2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/rwsem.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/bootmem.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kmemcheck.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/notifier.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock
);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node
);
78 EXPORT_PER_CPU_SYMBOL(numa_node
);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 int _node_numa_mem_
[MAX_NUMNODES
];
94 * Array of node states.
96 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
97 [N_POSSIBLE
] = NODE_MASK_ALL
,
98 [N_ONLINE
] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY
] = { { [0] = 1UL } },
107 [N_CPU
] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states
);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock
);
115 unsigned long totalram_pages __read_mostly
;
116 unsigned long totalreserve_pages __read_mostly
;
117 unsigned long totalcma_pages __read_mostly
;
119 * When calculating the number of globally allowed dirty pages, there
120 * is a certain number of per-zone reserves that should not be
121 * considered dirtyable memory. This is the sum of those reserves
122 * over all existing zones that contribute dirtyable memory.
124 unsigned long dirty_balance_reserve __read_mostly
;
126 int percpu_pagelist_fraction
;
127 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 #ifdef CONFIG_PM_SLEEP
131 * The following functions are used by the suspend/hibernate code to temporarily
132 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133 * while devices are suspended. To avoid races with the suspend/hibernate code,
134 * they should always be called with pm_mutex held (gfp_allowed_mask also should
135 * only be modified with pm_mutex held, unless the suspend/hibernate code is
136 * guaranteed not to run in parallel with that modification).
139 static gfp_t saved_gfp_mask
;
141 void pm_restore_gfp_mask(void)
143 WARN_ON(!mutex_is_locked(&pm_mutex
));
144 if (saved_gfp_mask
) {
145 gfp_allowed_mask
= saved_gfp_mask
;
150 void pm_restrict_gfp_mask(void)
152 WARN_ON(!mutex_is_locked(&pm_mutex
));
153 WARN_ON(saved_gfp_mask
);
154 saved_gfp_mask
= gfp_allowed_mask
;
155 gfp_allowed_mask
&= ~GFP_IOFS
;
158 bool pm_suspended_storage(void)
160 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
164 #endif /* CONFIG_PM_SLEEP */
166 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167 int pageblock_order __read_mostly
;
170 static void __free_pages_ok(struct page
*page
, unsigned int order
);
173 * results with 256, 32 in the lowmem_reserve sysctl:
174 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175 * 1G machine -> (16M dma, 784M normal, 224M high)
176 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
180 * TBD: should special case ZONE_DMA32 machines here - in those we normally
181 * don't need any ZONE_NORMAL reservation
183 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
184 #ifdef CONFIG_ZONE_DMA
187 #ifdef CONFIG_ZONE_DMA32
190 #ifdef CONFIG_HIGHMEM
196 EXPORT_SYMBOL(totalram_pages
);
198 static char * const zone_names
[MAX_NR_ZONES
] = {
199 #ifdef CONFIG_ZONE_DMA
202 #ifdef CONFIG_ZONE_DMA32
206 #ifdef CONFIG_HIGHMEM
212 int min_free_kbytes
= 1024;
213 int user_min_free_kbytes
= -1;
215 static unsigned long __meminitdata nr_kernel_pages
;
216 static unsigned long __meminitdata nr_all_pages
;
217 static unsigned long __meminitdata dma_reserve
;
219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
221 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
222 static unsigned long __initdata required_kernelcore
;
223 static unsigned long __initdata required_movablecore
;
224 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
226 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
228 EXPORT_SYMBOL(movable_zone
);
229 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
232 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
233 int nr_online_nodes __read_mostly
= 1;
234 EXPORT_SYMBOL(nr_node_ids
);
235 EXPORT_SYMBOL(nr_online_nodes
);
238 int page_group_by_mobility_disabled __read_mostly
;
240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
243 pgdat
->first_deferred_pfn
= ULONG_MAX
;
246 /* Returns true if the struct page for the pfn is uninitialised */
247 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
249 int nid
= early_pfn_to_nid(pfn
);
251 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
257 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
259 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
266 * Returns false when the remaining initialisation should be deferred until
267 * later in the boot cycle when it can be parallelised.
269 static inline bool update_defer_init(pg_data_t
*pgdat
,
270 unsigned long pfn
, unsigned long zone_end
,
271 unsigned long *nr_initialised
)
273 /* Always populate low zones for address-contrained allocations */
274 if (zone_end
< pgdat_end_pfn(pgdat
))
277 /* Initialise at least 2G of the highest zone */
279 if (*nr_initialised
> (2UL << (30 - PAGE_SHIFT
)) &&
280 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
281 pgdat
->first_deferred_pfn
= pfn
;
288 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
292 static inline bool early_page_uninitialised(unsigned long pfn
)
297 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
302 static inline bool update_defer_init(pg_data_t
*pgdat
,
303 unsigned long pfn
, unsigned long zone_end
,
304 unsigned long *nr_initialised
)
311 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
313 if (unlikely(page_group_by_mobility_disabled
&&
314 migratetype
< MIGRATE_PCPTYPES
))
315 migratetype
= MIGRATE_UNMOVABLE
;
317 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
318 PB_migrate
, PB_migrate_end
);
321 #ifdef CONFIG_DEBUG_VM
322 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
326 unsigned long pfn
= page_to_pfn(page
);
327 unsigned long sp
, start_pfn
;
330 seq
= zone_span_seqbegin(zone
);
331 start_pfn
= zone
->zone_start_pfn
;
332 sp
= zone
->spanned_pages
;
333 if (!zone_spans_pfn(zone
, pfn
))
335 } while (zone_span_seqretry(zone
, seq
));
338 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
339 pfn
, zone_to_nid(zone
), zone
->name
,
340 start_pfn
, start_pfn
+ sp
);
345 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
347 if (!pfn_valid_within(page_to_pfn(page
)))
349 if (zone
!= page_zone(page
))
355 * Temporary debugging check for pages not lying within a given zone.
357 static int bad_range(struct zone
*zone
, struct page
*page
)
359 if (page_outside_zone_boundaries(zone
, page
))
361 if (!page_is_consistent(zone
, page
))
367 static inline int bad_range(struct zone
*zone
, struct page
*page
)
373 static void bad_page(struct page
*page
, const char *reason
,
374 unsigned long bad_flags
)
376 static unsigned long resume
;
377 static unsigned long nr_shown
;
378 static unsigned long nr_unshown
;
380 /* Don't complain about poisoned pages */
381 if (PageHWPoison(page
)) {
382 page_mapcount_reset(page
); /* remove PageBuddy */
387 * Allow a burst of 60 reports, then keep quiet for that minute;
388 * or allow a steady drip of one report per second.
390 if (nr_shown
== 60) {
391 if (time_before(jiffies
, resume
)) {
397 "BUG: Bad page state: %lu messages suppressed\n",
404 resume
= jiffies
+ 60 * HZ
;
406 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
407 current
->comm
, page_to_pfn(page
));
408 dump_page_badflags(page
, reason
, bad_flags
);
413 /* Leave bad fields for debug, except PageBuddy could make trouble */
414 page_mapcount_reset(page
); /* remove PageBuddy */
415 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
419 * Higher-order pages are called "compound pages". They are structured thusly:
421 * The first PAGE_SIZE page is called the "head page".
423 * The remaining PAGE_SIZE pages are called "tail pages".
425 * All pages have PG_compound set. All tail pages have their ->first_page
426 * pointing at the head page.
428 * The first tail page's ->lru.next holds the address of the compound page's
429 * put_page() function. Its ->lru.prev holds the order of allocation.
430 * This usage means that zero-order pages may not be compound.
433 static void free_compound_page(struct page
*page
)
435 __free_pages_ok(page
, compound_order(page
));
438 void prep_compound_page(struct page
*page
, unsigned long order
)
441 int nr_pages
= 1 << order
;
443 set_compound_page_dtor(page
, free_compound_page
);
444 set_compound_order(page
, order
);
446 for (i
= 1; i
< nr_pages
; i
++) {
447 struct page
*p
= page
+ i
;
448 set_page_count(p
, 0);
449 p
->first_page
= page
;
450 /* Make sure p->first_page is always valid for PageTail() */
456 #ifdef CONFIG_DEBUG_PAGEALLOC
457 unsigned int _debug_guardpage_minorder
;
458 bool _debug_pagealloc_enabled __read_mostly
;
459 bool _debug_guardpage_enabled __read_mostly
;
461 static int __init
early_debug_pagealloc(char *buf
)
466 if (strcmp(buf
, "on") == 0)
467 _debug_pagealloc_enabled
= true;
471 early_param("debug_pagealloc", early_debug_pagealloc
);
473 static bool need_debug_guardpage(void)
475 /* If we don't use debug_pagealloc, we don't need guard page */
476 if (!debug_pagealloc_enabled())
482 static void init_debug_guardpage(void)
484 if (!debug_pagealloc_enabled())
487 _debug_guardpage_enabled
= true;
490 struct page_ext_operations debug_guardpage_ops
= {
491 .need
= need_debug_guardpage
,
492 .init
= init_debug_guardpage
,
495 static int __init
debug_guardpage_minorder_setup(char *buf
)
499 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
500 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
503 _debug_guardpage_minorder
= res
;
504 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
507 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
509 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
510 unsigned int order
, int migratetype
)
512 struct page_ext
*page_ext
;
514 if (!debug_guardpage_enabled())
517 page_ext
= lookup_page_ext(page
);
518 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
520 INIT_LIST_HEAD(&page
->lru
);
521 set_page_private(page
, order
);
522 /* Guard pages are not available for any usage */
523 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
526 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
527 unsigned int order
, int migratetype
)
529 struct page_ext
*page_ext
;
531 if (!debug_guardpage_enabled())
534 page_ext
= lookup_page_ext(page
);
535 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
537 set_page_private(page
, 0);
538 if (!is_migrate_isolate(migratetype
))
539 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
542 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
543 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
544 unsigned int order
, int migratetype
) {}
545 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
546 unsigned int order
, int migratetype
) {}
549 static inline void set_page_order(struct page
*page
, unsigned int order
)
551 set_page_private(page
, order
);
552 __SetPageBuddy(page
);
555 static inline void rmv_page_order(struct page
*page
)
557 __ClearPageBuddy(page
);
558 set_page_private(page
, 0);
562 * This function checks whether a page is free && is the buddy
563 * we can do coalesce a page and its buddy if
564 * (a) the buddy is not in a hole &&
565 * (b) the buddy is in the buddy system &&
566 * (c) a page and its buddy have the same order &&
567 * (d) a page and its buddy are in the same zone.
569 * For recording whether a page is in the buddy system, we set ->_mapcount
570 * PAGE_BUDDY_MAPCOUNT_VALUE.
571 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
572 * serialized by zone->lock.
574 * For recording page's order, we use page_private(page).
576 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
579 if (!pfn_valid_within(page_to_pfn(buddy
)))
582 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
583 if (page_zone_id(page
) != page_zone_id(buddy
))
586 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
591 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
593 * zone check is done late to avoid uselessly
594 * calculating zone/node ids for pages that could
597 if (page_zone_id(page
) != page_zone_id(buddy
))
600 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
608 * Freeing function for a buddy system allocator.
610 * The concept of a buddy system is to maintain direct-mapped table
611 * (containing bit values) for memory blocks of various "orders".
612 * The bottom level table contains the map for the smallest allocatable
613 * units of memory (here, pages), and each level above it describes
614 * pairs of units from the levels below, hence, "buddies".
615 * At a high level, all that happens here is marking the table entry
616 * at the bottom level available, and propagating the changes upward
617 * as necessary, plus some accounting needed to play nicely with other
618 * parts of the VM system.
619 * At each level, we keep a list of pages, which are heads of continuous
620 * free pages of length of (1 << order) and marked with _mapcount
621 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
623 * So when we are allocating or freeing one, we can derive the state of the
624 * other. That is, if we allocate a small block, and both were
625 * free, the remainder of the region must be split into blocks.
626 * If a block is freed, and its buddy is also free, then this
627 * triggers coalescing into a block of larger size.
632 static inline void __free_one_page(struct page
*page
,
634 struct zone
*zone
, unsigned int order
,
637 unsigned long page_idx
;
638 unsigned long combined_idx
;
639 unsigned long uninitialized_var(buddy_idx
);
641 int max_order
= MAX_ORDER
;
643 VM_BUG_ON(!zone_is_initialized(zone
));
644 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
646 VM_BUG_ON(migratetype
== -1);
647 if (is_migrate_isolate(migratetype
)) {
649 * We restrict max order of merging to prevent merge
650 * between freepages on isolate pageblock and normal
651 * pageblock. Without this, pageblock isolation
652 * could cause incorrect freepage accounting.
654 max_order
= min(MAX_ORDER
, pageblock_order
+ 1);
656 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
659 page_idx
= pfn
& ((1 << max_order
) - 1);
661 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
662 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
664 while (order
< max_order
- 1) {
665 buddy_idx
= __find_buddy_index(page_idx
, order
);
666 buddy
= page
+ (buddy_idx
- page_idx
);
667 if (!page_is_buddy(page
, buddy
, order
))
670 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
671 * merge with it and move up one order.
673 if (page_is_guard(buddy
)) {
674 clear_page_guard(zone
, buddy
, order
, migratetype
);
676 list_del(&buddy
->lru
);
677 zone
->free_area
[order
].nr_free
--;
678 rmv_page_order(buddy
);
680 combined_idx
= buddy_idx
& page_idx
;
681 page
= page
+ (combined_idx
- page_idx
);
682 page_idx
= combined_idx
;
685 set_page_order(page
, order
);
688 * If this is not the largest possible page, check if the buddy
689 * of the next-highest order is free. If it is, it's possible
690 * that pages are being freed that will coalesce soon. In case,
691 * that is happening, add the free page to the tail of the list
692 * so it's less likely to be used soon and more likely to be merged
693 * as a higher order page
695 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
696 struct page
*higher_page
, *higher_buddy
;
697 combined_idx
= buddy_idx
& page_idx
;
698 higher_page
= page
+ (combined_idx
- page_idx
);
699 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
700 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
701 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
702 list_add_tail(&page
->lru
,
703 &zone
->free_area
[order
].free_list
[migratetype
]);
708 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
710 zone
->free_area
[order
].nr_free
++;
713 static inline int free_pages_check(struct page
*page
)
715 const char *bad_reason
= NULL
;
716 unsigned long bad_flags
= 0;
718 if (unlikely(page_mapcount(page
)))
719 bad_reason
= "nonzero mapcount";
720 if (unlikely(page
->mapping
!= NULL
))
721 bad_reason
= "non-NULL mapping";
722 if (unlikely(atomic_read(&page
->_count
) != 0))
723 bad_reason
= "nonzero _count";
724 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
725 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
726 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
729 if (unlikely(page
->mem_cgroup
))
730 bad_reason
= "page still charged to cgroup";
732 if (unlikely(bad_reason
)) {
733 bad_page(page
, bad_reason
, bad_flags
);
736 page_cpupid_reset_last(page
);
737 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
738 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
743 * Frees a number of pages from the PCP lists
744 * Assumes all pages on list are in same zone, and of same order.
745 * count is the number of pages to free.
747 * If the zone was previously in an "all pages pinned" state then look to
748 * see if this freeing clears that state.
750 * And clear the zone's pages_scanned counter, to hold off the "all pages are
751 * pinned" detection logic.
753 static void free_pcppages_bulk(struct zone
*zone
, int count
,
754 struct per_cpu_pages
*pcp
)
759 unsigned long nr_scanned
;
761 spin_lock(&zone
->lock
);
762 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
764 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
768 struct list_head
*list
;
771 * Remove pages from lists in a round-robin fashion. A
772 * batch_free count is maintained that is incremented when an
773 * empty list is encountered. This is so more pages are freed
774 * off fuller lists instead of spinning excessively around empty
779 if (++migratetype
== MIGRATE_PCPTYPES
)
781 list
= &pcp
->lists
[migratetype
];
782 } while (list_empty(list
));
784 /* This is the only non-empty list. Free them all. */
785 if (batch_free
== MIGRATE_PCPTYPES
)
786 batch_free
= to_free
;
789 int mt
; /* migratetype of the to-be-freed page */
791 page
= list_entry(list
->prev
, struct page
, lru
);
792 /* must delete as __free_one_page list manipulates */
793 list_del(&page
->lru
);
794 mt
= get_freepage_migratetype(page
);
795 if (unlikely(has_isolate_pageblock(zone
)))
796 mt
= get_pageblock_migratetype(page
);
798 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
799 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
800 trace_mm_page_pcpu_drain(page
, 0, mt
);
801 } while (--to_free
&& --batch_free
&& !list_empty(list
));
803 spin_unlock(&zone
->lock
);
806 static void free_one_page(struct zone
*zone
,
807 struct page
*page
, unsigned long pfn
,
811 unsigned long nr_scanned
;
812 spin_lock(&zone
->lock
);
813 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
815 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
817 if (unlikely(has_isolate_pageblock(zone
) ||
818 is_migrate_isolate(migratetype
))) {
819 migratetype
= get_pfnblock_migratetype(page
, pfn
);
821 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
822 spin_unlock(&zone
->lock
);
825 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
827 if (!IS_ENABLED(CONFIG_DEBUG_VM
))
829 if (unlikely(!PageTail(page
))) {
830 bad_page(page
, "PageTail not set", 0);
833 if (unlikely(page
->first_page
!= head_page
)) {
834 bad_page(page
, "first_page not consistent", 0);
840 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
841 unsigned long zone
, int nid
)
843 set_page_links(page
, zone
, nid
, pfn
);
844 init_page_count(page
);
845 page_mapcount_reset(page
);
846 page_cpupid_reset_last(page
);
848 INIT_LIST_HEAD(&page
->lru
);
849 #ifdef WANT_PAGE_VIRTUAL
850 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
851 if (!is_highmem_idx(zone
))
852 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
856 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
859 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
862 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
863 static void init_reserved_page(unsigned long pfn
)
868 if (!early_page_uninitialised(pfn
))
871 nid
= early_pfn_to_nid(pfn
);
872 pgdat
= NODE_DATA(nid
);
874 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
875 struct zone
*zone
= &pgdat
->node_zones
[zid
];
877 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
880 __init_single_pfn(pfn
, zid
, nid
);
883 static inline void init_reserved_page(unsigned long pfn
)
886 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
889 * Initialised pages do not have PageReserved set. This function is
890 * called for each range allocated by the bootmem allocator and
891 * marks the pages PageReserved. The remaining valid pages are later
892 * sent to the buddy page allocator.
