2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
40 unsigned int cycle_state
, gfp_t flags
)
42 struct xhci_segment
*seg
;
46 seg
= kzalloc(sizeof *seg
, flags
);
50 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
56 memset(seg
->trbs
, 0, TRB_SEGMENT_SIZE
);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state
== 0) {
59 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
60 seg
->trbs
[i
].link
.control
|= TRB_CYCLE
;
68 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
71 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
77 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
78 struct xhci_segment
*first
)
80 struct xhci_segment
*seg
;
83 while (seg
!= first
) {
84 struct xhci_segment
*next
= seg
->next
;
85 xhci_segment_free(xhci
, seg
);
88 xhci_segment_free(xhci
, first
);
92 * Make the prev segment point to the next segment.
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
99 struct xhci_segment
*next
, enum xhci_ring_type type
)
106 if (type
!= TYPE_EVENT
) {
107 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
108 cpu_to_le64(next
->dma
);
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
112 val
&= ~TRB_TYPE_BITMASK
;
113 val
|= TRB_TYPE(TRB_LINK
);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci
) ||
117 (type
== TYPE_ISOC
&&
118 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
120 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
128 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
129 struct xhci_segment
*first
, struct xhci_segment
*last
,
130 unsigned int num_segs
)
132 struct xhci_segment
*next
;
134 if (!ring
|| !first
|| !last
)
137 next
= ring
->enq_seg
->next
;
138 xhci_link_segments(xhci
, ring
->enq_seg
, first
, ring
->type
);
139 xhci_link_segments(xhci
, last
, next
, ring
->type
);
140 ring
->num_segs
+= num_segs
;
141 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
143 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
144 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
145 &= ~cpu_to_le32(LINK_TOGGLE
);
146 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
147 |= cpu_to_le32(LINK_TOGGLE
);
148 ring
->last_seg
= last
;
152 /* XXX: Do we need the hcd structure in all these functions? */
153 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
159 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
164 static void xhci_initialize_ring_info(struct xhci_ring
*ring
,
165 unsigned int cycle_state
)
167 /* The ring is empty, so the enqueue pointer == dequeue pointer */
168 ring
->enqueue
= ring
->first_seg
->trbs
;
169 ring
->enq_seg
= ring
->first_seg
;
170 ring
->dequeue
= ring
->enqueue
;
171 ring
->deq_seg
= ring
->first_seg
;
172 /* The ring is initialized to 0. The producer must write 1 to the cycle
173 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
174 * compare CCS to the cycle bit to check ownership, so CCS = 1.
176 * New rings are initialized with cycle state equal to 1; if we are
177 * handling ring expansion, set the cycle state equal to the old ring.
179 ring
->cycle_state
= cycle_state
;
180 /* Not necessary for new rings, but needed for re-initialized rings */
181 ring
->enq_updates
= 0;
182 ring
->deq_updates
= 0;
185 * Each segment has a link TRB, and leave an extra TRB for SW
188 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
191 /* Allocate segments and link them for a ring */
192 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
193 struct xhci_segment
**first
, struct xhci_segment
**last
,
194 unsigned int num_segs
, unsigned int cycle_state
,
195 enum xhci_ring_type type
, gfp_t flags
)
197 struct xhci_segment
*prev
;
199 prev
= xhci_segment_alloc(xhci
, cycle_state
, flags
);
205 while (num_segs
> 0) {
206 struct xhci_segment
*next
;
208 next
= xhci_segment_alloc(xhci
, cycle_state
, flags
);
213 xhci_segment_free(xhci
, prev
);
218 xhci_link_segments(xhci
, prev
, next
, type
);
223 xhci_link_segments(xhci
, prev
, *first
, type
);
230 * Create a new ring with zero or more segments.
232 * Link each segment together into a ring.
233 * Set the end flag and the cycle toggle bit on the last segment.
234 * See section 4.9.1 and figures 15 and 16.
236 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
237 unsigned int num_segs
, unsigned int cycle_state
,
238 enum xhci_ring_type type
, gfp_t flags
)
240 struct xhci_ring
*ring
;
243 ring
= kzalloc(sizeof *(ring
), flags
);
247 ring
->num_segs
= num_segs
;
248 INIT_LIST_HEAD(&ring
->td_list
);
253 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
254 &ring
->last_seg
, num_segs
, cycle_state
, type
, flags
);
258 /* Only event ring does not use link TRB */
259 if (type
!= TYPE_EVENT
) {
260 /* See section 4.9.2.1 and 6.4.4.1 */
261 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
262 cpu_to_le32(LINK_TOGGLE
);
264 xhci_initialize_ring_info(ring
, cycle_state
);
272 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
273 struct xhci_virt_device
*virt_dev
,
274 unsigned int ep_index
)
278 rings_cached
= virt_dev
->num_rings_cached
;
279 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
280 virt_dev
->ring_cache
[rings_cached
] =
281 virt_dev
->eps
[ep_index
].ring
;
282 virt_dev
->num_rings_cached
++;
283 xhci_dbg(xhci
, "Cached old ring, "
284 "%d ring%s cached\n",
285 virt_dev
->num_rings_cached
,
286 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
288 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
289 xhci_dbg(xhci
, "Ring cache full (%d rings), "
291 virt_dev
->num_rings_cached
);
293 virt_dev
->eps
[ep_index
].ring
= NULL
;
296 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
297 * pointers to the beginning of the ring.
299 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
300 struct xhci_ring
*ring
, unsigned int cycle_state
,
301 enum xhci_ring_type type
)
303 struct xhci_segment
*seg
= ring
->first_seg
;
308 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
309 if (cycle_state
== 0) {
310 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
311 seg
->trbs
[i
].link
.control
|= TRB_CYCLE
;
313 /* All endpoint rings have link TRBs */
314 xhci_link_segments(xhci
, seg
, seg
->next
, type
);
316 } while (seg
!= ring
->first_seg
);
318 xhci_initialize_ring_info(ring
, cycle_state
);
319 /* td list should be empty since all URBs have been cancelled,
320 * but just in case...
322 INIT_LIST_HEAD(&ring
->td_list
);
326 * Expand an existing ring.
327 * Look for a cached ring or allocate a new ring which has same segment numbers
328 * and link the two rings.
330 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
331 unsigned int num_trbs
, gfp_t flags
)
333 struct xhci_segment
*first
;
334 struct xhci_segment
*last
;
335 unsigned int num_segs
;
336 unsigned int num_segs_needed
;
339 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
340 (TRBS_PER_SEGMENT
- 1);
342 /* Allocate number of segments we needed, or double the ring size */
343 num_segs
= ring
->num_segs
> num_segs_needed
?
