2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
35 #define NVME_MINORS (1U << MINORBITS)
37 unsigned int admin_timeout
= 60;
38 module_param(admin_timeout
, uint
, 0644);
39 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout
);
42 unsigned int nvme_io_timeout
= 30;
43 module_param_named(io_timeout
, nvme_io_timeout
, uint
, 0644);
44 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout
);
47 static unsigned char shutdown_timeout
= 5;
48 module_param(shutdown_timeout
, byte
, 0644);
49 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
51 static u8 nvme_max_retries
= 5;
52 module_param_named(max_retries
, nvme_max_retries
, byte
, 0644);
53 MODULE_PARM_DESC(max_retries
, "max number of retries a command may have");
55 static unsigned long default_ps_max_latency_us
= 100000;
56 module_param(default_ps_max_latency_us
, ulong
, 0644);
57 MODULE_PARM_DESC(default_ps_max_latency_us
,
58 "max power saving latency for new devices; use PM QOS to change per device");
60 static bool force_apst
;
61 module_param(force_apst
, bool, 0644);
62 MODULE_PARM_DESC(force_apst
, "allow APST for newly enumerated devices even if quirked off");
65 module_param(streams
, bool, 0644);
66 MODULE_PARM_DESC(streams
, "turn on support for Streams write directives");
68 struct workqueue_struct
*nvme_wq
;
69 EXPORT_SYMBOL_GPL(nvme_wq
);
71 static DEFINE_IDA(nvme_subsystems_ida
);
72 static LIST_HEAD(nvme_subsystems
);
73 static DEFINE_MUTEX(nvme_subsystems_lock
);
75 static DEFINE_IDA(nvme_instance_ida
);
76 static dev_t nvme_chr_devt
;
77 static struct class *nvme_class
;
78 static struct class *nvme_subsys_class
;
80 static void nvme_ns_remove(struct nvme_ns
*ns
);
81 static int nvme_revalidate_disk(struct gendisk
*disk
);
83 static __le32
nvme_get_log_dw10(u8 lid
, size_t size
)
85 return cpu_to_le32((((size
/ 4) - 1) << 16) | lid
);
88 int nvme_reset_ctrl(struct nvme_ctrl
*ctrl
)
90 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
))
92 if (!queue_work(nvme_wq
, &ctrl
->reset_work
))
96 EXPORT_SYMBOL_GPL(nvme_reset_ctrl
);
98 static int nvme_reset_ctrl_sync(struct nvme_ctrl
*ctrl
)
102 ret
= nvme_reset_ctrl(ctrl
);
104 flush_work(&ctrl
->reset_work
);
108 static void nvme_delete_ctrl_work(struct work_struct
*work
)
110 struct nvme_ctrl
*ctrl
=
111 container_of(work
, struct nvme_ctrl
, delete_work
);
113 flush_work(&ctrl
->reset_work
);
114 nvme_stop_ctrl(ctrl
);
115 nvme_remove_namespaces(ctrl
);
116 ctrl
->ops
->delete_ctrl(ctrl
);
117 nvme_uninit_ctrl(ctrl
);
121 int nvme_delete_ctrl(struct nvme_ctrl
*ctrl
)
123 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_DELETING
))
125 if (!queue_work(nvme_wq
, &ctrl
->delete_work
))
129 EXPORT_SYMBOL_GPL(nvme_delete_ctrl
);
131 int nvme_delete_ctrl_sync(struct nvme_ctrl
*ctrl
)
136 * Keep a reference until the work is flushed since ->delete_ctrl
137 * can free the controller.
140 ret
= nvme_delete_ctrl(ctrl
);
142 flush_work(&ctrl
->delete_work
);
146 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync
);
148 static inline bool nvme_ns_has_pi(struct nvme_ns
*ns
)
150 return ns
->pi_type
&& ns
->ms
== sizeof(struct t10_pi_tuple
);
153 static blk_status_t
nvme_error_status(struct request
*req
)
155 switch (nvme_req(req
)->status
& 0x7ff) {
156 case NVME_SC_SUCCESS
:
158 case NVME_SC_CAP_EXCEEDED
:
159 return BLK_STS_NOSPC
;
160 case NVME_SC_ONCS_NOT_SUPPORTED
:
161 return BLK_STS_NOTSUPP
;
162 case NVME_SC_WRITE_FAULT
:
163 case NVME_SC_READ_ERROR
:
164 case NVME_SC_UNWRITTEN_BLOCK
:
165 case NVME_SC_ACCESS_DENIED
:
166 case NVME_SC_READ_ONLY
:
167 return BLK_STS_MEDIUM
;
168 case NVME_SC_GUARD_CHECK
:
169 case NVME_SC_APPTAG_CHECK
:
170 case NVME_SC_REFTAG_CHECK
:
171 case NVME_SC_INVALID_PI
:
172 return BLK_STS_PROTECTION
;
173 case NVME_SC_RESERVATION_CONFLICT
:
174 return BLK_STS_NEXUS
;
176 return BLK_STS_IOERR
;
180 static inline bool nvme_req_needs_retry(struct request
*req
)
182 if (blk_noretry_request(req
))
184 if (nvme_req(req
)->status
& NVME_SC_DNR
)
186 if (nvme_req(req
)->retries
>= nvme_max_retries
)
191 void nvme_complete_rq(struct request
*req
)
193 if (unlikely(nvme_req(req
)->status
&& nvme_req_needs_retry(req
))) {
194 if (nvme_req_needs_failover(req
)) {
195 nvme_failover_req(req
);
199 if (!blk_queue_dying(req
->q
)) {
200 nvme_req(req
)->retries
++;
201 blk_mq_requeue_request(req
, true);
206 blk_mq_end_request(req
, nvme_error_status(req
));
208 EXPORT_SYMBOL_GPL(nvme_complete_rq
);
210 void nvme_cancel_request(struct request
*req
, void *data
, bool reserved
)
212 if (!blk_mq_request_started(req
))
215 dev_dbg_ratelimited(((struct nvme_ctrl
*) data
)->device
,
216 "Cancelling I/O %d", req
->tag
);
218 nvme_req(req
)->status
= NVME_SC_ABORT_REQ
;
219 blk_mq_complete_request(req
);
222 EXPORT_SYMBOL_GPL(nvme_cancel_request
);
224 bool nvme_change_ctrl_state(struct nvme_ctrl
*ctrl
,
225 enum nvme_ctrl_state new_state
)
227 enum nvme_ctrl_state old_state
;
229 bool changed
= false;
231 spin_lock_irqsave(&ctrl
->lock
, flags
);
233 old_state
= ctrl
->state
;
238 case NVME_CTRL_RESETTING
:
239 case NVME_CTRL_RECONNECTING
:
246 case NVME_CTRL_RESETTING
:
256 case NVME_CTRL_RECONNECTING
:
259 case NVME_CTRL_RESETTING
:
266 case NVME_CTRL_DELETING
:
269 case NVME_CTRL_RESETTING
:
270 case NVME_CTRL_RECONNECTING
:
279 case NVME_CTRL_DELETING
:
291 ctrl
->state
= new_state
;
293 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
294 if (changed
&& ctrl
->state
== NVME_CTRL_LIVE
)
295 nvme_kick_requeue_lists(ctrl
);
298 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state
);
300 static void nvme_free_ns_head(struct kref
*ref
)
302 struct nvme_ns_head
*head
=
303 container_of(ref
, struct nvme_ns_head
, ref
);
305 nvme_mpath_remove_disk(head
);
306 ida_simple_remove(&head
->subsys
->ns_ida
, head
->instance
);
307 list_del_init(&head
->entry
);
308 cleanup_srcu_struct(&head
->srcu
);
312 static void nvme_put_ns_head(struct nvme_ns_head
*head
)
314 kref_put(&head
->ref
, nvme_free_ns_head
);
317 static void nvme_free_ns(struct kref
*kref
)
319 struct nvme_ns
*ns
= container_of(kref
, struct nvme_ns
, kref
);
322 nvme_nvm_unregister(ns
);
325 nvme_put_ns_head(ns
->head
);
326 nvme_put_ctrl(ns
->ctrl
);
330 static void nvme_put_ns(struct nvme_ns
*ns
)
332 kref_put(&ns
->kref
, nvme_free_ns
);
335 struct request
*nvme_alloc_request(struct request_queue
*q
,
336 struct nvme_command
*cmd
, blk_mq_req_flags_t flags
, int qid
)
338 unsigned op
= nvme_is_write(cmd
) ? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
;
341 if (qid
== NVME_QID_ANY
) {
342 req
= blk_mq_alloc_request(q
, op
, flags
);
344 req
= blk_mq_alloc_request_hctx(q
, op
, flags
,
350 req
->cmd_flags
|= REQ_FAILFAST_DRIVER
;
351 nvme_req(req
)->cmd
= cmd
;
355 EXPORT_SYMBOL_GPL(nvme_alloc_request
);
357 static int nvme_toggle_streams(struct nvme_ctrl
*ctrl
, bool enable
)
359 struct nvme_command c
;
361 memset(&c
, 0, sizeof(c
));
363 c
.directive
.opcode
= nvme_admin_directive_send
;
364 c
.directive
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
365 c
.directive
.doper
= NVME_DIR_SND_ID_OP_ENABLE
;
366 c
.directive
.dtype
= NVME_DIR_IDENTIFY
;
367 c
.directive
.tdtype
= NVME_DIR_STREAMS
;
368 c
.directive
.endir
= enable
? NVME_DIR_ENDIR
: 0;
370 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, NULL
, 0);
373 static int nvme_disable_streams(struct nvme_ctrl
*ctrl
)
375 return nvme_toggle_streams(ctrl
, false);
378 static int nvme_enable_streams(struct nvme_ctrl
*ctrl
)
380 return nvme_toggle_streams(ctrl
, true);
383 static int nvme_get_stream_params(struct nvme_ctrl
*ctrl
,
384 struct streams_directive_params
*s
, u32 nsid
)
386 struct nvme_command c
;
388 memset(&c
, 0, sizeof(c
));
389 memset(s
, 0, sizeof(*s
));
391 c
.directive
.opcode
= nvme_admin_directive_recv
;
392 c
.directive
.nsid
= cpu_to_le32(nsid
);
393 c
.directive
.numd
= cpu_to_le32((sizeof(*s
) >> 2) - 1);
394 c
.directive
.doper
= NVME_DIR_RCV_ST_OP_PARAM
;
395 c
.directive
.dtype
= NVME_DIR_STREAMS
;
397 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, s
, sizeof(*s
));
400 static int nvme_configure_directives(struct nvme_ctrl
*ctrl
)
402 struct streams_directive_params s
;
405 if (!(ctrl
->oacs
& NVME_CTRL_OACS_DIRECTIVES
))
410 ret
= nvme_enable_streams(ctrl
);
414 ret
= nvme_get_stream_params(ctrl
, &s
, NVME_NSID_ALL
);
418 ctrl
->nssa
= le16_to_cpu(s
.nssa
);
419 if (ctrl
->nssa
< BLK_MAX_WRITE_HINTS
- 1) {
420 dev_info(ctrl
->device
, "too few streams (%u) available\n",
422 nvme_disable_streams(ctrl
);
426 ctrl
->nr_streams
= min_t(unsigned, ctrl
->nssa
, BLK_MAX_WRITE_HINTS
- 1);
427 dev_info(ctrl
->device
, "Using %u streams\n", ctrl
->nr_streams
);
432 * Check if 'req' has a write hint associated with it. If it does, assign
433 * a valid namespace stream to the write.
435 static void nvme_assign_write_stream(struct nvme_ctrl
*ctrl
,
436 struct request
*req
, u16
*control
,
439 enum rw_hint streamid
= req
->write_hint
;
441 if (streamid
== WRITE_LIFE_NOT_SET
|| streamid
== WRITE_LIFE_NONE
)
445 if (WARN_ON_ONCE(streamid
> ctrl
->nr_streams
))
448 *control
|= NVME_RW_DTYPE_STREAMS
;
449 *dsmgmt
|= streamid
<< 16;
452 if (streamid
< ARRAY_SIZE(req
->q
->write_hints
))
453 req
->q
->write_hints
[streamid
] += blk_rq_bytes(req
) >> 9;
456 static inline void nvme_setup_flush(struct nvme_ns
*ns
,
457 struct nvme_command
*cmnd
)
459 memset(cmnd
, 0, sizeof(*cmnd
));
460 cmnd
->common
.opcode
= nvme_cmd_flush
;
461 cmnd
->common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
464 static blk_status_t
nvme_setup_discard(struct nvme_ns
*ns
, struct request
*req
,
465 struct nvme_command
*cmnd
)
467 unsigned short segments
= blk_rq_nr_discard_segments(req
), n
= 0;
468 struct nvme_dsm_range
*range
;
471 range
= kmalloc_array(segments
, sizeof(*range
), GFP_ATOMIC
);
473 return BLK_STS_RESOURCE
;
475 __rq_for_each_bio(bio
, req
) {
476 u64 slba
= nvme_block_nr(ns
, bio
->bi_iter
.bi_sector
);
477 u32 nlb
= bio
->bi_iter
.bi_size
>> ns
->lba_shift
;
479 range
[n
].cattr
= cpu_to_le32(0);
480 range
[n
].nlb
= cpu_to_le32(nlb
);
481 range
[n
].slba
= cpu_to_le64(slba
);
485 if (WARN_ON_ONCE(n
!= segments
)) {
487 return BLK_STS_IOERR
;
490 memset(cmnd
, 0, sizeof(*cmnd
));
491 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
492 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
493 cmnd
->dsm
.nr
= cpu_to_le32(segments
- 1);
494 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
496 req
->special_vec
.bv_page
= virt_to_page(range
);
497 req
->special_vec
.bv_offset
= offset_in_page(range
);
498 req
->special_vec
.bv_len
= sizeof(*range
) * segments
;
499 req
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
504 static inline blk_status_t
nvme_setup_rw(struct nvme_ns
*ns
,
505 struct request
*req
, struct nvme_command
*cmnd
)
507 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
511 if (req
->cmd_flags
& REQ_FUA
)
512 control
|= NVME_RW_FUA
;
513 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
514 control
|= NVME_RW_LR
;
516 if (req
->cmd_flags
& REQ_RAHEAD
)
517 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
519 memset(cmnd
, 0, sizeof(*cmnd
));
520 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
521 cmnd
->rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
522 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
523 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
525 if (req_op(req
) == REQ_OP_WRITE
&& ctrl
->nr_streams
)
526 nvme_assign_write_stream(ctrl
, req
, &control
, &dsmgmt
);
530 * If formated with metadata, the block layer always provides a
531 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
532 * we enable the PRACT bit for protection information or set the
533 * namespace capacity to zero to prevent any I/O.