894 void __meminit
reserve_bootmem_region(unsigned long start
, unsigned long end
)
896 unsigned long start_pfn
= PFN_DOWN(start
);
897 unsigned long end_pfn
= PFN_UP(end
);
899 for (; start_pfn
< end_pfn
; start_pfn
++) {
900 if (pfn_valid(start_pfn
)) {
901 struct page
*page
= pfn_to_page(start_pfn
);
903 init_reserved_page(start_pfn
);
904 SetPageReserved(page
);
909 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
911 bool compound
= PageCompound(page
);
914 VM_BUG_ON_PAGE(PageTail(page
), page
);
915 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
917 trace_mm_page_free(page
, order
);
918 kmemcheck_free_shadow(page
, order
);
919 kasan_free_pages(page
, order
);
922 page
->mapping
= NULL
;
923 bad
+= free_pages_check(page
);
924 for (i
= 1; i
< (1 << order
); i
++) {
926 bad
+= free_tail_pages_check(page
, page
+ i
);
927 bad
+= free_pages_check(page
+ i
);
932 reset_page_owner(page
, order
);
934 if (!PageHighMem(page
)) {
935 debug_check_no_locks_freed(page_address(page
),
937 debug_check_no_obj_freed(page_address(page
),
940 arch_free_page(page
, order
);
941 kernel_map_pages(page
, 1 << order
, 0);
946 static void __free_pages_ok(struct page
*page
, unsigned int order
)
950 unsigned long pfn
= page_to_pfn(page
);
952 if (!free_pages_prepare(page
, order
))
955 migratetype
= get_pfnblock_migratetype(page
, pfn
);
956 local_irq_save(flags
);
957 __count_vm_events(PGFREE
, 1 << order
);
958 set_freepage_migratetype(page
, migratetype
);
959 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
960 local_irq_restore(flags
);
963 static void __init
__free_pages_boot_core(struct page
*page
,
964 unsigned long pfn
, unsigned int order
)
966 unsigned int nr_pages
= 1 << order
;
967 struct page
*p
= page
;
971 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
973 __ClearPageReserved(p
);
974 set_page_count(p
, 0);
976 __ClearPageReserved(p
);
977 set_page_count(p
, 0);
979 page_zone(page
)->managed_pages
+= nr_pages
;
980 set_page_refcounted(page
);
981 __free_pages(page
, order
);
984 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
985 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 /* Only safe to use early in boot when initialisation is single-threaded */
987 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
989 int __meminit
early_pfn_to_nid(unsigned long pfn
)
993 /* The system will behave unpredictably otherwise */
994 BUG_ON(system_state
!= SYSTEM_BOOTING
);
996 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1004 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1005 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1006 struct mminit_pfnnid_cache
*state
)
1010 nid
= __early_pfn_to_nid(pfn
, state
);
1011 if (nid
>= 0 && nid
!= node
)
1016 /* Only safe to use early in boot when initialisation is single-threaded */
1017 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1019 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1024 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1028 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1029 struct mminit_pfnnid_cache
*state
)
1036 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1039 if (early_page_uninitialised(pfn
))
1041 return __free_pages_boot_core(page
, pfn
, order
);
1044 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1045 static void __init
deferred_free_range(struct page
*page
,
1046 unsigned long pfn
, int nr_pages
)
1053 /* Free a large naturally-aligned chunk if possible */
1054 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1055 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1056 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1057 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1061 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1062 __free_pages_boot_core(page
, pfn
, 0);
1065 static __initdata
DECLARE_RWSEM(pgdat_init_rwsem
);
1067 /* Initialise remaining memory on a node */
1068 static int __init
deferred_init_memmap(void *data
)
1070 pg_data_t
*pgdat
= data
;
1071 int nid
= pgdat
->node_id
;
1072 struct mminit_pfnnid_cache nid_init_state
= { };
1073 unsigned long start
= jiffies
;
1074 unsigned long nr_pages
= 0;
1075 unsigned long walk_start
, walk_end
;
1078 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1079 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1081 if (first_init_pfn
== ULONG_MAX
) {
1082 up_read(&pgdat_init_rwsem
);
1086 /* Bind memory initialisation thread to a local node if possible */
1087 if (!cpumask_empty(cpumask
))
1088 set_cpus_allowed_ptr(current
, cpumask
);
1090 /* Sanity check boundaries */
1091 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1092 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1093 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1095 /* Only the highest zone is deferred so find it */
1096 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1097 zone
= pgdat
->node_zones
+ zid
;
1098 if (first_init_pfn
< zone_end_pfn(zone
))
1102 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1103 unsigned long pfn
, end_pfn
;
1104 struct page
*page
= NULL
;
1105 struct page
*free_base_page
= NULL
;
1106 unsigned long free_base_pfn
= 0;
1109 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1110 pfn
= first_init_pfn
;
1111 if (pfn
< walk_start
)
1113 if (pfn
< zone
->zone_start_pfn
)
1114 pfn
= zone
->zone_start_pfn
;
1116 for (; pfn
< end_pfn
; pfn
++) {
1117 if (!pfn_valid_within(pfn
))
1121 * Ensure pfn_valid is checked every
1122 * MAX_ORDER_NR_PAGES for memory holes
1124 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1125 if (!pfn_valid(pfn
)) {
1131 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1136 /* Minimise pfn page lookups and scheduler checks */
1137 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1140 nr_pages
+= nr_to_free
;
1141 deferred_free_range(free_base_page
,
1142 free_base_pfn
, nr_to_free
);
1143 free_base_page
= NULL
;
1144 free_base_pfn
= nr_to_free
= 0;
1146 page
= pfn_to_page(pfn
);
1151 VM_BUG_ON(page_zone(page
) != zone
);
1155 __init_single_page(page
, pfn
, zid
, nid
);
1156 if (!free_base_page
) {
1157 free_base_page
= page
;
1158 free_base_pfn
= pfn
;
1163 /* Where possible, batch up pages for a single free */
1166 /* Free the current block of pages to allocator */
1167 nr_pages
+= nr_to_free
;
1168 deferred_free_range(free_base_page
, free_base_pfn
,
1170 free_base_page
= NULL
;
1171 free_base_pfn
= nr_to_free
= 0;
1174 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1177 /* Sanity check that the next zone really is unpopulated */
1178 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1180 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1181 jiffies_to_msecs(jiffies
- start
));
1182 up_read(&pgdat_init_rwsem
);
1186 void __init
page_alloc_init_late(void)
1190 for_each_node_state(nid
, N_MEMORY
) {
1191 down_read(&pgdat_init_rwsem
);
1192 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1195 /* Block until all are initialised */
1196 down_write(&pgdat_init_rwsem
);
1197 up_write(&pgdat_init_rwsem
);
1199 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1202 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1203 void __init
init_cma_reserved_pageblock(struct page
*page
)
1205 unsigned i
= pageblock_nr_pages
;
1206 struct page
*p
= page
;
1209 __ClearPageReserved(p
);
1210 set_page_count(p
, 0);
1213 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1215 if (pageblock_order
>= MAX_ORDER
) {
1216 i
= pageblock_nr_pages
;
1219 set_page_refcounted(p
);
1220 __free_pages(p
, MAX_ORDER
- 1);
1221 p
+= MAX_ORDER_NR_PAGES
;
1222 } while (i
-= MAX_ORDER_NR_PAGES
);
1224 set_page_refcounted(page
);
1225 __free_pages(page
, pageblock_order
);
1228 adjust_managed_page_count(page
, pageblock_nr_pages
);
1233 * The order of subdivision here is critical for the IO subsystem.
1234 * Please do not alter this order without good reasons and regression
1235 * testing. Specifically, as large blocks of memory are subdivided,
1236 * the order in which smaller blocks are delivered depends on the order
1237 * they're subdivided in this function. This is the primary factor
1238 * influencing the order in which pages are delivered to the IO
1239 * subsystem according to empirical testing, and this is also justified
1240 * by considering the behavior of a buddy system containing a single
1241 * large block of memory acted on by a series of small allocations.
1242 * This behavior is a critical factor in sglist merging's success.
1246 static inline void expand(struct zone
*zone
, struct page
*page
,
1247 int low
, int high
, struct free_area
*area
,
1250 unsigned long size
= 1 << high
;
1252 while (high
> low
) {
1256 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1258 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1259 debug_guardpage_enabled() &&
1260 high
< debug_guardpage_minorder()) {
1262 * Mark as guard pages (or page), that will allow to
1263 * merge back to allocator when buddy will be freed.
1264 * Corresponding page table entries will not be touched,
1265 * pages will stay not present in virtual address space
1267 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1270 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1272 set_page_order(&page
[size
], high
);
1277 * This page is about to be returned from the page allocator
1279 static inline int check_new_page(struct page
*page
)
1281 const char *bad_reason
= NULL
;
1282 unsigned long bad_flags
= 0;
1284 if (unlikely(page_mapcount(page
)))
1285 bad_reason
= "nonzero mapcount";
1286 if (unlikely(page
->mapping
!= NULL
))
1287 bad_reason
= "non-NULL mapping";
1288 if (unlikely(atomic_read(&page
->_count
) != 0))
1289 bad_reason
= "nonzero _count";
1290 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1291 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1292 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1295 if (unlikely(page
->mem_cgroup
))
1296 bad_reason
= "page still charged to cgroup";
1298 if (unlikely(bad_reason
)) {
1299 bad_page(page
, bad_reason
, bad_flags
);
1305 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1310 for (i
= 0; i
< (1 << order
); i
++) {
1311 struct page
*p
= page
+ i
;
1312 if (unlikely(check_new_page(p
)))
1316 set_page_private(page
, 0);
1317 set_page_refcounted(page
);
1319 arch_alloc_page(page
, order
);
1320 kernel_map_pages(page
, 1 << order
, 1);
1321 kasan_alloc_pages(page
, order
);
1323 if (gfp_flags
& __GFP_ZERO
)
1324 for (i
= 0; i
< (1 << order
); i
++)
1325 clear_highpage(page
+ i
);
1327 if (order
&& (gfp_flags
& __GFP_COMP
))
1328 prep_compound_page(page
, order
);
1330 set_page_owner(page
, order
, gfp_flags
);
1333 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1334 * allocate the page. The expectation is that the caller is taking
1335 * steps that will free more memory. The caller should avoid the page
1336 * being used for !PFMEMALLOC purposes.
1338 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1344 * Go through the free lists for the given migratetype and remove
1345 * the smallest available page from the freelists
1348 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1351 unsigned int current_order
;
1352 struct free_area
*area
;
1355 /* Find a page of the appropriate size in the preferred list */
1356 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1357 area
= &(zone
->free_area
[current_order
]);
1358 if (list_empty(&area
->free_list
[migratetype
]))
1361 page
= list_entry(area
->free_list
[migratetype
].next
,
1363 list_del(&page
->lru
);
1364 rmv_page_order(page
);
1366 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1367 set_freepage_migratetype(page
, migratetype
);
1376 * This array describes the order lists are fallen back to when
1377 * the free lists for the desirable migrate type are depleted
1379 static int fallbacks
[MIGRATE_TYPES
][4] = {
1380 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
1381 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
1382 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
1384 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
1386 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
1387 #ifdef CONFIG_MEMORY_ISOLATION
1388 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
1393 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1396 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1399 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1400 unsigned int order
) { return NULL
; }
1404 * Move the free pages in a range to the free lists of the requested type.
1405 * Note that start_page and end_pages are not aligned on a pageblock
1406 * boundary. If alignment is required, use move_freepages_block()
1408 int move_freepages(struct zone
*zone
,
1409 struct page
*start_page
, struct page
*end_page
,
1413 unsigned long order
;
1414 int pages_moved
= 0;
1416 #ifndef CONFIG_HOLES_IN_ZONE
1418 * page_zone is not safe to call in this context when
1419 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1420 * anyway as we check zone boundaries in move_freepages_block().
1421 * Remove at a later date when no bug reports exist related to
1422 * grouping pages by mobility
1424 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1427 for (page
= start_page
; page
<= end_page
;) {
1428 /* Make sure we are not inadvertently changing nodes */
1429 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1431 if (!pfn_valid_within(page_to_pfn(page
))) {
1436 if (!PageBuddy(page
)) {
1441 order
= page_order(page
);
1442 list_move(&page
->lru
,
1443 &zone
->free_area
[order
].free_list
[migratetype
]);
1444 set_freepage_migratetype(page
, migratetype
);
1446 pages_moved
+= 1 << order
;
1452 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1455 unsigned long start_pfn
, end_pfn
;
1456 struct page
*start_page
, *end_page
;
1458 start_pfn
= page_to_pfn(page
);
1459 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1460 start_page
= pfn_to_page(start_pfn
);
1461 end_page
= start_page
+ pageblock_nr_pages
- 1;
1462 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1464 /* Do not cross zone boundaries */
1465 if (!zone_spans_pfn(zone
, start_pfn
))
1467 if (!zone_spans_pfn(zone
, end_pfn
))
1470 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1473 static void change_pageblock_range(struct page
*pageblock_page
,
1474 int start_order
, int migratetype
)
1476 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1478 while (nr_pageblocks
--) {
1479 set_pageblock_migratetype(pageblock_page
, migratetype
);
1480 pageblock_page
+= pageblock_nr_pages
;
1485 * When we are falling back to another migratetype during allocation, try to
1486 * steal extra free pages from the same pageblocks to satisfy further
1487 * allocations, instead of polluting multiple pageblocks.
1489 * If we are stealing a relatively large buddy page, it is likely there will
1490 * be more free pages in the pageblock, so try to steal them all. For
1491 * reclaimable and unmovable allocations, we steal regardless of page size,
1492 * as fragmentation caused by those allocations polluting movable pageblocks
1493 * is worse than movable allocations stealing from unmovable and reclaimable
1496 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1499 * Leaving this order check is intended, although there is
1500 * relaxed order check in next check. The reason is that
1501 * we can actually steal whole pageblock if this condition met,
1502 * but, below check doesn't guarantee it and that is just heuristic
1503 * so could be changed anytime.
1505 if (order
>= pageblock_order
)
1508 if (order
>= pageblock_order
/ 2 ||
1509 start_mt
== MIGRATE_RECLAIMABLE
||
1510 start_mt
== MIGRATE_UNMOVABLE
||
1511 page_group_by_mobility_disabled
)
1518 * This function implements actual steal behaviour. If order is large enough,
1519 * we can steal whole pageblock. If not, we first move freepages in this
1520 * pageblock and check whether half of pages are moved or not. If half of
1521 * pages are moved, we can change migratetype of pageblock and permanently
1522 * use it's pages as requested migratetype in the future.
1524 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1527 int current_order
= page_order(page
);
1530 /* Take ownership for orders >= pageblock_order */
1531 if (current_order
>= pageblock_order
) {
1532 change_pageblock_range(page
, current_order
, start_type
);
1536 pages
= move_freepages_block(zone
, page
, start_type
);
1538 /* Claim the whole block if over half of it is free */
1539 if (pages
>= (1 << (pageblock_order
-1)) ||
1540 page_group_by_mobility_disabled
)
1541 set_pageblock_migratetype(page
, start_type
);
1545 * Check whether there is a suitable fallback freepage with requested order.
1546 * If only_stealable is true, this function returns fallback_mt only if
1547 * we can steal other freepages all together. This would help to reduce
1548 * fragmentation due to mixed migratetype pages in one pageblock.
1550 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1551 int migratetype
, bool only_stealable
, bool *can_steal
)
1556 if (area
->nr_free
== 0)
1561 fallback_mt
= fallbacks
[migratetype
][i
];
1562 if (fallback_mt
== MIGRATE_RESERVE
)
1565 if (list_empty(&area
->free_list
[fallback_mt
]))
1568 if (can_steal_fallback(order
, migratetype
))
1571 if (!only_stealable
)
1581 /* Remove an element from the buddy allocator from the fallback list */
1582 static inline struct page
*
1583 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1585 struct free_area
*area
;
1586 unsigned int current_order
;
1591 /* Find the largest possible block of pages in the other list */
1592 for (current_order
= MAX_ORDER
-1;
1593 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1595 area
= &(zone
->free_area
[current_order
]);
1596 fallback_mt
= find_suitable_fallback(area
, current_order
,
1597 start_migratetype
, false, &can_steal
);
1598 if (fallback_mt
== -1)
1601 page
= list_entry(area
->free_list
[fallback_mt
].next
,
1604 steal_suitable_fallback(zone
, page
, start_migratetype
);
1606 /* Remove the page from the freelists */
1608 list_del(&page
->lru
);
1609 rmv_page_order(page
);
1611 expand(zone
, page
, order
, current_order
, area
,
1614 * The freepage_migratetype may differ from pageblock's
1615 * migratetype depending on the decisions in
1616 * try_to_steal_freepages(). This is OK as long as it
1617 * does not differ for MIGRATE_CMA pageblocks. For CMA
1618 * we need to make sure unallocated pages flushed from
1619 * pcp lists are returned to the correct freelist.
1621 set_freepage_migratetype(page
, start_migratetype
);
1623 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1624 start_migratetype
, fallback_mt
);
1633 * Do the hard work of removing an element from the buddy allocator.
1634 * Call me with the zone->lock already held.
1636 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1642 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1644 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1645 if (migratetype
== MIGRATE_MOVABLE
)
1646 page
= __rmqueue_cma_fallback(zone
, order
);
1649 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1652 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1653 * is used because __rmqueue_smallest is an inline function
1654 * and we want just one call site
1657 migratetype
= MIGRATE_RESERVE
;
1662 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1667 * Obtain a specified number of elements from the buddy allocator, all under
1668 * a single hold of the lock, for efficiency. Add them to the supplied list.
1669 * Returns the number of new pages which were placed at *list.
1671 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1672 unsigned long count
, struct list_head
*list
,
1673 int migratetype
, bool cold
)
1677 spin_lock(&zone
->lock
);
1678 for (i
= 0; i
< count
; ++i
) {
1679 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1680 if (unlikely(page
== NULL
))
1684 * Split buddy pages returned by expand() are received here
1685 * in physical page order. The page is added to the callers and
1686 * list and the list head then moves forward. From the callers
1687 * perspective, the linked list is ordered by page number in
1688 * some conditions. This is useful for IO devices that can
1689 * merge IO requests if the physical pages are ordered
1693 list_add(&page
->lru
, list
);
1695 list_add_tail(&page
->lru
, list
);
1697 if (is_migrate_cma(get_freepage_migratetype(page
)))
1698 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1701 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1702 spin_unlock(&zone
->lock
);
1708 * Called from the vmstat counter updater to drain pagesets of this
1709 * currently executing processor on remote nodes after they have
1712 * Note that this function must be called with the thread pinned to
1713 * a single processor.
1715 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1717 unsigned long flags
;
1718 int to_drain
, batch
;
1720 local_irq_save(flags
);
1721 batch
= READ_ONCE(pcp
->batch
);
1722 to_drain
= min(pcp
->count
, batch
);
1724 free_pcppages_bulk(zone
, to_drain
, pcp
);
1725 pcp
->count
-= to_drain
;
1727 local_irq_restore(flags
);
1732 * Drain pcplists of the indicated processor and zone.
1734 * The processor must either be the current processor and the
1735 * thread pinned to the current processor or a processor that
1738 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
1740 unsigned long flags
;
1741 struct per_cpu_pageset
*pset
;
1742 struct per_cpu_pages
*pcp
;
1744 local_irq_save(flags
);
1745 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1749 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1752 local_irq_restore(flags
);
1756 * Drain pcplists of all zones on the indicated processor.
1758 * The processor must either be the current processor and the
1759 * thread pinned to the current processor or a processor that
1762 static void drain_pages(unsigned int cpu
)
1766 for_each_populated_zone(zone
) {
1767 drain_pages_zone(cpu
, zone
);
1772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1774 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1775 * the single zone's pages.
1777 void drain_local_pages(struct zone
*zone
)
1779 int cpu
= smp_processor_id();
1782 drain_pages_zone(cpu
, zone
);
1788 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1790 * When zone parameter is non-NULL, spill just the single zone's pages.
1792 * Note that this code is protected against sending an IPI to an offline
1793 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1794 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1795 * nothing keeps CPUs from showing up after we populated the cpumask and
1796 * before the call to on_each_cpu_mask().