344 ring
->num_segs
: num_segs_needed
;
346 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
347 num_segs
, ring
->cycle_state
, ring
->type
, flags
);
351 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
352 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
353 "ring expansion succeed, now has %d segments",
359 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
361 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
362 int type
, gfp_t flags
)
364 struct xhci_container_ctx
*ctx
;
366 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
369 ctx
= kzalloc(sizeof(*ctx
), flags
);
374 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
375 if (type
== XHCI_CTX_TYPE_INPUT
)
376 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
378 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
383 memset(ctx
->bytes
, 0, ctx
->size
);
387 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
388 struct xhci_container_ctx
*ctx
)
392 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
396 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
397 struct xhci_container_ctx
*ctx
)
399 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
402 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
405 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
406 struct xhci_container_ctx
*ctx
)
408 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
409 return (struct xhci_slot_ctx
*)ctx
->bytes
;
411 return (struct xhci_slot_ctx
*)
412 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
415 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
416 struct xhci_container_ctx
*ctx
,
417 unsigned int ep_index
)
419 /* increment ep index by offset of start of ep ctx array */
421 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
424 return (struct xhci_ep_ctx
*)
425 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
429 /***************** Streams structures manipulation *************************/
431 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
432 unsigned int num_stream_ctxs
,
433 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
435 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
437 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
438 dma_free_coherent(&pdev
->dev
,
439 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
441 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
442 return dma_pool_free(xhci
->small_streams_pool
,
445 return dma_pool_free(xhci
->medium_streams_pool
,
450 * The stream context array for each endpoint with bulk streams enabled can
451 * vary in size, based on:
452 * - how many streams the endpoint supports,
453 * - the maximum primary stream array size the host controller supports,
454 * - and how many streams the device driver asks for.
456 * The stream context array must be a power of 2, and can be as small as
457 * 64 bytes or as large as 1MB.
459 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
460 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
463 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
465 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
466 return dma_alloc_coherent(&pdev
->dev
,
467 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
469 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
470 return dma_pool_alloc(xhci
->small_streams_pool
,
473 return dma_pool_alloc(xhci
->medium_streams_pool
,
477 struct xhci_ring
*xhci_dma_to_transfer_ring(
478 struct xhci_virt_ep
*ep
,
481 if (ep
->ep_state
& EP_HAS_STREAMS
)
482 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
483 address
>> TRB_SEGMENT_SHIFT
);
487 struct xhci_ring
*xhci_stream_id_to_ring(
488 struct xhci_virt_device
*dev
,
489 unsigned int ep_index
,
490 unsigned int stream_id
)
492 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
496 if (!ep
->stream_info
)
499 if (stream_id
> ep
->stream_info
->num_streams
)
501 return ep
->stream_info
->stream_rings
[stream_id
];
505 * Change an endpoint's internal structure so it supports stream IDs. The
506 * number of requested streams includes stream 0, which cannot be used by device
509 * The number of stream contexts in the stream context array may be bigger than
510 * the number of streams the driver wants to use. This is because the number of
511 * stream context array entries must be a power of two.
513 * We need a radix tree for mapping physical addresses of TRBs to which stream
514 * ID they belong to. We need to do this because the host controller won't tell
515 * us which stream ring the TRB came from. We could store the stream ID in an
516 * event data TRB, but that doesn't help us for the cancellation case, since the
517 * endpoint may stop before it reaches that event data TRB.
519 * The radix tree maps the upper portion of the TRB DMA address to a ring
520 * segment that has the same upper portion of DMA addresses. For example, say I
521 * have segments of size 1KB, that are always 64-byte aligned. A segment may
522 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
523 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
524 * pass the radix tree a key to get the right stream ID:
526 * 0x10c90fff >> 10 = 0x43243
527 * 0x10c912c0 >> 10 = 0x43244
528 * 0x10c91400 >> 10 = 0x43245
530 * Obviously, only those TRBs with DMA addresses that are within the segment
531 * will make the radix tree return the stream ID for that ring.
533 * Caveats for the radix tree:
535 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
536 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
537 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
538 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
539 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
540 * extended systems (where the DMA address can be bigger than 32-bits),
541 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
543 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
544 unsigned int num_stream_ctxs
,
545 unsigned int num_streams
, gfp_t mem_flags
)
547 struct xhci_stream_info
*stream_info
;
549 struct xhci_ring
*cur_ring
;
554 xhci_dbg(xhci
, "Allocating %u streams and %u "
555 "stream context array entries.\n",
556 num_streams
, num_stream_ctxs
);
557 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
558 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
561 xhci
->cmd_ring_reserved_trbs
++;
563 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
567 stream_info
->num_streams
= num_streams
;
568 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
570 /* Initialize the array of virtual pointers to stream rings. */
571 stream_info
->stream_rings
= kzalloc(
572 sizeof(struct xhci_ring
*)*num_streams
,
574 if (!stream_info
->stream_rings
)
577 /* Initialize the array of DMA addresses for stream rings for the HW. */
578 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
579 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
581 if (!stream_info
->stream_ctx_array
)
583 memset(stream_info
->stream_ctx_array
, 0,
584 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
586 /* Allocate everything needed to free the stream rings later */
587 stream_info
->free_streams_command
=
588 xhci_alloc_command(xhci
, true, true, mem_flags
);
589 if (!stream_info
->free_streams_command
)
592 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
594 /* Allocate rings for all the streams that the driver will use,
595 * and add their segment DMA addresses to the radix tree.
596 * Stream 0 is reserved.
598 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
599 stream_info
->stream_rings
[cur_stream
] =
600 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, mem_flags
);
601 cur_ring
= stream_info
->stream_rings
[cur_stream
];
604 cur_ring
->stream_id
= cur_stream
;
605 /* Set deq ptr, cycle bit, and stream context type */
606 addr
= cur_ring
->first_seg
->dma
|
607 SCT_FOR_CTX(SCT_PRI_TR
) |
608 cur_ring
->cycle_state
;
609 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
611 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
612 cur_stream
, (unsigned long long) addr
);
614 key
= (unsigned long)
615 (cur_ring
->first_seg
->dma
>> TRB_SEGMENT_SHIFT
);
616 ret
= radix_tree_insert(&stream_info
->trb_address_map
,
619 xhci_ring_free(xhci
, cur_ring
);
620 stream_info
->stream_rings
[cur_stream
] = NULL
;
624 /* Leave the other unused stream ring pointers in the stream context
625 * array initialized to zero. This will cause the xHC to give us an
626 * error if the device asks for a stream ID we don't have setup (if it
627 * was any other way, the host controller would assume the ring is
628 * "empty" and wait forever for data to be queued to that stream ID).
634 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
635 cur_ring
= stream_info
->stream_rings
[cur_stream
];
637 addr
= cur_ring
->first_seg
->dma
;
638 radix_tree_delete(&stream_info
->trb_address_map
,
639 addr
>> TRB_SEGMENT_SHIFT
);
640 xhci_ring_free(xhci
, cur_ring
);
641 stream_info
->stream_rings
[cur_stream
] = NULL
;
644 xhci_free_command(xhci
, stream_info
->free_streams_command
);
646 kfree(stream_info
->stream_rings
);
650 xhci
->cmd_ring_reserved_trbs
--;
654 * Sets the MaxPStreams field and the Linear Stream Array field.
655 * Sets the dequeue pointer to the stream context array.
657 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
658 struct xhci_ep_ctx
*ep_ctx
,
659 struct xhci_stream_info
*stream_info
)
661 u32 max_primary_streams
;
662 /* MaxPStreams is the number of stream context array entries, not the
663 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
664 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
666 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
667 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
668 "Setting number of stream ctx array entries to %u",
669 1 << (max_primary_streams
+ 1));
670 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
671 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
673 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
677 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
678 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
679 * not at the beginning of the ring).
681 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
682 struct xhci_ep_ctx
*ep_ctx
,
683 struct xhci_virt_ep
*ep
)
686 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
687 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
688 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
691 /* Frees all stream contexts associated with the endpoint,
693 * Caller should fix the endpoint context streams fields.