535 if (!blk_integrity_rq(req
)) {
536 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns
)))
537 return BLK_STS_NOTSUPP
;
538 control
|= NVME_RW_PRINFO_PRACT
;
541 switch (ns
->pi_type
) {
542 case NVME_NS_DPS_PI_TYPE3
:
543 control
|= NVME_RW_PRINFO_PRCHK_GUARD
;
545 case NVME_NS_DPS_PI_TYPE1
:
546 case NVME_NS_DPS_PI_TYPE2
:
547 control
|= NVME_RW_PRINFO_PRCHK_GUARD
|
548 NVME_RW_PRINFO_PRCHK_REF
;
549 cmnd
->rw
.reftag
= cpu_to_le32(
550 nvme_block_nr(ns
, blk_rq_pos(req
)));
555 cmnd
->rw
.control
= cpu_to_le16(control
);
556 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
560 blk_status_t
nvme_setup_cmd(struct nvme_ns
*ns
, struct request
*req
,
561 struct nvme_command
*cmd
)
563 blk_status_t ret
= BLK_STS_OK
;
565 if (!(req
->rq_flags
& RQF_DONTPREP
)) {
566 nvme_req(req
)->retries
= 0;
567 nvme_req(req
)->flags
= 0;
568 req
->rq_flags
|= RQF_DONTPREP
;
571 switch (req_op(req
)) {
574 memcpy(cmd
, nvme_req(req
)->cmd
, sizeof(*cmd
));
577 nvme_setup_flush(ns
, cmd
);
579 case REQ_OP_WRITE_ZEROES
:
580 /* currently only aliased to deallocate for a few ctrls: */
582 ret
= nvme_setup_discard(ns
, req
, cmd
);
586 ret
= nvme_setup_rw(ns
, req
, cmd
);
590 return BLK_STS_IOERR
;
593 cmd
->common
.command_id
= req
->tag
;
596 EXPORT_SYMBOL_GPL(nvme_setup_cmd
);
599 * Returns 0 on success. If the result is negative, it's a Linux error code;
600 * if the result is positive, it's an NVM Express status code
602 int __nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
603 union nvme_result
*result
, void *buffer
, unsigned bufflen
,
604 unsigned timeout
, int qid
, int at_head
,
605 blk_mq_req_flags_t flags
)
610 req
= nvme_alloc_request(q
, cmd
, flags
, qid
);
614 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
616 if (buffer
&& bufflen
) {
617 ret
= blk_rq_map_kern(q
, req
, buffer
, bufflen
, GFP_KERNEL
);
622 blk_execute_rq(req
->q
, NULL
, req
, at_head
);
624 *result
= nvme_req(req
)->result
;
625 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
628 ret
= nvme_req(req
)->status
;
630 blk_mq_free_request(req
);
633 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd
);
635 int nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
636 void *buffer
, unsigned bufflen
)
638 return __nvme_submit_sync_cmd(q
, cmd
, NULL
, buffer
, bufflen
, 0,
641 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd
);
643 static void *nvme_add_user_metadata(struct bio
*bio
, void __user
*ubuf
,
644 unsigned len
, u32 seed
, bool write
)
646 struct bio_integrity_payload
*bip
;
650 buf
= kmalloc(len
, GFP_KERNEL
);
655 if (write
&& copy_from_user(buf
, ubuf
, len
))
658 bip
= bio_integrity_alloc(bio
, GFP_KERNEL
, 1);
664 bip
->bip_iter
.bi_size
= len
;
665 bip
->bip_iter
.bi_sector
= seed
;
666 ret
= bio_integrity_add_page(bio
, virt_to_page(buf
), len
,
667 offset_in_page(buf
));
677 static int nvme_submit_user_cmd(struct request_queue
*q
,
678 struct nvme_command
*cmd
, void __user
*ubuffer
,
679 unsigned bufflen
, void __user
*meta_buffer
, unsigned meta_len
,
680 u32 meta_seed
, u32
*result
, unsigned timeout
)
682 bool write
= nvme_is_write(cmd
);
683 struct nvme_ns
*ns
= q
->queuedata
;
684 struct gendisk
*disk
= ns
? ns
->disk
: NULL
;
686 struct bio
*bio
= NULL
;
690 req
= nvme_alloc_request(q
, cmd
, 0, NVME_QID_ANY
);
694 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
696 if (ubuffer
&& bufflen
) {
697 ret
= blk_rq_map_user(q
, req
, NULL
, ubuffer
, bufflen
,
703 if (disk
&& meta_buffer
&& meta_len
) {
704 meta
= nvme_add_user_metadata(bio
, meta_buffer
, meta_len
,
713 blk_execute_rq(req
->q
, disk
, req
, 0);
714 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
717 ret
= nvme_req(req
)->status
;
719 *result
= le32_to_cpu(nvme_req(req
)->result
.u32
);
720 if (meta
&& !ret
&& !write
) {
721 if (copy_to_user(meta_buffer
, meta
, meta_len
))
727 blk_rq_unmap_user(bio
);
729 blk_mq_free_request(req
);
733 static void nvme_keep_alive_end_io(struct request
*rq
, blk_status_t status
)
735 struct nvme_ctrl
*ctrl
= rq
->end_io_data
;
737 blk_mq_free_request(rq
);
740 dev_err(ctrl
->device
,
741 "failed nvme_keep_alive_end_io error=%d\n",
746 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
749 static int nvme_keep_alive(struct nvme_ctrl
*ctrl
)
751 struct nvme_command c
;
754 memset(&c
, 0, sizeof(c
));
755 c
.common
.opcode
= nvme_admin_keep_alive
;
757 rq
= nvme_alloc_request(ctrl
->admin_q
, &c
, BLK_MQ_REQ_RESERVED
,
762 rq
->timeout
= ctrl
->kato
* HZ
;
763 rq
->end_io_data
= ctrl
;
765 blk_execute_rq_nowait(rq
->q
, NULL
, rq
, 0, nvme_keep_alive_end_io
);
770 static void nvme_keep_alive_work(struct work_struct
*work
)
772 struct nvme_ctrl
*ctrl
= container_of(to_delayed_work(work
),
773 struct nvme_ctrl
, ka_work
);
775 if (nvme_keep_alive(ctrl
)) {
776 /* allocation failure, reset the controller */
777 dev_err(ctrl
->device
, "keep-alive failed\n");
778 nvme_reset_ctrl(ctrl
);
783 void nvme_start_keep_alive(struct nvme_ctrl
*ctrl
)
785 if (unlikely(ctrl
->kato
== 0))
788 INIT_DELAYED_WORK(&ctrl
->ka_work
, nvme_keep_alive_work
);
789 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
791 EXPORT_SYMBOL_GPL(nvme_start_keep_alive
);
793 void nvme_stop_keep_alive(struct nvme_ctrl
*ctrl
)
795 if (unlikely(ctrl
->kato
== 0))
798 cancel_delayed_work_sync(&ctrl
->ka_work
);
800 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive
);
802 static int nvme_identify_ctrl(struct nvme_ctrl
*dev
, struct nvme_id_ctrl
**id
)
804 struct nvme_command c
= { };
807 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
808 c
.identify
.opcode
= nvme_admin_identify
;
809 c
.identify
.cns
= NVME_ID_CNS_CTRL
;
811 *id
= kmalloc(sizeof(struct nvme_id_ctrl
), GFP_KERNEL
);
815 error
= nvme_submit_sync_cmd(dev
->admin_q
, &c
, *id
,
816 sizeof(struct nvme_id_ctrl
));
822 static int nvme_identify_ns_descs(struct nvme_ctrl
*ctrl
, unsigned nsid
,
823 struct nvme_ns_ids
*ids
)
825 struct nvme_command c
= { };
831 c
.identify
.opcode
= nvme_admin_identify
;
832 c
.identify
.nsid
= cpu_to_le32(nsid
);
833 c
.identify
.cns
= NVME_ID_CNS_NS_DESC_LIST
;
835 data
= kzalloc(NVME_IDENTIFY_DATA_SIZE
, GFP_KERNEL
);
839 status
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, data
,
840 NVME_IDENTIFY_DATA_SIZE
);
844 for (pos
= 0; pos
< NVME_IDENTIFY_DATA_SIZE
; pos
+= len
) {
845 struct nvme_ns_id_desc
*cur
= data
+ pos
;
851 case NVME_NIDT_EUI64
:
852 if (cur
->nidl
!= NVME_NIDT_EUI64_LEN
) {
853 dev_warn(ctrl
->device
,
854 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
858 len
= NVME_NIDT_EUI64_LEN
;
859 memcpy(ids
->eui64
, data
+ pos
+ sizeof(*cur
), len
);
861 case NVME_NIDT_NGUID
:
862 if (cur
->nidl
!= NVME_NIDT_NGUID_LEN
) {
863 dev_warn(ctrl
->device
,
864 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
868 len
= NVME_NIDT_NGUID_LEN
;
869 memcpy(ids
->nguid
, data
+ pos
+ sizeof(*cur
), len
);
872 if (cur
->nidl
!= NVME_NIDT_UUID_LEN
) {
873 dev_warn(ctrl
->device
,
874 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
878 len
= NVME_NIDT_UUID_LEN
;
879 uuid_copy(&ids
->uuid
, data
+ pos
+ sizeof(*cur
));
882 /* Skip unnkown types */
894 static int nvme_identify_ns_list(struct nvme_ctrl
*dev
, unsigned nsid
, __le32
*ns_list
)
896 struct nvme_command c
= { };
898 c
.identify
.opcode
= nvme_admin_identify
;
899 c
.identify
.cns
= NVME_ID_CNS_NS_ACTIVE_LIST
;
900 c
.identify
.nsid
= cpu_to_le32(nsid
);
901 return nvme_submit_sync_cmd(dev
->admin_q
, &c
, ns_list
, 0x1000);
904 static struct nvme_id_ns
*nvme_identify_ns(struct nvme_ctrl
*ctrl
,
907 struct nvme_id_ns
*id
;
908 struct nvme_command c
= { };
911 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
912 c
.identify
.opcode
= nvme_admin_identify
;
913 c
.identify
.nsid
= cpu_to_le32(nsid
);
914 c
.identify
.cns
= NVME_ID_CNS_NS
;
916 id
= kmalloc(sizeof(*id
), GFP_KERNEL
);
920 error
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, id
, sizeof(*id
));
922 dev_warn(ctrl
->device
, "Identify namespace failed\n");
930 static int nvme_set_features(struct nvme_ctrl
*dev
, unsigned fid
, unsigned dword11
,
931 void *buffer
, size_t buflen
, u32
*result
)
933 struct nvme_command c
;
934 union nvme_result res
;
937 memset(&c
, 0, sizeof(c
));
938 c
.features
.opcode
= nvme_admin_set_features
;
939 c
.features
.fid
= cpu_to_le32(fid
);
940 c
.features
.dword11
= cpu_to_le32(dword11
);
942 ret
= __nvme_submit_sync_cmd(dev
->admin_q
, &c
, &res
,
943 buffer
, buflen
, 0, NVME_QID_ANY
, 0, 0);
944 if (ret
>= 0 && result
)
945 *result
= le32_to_cpu(res
.u32
);
949 int nvme_set_queue_count(struct nvme_ctrl
*ctrl
, int *count
)
951 u32 q_count
= (*count
- 1) | ((*count
- 1) << 16);
953 int status
, nr_io_queues
;
955 status
= nvme_set_features(ctrl
, NVME_FEAT_NUM_QUEUES
, q_count
, NULL
, 0,
961 * Degraded controllers might return an error when setting the queue
962 * count. We still want to be able to bring them online and offer
963 * access to the admin queue, as that might be only way to fix them up.