1798 void drain_all_pages(struct zone
*zone
)
1803 * Allocate in the BSS so we wont require allocation in
1804 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1806 static cpumask_t cpus_with_pcps
;
1809 * We don't care about racing with CPU hotplug event
1810 * as offline notification will cause the notified
1811 * cpu to drain that CPU pcps and on_each_cpu_mask
1812 * disables preemption as part of its processing
1814 for_each_online_cpu(cpu
) {
1815 struct per_cpu_pageset
*pcp
;
1817 bool has_pcps
= false;
1820 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1824 for_each_populated_zone(z
) {
1825 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
1826 if (pcp
->pcp
.count
) {
1834 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1836 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1838 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
1842 #ifdef CONFIG_HIBERNATION
1844 void mark_free_pages(struct zone
*zone
)
1846 unsigned long pfn
, max_zone_pfn
;
1847 unsigned long flags
;
1848 unsigned int order
, t
;
1849 struct list_head
*curr
;
1851 if (zone_is_empty(zone
))
1854 spin_lock_irqsave(&zone
->lock
, flags
);
1856 max_zone_pfn
= zone_end_pfn(zone
);
1857 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1858 if (pfn_valid(pfn
)) {
1859 struct page
*page
= pfn_to_page(pfn
);
1861 if (!swsusp_page_is_forbidden(page
))
1862 swsusp_unset_page_free(page
);
1865 for_each_migratetype_order(order
, t
) {
1866 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1869 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1870 for (i
= 0; i
< (1UL << order
); i
++)
1871 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1874 spin_unlock_irqrestore(&zone
->lock
, flags
);
1876 #endif /* CONFIG_PM */
1879 * Free a 0-order page
1880 * cold == true ? free a cold page : free a hot page
1882 void free_hot_cold_page(struct page
*page
, bool cold
)
1884 struct zone
*zone
= page_zone(page
);
1885 struct per_cpu_pages
*pcp
;
1886 unsigned long flags
;
1887 unsigned long pfn
= page_to_pfn(page
);
1890 if (!free_pages_prepare(page
, 0))
1893 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1894 set_freepage_migratetype(page
, migratetype
);
1895 local_irq_save(flags
);
1896 __count_vm_event(PGFREE
);
1899 * We only track unmovable, reclaimable and movable on pcp lists.
1900 * Free ISOLATE pages back to the allocator because they are being
1901 * offlined but treat RESERVE as movable pages so we can get those
1902 * areas back if necessary. Otherwise, we may have to free
1903 * excessively into the page allocator
1905 if (migratetype
>= MIGRATE_PCPTYPES
) {
1906 if (unlikely(is_migrate_isolate(migratetype
))) {
1907 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1910 migratetype
= MIGRATE_MOVABLE
;
1913 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1915 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1917 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1919 if (pcp
->count
>= pcp
->high
) {
1920 unsigned long batch
= READ_ONCE(pcp
->batch
);
1921 free_pcppages_bulk(zone
, batch
, pcp
);
1922 pcp
->count
-= batch
;
1926 local_irq_restore(flags
);
1930 * Free a list of 0-order pages
1932 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1934 struct page
*page
, *next
;
1936 list_for_each_entry_safe(page
, next
, list
, lru
) {
1937 trace_mm_page_free_batched(page
, cold
);
1938 free_hot_cold_page(page
, cold
);
1943 * split_page takes a non-compound higher-order page, and splits it into
1944 * n (1<<order) sub-pages: page[0..n]
1945 * Each sub-page must be freed individually.
1947 * Note: this is probably too low level an operation for use in drivers.
1948 * Please consult with lkml before using this in your driver.
1950 void split_page(struct page
*page
, unsigned int order
)
1954 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1955 VM_BUG_ON_PAGE(!page_count(page
), page
);
1957 #ifdef CONFIG_KMEMCHECK
1959 * Split shadow pages too, because free(page[0]) would
1960 * otherwise free the whole shadow.
1962 if (kmemcheck_page_is_tracked(page
))
1963 split_page(virt_to_page(page
[0].shadow
), order
);
1966 set_page_owner(page
, 0, 0);
1967 for (i
= 1; i
< (1 << order
); i
++) {
1968 set_page_refcounted(page
+ i
);
1969 set_page_owner(page
+ i
, 0, 0);
1972 EXPORT_SYMBOL_GPL(split_page
);
1974 int __isolate_free_page(struct page
*page
, unsigned int order
)
1976 unsigned long watermark
;
1980 BUG_ON(!PageBuddy(page
));
1982 zone
= page_zone(page
);
1983 mt
= get_pageblock_migratetype(page
);
1985 if (!is_migrate_isolate(mt
)) {
1986 /* Obey watermarks as if the page was being allocated */
1987 watermark
= low_wmark_pages(zone
) + (1 << order
);
1988 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1991 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1994 /* Remove page from free list */
1995 list_del(&page
->lru
);
1996 zone
->free_area
[order
].nr_free
--;
1997 rmv_page_order(page
);
1999 /* Set the pageblock if the isolated page is at least a pageblock */
2000 if (order
>= pageblock_order
- 1) {
2001 struct page
*endpage
= page
+ (1 << order
) - 1;
2002 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2003 int mt
= get_pageblock_migratetype(page
);
2004 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2005 set_pageblock_migratetype(page
,
2010 set_page_owner(page
, order
, 0);
2011 return 1UL << order
;
2015 * Similar to split_page except the page is already free. As this is only
2016 * being used for migration, the migratetype of the block also changes.
2017 * As this is called with interrupts disabled, the caller is responsible
2018 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2021 * Note: this is probably too low level an operation for use in drivers.
2022 * Please consult with lkml before using this in your driver.
2024 int split_free_page(struct page
*page
)
2029 order
= page_order(page
);
2031 nr_pages
= __isolate_free_page(page
, order
);
2035 /* Split into individual pages */
2036 set_page_refcounted(page
);
2037 split_page(page
, order
);
2042 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2045 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2046 struct zone
*zone
, unsigned int order
,
2047 gfp_t gfp_flags
, int migratetype
)
2049 unsigned long flags
;
2051 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2053 if (likely(order
== 0)) {
2054 struct per_cpu_pages
*pcp
;
2055 struct list_head
*list
;
2057 local_irq_save(flags
);
2058 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2059 list
= &pcp
->lists
[migratetype
];
2060 if (list_empty(list
)) {
2061 pcp
->count
+= rmqueue_bulk(zone
, 0,
2064 if (unlikely(list_empty(list
)))
2069 page
= list_entry(list
->prev
, struct page
, lru
);
2071 page
= list_entry(list
->next
, struct page
, lru
);
2073 list_del(&page
->lru
);
2076 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
2078 * __GFP_NOFAIL is not to be used in new code.
2080 * All __GFP_NOFAIL callers should be fixed so that they
2081 * properly detect and handle allocation failures.
2083 * We most definitely don't want callers attempting to
2084 * allocate greater than order-1 page units with
2087 WARN_ON_ONCE(order
> 1);
2089 spin_lock_irqsave(&zone
->lock
, flags
);
2090 page
= __rmqueue(zone
, order
, migratetype
);
2091 spin_unlock(&zone
->lock
);
2094 __mod_zone_freepage_state(zone
, -(1 << order
),
2095 get_freepage_migratetype(page
));
2098 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2099 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2100 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2101 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2103 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2104 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2105 local_irq_restore(flags
);
2107 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2111 local_irq_restore(flags
);
2115 #ifdef CONFIG_FAIL_PAGE_ALLOC
2118 struct fault_attr attr
;
2120 u32 ignore_gfp_highmem
;
2121 u32 ignore_gfp_wait
;
2123 } fail_page_alloc
= {
2124 .attr
= FAULT_ATTR_INITIALIZER
,
2125 .ignore_gfp_wait
= 1,
2126 .ignore_gfp_highmem
= 1,
2130 static int __init
setup_fail_page_alloc(char *str
)
2132 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2134 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2136 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2138 if (order
< fail_page_alloc
.min_order
)
2140 if (gfp_mask
& __GFP_NOFAIL
)
2142 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2144 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
2147 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2152 static int __init
fail_page_alloc_debugfs(void)
2154 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2157 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2158 &fail_page_alloc
.attr
);
2160 return PTR_ERR(dir
);
2162 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2163 &fail_page_alloc
.ignore_gfp_wait
))
2165 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2166 &fail_page_alloc
.ignore_gfp_highmem
))
2168 if (!debugfs_create_u32("min-order", mode
, dir
,
2169 &fail_page_alloc
.min_order
))
2174 debugfs_remove_recursive(dir
);
2179 late_initcall(fail_page_alloc_debugfs
);
2181 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2183 #else /* CONFIG_FAIL_PAGE_ALLOC */
2185 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2190 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2193 * Return true if free pages are above 'mark'. This takes into account the order
2194 * of the allocation.
2196 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2197 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2200 /* free_pages may go negative - that's OK */
2205 free_pages
-= (1 << order
) - 1;
2206 if (alloc_flags
& ALLOC_HIGH
)
2208 if (alloc_flags
& ALLOC_HARDER
)
2211 /* If allocation can't use CMA areas don't use free CMA pages */
2212 if (!(alloc_flags
& ALLOC_CMA
))
2213 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2216 if (free_pages
- free_cma
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2218 for (o
= 0; o
< order
; o
++) {
2219 /* At the next order, this order's pages become unavailable */
2220 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
2222 /* Require fewer higher order pages to be free */
2225 if (free_pages
<= min
)
2231 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2232 int classzone_idx
, int alloc_flags
)
2234 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2235 zone_page_state(z
, NR_FREE_PAGES
));
2238 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2239 unsigned long mark
, int classzone_idx
, int alloc_flags
)
2241 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2243 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2244 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2246 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2252 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2253 * skip over zones that are not allowed by the cpuset, or that have
2254 * been recently (in last second) found to be nearly full. See further
2255 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2256 * that have to skip over a lot of full or unallowed zones.
2258 * If the zonelist cache is present in the passed zonelist, then
2259 * returns a pointer to the allowed node mask (either the current
2260 * tasks mems_allowed, or node_states[N_MEMORY].)
2262 * If the zonelist cache is not available for this zonelist, does
2263 * nothing and returns NULL.
2265 * If the fullzones BITMAP in the zonelist cache is stale (more than
2266 * a second since last zap'd) then we zap it out (clear its bits.)
2268 * We hold off even calling zlc_setup, until after we've checked the
2269 * first zone in the zonelist, on the theory that most allocations will
2270 * be satisfied from that first zone, so best to examine that zone as
2271 * quickly as we can.
2273 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
2275 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
2276 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
2278 zlc
= zonelist
->zlcache_ptr
;
2282 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
2283 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2284 zlc
->last_full_zap
= jiffies
;
2287 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
2288 &cpuset_current_mems_allowed
:
2289 &node_states
[N_MEMORY
];
2290 return allowednodes
;
2294 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2295 * if it is worth looking at further for free memory:
2296 * 1) Check that the zone isn't thought to be full (doesn't have its
2297 * bit set in the zonelist_cache fullzones BITMAP).
2298 * 2) Check that the zones node (obtained from the zonelist_cache
2299 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2300 * Return true (non-zero) if zone is worth looking at further, or
2301 * else return false (zero) if it is not.
2303 * This check -ignores- the distinction between various watermarks,
2304 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2305 * found to be full for any variation of these watermarks, it will
2306 * be considered full for up to one second by all requests, unless
2307 * we are so low on memory on all allowed nodes that we are forced
2308 * into the second scan of the zonelist.
2310 * In the second scan we ignore this zonelist cache and exactly
2311 * apply the watermarks to all zones, even it is slower to do so.
2312 * We are low on memory in the second scan, and should leave no stone
2313 * unturned looking for a free page.
2315 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
2316 nodemask_t
*allowednodes
)
2318 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
2319 int i
; /* index of *z in zonelist zones */
2320 int n
; /* node that zone *z is on */
2322 zlc
= zonelist
->zlcache_ptr
;
2326 i
= z
- zonelist
->_zonerefs
;
2329 /* This zone is worth trying if it is allowed but not full */
2330 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
2334 * Given 'z' scanning a zonelist, set the corresponding bit in
2335 * zlc->fullzones, so that subsequent attempts to allocate a page
2336 * from that zone don't waste time re-examining it.
2338 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
2340 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
2341 int i
; /* index of *z in zonelist zones */
2343 zlc
= zonelist
->zlcache_ptr
;
2347 i
= z
- zonelist
->_zonerefs
;
2349 set_bit(i
, zlc
->fullzones
);
2353 * clear all zones full, called after direct reclaim makes progress so that
2354 * a zone that was recently full is not skipped over for up to a second
2356 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
2358 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
2360 zlc
= zonelist
->zlcache_ptr
;
2364 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2367 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2369 return local_zone
->node
== zone
->node
;
2372 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2374 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2378 #else /* CONFIG_NUMA */
2380 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
2385 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
2386 nodemask_t
*allowednodes
)
2391 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
2395 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
2399 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2404 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2409 #endif /* CONFIG_NUMA */
2411 static void reset_alloc_batches(struct zone
*preferred_zone
)
2413 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2416 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2417 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2418 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2419 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2420 } while (zone
++ != preferred_zone
);
2424 * get_page_from_freelist goes through the zonelist trying to allocate
2427 static struct page
*
2428 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2429 const struct alloc_context
*ac
)
2431 struct zonelist
*zonelist
= ac
->zonelist
;
2433 struct page
*page
= NULL
;
2435 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
2436 int zlc_active
= 0; /* set if using zonelist_cache */
2437 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
2438 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
2439 (gfp_mask
& __GFP_WRITE
);
2440 int nr_fair_skipped
= 0;
2441 bool zonelist_rescan
;
2444 zonelist_rescan
= false;
2447 * Scan zonelist, looking for a zone with enough free.
2448 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2450 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2454 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2455 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2457 if (cpusets_enabled() &&
2458 (alloc_flags
& ALLOC_CPUSET
) &&
2459 !cpuset_zone_allowed(zone
, gfp_mask
))
2462 * Distribute pages in proportion to the individual
2463 * zone size to ensure fair page aging. The zone a
2464 * page was allocated in should have no effect on the
2465 * time the page has in memory before being reclaimed.
2467 if (alloc_flags
& ALLOC_FAIR
) {
2468 if (!zone_local(ac
->preferred_zone
, zone
))
2470 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2476 * When allocating a page cache page for writing, we
2477 * want to get it from a zone that is within its dirty
2478 * limit, such that no single zone holds more than its
2479 * proportional share of globally allowed dirty pages.
2480 * The dirty limits take into account the zone's
2481 * lowmem reserves and high watermark so that kswapd
2482 * should be able to balance it without having to
2483 * write pages from its LRU list.
2485 * This may look like it could increase pressure on
2486 * lower zones by failing allocations in higher zones
2487 * before they are full. But the pages that do spill
2488 * over are limited as the lower zones are protected
2489 * by this very same mechanism. It should not become
2490 * a practical burden to them.
2492 * XXX: For now, allow allocations to potentially
2493 * exceed the per-zone dirty limit in the slowpath
2494 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2495 * which is important when on a NUMA setup the allowed
2496 * zones are together not big enough to reach the
2497 * global limit. The proper fix for these situations
2498 * will require awareness of zones in the
2499 * dirty-throttling and the flusher threads.
2501 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2504 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2505 if (!zone_watermark_ok(zone
, order
, mark
,
2506 ac
->classzone_idx
, alloc_flags
)) {
2509 /* Checked here to keep the fast path fast */
2510 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2511 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2514 if (IS_ENABLED(CONFIG_NUMA
) &&
2515 !did_zlc_setup
&& nr_online_nodes
> 1) {
2517 * we do zlc_setup if there are multiple nodes
2518 * and before considering the first zone allowed
2521 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2526 if (zone_reclaim_mode
== 0 ||
2527 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2528 goto this_zone_full
;
2531 * As we may have just activated ZLC, check if the first
2532 * eligible zone has failed zone_reclaim recently.
2534 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2535 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2538 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2540 case ZONE_RECLAIM_NOSCAN
:
2543 case ZONE_RECLAIM_FULL
:
2544 /* scanned but unreclaimable */
2547 /* did we reclaim enough */
2548 if (zone_watermark_ok(zone
, order
, mark
,
2549 ac
->classzone_idx
, alloc_flags
))
2553 * Failed to reclaim enough to meet watermark.
2554 * Only mark the zone full if checking the min
2555 * watermark or if we failed to reclaim just
2556 * 1<<order pages or else the page allocator
2557 * fastpath will prematurely mark zones full
2558 * when the watermark is between the low and
2561 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2562 ret
== ZONE_RECLAIM_SOME
)
2563 goto this_zone_full
;
2570 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2571 gfp_mask
, ac
->migratetype
);
2573 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2578 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2579 zlc_mark_zone_full(zonelist
, z
);
2583 * The first pass makes sure allocations are spread fairly within the
2584 * local node. However, the local node might have free pages left
2585 * after the fairness batches are exhausted, and remote zones haven't
2586 * even been considered yet. Try once more without fairness, and
2587 * include remote zones now, before entering the slowpath and waking
2588 * kswapd: prefer spilling to a remote zone over swapping locally.
2590 if (alloc_flags
& ALLOC_FAIR
) {
2591 alloc_flags
&= ~ALLOC_FAIR
;
2592 if (nr_fair_skipped
) {
2593 zonelist_rescan
= true;
2594 reset_alloc_batches(ac
->preferred_zone
);
2596 if (nr_online_nodes
> 1)
2597 zonelist_rescan
= true;
2600 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && zlc_active
)) {
2601 /* Disable zlc cache for second zonelist scan */
2603 zonelist_rescan
= true;
2606 if (zonelist_rescan
)
2613 * Large machines with many possible nodes should not always dump per-node
2614 * meminfo in irq context.
2616 static inline bool should_suppress_show_mem(void)
2621 ret
= in_interrupt();
2626 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2627 DEFAULT_RATELIMIT_INTERVAL
,
2628 DEFAULT_RATELIMIT_BURST
);
2630 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2632 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2634 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2635 debug_guardpage_minorder() > 0)
2639 * This documents exceptions given to allocations in certain
2640 * contexts that are allowed to allocate outside current's set
2643 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2644 if (test_thread_flag(TIF_MEMDIE
) ||
2645 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2646 filter
&= ~SHOW_MEM_FILTER_NODES
;
2647 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2648 filter
&= ~SHOW_MEM_FILTER_NODES
;
2651 struct va_format vaf
;
2654 va_start(args
, fmt
);
2659 pr_warn("%pV", &vaf
);
2664 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2665 current
->comm
, order
, gfp_mask
);
2668 if (!should_suppress_show_mem())
2672 static inline struct page
*
2673 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2674 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2678 *did_some_progress
= 0;
2681 * Acquire the oom lock. If that fails, somebody else is
2682 * making progress for us.
2684 if (!mutex_trylock(&oom_lock
)) {
2685 *did_some_progress
= 1;
2686 schedule_timeout_uninterruptible(1);
2691 * Go through the zonelist yet one more time, keep very high watermark
2692 * here, this is only to catch a parallel oom killing, we must fail if
2693 * we're still under heavy pressure.
2695 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2696 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2700 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2701 /* Coredumps can quickly deplete all memory reserves */
2702 if (current
->flags
& PF_DUMPCORE
)
2704 /* The OOM killer will not help higher order allocs */
2705 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2707 /* The OOM killer does not needlessly kill tasks for lowmem */
2708 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2710 /* The OOM killer does not compensate for IO-less reclaim */
2711 if (!(gfp_mask
& __GFP_FS
)) {
2713 * XXX: Page reclaim didn't yield anything,
2714 * and the OOM killer can't be invoked, but
2715 * keep looping as per tradition.