695 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
696 struct xhci_stream_info
*stream_info
)
699 struct xhci_ring
*cur_ring
;
705 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
707 cur_ring
= stream_info
->stream_rings
[cur_stream
];
709 addr
= cur_ring
->first_seg
->dma
;
710 radix_tree_delete(&stream_info
->trb_address_map
,
711 addr
>> TRB_SEGMENT_SHIFT
);
712 xhci_ring_free(xhci
, cur_ring
);
713 stream_info
->stream_rings
[cur_stream
] = NULL
;
716 xhci_free_command(xhci
, stream_info
->free_streams_command
);
717 xhci
->cmd_ring_reserved_trbs
--;
718 if (stream_info
->stream_ctx_array
)
719 xhci_free_stream_ctx(xhci
,
720 stream_info
->num_stream_ctxs
,
721 stream_info
->stream_ctx_array
,
722 stream_info
->ctx_array_dma
);
725 kfree(stream_info
->stream_rings
);
730 /***************** Device context manipulation *************************/
732 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
733 struct xhci_virt_ep
*ep
)
735 init_timer(&ep
->stop_cmd_timer
);
736 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
737 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
741 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
742 struct xhci_virt_device
*virt_dev
,
745 struct list_head
*tt_list_head
;
746 struct xhci_tt_bw_info
*tt_info
, *next
;
747 bool slot_found
= false;
749 /* If the device never made it past the Set Address stage,
750 * it may not have the real_port set correctly.
752 if (virt_dev
->real_port
== 0 ||
753 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
754 xhci_dbg(xhci
, "Bad real port.\n");
758 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
759 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
760 /* Multi-TT hubs will have more than one entry */
761 if (tt_info
->slot_id
== slot_id
) {
763 list_del(&tt_info
->tt_list
);
765 } else if (slot_found
) {
771 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
772 struct xhci_virt_device
*virt_dev
,
773 struct usb_device
*hdev
,
774 struct usb_tt
*tt
, gfp_t mem_flags
)
776 struct xhci_tt_bw_info
*tt_info
;
777 unsigned int num_ports
;
783 num_ports
= hdev
->maxchild
;
785 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
786 struct xhci_interval_bw_table
*bw_table
;
788 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
791 INIT_LIST_HEAD(&tt_info
->tt_list
);
792 list_add(&tt_info
->tt_list
,
793 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
794 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
796 tt_info
->ttport
= i
+1;
797 bw_table
= &tt_info
->bw_table
;
798 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
799 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
804 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
809 /* All the xhci_tds in the ring's TD list should be freed at this point.
810 * Should be called with xhci->lock held if there is any chance the TT lists
811 * will be manipulated by the configure endpoint, allocate device, or update
812 * hub functions while this function is removing the TT entries from the list.
814 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
816 struct xhci_virt_device
*dev
;
818 int old_active_eps
= 0;
820 /* Slot ID 0 is reserved */
821 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
824 dev
= xhci
->devs
[slot_id
];
825 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
830 old_active_eps
= dev
->tt_info
->active_eps
;
832 for (i
= 0; i
< 31; ++i
) {
833 if (dev
->eps
[i
].ring
)
834 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
835 if (dev
->eps
[i
].stream_info
)
836 xhci_free_stream_info(xhci
,
837 dev
->eps
[i
].stream_info
);
838 /* Endpoints on the TT/root port lists should have been removed
839 * when usb_disable_device() was called for the device.
840 * We can't drop them anyway, because the udev might have gone
841 * away by this point, and we can't tell what speed it was.
843 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
844 xhci_warn(xhci
, "Slot %u endpoint %u "
845 "not removed from BW list!\n",
848 /* If this is a hub, free the TT(s) from the TT list */
849 xhci_free_tt_info(xhci
, dev
, slot_id
);
850 /* If necessary, update the number of active TTs on this root port */
851 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
853 if (dev
->ring_cache
) {
854 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
855 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
856 kfree(dev
->ring_cache
);
860 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
862 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
864 kfree(xhci
->devs
[slot_id
]);
865 xhci
->devs
[slot_id
] = NULL
;
868 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
869 struct usb_device
*udev
, gfp_t flags
)
871 struct xhci_virt_device
*dev
;
874 /* Slot ID 0 is reserved */
875 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
876 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
880 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
881 if (!xhci
->devs
[slot_id
])
883 dev
= xhci
->devs
[slot_id
];
885 /* Allocate the (output) device context that will be used in the HC. */
886 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
890 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
891 (unsigned long long)dev
->out_ctx
->dma
);
893 /* Allocate the (input) device context for address device command */
894 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
898 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
899 (unsigned long long)dev
->in_ctx
->dma
);
901 /* Initialize the cancellation list and watchdog timers for each ep */
902 for (i
= 0; i
< 31; i
++) {
903 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
904 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
905 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
908 /* Allocate endpoint 0 ring */
909 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, flags
);
910 if (!dev
->eps
[0].ring
)
913 /* Allocate pointers to the ring cache */
914 dev
->ring_cache
= kzalloc(
915 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
917 if (!dev
->ring_cache
)
919 dev
->num_rings_cached
= 0;
921 init_completion(&dev
->cmd_completion
);
922 INIT_LIST_HEAD(&dev
->cmd_list
);
925 /* Point to output device context in dcbaa. */
926 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
927 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
929 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
930 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
934 xhci_free_virt_device(xhci
, slot_id
);
938 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
939 struct usb_device
*udev
)
941 struct xhci_virt_device
*virt_dev
;
942 struct xhci_ep_ctx
*ep0_ctx
;
943 struct xhci_ring
*ep_ring
;
945 virt_dev
= xhci
->devs
[udev
->slot_id
];
946 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
947 ep_ring
= virt_dev
->eps
[0].ring
;
949 * FIXME we don't keep track of the dequeue pointer very well after a
950 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
951 * host to our enqueue pointer. This should only be called after a
952 * configured device has reset, so all control transfers should have
953 * been completed or cancelled before the reset.
955 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
957 | ep_ring
->cycle_state
);
961 * The xHCI roothub may have ports of differing speeds in any order in the port
962 * status registers. xhci->port_array provides an array of the port speed for
963 * each offset into the port status registers.
965 * The xHCI hardware wants to know the roothub port number that the USB device
966 * is attached to (or the roothub port its ancestor hub is attached to). All we
967 * know is the index of that port under either the USB 2.0 or the USB 3.0
968 * roothub, but that doesn't give us the real index into the HW port status
969 * registers. Call xhci_find_raw_port_number() to get real index.
