2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
41 #define NVME_RDMA_MAX_SEGMENTS 256
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
45 struct nvme_rdma_device
{
46 struct ib_device
*dev
;
49 struct list_head entry
;
58 struct nvme_rdma_queue
;
59 struct nvme_rdma_request
{
60 struct nvme_request req
;
62 struct nvme_rdma_qe sqe
;
63 union nvme_result result
;
66 struct ib_sge sge
[1 + NVME_RDMA_MAX_INLINE_SEGMENTS
];
70 struct ib_reg_wr reg_wr
;
71 struct ib_cqe reg_cqe
;
72 struct nvme_rdma_queue
*queue
;
73 struct sg_table sg_table
;
74 struct scatterlist first_sgl
[];
77 enum nvme_rdma_queue_flags
{
78 NVME_RDMA_Q_ALLOCATED
= 0,
80 NVME_RDMA_Q_TR_READY
= 2,
83 struct nvme_rdma_queue
{
84 struct nvme_rdma_qe
*rsp_ring
;
86 size_t cmnd_capsule_len
;
87 struct nvme_rdma_ctrl
*ctrl
;
88 struct nvme_rdma_device
*device
;
93 struct rdma_cm_id
*cm_id
;
95 struct completion cm_done
;
98 struct nvme_rdma_ctrl
{
99 /* read only in the hot path */
100 struct nvme_rdma_queue
*queues
;
102 /* other member variables */
103 struct blk_mq_tag_set tag_set
;
104 struct work_struct err_work
;
106 struct nvme_rdma_qe async_event_sqe
;
108 struct delayed_work reconnect_work
;
110 struct list_head list
;
112 struct blk_mq_tag_set admin_tag_set
;
113 struct nvme_rdma_device
*device
;
117 struct sockaddr_storage addr
;
118 struct sockaddr_storage src_addr
;
120 struct nvme_ctrl ctrl
;
123 static inline struct nvme_rdma_ctrl
*to_rdma_ctrl(struct nvme_ctrl
*ctrl
)
125 return container_of(ctrl
, struct nvme_rdma_ctrl
, ctrl
);
128 static LIST_HEAD(device_list
);
129 static DEFINE_MUTEX(device_list_mutex
);
131 static LIST_HEAD(nvme_rdma_ctrl_list
);
132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex
);
135 * Disabling this option makes small I/O goes faster, but is fundamentally
136 * unsafe. With it turned off we will have to register a global rkey that
137 * allows read and write access to all physical memory.
139 static bool register_always
= true;
140 module_param(register_always
, bool, 0444);
141 MODULE_PARM_DESC(register_always
,
142 "Use memory registration even for contiguous memory regions");
144 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
145 struct rdma_cm_event
*event
);
146 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
148 static const struct blk_mq_ops nvme_rdma_mq_ops
;
149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
;
151 /* XXX: really should move to a generic header sooner or later.. */
152 static inline void put_unaligned_le24(u32 val
, u8
*p
)
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue
*queue
)
161 return queue
- queue
->ctrl
->queues
;
164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue
*queue
)
166 return queue
->cmnd_capsule_len
- sizeof(struct nvme_command
);
169 static void nvme_rdma_free_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
170 size_t capsule_size
, enum dma_data_direction dir
)
172 ib_dma_unmap_single(ibdev
, qe
->dma
, capsule_size
, dir
);
176 static int nvme_rdma_alloc_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
177 size_t capsule_size
, enum dma_data_direction dir
)
179 qe
->data
= kzalloc(capsule_size
, GFP_KERNEL
);
183 qe
->dma
= ib_dma_map_single(ibdev
, qe
->data
, capsule_size
, dir
);
184 if (ib_dma_mapping_error(ibdev
, qe
->dma
)) {
192 static void nvme_rdma_free_ring(struct ib_device
*ibdev
,
193 struct nvme_rdma_qe
*ring
, size_t ib_queue_size
,
194 size_t capsule_size
, enum dma_data_direction dir
)
198 for (i
= 0; i
< ib_queue_size
; i
++)
199 nvme_rdma_free_qe(ibdev
, &ring
[i
], capsule_size
, dir
);
203 static struct nvme_rdma_qe
*nvme_rdma_alloc_ring(struct ib_device
*ibdev
,
204 size_t ib_queue_size
, size_t capsule_size
,
205 enum dma_data_direction dir
)
207 struct nvme_rdma_qe
*ring
;
210 ring
= kcalloc(ib_queue_size
, sizeof(struct nvme_rdma_qe
), GFP_KERNEL
);
214 for (i
= 0; i
< ib_queue_size
; i
++) {
215 if (nvme_rdma_alloc_qe(ibdev
, &ring
[i
], capsule_size
, dir
))
222 nvme_rdma_free_ring(ibdev
, ring
, i
, capsule_size
, dir
);
226 static void nvme_rdma_qp_event(struct ib_event
*event
, void *context
)
228 pr_debug("QP event %s (%d)\n",
229 ib_event_msg(event
->event
), event
->event
);
233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue
*queue
)
235 wait_for_completion_interruptible_timeout(&queue
->cm_done
,
236 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS
) + 1);
237 return queue
->cm_error
;
240 static int nvme_rdma_create_qp(struct nvme_rdma_queue
*queue
, const int factor
)
242 struct nvme_rdma_device
*dev
= queue
->device
;
243 struct ib_qp_init_attr init_attr
;
246 memset(&init_attr
, 0, sizeof(init_attr
));
247 init_attr
.event_handler
= nvme_rdma_qp_event
;
249 init_attr
.cap
.max_send_wr
= factor
* queue
->queue_size
+ 1;
251 init_attr
.cap
.max_recv_wr
= queue
->queue_size
+ 1;
252 init_attr
.cap
.max_recv_sge
= 1;
253 init_attr
.cap
.max_send_sge
= 1 + NVME_RDMA_MAX_INLINE_SEGMENTS
;
254 init_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
255 init_attr
.qp_type
= IB_QPT_RC
;
256 init_attr
.send_cq
= queue
->ib_cq
;
257 init_attr
.recv_cq
= queue
->ib_cq
;
259 ret
= rdma_create_qp(queue
->cm_id
, dev
->pd
, &init_attr
);
261 queue
->qp
= queue
->cm_id
->qp
;
265 static void nvme_rdma_exit_request(struct blk_mq_tag_set
*set
,
266 struct request
*rq
, unsigned int hctx_idx
)
268 struct nvme_rdma_ctrl
*ctrl
= set
->driver_data
;
269 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
270 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
271 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
272 struct nvme_rdma_device
*dev
= queue
->device
;
274 nvme_rdma_free_qe(dev
->dev
, &req
->sqe
, sizeof(struct nvme_command
),
278 static int nvme_rdma_init_request(struct blk_mq_tag_set
*set
,
279 struct request
*rq
, unsigned int hctx_idx
,
280 unsigned int numa_node
)
282 struct nvme_rdma_ctrl
*ctrl
= set
->driver_data
;
283 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
284 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
285 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
286 struct nvme_rdma_device
*dev
= queue
->device
;
287 struct ib_device
*ibdev
= dev
->dev
;
290 ret
= nvme_rdma_alloc_qe(ibdev
, &req
->sqe
, sizeof(struct nvme_command
),
300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
301 unsigned int hctx_idx
)
303 struct nvme_rdma_ctrl
*ctrl
= data
;
304 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[hctx_idx
+ 1];
306 BUG_ON(hctx_idx
>= ctrl
->ctrl
.queue_count
);
308 hctx
->driver_data
= queue
;
312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
313 unsigned int hctx_idx
)
315 struct nvme_rdma_ctrl
*ctrl
= data
;
316 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
318 BUG_ON(hctx_idx
!= 0);
320 hctx
->driver_data
= queue
;
324 static void nvme_rdma_free_dev(struct kref
*ref
)
326 struct nvme_rdma_device
*ndev
=
327 container_of(ref
, struct nvme_rdma_device
, ref
);
329 mutex_lock(&device_list_mutex