2717 *did_some_progress
= 1;
2720 if (pm_suspended_storage())
2722 /* The OOM killer may not free memory on a specific node */
2723 if (gfp_mask
& __GFP_THISNODE
)
2726 /* Exhausted what can be done so it's blamo time */
2727 if (out_of_memory(ac
->zonelist
, gfp_mask
, order
, ac
->nodemask
, false)
2728 || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
))
2729 *did_some_progress
= 1;
2731 mutex_unlock(&oom_lock
);
2735 #ifdef CONFIG_COMPACTION
2736 /* Try memory compaction for high-order allocations before reclaim */
2737 static struct page
*
2738 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2739 int alloc_flags
, const struct alloc_context
*ac
,
2740 enum migrate_mode mode
, int *contended_compaction
,
2741 bool *deferred_compaction
)
2743 unsigned long compact_result
;
2749 current
->flags
|= PF_MEMALLOC
;
2750 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2751 mode
, contended_compaction
);
2752 current
->flags
&= ~PF_MEMALLOC
;
2754 switch (compact_result
) {
2755 case COMPACT_DEFERRED
:
2756 *deferred_compaction
= true;
2758 case COMPACT_SKIPPED
:
2765 * At least in one zone compaction wasn't deferred or skipped, so let's
2766 * count a compaction stall
2768 count_vm_event(COMPACTSTALL
);
2770 page
= get_page_from_freelist(gfp_mask
, order
,
2771 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2774 struct zone
*zone
= page_zone(page
);
2776 zone
->compact_blockskip_flush
= false;
2777 compaction_defer_reset(zone
, order
, true);
2778 count_vm_event(COMPACTSUCCESS
);
2783 * It's bad if compaction run occurs and fails. The most likely reason
2784 * is that pages exist, but not enough to satisfy watermarks.
2786 count_vm_event(COMPACTFAIL
);
2793 static inline struct page
*
2794 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2795 int alloc_flags
, const struct alloc_context
*ac
,
2796 enum migrate_mode mode
, int *contended_compaction
,
2797 bool *deferred_compaction
)
2801 #endif /* CONFIG_COMPACTION */
2803 /* Perform direct synchronous page reclaim */
2805 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2806 const struct alloc_context
*ac
)
2808 struct reclaim_state reclaim_state
;
2813 /* We now go into synchronous reclaim */
2814 cpuset_memory_pressure_bump();
2815 current
->flags
|= PF_MEMALLOC
;
2816 lockdep_set_current_reclaim_state(gfp_mask
);
2817 reclaim_state
.reclaimed_slab
= 0;
2818 current
->reclaim_state
= &reclaim_state
;
2820 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
2823 current
->reclaim_state
= NULL
;
2824 lockdep_clear_current_reclaim_state();
2825 current
->flags
&= ~PF_MEMALLOC
;
2832 /* The really slow allocator path where we enter direct reclaim */
2833 static inline struct page
*
2834 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2835 int alloc_flags
, const struct alloc_context
*ac
,
2836 unsigned long *did_some_progress
)
2838 struct page
*page
= NULL
;
2839 bool drained
= false;
2841 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
2842 if (unlikely(!(*did_some_progress
)))
2845 /* After successful reclaim, reconsider all zones for allocation */
2846 if (IS_ENABLED(CONFIG_NUMA
))
2847 zlc_clear_zones_full(ac
->zonelist
);
2850 page
= get_page_from_freelist(gfp_mask
, order
,
2851 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2854 * If an allocation failed after direct reclaim, it could be because
2855 * pages are pinned on the per-cpu lists. Drain them and try again
2857 if (!page
&& !drained
) {
2858 drain_all_pages(NULL
);
2867 * This is called in the allocator slow-path if the allocation request is of
2868 * sufficient urgency to ignore watermarks and take other desperate measures
2870 static inline struct page
*
2871 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2872 const struct alloc_context
*ac
)
2877 page
= get_page_from_freelist(gfp_mask
, order
,
2878 ALLOC_NO_WATERMARKS
, ac
);
2880 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2881 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
,
2883 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2888 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
2893 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2894 ac
->high_zoneidx
, ac
->nodemask
)
2895 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
2899 gfp_to_alloc_flags(gfp_t gfp_mask
)
2901 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2902 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2904 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2905 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2908 * The caller may dip into page reserves a bit more if the caller
2909 * cannot run direct reclaim, or if the caller has realtime scheduling
2910 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2911 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2913 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2917 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2918 * if it can't schedule.
2920 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2921 alloc_flags
|= ALLOC_HARDER
;
2923 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2924 * comment for __cpuset_node_allowed().
2926 alloc_flags
&= ~ALLOC_CPUSET
;
2927 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2928 alloc_flags
|= ALLOC_HARDER
;
2930 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2931 if (gfp_mask
& __GFP_MEMALLOC
)
2932 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2933 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2934 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2935 else if (!in_interrupt() &&
2936 ((current
->flags
& PF_MEMALLOC
) ||
2937 unlikely(test_thread_flag(TIF_MEMDIE
))))
2938 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2941 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2942 alloc_flags
|= ALLOC_CMA
;
2947 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2949 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2952 static inline struct page
*
2953 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2954 struct alloc_context
*ac
)
2956 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2957 struct page
*page
= NULL
;
2959 unsigned long pages_reclaimed
= 0;
2960 unsigned long did_some_progress
;
2961 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2962 bool deferred_compaction
= false;
2963 int contended_compaction
= COMPACT_CONTENDED_NONE
;
2966 * In the slowpath, we sanity check order to avoid ever trying to
2967 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2968 * be using allocators in order of preference for an area that is
2971 if (order
>= MAX_ORDER
) {
2972 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2977 * If this allocation cannot block and it is for a specific node, then
2978 * fail early. There's no need to wakeup kswapd or retry for a
2979 * speculative node-specific allocation.
2981 if (IS_ENABLED(CONFIG_NUMA
) && (gfp_mask
& __GFP_THISNODE
) && !wait
)
2985 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2986 wake_all_kswapds(order
, ac
);
2989 * OK, we're below the kswapd watermark and have kicked background
2990 * reclaim. Now things get more complex, so set up alloc_flags according
2991 * to how we want to proceed.
2993 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2996 * Find the true preferred zone if the allocation is unconstrained by
2999 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3000 struct zoneref
*preferred_zoneref
;
3001 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3002 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3003 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3006 /* This is the last chance, in general, before the goto nopage. */
3007 page
= get_page_from_freelist(gfp_mask
, order
,
3008 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3012 /* Allocate without watermarks if the context allows */
3013 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3015 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3016 * the allocation is high priority and these type of
3017 * allocations are system rather than user orientated
3019 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3021 page
= __alloc_pages_high_priority(gfp_mask
, order
, ac
);
3028 /* Atomic allocations - we can't balance anything */
3031 * All existing users of the deprecated __GFP_NOFAIL are
3032 * blockable, so warn of any new users that actually allow this
3033 * type of allocation to fail.
3035 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3039 /* Avoid recursion of direct reclaim */
3040 if (current
->flags
& PF_MEMALLOC
)
3043 /* Avoid allocations with no watermarks from looping endlessly */
3044 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3048 * Try direct compaction. The first pass is asynchronous. Subsequent
3049 * attempts after direct reclaim are synchronous
3051 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3053 &contended_compaction
,
3054 &deferred_compaction
);
3058 /* Checks for THP-specific high-order allocations */
3059 if ((gfp_mask
& GFP_TRANSHUGE
) == GFP_TRANSHUGE
) {
3061 * If compaction is deferred for high-order allocations, it is
3062 * because sync compaction recently failed. If this is the case
3063 * and the caller requested a THP allocation, we do not want
3064 * to heavily disrupt the system, so we fail the allocation
3065 * instead of entering direct reclaim.
3067 if (deferred_compaction
)
3071 * In all zones where compaction was attempted (and not
3072 * deferred or skipped), lock contention has been detected.
3073 * For THP allocation we do not want to disrupt the others
3074 * so we fallback to base pages instead.
3076 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3080 * If compaction was aborted due to need_resched(), we do not
3081 * want to further increase allocation latency, unless it is
3082 * khugepaged trying to collapse.
3084 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3085 && !(current
->flags
& PF_KTHREAD
))
3090 * It can become very expensive to allocate transparent hugepages at
3091 * fault, so use asynchronous memory compaction for THP unless it is
3092 * khugepaged trying to collapse.
3094 if ((gfp_mask
& GFP_TRANSHUGE
) != GFP_TRANSHUGE
||
3095 (current
->flags
& PF_KTHREAD
))
3096 migration_mode
= MIGRATE_SYNC_LIGHT
;
3098 /* Try direct reclaim and then allocating */
3099 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3100 &did_some_progress
);
3104 /* Do not loop if specifically requested */
3105 if (gfp_mask
& __GFP_NORETRY
)
3108 /* Keep reclaiming pages as long as there is reasonable progress */
3109 pages_reclaimed
+= did_some_progress
;
3110 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3111 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3112 /* Wait for some write requests to complete then retry */
3113 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3117 /* Reclaim has failed us, start killing things */
3118 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3122 /* Retry as long as the OOM killer is making progress */
3123 if (did_some_progress
)
3128 * High-order allocations do not necessarily loop after
3129 * direct reclaim and reclaim/compaction depends on compaction
3130 * being called after reclaim so call directly if necessary
3132 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3134 &contended_compaction
,
3135 &deferred_compaction
);
3139 warn_alloc_failed(gfp_mask
, order
, NULL
);
3145 * This is the 'heart' of the zoned buddy allocator.
3148 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3149 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3151 struct zoneref
*preferred_zoneref
;
3152 struct page
*page
= NULL
;
3153 unsigned int cpuset_mems_cookie
;
3154 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3155 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3156 struct alloc_context ac
= {
3157 .high_zoneidx
= gfp_zone(gfp_mask
),
3158 .nodemask
= nodemask
,
3159 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3162 gfp_mask
&= gfp_allowed_mask
;
3164 lockdep_trace_alloc(gfp_mask
);
3166 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3168 if (should_fail_alloc_page(gfp_mask
, order
))
3172 * Check the zones suitable for the gfp_mask contain at least one
3173 * valid zone. It's possible to have an empty zonelist as a result
3174 * of __GFP_THISNODE and a memoryless node
3176 if (unlikely(!zonelist
->_zonerefs
->zone
))
3179 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3180 alloc_flags
|= ALLOC_CMA
;
3183 cpuset_mems_cookie
= read_mems_allowed_begin();
3185 /* We set it here, as __alloc_pages_slowpath might have changed it */
3186 ac
.zonelist
= zonelist
;
3187 /* The preferred zone is used for statistics later */
3188 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3189 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3190 &ac
.preferred_zone
);
3191 if (!ac
.preferred_zone
)
3193 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3195 /* First allocation attempt */
3196 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3197 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3198 if (unlikely(!page
)) {
3200 * Runtime PM, block IO and its error handling path
3201 * can deadlock because I/O on the device might not
3204 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3206 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3209 if (kmemcheck_enabled
&& page
)
3210 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3212 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3216 * When updating a task's mems_allowed, it is possible to race with
3217 * parallel threads in such a way that an allocation can fail while
3218 * the mask is being updated. If a page allocation is about to fail,
3219 * check if the cpuset changed during allocation and if so, retry.
3221 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3226 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3229 * Common helper functions.
3231 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3236 * __get_free_pages() returns a 32-bit address, which cannot represent
3239 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3241 page
= alloc_pages(gfp_mask
, order
);
3244 return (unsigned long) page_address(page
);
3246 EXPORT_SYMBOL(__get_free_pages
);
3248 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3250 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3252 EXPORT_SYMBOL(get_zeroed_page
);
3254 void __free_pages(struct page
*page
, unsigned int order
)
3256 if (put_page_testzero(page
)) {
3258 free_hot_cold_page(page
, false);
3260 __free_pages_ok(page
, order
);
3264 EXPORT_SYMBOL(__free_pages
);
3266 void free_pages(unsigned long addr
, unsigned int order
)
3269 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3270 __free_pages(virt_to_page((void *)addr
), order
);
3274 EXPORT_SYMBOL(free_pages
);
3278 * An arbitrary-length arbitrary-offset area of memory which resides
3279 * within a 0 or higher order page. Multiple fragments within that page
3280 * are individually refcounted, in the page's reference counter.
3282 * The page_frag functions below provide a simple allocation framework for
3283 * page fragments. This is used by the network stack and network device
3284 * drivers to provide a backing region of memory for use as either an
3285 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3287 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3290 struct page
*page
= NULL
;
3291 gfp_t gfp
= gfp_mask
;
3293 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3294 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3296 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3297 PAGE_FRAG_CACHE_MAX_ORDER
);
3298 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3300 if (unlikely(!page
))
3301 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3303 nc
->va
= page
? page_address(page
) : NULL
;
3308 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3309 unsigned int fragsz
, gfp_t gfp_mask
)
3311 unsigned int size
= PAGE_SIZE
;
3315 if (unlikely(!nc
->va
)) {
3317 page
= __page_frag_refill(nc
, gfp_mask
);
3321 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3322 /* if size can vary use size else just use PAGE_SIZE */
3325 /* Even if we own the page, we do not use atomic_set().
3326 * This would break get_page_unless_zero() users.
3328 atomic_add(size
- 1, &page
->_count
);
3330 /* reset page count bias and offset to start of new frag */
3331 nc
->pfmemalloc
= page
->pfmemalloc
;
3332 nc
->pagecnt_bias
= size
;
3336 offset
= nc
->offset
- fragsz
;
3337 if (unlikely(offset
< 0)) {
3338 page
= virt_to_page(nc
->va
);
3340 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
3343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3344 /* if size can vary use size else just use PAGE_SIZE */
3347 /* OK, page count is 0, we can safely set it */
3348 atomic_set(&page
->_count
, size
);
3350 /* reset page count bias and offset to start of new frag */
3351 nc
->pagecnt_bias
= size
;
3352 offset
= size
- fragsz
;
3356 nc
->offset
= offset
;
3358 return nc
->va
+ offset
;
3360 EXPORT_SYMBOL(__alloc_page_frag
);
3363 * Frees a page fragment allocated out of either a compound or order 0 page.
3365 void __free_page_frag(void *addr
)
3367 struct page
*page
= virt_to_head_page(addr
);
3369 if (unlikely(put_page_testzero(page
)))
3370 __free_pages_ok(page
, compound_order(page
));
3372 EXPORT_SYMBOL(__free_page_frag
);
3375 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3376 * of the current memory cgroup.
3378 * It should be used when the caller would like to use kmalloc, but since the
3379 * allocation is large, it has to fall back to the page allocator.
3381 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3384 struct mem_cgroup
*memcg
= NULL
;
3386 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
3388 page
= alloc_pages(gfp_mask
, order
);
3389 memcg_kmem_commit_charge(page
, memcg
, order
);
3393 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3396 struct mem_cgroup
*memcg
= NULL
;
3398 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
3400 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3401 memcg_kmem_commit_charge(page
, memcg
, order
);
3406 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3409 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3411 memcg_kmem_uncharge_pages(page
, order
);
3412 __free_pages(page
, order
);
3415 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3418 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3419 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3423 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
3426 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3427 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3429 split_page(virt_to_page((void *)addr
), order
);
3430 while (used
< alloc_end
) {
3435 return (void *)addr
;
3439 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3440 * @size: the number of bytes to allocate
3441 * @gfp_mask: GFP flags for the allocation
3443 * This function is similar to alloc_pages(), except that it allocates the
3444 * minimum number of pages to satisfy the request. alloc_pages() can only
3445 * allocate memory in power-of-two pages.
3447 * This function is also limited by MAX_ORDER.
3449 * Memory allocated by this function must be released by free_pages_exact().
3451 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3453 unsigned int order
= get_order(size
);
3456 addr
= __get_free_pages(gfp_mask
, order
);
3457 return make_alloc_exact(addr
, order
, size
);
3459 EXPORT_SYMBOL(alloc_pages_exact
);
3462 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3464 * @nid: the preferred node ID where memory should be allocated
3465 * @size: the number of bytes to allocate
3466 * @gfp_mask: GFP flags for the allocation
3468 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3470 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3473 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3475 unsigned order
= get_order(size
);
3476 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3479 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3483 * free_pages_exact - release memory allocated via alloc_pages_exact()
3484 * @virt: the value returned by alloc_pages_exact.
3485 * @size: size of allocation, same value as passed to alloc_pages_exact().
3487 * Release the memory allocated by a previous call to alloc_pages_exact.
3489 void free_pages_exact(void *virt
, size_t size
)
3491 unsigned long addr
= (unsigned long)virt
;
3492 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3494 while (addr
< end
) {
3499 EXPORT_SYMBOL(free_pages_exact
);
3502 * nr_free_zone_pages - count number of pages beyond high watermark
3503 * @offset: The zone index of the highest zone
3505 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3506 * high watermark within all zones at or below a given zone index. For each
3507 * zone, the number of pages is calculated as:
3508 * managed_pages - high_pages
3510 static unsigned long nr_free_zone_pages(int offset
)
3515 /* Just pick one node, since fallback list is circular */
3516 unsigned long sum
= 0;
3518 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3520 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3521 unsigned long size
= zone
->managed_pages
;
3522 unsigned long high
= high_wmark_pages(zone
);
3531 * nr_free_buffer_pages - count number of pages beyond high watermark
3533 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3534 * watermark within ZONE_DMA and ZONE_NORMAL.
3536 unsigned long nr_free_buffer_pages(void)
3538 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3540 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3543 * nr_free_pagecache_pages - count number of pages beyond high watermark
3545 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3546 * high watermark within all zones.
3548 unsigned long nr_free_pagecache_pages(void)
3550 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3553 static inline void show_node(struct zone
*zone
)
3555 if (IS_ENABLED(CONFIG_NUMA
))
3556 printk("Node %d ", zone_to_nid(zone
));
3559 void si_meminfo(struct sysinfo
*val
)
3561 val
->totalram
= totalram_pages
;
3562 val
->sharedram
= global_page_state(NR_SHMEM
);
3563 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3564 val
->bufferram
= nr_blockdev_pages();
3565 val
->totalhigh
= totalhigh_pages
;
3566 val
->freehigh
= nr_free_highpages();
3567 val
->mem_unit
= PAGE_SIZE
;
3570 EXPORT_SYMBOL(si_meminfo
);
3573 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3575 int zone_type
; /* needs to be signed */
3576 unsigned long managed_pages
= 0;
3577 pg_data_t
*pgdat
= NODE_DATA(nid
);
3579 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3580 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3581 val
->totalram
= managed_pages
;
3582 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3583 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3584 #ifdef CONFIG_HIGHMEM
3585 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3586 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3592 val
->mem_unit
= PAGE_SIZE
;
3597 * Determine whether the node should be displayed or not, depending on whether
3598 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3600 bool skip_free_areas_node(unsigned int flags
, int nid
)
3603 unsigned int cpuset_mems_cookie
;
3605 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3609 cpuset_mems_cookie
= read_mems_allowed_begin();
3610 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3611 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3616 #define K(x) ((x) << (PAGE_SHIFT-10))
3618 static void show_migration_types(unsigned char type
)
3620 static const char types
[MIGRATE_TYPES
] = {
3621 [MIGRATE_UNMOVABLE
] = 'U',
3622 [MIGRATE_RECLAIMABLE
] = 'E',
3623 [MIGRATE_MOVABLE
] = 'M',
3624 [MIGRATE_RESERVE
] = 'R',
3626 [MIGRATE_CMA
] = 'C',
3628 #ifdef CONFIG_MEMORY_ISOLATION
3629 [MIGRATE_ISOLATE
] = 'I',
3632 char tmp
[MIGRATE_TYPES
+ 1];
3636 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3637 if (type
& (1 << i
))
3642 printk("(%s) ", tmp
);
3646 * Show free area list (used inside shift_scroll-lock stuff)
3647 * We also calculate the percentage fragmentation. We do this by counting the
3648 * memory on each free list with the exception of the first item on the list.