971 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
972 struct usb_device
*udev
)
974 struct usb_device
*top_dev
;
977 if (udev
->speed
>= USB_SPEED_SUPER
)
978 hcd
= xhci
->shared_hcd
;
980 hcd
= xhci
->main_hcd
;
982 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
983 top_dev
= top_dev
->parent
)
984 /* Found device below root hub */;
986 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
989 /* Setup an xHCI virtual device for a Set Address command */
990 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
992 struct xhci_virt_device
*dev
;
993 struct xhci_ep_ctx
*ep0_ctx
;
994 struct xhci_slot_ctx
*slot_ctx
;
997 struct usb_device
*top_dev
;
999 dev
= xhci
->devs
[udev
->slot_id
];
1000 /* Slot ID 0 is reserved */
1001 if (udev
->slot_id
== 0 || !dev
) {
1002 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1006 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1007 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1009 /* 3) Only the control endpoint is valid - one endpoint context */
1010 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1011 switch (udev
->speed
) {
1012 case USB_SPEED_SUPER_PLUS
:
1013 case USB_SPEED_SUPER
:
1014 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1015 max_packets
= MAX_PACKET(512);
1017 case USB_SPEED_HIGH
:
1018 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1019 max_packets
= MAX_PACKET(64);
1021 /* USB core guesses at a 64-byte max packet first for FS devices */
1022 case USB_SPEED_FULL
:
1023 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1024 max_packets
= MAX_PACKET(64);
1027 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1028 max_packets
= MAX_PACKET(8);
1030 case USB_SPEED_WIRELESS
:
1031 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1035 /* Speed was set earlier, this shouldn't happen. */
1038 /* Find the root hub port this device is under */
1039 port_num
= xhci_find_real_port_number(xhci
, udev
);
1042 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1043 /* Set the port number in the virtual_device to the faked port number */
1044 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1045 top_dev
= top_dev
->parent
)
1046 /* Found device below root hub */;
1047 dev
->fake_port
= top_dev
->portnum
;
1048 dev
->real_port
= port_num
;
1049 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1050 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1052 /* Find the right bandwidth table that this device will be a part of.
1053 * If this is a full speed device attached directly to a root port (or a
1054 * decendent of one), it counts as a primary bandwidth domain, not a
1055 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1056 * will never be created for the HS root hub.
1058 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1059 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1061 struct xhci_root_port_bw_info
*rh_bw
;
1062 struct xhci_tt_bw_info
*tt_bw
;
1064 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1065 /* Find the right TT. */
1066 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1067 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1070 if (!dev
->udev
->tt
->multi
||
1072 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1073 dev
->bw_table
= &tt_bw
->bw_table
;
1074 dev
->tt_info
= tt_bw
;
1079 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1082 /* Is this a LS/FS device under an external HS hub? */
1083 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1084 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1085 (udev
->ttport
<< 8));
1086 if (udev
->tt
->multi
)
1087 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1089 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1090 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1092 /* Step 4 - ring already allocated */
1094 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1096 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1097 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1100 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1101 dev
->eps
[0].ring
->cycle_state
);
1103 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1109 * Convert interval expressed as 2^(bInterval - 1) == interval into
1110 * straight exponent value 2^n == interval.
1113 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1114 struct usb_host_endpoint
*ep
)
1116 unsigned int interval
;
1118 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1119 if (interval
!= ep
->desc
.bInterval
- 1)
1120 dev_warn(&udev
->dev
,
1121 "ep %#x - rounding interval to %d %sframes\n",
1122 ep
->desc
.bEndpointAddress
,
1124 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1126 if (udev
->speed
== USB_SPEED_FULL
) {
1128 * Full speed isoc endpoints specify interval in frames,
1129 * not microframes. We are using microframes everywhere,
1130 * so adjust accordingly.
1132 interval
+= 3; /* 1 frame = 2^3 uframes */
1139 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1140 * microframes, rounded down to nearest power of 2.
1142 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1143 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1144 unsigned int min_exponent
, unsigned int max_exponent
)
1146 unsigned int interval
;
1148 interval
= fls(desc_interval
) - 1;
1149 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1150 if ((1 << interval
) != desc_interval
)
1151 dev_warn(&udev
->dev
,
1152 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1153 ep
->desc
.bEndpointAddress
,
1160 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1161 struct usb_host_endpoint
*ep
)
1163 if (ep
->desc
.bInterval
== 0)
1165 return xhci_microframes_to_exponent(udev
, ep
,
1166 ep
->desc
.bInterval
, 0, 15);
1170 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1171 struct usb_host_endpoint
*ep
)
1173 return xhci_microframes_to_exponent(udev
, ep
,
1174 ep
->desc
.bInterval
* 8, 3, 10);
1177 /* Return the polling or NAK interval.
1179 * The polling interval is expressed in "microframes". If xHCI's Interval field
1180 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1182 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1185 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1186 struct usb_host_endpoint
*ep
)
1188 unsigned int interval
= 0;
1190 switch (udev
->speed
) {
1191 case USB_SPEED_HIGH
:
1193 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1194 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1195 interval
= xhci_parse_microframe_interval(udev
, ep
);
1198 /* Fall through - SS and HS isoc/int have same decoding */
1200 case USB_SPEED_SUPER_PLUS
:
1201 case USB_SPEED_SUPER
:
1202 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1203 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1204 interval
= xhci_parse_exponent_interval(udev
, ep
);
1208 case USB_SPEED_FULL
:
1209 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1210 interval
= xhci_parse_exponent_interval(udev
, ep
);
1214 * Fall through for interrupt endpoint interval decoding
1215 * since it uses the same rules as low speed interrupt
1220 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1221 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1223 interval
= xhci_parse_frame_interval(udev
, ep
);
1230 return EP_INTERVAL(interval
);
1233 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1234 * High speed endpoint descriptors can define "the number of additional
1235 * transaction opportunities per microframe", but that goes in the Max Burst
1236 * endpoint context field.
1238 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1239 struct usb_host_endpoint
*ep
)
1241 if (udev
->speed
< USB_SPEED_SUPER
||
1242 !usb_endpoint_xfer_isoc(&ep
->desc
))
1244 return ep
->ss_ep_comp
.bmAttributes
;
1247 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1248 struct usb_host_endpoint
*ep
)
1253 in
= usb_endpoint_dir_in(&ep
->desc
);
1254 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1255 type
= EP_TYPE(CTRL_EP
);
1256 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1258 type
= EP_TYPE(BULK_IN_EP
);
1260 type
= EP_TYPE(BULK_OUT_EP
);
1261 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1263 type
= EP_TYPE(ISOC_IN_EP
);
1265 type
= EP_TYPE(ISOC_OUT_EP
);
1266 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1268 type
= EP_TYPE(INT_IN_EP
);
1270 type
= EP_TYPE(INT_OUT_EP
);
1277 /* Return the maximum endpoint service interval time (ESIT) payload.
1278 * Basically, this is the maxpacket size, multiplied by the burst size
1281 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1282 struct usb_device
*udev
,
1283 struct usb_host_endpoint
*ep
)
1288 /* Only applies for interrupt or isochronous endpoints */
1289 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1290 usb_endpoint_xfer_bulk(&ep
->desc
))
1293 if (udev
->speed
>= USB_SPEED_SUPER
)
1294 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1296 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1297 max_burst
= (usb_endpoint_maxp(&ep
->desc
) & 0x1800) >> 11;
1298 /* A 0 in max burst means 1 transfer per ESIT */
1299 return max_packet
* (max_burst
+ 1);
1302 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1303 * Drivers will have to call usb_alloc_streams() to do that.