);
330 list_del(&ndev
->entry
);
331 mutex_unlock(&device_list_mutex
);
333 ib_dealloc_pd(ndev
->pd
);
337 static void nvme_rdma_dev_put(struct nvme_rdma_device
*dev
)
339 kref_put(&dev
->ref
, nvme_rdma_free_dev
);
342 static int nvme_rdma_dev_get(struct nvme_rdma_device
*dev
)
344 return kref_get_unless_zero(&dev
->ref
);
347 static struct nvme_rdma_device
*
348 nvme_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
350 struct nvme_rdma_device
*ndev
;
352 mutex_lock(&device_list_mutex
);
353 list_for_each_entry(ndev
, &device_list
, entry
) {
354 if (ndev
->dev
->node_guid
== cm_id
->device
->node_guid
&&
355 nvme_rdma_dev_get(ndev
))
359 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
363 ndev
->dev
= cm_id
->device
;
364 kref_init(&ndev
->ref
);
366 ndev
->pd
= ib_alloc_pd(ndev
->dev
,
367 register_always
? 0 : IB_PD_UNSAFE_GLOBAL_RKEY
);
368 if (IS_ERR(ndev
->pd
))
371 if (!(ndev
->dev
->attrs
.device_cap_flags
&
372 IB_DEVICE_MEM_MGT_EXTENSIONS
)) {
373 dev_err(&ndev
->dev
->dev
,
374 "Memory registrations not supported.\n");
378 list_add(&ndev
->entry
, &device_list
);
380 mutex_unlock(&device_list_mutex
);
384 ib_dealloc_pd(ndev
->pd
);
388 mutex_unlock(&device_list_mutex
);
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue
*queue
)
394 struct nvme_rdma_device
*dev
;
395 struct ib_device
*ibdev
;
397 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
))
403 ib_mr_pool_destroy(queue
->qp
, &queue
->qp
->rdma_mrs
);
406 * The cm_id object might have been destroyed during RDMA connection
407 * establishment error flow to avoid getting other cma events, thus
408 * the destruction of the QP shouldn't use rdma_cm API.
410 ib_destroy_qp(queue
->qp
);
411 ib_free_cq(queue
->ib_cq
);
413 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
414 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
416 nvme_rdma_dev_put(dev
);
419 static int nvme_rdma_get_max_fr_pages(struct ib_device
*ibdev
)
421 return min_t(u32
, NVME_RDMA_MAX_SEGMENTS
,
422 ibdev
->attrs
.max_fast_reg_page_list_len
);
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue
*queue
)
427 struct ib_device
*ibdev
;
428 const int send_wr_factor
= 3; /* MR, SEND, INV */
429 const int cq_factor
= send_wr_factor
+ 1; /* + RECV */
430 int comp_vector
, idx
= nvme_rdma_queue_idx(queue
);
433 queue
->device
= nvme_rdma_find_get_device(queue
->cm_id
);
434 if (!queue
->device
) {
435 dev_err(queue
->cm_id
->device
->dev
.parent
,
436 "no client data found!\n");
437 return -ECONNREFUSED
;
439 ibdev
= queue
->device
->dev
;
442 * Spread I/O queues completion vectors according their queue index.
443 * Admin queues can always go on completion vector 0.
445 comp_vector
= idx
== 0 ? idx
: idx
- 1;
447 /* +1 for ib_stop_cq */
448 queue
->ib_cq
= ib_alloc_cq(ibdev
, queue
,
449 cq_factor
* queue
->queue_size
+ 1,
450 comp_vector
, IB_POLL_SOFTIRQ
);
451 if (IS_ERR(queue
->ib_cq
)) {
452 ret
= PTR_ERR(queue
->ib_cq
);
456 ret
= nvme_rdma_create_qp(queue
, send_wr_factor
);
458 goto out_destroy_ib_cq
;
460 queue
->rsp_ring
= nvme_rdma_alloc_ring(ibdev
, queue
->queue_size
,
461 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
462 if (!queue
->rsp_ring
) {
467 ret
= ib_mr_pool_init(queue
->qp
, &queue
->qp
->rdma_mrs
,
470 nvme_rdma_get_max_fr_pages(ibdev
));
472 dev_err(queue
->ctrl
->ctrl
.device
,
473 "failed to initialize MR pool sized %d for QID %d\n",
474 queue
->queue_size
, idx
);
475 goto out_destroy_ring
;
478 set_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
);
483 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
484 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
486 rdma_destroy_qp(queue
->cm_id
);
488 ib_free_cq(queue
->ib_cq
);
490 nvme_rdma_dev_put(queue
->device
);
494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl
*ctrl
,
495 int idx
, size_t queue_size
)
497 struct nvme_rdma_queue
*queue
;
498 struct sockaddr
*src_addr
= NULL
;
501 queue
= &ctrl
->queues
[idx
];
503 init_completion(&queue
->cm_done
);
506 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
508 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
510 queue
->queue_size
= queue_size
;
512 queue
->cm_id
= rdma_create_id(&init_net
, nvme_rdma_cm_handler
, queue
,
513 RDMA_PS_TCP
, IB_QPT_RC
);
514 if (IS_ERR(queue
->cm_id
)) {
515 dev_info(ctrl
->ctrl
.device
,
516 "failed to create CM ID: %ld\n", PTR_ERR(queue
->cm_id
));
517 return PTR_ERR(queue
->cm_id
);
520 if (ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
)
521 src_addr
= (struct sockaddr
*)&ctrl
->src_addr
;
523 queue
->cm_error
= -ETIMEDOUT
;
524 ret
= rdma_resolve_addr(queue
->cm_id
, src_addr
,
525 (struct sockaddr
*)&ctrl
->addr
,
526 NVME_RDMA_CONNECT_TIMEOUT_MS
);
528 dev_info(ctrl
->ctrl
.device
,
529 "rdma_resolve_addr failed (%d).\n", ret
);
530 goto out_destroy_cm_id
;
533 ret
= nvme_rdma_wait_for_cm(queue
);
535 dev_info(ctrl
->ctrl
.device
,
536 "rdma connection establishment failed (%d)\n", ret
);
537 goto out_destroy_cm_id
;
540 set_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
);
545 rdma_destroy_id(queue
->cm_id
);
546 nvme_rdma_destroy_queue_ib(queue
);
550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
552 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
))
555 rdma_disconnect(queue
->cm_id
);
556 ib_drain_qp(queue
->qp
);
559 static void nvme_rdma_free_queue(struct nvme_rdma_queue
*queue
)
561 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
564 if (nvme_rdma_queue_idx(queue
) == 0) {
565 nvme_rdma_free_qe(queue
->device
->dev
,
566 &queue
->ctrl
->async_event_sqe
,
567 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
570 nvme_rdma_destroy_queue_ib(queue
);
571 rdma_destroy_id(queue
->cm_id
);
574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl
*ctrl
)
578 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
579 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl
*ctrl
)
586 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
587 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl
*ctrl
, int idx
)
595 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, idx
);
597 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
600 set_bit(NVME_RDMA_Q_LIVE
, &ctrl
->queues
[idx
].flags
);
602 dev_info(ctrl
->ctrl
.device
,
603 "failed to connect queue: %d ret=%d\n", idx
, ret
);
607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl
*ctrl
)
611 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
612 ret
= nvme_rdma_start_queue(ctrl
, i
);
614 goto out_stop_queues
;
620 for (i
--; i
>= 1; i
--)
621 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl
*ctrl
)
627 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
628 struct ib_device
*ibdev
= ctrl
->device
->dev
;
629 unsigned int nr_io_queues
;
632 nr_io_queues
= min(opts
->nr_io_queues
, num_online_cpus());
635 * we map queues according to the device irq vectors for
636 * optimal locality so we don't need more queues than
637 * completion vectors.
