1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
78 #include "page_reporting.h"
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock
);
82 #define MIN_PERCPU_PAGELIST_FRACTION (8)
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node
);
86 EXPORT_PER_CPU_SYMBOL(numa_node
);
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
98 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
102 /* work_structs for global per-cpu drains */
105 struct work_struct work
;
107 static DEFINE_MUTEX(pcpu_drain_mutex
);
108 static DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy
;
112 EXPORT_SYMBOL(latent_entropy
);
116 * Array of node states.
118 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
119 [N_POSSIBLE
] = NODE_MASK_ALL
,
120 [N_ONLINE
] = { { [0] = 1UL } },
122 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
126 [N_MEMORY
] = { { [0] = 1UL } },
127 [N_CPU
] = { { [0] = 1UL } },
130 EXPORT_SYMBOL(node_states
);
132 atomic_long_t _totalram_pages __read_mostly
;
133 EXPORT_SYMBOL(_totalram_pages
);
134 unsigned long totalreserve_pages __read_mostly
;
135 unsigned long totalcma_pages __read_mostly
;
137 int percpu_pagelist_fraction
;
138 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc
);
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
144 EXPORT_SYMBOL(init_on_alloc
);
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free
);
149 DEFINE_STATIC_KEY_FALSE(init_on_free
);
151 EXPORT_SYMBOL(init_on_free
);
153 static int __init
early_init_on_alloc(char *buf
)
160 ret
= kstrtobool(buf
, &bool_result
);
161 if (bool_result
&& page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 static_branch_enable(&init_on_alloc
);
166 static_branch_disable(&init_on_alloc
);
169 early_param("init_on_alloc", early_init_on_alloc
);
171 static int __init
early_init_on_free(char *buf
)
178 ret
= kstrtobool(buf
, &bool_result
);
179 if (bool_result
&& page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 static_branch_enable(&init_on_free
);
184 static_branch_disable(&init_on_free
);
187 early_param("init_on_free", early_init_on_free
);
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
197 static inline int get_pcppage_migratetype(struct page
*page
)
202 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
204 page
->index
= migratetype
;
207 #ifdef CONFIG_PM_SLEEP
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
218 static gfp_t saved_gfp_mask
;
220 void pm_restore_gfp_mask(void)
222 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
223 if (saved_gfp_mask
) {
224 gfp_allowed_mask
= saved_gfp_mask
;
229 void pm_restrict_gfp_mask(void)
231 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
232 WARN_ON(saved_gfp_mask
);
233 saved_gfp_mask
= gfp_allowed_mask
;
234 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
237 bool pm_suspended_storage(void)
239 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
243 #endif /* CONFIG_PM_SLEEP */
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly
;
249 static void __free_pages_ok(struct page
*page
, unsigned int order
);
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
262 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
263 #ifdef CONFIG_ZONE_DMA
266 #ifdef CONFIG_ZONE_DMA32
270 #ifdef CONFIG_HIGHMEM
276 static char * const zone_names
[MAX_NR_ZONES
] = {
277 #ifdef CONFIG_ZONE_DMA
280 #ifdef CONFIG_ZONE_DMA32
284 #ifdef CONFIG_HIGHMEM
288 #ifdef CONFIG_ZONE_DEVICE
293 const char * const migratetype_names
[MIGRATE_TYPES
] = {
301 #ifdef CONFIG_MEMORY_ISOLATION
306 compound_page_dtor
* const compound_page_dtors
[NR_COMPOUND_DTORS
] = {
307 [NULL_COMPOUND_DTOR
] = NULL
,
308 [COMPOUND_PAGE_DTOR
] = free_compound_page
,
309 #ifdef CONFIG_HUGETLB_PAGE
310 [HUGETLB_PAGE_DTOR
] = free_huge_page
,
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 [TRANSHUGE_PAGE_DTOR
] = free_transhuge_page
,
317 int min_free_kbytes
= 1024;
318 int user_min_free_kbytes
= -1;
319 #ifdef CONFIG_DISCONTIGMEM
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
329 int watermark_boost_factor __read_mostly
;
331 int watermark_boost_factor __read_mostly
= 15000;
333 int watermark_scale_factor
= 10;
335 static unsigned long nr_kernel_pages __initdata
;
336 static unsigned long nr_all_pages __initdata
;
337 static unsigned long dma_reserve __initdata
;
339 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
340 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