1305 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1306 struct xhci_virt_device
*virt_dev
,
1307 struct usb_device
*udev
,
1308 struct usb_host_endpoint
*ep
,
1311 unsigned int ep_index
;
1312 struct xhci_ep_ctx
*ep_ctx
;
1313 struct xhci_ring
*ep_ring
;
1314 unsigned int max_packet
;
1315 unsigned int max_burst
;
1316 enum xhci_ring_type type
;
1317 u32 max_esit_payload
;
1320 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1321 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1323 endpoint_type
= xhci_get_endpoint_type(udev
, ep
);
1326 ep_ctx
->ep_info2
= cpu_to_le32(endpoint_type
);
1328 type
= usb_endpoint_type(&ep
->desc
);
1329 /* Set up the endpoint ring */
1330 virt_dev
->eps
[ep_index
].new_ring
=
1331 xhci_ring_alloc(xhci
, 2, 1, type
, mem_flags
);
1332 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1333 /* Attempt to use the ring cache */
1334 if (virt_dev
->num_rings_cached
== 0)
1336 virt_dev
->num_rings_cached
--;
1337 virt_dev
->eps
[ep_index
].new_ring
=
1338 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1339 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1340 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
,
1343 virt_dev
->eps
[ep_index
].skip
= false;
1344 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1345 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1347 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1348 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1350 /* FIXME dig Mult and streams info out of ep companion desc */
1352 /* Allow 3 retries for everything but isoc;
1353 * CErr shall be set to 0 for Isoch endpoints.
1355 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1356 ep_ctx
->ep_info2
|= cpu_to_le32(ERROR_COUNT(3));
1358 ep_ctx
->ep_info2
|= cpu_to_le32(ERROR_COUNT(0));
1360 /* Set the max packet size and max burst */
1361 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1363 switch (udev
->speed
) {
1364 case USB_SPEED_SUPER_PLUS
:
1365 case USB_SPEED_SUPER
:
1366 /* dig out max burst from ep companion desc */
1367 max_burst
= ep
->ss_ep_comp
.bMaxBurst
;
1369 case USB_SPEED_HIGH
:
1370 /* Some devices get this wrong */
1371 if (usb_endpoint_xfer_bulk(&ep
->desc
))
1373 /* bits 11:12 specify the number of additional transaction
1374 * opportunities per microframe (USB 2.0, section 9.6.6)
1376 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1377 usb_endpoint_xfer_int(&ep
->desc
)) {
1378 max_burst
= (usb_endpoint_maxp(&ep
->desc
)
1382 case USB_SPEED_FULL
:
1388 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
) |
1389 MAX_BURST(max_burst
));
1390 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1391 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1394 * XXX no idea how to calculate the average TRB buffer length for bulk
1395 * endpoints, as the driver gives us no clue how big each scatter gather
1396 * list entry (or buffer) is going to be.
1398 * For isochronous and interrupt endpoints, we set it to the max
1399 * available, until we have new API in the USB core to allow drivers to
1400 * declare how much bandwidth they actually need.
1402 * Normally, it would be calculated by taking the total of the buffer
1403 * lengths in the TD and then dividing by the number of TRBs in a TD,
1404 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1405 * use Event Data TRBs, and we don't chain in a link TRB on short
1406 * transfers, we're basically dividing by 1.
1408 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1409 * should be set to 8 for control endpoints.
1411 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
>= 0x100)
1412 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1415 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1417 /* FIXME Debug endpoint context */
1421 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1422 struct xhci_virt_device
*virt_dev
,
1423 struct usb_host_endpoint
*ep
)
1425 unsigned int ep_index
;
1426 struct xhci_ep_ctx
*ep_ctx
;
1428 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1429 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1431 ep_ctx
->ep_info
= 0;
1432 ep_ctx
->ep_info2
= 0;
1434 ep_ctx
->tx_info
= 0;
1435 /* Don't free the endpoint ring until the set interface or configuration
1440 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1442 bw_info
->ep_interval
= 0;
1444 bw_info
->num_packets
= 0;
1445 bw_info
->max_packet_size
= 0;
1447 bw_info
->max_esit_payload
= 0;
1450 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1451 struct xhci_container_ctx
*in_ctx
,
1452 struct xhci_input_control_ctx
*ctrl_ctx
,
1453 struct xhci_virt_device
*virt_dev
)
1455 struct xhci_bw_info
*bw_info
;
1456 struct xhci_ep_ctx
*ep_ctx
;
1457 unsigned int ep_type
;
1460 for (i
= 1; i
< 31; ++i
) {
1461 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1463 /* We can't tell what endpoint type is being dropped, but
1464 * unconditionally clearing the bandwidth info for non-periodic
1465 * endpoints should be harmless because the info will never be
1466 * set in the first place.
1468 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1469 /* Dropped endpoint */
1470 xhci_clear_endpoint_bw_info(bw_info
);
1474 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1475 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1476 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1478 /* Ignore non-periodic endpoints */
1479 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1480 ep_type
!= ISOC_IN_EP
&&
1481 ep_type
!= INT_IN_EP
)
1484 /* Added or changed endpoint */
1485 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1486 le32_to_cpu(ep_ctx
->ep_info
));
1487 /* Number of packets and mult are zero-based in the
1488 * input context, but we want one-based for the
1491 bw_info
->mult
= CTX_TO_EP_MULT(
1492 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1493 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1494 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1495 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1496 le32_to_cpu(ep_ctx
->ep_info2
));
1497 bw_info
->type
= ep_type
;
1498 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1499 le32_to_cpu(ep_ctx
->tx_info
));
1504 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1505 * Useful when you want to change one particular aspect of the endpoint and then
1506 * issue a configure endpoint command.
1508 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1509 struct xhci_container_ctx
*in_ctx
,
1510 struct xhci_container_ctx
*out_ctx
,
1511 unsigned int ep_index
)
1513 struct xhci_ep_ctx
*out_ep_ctx
;
1514 struct xhci_ep_ctx
*in_ep_ctx
;
1516 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1517 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1519 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1520 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1521 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1522 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1525 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1526 * Useful when you want to change one particular aspect of the endpoint and then
1527 * issue a configure endpoint command. Only the context entries field matters,
1528 * but we'll copy the whole thing anyway.