639 nr_io_queues
= min_t(unsigned int, nr_io_queues
,
640 ibdev
->num_comp_vectors
);
642 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
646 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
647 if (ctrl
->ctrl
.queue_count
< 2)
650 dev_info(ctrl
->ctrl
.device
,
651 "creating %d I/O queues.\n", nr_io_queues
);
653 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
654 ret
= nvme_rdma_alloc_queue(ctrl
, i
,
655 ctrl
->ctrl
.sqsize
+ 1);
657 goto out_free_queues
;
663 for (i
--; i
>= 1; i
--)
664 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
669 static void nvme_rdma_free_tagset(struct nvme_ctrl
*nctrl
,
670 struct blk_mq_tag_set
*set
)
672 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
674 blk_mq_free_tag_set(set
);
675 nvme_rdma_dev_put(ctrl
->device
);
678 static struct blk_mq_tag_set
*nvme_rdma_alloc_tagset(struct nvme_ctrl
*nctrl
,
681 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
682 struct blk_mq_tag_set
*set
;
686 set
= &ctrl
->admin_tag_set
;
687 memset(set
, 0, sizeof(*set
));
688 set
->ops
= &nvme_rdma_admin_mq_ops
;
689 set
->queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
690 set
->reserved_tags
= 2; /* connect + keep-alive */
691 set
->numa_node
= NUMA_NO_NODE
;
692 set
->cmd_size
= sizeof(struct nvme_rdma_request
) +
693 SG_CHUNK_SIZE
* sizeof(struct scatterlist
);
694 set
->driver_data
= ctrl
;
695 set
->nr_hw_queues
= 1;
696 set
->timeout
= ADMIN_TIMEOUT
;
697 set
->flags
= BLK_MQ_F_NO_SCHED
;
699 set
= &ctrl
->tag_set
;
700 memset(set
, 0, sizeof(*set
));
701 set
->ops
= &nvme_rdma_mq_ops
;
702 set
->queue_depth
= nctrl
->opts
->queue_size
;
703 set
->reserved_tags
= 1; /* fabric connect */
704 set
->numa_node
= NUMA_NO_NODE
;
705 set
->flags
= BLK_MQ_F_SHOULD_MERGE
;
706 set
->cmd_size
= sizeof(struct nvme_rdma_request
) +
707 SG_CHUNK_SIZE
* sizeof(struct scatterlist
);
708 set
->driver_data
= ctrl
;
709 set
->nr_hw_queues
= nctrl
->queue_count
- 1;
710 set
->timeout
= NVME_IO_TIMEOUT
;
713 ret
= blk_mq_alloc_tag_set(set
);
718 * We need a reference on the device as long as the tag_set is alive,
719 * as the MRs in the request structures need a valid ib_device.
721 ret
= nvme_rdma_dev_get(ctrl
->device
);
724 goto out_free_tagset
;
730 blk_mq_free_tag_set(set
);
735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
738 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
740 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
741 nvme_rdma_free_tagset(&ctrl
->ctrl
, ctrl
->ctrl
.admin_tagset
);
743 nvme_rdma_free_queue(&ctrl
->queues
[0]);
746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
751 error
= nvme_rdma_alloc_queue(ctrl
, 0, NVME_AQ_DEPTH
);
755 ctrl
->device
= ctrl
->queues
[0].device
;
757 ctrl
->max_fr_pages
= nvme_rdma_get_max_fr_pages(ctrl
->device
->dev
);
760 ctrl
->ctrl
.admin_tagset
= nvme_rdma_alloc_tagset(&ctrl
->ctrl
, true);
761 if (IS_ERR(ctrl
->ctrl
.admin_tagset
)) {
762 error
= PTR_ERR(ctrl
->ctrl
.admin_tagset
);
766 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
767 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
768 error
= PTR_ERR(ctrl
->ctrl
.admin_q
);
769 goto out_free_tagset
;
773 error
= nvme_rdma_start_queue(ctrl
, 0);
775 goto out_cleanup_queue
;
777 error
= ctrl
->ctrl
.ops
->reg_read64(&ctrl
->ctrl
, NVME_REG_CAP
,
780 dev_err(ctrl
->ctrl
.device
,
781 "prop_get NVME_REG_CAP failed\n");
782 goto out_cleanup_queue
;
786 min_t(int, NVME_CAP_MQES(ctrl
->ctrl
.cap
), ctrl
->ctrl
.sqsize
);
788 error
= nvme_enable_ctrl(&ctrl
->ctrl
, ctrl
->ctrl
.cap
);
790 goto out_cleanup_queue
;
792 ctrl
->ctrl
.max_hw_sectors
=
793 (ctrl
->max_fr_pages
- 1) << (ilog2(SZ_4K
) - 9);
795 error
= nvme_init_identify(&ctrl
->ctrl
);
797 goto out_cleanup_queue
;
799 error
= nvme_rdma_alloc_qe(ctrl
->queues
[0].device
->dev
,
800 &ctrl
->async_event_sqe
, sizeof(struct nvme_command
),
803 goto out_cleanup_queue
;
809 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
812 nvme_rdma_free_tagset(&ctrl
->ctrl
, ctrl
->ctrl
.admin_tagset
);
814 nvme_rdma_free_queue(&ctrl
->queues
[0]);
818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl
*ctrl
,
821 nvme_rdma_stop_io_queues(ctrl
);
823 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
824 nvme_rdma_free_tagset(&ctrl
->ctrl
, ctrl
->ctrl
.tagset
);
826 nvme_rdma_free_io_queues(ctrl
);
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl
*ctrl
, bool new)
833 ret
= nvme_rdma_alloc_io_queues(ctrl
);
838 ctrl
->ctrl
.tagset
= nvme_rdma_alloc_tagset(&ctrl
->ctrl
, false);
839 if (IS_ERR(ctrl
->ctrl
.tagset
)) {
840 ret
= PTR_ERR(ctrl
->ctrl
.tagset
);
841 goto out_free_io_queues
;
844 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
845 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
846 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
847 goto out_free_tag_set
;
850 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
,
851 ctrl
->ctrl
.queue_count
- 1);
854 ret
= nvme_rdma_start_io_queues(ctrl
);
856 goto out_cleanup_connect_q
;
860 out_cleanup_connect_q
:
862 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
865 nvme_rdma_free_tagset(&ctrl
->ctrl
, ctrl
->ctrl
.tagset
);
867 nvme_rdma_free_io_queues(ctrl
);
871 static void nvme_rdma_free_ctrl(struct nvme_ctrl
*nctrl
)
873 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
875 if (list_empty(&ctrl
->list
))
878 mutex_lock(&nvme_rdma_ctrl_mutex
);
879 list_del(&ctrl
->list
);
880 mutex_unlock(&nvme_rdma_ctrl_mutex
);
883 nvmf_free_options(nctrl
->opts
);
888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl
*ctrl
)
890 /* If we are resetting/deleting then do nothing */
891 if (ctrl
->ctrl
.state
!= NVME_CTRL_RECONNECTING
) {
892 WARN_ON_ONCE(ctrl
->ctrl
.state
== NVME_CTRL_NEW
||
893 ctrl
->ctrl
.state
== NVME_CTRL_LIVE
);
897 if (nvmf_should_reconnect(&ctrl
->ctrl
)) {
898 dev_info(ctrl
->ctrl
.device
, "Reconnecting in %d seconds...\n",
899 ctrl
->ctrl
.opts
->reconnect_delay
);