966 dev_err(ctrl
->device
, "Could not set queue count (%d)\n", status
);
969 nr_io_queues
= min(result
& 0xffff, result
>> 16) + 1;
970 *count
= min(*count
, nr_io_queues
);
975 EXPORT_SYMBOL_GPL(nvme_set_queue_count
);
977 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
979 struct nvme_user_io io
;
980 struct nvme_command c
;
981 unsigned length
, meta_len
;
982 void __user
*metadata
;
984 if (copy_from_user(&io
, uio
, sizeof(io
)))
992 case nvme_cmd_compare
:
998 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
999 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1000 metadata
= (void __user
*)(uintptr_t)io
.metadata
;
1005 } else if (meta_len
) {
1006 if ((io
.metadata
& 3) || !io
.metadata
)
1010 memset(&c
, 0, sizeof(c
));
1011 c
.rw
.opcode
= io
.opcode
;
1012 c
.rw
.flags
= io
.flags
;
1013 c
.rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1014 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1015 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1016 c
.rw
.control
= cpu_to_le16(io
.control
);
1017 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1018 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1019 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1020 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1022 return nvme_submit_user_cmd(ns
->queue
, &c
,
1023 (void __user
*)(uintptr_t)io
.addr
, length
,
1024 metadata
, meta_len
, io
.slba
, NULL
, 0);
1027 static u32
nvme_known_admin_effects(u8 opcode
)
1030 case nvme_admin_format_nvm
:
1031 return NVME_CMD_EFFECTS_CSUPP
| NVME_CMD_EFFECTS_LBCC
|
1032 NVME_CMD_EFFECTS_CSE_MASK
;
1033 case nvme_admin_sanitize_nvm
:
1034 return NVME_CMD_EFFECTS_CSE_MASK
;
1041 static u32
nvme_passthru_start(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1048 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1049 if (effects
& ~NVME_CMD_EFFECTS_CSUPP
)
1050 dev_warn(ctrl
->device
,
1051 "IO command:%02x has unhandled effects:%08x\n",
1057 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1059 effects
= nvme_known_admin_effects(opcode
);
1062 * For simplicity, IO to all namespaces is quiesced even if the command
1063 * effects say only one namespace is affected.
1065 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
)) {
1066 nvme_start_freeze(ctrl
);
1067 nvme_wait_freeze(ctrl
);
1072 static void nvme_update_formats(struct nvme_ctrl
*ctrl
)
1076 mutex_lock(&ctrl
->namespaces_mutex
);
1077 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
1078 if (ns
->disk
&& nvme_revalidate_disk(ns
->disk
))
1081 mutex_unlock(&ctrl
->namespaces_mutex
);
1084 static void nvme_passthru_end(struct nvme_ctrl
*ctrl
, u32 effects
)
1087 * Revalidate LBA changes prior to unfreezing. This is necessary to
1088 * prevent memory corruption if a logical block size was changed by
1091 if (effects
& NVME_CMD_EFFECTS_LBCC
)
1092 nvme_update_formats(ctrl
);
1093 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
))
1094 nvme_unfreeze(ctrl
);
1095 if (effects
& NVME_CMD_EFFECTS_CCC
)
1096 nvme_init_identify(ctrl
);
1097 if (effects
& (NVME_CMD_EFFECTS_NIC
| NVME_CMD_EFFECTS_NCC
))
1098 nvme_queue_scan(ctrl
);
1101 static int nvme_user_cmd(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1102 struct nvme_passthru_cmd __user
*ucmd
)
1104 struct nvme_passthru_cmd cmd
;
1105 struct nvme_command c
;
1106 unsigned timeout
= 0;
1110 if (!capable(CAP_SYS_ADMIN
))
1112 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1117 memset(&c
, 0, sizeof(c
));
1118 c
.common
.opcode
= cmd
.opcode
;
1119 c
.common
.flags
= cmd
.flags
;
1120 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1121 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1122 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1123 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1124 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1125 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1126 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1127 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1128 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1131 timeout
= msecs_to_jiffies(cmd
.timeout_ms
);
1133 effects
= nvme_passthru_start(ctrl
, ns
, cmd
.opcode
);
1134 status
= nvme_submit_user_cmd(ns
? ns
->queue
: ctrl
->admin_q
, &c
,
1135 (void __user
*)(uintptr_t)cmd
.addr
, cmd
.data_len
,
1136 (void __user
*)(uintptr_t)cmd
.metadata
, cmd
.metadata
,
1137 0, &cmd
.result
, timeout
);
1138 nvme_passthru_end(ctrl
, effects
);
1141 if (put_user(cmd
.result
, &ucmd
->result
))
1149 * Issue ioctl requests on the first available path. Note that unlike normal
1150 * block layer requests we will not retry failed request on another controller.
1152 static struct nvme_ns
*nvme_get_ns_from_disk(struct gendisk
*disk
,
1153 struct nvme_ns_head
**head
, int *srcu_idx
)
1155 #ifdef CONFIG_NVME_MULTIPATH
1156 if (disk
->fops
== &nvme_ns_head_ops
) {
1157 *head
= disk
->private_data
;
1158 *srcu_idx
= srcu_read_lock(&(*head
)->srcu
);
1159 return nvme_find_path(*head
);
1164 return disk
->private_data
;
1167 static void nvme_put_ns_from_disk(struct nvme_ns_head
*head
, int idx
)
1170 srcu_read_unlock(&head
->srcu
, idx
);
1173 static int nvme_ns_ioctl(struct nvme_ns
*ns
, unsigned cmd
, unsigned long arg
)
1177 force_successful_syscall_return();
1178 return ns
->head
->ns_id
;
1179 case NVME_IOCTL_ADMIN_CMD
:
1180 return nvme_user_cmd(ns
->ctrl
, NULL
, (void __user
*)arg
);
1181 case NVME_IOCTL_IO_CMD
:
1182 return nvme_user_cmd(ns
->ctrl
, ns
, (void __user
*)arg
);
1183 case NVME_IOCTL_SUBMIT_IO
:
1184 return nvme_submit_io(ns
, (void __user
*)arg
);
1188 return nvme_nvm_ioctl(ns
, cmd
, arg
);
1190 if (is_sed_ioctl(cmd
))
1191 return sed_ioctl(ns
->ctrl
->opal_dev
, cmd
,
1192 (void __user
*) arg
);
1197 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
,
1198 unsigned int cmd
, unsigned long arg
)
1200 struct nvme_ns_head
*head
= NULL
;
1204 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1208 ret
= nvme_ns_ioctl(ns
, cmd
, arg
);
1209 nvme_put_ns_from_disk(head
, srcu_idx
);
1213 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1215 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1217 #ifdef CONFIG_NVME_MULTIPATH
1218 /* should never be called due to GENHD_FL_HIDDEN */
1219 if (WARN_ON_ONCE(ns
->head
->disk
))
1222 if (!kref_get_unless_zero(&ns
->kref
))
1227 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1229 nvme_put_ns(disk
->private_data
);
1232 static int nvme_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1234 /* some standard values */
1235 geo
->heads
= 1 << 6;
1236 geo
->sectors
= 1 << 5;
1237 geo
->cylinders
= get_capacity(bdev
->bd_disk
) >> 11;
1241 #ifdef CONFIG_BLK_DEV_INTEGRITY
1242 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1244 struct blk_integrity integrity
;
1246 memset(&integrity
, 0, sizeof(integrity
));
1248 case NVME_NS_DPS_PI_TYPE3
:
1249 integrity
.profile
= &t10_pi_type3_crc
;
1250 integrity
.tag_size
= sizeof(u16
) + sizeof(u32
);
1251 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1253 case NVME_NS_DPS_PI_TYPE1
:
1254 case NVME_NS_DPS_PI_TYPE2
:
1255 integrity
.profile
= &t10_pi_type1_crc
;
1256 integrity
.tag_size
= sizeof(u16
);
1257 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1260 integrity
.profile
= NULL
;
1263 integrity
.tuple_size
= ms
;
1264 blk_integrity_register(disk
, &integrity
);
1265 blk_queue_max_integrity_segments(disk
->queue
, 1);
1268 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1271 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1273 static void nvme_set_chunk_size(struct nvme_ns
*ns
)
1275 u32 chunk_size
= (((u32
)ns
->noiob
) << (ns
->lba_shift
- 9));
1276 blk_queue_chunk_sectors(ns
->queue
, rounddown_pow_of_two(chunk_size
));
1279 static void nvme_config_discard(struct nvme_ctrl
*ctrl
,
1280 unsigned stream_alignment
, struct request_queue
*queue
)
1282 u32 size
= queue_logical_block_size(queue
);
1284 if (stream_alignment
)
1285 size
*= stream_alignment
;
1287 BUILD_BUG_ON(PAGE_SIZE
/ sizeof(struct nvme_dsm_range
) <
1288 NVME_DSM_MAX_RANGES
);
1290 queue
->limits
.discard_alignment
= size
;
1291 queue
->limits
.discard_granularity
= size
;
1293 blk_queue_max_discard_sectors(queue
, UINT_MAX
);
1294 blk_queue_max_discard_segments(queue
, NVME_DSM_MAX_RANGES
);
1295 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, queue
);
1297 if (ctrl
->quirks
& NVME_QUIRK_DEALLOCATE_ZEROES
)
1298 blk_queue_max_write_zeroes_sectors(queue
, UINT_MAX
);
1301 static void nvme_report_ns_ids(struct nvme_ctrl
*ctrl
, unsigned int nsid
,
1302 struct nvme_id_ns
*id
, struct nvme_ns_ids
*ids
)
1304 memset(ids
, 0, sizeof(*ids
));
1306 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
1307 memcpy(ids
->eui64
, id
->eui64
, sizeof(id
->eui64
));
1308 if (ctrl
->vs
>= NVME_VS(1, 2, 0))
1309 memcpy(ids
->nguid
, id
->nguid
, sizeof(id
->nguid
));
1310 if (ctrl
->vs
>= NVME_VS(1, 3, 0)) {
1311 /* Don't treat error as fatal we potentially
1312 * already have a NGUID or EUI-64
1314 if (nvme_identify_ns_descs(ctrl
, nsid
, ids
))
1315 dev_warn(ctrl
->device
,
1316 "%s: Identify Descriptors failed\n", __func__
);
1320 static bool nvme_ns_ids_valid(struct nvme_ns_ids
*ids
)
1322 return !uuid_is_null(&ids
->uuid
) ||
1323 memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)) ||
1324 memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
));
1327 static bool nvme_ns_ids_equal(struct nvme_ns_ids
*a
, struct nvme_ns_ids
*b
)
1329 return uuid_equal(&a
->uuid
, &b
->uuid
) &&
1330 memcmp(&a
->nguid
, &b
->nguid
, sizeof(a
->nguid
)) == 0 &&
1331 memcmp(&a
->eui64
, &b
->eui64
, sizeof(a
->eui64
)) == 0;
1334 static void nvme_update_disk_info(struct gendisk
*disk
,
1335 struct nvme_ns
*ns
, struct nvme_id_ns
*id
)
1337 sector_t capacity
= le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9);
1338 unsigned stream_alignment
= 0;
1340 if (ns
->ctrl
->nr_streams
&& ns
->sws
&& ns
->sgs
)
1341 stream_alignment
= ns
->sws
* ns
->sgs
;
1343 blk_mq_freeze_queue(disk
->queue
);
1344 blk_integrity_unregister(disk
);
1346 blk_queue_logical_block_size(disk
->queue
, 1 << ns
->lba_shift
);
1347 if (ns
->ms
&& !ns
->ext
&&
1348 (ns
->ctrl
->ops
->flags
& NVME_F_METADATA_SUPPORTED
))
1349 nvme_init_integrity(disk
, ns
->ms
, ns
->pi_type
);
1350 if (ns
->ms
&& !nvme_ns_has_pi(ns
) && !blk_get_integrity(disk
))
1352 set_capacity(disk
, capacity
);
1354 if (ns
->ctrl
->oncs
& NVME_CTRL_ONCS_DSM
)
1355 nvme_config_discard(ns
->ctrl
, stream_alignment
, disk
->queue
);
1356 blk_mq_unfreeze_queue(disk
->queue
);
1359 static void __nvme_revalidate_disk(struct gendisk
*disk
, struct nvme_id_ns
*id
)
1361 struct nvme_ns
*ns
= disk
->private_data
;
1364 * If identify namespace failed, use default 512 byte block size so
1365 * block layer can use before failing read/write for 0 capacity.