341 static unsigned long required_kernelcore __initdata
;
342 static unsigned long required_kernelcore_percent __initdata
;
343 static unsigned long required_movablecore __initdata
;
344 static unsigned long required_movablecore_percent __initdata
;
345 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
346 static bool mirrored_kernelcore __meminitdata
;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone
);
353 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
354 unsigned int nr_online_nodes __read_mostly
= 1;
355 EXPORT_SYMBOL(nr_node_ids
);
356 EXPORT_SYMBOL(nr_online_nodes
);
359 int page_group_by_mobility_disabled __read_mostly
;
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
382 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
384 if (!static_branch_unlikely(&deferred_pages
))
385 kasan_free_pages(page
, order
);
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
391 int nid
= early_pfn_to_nid(pfn
);
393 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
403 static bool __meminit
404 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
406 static unsigned long prev_end_pfn
, nr_initialised
;
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
412 if (prev_end_pfn
!= end_pfn
) {
413 prev_end_pfn
= end_pfn
;
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
426 if ((nr_initialised
> PAGES_PER_SECTION
) &&
427 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
428 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436 static inline bool early_page_uninitialised(unsigned long pfn
)
441 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn
));
454 return page_zone(page
)->pageblock_flags
;
455 #endif /* CONFIG_SPARSEMEM */
458 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
460 #ifdef CONFIG_SPARSEMEM
461 pfn
&= (PAGES_PER_SECTION
-1);
463 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
464 #endif /* CONFIG_SPARSEMEM */
465 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @mask: mask of bits that the caller is interested in
474 * Return: pageblock_bits flags
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page
*page
,
481 unsigned long *bitmap
;
482 unsigned long bitidx
, word_bitidx
;
485 bitmap
= get_pageblock_bitmap(page
, pfn
);
486 bitidx
= pfn_to_bitidx(page
, pfn
);
487 word_bitidx
= bitidx
/ BITS_PER_LONG
;
488 bitidx
&= (BITS_PER_LONG
-1);
490 word
= bitmap
[word_bitidx
];
491 return (word
>> bitidx
) & mask
;
494 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
497 return __get_pfnblock_flags_mask(page
, pfn
, mask
);
500 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
502 return __get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507 * @page: The page within the block of interest
508 * @flags: The flags to set
509 * @pfn: The target page frame number
510 * @mask: mask of bits that the caller is interested in
512 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
516 unsigned long *bitmap
;
517 unsigned long bitidx
, word_bitidx
;
518 unsigned long old_word
, word
;
520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
521 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
523 bitmap
= get_pageblock_bitmap(page
, pfn
);
524 bitidx
= pfn_to_bitidx(page
, pfn
);
525 word_bitidx
= bitidx
/ BITS_PER_LONG
;
526 bitidx
&= (BITS_PER_LONG
-1);
528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
533 word
= READ_ONCE(bitmap
[word_bitidx
]);
535 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
536 if (word
== old_word
)
542 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
544 if (unlikely(page_group_by_mobility_disabled
&&
545 migratetype
< MIGRATE_PCPTYPES
))
546 migratetype
= MIGRATE_UNMOVABLE
;
548 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
549 page_to_pfn(page
), MIGRATETYPE_MASK
);
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
557 unsigned long pfn
= page_to_pfn(page
);
558 unsigned long sp
, start_pfn
;
561 seq
= zone_span_seqbegin(zone
);
562 start_pfn
= zone
->zone_start_pfn
;
563 sp
= zone
->spanned_pages
;
564 if (!zone_spans_pfn(zone
, pfn
))
566 } while (zone_span_seqretry(zone
, seq
));
569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 pfn
, zone_to_nid(zone
), zone
->name
,
571 start_pfn
, start_pfn
+ sp
);
576 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
578 if (!pfn_valid_within(page_to_pfn(page
)))
580 if (zone
!= page_zone(page
))
586 * Temporary debugging check for pages not lying within a given zone.