900 queue_delayed_work(nvme_wq
, &ctrl
->reconnect_work
,
901 ctrl
->ctrl
.opts
->reconnect_delay
* HZ
);
903 dev_info(ctrl
->ctrl
.device
, "Removing controller...\n");
904 nvme_delete_ctrl(&ctrl
->ctrl
);
908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct
*work
)
910 struct nvme_rdma_ctrl
*ctrl
= container_of(to_delayed_work(work
),
911 struct nvme_rdma_ctrl
, reconnect_work
);
915 ++ctrl
->ctrl
.nr_reconnects
;
917 ret
= nvme_rdma_configure_admin_queue(ctrl
, false);
921 if (ctrl
->ctrl
.queue_count
> 1) {
922 ret
= nvme_rdma_configure_io_queues(ctrl
, false);
927 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
929 /* state change failure is ok if we're in DELETING state */
930 WARN_ON_ONCE(ctrl
->ctrl
.state
!= NVME_CTRL_DELETING
);
934 nvme_start_ctrl(&ctrl
->ctrl
);
936 dev_info(ctrl
->ctrl
.device
, "Successfully reconnected (%d attempts)\n",
937 ctrl
->ctrl
.nr_reconnects
);
939 ctrl
->ctrl
.nr_reconnects
= 0;
944 nvme_rdma_destroy_admin_queue(ctrl
, false);
946 dev_info(ctrl
->ctrl
.device
, "Failed reconnect attempt %d\n",
947 ctrl
->ctrl
.nr_reconnects
);
948 nvme_rdma_reconnect_or_remove(ctrl
);
951 static void nvme_rdma_error_recovery_work(struct work_struct
*work
)
953 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
954 struct nvme_rdma_ctrl
, err_work
);
956 nvme_stop_keep_alive(&ctrl
->ctrl
);
958 if (ctrl
->ctrl
.queue_count
> 1) {
959 nvme_stop_queues(&ctrl
->ctrl
);
960 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
961 nvme_cancel_request
, &ctrl
->ctrl
);
962 nvme_rdma_destroy_io_queues(ctrl
, false);
965 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
966 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
967 nvme_cancel_request
, &ctrl
->ctrl
);
968 nvme_rdma_destroy_admin_queue(ctrl
, false);
971 * queues are not a live anymore, so restart the queues to fail fast
974 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
975 nvme_start_queues(&ctrl
->ctrl
);
977 nvme_rdma_reconnect_or_remove(ctrl
);
980 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl
*ctrl
)
982 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RECONNECTING
))
985 queue_work(nvme_wq
, &ctrl
->err_work
);
988 static void nvme_rdma_wr_error(struct ib_cq
*cq
, struct ib_wc
*wc
,
991 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
992 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
994 if (ctrl
->ctrl
.state
== NVME_CTRL_LIVE
)
995 dev_info(ctrl
->ctrl
.device
,
996 "%s for CQE 0x%p failed with status %s (%d)\n",
998 ib_wc_status_msg(wc
->status
), wc
->status
);
999 nvme_rdma_error_recovery(ctrl
);
1002 static void nvme_rdma_memreg_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1004 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1005 nvme_rdma_wr_error(cq
, wc
, "MEMREG");
1008 static void nvme_rdma_inv_rkey_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1010 struct nvme_rdma_request
*req
=
1011 container_of(wc
->wr_cqe
, struct nvme_rdma_request
, reg_cqe
);
1012 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1014 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1015 nvme_rdma_wr_error(cq
, wc
, "LOCAL_INV");
1019 if (refcount_dec_and_test(&req
->ref
))
1020 nvme_end_request(rq
, req
->status
, req
->result
);
1024 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue
*queue
,
1025 struct nvme_rdma_request
*req
)
1027 struct ib_send_wr
*bad_wr
;
1028 struct ib_send_wr wr
= {
1029 .opcode
= IB_WR_LOCAL_INV
,
1032 .send_flags
= IB_SEND_SIGNALED
,
1033 .ex
.invalidate_rkey
= req
->mr
->rkey
,
1036 req
->reg_cqe
.done
= nvme_rdma_inv_rkey_done
;
1037 wr
.wr_cqe
= &req
->reg_cqe
;
1039 return ib_post_send(queue
->qp
, &wr
, &bad_wr
);
1042 static void nvme_rdma_unmap_data(struct nvme_rdma_queue
*queue
,
1045 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1046 struct nvme_rdma_device
*dev
= queue
->device
;
1047 struct ib_device
*ibdev
= dev
->dev
;
1049 if (!blk_rq_bytes(rq
))
1053 ib_mr_pool_put(queue
->qp
, &queue
->qp
->rdma_mrs
, req
->mr
);
1057 ib_dma_unmap_sg(ibdev
, req
->sg_table
.sgl
,
1058 req
->nents
, rq_data_dir(rq
) ==
1059 WRITE
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1061 nvme_cleanup_cmd(rq
);
1062 sg_free_table_chained(&req
->sg_table
, true);
1065 static int nvme_rdma_set_sg_null(struct nvme_command
*c
)
1067 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1070 put_unaligned_le24(0, sg
->length
);
1071 put_unaligned_le32(0, sg
->key
);
1072 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1076 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue
*queue
,
1077 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
1079 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1081 req
->sge
[1].addr
= sg_dma_address(req
->sg_table
.sgl
);
1082 req
->sge
[1].length
= sg_dma_len(req
->sg_table
.sgl
);
1083 req
->sge
[1].lkey
= queue
->device
->pd
->local_dma_lkey
;
1085 sg
->addr
= cpu_to_le64(queue
->ctrl
->ctrl
.icdoff
);
1086 sg
->length
= cpu_to_le32(sg_dma_len(req
->sg_table
.sgl
));
1087 sg
->type
= (NVME_SGL_FMT_DATA_DESC
<< 4) | NVME_SGL_FMT_OFFSET
;
1089 req
->inline_data
= true;
1094 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue
*queue
,
1095 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
1097 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1099 sg
->addr
= cpu_to_le64(sg_dma_address(req
->sg_table
.sgl
));
1100 put_unaligned_le24(sg_dma_len(req
->sg_table
.sgl
), sg
->length
);
1101 put_unaligned_le32(queue
->device
->pd
->unsafe_global_rkey
, sg
->key
);
1102 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1106 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue
*queue
,
1107 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1110 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1113 req
->mr
= ib_mr_pool_get(queue
->qp
, &queue
->qp
->rdma_mrs
);
1114 if (WARN_ON_ONCE(!req
->mr
))
1118 * Align the MR to a 4K page size to match the ctrl page size and
1119 * the block virtual boundary.
