2 * arch/microblaze/mm/fault.c
4 * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
6 * Derived from "arch/ppc/mm/fault.c"
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Modified by Cort Dougan and Paul Mackerras.
14 * This file is subject to the terms and conditions of the GNU General
15 * Public License. See the file COPYING in the main directory of this
16 * archive for more details.
20 #include <linux/module.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
30 #include <linux/interrupt.h>
33 #include <asm/pgtable.h>
35 #include <linux/mmu_context.h>
36 #include <linux/uaccess.h>
37 #include <asm/exceptions.h>
39 static unsigned long pte_misses
; /* updated by do_page_fault() */
40 static unsigned long pte_errors
; /* updated by do_page_fault() */
43 * Check whether the instruction at regs->pc is a store using
44 * an update addressing form which will update r1.
46 static int store_updates_sp(struct pt_regs
*regs
)
50 if (get_user(inst
, (unsigned int __user
*)regs
->pc
))
52 /* check for 1 in the rD field */
53 if (((inst
>> 21) & 0x1f) != 1)
55 /* check for store opcodes */
56 if ((inst
& 0xd0000000) == 0xd0000000)
63 * bad_page_fault is called when we have a bad access from the kernel.
64 * It is called from do_page_fault above and from some of the procedures
67 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
69 const struct exception_table_entry
*fixup
;
71 /* Are we prepared to handle this fault? */
72 fixup
= search_exception_tables(regs
->pc
);
74 regs
->pc
= fixup
->fixup
;
78 /* kernel has accessed a bad area */
79 die("kernel access of bad area", regs
, sig
);
83 * The error_code parameter is ESR for a data fault,
84 * 0 for an instruction fault.
86 void do_page_fault(struct pt_regs
*regs
, unsigned long address
,
87 unsigned long error_code
)
89 struct vm_area_struct
*vma
;
90 struct mm_struct
*mm
= current
->mm
;
92 int code
= SEGV_MAPERR
;
93 int is_write
= error_code
& ESR_S
;
95 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
98 regs
->esr
= error_code
;
100 /* On a kernel SLB miss we can only check for a valid exception entry */
101 if (unlikely(kernel_mode(regs
) && (address
>= TASK_SIZE
))) {
102 pr_warn("kernel task_size exceed");
103 _exception(SIGSEGV
, regs
, code
, address
);
106 /* for instr TLB miss and instr storage exception ESR_S is undefined */
107 if ((error_code
& 0x13) == 0x13 || (error_code
& 0x11) == 0x11)
110 if (unlikely(in_atomic() || !mm
)) {
111 if (kernel_mode(regs
))
112 goto bad_area_nosemaphore
;
114 /* in_atomic() in user mode is really bad,
115 as is current->mm == NULL. */
116 pr_emerg("Page fault in user mode with in_atomic(), mm = %p\n",
118 pr_emerg("r15 = %lx MSR = %lx\n",
119 regs
->r15
, regs
->msr
);
120 die("Weird page fault", regs
, SIGSEGV
);
124 flags
|= FAULT_FLAG_USER
;
126 /* When running in the kernel we expect faults to occur only to
127 * addresses in user space. All other faults represent errors in the
128 * kernel and should generate an OOPS. Unfortunately, in the case of an
129 * erroneous fault occurring in a code path which already holds mmap_sem
130 * we will deadlock attempting to validate the fault against the
131 * address space. Luckily the kernel only validly references user
132 * space from well defined areas of code, which are listed in the
135 * As the vast majority of faults will be valid we will only perform
136 * the source reference check when there is a possibility of a deadlock.
137 * Attempt to lock the address space, if we cannot we then validate the
138 * source. If this is invalid we can skip the address space check,
139 * thus avoiding the deadlock.
141 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
142 if (kernel_mode(regs
) && !search_exception_tables(regs
->pc
))
143 goto bad_area_nosemaphore
;
146 down_read(&mm
->mmap_sem
);
149 vma
= find_vma(mm
, address
);
153 if (vma
->vm_start
<= address
)
156 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
)))
159 if (unlikely(!is_write
))
163 * N.B. The ABI allows programs to access up to
164 * a few hundred bytes below the stack pointer (TBD).
165 * The kernel signal delivery code writes up to about 1.5kB
166 * below the stack pointer (r1) before decrementing it.
167 * The exec code can write slightly over 640kB to the stack
168 * before setting the user r1. Thus we allow the stack to
169 * expand to 1MB without further checks.
171 if (unlikely(address
+ 0x100000 < vma
->vm_end
)) {
173 /* get user regs even if this fault is in kernel mode */
174 struct pt_regs
*uregs
= current
->thread
.regs
;
179 * A user-mode access to an address a long way below
180 * the stack pointer is only valid if the instruction
181 * is one which would update the stack pointer to the
182 * address accessed if the instruction completed,
183 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
184 * (or the byte, halfword, float or double forms).
186 * If we don't check this then any write to the area
187 * between the last mapped region and the stack will
188 * expand the stack rather than segfaulting.
190 if (address
+ 2048 < uregs
->r1
191 && (kernel_mode(regs
) || !store_updates_sp(regs
)))
194 if (expand_stack(vma
, address
))
201 if (unlikely(is_write
)) {
202 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
204 flags
|= FAULT_FLAG_WRITE
;
207 /* protection fault */
208 if (unlikely(error_code
& 0x08000000))
210 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
))))
215 * If for any reason at all we couldn't handle the fault,
216 * make sure we exit gracefully rather than endlessly redo
219 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
221 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
224 if (unlikely(fault
& VM_FAULT_ERROR
)) {
225 if (fault
& VM_FAULT_OOM
)
227 else if (fault
& VM_FAULT_SIGSEGV
)
229 else if (fault
& VM_FAULT_SIGBUS
)
234 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
235 if (unlikely(fault
& VM_FAULT_MAJOR
))
239 if (fault
& VM_FAULT_RETRY
) {
240 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
241 flags
|= FAULT_FLAG_TRIED
;
244 * No need to up_read(&mm->mmap_sem) as we would
245 * have already released it in __lock_page_or_retry
253 up_read(&mm
->mmap_sem
);
256 * keep track of tlb+htab misses that are good addrs but
257 * just need pte's created via handle_mm_fault()
264 up_read(&mm
->mmap_sem
);
266 bad_area_nosemaphore
:
269 /* User mode accesses cause a SIGSEGV */
270 if (user_mode(regs
)) {
271 _exception(SIGSEGV
, regs
, code
, address
);
272 /* info.si_signo = SIGSEGV;
275 info.si_addr = (void *) address;
276 force_sig_info(SIGSEGV, &info, current);*/
280 bad_page_fault(regs
, address
, SIGSEGV
);
284 * We ran out of memory, or some other thing happened to us that made
285 * us unable to handle the page fault gracefully.
288 up_read(&mm
->mmap_sem
);
289 if (!user_mode(regs
))
290 bad_page_fault(regs
, address
, SIGKILL
);
292 pagefault_out_of_memory();
296 up_read(&mm
->mmap_sem
);
297 if (user_mode(regs
)) {
298 info
.si_signo
= SIGBUS
;
300 info
.si_code
= BUS_ADRERR
;
301 info
.si_addr
= (void __user
*)address
;
302 force_sig_info(SIGBUS
, &info
, current
);
305 bad_page_fault(regs
, address
, SIGBUS
);