3651 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3654 void show_free_areas(unsigned int filter
)
3656 unsigned long free_pcp
= 0;
3660 for_each_populated_zone(zone
) {
3661 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3664 for_each_online_cpu(cpu
)
3665 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3668 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3669 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3670 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3671 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3672 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3673 " free:%lu free_pcp:%lu free_cma:%lu\n",
3674 global_page_state(NR_ACTIVE_ANON
),
3675 global_page_state(NR_INACTIVE_ANON
),
3676 global_page_state(NR_ISOLATED_ANON
),
3677 global_page_state(NR_ACTIVE_FILE
),
3678 global_page_state(NR_INACTIVE_FILE
),
3679 global_page_state(NR_ISOLATED_FILE
),
3680 global_page_state(NR_UNEVICTABLE
),
3681 global_page_state(NR_FILE_DIRTY
),
3682 global_page_state(NR_WRITEBACK
),
3683 global_page_state(NR_UNSTABLE_NFS
),
3684 global_page_state(NR_SLAB_RECLAIMABLE
),
3685 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3686 global_page_state(NR_FILE_MAPPED
),
3687 global_page_state(NR_SHMEM
),
3688 global_page_state(NR_PAGETABLE
),
3689 global_page_state(NR_BOUNCE
),
3690 global_page_state(NR_FREE_PAGES
),
3692 global_page_state(NR_FREE_CMA_PAGES
));
3694 for_each_populated_zone(zone
) {
3697 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3701 for_each_online_cpu(cpu
)
3702 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3710 " active_anon:%lukB"
3711 " inactive_anon:%lukB"
3712 " active_file:%lukB"
3713 " inactive_file:%lukB"
3714 " unevictable:%lukB"
3715 " isolated(anon):%lukB"
3716 " isolated(file):%lukB"
3724 " slab_reclaimable:%lukB"
3725 " slab_unreclaimable:%lukB"
3726 " kernel_stack:%lukB"
3733 " writeback_tmp:%lukB"
3734 " pages_scanned:%lu"
3735 " all_unreclaimable? %s"
3738 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3739 K(min_wmark_pages(zone
)),
3740 K(low_wmark_pages(zone
)),
3741 K(high_wmark_pages(zone
)),
3742 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3743 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3744 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3745 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3746 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3747 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3748 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3749 K(zone
->present_pages
),
3750 K(zone
->managed_pages
),
3751 K(zone_page_state(zone
, NR_MLOCK
)),
3752 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3753 K(zone_page_state(zone
, NR_WRITEBACK
)),
3754 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3755 K(zone_page_state(zone
, NR_SHMEM
)),
3756 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3757 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3758 zone_page_state(zone
, NR_KERNEL_STACK
) *
3760 K(zone_page_state(zone
, NR_PAGETABLE
)),
3761 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3762 K(zone_page_state(zone
, NR_BOUNCE
)),
3764 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3765 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3766 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3767 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3768 (!zone_reclaimable(zone
) ? "yes" : "no")
3770 printk("lowmem_reserve[]:");
3771 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3772 printk(" %ld", zone
->lowmem_reserve
[i
]);
3776 for_each_populated_zone(zone
) {
3777 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3778 unsigned char types
[MAX_ORDER
];
3780 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3783 printk("%s: ", zone
->name
);
3785 spin_lock_irqsave(&zone
->lock
, flags
);
3786 for (order
= 0; order
< MAX_ORDER
; order
++) {
3787 struct free_area
*area
= &zone
->free_area
[order
];
3790 nr
[order
] = area
->nr_free
;
3791 total
+= nr
[order
] << order
;
3794 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3795 if (!list_empty(&area
->free_list
[type
]))
3796 types
[order
] |= 1 << type
;
3799 spin_unlock_irqrestore(&zone
->lock
, flags
);
3800 for (order
= 0; order
< MAX_ORDER
; order
++) {
3801 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3803 show_migration_types(types
[order
]);
3805 printk("= %lukB\n", K(total
));
3808 hugetlb_show_meminfo();
3810 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3812 show_swap_cache_info();
3815 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3817 zoneref
->zone
= zone
;
3818 zoneref
->zone_idx
= zone_idx(zone
);
3822 * Builds allocation fallback zone lists.
3824 * Add all populated zones of a node to the zonelist.
3826 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3830 enum zone_type zone_type
= MAX_NR_ZONES
;
3834 zone
= pgdat
->node_zones
+ zone_type
;
3835 if (populated_zone(zone
)) {
3836 zoneref_set_zone(zone
,
3837 &zonelist
->_zonerefs
[nr_zones
++]);
3838 check_highest_zone(zone_type
);
3840 } while (zone_type
);
3848 * 0 = automatic detection of better ordering.
3849 * 1 = order by ([node] distance, -zonetype)
3850 * 2 = order by (-zonetype, [node] distance)
3852 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3853 * the same zonelist. So only NUMA can configure this param.
3855 #define ZONELIST_ORDER_DEFAULT 0
3856 #define ZONELIST_ORDER_NODE 1
3857 #define ZONELIST_ORDER_ZONE 2
3859 /* zonelist order in the kernel.
3860 * set_zonelist_order() will set this to NODE or ZONE.
3862 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3863 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3867 /* The value user specified ....changed by config */
3868 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3869 /* string for sysctl */
3870 #define NUMA_ZONELIST_ORDER_LEN 16
3871 char numa_zonelist_order
[16] = "default";
3874 * interface for configure zonelist ordering.
3875 * command line option "numa_zonelist_order"
3876 * = "[dD]efault - default, automatic configuration.
3877 * = "[nN]ode - order by node locality, then by zone within node
3878 * = "[zZ]one - order by zone, then by locality within zone
3881 static int __parse_numa_zonelist_order(char *s
)
3883 if (*s
== 'd' || *s
== 'D') {
3884 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3885 } else if (*s
== 'n' || *s
== 'N') {
3886 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3887 } else if (*s
== 'z' || *s
== 'Z') {
3888 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3891 "Ignoring invalid numa_zonelist_order value: "
3898 static __init
int setup_numa_zonelist_order(char *s
)
3905 ret
= __parse_numa_zonelist_order(s
);
3907 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3911 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3914 * sysctl handler for numa_zonelist_order
3916 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3917 void __user
*buffer
, size_t *length
,
3920 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3922 static DEFINE_MUTEX(zl_order_mutex
);
3924 mutex_lock(&zl_order_mutex
);
3926 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3930 strcpy(saved_string
, (char *)table
->data
);
3932 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3936 int oldval
= user_zonelist_order
;
3938 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3941 * bogus value. restore saved string
3943 strncpy((char *)table
->data
, saved_string
,
3944 NUMA_ZONELIST_ORDER_LEN
);
3945 user_zonelist_order
= oldval
;
3946 } else if (oldval
!= user_zonelist_order
) {
3947 mutex_lock(&zonelists_mutex
);
3948 build_all_zonelists(NULL
, NULL
);
3949 mutex_unlock(&zonelists_mutex
);
3953 mutex_unlock(&zl_order_mutex
);
3958 #define MAX_NODE_LOAD (nr_online_nodes)
3959 static int node_load
[MAX_NUMNODES
];
3962 * find_next_best_node - find the next node that should appear in a given node's fallback list
3963 * @node: node whose fallback list we're appending
3964 * @used_node_mask: nodemask_t of already used nodes
3966 * We use a number of factors to determine which is the next node that should
3967 * appear on a given node's fallback list. The node should not have appeared
3968 * already in @node's fallback list, and it should be the next closest node
3969 * according to the distance array (which contains arbitrary distance values
3970 * from each node to each node in the system), and should also prefer nodes
3971 * with no CPUs, since presumably they'll have very little allocation pressure
3972 * on them otherwise.
3973 * It returns -1 if no node is found.
3975 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3978 int min_val
= INT_MAX
;
3979 int best_node
= NUMA_NO_NODE
;
3980 const struct cpumask
*tmp
= cpumask_of_node(0);
3982 /* Use the local node if we haven't already */
3983 if (!node_isset(node
, *used_node_mask
)) {
3984 node_set(node
, *used_node_mask
);
3988 for_each_node_state(n
, N_MEMORY
) {
3990 /* Don't want a node to appear more than once */
3991 if (node_isset(n
, *used_node_mask
))
3994 /* Use the distance array to find the distance */
3995 val
= node_distance(node
, n
);
3997 /* Penalize nodes under us ("prefer the next node") */
4000 /* Give preference to headless and unused nodes */
4001 tmp
= cpumask_of_node(n
);
4002 if (!cpumask_empty(tmp
))
4003 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4005 /* Slight preference for less loaded node */
4006 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4007 val
+= node_load
[n
];
4009 if (val
< min_val
) {
4016 node_set(best_node
, *used_node_mask
);
4023 * Build zonelists ordered by node and zones within node.
4024 * This results in maximum locality--normal zone overflows into local
4025 * DMA zone, if any--but risks exhausting DMA zone.
4027 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4030 struct zonelist
*zonelist
;
4032 zonelist
= &pgdat
->node_zonelists
[0];
4033 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4035 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4036 zonelist
->_zonerefs
[j
].zone
= NULL
;
4037 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4041 * Build gfp_thisnode zonelists
4043 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4046 struct zonelist
*zonelist
;
4048 zonelist
= &pgdat
->node_zonelists
[1];
4049 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4050 zonelist
->_zonerefs
[j
].zone
= NULL
;
4051 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4055 * Build zonelists ordered by zone and nodes within zones.
4056 * This results in conserving DMA zone[s] until all Normal memory is
4057 * exhausted, but results in overflowing to remote node while memory
4058 * may still exist in local DMA zone.
4060 static int node_order
[MAX_NUMNODES
];
4062 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4065 int zone_type
; /* needs to be signed */
4067 struct zonelist
*zonelist
;
4069 zonelist
= &pgdat
->node_zonelists
[0];
4071 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4072 for (j
= 0; j
< nr_nodes
; j
++) {
4073 node
= node_order
[j
];
4074 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4075 if (populated_zone(z
)) {
4077 &zonelist
->_zonerefs
[pos
++]);
4078 check_highest_zone(zone_type
);
4082 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4083 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4086 #if defined(CONFIG_64BIT)
4088 * Devices that require DMA32/DMA are relatively rare and do not justify a
4089 * penalty to every machine in case the specialised case applies. Default
4090 * to Node-ordering on 64-bit NUMA machines
4092 static int default_zonelist_order(void)
4094 return ZONELIST_ORDER_NODE
;
4098 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4099 * by the kernel. If processes running on node 0 deplete the low memory zone
4100 * then reclaim will occur more frequency increasing stalls and potentially
4101 * be easier to OOM if a large percentage of the zone is under writeback or
4102 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4103 * Hence, default to zone ordering on 32-bit.
4105 static int default_zonelist_order(void)
4107 return ZONELIST_ORDER_ZONE
;
4109 #endif /* CONFIG_64BIT */
4111 static void set_zonelist_order(void)
4113 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4114 current_zonelist_order
= default_zonelist_order();
4116 current_zonelist_order
= user_zonelist_order
;
4119 static void build_zonelists(pg_data_t
*pgdat
)
4123 nodemask_t used_mask
;
4124 int local_node
, prev_node
;
4125 struct zonelist
*zonelist
;
4126 int order
= current_zonelist_order
;
4128 /* initialize zonelists */
4129 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4130 zonelist
= pgdat
->node_zonelists
+ i
;
4131 zonelist
->_zonerefs
[0].zone
= NULL
;
4132 zonelist
->_zonerefs
[0].zone_idx
= 0;
4135 /* NUMA-aware ordering of nodes */
4136 local_node
= pgdat
->node_id
;
4137 load
= nr_online_nodes
;
4138 prev_node
= local_node
;
4139 nodes_clear(used_mask
);
4141 memset(node_order
, 0, sizeof(node_order
));
4144 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4146 * We don't want to pressure a particular node.
4147 * So adding penalty to the first node in same
4148 * distance group to make it round-robin.
4150 if (node_distance(local_node
, node
) !=
4151 node_distance(local_node
, prev_node
))
4152 node_load
[node
] = load
;
4156 if (order
== ZONELIST_ORDER_NODE
)
4157 build_zonelists_in_node_order(pgdat
, node
);
4159 node_order
[j
++] = node
; /* remember order */
4162 if (order
== ZONELIST_ORDER_ZONE
) {
4163 /* calculate node order -- i.e., DMA last! */
4164 build_zonelists_in_zone_order(pgdat
, j
);
4167 build_thisnode_zonelists(pgdat
);
4170 /* Construct the zonelist performance cache - see further mmzone.h */
4171 static void build_zonelist_cache(pg_data_t
*pgdat
)
4173 struct zonelist
*zonelist
;
4174 struct zonelist_cache
*zlc
;
4177 zonelist
= &pgdat
->node_zonelists
[0];
4178 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
4179 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
4180 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
4181 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
4184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4186 * Return node id of node used for "local" allocations.
4187 * I.e., first node id of first zone in arg node's generic zonelist.
4188 * Used for initializing percpu 'numa_mem', which is used primarily
4189 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4191 int local_memory_node(int node
)
4195 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4196 gfp_zone(GFP_KERNEL
),
4203 #else /* CONFIG_NUMA */
4205 static void set_zonelist_order(void)
4207 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4210 static void build_zonelists(pg_data_t
*pgdat
)
4212 int node
, local_node
;
4214 struct zonelist
*zonelist
;
4216 local_node
= pgdat
->node_id
;
4218 zonelist
= &pgdat
->node_zonelists
[0];
4219 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4222 * Now we build the zonelist so that it contains the zones
4223 * of all the other nodes.
4224 * We don't want to pressure a particular node, so when
4225 * building the zones for node N, we make sure that the
4226 * zones coming right after the local ones are those from
4227 * node N+1 (modulo N)
4229 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4230 if (!node_online(node
))
4232 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4234 for (node
= 0; node
< local_node
; node
++) {
4235 if (!node_online(node
))
4237 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4240 zonelist
->_zonerefs
[j
].zone
= NULL
;
4241 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4244 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4245 static void build_zonelist_cache(pg_data_t
*pgdat
)
4247 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
4250 #endif /* CONFIG_NUMA */
4253 * Boot pageset table. One per cpu which is going to be used for all
4254 * zones and all nodes. The parameters will be set in such a way
4255 * that an item put on a list will immediately be handed over to
4256 * the buddy list. This is safe since pageset manipulation is done
4257 * with interrupts disabled.
4259 * The boot_pagesets must be kept even after bootup is complete for
4260 * unused processors and/or zones. They do play a role for bootstrapping
4261 * hotplugged processors.
4263 * zoneinfo_show() and maybe other functions do
4264 * not check if the processor is online before following the pageset pointer.
4265 * Other parts of the kernel may not check if the zone is available.
4267 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4268 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4269 static void setup_zone_pageset(struct zone
*zone
);
4272 * Global mutex to protect against size modification of zonelists
4273 * as well as to serialize pageset setup for the new populated zone.
4275 DEFINE_MUTEX(zonelists_mutex
);
4277 /* return values int ....just for stop_machine() */
4278 static int __build_all_zonelists(void *data
)
4282 pg_data_t
*self
= data
;
4285 memset(node_load
, 0, sizeof(node_load
));
4288 if (self
&& !node_online(self
->node_id
)) {
4289 build_zonelists(self
);
4290 build_zonelist_cache(self
);
4293 for_each_online_node(nid
) {
4294 pg_data_t
*pgdat
= NODE_DATA(nid
);
4296 build_zonelists(pgdat
);
4297 build_zonelist_cache(pgdat
);
4301 * Initialize the boot_pagesets that are going to be used
4302 * for bootstrapping processors. The real pagesets for
4303 * each zone will be allocated later when the per cpu
4304 * allocator is available.
4306 * boot_pagesets are used also for bootstrapping offline
4307 * cpus if the system is already booted because the pagesets
4308 * are needed to initialize allocators on a specific cpu too.
4309 * F.e. the percpu allocator needs the page allocator which
4310 * needs the percpu allocator in order to allocate its pagesets
4311 * (a chicken-egg dilemma).
4313 for_each_possible_cpu(cpu
) {
4314 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4318 * We now know the "local memory node" for each node--
4319 * i.e., the node of the first zone in the generic zonelist.
4320 * Set up numa_mem percpu variable for on-line cpus. During
4321 * boot, only the boot cpu should be on-line; we'll init the
4322 * secondary cpus' numa_mem as they come on-line. During
4323 * node/memory hotplug, we'll fixup all on-line cpus.
4325 if (cpu_online(cpu
))
4326 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4333 static noinline
void __init
4334 build_all_zonelists_init(void)
4336 __build_all_zonelists(NULL
);
4337 mminit_verify_zonelist();
4338 cpuset_init_current_mems_allowed();
4342 * Called with zonelists_mutex held always
4343 * unless system_state == SYSTEM_BOOTING.
4345 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4346 * [we're only called with non-NULL zone through __meminit paths] and
4347 * (2) call of __init annotated helper build_all_zonelists_init
4348 * [protected by SYSTEM_BOOTING].
4350 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4352 set_zonelist_order();
4354 if (system_state
== SYSTEM_BOOTING
) {
4355 build_all_zonelists_init();
4357 #ifdef CONFIG_MEMORY_HOTPLUG
4359 setup_zone_pageset(zone
);
4361 /* we have to stop all cpus to guarantee there is no user
4363 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4364 /* cpuset refresh routine should be here */
4366 vm_total_pages
= nr_free_pagecache_pages();
4368 * Disable grouping by mobility if the number of pages in the
4369 * system is too low to allow the mechanism to work. It would be
4370 * more accurate, but expensive to check per-zone. This check is
4371 * made on memory-hotadd so a system can start with mobility
4372 * disabled and enable it later
4374 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4375 page_group_by_mobility_disabled
= 1;
4377 page_group_by_mobility_disabled
= 0;
4379 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4380 "Total pages: %ld\n",
4382 zonelist_order_name
[current_zonelist_order
],
4383 page_group_by_mobility_disabled
? "off" : "on",
4386 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4391 * Helper functions to size the waitqueue hash table.
4392 * Essentially these want to choose hash table sizes sufficiently
4393 * large so that collisions trying to wait on pages are rare.
4394 * But in fact, the number of active page waitqueues on typical
4395 * systems is ridiculously low, less than 200. So this is even
4396 * conservative, even though it seems large.
4398 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4399 * waitqueues, i.e. the size of the waitq table given the number of pages.
4401 #define PAGES_PER_WAITQUEUE 256
4403 #ifndef CONFIG_MEMORY_HOTPLUG
4404 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4406 unsigned long size
= 1;
4408 pages
/= PAGES_PER_WAITQUEUE
;
4410 while (size
< pages
)
4414 * Once we have dozens or even hundreds of threads sleeping
4415 * on IO we've got bigger problems than wait queue collision.
4416 * Limit the size of the wait table to a reasonable size.
4418 size
= min(size
, 4096UL);
4420 return max(size
, 4UL);
4424 * A zone's size might be changed by hot-add, so it is not possible to determine
4425 * a suitable size for its wait_table. So we use the maximum size now.
4427 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4429 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4430 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4431 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4433 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4434 * or more by the traditional way. (See above). It equals:
4436 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4437 * ia64(16K page size) : = ( 8G + 4M)byte.
4438 * powerpc (64K page size) : = (32G +16M)byte.
4440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4447 * This is an integer logarithm so that shifts can be used later
4448 * to extract the more random high bits from the multiplicative
4449 * hash function before the remainder is taken.
4451 static inline unsigned long wait_table_bits(unsigned long size
)
4457 * Check if a pageblock contains reserved pages
4459 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
4463 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4464 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
4471 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4472 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4473 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4474 * higher will lead to a bigger reserve which will get freed as contiguous
4475 * blocks as reclaim kicks in
4477 static void setup_zone_migrate_reserve(struct zone
*zone
)
4479 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
4481 unsigned long block_migratetype
;
4486 * Get the start pfn, end pfn and the number of blocks to reserve
4487 * We have to be careful to be aligned to pageblock_nr_pages to
4488 * make sure that we always check pfn_valid for the first page in
4491 start_pfn
= zone
->zone_start_pfn
;
4492 end_pfn
= zone_end_pfn(zone
);
4493 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
4494 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4498 * Reserve blocks are generally in place to help high-order atomic
4499 * allocations that are short-lived. A min_free_kbytes value that
4500 * would result in more than 2 reserve blocks for atomic allocations
4501 * is assumed to be in place to help anti-fragmentation for the
4502 * future allocation of hugepages at runtime.