1121 nr
= ib_map_mr_sg(req
->mr
, req
->sg_table
.sgl
, count
, NULL
, SZ_4K
);
1122 if (unlikely(nr
< count
)) {
1123 ib_mr_pool_put(queue
->qp
, &queue
->qp
->rdma_mrs
, req
->mr
);
1130 ib_update_fast_reg_key(req
->mr
, ib_inc_rkey(req
->mr
->rkey
));
1132 req
->reg_cqe
.done
= nvme_rdma_memreg_done
;
1133 memset(&req
->reg_wr
, 0, sizeof(req
->reg_wr
));
1134 req
->reg_wr
.wr
.opcode
= IB_WR_REG_MR
;
1135 req
->reg_wr
.wr
.wr_cqe
= &req
->reg_cqe
;
1136 req
->reg_wr
.wr
.num_sge
= 0;
1137 req
->reg_wr
.mr
= req
->mr
;
1138 req
->reg_wr
.key
= req
->mr
->rkey
;
1139 req
->reg_wr
.access
= IB_ACCESS_LOCAL_WRITE
|
1140 IB_ACCESS_REMOTE_READ
|
1141 IB_ACCESS_REMOTE_WRITE
;
1143 sg
->addr
= cpu_to_le64(req
->mr
->iova
);
1144 put_unaligned_le24(req
->mr
->length
, sg
->length
);
1145 put_unaligned_le32(req
->mr
->rkey
, sg
->key
);
1146 sg
->type
= (NVME_KEY_SGL_FMT_DATA_DESC
<< 4) |
1147 NVME_SGL_FMT_INVALIDATE
;
1152 static int nvme_rdma_map_data(struct nvme_rdma_queue
*queue
,
1153 struct request
*rq
, struct nvme_command
*c
)
1155 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1156 struct nvme_rdma_device
*dev
= queue
->device
;
1157 struct ib_device
*ibdev
= dev
->dev
;
1161 req
->inline_data
= false;
1162 refcount_set(&req
->ref
, 2); /* send and recv completions */
1164 c
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1166 if (!blk_rq_bytes(rq
))
1167 return nvme_rdma_set_sg_null(c
);
1169 req
->sg_table
.sgl
= req
->first_sgl
;
1170 ret
= sg_alloc_table_chained(&req
->sg_table
,
1171 blk_rq_nr_phys_segments(rq
), req
->sg_table
.sgl
);
1175 req
->nents
= blk_rq_map_sg(rq
->q
, rq
, req
->sg_table
.sgl
);
1177 count
= ib_dma_map_sg(ibdev
, req
->sg_table
.sgl
, req
->nents
,
1178 rq_data_dir(rq
) == WRITE
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1179 if (unlikely(count
<= 0)) {
1180 sg_free_table_chained(&req
->sg_table
, true);
1185 if (rq_data_dir(rq
) == WRITE
&& nvme_rdma_queue_idx(queue
) &&
1186 blk_rq_payload_bytes(rq
) <=
1187 nvme_rdma_inline_data_size(queue
))
1188 return nvme_rdma_map_sg_inline(queue
, req
, c
);
1190 if (dev
->pd
->flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
1191 return nvme_rdma_map_sg_single(queue
, req
, c
);
1194 return nvme_rdma_map_sg_fr(queue
, req
, c
, count
);
1197 static void nvme_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1199 struct nvme_rdma_qe
*qe
=
1200 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1201 struct nvme_rdma_request
*req
=
1202 container_of(qe
, struct nvme_rdma_request
, sqe
);
1203 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1205 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1206 nvme_rdma_wr_error(cq
, wc
, "SEND");
1210 if (refcount_dec_and_test(&req
->ref
))
1211 nvme_end_request(rq
, req
->status
, req
->result
);
1214 static int nvme_rdma_post_send(struct nvme_rdma_queue
*queue
,
1215 struct nvme_rdma_qe
*qe
, struct ib_sge
*sge
, u32 num_sge
,
1216 struct ib_send_wr
*first
)
1218 struct ib_send_wr wr
, *bad_wr
;
1221 sge
->addr
= qe
->dma
;
1222 sge
->length
= sizeof(struct nvme_command
),
1223 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1226 wr
.wr_cqe
= &qe
->cqe
;
1228 wr
.num_sge
= num_sge
;
1229 wr
.opcode
= IB_WR_SEND
;
1230 wr
.send_flags
= IB_SEND_SIGNALED
;
1237 ret
= ib_post_send(queue
->qp
, first
, &bad_wr
);
1238 if (unlikely(ret
)) {
1239 dev_err(queue
->ctrl
->ctrl
.device
,
1240 "%s failed with error code %d\n", __func__
, ret
);
1245 static int nvme_rdma_post_recv(struct nvme_rdma_queue
*queue
,
1246 struct nvme_rdma_qe
*qe
)
1248 struct ib_recv_wr wr
, *bad_wr
;
1252 list
.addr
= qe
->dma
;
1253 list
.length
= sizeof(struct nvme_completion
);
1254 list
.lkey
= queue
->device
->pd
->local_dma_lkey
;
1256 qe
->cqe
.done
= nvme_rdma_recv_done
;
1259 wr
.wr_cqe
= &qe
->cqe
;
1263 ret
= ib_post_recv(queue
->qp
, &wr
, &bad_wr
);
1264 if (unlikely(ret
)) {
1265 dev_err(queue
->ctrl
->ctrl
.device
,
1266 "%s failed with error code %d\n", __func__
, ret
);
1271 static struct blk_mq_tags
*nvme_rdma_tagset(struct nvme_rdma_queue
*queue
)
1273 u32 queue_idx
= nvme_rdma_queue_idx(queue
);
1276 return queue
->ctrl
->admin_tag_set
.tags
[queue_idx
];
1277 return queue
->ctrl
->tag_set
.tags
[queue_idx
- 1];
1280 static void nvme_rdma_async_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1282 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1283 nvme_rdma_wr_error(cq
, wc
, "ASYNC");
1286 static void nvme_rdma_submit_async_event(struct nvme_ctrl
*arg
)
1288 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(arg
);
1289 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
1290 struct ib_device
*dev
= queue
->device
->dev
;
1291 struct nvme_rdma_qe
*sqe
= &ctrl
->async_event_sqe
;
1292 struct nvme_command
*cmd
= sqe
->data
;
1296 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
, sizeof(*cmd
), DMA_TO_DEVICE
);
1298 memset(cmd
, 0, sizeof(*cmd
));
1299 cmd
->common
.opcode
= nvme_admin_async_event
;
1300 cmd
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1301 cmd
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1302 nvme_rdma_set_sg_null(cmd
);
1304 sqe
->cqe
.done
= nvme_rdma_async_done
;
1306 ib_dma_sync_single_for_device(dev
, sqe
->dma
, sizeof(*cmd
),
1309 ret
= nvme_rdma_post_send(queue
, sqe
, &sge
, 1, NULL
);
1313 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue
*queue
,
1314 struct nvme_completion
*cqe
, struct ib_wc
*wc
, int tag
)
1317 struct nvme_rdma_request
*req
;
1320 rq
= blk_mq_tag_to_rq(nvme_rdma_tagset(queue
), cqe
->command_id
);
1322 dev_err(queue
->ctrl
->ctrl
.device
,
1323 "tag 0x%x on QP %#x not found\n",
1324 cqe
->command_id
, queue
->qp
->qp_num
);
1325 nvme_rdma_error_recovery(queue
->ctrl
);
1328 req
= blk_mq_rq_to_pdu(rq
);
1330 req
->status
= cqe
->status
;
1331 req
->result
= cqe
->result
;
1333 if (wc
->wc_flags
& IB_WC_WITH_INVALIDATE
) {
1334 if (unlikely(wc
->ex
.invalidate_rkey
!= req
->mr
->rkey
)) {
1335 dev_err(queue
->ctrl
->ctrl
.device
,
1336 "Bogus remote invalidation for rkey %#x\n",
1338 nvme_rdma_error_recovery(queue
->ctrl
);
1340 } else if (req
->mr
) {
1341 ret
= nvme_rdma_inv_rkey(queue
, req
);
1342 if (unlikely(ret
< 0)) {
1343 dev_err(queue
->ctrl
->ctrl
.device
,
1344 "Queueing INV WR for rkey %#x failed (%d)\n",
1345 req
->mr
->rkey
, ret
);
1346 nvme_rdma_error_recovery(queue
->ctrl
);
1348 /* the local invalidation completion will end the request */
1352 if (refcount_dec_and_test(&req
->ref
)) {
1355 nvme_end_request(rq
, req
->status
, req
->result
);
1361 static int __nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
, int tag
)
1363 struct nvme_rdma_qe
*qe
=
1364 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1365 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
1366 struct ib_device
*ibdev
= queue
->device
->dev
;
1367 struct nvme_completion
*cqe
= qe
->data
;
1368 const size_t len
= sizeof(struct nvme_completion
);
1371 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1372 nvme_rdma_wr_error(cq
, wc
, "RECV");
1376 ib_dma_sync_single_for_cpu(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1378 * AEN requests are special as they don't time out and can
1379 * survive any kind of queue freeze and often don't respond to
1380 * aborts. We don't even bother to allocate a struct request
1381 * for them but rather special case them here.