1367 ns
->lba_shift
= id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ds
;
1368 if (ns
->lba_shift
== 0)
1370 ns
->noiob
= le16_to_cpu(id
->noiob
);
1371 ns
->ext
= ns
->ms
&& (id
->flbas
& NVME_NS_FLBAS_META_EXT
);
1372 ns
->ms
= le16_to_cpu(id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ms
);
1373 /* the PI implementation requires metadata equal t10 pi tuple size */
1374 if (ns
->ms
== sizeof(struct t10_pi_tuple
))
1375 ns
->pi_type
= id
->dps
& NVME_NS_DPS_PI_MASK
;
1380 nvme_set_chunk_size(ns
);
1381 nvme_update_disk_info(disk
, ns
, id
);
1382 #ifdef CONFIG_NVME_MULTIPATH
1384 nvme_update_disk_info(ns
->head
->disk
, ns
, id
);
1388 static int nvme_revalidate_disk(struct gendisk
*disk
)
1390 struct nvme_ns
*ns
= disk
->private_data
;
1391 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
1392 struct nvme_id_ns
*id
;
1393 struct nvme_ns_ids ids
;
1396 if (test_bit(NVME_NS_DEAD
, &ns
->flags
)) {
1397 set_capacity(disk
, 0);
1401 id
= nvme_identify_ns(ctrl
, ns
->head
->ns_id
);
1405 if (id
->ncap
== 0) {
1410 __nvme_revalidate_disk(disk
, id
);
1411 nvme_report_ns_ids(ctrl
, ns
->head
->ns_id
, id
, &ids
);
1412 if (!nvme_ns_ids_equal(&ns
->head
->ids
, &ids
)) {
1413 dev_err(ctrl
->device
,
1414 "identifiers changed for nsid %d\n", ns
->head
->ns_id
);
1423 static char nvme_pr_type(enum pr_type type
)
1426 case PR_WRITE_EXCLUSIVE
:
1428 case PR_EXCLUSIVE_ACCESS
:
1430 case PR_WRITE_EXCLUSIVE_REG_ONLY
:
1432 case PR_EXCLUSIVE_ACCESS_REG_ONLY
:
1434 case PR_WRITE_EXCLUSIVE_ALL_REGS
:
1436 case PR_EXCLUSIVE_ACCESS_ALL_REGS
:
1443 static int nvme_pr_command(struct block_device
*bdev
, u32 cdw10
,
1444 u64 key
, u64 sa_key
, u8 op
)
1446 struct nvme_ns_head
*head
= NULL
;
1448 struct nvme_command c
;
1450 u8 data
[16] = { 0, };
1452 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1454 return -EWOULDBLOCK
;
1456 put_unaligned_le64(key
, &data
[0]);
1457 put_unaligned_le64(sa_key
, &data
[8]);
1459 memset(&c
, 0, sizeof(c
));
1460 c
.common
.opcode
= op
;
1461 c
.common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1462 c
.common
.cdw10
[0] = cpu_to_le32(cdw10
);
1464 ret
= nvme_submit_sync_cmd(ns
->queue
, &c
, data
, 16);
1465 nvme_put_ns_from_disk(head
, srcu_idx
);
1469 static int nvme_pr_register(struct block_device
*bdev
, u64 old
,
1470 u64
new, unsigned flags
)
1474 if (flags
& ~PR_FL_IGNORE_KEY
)
1477 cdw10
= old
? 2 : 0;
1478 cdw10
|= (flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0;
1479 cdw10
|= (1 << 30) | (1 << 31); /* PTPL=1 */
1480 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_register
);
1483 static int nvme_pr_reserve(struct block_device
*bdev
, u64 key
,
1484 enum pr_type type
, unsigned flags
)
1488 if (flags
& ~PR_FL_IGNORE_KEY
)
1491 cdw10
= nvme_pr_type(type
) << 8;
1492 cdw10
|= ((flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0);
1493 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_acquire
);
1496 static int nvme_pr_preempt(struct block_device
*bdev
, u64 old
, u64
new,
1497 enum pr_type type
, bool abort
)
1499 u32 cdw10
= nvme_pr_type(type
) << 8 | abort
? 2 : 1;
1500 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_acquire
);
1503 static int nvme_pr_clear(struct block_device
*bdev
, u64 key
)
1505 u32 cdw10
= 1 | (key
? 1 << 3 : 0);
1506 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_register
);
1509 static int nvme_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
1511 u32 cdw10
= nvme_pr_type(type
) << 8 | key
? 1 << 3 : 0;
1512 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_release
);
1515 static const struct pr_ops nvme_pr_ops
= {
1516 .pr_register
= nvme_pr_register
,
1517 .pr_reserve
= nvme_pr_reserve
,
1518 .pr_release
= nvme_pr_release
,
1519 .pr_preempt
= nvme_pr_preempt
,
1520 .pr_clear
= nvme_pr_clear
,
1523 #ifdef CONFIG_BLK_SED_OPAL
1524 int nvme_sec_submit(void *data
, u16 spsp
, u8 secp
, void *buffer
, size_t len
,
1527 struct nvme_ctrl
*ctrl
= data
;
1528 struct nvme_command cmd
;
1530 memset(&cmd
, 0, sizeof(cmd
));
1532 cmd
.common
.opcode
= nvme_admin_security_send
;
1534 cmd
.common
.opcode
= nvme_admin_security_recv
;
1535 cmd
.common
.nsid
= 0;
1536 cmd
.common
.cdw10
[0] = cpu_to_le32(((u32
)secp
) << 24 | ((u32
)spsp
) << 8);
1537 cmd
.common
.cdw10
[1] = cpu_to_le32(len
);
1539 return __nvme_submit_sync_cmd(ctrl
->admin_q
, &cmd
, NULL
, buffer
, len
,
1540 ADMIN_TIMEOUT
, NVME_QID_ANY
, 1, 0);
1542 EXPORT_SYMBOL_GPL(nvme_sec_submit
);
1543 #endif /* CONFIG_BLK_SED_OPAL */
1545 static const struct block_device_operations nvme_fops
= {
1546 .owner
= THIS_MODULE
,
1547 .ioctl
= nvme_ioctl
,
1548 .compat_ioctl
= nvme_ioctl
,
1550 .release
= nvme_release
,
1551 .getgeo
= nvme_getgeo
,
1552 .revalidate_disk
= nvme_revalidate_disk
,
1553 .pr_ops
= &nvme_pr_ops
,
1556 #ifdef CONFIG_NVME_MULTIPATH
1557 static int nvme_ns_head_open(struct block_device
*bdev
, fmode_t mode
)
1559 struct nvme_ns_head
*head
= bdev
->bd_disk
->private_data
;
1561 if (!kref_get_unless_zero(&head
->ref
))
1566 static void nvme_ns_head_release(struct gendisk
*disk
, fmode_t mode
)
1568 nvme_put_ns_head(disk
->private_data
);
1571 const struct block_device_operations nvme_ns_head_ops
= {
1572 .owner
= THIS_MODULE
,
1573 .open
= nvme_ns_head_open
,
1574 .release
= nvme_ns_head_release
,
1575 .ioctl
= nvme_ioctl
,
1576 .compat_ioctl
= nvme_ioctl
,
1577 .getgeo
= nvme_getgeo
,
1578 .pr_ops
= &nvme_pr_ops
,
1580 #endif /* CONFIG_NVME_MULTIPATH */
1582 static int nvme_wait_ready(struct nvme_ctrl
*ctrl
, u64 cap
, bool enabled
)
1584 unsigned long timeout
=
1585 ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1586 u32 csts
, bit
= enabled
? NVME_CSTS_RDY
: 0;
1589 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1592 if ((csts
& NVME_CSTS_RDY
) == bit
)
1596 if (fatal_signal_pending(current
))
1598 if (time_after(jiffies
, timeout
)) {
1599 dev_err(ctrl
->device
,
1600 "Device not ready; aborting %s\n", enabled
?
1601 "initialisation" : "reset");
1610 * If the device has been passed off to us in an enabled state, just clear
1611 * the enabled bit. The spec says we should set the 'shutdown notification
1612 * bits', but doing so may cause the device to complete commands to the
1613 * admin queue ... and we don't know what memory that might be pointing at!
1615 int nvme_disable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1619 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1620 ctrl
->ctrl_config
&= ~NVME_CC_ENABLE
;
1622 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1626 if (ctrl
->quirks
& NVME_QUIRK_DELAY_BEFORE_CHK_RDY
)
1627 msleep(NVME_QUIRK_DELAY_AMOUNT
);
1629 return nvme_wait_ready(ctrl
, cap
, false);
1631 EXPORT_SYMBOL_GPL(nvme_disable_ctrl
);
1633 int nvme_enable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1636 * Default to a 4K page size, with the intention to update this
1637 * path in the future to accomodate architectures with differing
1638 * kernel and IO page sizes.
1640 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12, page_shift
= 12;
1643 if (page_shift
< dev_page_min
) {
1644 dev_err(ctrl
->device
,
1645 "Minimum device page size %u too large for host (%u)\n",
1646 1 << dev_page_min
, 1 << page_shift
);
1650 ctrl
->page_size
= 1 << page_shift
;
1652 ctrl
->ctrl_config
= NVME_CC_CSS_NVM
;
1653 ctrl
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1654 ctrl
->ctrl_config
|= NVME_CC_AMS_RR
| NVME_CC_SHN_NONE
;
1655 ctrl
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1656 ctrl
->ctrl_config
|= NVME_CC_ENABLE
;
1658 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1661 return nvme_wait_ready(ctrl
, cap
, true);
1663 EXPORT_SYMBOL_GPL(nvme_enable_ctrl
);
1665 int nvme_shutdown_ctrl(struct nvme_ctrl
*ctrl
)
1667 unsigned long timeout
= jiffies
+ (ctrl
->shutdown_timeout
* HZ
);
1671 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1672 ctrl
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1674 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1678 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1679 if ((csts
& NVME_CSTS_SHST_MASK
) == NVME_CSTS_SHST_CMPLT
)
1683 if (fatal_signal_pending(current
))
1685 if (time_after(jiffies
, timeout
)) {
1686 dev_err(ctrl
->device
,
1687 "Device shutdown incomplete; abort shutdown\n");
1694 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl
);
1696 static void nvme_set_queue_limits(struct nvme_ctrl
*ctrl
,
1697 struct request_queue
*q
)
1701 if (ctrl
->max_hw_sectors
) {
1703 (ctrl
->max_hw_sectors
/ (ctrl
->page_size
>> 9)) + 1;
1705 blk_queue_max_hw_sectors(q
, ctrl
->max_hw_sectors
);
1706 blk_queue_max_segments(q
, min_t(u32
, max_segments
, USHRT_MAX
));
1708 if (ctrl
->quirks
& NVME_QUIRK_STRIPE_SIZE
)
1709 blk_queue_chunk_sectors(q
, ctrl
->max_hw_sectors
);
1710 blk_queue_virt_boundary(q
, ctrl
->page_size
- 1);
1711 if (ctrl
->vwc
& NVME_CTRL_VWC_PRESENT
)
1713 blk_queue_write_cache(q
, vwc
, vwc
);
1716 static int nvme_configure_timestamp(struct nvme_ctrl
*ctrl
)
1721 if (!(ctrl
->oncs
& NVME_CTRL_ONCS_TIMESTAMP
))
1724 ts
= cpu_to_le64(ktime_to_ms(ktime_get_real()));
1725 ret
= nvme_set_features(ctrl
, NVME_FEAT_TIMESTAMP
, 0, &ts
, sizeof(ts
),
1728 dev_warn_once(ctrl
->device
,
1729 "could not set timestamp (%d)\n", ret
);
1733 static int nvme_configure_apst(struct nvme_ctrl
*ctrl
)
1736 * APST (Autonomous Power State Transition) lets us program a
1737 * table of power state transitions that the controller will
1738 * perform automatically. We configure it with a simple
1739 * heuristic: we are willing to spend at most 2% of the time
1740 * transitioning between power states. Therefore, when running
1741 * in any given state, we will enter the next lower-power
1742 * non-operational state after waiting 50 * (enlat + exlat)
1743 * microseconds, as long as that state's exit latency is under
1744 * the requested maximum latency.
1746 * We will not autonomously enter any non-operational state for
1747 * which the total latency exceeds ps_max_latency_us. Users
1748 * can set ps_max_latency_us to zero to turn off APST.
1752 struct nvme_feat_auto_pst
*table
;
1758 * If APST isn't supported or if we haven't been initialized yet,
1759 * then don't do anything.
1764 if (ctrl
->npss
> 31) {
1765 dev_warn(ctrl
->device
, "NPSS is invalid; not using APST\n");
1769 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
1773 if (!ctrl
->apst_enabled
|| ctrl
->ps_max_latency_us
== 0) {
1774 /* Turn off APST. */
1776 dev_dbg(ctrl
->device
, "APST disabled\n");
1778 __le64 target
= cpu_to_le64(0);
1782 * Walk through all states from lowest- to highest-power.
1783 * According to the spec, lower-numbered states use more
1784 * power. NPSS, despite the name, is the index of the
1785 * lowest-power state, not the number of states.
1787 for (state
= (int)ctrl
->npss
; state
>= 0; state
--) {
1788 u64 total_latency_us
, exit_latency_us
, transition_ms
;
1791 table
->entries
[state
] = target
;
1794 * Don't allow transitions to the deepest state
1795 * if it's quirked off.
1797 if (state
== ctrl
->npss
&&
1798 (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
))
1802 * Is this state a useful non-operational state for
1803 * higher-power states to autonomously transition to?
1805 if (!(ctrl
->psd
[state
].flags
&
1806 NVME_PS_FLAGS_NON_OP_STATE
))
1810 (u64
)le32_to_cpu(ctrl
->psd
[state
].exit_lat
);
1811 if (exit_latency_us
> ctrl
->ps_max_latency_us
)
1816 le32_to_cpu(ctrl
->psd
[state
].entry_lat
);
1819 * This state is good. Use it as the APST idle
1820 * target for higher power states.