588 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
590 if (page_outside_zone_boundaries(zone
, page
))
592 if (!page_is_consistent(zone
, page
))
598 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
604 static void bad_page(struct page
*page
, const char *reason
)
606 static unsigned long resume
;
607 static unsigned long nr_shown
;
608 static unsigned long nr_unshown
;
611 * Allow a burst of 60 reports, then keep quiet for that minute;
612 * or allow a steady drip of one report per second.
614 if (nr_shown
== 60) {
615 if (time_before(jiffies
, resume
)) {
621 "BUG: Bad page state: %lu messages suppressed\n",
628 resume
= jiffies
+ 60 * HZ
;
630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
631 current
->comm
, page_to_pfn(page
));
632 __dump_page(page
, reason
);
633 dump_page_owner(page
);
638 /* Leave bad fields for debug, except PageBuddy could make trouble */
639 page_mapcount_reset(page
); /* remove PageBuddy */
640 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
644 * Higher-order pages are called "compound pages". They are structured thusly:
646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
654 * The first tail page's ->compound_order holds the order of allocation.
655 * This usage means that zero-order pages may not be compound.
658 void free_compound_page(struct page
*page
)
660 mem_cgroup_uncharge(page
);
661 __free_pages_ok(page
, compound_order(page
));
664 void prep_compound_page(struct page
*page
, unsigned int order
)
667 int nr_pages
= 1 << order
;
670 for (i
= 1; i
< nr_pages
; i
++) {
671 struct page
*p
= page
+ i
;
672 set_page_count(p
, 0);
673 p
->mapping
= TAIL_MAPPING
;
674 set_compound_head(p
, page
);
677 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
678 set_compound_order(page
, order
);
679 atomic_set(compound_mapcount_ptr(page
), -1);
680 if (hpage_pincount_available(page
))
681 atomic_set(compound_pincount_ptr(page
), 0);
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder
;
687 bool _debug_pagealloc_enabled_early __read_mostly
688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
695 static int __init
early_debug_pagealloc(char *buf
)
697 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
699 early_param("debug_pagealloc", early_debug_pagealloc
);
701 void init_debug_pagealloc(void)
703 if (!debug_pagealloc_enabled())
706 static_branch_enable(&_debug_pagealloc_enabled
);
708 if (!debug_guardpage_minorder())
711 static_branch_enable(&_debug_guardpage_enabled
);
714 static int __init
debug_guardpage_minorder_setup(char *buf
)
718 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
719 pr_err("Bad debug_guardpage_minorder value\n");
722 _debug_guardpage_minorder
= res
;
723 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
728 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
729 unsigned int order
, int migratetype
)
731 if (!debug_guardpage_enabled())
734 if (order
>= debug_guardpage_minorder())
737 __SetPageGuard(page
);
738 INIT_LIST_HEAD(&page
->lru
);
739 set_page_private(page
, order
);
740 /* Guard pages are not available for any usage */
741 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
746 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
747 unsigned int order
, int migratetype
)
749 if (!debug_guardpage_enabled())
752 __ClearPageGuard(page
);
754 set_page_private(page
, 0);
755 if (!is_migrate_isolate(migratetype
))
756 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
759 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
760 unsigned int order
, int migratetype
) { return false; }
761 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
762 unsigned int order
, int migratetype
) {}
765 static inline void set_page_order(struct page
*page
, unsigned int order
)
767 set_page_private(page
, order
);
768 __SetPageBuddy(page
);
772 * This function checks whether a page is free && is the buddy
773 * we can coalesce a page and its buddy if
774 * (a) the buddy is not in a hole (check before calling!) &&
775 * (b) the buddy is in the buddy system &&
776 * (c) a page and its buddy have the same order &&
777 * (d) a page and its buddy are in the same zone.
779 * For recording whether a page is in the buddy system, we set PageBuddy.
780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
782 * For recording page's order, we use page_private(page).