1383 if (unlikely(nvme_rdma_queue_idx(queue
) == 0 &&
1384 cqe
->command_id
>= NVME_AQ_BLK_MQ_DEPTH
))
1385 nvme_complete_async_event(&queue
->ctrl
->ctrl
, cqe
->status
,
1388 ret
= nvme_rdma_process_nvme_rsp(queue
, cqe
, wc
, tag
);
1389 ib_dma_sync_single_for_device(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1391 nvme_rdma_post_recv(queue
, qe
);
1395 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1397 __nvme_rdma_recv_done(cq
, wc
, -1);
1400 static int nvme_rdma_conn_established(struct nvme_rdma_queue
*queue
)
1404 for (i
= 0; i
< queue
->queue_size
; i
++) {
1405 ret
= nvme_rdma_post_recv(queue
, &queue
->rsp_ring
[i
]);
1407 goto out_destroy_queue_ib
;
1412 out_destroy_queue_ib
:
1413 nvme_rdma_destroy_queue_ib(queue
);
1417 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue
*queue
,
1418 struct rdma_cm_event
*ev
)
1420 struct rdma_cm_id
*cm_id
= queue
->cm_id
;
1421 int status
= ev
->status
;
1422 const char *rej_msg
;
1423 const struct nvme_rdma_cm_rej
*rej_data
;
1426 rej_msg
= rdma_reject_msg(cm_id
, status
);
1427 rej_data
= rdma_consumer_reject_data(cm_id
, ev
, &rej_data_len
);
1429 if (rej_data
&& rej_data_len
>= sizeof(u16
)) {
1430 u16 sts
= le16_to_cpu(rej_data
->sts
);
1432 dev_err(queue
->ctrl
->ctrl
.device
,
1433 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1434 status
, rej_msg
, sts
, nvme_rdma_cm_msg(sts
));
1436 dev_err(queue
->ctrl
->ctrl
.device
,
1437 "Connect rejected: status %d (%s).\n", status
, rej_msg
);
1443 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue
*queue
)
1447 ret
= nvme_rdma_create_queue_ib(queue
);
1451 ret
= rdma_resolve_route(queue
->cm_id
, NVME_RDMA_CONNECT_TIMEOUT_MS
);
1453 dev_err(queue
->ctrl
->ctrl
.device
,
1454 "rdma_resolve_route failed (%d).\n",
1456 goto out_destroy_queue
;
1462 nvme_rdma_destroy_queue_ib(queue
);
1466 static int nvme_rdma_route_resolved(struct nvme_rdma_queue
*queue
)
1468 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1469 struct rdma_conn_param param
= { };
1470 struct nvme_rdma_cm_req priv
= { };
1473 param
.qp_num
= queue
->qp
->qp_num
;
1474 param
.flow_control
= 1;
1476 param
.responder_resources
= queue
->device
->dev
->attrs
.max_qp_rd_atom
;
1477 /* maximum retry count */
1478 param
.retry_count
= 7;
1479 param
.rnr_retry_count
= 7;
1480 param
.private_data
= &priv
;
1481 param
.private_data_len
= sizeof(priv
);
1483 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1484 priv
.qid
= cpu_to_le16(nvme_rdma_queue_idx(queue
));
1486 * set the admin queue depth to the minimum size
1487 * specified by the Fabrics standard.
1489 if (priv
.qid
== 0) {
1490 priv
.hrqsize
= cpu_to_le16(NVME_AQ_DEPTH
);
1491 priv
.hsqsize
= cpu_to_le16(NVME_AQ_DEPTH
- 1);
1494 * current interpretation of the fabrics spec
1495 * is at minimum you make hrqsize sqsize+1, or a
1496 * 1's based representation of sqsize.
1498 priv
.hrqsize
= cpu_to_le16(queue
->queue_size
);
1499 priv
.hsqsize
= cpu_to_le16(queue
->ctrl
->ctrl
.sqsize
);
1502 ret
= rdma_connect(queue
->cm_id
, ¶m
);
1504 dev_err(ctrl
->ctrl
.device
,
1505 "rdma_connect failed (%d).\n", ret
);
1506 goto out_destroy_queue_ib
;
1511 out_destroy_queue_ib
:
1512 nvme_rdma_destroy_queue_ib(queue
);
1516 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1517 struct rdma_cm_event
*ev
)
1519 struct nvme_rdma_queue
*queue
= cm_id
->context
;
1522 dev_dbg(queue
->ctrl
->ctrl
.device
, "%s (%d): status %d id %p\n",
1523 rdma_event_msg(ev
->event
), ev
->event
,
1526 switch (ev
->event
) {
1527 case RDMA_CM_EVENT_ADDR_RESOLVED
:
1528 cm_error
= nvme_rdma_addr_resolved(queue
);
1530 case RDMA_CM_EVENT_ROUTE_RESOLVED
:
1531 cm_error
= nvme_rdma_route_resolved(queue
);
1533 case RDMA_CM_EVENT_ESTABLISHED
:
1534 queue
->cm_error
= nvme_rdma_conn_established(queue
);
1535 /* complete cm_done regardless of success/failure */
1536 complete(&queue
->cm_done
);
1538 case RDMA_CM_EVENT_REJECTED
:
1539 nvme_rdma_destroy_queue_ib(queue
);
1540 cm_error
= nvme_rdma_conn_rejected(queue
, ev
);
1542 case RDMA_CM_EVENT_ROUTE_ERROR
:
1543 case RDMA_CM_EVENT_CONNECT_ERROR
:
1544 case RDMA_CM_EVENT_UNREACHABLE
:
1545 nvme_rdma_destroy_queue_ib(queue
);
1546 case RDMA_CM_EVENT_ADDR_ERROR
:
1547 dev_dbg(queue
->ctrl
->ctrl
.device
,
1548 "CM error event %d\n", ev
->event
);
1549 cm_error
= -ECONNRESET
;
1551 case RDMA_CM_EVENT_DISCONNECTED
:
1552 case RDMA_CM_EVENT_ADDR_CHANGE
:
1553 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1554 dev_dbg(queue
->ctrl
->ctrl
.device
,
1555 "disconnect received - connection closed\n");
1556 nvme_rdma_error_recovery(queue
->ctrl
);
1558 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1559 /* device removal is handled via the ib_client API */
1562 dev_err(queue
->ctrl
->ctrl
.device
,
1563 "Unexpected RDMA CM event (%d)\n", ev
->event
);
1564 nvme_rdma_error_recovery(queue
->ctrl
);
1569 queue
->cm_error
= cm_error
;
1570 complete(&queue
->cm_done
);
1576 static enum blk_eh_timer_return
1577 nvme_rdma_timeout(struct request
*rq
, bool reserved
)
1579 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1581 dev_warn(req
->queue
->ctrl
->ctrl
.device
,
1582 "I/O %d QID %d timeout, reset controller\n",
1583 rq
->tag
, nvme_rdma_queue_idx(req
->queue
));
1585 /* queue error recovery */
1586 nvme_rdma_error_recovery(req
->queue
->ctrl
);
1588 /* fail with DNR on cmd timeout */
1589 nvme_req(rq
)->status
= NVME_SC_ABORT_REQ
| NVME_SC_DNR
;
1591 return BLK_EH_HANDLED
;
1595 * We cannot accept any other command until the Connect command has completed.