1822 transition_ms
= total_latency_us
+ 19;
1823 do_div(transition_ms
, 20);
1824 if (transition_ms
> (1 << 24) - 1)
1825 transition_ms
= (1 << 24) - 1;
1827 target
= cpu_to_le64((state
<< 3) |
1828 (transition_ms
<< 8));
1833 if (total_latency_us
> max_lat_us
)
1834 max_lat_us
= total_latency_us
;
1840 dev_dbg(ctrl
->device
, "APST enabled but no non-operational states are available\n");
1842 dev_dbg(ctrl
->device
, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1843 max_ps
, max_lat_us
, (int)sizeof(*table
), table
);
1847 ret
= nvme_set_features(ctrl
, NVME_FEAT_AUTO_PST
, apste
,
1848 table
, sizeof(*table
), NULL
);
1850 dev_err(ctrl
->device
, "failed to set APST feature (%d)\n", ret
);
1856 static void nvme_set_latency_tolerance(struct device
*dev
, s32 val
)
1858 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
1862 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT
:
1863 case PM_QOS_LATENCY_ANY
:
1871 if (ctrl
->ps_max_latency_us
!= latency
) {
1872 ctrl
->ps_max_latency_us
= latency
;
1873 nvme_configure_apst(ctrl
);
1877 struct nvme_core_quirk_entry
{
1879 * NVMe model and firmware strings are padded with spaces. For
1880 * simplicity, strings in the quirk table are padded with NULLs
1886 unsigned long quirks
;
1889 static const struct nvme_core_quirk_entry core_quirks
[] = {
1892 * This Toshiba device seems to die using any APST states. See:
1893 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1896 .mn
= "THNSF5256GPUK TOSHIBA",
1897 .quirks
= NVME_QUIRK_NO_APST
,
1901 /* match is null-terminated but idstr is space-padded. */
1902 static bool string_matches(const char *idstr
, const char *match
, size_t len
)
1909 matchlen
= strlen(match
);
1910 WARN_ON_ONCE(matchlen
> len
);
1912 if (memcmp(idstr
, match
, matchlen
))
1915 for (; matchlen
< len
; matchlen
++)
1916 if (idstr
[matchlen
] != ' ')
1922 static bool quirk_matches(const struct nvme_id_ctrl
*id
,
1923 const struct nvme_core_quirk_entry
*q
)
1925 return q
->vid
== le16_to_cpu(id
->vid
) &&
1926 string_matches(id
->mn
, q
->mn
, sizeof(id
->mn
)) &&
1927 string_matches(id
->fr
, q
->fr
, sizeof(id
->fr
));
1930 static void nvme_init_subnqn(struct nvme_subsystem
*subsys
, struct nvme_ctrl
*ctrl
,
1931 struct nvme_id_ctrl
*id
)
1936 nqnlen
= strnlen(id
->subnqn
, NVMF_NQN_SIZE
);
1937 if (nqnlen
> 0 && nqnlen
< NVMF_NQN_SIZE
) {
1938 strncpy(subsys
->subnqn
, id
->subnqn
, NVMF_NQN_SIZE
);
1942 if (ctrl
->vs
>= NVME_VS(1, 2, 1))
1943 dev_warn(ctrl
->device
, "missing or invalid SUBNQN field.\n");
1945 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1946 off
= snprintf(subsys
->subnqn
, NVMF_NQN_SIZE
,
1947 "nqn.2014.08.org.nvmexpress:%4x%4x",
1948 le16_to_cpu(id
->vid
), le16_to_cpu(id
->ssvid
));
1949 memcpy(subsys
->subnqn
+ off
, id
->sn
, sizeof(id
->sn
));
1950 off
+= sizeof(id
->sn
);
1951 memcpy(subsys
->subnqn
+ off
, id
->mn
, sizeof(id
->mn
));
1952 off
+= sizeof(id
->mn
);
1953 memset(subsys
->subnqn
+ off
, 0, sizeof(subsys
->subnqn
) - off
);
1956 static void __nvme_release_subsystem(struct nvme_subsystem
*subsys
)
1958 ida_simple_remove(&nvme_subsystems_ida
, subsys
->instance
);
1962 static void nvme_release_subsystem(struct device
*dev
)
1964 __nvme_release_subsystem(container_of(dev
, struct nvme_subsystem
, dev
));
1967 static void nvme_destroy_subsystem(struct kref
*ref
)
1969 struct nvme_subsystem
*subsys
=
1970 container_of(ref
, struct nvme_subsystem
, ref
);
1972 mutex_lock(&nvme_subsystems_lock
);
1973 list_del(&subsys
->entry
);
1974 mutex_unlock(&nvme_subsystems_lock
);
1976 ida_destroy(&subsys
->ns_ida
);
1977 device_del(&subsys
->dev
);
1978 put_device(&subsys
->dev
);
1981 static void nvme_put_subsystem(struct nvme_subsystem
*subsys
)
1983 kref_put(&subsys
->ref
, nvme_destroy_subsystem
);
1986 static struct nvme_subsystem
*__nvme_find_get_subsystem(const char *subsysnqn
)
1988 struct nvme_subsystem
*subsys
;
1990 lockdep_assert_held(&nvme_subsystems_lock
);
1992 list_for_each_entry(subsys
, &nvme_subsystems
, entry
) {
1993 if (strcmp(subsys
->subnqn
, subsysnqn
))
1995 if (!kref_get_unless_zero(&subsys
->ref
))
2003 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2004 struct device_attribute subsys_attr_##_name = \
2005 __ATTR(_name, _mode, _show, NULL)
2007 static ssize_t
nvme_subsys_show_nqn(struct device
*dev
,
2008 struct device_attribute
*attr
,
2011 struct nvme_subsystem
*subsys
=
2012 container_of(dev
, struct nvme_subsystem
, dev
);
2014 return snprintf(buf
, PAGE_SIZE
, "%s\n", subsys
->subnqn
);
2016 static SUBSYS_ATTR_RO(subsysnqn
, S_IRUGO
, nvme_subsys_show_nqn
);
2018 #define nvme_subsys_show_str_function(field) \
2019 static ssize_t subsys_##field##_show(struct device *dev, \
2020 struct device_attribute *attr, char *buf) \
2022 struct nvme_subsystem *subsys = \
2023 container_of(dev, struct nvme_subsystem, dev); \
2024 return sprintf(buf, "%.*s\n", \
2025 (int)sizeof(subsys->field), subsys->field); \
2027 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2029 nvme_subsys_show_str_function(model
);
2030 nvme_subsys_show_str_function(serial
);
2031 nvme_subsys_show_str_function(firmware_rev
);
2033 static struct attribute
*nvme_subsys_attrs
[] = {
2034 &subsys_attr_model
.attr
,
2035 &subsys_attr_serial
.attr
,
2036 &subsys_attr_firmware_rev
.attr
,
2037 &subsys_attr_subsysnqn
.attr
,
2041 static struct attribute_group nvme_subsys_attrs_group
= {
2042 .attrs
= nvme_subsys_attrs
,
2045 static const struct attribute_group
*nvme_subsys_attrs_groups
[] = {
2046 &nvme_subsys_attrs_group
,
2050 static int nvme_init_subsystem(struct nvme_ctrl
*ctrl
, struct nvme_id_ctrl
*id
)
2052 struct nvme_subsystem
*subsys
, *found
;
2055 subsys
= kzalloc(sizeof(*subsys
), GFP_KERNEL
);
2058 ret
= ida_simple_get(&nvme_subsystems_ida
, 0, 0, GFP_KERNEL
);
2063 subsys
->instance
= ret
;
2064 mutex_init(&subsys
->lock
);
2065 kref_init(&subsys
->ref
);
2066 INIT_LIST_HEAD(&subsys
->ctrls
);
2067 INIT_LIST_HEAD(&subsys
->nsheads
);
2068 nvme_init_subnqn(subsys
, ctrl
, id
);
2069 memcpy(subsys
->serial
, id
->sn
, sizeof(subsys
->serial
));
2070 memcpy(subsys
->model
, id
->mn
, sizeof(subsys
->model
));
2071 memcpy(subsys
->firmware_rev
, id
->fr
, sizeof(subsys
->firmware_rev
));
2072 subsys
->vendor_id
= le16_to_cpu(id
->vid
);
2073 subsys
->cmic
= id
->cmic
;
2075 subsys
->dev
.class = nvme_subsys_class
;
2076 subsys
->dev
.release
= nvme_release_subsystem
;
2077 subsys
->dev
.groups
= nvme_subsys_attrs_groups
;
2078 dev_set_name(&subsys
->dev
, "nvme-subsys%d", subsys
->instance
);
2079 device_initialize(&subsys
->dev
);
2081 mutex_lock(&nvme_subsystems_lock
);
2082 found
= __nvme_find_get_subsystem(subsys
->subnqn
);
2085 * Verify that the subsystem actually supports multiple
2086 * controllers, else bail out.
2088 if (!(id
->cmic
& (1 << 1))) {
2089 dev_err(ctrl
->device
,
2090 "ignoring ctrl due to duplicate subnqn (%s).\n",
2092 nvme_put_subsystem(found
);
2097 __nvme_release_subsystem(subsys
);
2100 ret
= device_add(&subsys
->dev
);
2102 dev_err(ctrl
->device
,
2103 "failed to register subsystem device.\n");
2106 ida_init(&subsys
->ns_ida
);
2107 list_add_tail(&subsys
->entry
, &nvme_subsystems
);
2110 ctrl
->subsys
= subsys
;
2111 mutex_unlock(&nvme_subsystems_lock
);
2113 if (sysfs_create_link(&subsys
->dev
.kobj
, &ctrl
->device
->kobj
,
2114 dev_name(ctrl
->device
))) {
2115 dev_err(ctrl
->device
,
2116 "failed to create sysfs link from subsystem.\n");
2117 /* the transport driver will eventually put the subsystem */
2121 mutex_lock(&subsys
->lock
);
2122 list_add_tail(&ctrl
->subsys_entry
, &subsys
->ctrls
);
2123 mutex_unlock(&subsys
->lock
);
2128 mutex_unlock(&nvme_subsystems_lock
);
2129 put_device(&subsys
->dev
);
2133 static int nvme_get_log(struct nvme_ctrl
*ctrl
, u8 log_page
, void *log
,
2136 struct nvme_command c
= { };
2138 c
.common
.opcode
= nvme_admin_get_log_page
;
2139 c
.common
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
2140 c
.common
.cdw10
[0] = nvme_get_log_dw10(log_page
, size
);
2142 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, log
, size
);
2145 static int nvme_get_effects_log(struct nvme_ctrl
*ctrl
)
2150 ctrl
->effects
= kzalloc(sizeof(*ctrl
->effects
), GFP_KERNEL
);
2155 ret
= nvme_get_log(ctrl
, NVME_LOG_CMD_EFFECTS
, ctrl
->effects
,
2156 sizeof(*ctrl
->effects
));
2158 kfree(ctrl
->effects
);
2159 ctrl
->effects
= NULL
;
2165 * Initialize the cached copies of the Identify data and various controller
2166 * register in our nvme_ctrl structure. This should be called as soon as
2167 * the admin queue is fully up and running.
2169 int nvme_init_identify(struct nvme_ctrl
*ctrl
)
2171 struct nvme_id_ctrl
*id
;
2173 int ret
, page_shift
;
2175 bool prev_apst_enabled
;
2177 ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_VS
, &ctrl
->vs
);
2179 dev_err(ctrl
->device
, "Reading VS failed (%d)\n", ret
);
2183 ret
= ctrl
->ops
->reg_read64(ctrl
, NVME_REG_CAP
, &cap
);
2185 dev_err(ctrl
->device
, "Reading CAP failed (%d)\n", ret
);
2188 page_shift
= NVME_CAP_MPSMIN(cap
) + 12;
2190 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
2191 ctrl
->subsystem
= NVME_CAP_NSSRC(cap
);
2193 ret
= nvme_identify_ctrl(ctrl
, &id
);
2195 dev_err(ctrl
->device
, "Identify Controller failed (%d)\n", ret
);
2199 if (id
->lpa
& NVME_CTRL_LPA_CMD_EFFECTS_LOG
) {
2200 ret
= nvme_get_effects_log(ctrl
);
2205 if (!ctrl
->identified
) {
2208 ret
= nvme_init_subsystem(ctrl
, id
);
2213 * Check for quirks. Quirk can depend on firmware version,
2214 * so, in principle, the set of quirks present can change
2215 * across a reset. As a possible future enhancement, we
2216 * could re-scan for quirks every time we reinitialize
2217 * the device, but we'd have to make sure that the driver
2218 * behaves intelligently if the quirks change.