784 static inline bool page_is_buddy(struct page
*page
, struct page
*buddy
,
787 if (!page_is_guard(buddy
) && !PageBuddy(buddy
))
790 if (page_order(buddy
) != order
)
794 * zone check is done late to avoid uselessly calculating
795 * zone/node ids for pages that could never merge.
797 if (page_zone_id(page
) != page_zone_id(buddy
))
800 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control
*task_capc(struct zone
*zone
)
808 struct capture_control
*capc
= current
->capture_control
;
810 return unlikely(capc
) &&
811 !(current
->flags
& PF_KTHREAD
) &&
813 capc
->cc
->zone
== zone
? capc
: NULL
;
817 compaction_capture(struct capture_control
*capc
, struct page
*page
,
818 int order
, int migratetype
)
820 if (!capc
|| order
!= capc
->cc
->order
)
823 /* Do not accidentally pollute CMA or isolated regions*/
824 if (is_migrate_cma(migratetype
) ||
825 is_migrate_isolate(migratetype
))
829 * Do not let lower order allocations polluate a movable pageblock.
830 * This might let an unmovable request use a reclaimable pageblock
831 * and vice-versa but no more than normal fallback logic which can
832 * have trouble finding a high-order free page.
834 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
842 static inline struct capture_control
*task_capc(struct zone
*zone
)
848 compaction_capture(struct capture_control
*capc
, struct page
*page
,
849 int order
, int migratetype
)
853 #endif /* CONFIG_COMPACTION */
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
857 unsigned int order
, int migratetype
)
859 struct free_area
*area
= &zone
->free_area
[order
];
861 list_add(&page
->lru
, &area
->free_list
[migratetype
]);
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page
*page
, struct zone
*zone
,
867 unsigned int order
, int migratetype
)
869 struct free_area
*area
= &zone
->free_area
[order
];
871 list_add_tail(&page
->lru
, &area
->free_list
[migratetype
]);
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
877 unsigned int order
, int migratetype
)
879 struct free_area
*area
= &zone
->free_area
[order
];
881 list_move(&page
->lru
, &area
->free_list
[migratetype
]);
884 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
887 /* clear reported state and update reported page count */
888 if (page_reported(page
))
889 __ClearPageReported(page
);
891 list_del(&page
->lru
);
892 __ClearPageBuddy(page
);
893 set_page_private(page
, 0);
894 zone
->free_area
[order
].nr_free
--;
898 * If this is not the largest possible page, check if the buddy
899 * of the next-highest order is free. If it is, it's possible
900 * that pages are being freed that will coalesce soon. In case,
901 * that is happening, add the free page to the tail of the list
902 * so it's less likely to be used soon and more likely to be merged
903 * as a higher order page
906 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
907 struct page
*page
, unsigned int order
)
909 struct page
*higher_page
, *higher_buddy
;
910 unsigned long combined_pfn
;
912 if (order
>= MAX_ORDER
- 2)
915 if (!pfn_valid_within(buddy_pfn
))
918 combined_pfn
= buddy_pfn
& pfn
;
919 higher_page
= page
+ (combined_pfn
- pfn
);
920 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
921 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
923 return pfn_valid_within(buddy_pfn
) &&
924 page_is_buddy(higher_page
, higher_buddy
, order
+ 1);
928 * Freeing function for a buddy system allocator.
930 * The concept of a buddy system is to maintain direct-mapped table
931 * (containing bit values) for memory blocks of various "orders".
932 * The bottom level table contains the map for the smallest allocatable
933 * units of memory (here, pages), and each level above it describes
934 * pairs of units from the levels below, hence, "buddies".
935 * At a high level, all that happens here is marking the table entry
936 * at the bottom level available, and propagating the changes upward
937 * as necessary, plus some accounting needed to play nicely with other
938 * parts of the VM system.
939 * At each level, we keep a list of pages, which are heads of continuous
940 * free pages of length of (1 << order) and marked with PageBuddy.
941 * Page's order is recorded in page_private(page) field.
942 * So when we are allocating or freeing one, we can derive the state of the
943 * other. That is, if we allocate a small block, and both were
944 * free, the remainder of the region must be split into blocks.
945 * If a block is freed, and its buddy is also free, then this
946 * triggers coalescing into a block of larger size.