1530 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1531 struct xhci_container_ctx
*in_ctx
,
1532 struct xhci_container_ctx
*out_ctx
)
1534 struct xhci_slot_ctx
*in_slot_ctx
;
1535 struct xhci_slot_ctx
*out_slot_ctx
;
1537 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1538 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1540 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1541 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1542 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1543 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1546 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1547 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1550 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1551 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1553 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1554 "Allocating %d scratchpad buffers", num_sp
);
1559 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1560 if (!xhci
->scratchpad
)
1563 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1564 num_sp
* sizeof(u64
),
1565 &xhci
->scratchpad
->sp_dma
, flags
);
1566 if (!xhci
->scratchpad
->sp_array
)
1569 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1570 if (!xhci
->scratchpad
->sp_buffers
)
1573 xhci
->scratchpad
->sp_dma_buffers
=
1574 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1576 if (!xhci
->scratchpad
->sp_dma_buffers
)
1579 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1580 for (i
= 0; i
< num_sp
; i
++) {
1582 void *buf
= dma_alloc_coherent(dev
, xhci
->page_size
, &dma
,
1587 xhci
->scratchpad
->sp_array
[i
] = dma
;
1588 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1589 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1595 for (i
= i
- 1; i
>= 0; i
--) {
1596 dma_free_coherent(dev
, xhci
->page_size
,
1597 xhci
->scratchpad
->sp_buffers
[i
],
1598 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1600 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1603 kfree(xhci
->scratchpad
->sp_buffers
);
1606 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1607 xhci
->scratchpad
->sp_array
,
1608 xhci
->scratchpad
->sp_dma
);
1611 kfree(xhci
->scratchpad
);
1612 xhci
->scratchpad
= NULL
;
1618 static void scratchpad_free(struct xhci_hcd
*xhci
)
1622 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1624 if (!xhci
->scratchpad
)
1627 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1629 for (i
= 0; i
< num_sp
; i
++) {
1630 dma_free_coherent(&pdev
->dev
, xhci
->page_size
,
1631 xhci
->scratchpad
->sp_buffers
[i
],
1632 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1634 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1635 kfree(xhci
->scratchpad
->sp_buffers
);
1636 dma_free_coherent(&pdev
->dev
, num_sp
* sizeof(u64
),
1637 xhci
->scratchpad
->sp_array
,
1638 xhci
->scratchpad
->sp_dma
);
1639 kfree(xhci
->scratchpad
);
1640 xhci
->scratchpad
= NULL
;
1643 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1644 bool allocate_in_ctx
, bool allocate_completion
,
1647 struct xhci_command
*command
;
1649 command
= kzalloc(sizeof(*command
), mem_flags
);
1653 if (allocate_in_ctx
) {
1655 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1657 if (!command
->in_ctx
) {
1663 if (allocate_completion
) {
1664 command
->completion
=
1665 kzalloc(sizeof(struct completion
), mem_flags
);
1666 if (!command
->completion
) {
1667 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1671 init_completion(command
->completion
);
1674 command
->status
= 0;
1675 INIT_LIST_HEAD(&command
->cmd_list
);
1679 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1682 kfree(urb_priv
->td
[0]);
1687 void xhci_free_command(struct xhci_hcd
*xhci
,
1688 struct xhci_command
*command
)
1690 xhci_free_container_ctx(xhci
,
1692 kfree(command
->completion
);
1696 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1698 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1699 struct xhci_cd
*cur_cd
, *next_cd
;
1701 int i
, j
, num_ports
;
1703 /* Free the Event Ring Segment Table and the actual Event Ring */
1704 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1705 if (xhci
->erst
.entries
)
1706 dma_free_coherent(&pdev
->dev
, size
,
1707 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1708 xhci
->erst
.entries
= NULL
;
1709 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed ERST");
1710 if (xhci
->event_ring
)
1711 xhci_ring_free(xhci
, xhci
->event_ring
);
1712 xhci
->event_ring
= NULL
;
1713 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1715 if (xhci
->lpm_command
)
1716 xhci_free_command(xhci
, xhci
->lpm_command
);
1717 xhci
->cmd_ring_reserved_trbs
= 0;
1719 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1720 xhci
->cmd_ring
= NULL
;
1721 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1722 list_for_each_entry_safe(cur_cd
, next_cd
,
1723 &xhci
->cancel_cmd_list
, cancel_cmd_list
) {
1724 list_del(&cur_cd
->cancel_cmd_list
);
1728 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1729 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1730 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1731 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1732 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1733 while (!list_empty(ep
))
1734 list_del_init(ep
->next
);
1738 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1739 xhci_free_virt_device(xhci
, i
);
1741 if (xhci
->segment_pool
)
1742 dma_pool_destroy(xhci
->segment_pool
);
1743 xhci
->segment_pool
= NULL
;
1744 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1746 if (xhci
->device_pool
)
1747 dma_pool_destroy(xhci
->device_pool
);
1748 xhci
->device_pool
= NULL
;
1749 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1751 if (xhci
->small_streams_pool
)
1752 dma_pool_destroy(xhci
->small_streams_pool
);
1753 xhci
->small_streams_pool
= NULL
;
1754 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1755 "Freed small stream array pool");
1757 if (xhci
->medium_streams_pool
)
1758 dma_pool_destroy(xhci
->medium_streams_pool
);
1759 xhci
->medium_streams_pool
= NULL
;
1760 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1761 "Freed medium stream array pool");
1764 dma_free_coherent(&pdev
->dev
, sizeof(*xhci
->dcbaa
),
1765 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1768 scratchpad_free(xhci
);
1773 for (i
= 0; i
< num_ports
; i
++) {
1774 struct xhci_tt_bw_info
*tt
, *n
;
1775 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1776 list_del(&tt
->tt_list
);
1782 xhci
->num_usb2_ports
= 0;
1783 xhci
->num_usb3_ports
= 0;
1784 xhci
->num_active_eps
= 0;
1785 kfree(xhci
->usb2_ports
);
1786 kfree(xhci
->usb3_ports
);
1787 kfree(xhci
->port_array
);
1789 kfree(xhci
->ext_caps
);
1791 xhci
->usb2_ports
= NULL
;
1792 xhci
->usb3_ports
= NULL
;
1793 xhci
->port_array
= NULL
;
1795 xhci
->ext_caps
= NULL
;
1797 xhci
->page_size
= 0;
1798 xhci
->page_shift
= 0;
1799 xhci
->bus_state
[0].bus_suspended
= 0;
1800 xhci
->bus_state
[1].bus_suspended
= 0;
1803 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1804 struct xhci_segment
*input_seg
,
1805 union xhci_trb
*start_trb
,
1806 union xhci_trb
*end_trb
,
1807 dma_addr_t input_dma
,
1808 struct xhci_segment
*result_seg
,
1809 char *test_name
, int test_number
)
1811 unsigned long long start_dma
;
1812 unsigned long long end_dma
;
1813 struct xhci_segment
*seg
;
1815 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1816 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1818 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
1819 if (seg
!= result_seg
) {
1820 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1821 test_name
, test_number
);
1822 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1823 "input DMA 0x%llx\n",
1825 (unsigned long long) input_dma
);
1826 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1827 "ending TRB %p (0x%llx DMA)\n",
1828 start_trb
, start_dma
,
1830 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1837 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1838 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1841 dma_addr_t input_dma
;
1842 struct xhci_segment
*result_seg
;
1843 } simple_test_vector
[] = {
1844 /* A zeroed DMA field should fail */
1846 /* One TRB before the ring start should fail */
1847 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1848 /* One byte before the ring start should fail */
1849 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1850 /* Starting TRB should succeed */
1851 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1852 /* Ending TRB should succeed */
1853 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1854 xhci
->event_ring
->first_seg
},
1855 /* One byte after the ring end should fail */
1856 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1857 /* One TRB after the ring end should fail */
1858 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1859 /* An address of all ones should fail */
1860 { (dma_addr_t
) (~0), NULL
},
1863 struct xhci_segment
*input_seg
;
1864 union xhci_trb
*start_trb
;
1865 union xhci_trb
*end_trb
;
1866 dma_addr_t input_dma
;
1867 struct xhci_segment
*result_seg
;
1868 } complex_test_vector
[] = {
1869 /* Test feeding a valid DMA address from a different ring */
1870 { .input_seg
= xhci
->event_ring
->first_seg
,
1871 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1872 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1873 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1876 /* Test feeding a valid end TRB from a different ring */
1877 { .input_seg
= xhci
->event_ring
->first_seg
,
1878 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1879 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1880 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1883 /* Test feeding a valid start and end TRB from a different ring */
1884 { .input_seg
= xhci
->event_ring
->first_seg
,
1885 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1886 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1887 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1890 /* TRB in this ring, but after this TD */
1891 { .input_seg
= xhci
->event_ring
->first_seg
,
1892 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1893 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1894 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1897 /* TRB in this ring, but before this TD */
1898 { .input_seg
= xhci
->event_ring
->first_seg
,
1899 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1900 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1901 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1904 /* TRB in this ring, but after this wrapped TD */
1905 { .input_seg
= xhci
->event_ring
->first_seg
,
1906 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1907 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1908 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1911 /* TRB in this ring, but before this wrapped TD */
1912 { .input_seg
= xhci
->event_ring
->first_seg
,
1913 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1914 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1915 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1918 /* TRB not in this ring, and we have a wrapped TD */
1919 { .input_seg
= xhci
->event_ring
->first_seg
,
1920 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1921 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1922 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1927 unsigned int num_tests
;
1930 num_tests
= ARRAY_SIZE(simple_test_vector
);
1931 for (i
= 0; i
< num_tests
; i
++) {
1932 ret
= xhci_test_trb_in_td(xhci
,
1933 xhci
->event_ring
->first_seg
,
1934 xhci
->event_ring
->first_seg
->trbs
,
1935 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1936 simple_test_vector
[i
].input_dma
,
1937 simple_test_vector
[i
].result_seg
,
1943 num_tests
= ARRAY_SIZE(complex_test_vector
);
1944 for (i
= 0; i
< num_tests
; i
++) {
1945 ret
= xhci_test_trb_in_td(xhci
,
1946 complex_test_vector
[i
].input_seg
,
1947 complex_test_vector
[i
].start_trb
,
1948 complex_test_vector
[i
].end_trb
,
1949 complex_test_vector
[i
].input_dma
,
1950 complex_test_vector
[i
].result_seg
,
1955 xhci_dbg(xhci
, "TRB math tests passed.\n");
1959 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
1964 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
1965 xhci
->event_ring
->dequeue
);
1966 if (deq
== 0 && !in_interrupt())
1967 xhci_warn(xhci
, "WARN something wrong with SW event ring "
1969 /* Update HC event ring dequeue pointer */
1970 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
1971 temp
&= ERST_PTR_MASK
;
1972 /* Don't clear the EHB bit (which is RW1C) because
1973 * there might be more events to service.