2220 for (i
= 0; i
< ARRAY_SIZE(core_quirks
); i
++) {
2221 if (quirk_matches(id
, &core_quirks
[i
]))
2222 ctrl
->quirks
|= core_quirks
[i
].quirks
;
2226 if (force_apst
&& (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
)) {
2227 dev_warn(ctrl
->device
, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2228 ctrl
->quirks
&= ~NVME_QUIRK_NO_DEEPEST_PS
;
2231 ctrl
->oacs
= le16_to_cpu(id
->oacs
);
2232 ctrl
->oncs
= le16_to_cpup(&id
->oncs
);
2233 atomic_set(&ctrl
->abort_limit
, id
->acl
+ 1);
2234 ctrl
->vwc
= id
->vwc
;
2235 ctrl
->cntlid
= le16_to_cpup(&id
->cntlid
);
2237 max_hw_sectors
= 1 << (id
->mdts
+ page_shift
- 9);
2239 max_hw_sectors
= UINT_MAX
;
2240 ctrl
->max_hw_sectors
=
2241 min_not_zero(ctrl
->max_hw_sectors
, max_hw_sectors
);
2243 nvme_set_queue_limits(ctrl
, ctrl
->admin_q
);
2244 ctrl
->sgls
= le32_to_cpu(id
->sgls
);
2245 ctrl
->kas
= le16_to_cpu(id
->kas
);
2249 u32 transition_time
= le32_to_cpu(id
->rtd3e
) / 1000000;
2251 ctrl
->shutdown_timeout
= clamp_t(unsigned int, transition_time
,
2252 shutdown_timeout
, 60);
2254 if (ctrl
->shutdown_timeout
!= shutdown_timeout
)
2255 dev_warn(ctrl
->device
,
2256 "Shutdown timeout set to %u seconds\n",
2257 ctrl
->shutdown_timeout
);
2259 ctrl
->shutdown_timeout
= shutdown_timeout
;
2261 ctrl
->npss
= id
->npss
;
2262 ctrl
->apsta
= id
->apsta
;
2263 prev_apst_enabled
= ctrl
->apst_enabled
;
2264 if (ctrl
->quirks
& NVME_QUIRK_NO_APST
) {
2265 if (force_apst
&& id
->apsta
) {
2266 dev_warn(ctrl
->device
, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2267 ctrl
->apst_enabled
= true;
2269 ctrl
->apst_enabled
= false;
2272 ctrl
->apst_enabled
= id
->apsta
;
2274 memcpy(ctrl
->psd
, id
->psd
, sizeof(ctrl
->psd
));
2276 if (ctrl
->ops
->flags
& NVME_F_FABRICS
) {
2277 ctrl
->icdoff
= le16_to_cpu(id
->icdoff
);
2278 ctrl
->ioccsz
= le32_to_cpu(id
->ioccsz
);
2279 ctrl
->iorcsz
= le32_to_cpu(id
->iorcsz
);
2280 ctrl
->maxcmd
= le16_to_cpu(id
->maxcmd
);
2283 * In fabrics we need to verify the cntlid matches the
2286 if (ctrl
->cntlid
!= le16_to_cpu(id
->cntlid
)) {
2291 if (!ctrl
->opts
->discovery_nqn
&& !ctrl
->kas
) {
2292 dev_err(ctrl
->device
,
2293 "keep-alive support is mandatory for fabrics\n");
2298 ctrl
->cntlid
= le16_to_cpu(id
->cntlid
);
2299 ctrl
->hmpre
= le32_to_cpu(id
->hmpre
);
2300 ctrl
->hmmin
= le32_to_cpu(id
->hmmin
);
2301 ctrl
->hmminds
= le32_to_cpu(id
->hmminds
);
2302 ctrl
->hmmaxd
= le16_to_cpu(id
->hmmaxd
);
2307 if (ctrl
->apst_enabled
&& !prev_apst_enabled
)
2308 dev_pm_qos_expose_latency_tolerance(ctrl
->device
);
2309 else if (!ctrl
->apst_enabled
&& prev_apst_enabled
)
2310 dev_pm_qos_hide_latency_tolerance(ctrl
->device
);
2312 ret
= nvme_configure_apst(ctrl
);
2316 ret
= nvme_configure_timestamp(ctrl
);
2320 ret
= nvme_configure_directives(ctrl
);
2324 ctrl
->identified
= true;
2332 EXPORT_SYMBOL_GPL(nvme_init_identify
);
2334 static int nvme_dev_open(struct inode
*inode
, struct file
*file
)
2336 struct nvme_ctrl
*ctrl
=
2337 container_of(inode
->i_cdev
, struct nvme_ctrl
, cdev
);
2339 if (ctrl
->state
!= NVME_CTRL_LIVE
)
2340 return -EWOULDBLOCK
;
2341 file
->private_data
= ctrl
;
2345 static int nvme_dev_user_cmd(struct nvme_ctrl
*ctrl
, void __user
*argp
)
2350 mutex_lock(&ctrl
->namespaces_mutex
);
2351 if (list_empty(&ctrl
->namespaces
)) {
2356 ns
= list_first_entry(&ctrl
->namespaces
, struct nvme_ns
, list
);
2357 if (ns
!= list_last_entry(&ctrl
->namespaces
, struct nvme_ns
, list
)) {
2358 dev_warn(ctrl
->device
,
2359 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2364 dev_warn(ctrl
->device
,
2365 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2366 kref_get(&ns
->kref
);
2367 mutex_unlock(&ctrl
->namespaces_mutex
);
2369 ret
= nvme_user_cmd(ctrl
, ns
, argp
);
2374 mutex_unlock(&ctrl
->namespaces_mutex
);
2378 static long nvme_dev_ioctl(struct file
*file
, unsigned int cmd
,
2381 struct nvme_ctrl
*ctrl
= file
->private_data
;
2382 void __user
*argp
= (void __user
*)arg
;
2385 case NVME_IOCTL_ADMIN_CMD
:
2386 return nvme_user_cmd(ctrl
, NULL
, argp
);
2387 case NVME_IOCTL_IO_CMD
:
2388 return nvme_dev_user_cmd(ctrl
, argp
);
2389 case NVME_IOCTL_RESET
:
2390 dev_warn(ctrl
->device
, "resetting controller\n");
2391 return nvme_reset_ctrl_sync(ctrl
);
2392 case NVME_IOCTL_SUBSYS_RESET
:
2393 return nvme_reset_subsystem(ctrl
);
2394 case NVME_IOCTL_RESCAN
:
2395 nvme_queue_scan(ctrl
);
2402 static const struct file_operations nvme_dev_fops
= {
2403 .owner
= THIS_MODULE
,
2404 .open
= nvme_dev_open
,
2405 .unlocked_ioctl
= nvme_dev_ioctl
,
2406 .compat_ioctl
= nvme_dev_ioctl
,
2409 static ssize_t
nvme_sysfs_reset(struct device
*dev
,
2410 struct device_attribute
*attr
, const char *buf
,
2413 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2416 ret
= nvme_reset_ctrl_sync(ctrl
);
2421 static DEVICE_ATTR(reset_controller
, S_IWUSR
, NULL
, nvme_sysfs_reset
);
2423 static ssize_t
nvme_sysfs_rescan(struct device
*dev
,
2424 struct device_attribute
*attr
, const char *buf
,
2427 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2429 nvme_queue_scan(ctrl
);
2432 static DEVICE_ATTR(rescan_controller
, S_IWUSR
, NULL
, nvme_sysfs_rescan
);
2434 static inline struct nvme_ns_head
*dev_to_ns_head(struct device
*dev
)
2436 struct gendisk
*disk
= dev_to_disk(dev
);
2438 if (disk
->fops
== &nvme_fops
)
2439 return nvme_get_ns_from_dev(dev
)->head
;
2441 return disk
->private_data
;
2444 static ssize_t
wwid_show(struct device
*dev
, struct device_attribute
*attr
,
2447 struct nvme_ns_head
*head
= dev_to_ns_head(dev
);
2448 struct nvme_ns_ids
*ids
= &head
->ids
;
2449 struct nvme_subsystem
*subsys
= head
->subsys
;
2450 int serial_len
= sizeof(subsys
->serial
);
2451 int model_len
= sizeof(subsys
->model
);
2453 if (!uuid_is_null(&ids
->uuid
))
2454 return sprintf(buf
, "uuid.%pU\n", &ids
->uuid
);
2456 if (memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2457 return sprintf(buf
, "eui.%16phN\n", ids
->nguid
);
2459 if (memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2460 return sprintf(buf
, "eui.%8phN\n", ids
->eui64
);
2462 while (serial_len
> 0 && (subsys
->serial
[serial_len
- 1] == ' ' ||
2463 subsys
->serial
[serial_len
- 1] == '\0'))
2465 while (model_len
> 0 && (subsys
->model
[model_len
- 1] == ' ' ||
2466 subsys
->model
[model_len
- 1] == '\0'))
2469 return sprintf(buf
, "nvme.%04x-%*phN-%*phN-%08x\n", subsys
->vendor_id
,
2470 serial_len
, subsys
->serial
, model_len
, subsys
->model
,
2473 static DEVICE_ATTR(wwid
, S_IRUGO
, wwid_show
, NULL
);
2475 static ssize_t
nguid_show(struct device
*dev
, struct device_attribute
*attr
,
2478 return sprintf(buf
, "%pU\n", dev_to_ns_head(dev
)->ids
.nguid
);
2480 static DEVICE_ATTR(nguid
, S_IRUGO
, nguid_show
, NULL
);
2482 static ssize_t
uuid_show(struct device
*dev
, struct device_attribute
*attr
,
2485 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2487 /* For backward compatibility expose the NGUID to userspace if
2488 * we have no UUID set
2490 if (uuid_is_null(&ids
->uuid
)) {
2491 printk_ratelimited(KERN_WARNING
2492 "No UUID available providing old NGUID\n");
2493 return sprintf(buf
, "%pU\n", ids
->nguid
);
2495 return sprintf(buf
, "%pU\n", &ids
->uuid
);
2497 static DEVICE_ATTR(uuid
, S_IRUGO
, uuid_show
, NULL
);
2499 static ssize_t
eui_show(struct device
*dev
, struct device_attribute
*attr
,
2502 return sprintf(buf
, "%8ph\n", dev_to_ns_head(dev
)->ids
.eui64
);
2504 static DEVICE_ATTR(eui
, S_IRUGO
, eui_show
, NULL
);
2506 static ssize_t
nsid_show(struct device
*dev
, struct device_attribute
*attr
,
2509 return sprintf(buf
, "%d\n", dev_to_ns_head(dev
)->ns_id
);
2511 static DEVICE_ATTR(nsid
, S_IRUGO
, nsid_show
, NULL
);
2513 static struct attribute
*nvme_ns_id_attrs
[] = {
2514 &dev_attr_wwid
.attr
,
2515 &dev_attr_uuid
.attr
,
2516 &dev_attr_nguid
.attr
,
2518 &dev_attr_nsid
.attr
,
2522 static umode_t
nvme_ns_id_attrs_are_visible(struct kobject
*kobj
,
2523 struct attribute
*a
, int n
)
2525 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2526 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2528 if (a
== &dev_attr_uuid
.attr
) {
2529 if (uuid_is_null(&ids
->uuid
) &&
2530 !memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2533 if (a
== &dev_attr_nguid
.attr
) {
2534 if (!memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2537 if (a
== &dev_attr_eui
.attr
) {
2538 if (!memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2544 const struct attribute_group nvme_ns_id_attr_group
= {
2545 .attrs
= nvme_ns_id_attrs
,
2546 .is_visible
= nvme_ns_id_attrs_are_visible
,
2549 #define nvme_show_str_function(field) \
2550 static ssize_t field##_show(struct device *dev, \
2551 struct device_attribute *attr, char *buf) \
2553 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2554 return sprintf(buf, "%.*s\n", \
2555 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2557 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2559 nvme_show_str_function(model
);
2560 nvme_show_str_function(serial
);
2561 nvme_show_str_function(firmware_rev
);
2563 #define nvme_show_int_function(field) \
2564 static ssize_t field##_show(struct device *dev, \
2565 struct device_attribute *attr, char *buf) \
2567 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2568 return sprintf(buf, "%d\n", ctrl->field); \
2570 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2572 nvme_show_int_function(cntlid
);
2574 static ssize_t
nvme_sysfs_delete(struct device
*dev
,
2575 struct device_attribute
*attr
, const char *buf
,
2578 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2580 if (device_remove_file_self(dev
, attr
))
2581 nvme_delete_ctrl_sync(ctrl
);
2584 static DEVICE_ATTR(delete_controller
, S_IWUSR
, NULL
, nvme_sysfs_delete
);
2586 static ssize_t
nvme_sysfs_show_transport(struct device
*dev
,
2587 struct device_attribute
*attr
,
2590 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2592 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->ops
->name
);
2594 static DEVICE_ATTR(transport
, S_IRUGO
, nvme_sysfs_show_transport
, NULL
);
2596 static ssize_t
nvme_sysfs_show_state(struct device
*dev
,
2597 struct device_attribute
*attr
,
2600 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2601 static const char *const state_name
[] = {
2602 [NVME_CTRL_NEW
] = "new",
2603 [NVME_CTRL_LIVE
] = "live",
2604 [NVME_CTRL_RESETTING
] = "resetting",
2605 [NVME_CTRL_RECONNECTING
]= "reconnecting",
2606 [NVME_CTRL_DELETING
] = "deleting",
2607 [NVME_CTRL_DEAD
] = "dead",
2610 if ((unsigned)ctrl
->state
< ARRAY_SIZE(state_name
) &&
2611 state_name
[ctrl
->state
])
2612 return sprintf(buf
, "%s\n", state_name
[ctrl
->state
]);
2614 return sprintf(buf
, "unknown state\n");
2617 static DEVICE_ATTR(state
, S_IRUGO
, nvme_sysfs_show_state
, NULL
);
2619 static ssize_t
nvme_sysfs_show_subsysnqn(struct device
*dev
,
2620 struct device_attribute
*attr
,
2623 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2625 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->subsys