951 static inline void __free_one_page(struct page
*page
,
953 struct zone
*zone
, unsigned int order
,
954 int migratetype
, bool report
)
956 struct capture_control
*capc
= task_capc(zone
);
957 unsigned long buddy_pfn
;
958 unsigned long combined_pfn
;
959 unsigned int max_order
;
963 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
965 VM_BUG_ON(!zone_is_initialized(zone
));
966 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
968 VM_BUG_ON(migratetype
== -1);
969 if (likely(!is_migrate_isolate(migratetype
)))
970 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
972 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
973 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
976 while (order
< max_order
- 1) {
977 if (compaction_capture(capc
, page
, order
, migratetype
)) {
978 __mod_zone_freepage_state(zone
, -(1 << order
),
982 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
983 buddy
= page
+ (buddy_pfn
- pfn
);
985 if (!pfn_valid_within(buddy_pfn
))
987 if (!page_is_buddy(page
, buddy
, order
))
990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 * merge with it and move up one order.
993 if (page_is_guard(buddy
))
994 clear_page_guard(zone
, buddy
, order
, migratetype
);
996 del_page_from_free_list(buddy
, zone
, order
);
997 combined_pfn
= buddy_pfn
& pfn
;
998 page
= page
+ (combined_pfn
- pfn
);
1002 if (max_order
< MAX_ORDER
) {
1003 /* If we are here, it means order is >= pageblock_order.
1004 * We want to prevent merge between freepages on isolate
1005 * pageblock and normal pageblock. Without this, pageblock
1006 * isolation could cause incorrect freepage or CMA accounting.
1008 * We don't want to hit this code for the more frequent
1009 * low-order merging.
1011 if (unlikely(has_isolate_pageblock(zone
))) {
1014 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1015 buddy
= page
+ (buddy_pfn
- pfn
);
1016 buddy_mt
= get_pageblock_migratetype(buddy
);
1018 if (migratetype
!= buddy_mt
1019 && (is_migrate_isolate(migratetype
) ||
1020 is_migrate_isolate(buddy_mt
)))
1024 goto continue_merging
;
1028 set_page_order(page
, order
);
1030 if (is_shuffle_order(order
))
1031 to_tail
= shuffle_pick_tail();
1033 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
1036 add_to_free_list_tail(page
, zone
, order
, migratetype
);
1038 add_to_free_list(page
, zone
, order
, migratetype
);
1040 /* Notify page reporting subsystem of freed page */
1042 page_reporting_notify_free(order
);
1046 * A bad page could be due to a number of fields. Instead of multiple branches,
1047 * try and check multiple fields with one check. The caller must do a detailed
1048 * check if necessary.
1050 static inline bool page_expected_state(struct page
*page
,
1051 unsigned long check_flags
)
1053 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1056 if (unlikely((unsigned long)page
->mapping
|
1057 page_ref_count(page
) |
1059 (unsigned long)page
->mem_cgroup
|
1061 (page
->flags
& check_flags
)))
1067 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
1069 const char *bad_reason
= NULL
;
1071 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1072 bad_reason
= "nonzero mapcount";
1073 if (unlikely(page
->mapping
!= NULL
))
1074 bad_reason
= "non-NULL mapping";
1075 if (unlikely(page_ref_count(page
) != 0))
1076 bad_reason
= "nonzero _refcount";
1077 if (unlikely(page
->flags
& flags
)) {
1078 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
1079 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1084 if (unlikely(page
->mem_cgroup
))
1085 bad_reason
= "page still charged to cgroup";
1090 static void check_free_page_bad(struct page
*page
)
1093 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
1096 static inline int check_free_page(struct page
*page
)
1098 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1101 /* Something has gone sideways, find it */
1102 check_free_page_bad(page
);
1106 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1111 * We rely page->lru.next never has bit 0 set, unless the page
1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1116 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1120 switch (page
- head_page
) {
1122 /* the first tail page: ->mapping may be compound_mapcount() */
1123 if (unlikely(compound_mapcount(page
))) {
1124 bad_page(page
, "nonzero compound_mapcount");
1130 * the second tail page: ->mapping is
1131 * deferred_list.next -- ignore value.