4504 reserve
= min(2, reserve
);
4505 old_reserve
= zone
->nr_migrate_reserve_block
;
4507 /* When memory hot-add, we almost always need to do nothing */
4508 if (reserve
== old_reserve
)
4510 zone
->nr_migrate_reserve_block
= reserve
;
4512 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4513 if (!early_page_nid_uninitialised(pfn
, zone_to_nid(zone
)))
4516 if (!pfn_valid(pfn
))
4518 page
= pfn_to_page(pfn
);
4520 /* Watch out for overlapping nodes */
4521 if (page_to_nid(page
) != zone_to_nid(zone
))
4524 block_migratetype
= get_pageblock_migratetype(page
);
4526 /* Only test what is necessary when the reserves are not met */
4529 * Blocks with reserved pages will never free, skip
4532 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4533 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4536 /* If this block is reserved, account for it */
4537 if (block_migratetype
== MIGRATE_RESERVE
) {
4542 /* Suitable for reserving if this block is movable */
4543 if (block_migratetype
== MIGRATE_MOVABLE
) {
4544 set_pageblock_migratetype(page
,
4546 move_freepages_block(zone
, page
,
4551 } else if (!old_reserve
) {
4553 * At boot time we don't need to scan the whole zone
4554 * for turning off MIGRATE_RESERVE.
4560 * If the reserve is met and this is a previous reserved block,
4563 if (block_migratetype
== MIGRATE_RESERVE
) {
4564 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4565 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4571 * Initially all pages are reserved - free ones are freed
4572 * up by free_all_bootmem() once the early boot process is
4573 * done. Non-atomic initialization, single-pass.
4575 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4576 unsigned long start_pfn
, enum memmap_context context
)
4578 pg_data_t
*pgdat
= NODE_DATA(nid
);
4579 unsigned long end_pfn
= start_pfn
+ size
;
4582 unsigned long nr_initialised
= 0;
4584 if (highest_memmap_pfn
< end_pfn
- 1)
4585 highest_memmap_pfn
= end_pfn
- 1;
4587 z
= &pgdat
->node_zones
[zone
];
4588 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4590 * There can be holes in boot-time mem_map[]s
4591 * handed to this function. They do not
4592 * exist on hotplugged memory.
4594 if (context
== MEMMAP_EARLY
) {
4595 if (!early_pfn_valid(pfn
))
4597 if (!early_pfn_in_nid(pfn
, nid
))
4599 if (!update_defer_init(pgdat
, pfn
, end_pfn
,
4605 * Mark the block movable so that blocks are reserved for
4606 * movable at startup. This will force kernel allocations
4607 * to reserve their blocks rather than leaking throughout
4608 * the address space during boot when many long-lived
4609 * kernel allocations are made. Later some blocks near
4610 * the start are marked MIGRATE_RESERVE by
4611 * setup_zone_migrate_reserve()
4613 * bitmap is created for zone's valid pfn range. but memmap
4614 * can be created for invalid pages (for alignment)
4615 * check here not to call set_pageblock_migratetype() against
4618 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4619 struct page
*page
= pfn_to_page(pfn
);
4621 __init_single_page(page
, pfn
, zone
, nid
);
4622 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4624 __init_single_pfn(pfn
, zone
, nid
);
4629 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4631 unsigned int order
, t
;
4632 for_each_migratetype_order(order
, t
) {
4633 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4634 zone
->free_area
[order
].nr_free
= 0;
4638 #ifndef __HAVE_ARCH_MEMMAP_INIT
4639 #define memmap_init(size, nid, zone, start_pfn) \
4640 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4643 static int zone_batchsize(struct zone
*zone
)
4649 * The per-cpu-pages pools are set to around 1000th of the
4650 * size of the zone. But no more than 1/2 of a meg.
4652 * OK, so we don't know how big the cache is. So guess.
4654 batch
= zone
->managed_pages
/ 1024;
4655 if (batch
* PAGE_SIZE
> 512 * 1024)
4656 batch
= (512 * 1024) / PAGE_SIZE
;
4657 batch
/= 4; /* We effectively *= 4 below */
4662 * Clamp the batch to a 2^n - 1 value. Having a power
4663 * of 2 value was found to be more likely to have
4664 * suboptimal cache aliasing properties in some cases.
4666 * For example if 2 tasks are alternately allocating
4667 * batches of pages, one task can end up with a lot
4668 * of pages of one half of the possible page colors
4669 * and the other with pages of the other colors.
4671 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4676 /* The deferral and batching of frees should be suppressed under NOMMU
4679 * The problem is that NOMMU needs to be able to allocate large chunks
4680 * of contiguous memory as there's no hardware page translation to
4681 * assemble apparent contiguous memory from discontiguous pages.
4683 * Queueing large contiguous runs of pages for batching, however,
4684 * causes the pages to actually be freed in smaller chunks. As there
4685 * can be a significant delay between the individual batches being
4686 * recycled, this leads to the once large chunks of space being
4687 * fragmented and becoming unavailable for high-order allocations.
4694 * pcp->high and pcp->batch values are related and dependent on one another:
4695 * ->batch must never be higher then ->high.
4696 * The following function updates them in a safe manner without read side
4699 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4700 * those fields changing asynchronously (acording the the above rule).
4702 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4703 * outside of boot time (or some other assurance that no concurrent updaters
4706 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4707 unsigned long batch
)
4709 /* start with a fail safe value for batch */
4713 /* Update high, then batch, in order */
4720 /* a companion to pageset_set_high() */
4721 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4723 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4726 static void pageset_init(struct per_cpu_pageset
*p
)
4728 struct per_cpu_pages
*pcp
;
4731 memset(p
, 0, sizeof(*p
));
4735 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4736 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4739 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4742 pageset_set_batch(p
, batch
);
4746 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4747 * to the value high for the pageset p.
4749 static void pageset_set_high(struct per_cpu_pageset
*p
,
4752 unsigned long batch
= max(1UL, high
/ 4);
4753 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4754 batch
= PAGE_SHIFT
* 8;
4756 pageset_update(&p
->pcp
, high
, batch
);
4759 static void pageset_set_high_and_batch(struct zone
*zone
,
4760 struct per_cpu_pageset
*pcp
)
4762 if (percpu_pagelist_fraction
)
4763 pageset_set_high(pcp
,
4764 (zone
->managed_pages
/
4765 percpu_pagelist_fraction
));
4767 pageset_set_batch(pcp
, zone_batchsize(zone
));
4770 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4772 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4775 pageset_set_high_and_batch(zone
, pcp
);
4778 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4781 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4782 for_each_possible_cpu(cpu
)
4783 zone_pageset_init(zone
, cpu
);
4787 * Allocate per cpu pagesets and initialize them.
4788 * Before this call only boot pagesets were available.
4790 void __init
setup_per_cpu_pageset(void)
4794 for_each_populated_zone(zone
)
4795 setup_zone_pageset(zone
);
4798 static noinline __init_refok
4799 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4805 * The per-page waitqueue mechanism uses hashed waitqueues
4808 zone
->wait_table_hash_nr_entries
=
4809 wait_table_hash_nr_entries(zone_size_pages
);
4810 zone
->wait_table_bits
=
4811 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4812 alloc_size
= zone
->wait_table_hash_nr_entries
4813 * sizeof(wait_queue_head_t
);
4815 if (!slab_is_available()) {
4816 zone
->wait_table
= (wait_queue_head_t
*)
4817 memblock_virt_alloc_node_nopanic(
4818 alloc_size
, zone
->zone_pgdat
->node_id
);
4821 * This case means that a zone whose size was 0 gets new memory
4822 * via memory hot-add.
4823 * But it may be the case that a new node was hot-added. In
4824 * this case vmalloc() will not be able to use this new node's
4825 * memory - this wait_table must be initialized to use this new
4826 * node itself as well.
4827 * To use this new node's memory, further consideration will be
4830 zone
->wait_table
= vmalloc(alloc_size
);
4832 if (!zone
->wait_table
)
4835 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4836 init_waitqueue_head(zone
->wait_table
+ i
);
4841 static __meminit
void zone_pcp_init(struct zone
*zone
)
4844 * per cpu subsystem is not up at this point. The following code
4845 * relies on the ability of the linker to provide the
4846 * offset of a (static) per cpu variable into the per cpu area.
4848 zone
->pageset
= &boot_pageset
;
4850 if (populated_zone(zone
))
4851 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4852 zone
->name
, zone
->present_pages
,
4853 zone_batchsize(zone
));
4856 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4857 unsigned long zone_start_pfn
,
4859 enum memmap_context context
)
4861 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4863 ret
= zone_wait_table_init(zone
, size
);
4866 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4868 zone
->zone_start_pfn
= zone_start_pfn
;
4870 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4871 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4873 (unsigned long)zone_idx(zone
),
4874 zone_start_pfn
, (zone_start_pfn
+ size
));
4876 zone_init_free_lists(zone
);
4881 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4882 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4885 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4887 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
4888 struct mminit_pfnnid_cache
*state
)
4890 unsigned long start_pfn
, end_pfn
;
4893 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
4894 return state
->last_nid
;
4896 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4898 state
->last_start
= start_pfn
;
4899 state
->last_end
= end_pfn
;
4900 state
->last_nid
= nid
;
4905 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4908 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4909 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4910 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4912 * If an architecture guarantees that all ranges registered contain no holes
4913 * and may be freed, this this function may be used instead of calling
4914 * memblock_free_early_nid() manually.
4916 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4918 unsigned long start_pfn
, end_pfn
;
4921 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4922 start_pfn
= min(start_pfn
, max_low_pfn
);
4923 end_pfn
= min(end_pfn
, max_low_pfn
);
4925 if (start_pfn
< end_pfn
)
4926 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4927 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4933 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4936 * If an architecture guarantees that all ranges registered contain no holes and may
4937 * be freed, this function may be used instead of calling memory_present() manually.
4939 void __init
sparse_memory_present_with_active_regions(int nid
)
4941 unsigned long start_pfn
, end_pfn
;
4944 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4945 memory_present(this_nid
, start_pfn
, end_pfn
);
4949 * get_pfn_range_for_nid - Return the start and end page frames for a node
4950 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4951 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4952 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4954 * It returns the start and end page frame of a node based on information
4955 * provided by memblock_set_node(). If called for a node
4956 * with no available memory, a warning is printed and the start and end
4959 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4960 unsigned long *start_pfn
, unsigned long *end_pfn
)
4962 unsigned long this_start_pfn
, this_end_pfn
;
4968 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4969 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4970 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4973 if (*start_pfn
== -1UL)
4978 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4979 * assumption is made that zones within a node are ordered in monotonic
4980 * increasing memory addresses so that the "highest" populated zone is used
4982 static void __init
find_usable_zone_for_movable(void)
4985 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4986 if (zone_index
== ZONE_MOVABLE
)
4989 if (arch_zone_highest_possible_pfn
[zone_index
] >
4990 arch_zone_lowest_possible_pfn
[zone_index
])
4994 VM_BUG_ON(zone_index
== -1);
4995 movable_zone
= zone_index
;
4999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5000 * because it is sized independent of architecture. Unlike the other zones,
5001 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5002 * in each node depending on the size of each node and how evenly kernelcore
5003 * is distributed. This helper function adjusts the zone ranges
5004 * provided by the architecture for a given node by using the end of the
5005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5006 * zones within a node are in order of monotonic increases memory addresses
5008 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5009 unsigned long zone_type
,
5010 unsigned long node_start_pfn
,
5011 unsigned long node_end_pfn
,
5012 unsigned long *zone_start_pfn
,
5013 unsigned long *zone_end_pfn
)
5015 /* Only adjust if ZONE_MOVABLE is on this node */
5016 if (zone_movable_pfn
[nid
]) {
5017 /* Size ZONE_MOVABLE */
5018 if (zone_type
== ZONE_MOVABLE
) {
5019 *zone_start_pfn
= zone_movable_pfn
[nid
];
5020 *zone_end_pfn
= min(node_end_pfn
,
5021 arch_zone_highest_possible_pfn
[movable_zone
]);
5023 /* Adjust for ZONE_MOVABLE starting within this range */
5024 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
5025 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5026 *zone_end_pfn
= zone_movable_pfn
[nid
];
5028 /* Check if this whole range is within ZONE_MOVABLE */
5029 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5030 *zone_start_pfn
= *zone_end_pfn
;
5035 * Return the number of pages a zone spans in a node, including holes
5036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5038 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5039 unsigned long zone_type
,
5040 unsigned long node_start_pfn
,
5041 unsigned long node_end_pfn
,
5042 unsigned long *ignored
)
5044 unsigned long zone_start_pfn
, zone_end_pfn
;
5046 /* Get the start and end of the zone */
5047 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5048 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5049 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5050 node_start_pfn
, node_end_pfn
,
5051 &zone_start_pfn
, &zone_end_pfn
);
5053 /* Check that this node has pages within the zone's required range */
5054 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
5057 /* Move the zone boundaries inside the node if necessary */
5058 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
5059 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
5061 /* Return the spanned pages */
5062 return zone_end_pfn
- zone_start_pfn
;
5066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5067 * then all holes in the requested range will be accounted for.
5069 unsigned long __meminit
__absent_pages_in_range(int nid
,
5070 unsigned long range_start_pfn
,
5071 unsigned long range_end_pfn
)
5073 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5074 unsigned long start_pfn
, end_pfn
;
5077 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5078 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5079 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5080 nr_absent
-= end_pfn
- start_pfn
;
5086 * absent_pages_in_range - Return number of page frames in holes within a range
5087 * @start_pfn: The start PFN to start searching for holes
5088 * @end_pfn: The end PFN to stop searching for holes
5090 * It returns the number of pages frames in memory holes within a range.
5092 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5093 unsigned long end_pfn
)
5095 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5098 /* Return the number of page frames in holes in a zone on a node */
5099 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5100 unsigned long zone_type
,
5101 unsigned long node_start_pfn
,
5102 unsigned long node_end_pfn
,
5103 unsigned long *ignored
)
5105 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5106 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5107 unsigned long zone_start_pfn
, zone_end_pfn
;
5109 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5110 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5112 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5113 node_start_pfn
, node_end_pfn
,
5114 &zone_start_pfn
, &zone_end_pfn
);
5115 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5118 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5119 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5120 unsigned long zone_type
,
5121 unsigned long node_start_pfn
,
5122 unsigned long node_end_pfn
,
5123 unsigned long *zones_size
)
5125 return zones_size
[zone_type
];
5128 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5129 unsigned long zone_type
,
5130 unsigned long node_start_pfn
,
5131 unsigned long node_end_pfn
,
5132 unsigned long *zholes_size
)
5137 return zholes_size
[zone_type
];
5140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5142 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5143 unsigned long node_start_pfn
,
5144 unsigned long node_end_pfn
,
5145 unsigned long *zones_size
,
5146 unsigned long *zholes_size
)
5148 unsigned long realtotalpages
= 0, totalpages
= 0;
5151 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5152 struct zone
*zone
= pgdat
->node_zones
+ i
;
5153 unsigned long size
, real_size
;
5155 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5159 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5160 node_start_pfn
, node_end_pfn
,
5162 zone
->spanned_pages
= size
;
5163 zone
->present_pages
= real_size
;
5166 realtotalpages
+= real_size
;
5169 pgdat
->node_spanned_pages
= totalpages
;
5170 pgdat
->node_present_pages
= realtotalpages
;
5171 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5175 #ifndef CONFIG_SPARSEMEM
5177 * Calculate the size of the zone->blockflags rounded to an unsigned long
5178 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5179 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5180 * round what is now in bits to nearest long in bits, then return it in
5183 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5185 unsigned long usemapsize
;
5187 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5188 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5189 usemapsize
= usemapsize
>> pageblock_order
;
5190 usemapsize
*= NR_PAGEBLOCK_BITS
;
5191 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5193 return usemapsize
/ 8;
5196 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5198 unsigned long zone_start_pfn
,
5199 unsigned long zonesize
)
5201 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5202 zone
->pageblock_flags
= NULL
;
5204 zone
->pageblock_flags
=
5205 memblock_virt_alloc_node_nopanic(usemapsize
,
5209 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5210 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5211 #endif /* CONFIG_SPARSEMEM */
5213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5215 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5216 void __paginginit
set_pageblock_order(void)
5220 /* Check that pageblock_nr_pages has not already been setup */
5221 if (pageblock_order
)
5224 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5225 order
= HUGETLB_PAGE_ORDER
;
5227 order
= MAX_ORDER
- 1;
5230 * Assume the largest contiguous order of interest is a huge page.
5231 * This value may be variable depending on boot parameters on IA64 and
5234 pageblock_order
= order
;
5236 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5239 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5240 * is unused as pageblock_order is set at compile-time. See
5241 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5244 void __paginginit
set_pageblock_order(void)
5248 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5250 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5251 unsigned long present_pages
)
5253 unsigned long pages
= spanned_pages
;
5256 * Provide a more accurate estimation if there are holes within
5257 * the zone and SPARSEMEM is in use. If there are holes within the
5258 * zone, each populated memory region may cost us one or two extra
5259 * memmap pages due to alignment because memmap pages for each
5260 * populated regions may not naturally algined on page boundary.
5261 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5263 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5264 IS_ENABLED(CONFIG_SPARSEMEM
))
5265 pages
= present_pages
;
5267 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5271 * Set up the zone data structures:
5272 * - mark all pages reserved
5273 * - mark all memory queues empty
5274 * - clear the memory bitmaps
5276 * NOTE: pgdat should get zeroed by caller.
5278 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
5279 unsigned long node_start_pfn
, unsigned long node_end_pfn
)
5282 int nid
= pgdat
->node_id
;
5283 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
5286 pgdat_resize_init(pgdat
);
5287 #ifdef CONFIG_NUMA_BALANCING
5288 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5289 pgdat
->numabalancing_migrate_nr_pages
= 0;
5290 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5292 init_waitqueue_head(&pgdat
->kswapd_wait
);
5293 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5294 pgdat_page_ext_init(pgdat
);
5296 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5297 struct zone
*zone
= pgdat
->node_zones
+ j
;
5298 unsigned long size
, realsize
, freesize
, memmap_pages
;
5300 size
= zone
->spanned_pages
;
5301 realsize
= freesize
= zone
->present_pages
;
5304 * Adjust freesize so that it accounts for how much memory
5305 * is used by this zone for memmap. This affects the watermark
5306 * and per-cpu initialisations
5308 memmap_pages
= calc_memmap_size(size
, realsize
);
5309 if (!is_highmem_idx(j
)) {
5310 if (freesize
>= memmap_pages
) {
5311 freesize
-= memmap_pages
;
5314 " %s zone: %lu pages used for memmap\n",
5315 zone_names
[j
], memmap_pages
);
5318 " %s zone: %lu pages exceeds freesize %lu\n",
5319 zone_names
[j
], memmap_pages
, freesize
);
5322 /* Account for reserved pages */
5323 if (j
== 0 && freesize
> dma_reserve
) {
5324 freesize
-= dma_reserve
;
5325 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5326 zone_names
[0], dma_reserve
);
5329 if (!is_highmem_idx(j
))
5330 nr_kernel_pages
+= freesize
;
5331 /* Charge for highmem memmap if there are enough kernel pages */
5332 else if (nr_kernel_pages
> memmap_pages
* 2)
5333 nr_kernel_pages
-= memmap_pages
;
5334 nr_all_pages
+= freesize
;
5337 * Set an approximate value for lowmem here, it will be adjusted
5338 * when the bootmem allocator frees pages into the buddy system.