->subnqn
);
2627 static DEVICE_ATTR(subsysnqn
, S_IRUGO
, nvme_sysfs_show_subsysnqn
, NULL
);
2629 static ssize_t
nvme_sysfs_show_address(struct device
*dev
,
2630 struct device_attribute
*attr
,
2633 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2635 return ctrl
->ops
->get_address(ctrl
, buf
, PAGE_SIZE
);
2637 static DEVICE_ATTR(address
, S_IRUGO
, nvme_sysfs_show_address
, NULL
);
2639 static struct attribute
*nvme_dev_attrs
[] = {
2640 &dev_attr_reset_controller
.attr
,
2641 &dev_attr_rescan_controller
.attr
,
2642 &dev_attr_model
.attr
,
2643 &dev_attr_serial
.attr
,
2644 &dev_attr_firmware_rev
.attr
,
2645 &dev_attr_cntlid
.attr
,
2646 &dev_attr_delete_controller
.attr
,
2647 &dev_attr_transport
.attr
,
2648 &dev_attr_subsysnqn
.attr
,
2649 &dev_attr_address
.attr
,
2650 &dev_attr_state
.attr
,
2654 static umode_t
nvme_dev_attrs_are_visible(struct kobject
*kobj
,
2655 struct attribute
*a
, int n
)
2657 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2658 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2660 if (a
== &dev_attr_delete_controller
.attr
&& !ctrl
->ops
->delete_ctrl
)
2662 if (a
== &dev_attr_address
.attr
&& !ctrl
->ops
->get_address
)
2668 static struct attribute_group nvme_dev_attrs_group
= {
2669 .attrs
= nvme_dev_attrs
,
2670 .is_visible
= nvme_dev_attrs_are_visible
,
2673 static const struct attribute_group
*nvme_dev_attr_groups
[] = {
2674 &nvme_dev_attrs_group
,
2678 static struct nvme_ns_head
*__nvme_find_ns_head(struct nvme_subsystem
*subsys
,
2681 struct nvme_ns_head
*h
;
2683 lockdep_assert_held(&subsys
->lock
);
2685 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2686 if (h
->ns_id
== nsid
&& kref_get_unless_zero(&h
->ref
))
2693 static int __nvme_check_ids(struct nvme_subsystem
*subsys
,
2694 struct nvme_ns_head
*new)
2696 struct nvme_ns_head
*h
;
2698 lockdep_assert_held(&subsys
->lock
);
2700 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2701 if (nvme_ns_ids_valid(&new->ids
) &&
2702 nvme_ns_ids_equal(&new->ids
, &h
->ids
))
2709 static struct nvme_ns_head
*nvme_alloc_ns_head(struct nvme_ctrl
*ctrl
,
2710 unsigned nsid
, struct nvme_id_ns
*id
)
2712 struct nvme_ns_head
*head
;
2715 head
= kzalloc(sizeof(*head
), GFP_KERNEL
);
2718 ret
= ida_simple_get(&ctrl
->subsys
->ns_ida
, 1, 0, GFP_KERNEL
);
2721 head
->instance
= ret
;
2722 INIT_LIST_HEAD(&head
->list
);
2723 init_srcu_struct(&head
->srcu
);
2724 head
->subsys
= ctrl
->subsys
;
2726 kref_init(&head
->ref
);
2728 nvme_report_ns_ids(ctrl
, nsid
, id
, &head
->ids
);
2730 ret
= __nvme_check_ids(ctrl
->subsys
, head
);
2732 dev_err(ctrl
->device
,
2733 "duplicate IDs for nsid %d\n", nsid
);
2734 goto out_cleanup_srcu
;
2737 ret
= nvme_mpath_alloc_disk(ctrl
, head
);
2739 goto out_cleanup_srcu
;
2741 list_add_tail(&head
->entry
, &ctrl
->subsys
->nsheads
);
2744 cleanup_srcu_struct(&head
->srcu
);
2745 ida_simple_remove(&ctrl
->subsys
->ns_ida
, head
->instance
);
2749 return ERR_PTR(ret
);
2752 static int nvme_init_ns_head(struct nvme_ns
*ns
, unsigned nsid
,
2753 struct nvme_id_ns
*id
, bool *new)
2755 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
2756 bool is_shared
= id
->nmic
& (1 << 0);
2757 struct nvme_ns_head
*head
= NULL
;
2760 mutex_lock(&ctrl
->subsys
->lock
);
2762 head
= __nvme_find_ns_head(ctrl
->subsys
, nsid
);
2764 head
= nvme_alloc_ns_head(ctrl
, nsid
, id
);
2766 ret
= PTR_ERR(head
);
2772 struct nvme_ns_ids ids
;
2774 nvme_report_ns_ids(ctrl
, nsid
, id
, &ids
);
2775 if (!nvme_ns_ids_equal(&head
->ids
, &ids
)) {
2776 dev_err(ctrl
->device
,
2777 "IDs don't match for shared namespace %d\n",
2786 list_add_tail(&ns
->siblings
, &head
->list
);
2790 mutex_unlock(&ctrl
->subsys
->lock
);
2794 static int ns_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2796 struct nvme_ns
*nsa
= container_of(a
, struct nvme_ns
, list
);
2797 struct nvme_ns
*nsb
= container_of(b
, struct nvme_ns
, list
);
2799 return nsa
->head
->ns_id
- nsb
->head
->ns_id
;
2802 static struct nvme_ns
*nvme_find_get_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2804 struct nvme_ns
*ns
, *ret
= NULL
;
2806 mutex_lock(&ctrl
->namespaces_mutex
);
2807 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
2808 if (ns
->head
->ns_id
== nsid
) {
2809 if (!kref_get_unless_zero(&ns
->kref
))
2814 if (ns
->head
->ns_id
> nsid
)
2817 mutex_unlock(&ctrl
->namespaces_mutex
);
2821 static int nvme_setup_streams_ns(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
)
2823 struct streams_directive_params s
;
2826 if (!ctrl
->nr_streams
)
2829 ret
= nvme_get_stream_params(ctrl
, &s
, ns
->head
->ns_id
);
2833 ns
->sws
= le32_to_cpu(s
.sws
);
2834 ns
->sgs
= le16_to_cpu(s
.sgs
);
2837 unsigned int bs
= 1 << ns
->lba_shift
;
2839 blk_queue_io_min(ns
->queue
, bs
* ns
->sws
);
2841 blk_queue_io_opt(ns
->queue
, bs
* ns
->sws
* ns
->sgs
);
2847 static void nvme_alloc_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2850 struct gendisk
*disk
;
2851 struct nvme_id_ns
*id
;
2852 char disk_name
[DISK_NAME_LEN
];
2853 int node
= dev_to_node(ctrl
->dev
), flags
= GENHD_FL_EXT_DEVT
;
2856 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
2860 ns
->queue
= blk_mq_init_queue(ctrl
->tagset
);
2861 if (IS_ERR(ns
->queue
))
2863 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
2864 ns
->queue
->queuedata
= ns
;
2867 kref_init(&ns
->kref
);
2868 ns
->lba_shift
= 9; /* set to a default value for 512 until disk is validated */
2870 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
2871 nvme_set_queue_limits(ctrl
, ns
->queue
);
2872 nvme_setup_streams_ns(ctrl
, ns
);
2874 id
= nvme_identify_ns(ctrl
, nsid
);
2876 goto out_free_queue
;
2881 if (nvme_init_ns_head(ns
, nsid
, id
, &new))
2884 #ifdef CONFIG_NVME_MULTIPATH
2886 * If multipathing is enabled we need to always use the subsystem
2887 * instance number for numbering our devices to avoid conflicts
2888 * between subsystems that have multiple controllers and thus use
2889 * the multipath-aware subsystem node and those that have a single
2890 * controller and use the controller node directly.
2892 if (ns
->head
->disk
) {
2893 sprintf(disk_name
, "nvme%dc%dn%d", ctrl
->subsys
->instance
,
2894 ctrl
->cntlid
, ns
->head
->instance
);
2895 flags
= GENHD_FL_HIDDEN
;
2897 sprintf(disk_name
, "nvme%dn%d", ctrl
->subsys
->instance
,
2898 ns
->head
->instance
);
2902 * But without the multipath code enabled, multiple controller per
2903 * subsystems are visible as devices and thus we cannot use the
2904 * subsystem instance.
2906 sprintf(disk_name
, "nvme%dn%d", ctrl
->instance
, ns
->head
->instance
);
2909 if ((ctrl
->quirks
& NVME_QUIRK_LIGHTNVM
) && id
->vs
[0] == 0x1) {
2910 if (nvme_nvm_register(ns
, disk_name
, node
)) {
2911 dev_warn(ctrl
->device
, "LightNVM init failure\n");
2916 disk
= alloc_disk_node(0, node
);
2920 disk
->fops
= &nvme_fops
;
2921 disk
->private_data
= ns
;
2922 disk
->queue
= ns
->queue
;
2923 disk
->flags
= flags
;
2924 memcpy(disk
->disk_name
, disk_name
, DISK_NAME_LEN
);
2927 __nvme_revalidate_disk(disk
, id
);
2929 mutex_lock(&ctrl
->namespaces_mutex
);
2930 list_add_tail(&ns
->list
, &ctrl
->namespaces
);
2931 mutex_unlock(&ctrl
->namespaces_mutex
);
2933 nvme_get_ctrl(ctrl
);
2937 device_add_disk(ctrl
->device
, ns
->disk
);
2938 if (sysfs_create_group(&disk_to_dev(ns
->disk
)->kobj
,
2939 &nvme_ns_id_attr_group
))
2940 pr_warn("%s: failed to create sysfs group for identification\n",
2941 ns
->disk
->disk_name
);
2942 if (ns
->ndev
&& nvme_nvm_register_sysfs(ns
))
2943 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2944 ns
->disk
->disk_name
);
2947 nvme_mpath_add_disk(ns
->head
);
2948 nvme_mpath_add_disk_links(ns
);
2951 mutex_lock(&ctrl
->subsys
->lock
);
2952 list_del_rcu(&ns
->siblings
);
2953 mutex_unlock(&ctrl
->subsys
->lock
);
2957 blk_cleanup_queue(ns
->queue
);
2962 static void nvme_ns_remove(struct nvme_ns
*ns
)
2964 if (test_and_set_bit(NVME_NS_REMOVING
, &ns
->flags
))
2967 if (ns
->disk
&& ns
->disk
->flags
& GENHD_FL_UP
) {
2968 if (blk_get_integrity(ns
->disk
))
2969 blk_integrity_unregister(ns
->disk
);
2970 nvme_mpath_remove_disk_links(ns
);
2971 sysfs_remove_group(&disk_to_dev(ns
->disk
)->kobj
,
2972 &nvme_ns_id_attr_group
);
2974 nvme_nvm_unregister_sysfs(ns
);
2975 del_gendisk(ns
->disk
);
2976 blk_cleanup_queue(ns
->queue
);
2979 mutex_lock(&ns
->ctrl
->subsys
->lock
);
2980 nvme_mpath_clear_current_path(ns
);
2981 list_del_rcu(&ns
->siblings
);
2982 mutex_unlock(&ns
->ctrl
->subsys
->lock
);
2984 mutex_lock(&ns
->ctrl
->namespaces_mutex
);
2985 list_del_init(&ns
->list
);
2986 mutex_unlock(&ns
->ctrl
->namespaces_mutex
);
2988 synchronize_srcu(&ns
->head
->srcu
);
2992 static void nvme_validate_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2996 ns
= nvme_find_get_ns(ctrl
, nsid
);
2998 if (ns
->disk
&& revalidate_disk(ns
->disk
))
3002 nvme_alloc_ns(ctrl
, nsid
);
3005 static void nvme_remove_invalid_namespaces(struct nvme_ctrl
*ctrl
,
3008 struct nvme_ns
*ns
, *next
;
3010 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
) {
3011 if (ns
->head
->ns_id
> nsid
)
3016 static int nvme_scan_ns_list(struct nvme_ctrl
*ctrl
, unsigned nn
)
3020 unsigned i
, j
, nsid
, prev
= 0, num_lists
= DIV_ROUND_UP(nn
, 1024);
3023 ns_list
= kzalloc(0x1000, GFP_KERNEL
);
3027 for (i
= 0; i
< num_lists
; i
++) {
3028 ret
= nvme_identify_ns_list(ctrl
, prev
, ns_list
);
3032 for (j
= 0; j
< min(nn
, 1024U); j
++) {
3033 nsid
= le32_to_cpu(ns_list
[j
]);
3037 nvme_validate_ns(ctrl
, nsid
);
3039 while (++prev
< nsid
) {
3040 ns
= nvme_find_get_ns(ctrl
, prev
);
3050 nvme_remove_invalid_namespaces(ctrl
, prev
);
3056 static void nvme_scan_ns_sequential(struct nvme_ctrl
*ctrl
, unsigned nn
)
3060 for (i
= 1; i
<= nn
; i
++)
3061 nvme_validate_ns(ctrl
, i
);
3063 nvme_remove_invalid_namespaces(ctrl
, nn
);
3066 static void nvme_scan_work(struct work_struct
*work
)
3068 struct nvme_ctrl
*ctrl
=
3069 container_of(work
, struct nvme_ctrl
, scan_work
);
3070 struct nvme_id_ctrl
*id
;
3073 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3076 if (nvme_identify_ctrl(ctrl
, &id
))
3079 nn
= le32_to_cpu(id
->nn
);
3080 if (ctrl
->vs
>= NVME_VS(1, 1, 0) &&
3081 !(ctrl
->quirks
& NVME_QUIRK_IDENTIFY_CNS
)) {
3082 if (!nvme_scan_ns_list(ctrl
, nn
))
3085 nvme_scan_ns_sequential(ctrl
, nn
);
3087 mutex_lock(&ctrl
->namespaces_mutex
);
3088 list_sort(NULL
, &ctrl
->namespaces
, ns_cmp
);
3089 mutex_unlock(&ctrl
->namespaces_mutex
);
3093 void nvme_queue_scan(struct nvme_ctrl
*ctrl
)
3096 * Do not queue new scan work when a controller is reset during
3099 if (ctrl
->state
== NVME_CTRL_LIVE
)
3100 queue_work(nvme_wq
, &ctrl
->scan_work
);
3102 EXPORT_SYMBOL_GPL(nvme_queue_scan
);
3105 * This function iterates the namespace list unlocked to allow recovery from
3106 * controller failure. It is up to the caller to ensure the namespace list is
3107 * not modified by scan work while this function is executing.