1597 static inline blk_status_t
1598 nvme_rdma_is_ready(struct nvme_rdma_queue
*queue
, struct request
*rq
)
1600 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
)))
1601 return nvmf_check_init_req(&queue
->ctrl
->ctrl
, rq
);
1605 static blk_status_t
nvme_rdma_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1606 const struct blk_mq_queue_data
*bd
)
1608 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
1609 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1610 struct request
*rq
= bd
->rq
;
1611 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1612 struct nvme_rdma_qe
*sqe
= &req
->sqe
;
1613 struct nvme_command
*c
= sqe
->data
;
1614 struct ib_device
*dev
;
1618 WARN_ON_ONCE(rq
->tag
< 0);
1620 ret
= nvme_rdma_is_ready(queue
, rq
);
1624 dev
= queue
->device
->dev
;
1625 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
,
1626 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1628 ret
= nvme_setup_cmd(ns
, rq
, c
);
1632 blk_mq_start_request(rq
);
1634 err
= nvme_rdma_map_data(queue
, rq
, c
);
1635 if (unlikely(err
< 0)) {
1636 dev_err(queue
->ctrl
->ctrl
.device
,
1637 "Failed to map data (%d)\n", err
);
1638 nvme_cleanup_cmd(rq
);
1642 sqe
->cqe
.done
= nvme_rdma_send_done
;
1644 ib_dma_sync_single_for_device(dev
, sqe
->dma
,
1645 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1647 err
= nvme_rdma_post_send(queue
, sqe
, req
->sge
, req
->num_sge
,
1648 req
->mr
? &req
->reg_wr
.wr
: NULL
);
1649 if (unlikely(err
)) {
1650 nvme_rdma_unmap_data(queue
, rq
);
1656 if (err
== -ENOMEM
|| err
== -EAGAIN
)
1657 return BLK_STS_RESOURCE
;
1658 return BLK_STS_IOERR
;
1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
1663 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1664 struct ib_cq
*cq
= queue
->ib_cq
;
1668 while (ib_poll_cq(cq
, 1, &wc
) > 0) {
1669 struct ib_cqe
*cqe
= wc
.wr_cqe
;
1672 if (cqe
->done
== nvme_rdma_recv_done
)
1673 found
|= __nvme_rdma_recv_done(cq
, &wc
, tag
);
1682 static void nvme_rdma_complete_rq(struct request
*rq
)
1684 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1686 nvme_rdma_unmap_data(req
->queue
, rq
);
1687 nvme_complete_rq(rq
);
1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set
*set
)
1692 struct nvme_rdma_ctrl
*ctrl
= set
->driver_data
;
1694 return blk_mq_rdma_map_queues(set
, ctrl
->device
->dev
, 0);
1697 static const struct blk_mq_ops nvme_rdma_mq_ops
= {
1698 .queue_rq
= nvme_rdma_queue_rq
,
1699 .complete
= nvme_rdma_complete_rq
,
1700 .init_request
= nvme_rdma_init_request
,
1701 .exit_request
= nvme_rdma_exit_request
,
1702 .init_hctx
= nvme_rdma_init_hctx
,
1703 .poll
= nvme_rdma_poll
,
1704 .timeout
= nvme_rdma_timeout
,
1705 .map_queues
= nvme_rdma_map_queues
,
1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
= {
1709 .queue_rq
= nvme_rdma_queue_rq
,
1710 .complete
= nvme_rdma_complete_rq
,
1711 .init_request
= nvme_rdma_init_request
,
1712 .exit_request
= nvme_rdma_exit_request
,
1713 .init_hctx
= nvme_rdma_init_admin_hctx
,
1714 .timeout
= nvme_rdma_timeout
,
1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool shutdown
)
1719 cancel_work_sync(&ctrl
->err_work
);
1720 cancel_delayed_work_sync(&ctrl
->reconnect_work
);
1722 if (ctrl
->ctrl
.queue_count
> 1) {
1723 nvme_stop_queues(&ctrl
->ctrl
);
1724 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
1725 nvme_cancel_request
, &ctrl
->ctrl
);
1726 nvme_rdma_destroy_io_queues(ctrl
, shutdown
);
1730 nvme_shutdown_ctrl(&ctrl
->ctrl
);
1732 nvme_disable_ctrl(&ctrl
->ctrl
, ctrl
->ctrl
.cap
);
1734 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
1735 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
1736 nvme_cancel_request
, &ctrl
->ctrl
);
1737 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
1738 nvme_rdma_destroy_admin_queue(ctrl
, shutdown
);
1741 static void nvme_rdma_delete_ctrl(struct nvme_ctrl
*ctrl
)
1743 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl
), true);
1746 static void nvme_rdma_reset_ctrl_work(struct work_struct
*work
)
1748 struct nvme_rdma_ctrl
*ctrl
=
1749 container_of(work
, struct nvme_rdma_ctrl
, ctrl
.reset_work
);
1753 nvme_stop_ctrl(&ctrl
->ctrl
);
1754 nvme_rdma_shutdown_ctrl(ctrl
, false);
1756 ret
= nvme_rdma_configure_admin_queue(ctrl
, false);
1760 if (ctrl
->ctrl
.queue_count
> 1) {
1761 ret
= nvme_rdma_configure_io_queues(ctrl
, false);
1766 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1768 /* state change failure is ok if we're in DELETING state */
1769 WARN_ON_ONCE(ctrl
->ctrl
.state
!= NVME_CTRL_DELETING
);
1773 nvme_start_ctrl(&ctrl
->ctrl
);
1778 dev_warn(ctrl
->ctrl
.device
, "Removing after reset failure\n");
1779 nvme_remove_namespaces(&ctrl
->ctrl
);
1780 nvme_rdma_shutdown_ctrl(ctrl
, true);
1781 nvme_uninit_ctrl(&ctrl
->ctrl
);
1782 nvme_put_ctrl(&ctrl
->ctrl
);
1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops
= {
1787 .module
= THIS_MODULE
,
1788 .flags
= NVME_F_FABRICS
,
1789 .reg_read32
= nvmf_reg_read32
,
1790 .reg_read64
= nvmf_reg_read64
,
1791 .reg_write32
= nvmf_reg_write32
,
1792 .free_ctrl
= nvme_rdma_free_ctrl
,
1793 .submit_async_event
= nvme_rdma_submit_async_event
,
1794 .delete_ctrl
= nvme_rdma_delete_ctrl
,
1795 .get_address
= nvmf_get_address
,
1799 __nvme_rdma_options_match(struct nvme_rdma_ctrl
*ctrl
,
1800 struct nvmf_ctrl_options
*opts
)
1802 char *stdport
= __stringify(NVME_RDMA_IP_PORT
);
1805 if (!nvmf_ctlr_matches_baseopts(&ctrl
->ctrl
, opts
) ||
1806 strcmp(opts
->traddr
, ctrl
->ctrl
.opts
->traddr
))
1809 if (opts
->mask
& NVMF_OPT_TRSVCID
&&
1810 ctrl
->ctrl
.opts
->mask
& NVMF_OPT_TRSVCID
) {
1811 if (strcmp(opts
->trsvcid
, ctrl
->ctrl
.opts
->trsvcid
))
1813 } else if (opts
->mask
& NVMF_OPT_TRSVCID
) {
1814 if (strcmp(opts
->trsvcid
, stdport
))
1816 } else if (ctrl
->ctrl
.opts
->mask
& NVMF_OPT_TRSVCID
) {
1817 if (strcmp(stdport
, ctrl
->ctrl
.opts
->trsvcid
))
1820 /* else, it's a match as both have stdport. Fall to next checks */
1823 * checking the local address is rough. In most cases, one
1824 * is not specified and the host port is selected by the stack.