5339 * And all highmem pages will be managed by the buddy system.
5341 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5344 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5346 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5348 zone
->name
= zone_names
[j
];
5349 spin_lock_init(&zone
->lock
);
5350 spin_lock_init(&zone
->lru_lock
);
5351 zone_seqlock_init(zone
);
5352 zone
->zone_pgdat
= pgdat
;
5353 zone_pcp_init(zone
);
5355 /* For bootup, initialized properly in watermark setup */
5356 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5358 lruvec_init(&zone
->lruvec
);
5362 set_pageblock_order();
5363 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5364 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
5365 size
, MEMMAP_EARLY
);
5367 memmap_init(size
, nid
, j
, zone_start_pfn
);
5368 zone_start_pfn
+= size
;
5372 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5374 /* Skip empty nodes */
5375 if (!pgdat
->node_spanned_pages
)
5378 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5379 /* ia64 gets its own node_mem_map, before this, without bootmem */
5380 if (!pgdat
->node_mem_map
) {
5381 unsigned long size
, start
, end
;
5385 * The zone's endpoints aren't required to be MAX_ORDER
5386 * aligned but the node_mem_map endpoints must be in order
5387 * for the buddy allocator to function correctly.
5389 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5390 end
= pgdat_end_pfn(pgdat
);
5391 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5392 size
= (end
- start
) * sizeof(struct page
);
5393 map
= alloc_remap(pgdat
->node_id
, size
);
5395 map
= memblock_virt_alloc_node_nopanic(size
,
5397 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
5399 #ifndef CONFIG_NEED_MULTIPLE_NODES
5401 * With no DISCONTIG, the global mem_map is just set as node 0's
5403 if (pgdat
== NODE_DATA(0)) {
5404 mem_map
= NODE_DATA(0)->node_mem_map
;
5405 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5406 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5407 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
5408 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5411 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5414 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5415 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5417 pg_data_t
*pgdat
= NODE_DATA(nid
);
5418 unsigned long start_pfn
= 0;
5419 unsigned long end_pfn
= 0;
5421 /* pg_data_t should be reset to zero when it's allocated */
5422 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5424 reset_deferred_meminit(pgdat
);
5425 pgdat
->node_id
= nid
;
5426 pgdat
->node_start_pfn
= node_start_pfn
;
5427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5428 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5429 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5430 (u64
)start_pfn
<< PAGE_SHIFT
, ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5432 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5433 zones_size
, zholes_size
);
5435 alloc_node_mem_map(pgdat
);
5436 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5437 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5438 nid
, (unsigned long)pgdat
,
5439 (unsigned long)pgdat
->node_mem_map
);
5442 free_area_init_core(pgdat
, start_pfn
, end_pfn
);
5445 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5447 #if MAX_NUMNODES > 1
5449 * Figure out the number of possible node ids.
5451 void __init
setup_nr_node_ids(void)
5454 unsigned int highest
= 0;
5456 for_each_node_mask(node
, node_possible_map
)
5458 nr_node_ids
= highest
+ 1;
5463 * node_map_pfn_alignment - determine the maximum internode alignment
5465 * This function should be called after node map is populated and sorted.
5466 * It calculates the maximum power of two alignment which can distinguish
5469 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5470 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5471 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5472 * shifted, 1GiB is enough and this function will indicate so.
5474 * This is used to test whether pfn -> nid mapping of the chosen memory
5475 * model has fine enough granularity to avoid incorrect mapping for the
5476 * populated node map.
5478 * Returns the determined alignment in pfn's. 0 if there is no alignment
5479 * requirement (single node).
5481 unsigned long __init
node_map_pfn_alignment(void)
5483 unsigned long accl_mask
= 0, last_end
= 0;
5484 unsigned long start
, end
, mask
;
5488 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5489 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5496 * Start with a mask granular enough to pin-point to the
5497 * start pfn and tick off bits one-by-one until it becomes
5498 * too coarse to separate the current node from the last.
5500 mask
= ~((1 << __ffs(start
)) - 1);
5501 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5504 /* accumulate all internode masks */
5508 /* convert mask to number of pages */
5509 return ~accl_mask
+ 1;
5512 /* Find the lowest pfn for a node */
5513 static unsigned long __init
find_min_pfn_for_node(int nid
)
5515 unsigned long min_pfn
= ULONG_MAX
;
5516 unsigned long start_pfn
;
5519 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5520 min_pfn
= min(min_pfn
, start_pfn
);
5522 if (min_pfn
== ULONG_MAX
) {
5524 "Could not find start_pfn for node %d\n", nid
);
5532 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5534 * It returns the minimum PFN based on information provided via
5535 * memblock_set_node().
5537 unsigned long __init
find_min_pfn_with_active_regions(void)
5539 return find_min_pfn_for_node(MAX_NUMNODES
);
5543 * early_calculate_totalpages()
5544 * Sum pages in active regions for movable zone.
5545 * Populate N_MEMORY for calculating usable_nodes.
5547 static unsigned long __init
early_calculate_totalpages(void)
5549 unsigned long totalpages
= 0;
5550 unsigned long start_pfn
, end_pfn
;
5553 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5554 unsigned long pages
= end_pfn
- start_pfn
;
5556 totalpages
+= pages
;
5558 node_set_state(nid
, N_MEMORY
);
5564 * Find the PFN the Movable zone begins in each node. Kernel memory
5565 * is spread evenly between nodes as long as the nodes have enough
5566 * memory. When they don't, some nodes will have more kernelcore than
5569 static void __init
find_zone_movable_pfns_for_nodes(void)
5572 unsigned long usable_startpfn
;
5573 unsigned long kernelcore_node
, kernelcore_remaining
;
5574 /* save the state before borrow the nodemask */
5575 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5576 unsigned long totalpages
= early_calculate_totalpages();
5577 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5578 struct memblock_region
*r
;
5580 /* Need to find movable_zone earlier when movable_node is specified. */
5581 find_usable_zone_for_movable();
5584 * If movable_node is specified, ignore kernelcore and movablecore
5587 if (movable_node_is_enabled()) {
5588 for_each_memblock(memory
, r
) {
5589 if (!memblock_is_hotpluggable(r
))
5594 usable_startpfn
= PFN_DOWN(r
->base
);
5595 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5596 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5604 * If movablecore=nn[KMG] was specified, calculate what size of
5605 * kernelcore that corresponds so that memory usable for
5606 * any allocation type is evenly spread. If both kernelcore
5607 * and movablecore are specified, then the value of kernelcore
5608 * will be used for required_kernelcore if it's greater than
5609 * what movablecore would have allowed.
5611 if (required_movablecore
) {
5612 unsigned long corepages
;
5615 * Round-up so that ZONE_MOVABLE is at least as large as what
5616 * was requested by the user
5618 required_movablecore
=
5619 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5620 corepages
= totalpages
- required_movablecore
;
5622 required_kernelcore
= max(required_kernelcore
, corepages
);
5625 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5626 if (!required_kernelcore
)
5629 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5630 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5633 /* Spread kernelcore memory as evenly as possible throughout nodes */
5634 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5635 for_each_node_state(nid
, N_MEMORY
) {
5636 unsigned long start_pfn
, end_pfn
;
5639 * Recalculate kernelcore_node if the division per node
5640 * now exceeds what is necessary to satisfy the requested
5641 * amount of memory for the kernel
5643 if (required_kernelcore
< kernelcore_node
)
5644 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5647 * As the map is walked, we track how much memory is usable
5648 * by the kernel using kernelcore_remaining. When it is
5649 * 0, the rest of the node is usable by ZONE_MOVABLE
5651 kernelcore_remaining
= kernelcore_node
;
5653 /* Go through each range of PFNs within this node */
5654 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5655 unsigned long size_pages
;
5657 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5658 if (start_pfn
>= end_pfn
)
5661 /* Account for what is only usable for kernelcore */
5662 if (start_pfn
< usable_startpfn
) {
5663 unsigned long kernel_pages
;
5664 kernel_pages
= min(end_pfn
, usable_startpfn
)
5667 kernelcore_remaining
-= min(kernel_pages
,
5668 kernelcore_remaining
);
5669 required_kernelcore
-= min(kernel_pages
,
5670 required_kernelcore
);
5672 /* Continue if range is now fully accounted */
5673 if (end_pfn
<= usable_startpfn
) {
5676 * Push zone_movable_pfn to the end so
5677 * that if we have to rebalance
5678 * kernelcore across nodes, we will
5679 * not double account here
5681 zone_movable_pfn
[nid
] = end_pfn
;
5684 start_pfn
= usable_startpfn
;
5688 * The usable PFN range for ZONE_MOVABLE is from
5689 * start_pfn->end_pfn. Calculate size_pages as the
5690 * number of pages used as kernelcore
5692 size_pages
= end_pfn
- start_pfn
;
5693 if (size_pages
> kernelcore_remaining
)
5694 size_pages
= kernelcore_remaining
;
5695 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5698 * Some kernelcore has been met, update counts and
5699 * break if the kernelcore for this node has been
5702 required_kernelcore
-= min(required_kernelcore
,
5704 kernelcore_remaining
-= size_pages
;
5705 if (!kernelcore_remaining
)
5711 * If there is still required_kernelcore, we do another pass with one
5712 * less node in the count. This will push zone_movable_pfn[nid] further
5713 * along on the nodes that still have memory until kernelcore is
5717 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5721 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5722 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5723 zone_movable_pfn
[nid
] =
5724 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5727 /* restore the node_state */
5728 node_states
[N_MEMORY
] = saved_node_state
;
5731 /* Any regular or high memory on that node ? */
5732 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5734 enum zone_type zone_type
;
5736 if (N_MEMORY
== N_NORMAL_MEMORY
)
5739 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5740 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5741 if (populated_zone(zone
)) {
5742 node_set_state(nid
, N_HIGH_MEMORY
);
5743 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5744 zone_type
<= ZONE_NORMAL
)
5745 node_set_state(nid
, N_NORMAL_MEMORY
);
5752 * free_area_init_nodes - Initialise all pg_data_t and zone data
5753 * @max_zone_pfn: an array of max PFNs for each zone
5755 * This will call free_area_init_node() for each active node in the system.
5756 * Using the page ranges provided by memblock_set_node(), the size of each
5757 * zone in each node and their holes is calculated. If the maximum PFN
5758 * between two adjacent zones match, it is assumed that the zone is empty.
5759 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5760 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5761 * starts where the previous one ended. For example, ZONE_DMA32 starts
5762 * at arch_max_dma_pfn.
5764 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5766 unsigned long start_pfn
, end_pfn
;
5769 /* Record where the zone boundaries are */
5770 memset(arch_zone_lowest_possible_pfn
, 0,
5771 sizeof(arch_zone_lowest_possible_pfn
));
5772 memset(arch_zone_highest_possible_pfn
, 0,
5773 sizeof(arch_zone_highest_possible_pfn
));
5774 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5775 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5776 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5777 if (i
== ZONE_MOVABLE
)
5779 arch_zone_lowest_possible_pfn
[i
] =
5780 arch_zone_highest_possible_pfn
[i
-1];
5781 arch_zone_highest_possible_pfn
[i
] =
5782 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5784 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5785 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5787 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5788 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5789 find_zone_movable_pfns_for_nodes();
5791 /* Print out the zone ranges */
5792 pr_info("Zone ranges:\n");
5793 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5794 if (i
== ZONE_MOVABLE
)
5796 pr_info(" %-8s ", zone_names
[i
]);
5797 if (arch_zone_lowest_possible_pfn
[i
] ==
5798 arch_zone_highest_possible_pfn
[i
])
5801 pr_cont("[mem %#018Lx-%#018Lx]\n",
5802 (u64
)arch_zone_lowest_possible_pfn
[i
]
5804 ((u64
)arch_zone_highest_possible_pfn
[i
]
5805 << PAGE_SHIFT
) - 1);
5808 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5809 pr_info("Movable zone start for each node\n");
5810 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5811 if (zone_movable_pfn
[i
])
5812 pr_info(" Node %d: %#018Lx\n", i
,
5813 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
5816 /* Print out the early node map */
5817 pr_info("Early memory node ranges\n");
5818 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5819 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
5820 (u64
)start_pfn
<< PAGE_SHIFT
,
5821 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5823 /* Initialise every node */
5824 mminit_verify_pageflags_layout();
5825 setup_nr_node_ids();
5826 for_each_online_node(nid
) {
5827 pg_data_t
*pgdat
= NODE_DATA(nid
);
5828 free_area_init_node(nid
, NULL
,
5829 find_min_pfn_for_node(nid
), NULL
);
5831 /* Any memory on that node */
5832 if (pgdat
->node_present_pages
)
5833 node_set_state(nid
, N_MEMORY
);
5834 check_for_memory(pgdat
, nid
);
5838 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5840 unsigned long long coremem
;
5844 coremem
= memparse(p
, &p
);
5845 *core
= coremem
>> PAGE_SHIFT
;
5847 /* Paranoid check that UL is enough for the coremem value */
5848 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5854 * kernelcore=size sets the amount of memory for use for allocations that
5855 * cannot be reclaimed or migrated.
5857 static int __init
cmdline_parse_kernelcore(char *p
)
5859 return cmdline_parse_core(p
, &required_kernelcore
);
5863 * movablecore=size sets the amount of memory for use for allocations that
5864 * can be reclaimed or migrated.
5866 static int __init
cmdline_parse_movablecore(char *p
)
5868 return cmdline_parse_core(p
, &required_movablecore
);
5871 early_param("kernelcore", cmdline_parse_kernelcore
);
5872 early_param("movablecore", cmdline_parse_movablecore
);
5874 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5876 void adjust_managed_page_count(struct page
*page
, long count
)
5878 spin_lock(&managed_page_count_lock
);
5879 page_zone(page
)->managed_pages
+= count
;
5880 totalram_pages
+= count
;
5881 #ifdef CONFIG_HIGHMEM
5882 if (PageHighMem(page
))
5883 totalhigh_pages
+= count
;
5885 spin_unlock(&managed_page_count_lock
);
5887 EXPORT_SYMBOL(adjust_managed_page_count
);
5889 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5892 unsigned long pages
= 0;
5894 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5895 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5896 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5897 if ((unsigned int)poison
<= 0xFF)
5898 memset(pos
, poison
, PAGE_SIZE
);
5899 free_reserved_page(virt_to_page(pos
));
5903 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5904 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5908 EXPORT_SYMBOL(free_reserved_area
);
5910 #ifdef CONFIG_HIGHMEM
5911 void free_highmem_page(struct page
*page
)
5913 __free_reserved_page(page
);
5915 page_zone(page
)->managed_pages
++;
5921 void __init
mem_init_print_info(const char *str
)
5923 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5924 unsigned long init_code_size
, init_data_size
;
5926 physpages
= get_num_physpages();
5927 codesize
= _etext
- _stext
;
5928 datasize
= _edata
- _sdata
;
5929 rosize
= __end_rodata
- __start_rodata
;
5930 bss_size
= __bss_stop
- __bss_start
;
5931 init_data_size
= __init_end
- __init_begin
;
5932 init_code_size
= _einittext
- _sinittext
;
5935 * Detect special cases and adjust section sizes accordingly:
5936 * 1) .init.* may be embedded into .data sections
5937 * 2) .init.text.* may be out of [__init_begin, __init_end],
5938 * please refer to arch/tile/kernel/vmlinux.lds.S.
5939 * 3) .rodata.* may be embedded into .text or .data sections.
5941 #define adj_init_size(start, end, size, pos, adj) \
5943 if (start <= pos && pos < end && size > adj) \
5947 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5948 _sinittext
, init_code_size
);
5949 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5950 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5951 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5952 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5954 #undef adj_init_size
5956 pr_info("Memory: %luK/%luK available "
5957 "(%luK kernel code, %luK rwdata, %luK rodata, "
5958 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5959 #ifdef CONFIG_HIGHMEM
5963 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5964 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5965 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5966 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
-10),
5967 totalcma_pages
<< (PAGE_SHIFT
-10),
5968 #ifdef CONFIG_HIGHMEM
5969 totalhigh_pages
<< (PAGE_SHIFT
-10),
5971 str
? ", " : "", str
? str
: "");
5975 * set_dma_reserve - set the specified number of pages reserved in the first zone
5976 * @new_dma_reserve: The number of pages to mark reserved
5978 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5979 * In the DMA zone, a significant percentage may be consumed by kernel image
5980 * and other unfreeable allocations which can skew the watermarks badly. This
5981 * function may optionally be used to account for unfreeable pages in the
5982 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5983 * smaller per-cpu batchsize.
5985 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5987 dma_reserve
= new_dma_reserve
;
5990 void __init
free_area_init(unsigned long *zones_size
)
5992 free_area_init_node(0, zones_size
,
5993 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5996 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5997 unsigned long action
, void *hcpu
)
5999 int cpu
= (unsigned long)hcpu
;
6001 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6002 lru_add_drain_cpu(cpu
);
6006 * Spill the event counters of the dead processor
6007 * into the current processors event counters.
6008 * This artificially elevates the count of the current
6011 vm_events_fold_cpu(cpu
);
6014 * Zero the differential counters of the dead processor
6015 * so that the vm statistics are consistent.
6017 * This is only okay since the processor is dead and cannot
6018 * race with what we are doing.
6020 cpu_vm_stats_fold(cpu
);
6025 void __init
page_alloc_init(void)
6027 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6031 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6032 * or min_free_kbytes changes.
6034 static void calculate_totalreserve_pages(void)
6036 struct pglist_data
*pgdat
;
6037 unsigned long reserve_pages
= 0;
6038 enum zone_type i
, j
;
6040 for_each_online_pgdat(pgdat
) {
6041 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6042 struct zone
*zone
= pgdat
->node_zones
+ i
;
6045 /* Find valid and maximum lowmem_reserve in the zone */
6046 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6047 if (zone
->lowmem_reserve
[j
] > max
)
6048 max
= zone
->lowmem_reserve
[j
];
6051 /* we treat the high watermark as reserved pages. */
6052 max
+= high_wmark_pages(zone
);
6054 if (max
> zone
->managed_pages
)
6055 max
= zone
->managed_pages
;
6056 reserve_pages
+= max
;
6058 * Lowmem reserves are not available to
6059 * GFP_HIGHUSER page cache allocations and
6060 * kswapd tries to balance zones to their high
6061 * watermark. As a result, neither should be
6062 * regarded as dirtyable memory, to prevent a
6063 * situation where reclaim has to clean pages
6064 * in order to balance the zones.
6066 zone
->dirty_balance_reserve
= max
;
6069 dirty_balance_reserve
= reserve_pages
;
6070 totalreserve_pages
= reserve_pages
;
6074 * setup_per_zone_lowmem_reserve - called whenever
6075 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6076 * has a correct pages reserved value, so an adequate number of
6077 * pages are left in the zone after a successful __alloc_pages().
6079 static void setup_per_zone_lowmem_reserve(void)
6081 struct pglist_data
*pgdat
;
6082 enum zone_type j
, idx
;
6084 for_each_online_pgdat(pgdat
) {
6085 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6086 struct zone
*zone
= pgdat
->node_zones
+ j
;
6087 unsigned long managed_pages
= zone
->managed_pages
;
6089 zone
->lowmem_reserve
[j
] = 0;
6093 struct zone
*lower_zone
;
6097 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6098 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6100 lower_zone
= pgdat
->node_zones
+ idx
;
6101 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6102 sysctl_lowmem_reserve_ratio
[idx
];
6103 managed_pages
+= lower_zone
->managed_pages
;
6108 /* update totalreserve_pages */
6109 calculate_totalreserve_pages();
6112 static void __setup_per_zone_wmarks(void)
6114 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6115 unsigned long lowmem_pages
= 0;
6117 unsigned long flags
;
6119 /* Calculate total number of !ZONE_HIGHMEM pages */
6120 for_each_zone(zone
) {
6121 if (!is_highmem(zone
))
6122 lowmem_pages
+= zone
->managed_pages
;
6125 for_each_zone(zone
) {
6128 spin_lock_irqsave(&zone
->lock
, flags
);
6129 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6130 do_div(tmp
, lowmem_pages
);
6131 if (is_highmem(zone
)) {
6133 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6134 * need highmem pages, so cap pages_min to a small
6137 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6138 * deltas control asynch page reclaim, and so should
6139 * not be capped for highmem.