1976 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1977 "// Write event ring dequeue pointer, "
1978 "preserving EHB bit");
1979 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
1980 &xhci
->ir_set
->erst_dequeue
);
1983 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
1984 __le32 __iomem
*addr
, u8 major_revision
, int max_caps
)
1986 u32 temp
, port_offset
, port_count
;
1989 if (major_revision
> 0x03) {
1990 xhci_warn(xhci
, "Ignoring unknown port speed, "
1991 "Ext Cap %p, revision = 0x%x\n",
1992 addr
, major_revision
);
1993 /* Ignoring port protocol we can't understand. FIXME */
1997 /* Port offset and count in the third dword, see section 7.2 */
1998 temp
= xhci_readl(xhci
, addr
+ 2);
1999 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2000 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2001 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2002 "Ext Cap %p, port offset = %u, "
2003 "count = %u, revision = 0x%x",
2004 addr
, port_offset
, port_count
, major_revision
);
2005 /* Port count includes the current port offset */
2006 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2007 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2010 /* cache usb2 port capabilities */
2011 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2012 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2014 /* Check the host's USB2 LPM capability */
2015 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
2016 (temp
& XHCI_L1C
)) {
2017 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2018 "xHCI 0.96: support USB2 software lpm");
2019 xhci
->sw_lpm_support
= 1;
2022 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
2023 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2024 "xHCI 1.0: support USB2 software lpm");
2025 xhci
->sw_lpm_support
= 1;
2026 if (temp
& XHCI_HLC
) {
2027 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2028 "xHCI 1.0: support USB2 hardware lpm");
2029 xhci
->hw_lpm_support
= 1;
2034 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2035 /* Duplicate entry. Ignore the port if the revisions differ. */
2036 if (xhci
->port_array
[i
] != 0) {
2037 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2038 " port %u\n", addr
, i
);
2039 xhci_warn(xhci
, "Port was marked as USB %u, "
2040 "duplicated as USB %u\n",
2041 xhci
->port_array
[i
], major_revision
);
2042 /* Only adjust the roothub port counts if we haven't
2043 * found a similar duplicate.
2045 if (xhci
->port_array
[i
] != major_revision
&&
2046 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
2047 if (xhci
->port_array
[i
] == 0x03)
2048 xhci
->num_usb3_ports
--;
2050 xhci
->num_usb2_ports
--;
2051 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
2053 /* FIXME: Should we disable the port? */
2056 xhci
->port_array
[i
] = major_revision
;
2057 if (major_revision
== 0x03)
2058 xhci
->num_usb3_ports
++;
2060 xhci
->num_usb2_ports
++;
2062 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2066 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2067 * specify what speeds each port is supposed to be. We can't count on the port
2068 * speed bits in the PORTSC register being correct until a device is connected,
2069 * but we need to set up the two fake roothubs with the correct number of USB
2070 * 3.0 and USB 2.0 ports at host controller initialization time.
2072 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2074 __le32 __iomem
*addr
, *tmp_addr
;
2075 u32 offset
, tmp_offset
;
2076 unsigned int num_ports
;
2077 int i
, j
, port_index
;
2080 addr
= &xhci
->cap_regs
->hcc_params
;
2081 offset
= XHCI_HCC_EXT_CAPS(xhci_readl(xhci
, addr
));
2083 xhci_err(xhci
, "No Extended Capability registers, "
2084 "unable to set up roothub.\n");
2088 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2089 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2090 if (!xhci
->port_array
)
2093 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2096 for (i
= 0; i
< num_ports
; i
++) {
2097 struct xhci_interval_bw_table
*bw_table
;
2099 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2100 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2101 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2102 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2106 * For whatever reason, the first capability offset is from the
2107 * capability register base, not from the HCCPARAMS register.
2108 * See section 5.3.6 for offset calculation.
2110 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
2113 tmp_offset
= offset
;
2115 /* count extended protocol capability entries for later caching */
2118 cap_id
= xhci_readl(xhci
, tmp_addr
);
2119 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2121 tmp_offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2122 tmp_addr
+= tmp_offset
;
2123 } while (tmp_offset
);
2125 xhci
->ext_caps
= kzalloc(sizeof(*xhci
->ext_caps
) * cap_count
, flags
);
2126 if (!xhci
->ext_caps
)
2132 cap_id
= xhci_readl(xhci
, addr
);
2133 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2134 xhci_add_in_port(xhci
, num_ports
, addr
,
2135 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
),
2137 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2138 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
2142 * Once you're into the Extended Capabilities, the offset is
2143 * always relative to the register holding the offset.
2148 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2149 xhci_warn(xhci
, "No ports on the roothubs?\n");
2152 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2153 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2154 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2156 /* Place limits on the number of roothub ports so that the hub
2157 * descriptors aren't longer than the USB core will allocate.
2159 if (xhci
->num_usb3_ports
> 15) {
2160 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2161 "Limiting USB 3.0 roothub ports to 15.");
2162 xhci
->num_usb3_ports
= 15;
2164 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2165 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2166 "Limiting USB 2.0 roothub ports to %u.",
2168 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2172 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2173 * Not sure how the USB core will handle a hub with no ports...