3109 void nvme_remove_namespaces(struct nvme_ctrl
*ctrl
)
3111 struct nvme_ns
*ns
, *next
;
3114 * The dead states indicates the controller was not gracefully
3115 * disconnected. In that case, we won't be able to flush any data while
3116 * removing the namespaces' disks; fail all the queues now to avoid
3117 * potentially having to clean up the failed sync later.
3119 if (ctrl
->state
== NVME_CTRL_DEAD
)
3120 nvme_kill_queues(ctrl
);
3122 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
)
3125 EXPORT_SYMBOL_GPL(nvme_remove_namespaces
);
3127 static void nvme_aen_uevent(struct nvme_ctrl
*ctrl
)
3129 char *envp
[2] = { NULL
, NULL
};
3130 u32 aen_result
= ctrl
->aen_result
;
3132 ctrl
->aen_result
= 0;
3136 envp
[0] = kasprintf(GFP_KERNEL
, "NVME_AEN=%#08x", aen_result
);
3139 kobject_uevent_env(&ctrl
->device
->kobj
, KOBJ_CHANGE
, envp
);
3143 static void nvme_async_event_work(struct work_struct
*work
)
3145 struct nvme_ctrl
*ctrl
=
3146 container_of(work
, struct nvme_ctrl
, async_event_work
);
3148 nvme_aen_uevent(ctrl
);
3149 ctrl
->ops
->submit_async_event(ctrl
);
3152 static bool nvme_ctrl_pp_status(struct nvme_ctrl
*ctrl
)
3157 if (ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
))
3163 return ((ctrl
->ctrl_config
& NVME_CC_ENABLE
) && (csts
& NVME_CSTS_PP
));
3166 static void nvme_get_fw_slot_info(struct nvme_ctrl
*ctrl
)
3168 struct nvme_fw_slot_info_log
*log
;
3170 log
= kmalloc(sizeof(*log
), GFP_KERNEL
);
3174 if (nvme_get_log(ctrl
, NVME_LOG_FW_SLOT
, log
, sizeof(*log
)))
3175 dev_warn(ctrl
->device
,
3176 "Get FW SLOT INFO log error\n");
3180 static void nvme_fw_act_work(struct work_struct
*work
)
3182 struct nvme_ctrl
*ctrl
= container_of(work
,
3183 struct nvme_ctrl
, fw_act_work
);
3184 unsigned long fw_act_timeout
;
3187 fw_act_timeout
= jiffies
+
3188 msecs_to_jiffies(ctrl
->mtfa
* 100);
3190 fw_act_timeout
= jiffies
+
3191 msecs_to_jiffies(admin_timeout
* 1000);
3193 nvme_stop_queues(ctrl
);
3194 while (nvme_ctrl_pp_status(ctrl
)) {
3195 if (time_after(jiffies
, fw_act_timeout
)) {
3196 dev_warn(ctrl
->device
,
3197 "Fw activation timeout, reset controller\n");
3198 nvme_reset_ctrl(ctrl
);
3204 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3207 nvme_start_queues(ctrl
);
3208 /* read FW slot information to clear the AER */
3209 nvme_get_fw_slot_info(ctrl
);
3212 void nvme_complete_async_event(struct nvme_ctrl
*ctrl
, __le16 status
,
3213 union nvme_result
*res
)
3215 u32 result
= le32_to_cpu(res
->u32
);
3217 if (le16_to_cpu(status
) >> 1 != NVME_SC_SUCCESS
)
3220 switch (result
& 0x7) {
3221 case NVME_AER_ERROR
:
3222 case NVME_AER_SMART
:
3225 ctrl
->aen_result
= result
;
3231 switch (result
& 0xff07) {
3232 case NVME_AER_NOTICE_NS_CHANGED
:
3233 dev_info(ctrl
->device
, "rescanning\n");
3234 nvme_queue_scan(ctrl
);
3236 case NVME_AER_NOTICE_FW_ACT_STARTING
:
3237 queue_work(nvme_wq
, &ctrl
->fw_act_work
);
3240 dev_warn(ctrl
->device
, "async event result %08x\n", result
);
3242 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3244 EXPORT_SYMBOL_GPL(nvme_complete_async_event
);
3246 void nvme_stop_ctrl(struct nvme_ctrl
*ctrl
)
3248 nvme_stop_keep_alive(ctrl
);
3249 flush_work(&ctrl
->async_event_work
);
3250 flush_work(&ctrl
->scan_work
);
3251 cancel_work_sync(&ctrl
->fw_act_work
);
3253 EXPORT_SYMBOL_GPL(nvme_stop_ctrl
);
3255 void nvme_start_ctrl(struct nvme_ctrl
*ctrl
)
3258 nvme_start_keep_alive(ctrl
);
3260 if (ctrl
->queue_count
> 1) {
3261 nvme_queue_scan(ctrl
);
3262 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3263 nvme_start_queues(ctrl
);
3266 EXPORT_SYMBOL_GPL(nvme_start_ctrl
);
3268 void nvme_uninit_ctrl(struct nvme_ctrl
*ctrl
)
3270 cdev_device_del(&ctrl
->cdev
, ctrl
->device
);
3272 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl
);
3274 static void nvme_free_ctrl(struct device
*dev
)
3276 struct nvme_ctrl
*ctrl
=
3277 container_of(dev
, struct nvme_ctrl
, ctrl_device
);
3278 struct nvme_subsystem
*subsys
= ctrl
->subsys
;
3280 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3281 kfree(ctrl
->effects
);
3284 mutex_lock(&subsys
->lock
);
3285 list_del(&ctrl
->subsys_entry
);
3286 mutex_unlock(&subsys
->lock
);
3287 sysfs_remove_link(&subsys
->dev
.kobj
, dev_name(ctrl
->device
));
3290 ctrl
->ops
->free_ctrl(ctrl
);
3293 nvme_put_subsystem(subsys
);
3297 * Initialize a NVMe controller structures. This needs to be called during
3298 * earliest initialization so that we have the initialized structured around
3301 int nvme_init_ctrl(struct nvme_ctrl
*ctrl
, struct device
*dev
,
3302 const struct nvme_ctrl_ops
*ops
, unsigned long quirks
)
3306 ctrl
->state
= NVME_CTRL_NEW
;
3307 spin_lock_init(&ctrl
->lock
);
3308 INIT_LIST_HEAD(&ctrl
->namespaces
);
3309 mutex_init(&ctrl
->namespaces_mutex
);
3312 ctrl
->quirks
= quirks
;
3313 INIT_WORK(&ctrl
->scan_work
, nvme_scan_work
);
3314 INIT_WORK(&ctrl
->async_event_work
, nvme_async_event_work
);
3315 INIT_WORK(&ctrl
->fw_act_work
, nvme_fw_act_work
);
3316 INIT_WORK(&ctrl
->delete_work
, nvme_delete_ctrl_work
);
3318 ret
= ida_simple_get(&nvme_instance_ida
, 0, 0, GFP_KERNEL
);
3321 ctrl
->instance
= ret
;
3323 device_initialize(&ctrl
->ctrl_device
);
3324 ctrl
->device
= &ctrl
->ctrl_device
;
3325 ctrl
->device
->devt
= MKDEV(MAJOR(nvme_chr_devt
), ctrl
->instance
);
3326 ctrl
->device
->class = nvme_class
;
3327 ctrl
->device
->parent
= ctrl
->dev
;
3328 ctrl
->device
->groups
= nvme_dev_attr_groups
;
3329 ctrl
->device
->release
= nvme_free_ctrl
;
3330 dev_set_drvdata(ctrl
->device
, ctrl
);
3331 ret
= dev_set_name(ctrl
->device
, "nvme%d", ctrl
->instance
);
3333 goto out_release_instance
;
3335 cdev_init(&ctrl
->cdev
, &nvme_dev_fops
);
3336 ctrl
->cdev
.owner
= ops
->module
;
3337 ret
= cdev_device_add(&ctrl
->cdev
, ctrl
->device
);
3342 * Initialize latency tolerance controls. The sysfs files won't
3343 * be visible to userspace unless the device actually supports APST.
3345 ctrl
->device
->power
.set_latency_tolerance
= nvme_set_latency_tolerance
;
3346 dev_pm_qos_update_user_latency_tolerance(ctrl
->device
,
3347 min(default_ps_max_latency_us
, (unsigned long)S32_MAX
));
3351 kfree_const(dev
->kobj
.name
);
3352 out_release_instance
:
3353 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3357 EXPORT_SYMBOL_GPL(nvme_init_ctrl
);
3360 * nvme_kill_queues(): Ends all namespace queues
3361 * @ctrl: the dead controller that needs to end
3363 * Call this function when the driver determines it is unable to get the
3364 * controller in a state capable of servicing IO.
3366 void nvme_kill_queues(struct nvme_ctrl
*ctrl
)
3370 mutex_lock(&ctrl
->namespaces_mutex
);
3372 /* Forcibly unquiesce queues to avoid blocking dispatch */
3374 blk_mq_unquiesce_queue(ctrl
->admin_q
);
3376 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3378 * Revalidating a dead namespace sets capacity to 0. This will
3379 * end buffered writers dirtying pages that can't be synced.
3381 if (!ns
->disk
|| test_and_set_bit(NVME_NS_DEAD
, &ns
->flags
))
3383 revalidate_disk(ns
->disk
);
3384 blk_set_queue_dying(ns
->queue
);
3386 /* Forcibly unquiesce queues to avoid blocking dispatch */
3387 blk_mq_unquiesce_queue(ns
->queue
);
3389 mutex_unlock(&ctrl
->namespaces_mutex
);
3391 EXPORT_SYMBOL_GPL(nvme_kill_queues
);
3393 void nvme_unfreeze(struct nvme_ctrl
*ctrl
)
3397 mutex_lock(&ctrl
->namespaces_mutex
);
3398 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3399 blk_mq_unfreeze_queue(ns
->queue
);
3400 mutex_unlock(&ctrl
->namespaces_mutex
);
3402 EXPORT_SYMBOL_GPL(nvme_unfreeze
);
3404 void nvme_wait_freeze_timeout(struct nvme_ctrl
*ctrl
, long timeout
)
3408 mutex_lock(&ctrl
->namespaces_mutex
);
3409 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3410 timeout
= blk_mq_freeze_queue_wait_timeout(ns
->queue
, timeout
);
3414 mutex_unlock(&ctrl
->namespaces_mutex
);
3416 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout
);
3418 void nvme_wait_freeze(struct nvme_ctrl
*ctrl
)
3422 mutex_lock(&ctrl
->namespaces_mutex
);
3423 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3424 blk_mq_freeze_queue_wait(ns
->queue
);
3425 mutex_unlock(&ctrl
->namespaces_mutex
);
3427 EXPORT_SYMBOL_GPL(nvme_wait_freeze
);
3429 void nvme_start_freeze(struct nvme_ctrl
*ctrl
)
3433 mutex_lock(&ctrl
->namespaces_mutex
);
3434 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3435 blk_freeze_queue_start(ns
->queue
);
3436 mutex_unlock(&ctrl
->namespaces_mutex
);
3438 EXPORT_SYMBOL_GPL(nvme_start_freeze
);
3440 void nvme_stop_queues(struct nvme_ctrl
*ctrl
)
3444 mutex_lock(&ctrl
->namespaces_mutex
);
3445 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3446 blk_mq_quiesce_queue(ns
->queue
);
3447 mutex_unlock(&ctrl
->namespaces_mutex
);
3449 EXPORT_SYMBOL_GPL(nvme_stop_queues
);
3451 void nvme_start_queues(struct nvme_ctrl
*ctrl
)
3455 mutex_lock(&ctrl
->namespaces_mutex
);
3456 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3457 blk_mq_unquiesce_queue(ns
->queue
);
3458 mutex_unlock(&ctrl
->namespaces_mutex
);
3460 EXPORT_SYMBOL_GPL(nvme_start_queues
);
3462 int nvme_reinit_tagset(struct nvme_ctrl
*ctrl
, struct blk_mq_tag_set
*set
)
3464 if (!ctrl
->ops
->reinit_request
)
3467 return blk_mq_tagset_iter(set
, set
->driver_data
,
3468 ctrl
->ops
->reinit_request
);
3470 EXPORT_SYMBOL_GPL(nvme_reinit_tagset
);
3472 int __init
nvme_core_init(void)
3476 nvme_wq
= alloc_workqueue("nvme-wq",
3477 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3481 result
= alloc_chrdev_region(&nvme_chr_devt
, 0, NVME_MINORS
, "nvme");
3485 nvme_class
= class_create(THIS_MODULE
, "nvme");
3486 if (IS_ERR(nvme_class
)) {
3487 result
= PTR_ERR(nvme_class
);
3488 goto unregister_chrdev
;
3491 nvme_subsys_class
= class_create(THIS_MODULE
, "nvme-subsystem");
3492 if (IS_ERR(nvme_subsys_class
)) {
3493 result
= PTR_ERR(nvme_subsys_class
);
3499 class_destroy(nvme_class
);
3501 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3503 destroy_workqueue(nvme_wq
);
3507 void nvme_core_exit(void)
3509 ida_destroy(&nvme_subsystems_ida
);
3510 class_destroy(nvme_subsys_class
);
3511 class_destroy(nvme_class
);
3512 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3513 destroy_workqueue(nvme_wq
);
3516 MODULE_LICENSE("GPL");
3517 MODULE_VERSION("1.0");
3518 module_init(nvme_core_init
);
3519 module_exit(nvme_core_exit
);