6141 unsigned long min_pages
;
6143 min_pages
= zone
->managed_pages
/ 1024;
6144 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6145 zone
->watermark
[WMARK_MIN
] = min_pages
;
6148 * If it's a lowmem zone, reserve a number of pages
6149 * proportionate to the zone's size.
6151 zone
->watermark
[WMARK_MIN
] = tmp
;
6154 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
6155 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
6157 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6158 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6159 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6161 setup_zone_migrate_reserve(zone
);
6162 spin_unlock_irqrestore(&zone
->lock
, flags
);
6165 /* update totalreserve_pages */
6166 calculate_totalreserve_pages();
6170 * setup_per_zone_wmarks - called when min_free_kbytes changes
6171 * or when memory is hot-{added|removed}
6173 * Ensures that the watermark[min,low,high] values for each zone are set
6174 * correctly with respect to min_free_kbytes.
6176 void setup_per_zone_wmarks(void)
6178 mutex_lock(&zonelists_mutex
);
6179 __setup_per_zone_wmarks();
6180 mutex_unlock(&zonelists_mutex
);
6184 * The inactive anon list should be small enough that the VM never has to
6185 * do too much work, but large enough that each inactive page has a chance
6186 * to be referenced again before it is swapped out.
6188 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6189 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6190 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6191 * the anonymous pages are kept on the inactive list.
6194 * memory ratio inactive anon
6195 * -------------------------------------
6204 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6206 unsigned int gb
, ratio
;
6208 /* Zone size in gigabytes */
6209 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6211 ratio
= int_sqrt(10 * gb
);
6215 zone
->inactive_ratio
= ratio
;
6218 static void __meminit
setup_per_zone_inactive_ratio(void)
6223 calculate_zone_inactive_ratio(zone
);
6227 * Initialise min_free_kbytes.
6229 * For small machines we want it small (128k min). For large machines
6230 * we want it large (64MB max). But it is not linear, because network
6231 * bandwidth does not increase linearly with machine size. We use
6233 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6234 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6250 int __meminit
init_per_zone_wmark_min(void)
6252 unsigned long lowmem_kbytes
;
6253 int new_min_free_kbytes
;
6255 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6256 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6258 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6259 min_free_kbytes
= new_min_free_kbytes
;
6260 if (min_free_kbytes
< 128)
6261 min_free_kbytes
= 128;
6262 if (min_free_kbytes
> 65536)
6263 min_free_kbytes
= 65536;
6265 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6266 new_min_free_kbytes
, user_min_free_kbytes
);
6268 setup_per_zone_wmarks();
6269 refresh_zone_stat_thresholds();
6270 setup_per_zone_lowmem_reserve();
6271 setup_per_zone_inactive_ratio();
6274 module_init(init_per_zone_wmark_min
)
6277 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6278 * that we can call two helper functions whenever min_free_kbytes
6281 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6282 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6286 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6291 user_min_free_kbytes
= min_free_kbytes
;
6292 setup_per_zone_wmarks();
6298 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6299 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6304 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6309 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6310 sysctl_min_unmapped_ratio
) / 100;
6314 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6315 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6320 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6325 zone
->min_slab_pages
= (zone
->managed_pages
*
6326 sysctl_min_slab_ratio
) / 100;
6332 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6333 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6334 * whenever sysctl_lowmem_reserve_ratio changes.
6336 * The reserve ratio obviously has absolutely no relation with the
6337 * minimum watermarks. The lowmem reserve ratio can only make sense
6338 * if in function of the boot time zone sizes.
6340 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6341 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6343 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6344 setup_per_zone_lowmem_reserve();
6349 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6350 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6351 * pagelist can have before it gets flushed back to buddy allocator.
6353 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6354 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6357 int old_percpu_pagelist_fraction
;
6360 mutex_lock(&pcp_batch_high_lock
);
6361 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6363 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6364 if (!write
|| ret
< 0)
6367 /* Sanity checking to avoid pcp imbalance */
6368 if (percpu_pagelist_fraction
&&
6369 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6370 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6376 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6379 for_each_populated_zone(zone
) {
6382 for_each_possible_cpu(cpu
)
6383 pageset_set_high_and_batch(zone
,
6384 per_cpu_ptr(zone
->pageset
, cpu
));
6387 mutex_unlock(&pcp_batch_high_lock
);
6392 int hashdist
= HASHDIST_DEFAULT
;
6394 static int __init
set_hashdist(char *str
)
6398 hashdist
= simple_strtoul(str
, &str
, 0);
6401 __setup("hashdist=", set_hashdist
);
6405 * allocate a large system hash table from bootmem
6406 * - it is assumed that the hash table must contain an exact power-of-2
6407 * quantity of entries
6408 * - limit is the number of hash buckets, not the total allocation size
6410 void *__init
alloc_large_system_hash(const char *tablename
,
6411 unsigned long bucketsize
,
6412 unsigned long numentries
,
6415 unsigned int *_hash_shift
,
6416 unsigned int *_hash_mask
,
6417 unsigned long low_limit
,
6418 unsigned long high_limit
)
6420 unsigned long long max
= high_limit
;
6421 unsigned long log2qty
, size
;
6424 /* allow the kernel cmdline to have a say */
6426 /* round applicable memory size up to nearest megabyte */
6427 numentries
= nr_kernel_pages
;
6429 /* It isn't necessary when PAGE_SIZE >= 1MB */
6430 if (PAGE_SHIFT
< 20)
6431 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6433 /* limit to 1 bucket per 2^scale bytes of low memory */
6434 if (scale
> PAGE_SHIFT
)
6435 numentries
>>= (scale
- PAGE_SHIFT
);
6437 numentries
<<= (PAGE_SHIFT
- scale
);
6439 /* Make sure we've got at least a 0-order allocation.. */
6440 if (unlikely(flags
& HASH_SMALL
)) {
6441 /* Makes no sense without HASH_EARLY */
6442 WARN_ON(!(flags
& HASH_EARLY
));
6443 if (!(numentries
>> *_hash_shift
)) {
6444 numentries
= 1UL << *_hash_shift
;
6445 BUG_ON(!numentries
);
6447 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6448 numentries
= PAGE_SIZE
/ bucketsize
;
6450 numentries
= roundup_pow_of_two(numentries
);
6452 /* limit allocation size to 1/16 total memory by default */
6454 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6455 do_div(max
, bucketsize
);
6457 max
= min(max
, 0x80000000ULL
);
6459 if (numentries
< low_limit
)
6460 numentries
= low_limit
;
6461 if (numentries
> max
)
6464 log2qty
= ilog2(numentries
);
6467 size
= bucketsize
<< log2qty
;
6468 if (flags
& HASH_EARLY
)
6469 table
= memblock_virt_alloc_nopanic(size
, 0);
6471 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6474 * If bucketsize is not a power-of-two, we may free
6475 * some pages at the end of hash table which
6476 * alloc_pages_exact() automatically does
6478 if (get_order(size
) < MAX_ORDER
) {
6479 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6480 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6483 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6486 panic("Failed to allocate %s hash table\n", tablename
);
6488 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6491 ilog2(size
) - PAGE_SHIFT
,
6495 *_hash_shift
= log2qty
;
6497 *_hash_mask
= (1 << log2qty
) - 1;
6502 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6503 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6506 #ifdef CONFIG_SPARSEMEM
6507 return __pfn_to_section(pfn
)->pageblock_flags
;
6509 return zone
->pageblock_flags
;
6510 #endif /* CONFIG_SPARSEMEM */
6513 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6515 #ifdef CONFIG_SPARSEMEM
6516 pfn
&= (PAGES_PER_SECTION
-1);
6517 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6519 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6520 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6521 #endif /* CONFIG_SPARSEMEM */
6525 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6526 * @page: The page within the block of interest
6527 * @pfn: The target page frame number
6528 * @end_bitidx: The last bit of interest to retrieve
6529 * @mask: mask of bits that the caller is interested in
6531 * Return: pageblock_bits flags
6533 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6534 unsigned long end_bitidx
,
6538 unsigned long *bitmap
;
6539 unsigned long bitidx
, word_bitidx
;
6542 zone
= page_zone(page
);
6543 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6544 bitidx
= pfn_to_bitidx(zone
, pfn
);
6545 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6546 bitidx
&= (BITS_PER_LONG
-1);
6548 word
= bitmap
[word_bitidx
];
6549 bitidx
+= end_bitidx
;
6550 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6554 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6555 * @page: The page within the block of interest
6556 * @flags: The flags to set
6557 * @pfn: The target page frame number
6558 * @end_bitidx: The last bit of interest
6559 * @mask: mask of bits that the caller is interested in
6561 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6563 unsigned long end_bitidx
,
6567 unsigned long *bitmap
;
6568 unsigned long bitidx
, word_bitidx
;
6569 unsigned long old_word
, word
;
6571 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6573 zone
= page_zone(page
);
6574 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6575 bitidx
= pfn_to_bitidx(zone
, pfn
);
6576 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6577 bitidx
&= (BITS_PER_LONG
-1);
6579 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6581 bitidx
+= end_bitidx
;
6582 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6583 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6585 word
= READ_ONCE(bitmap
[word_bitidx
]);
6587 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6588 if (word
== old_word
)
6595 * This function checks whether pageblock includes unmovable pages or not.
6596 * If @count is not zero, it is okay to include less @count unmovable pages
6598 * PageLRU check without isolation or lru_lock could race so that
6599 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6600 * expect this function should be exact.
6602 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6603 bool skip_hwpoisoned_pages
)
6605 unsigned long pfn
, iter
, found
;
6609 * For avoiding noise data, lru_add_drain_all() should be called
6610 * If ZONE_MOVABLE, the zone never contains unmovable pages
6612 if (zone_idx(zone
) == ZONE_MOVABLE
)
6614 mt
= get_pageblock_migratetype(page
);
6615 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6618 pfn
= page_to_pfn(page
);
6619 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6620 unsigned long check
= pfn
+ iter
;
6622 if (!pfn_valid_within(check
))
6625 page
= pfn_to_page(check
);
6628 * Hugepages are not in LRU lists, but they're movable.
6629 * We need not scan over tail pages bacause we don't
6630 * handle each tail page individually in migration.
6632 if (PageHuge(page
)) {
6633 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6638 * We can't use page_count without pin a page
6639 * because another CPU can free compound page.
6640 * This check already skips compound tails of THP
6641 * because their page->_count is zero at all time.
6643 if (!atomic_read(&page
->_count
)) {
6644 if (PageBuddy(page
))
6645 iter
+= (1 << page_order(page
)) - 1;
6650 * The HWPoisoned page may be not in buddy system, and
6651 * page_count() is not 0.
6653 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6659 * If there are RECLAIMABLE pages, we need to check
6660 * it. But now, memory offline itself doesn't call
6661 * shrink_node_slabs() and it still to be fixed.
6664 * If the page is not RAM, page_count()should be 0.
6665 * we don't need more check. This is an _used_ not-movable page.
6667 * The problematic thing here is PG_reserved pages. PG_reserved
6668 * is set to both of a memory hole page and a _used_ kernel
6677 bool is_pageblock_removable_nolock(struct page
*page
)
6683 * We have to be careful here because we are iterating over memory
6684 * sections which are not zone aware so we might end up outside of
6685 * the zone but still within the section.
6686 * We have to take care about the node as well. If the node is offline
6687 * its NODE_DATA will be NULL - see page_zone.
6689 if (!node_online(page_to_nid(page
)))
6692 zone
= page_zone(page
);
6693 pfn
= page_to_pfn(page
);
6694 if (!zone_spans_pfn(zone
, pfn
))
6697 return !has_unmovable_pages(zone
, page
, 0, true);
6702 static unsigned long pfn_max_align_down(unsigned long pfn
)
6704 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6705 pageblock_nr_pages
) - 1);
6708 static unsigned long pfn_max_align_up(unsigned long pfn
)
6710 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6711 pageblock_nr_pages
));
6714 /* [start, end) must belong to a single zone. */
6715 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6716 unsigned long start
, unsigned long end
)
6718 /* This function is based on compact_zone() from compaction.c. */
6719 unsigned long nr_reclaimed
;
6720 unsigned long pfn
= start
;
6721 unsigned int tries
= 0;
6726 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6727 if (fatal_signal_pending(current
)) {
6732 if (list_empty(&cc
->migratepages
)) {
6733 cc
->nr_migratepages
= 0;
6734 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6740 } else if (++tries
== 5) {
6741 ret
= ret
< 0 ? ret
: -EBUSY
;
6745 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6747 cc
->nr_migratepages
-= nr_reclaimed
;
6749 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6750 NULL
, 0, cc
->mode
, MR_CMA
);
6753 putback_movable_pages(&cc
->migratepages
);
6760 * alloc_contig_range() -- tries to allocate given range of pages
6761 * @start: start PFN to allocate
6762 * @end: one-past-the-last PFN to allocate
6763 * @migratetype: migratetype of the underlaying pageblocks (either
6764 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6765 * in range must have the same migratetype and it must
6766 * be either of the two.
6768 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6769 * aligned, however it's the caller's responsibility to guarantee that
6770 * we are the only thread that changes migrate type of pageblocks the
6773 * The PFN range must belong to a single zone.
6775 * Returns zero on success or negative error code. On success all
6776 * pages which PFN is in [start, end) are allocated for the caller and
6777 * need to be freed with free_contig_range().
6779 int alloc_contig_range(unsigned long start
, unsigned long end
,
6780 unsigned migratetype
)
6782 unsigned long outer_start
, outer_end
;
6785 struct compact_control cc
= {
6786 .nr_migratepages
= 0,
6788 .zone
= page_zone(pfn_to_page(start
)),
6789 .mode
= MIGRATE_SYNC
,
6790 .ignore_skip_hint
= true,
6792 INIT_LIST_HEAD(&cc
.migratepages
);
6795 * What we do here is we mark all pageblocks in range as
6796 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6797 * have different sizes, and due to the way page allocator
6798 * work, we align the range to biggest of the two pages so
6799 * that page allocator won't try to merge buddies from
6800 * different pageblocks and change MIGRATE_ISOLATE to some
6801 * other migration type.
6803 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6804 * migrate the pages from an unaligned range (ie. pages that
6805 * we are interested in). This will put all the pages in
6806 * range back to page allocator as MIGRATE_ISOLATE.
6808 * When this is done, we take the pages in range from page
6809 * allocator removing them from the buddy system. This way
6810 * page allocator will never consider using them.
6812 * This lets us mark the pageblocks back as
6813 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6814 * aligned range but not in the unaligned, original range are
6815 * put back to page allocator so that buddy can use them.
6818 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6819 pfn_max_align_up(end
), migratetype
,
6824 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6829 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6830 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6831 * more, all pages in [start, end) are free in page allocator.
6832 * What we are going to do is to allocate all pages from
6833 * [start, end) (that is remove them from page allocator).
6835 * The only problem is that pages at the beginning and at the
6836 * end of interesting range may be not aligned with pages that
6837 * page allocator holds, ie. they can be part of higher order
6838 * pages. Because of this, we reserve the bigger range and
6839 * once this is done free the pages we are not interested in.
6841 * We don't have to hold zone->lock here because the pages are
6842 * isolated thus they won't get removed from buddy.
6845 lru_add_drain_all();
6846 drain_all_pages(cc
.zone
);
6849 outer_start
= start
;
6850 while (!PageBuddy(pfn_to_page(outer_start
))) {
6851 if (++order
>= MAX_ORDER
) {
6855 outer_start
&= ~0UL << order
;
6858 /* Make sure the range is really isolated. */
6859 if (test_pages_isolated(outer_start
, end
, false)) {
6860 pr_info("%s: [%lx, %lx) PFNs busy\n",
6861 __func__
, outer_start
, end
);
6866 /* Grab isolated pages from freelists. */
6867 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6873 /* Free head and tail (if any) */
6874 if (start
!= outer_start
)
6875 free_contig_range(outer_start
, start
- outer_start
);
6876 if (end
!= outer_end
)
6877 free_contig_range(end
, outer_end
- end
);
6880 undo_isolate_page_range(pfn_max_align_down(start
),
6881 pfn_max_align_up(end
), migratetype
);
6885 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6887 unsigned int count
= 0;
6889 for (; nr_pages
--; pfn
++) {
6890 struct page
*page
= pfn_to_page(pfn
);
6892 count
+= page_count(page
) != 1;
6895 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6899 #ifdef CONFIG_MEMORY_HOTPLUG
6901 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6902 * page high values need to be recalulated.
6904 void __meminit
zone_pcp_update(struct zone
*zone
)
6907 mutex_lock(&pcp_batch_high_lock
);
6908 for_each_possible_cpu(cpu
)
6909 pageset_set_high_and_batch(zone
,
6910 per_cpu_ptr(zone
->pageset
, cpu
));
6911 mutex_unlock(&pcp_batch_high_lock
);
6915 void zone_pcp_reset(struct zone
*zone
)
6917 unsigned long flags
;
6919 struct per_cpu_pageset
*pset
;
6921 /* avoid races with drain_pages() */
6922 local_irq_save(flags
);
6923 if (zone
->pageset
!= &boot_pageset
) {
6924 for_each_online_cpu(cpu
) {
6925 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6926 drain_zonestat(zone
, pset
);
6928 free_percpu(zone
->pageset
);
6929 zone
->pageset
= &boot_pageset
;
6931 local_irq_restore(flags
);
6934 #ifdef CONFIG_MEMORY_HOTREMOVE
6936 * All pages in the range must be isolated before calling this.
6939 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6943 unsigned int order
, i
;
6945 unsigned long flags
;
6946 /* find the first valid pfn */
6947 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6952 zone
= page_zone(pfn_to_page(pfn
));
6953 spin_lock_irqsave(&zone
->lock
, flags
);
6955 while (pfn
< end_pfn
) {
6956 if (!pfn_valid(pfn
)) {
6960 page
= pfn_to_page(pfn
);
6962 * The HWPoisoned page may be not in buddy system, and
6963 * page_count() is not 0.
6965 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6967 SetPageReserved(page
);
6971 BUG_ON(page_count(page
));
6972 BUG_ON(!PageBuddy(page
));
6973 order
= page_order(page
);
6974 #ifdef CONFIG_DEBUG_VM
6975 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6976 pfn
, 1 << order
, end_pfn
);
6978 list_del(&page
->lru
);
6979 rmv_page_order(page
);
6980 zone
->free_area
[order
].nr_free
--;
6981 for (i
= 0; i
< (1 << order
); i
++)
6982 SetPageReserved((page
+i
));
6983 pfn
+= (1 << order
);
6985 spin_unlock_irqrestore(&zone
->lock
, flags
);
6989 #ifdef CONFIG_MEMORY_FAILURE
6990 bool is_free_buddy_page(struct page
*page
)
6992 struct zone
*zone
= page_zone(page
);
6993 unsigned long pfn
= page_to_pfn(page
);
6994 unsigned long flags
;
6997 spin_lock_irqsave(&zone
->lock
, flags
);
6998 for (order
= 0; order
< MAX_ORDER
; order
++) {
6999 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7001 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7004 spin_unlock_irqrestore(&zone
->lock
, flags
);
7006 return order
< MAX_ORDER
;