2175 if (xhci
->num_usb2_ports
) {
2176 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2177 xhci
->num_usb2_ports
, flags
);
2178 if (!xhci
->usb2_ports
)
2182 for (i
= 0; i
< num_ports
; i
++) {
2183 if (xhci
->port_array
[i
] == 0x03 ||
2184 xhci
->port_array
[i
] == 0 ||
2185 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2188 xhci
->usb2_ports
[port_index
] =
2189 &xhci
->op_regs
->port_status_base
+
2191 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2192 "USB 2.0 port at index %u, "
2194 xhci
->usb2_ports
[port_index
]);
2196 if (port_index
== xhci
->num_usb2_ports
)
2200 if (xhci
->num_usb3_ports
) {
2201 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2202 xhci
->num_usb3_ports
, flags
);
2203 if (!xhci
->usb3_ports
)
2207 for (i
= 0; i
< num_ports
; i
++)
2208 if (xhci
->port_array
[i
] == 0x03) {
2209 xhci
->usb3_ports
[port_index
] =
2210 &xhci
->op_regs
->port_status_base
+
2212 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2213 "USB 3.0 port at index %u, "
2215 xhci
->usb3_ports
[port_index
]);
2217 if (port_index
== xhci
->num_usb3_ports
)
2224 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2227 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
2228 unsigned int val
, val2
;
2230 struct xhci_segment
*seg
;
2231 u32 page_size
, temp
;
2234 INIT_LIST_HEAD(&xhci
->cancel_cmd_list
);
2236 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
2237 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2238 "Supported page size register = 0x%x", page_size
);
2239 for (i
= 0; i
< 16; i
++) {
2240 if ((0x1 & page_size
) != 0)
2242 page_size
= page_size
>> 1;
2245 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2246 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2248 xhci_warn(xhci
, "WARN: no supported page size\n");
2249 /* Use 4K pages, since that's common and the minimum the HC supports */
2250 xhci
->page_shift
= 12;
2251 xhci
->page_size
= 1 << xhci
->page_shift
;
2252 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2253 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2256 * Program the Number of Device Slots Enabled field in the CONFIG
2257 * register with the max value of slots the HC can handle.
2259 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
2260 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2261 "// xHC can handle at most %d device slots.", val
);
2262 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
2263 val
|= (val2
& ~HCS_SLOTS_MASK
);
2264 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2265 "// Setting Max device slots reg = 0x%x.", val
);
2266 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
2269 * Section 5.4.8 - doorbell array must be
2270 * "physically contiguous and 64-byte (cache line) aligned".
2272 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2276 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2277 xhci
->dcbaa
->dma
= dma
;
2278 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2279 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2280 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2281 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2284 * Initialize the ring segment pool. The ring must be a contiguous
2285 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2286 * however, the command ring segment needs 64-byte aligned segments,
2287 * so we pick the greater alignment need.
2289 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2290 TRB_SEGMENT_SIZE
, 64, xhci
->page_size
);
2292 /* See Table 46 and Note on Figure 55 */
2293 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2294 2112, 64, xhci
->page_size
);
2295 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2298 /* Linear stream context arrays don't have any boundary restrictions,
2299 * and only need to be 16-byte aligned.
2301 xhci
->small_streams_pool
=
2302 dma_pool_create("xHCI 256 byte stream ctx arrays",
2303 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2304 xhci
->medium_streams_pool
=
2305 dma_pool_create("xHCI 1KB stream ctx arrays",
2306 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2307 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2308 * will be allocated with dma_alloc_coherent()
2311 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2314 /* Set up the command ring to have one segments for now. */
2315 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, flags
);
2316 if (!xhci
->cmd_ring
)
2318 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2319 "Allocated command ring at %p", xhci
->cmd_ring
);
2320 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2321 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2323 /* Set the address in the Command Ring Control register */
2324 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2325 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2326 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2327 xhci
->cmd_ring
->cycle_state
;
2328 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2329 "// Setting command ring address to 0x%x", val
);
2330 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2331 xhci_dbg_cmd_ptrs(xhci
);
2333 xhci
->lpm_command
= xhci_alloc_command(xhci
, true, true, flags
);
2334 if (!xhci
->lpm_command
)
2337 /* Reserve one command ring TRB for disabling LPM.
2338 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2339 * disabling LPM, we only need to reserve one TRB for all devices.
2341 xhci
->cmd_ring_reserved_trbs
++;
2343 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
2345 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2346 "// Doorbell array is located at offset 0x%x"
2347 " from cap regs base addr", val
);
2348 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2349 xhci_dbg_regs(xhci
);
2350 xhci_print_run_regs(xhci
);
2351 /* Set ir_set to interrupt register set 0 */
2352 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2355 * Event ring setup: Allocate a normal ring, but also setup
2356 * the event ring segment table (ERST). Section 4.9.3.
2358 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2359 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2361 if (!xhci
->event_ring
)
2363 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2366 xhci
->erst
.entries
= dma_alloc_coherent(dev
,
2367 sizeof(struct xhci_erst_entry
) * ERST_NUM_SEGS
, &dma
,
2369 if (!xhci
->erst
.entries
)
2371 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2372 "// Allocated event ring segment table at 0x%llx",
2373 (unsigned long long)dma
);
2375 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2376 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2377 xhci
->erst
.erst_dma_addr
= dma
;
2378 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2379 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2380 xhci
->erst
.num_entries
,
2382 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2384 /* set ring base address and size for each segment table entry */
2385 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2386 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2387 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2388 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2393 /* set ERST count with the number of entries in the segment table */
2394 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
2395 val
&= ERST_SIZE_MASK
;
2396 val
|= ERST_NUM_SEGS
;
2397 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2398 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2400 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
2402 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2403 "// Set ERST entries to point to event ring.");
2404 /* set the segment table base address */
2405 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2406 "// Set ERST base address for ir_set 0 = 0x%llx",
2407 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2408 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2409 val_64
&= ERST_PTR_MASK
;
2410 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2411 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2413 /* Set the event ring dequeue address */
2414 xhci_set_hc_event_deq(xhci
);
2415 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2416 "Wrote ERST address to ir_set 0.");
2417 xhci_print_ir_set(xhci
, 0);
2420 * XXX: Might need to set the Interrupter Moderation Register to
2421 * something other than the default (~1ms minimum between interrupts).
2422 * See section 5.5.1.2.
2424 init_completion(&xhci
->addr_dev
);
2425 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2426 xhci
->devs
[i
] = NULL
;
2427 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2428 xhci
->bus_state
[0].resume_done
[i
] = 0;
2429 xhci
->bus_state
[1].resume_done
[i
] = 0;
2430 /* Only the USB 2.0 completions will ever be used. */
2431 init_completion(&xhci
->bus_state
[1].rexit_done
[i
]);
2434 if (scratchpad_alloc(xhci
, flags
))
2436 if (xhci_setup_port_arrays(xhci
, flags
))
2439 /* Enable USB 3.0 device notifications for function remote wake, which
2440 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2441 * U3 (device suspend).
2443 temp
= xhci_readl(xhci
, &xhci
->op_regs
->dev_notification
);
2444 temp
&= ~DEV_NOTE_MASK
;
2445 temp
|= DEV_NOTE_FWAKE
;
2446 xhci_writel(xhci
, temp
, &xhci
->op_regs
->dev_notification
);
2451 xhci_warn(xhci
, "Couldn't initialize memory\n");
2454 xhci_mem_cleanup(xhci
);