhci, flags))
2435 goto fail;
2436 if (xhci_setup_port_arrays(xhci, flags))
2437 goto fail;
2439 /* Enable USB 3.0 device notifications for function remote wake, which
2440 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2441 * U3 (device suspend).
2443 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2444 temp &= ~DEV_NOTE_MASK;
2445 temp |= DEV_NOTE_FWAKE;
2446 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2448 return 0;
2450 fail:
2451 xhci_warn(xhci, "Couldn't initialize memory\n");
2452 xhci_halt(xhci);
2453 xhci_reset(xhci);
2454 xhci_mem_cleanup(xhci);
2455 return -ENOMEM;