1826 * Assume no match if:
1827 * local address is specified and address is not the same
1828 * local address is not specified but remote is, or vice versa
1829 * (admin using specific host_traddr when it matters).
1831 if (opts
->mask
& NVMF_OPT_HOST_TRADDR
&&
1832 ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
1833 if (strcmp(opts
->host_traddr
, ctrl
->ctrl
.opts
->host_traddr
))
1835 } else if (opts
->mask
& NVMF_OPT_HOST_TRADDR
||
1836 ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
)
1839 * if neither controller had an host port specified, assume it's
1840 * a match as everything else matched.
1847 * Fails a connection request if it matches an existing controller
1848 * (association) with the same tuple:
1849 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1851 * if local address is not specified in the request, it will match an
1852 * existing controller with all the other parameters the same and no
1853 * local port address specified as well.
1855 * The ports don't need to be compared as they are intrinsically
1856 * already matched by the port pointers supplied.
1859 nvme_rdma_existing_controller(struct nvmf_ctrl_options
*opts
)
1861 struct nvme_rdma_ctrl
*ctrl
;
1864 mutex_lock(&nvme_rdma_ctrl_mutex
);
1865 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
1866 found
= __nvme_rdma_options_match(ctrl
, opts
);
1870 mutex_unlock(&nvme_rdma_ctrl_mutex
);
1875 static struct nvme_ctrl
*nvme_rdma_create_ctrl(struct device
*dev
,
1876 struct nvmf_ctrl_options
*opts
)
1878 struct nvme_rdma_ctrl
*ctrl
;
1883 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
1885 return ERR_PTR(-ENOMEM
);
1886 ctrl
->ctrl
.opts
= opts
;
1887 INIT_LIST_HEAD(&ctrl
->list
);
1889 if (opts
->mask
& NVMF_OPT_TRSVCID
)
1890 port
= opts
->trsvcid
;
1892 port
= __stringify(NVME_RDMA_IP_PORT
);
1894 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
1895 opts
->traddr
, port
, &ctrl
->addr
);
1897 pr_err("malformed address passed: %s:%s\n", opts
->traddr
, port
);
1901 if (opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
1902 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
1903 opts
->host_traddr
, NULL
, &ctrl
->src_addr
);
1905 pr_err("malformed src address passed: %s\n",
1911 if (!opts
->duplicate_connect
&& nvme_rdma_existing_controller(opts
)) {
1916 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_rdma_ctrl_ops
,
1917 0 /* no quirks, we're perfect! */);
1921 INIT_DELAYED_WORK(&ctrl
->reconnect_work
,
1922 nvme_rdma_reconnect_ctrl_work
);
1923 INIT_WORK(&ctrl
->err_work
, nvme_rdma_error_recovery_work
);
1924 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_rdma_reset_ctrl_work
);
1926 ctrl
->ctrl
.queue_count
= opts
->nr_io_queues
+ 1; /* +1 for admin queue */
1927 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
1928 ctrl
->ctrl
.kato
= opts
->kato
;
1931 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
, sizeof(*ctrl
->queues
),
1934 goto out_uninit_ctrl
;
1936 ret
= nvme_rdma_configure_admin_queue(ctrl
, true);
1938 goto out_kfree_queues
;
1940 /* sanity check icdoff */
1941 if (ctrl
->ctrl
.icdoff
) {
1942 dev_err(ctrl
->ctrl
.device
, "icdoff is not supported!\n");
1944 goto out_remove_admin_queue
;
1947 /* sanity check keyed sgls */
1948 if (!(ctrl
->ctrl
.sgls
& (1 << 20))) {
1949 dev_err(ctrl
->ctrl
.device
, "Mandatory keyed sgls are not support\n");
1951 goto out_remove_admin_queue
;
1954 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
1955 /* warn if maxcmd is lower than queue_size */
1956 dev_warn(ctrl
->ctrl
.device
,
1957 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1958 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
1959 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
1962 if (opts
->queue_size
> ctrl
->ctrl
.sqsize
+ 1) {
1963 /* warn if sqsize is lower than queue_size */
1964 dev_warn(ctrl
->ctrl
.device
,
1965 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1966 opts
->queue_size
, ctrl
->ctrl
.sqsize
+ 1);
1967 opts
->queue_size
= ctrl
->ctrl
.sqsize
+ 1;
1970 if (opts
->nr_io_queues
) {
1971 ret
= nvme_rdma_configure_io_queues(ctrl
, true);
1973 goto out_remove_admin_queue
;
1976 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1977 WARN_ON_ONCE(!changed
);
1979 dev_info(ctrl
->ctrl
.device
, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1980 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
1982 nvme_get_ctrl(&ctrl
->ctrl
);
1984 mutex_lock(&nvme_rdma_ctrl_mutex
);
1985 list_add_tail(&ctrl
->list
, &nvme_rdma_ctrl_list
);
1986 mutex_unlock(&nvme_rdma_ctrl_mutex
);
1988 nvme_start_ctrl(&ctrl
->ctrl
);
1992 out_remove_admin_queue
:
1993 nvme_rdma_destroy_admin_queue(ctrl
, true);
1995 kfree(ctrl
->queues
);
1997 nvme_uninit_ctrl(&ctrl
->ctrl
);
1998 nvme_put_ctrl(&ctrl
->ctrl
);
2001 return ERR_PTR(ret
);
2004 return ERR_PTR(ret
);
2007 static struct nvmf_transport_ops nvme_rdma_transport
= {
2009 .required_opts
= NVMF_OPT_TRADDR
,
2010 .allowed_opts
= NVMF_OPT_TRSVCID
| NVMF_OPT_RECONNECT_DELAY
|
2011 NVMF_OPT_HOST_TRADDR
| NVMF_OPT_CTRL_LOSS_TMO
,
2012 .create_ctrl
= nvme_rdma_create_ctrl
,
2015 static void nvme_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
2017 struct nvme_rdma_ctrl
*ctrl
;
2019 /* Delete all controllers using this device */
2020 mutex_lock(&nvme_rdma_ctrl_mutex
);
2021 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
2022 if (ctrl
->device
->dev
!= ib_device
)
2024 dev_info(ctrl
->ctrl
.device
,
2025 "Removing ctrl: NQN \"%s\", addr %pISp\n",
2026 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
2027 nvme_delete_ctrl(&ctrl
->ctrl
);
2029 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2031 flush_workqueue(nvme_wq
);
2034 static struct ib_client nvme_rdma_ib_client
= {
2035 .name
= "nvme_rdma",
2036 .remove
= nvme_rdma_remove_one
2039 static int __init
nvme_rdma_init_module(void)
2043 ret
= ib_register_client(&nvme_rdma_ib_client
);
2047 ret
= nvmf_register_transport(&nvme_rdma_transport
);
2049 goto err_unreg_client
;
2054 ib_unregister_client(&nvme_rdma_ib_client
);
2058 static void __exit
nvme_rdma_cleanup_module(void)
2060 nvmf_unregister_transport(&nvme_rdma_transport
);
2061 ib_unregister_client(&nvme_rdma_ib_client
);
2064 module_init(nvme_rdma_init_module
);
2065 module_exit(nvme_rdma_cleanup_module
);
2067 MODULE_LICENSE("GPL v2");