1135 if (page
->mapping
!= TAIL_MAPPING
) {
1136 bad_page(page
, "corrupted mapping in tail page");
1141 if (unlikely(!PageTail(page
))) {
1142 bad_page(page
, "PageTail not set");
1145 if (unlikely(compound_head(page
) != head_page
)) {
1146 bad_page(page
, "compound_head not consistent");
1151 page
->mapping
= NULL
;
1152 clear_compound_head(page
);
1156 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1160 /* s390's use of memset() could override KASAN redzones. */
1161 kasan_disable_current();
1162 for (i
= 0; i
< numpages
; i
++)
1163 clear_highpage(page
+ i
);
1164 kasan_enable_current();
1167 static __always_inline
bool free_pages_prepare(struct page
*page
,
1168 unsigned int order
, bool check_free
)
1172 VM_BUG_ON_PAGE(PageTail(page
), page
);
1174 trace_mm_page_free(page
, order
);
1177 * Check tail pages before head page information is cleared to
1178 * avoid checking PageCompound for order-0 pages.
1180 if (unlikely(order
)) {
1181 bool compound
= PageCompound(page
);
1184 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1187 ClearPageDoubleMap(page
);
1188 for (i
= 1; i
< (1 << order
); i
++) {
1190 bad
+= free_tail_pages_check(page
, page
+ i
);
1191 if (unlikely(check_free_page(page
+ i
))) {
1195 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1198 if (PageMappingFlags(page
))
1199 page
->mapping
= NULL
;
1200 if (memcg_kmem_enabled() && PageKmemcg(page
))
1201 __memcg_kmem_uncharge_page(page
, order
);
1203 bad
+= check_free_page(page
);
1207 page_cpupid_reset_last(page
);
1208 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1209 reset_page_owner(page
, order
);
1211 if (!PageHighMem(page
)) {
1212 debug_check_no_locks_freed(page_address(page
),
1213 PAGE_SIZE
<< order
);
1214 debug_check_no_obj_freed(page_address(page
),
1215 PAGE_SIZE
<< order
);
1217 if (want_init_on_free())
1218 kernel_init_free_pages(page
, 1 << order
);
1220 kernel_poison_pages(page
, 1 << order
, 0);
1222 * arch_free_page() can make the page's contents inaccessible. s390
1223 * does this. So nothing which can access the page's contents should
1224 * happen after this.
1226 arch_free_page(page
, order
);
1228 if (debug_pagealloc_enabled_static())
1229 kernel_map_pages(page
, 1 << order
, 0);
1231 kasan_free_nondeferred_pages(page
, order
);
1236 #ifdef CONFIG_DEBUG_VM
1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240 * moved from pcp lists to free lists.
1242 static bool free_pcp_prepare(struct page
*page
)
1244 return free_pages_prepare(page
, 0, true);
1247 static bool bulkfree_pcp_prepare(struct page
*page
)
1249 if (debug_pagealloc_enabled_static())
1250 return check_free_page(page
);
1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257 * moving from pcp lists to free list in order to reduce overhead. With
1258 * debug_pagealloc enabled, they are checked also immediately when being freed
1261 static bool free_pcp_prepare(struct page
*page
)
1263 if (debug_pagealloc_enabled_static())
1264 return free_pages_prepare(page
, 0, true);
1266 return free_pages_prepare(page
, 0, false);
1269 static bool bulkfree_pcp_prepare(struct page
*page
)
1271 return check_free_page(page
);
1273 #endif /* CONFIG_DEBUG_VM */
1275 static inline void prefetch_buddy(struct page
*page
)
1277 unsigned long pfn
= page_to_pfn(page
);
1278 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1279 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1285 * Frees a number of pages from the PCP lists
1286 * Assumes all pages on list are in same zone, and of same order.
1287 * count is the number of pages to free.
1289 * If the zone was previously in an "all pages pinned" state then look to
1290 * see if this freeing clears that state.
1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293 * pinned" detection logic.
1295 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1296 struct per_cpu_pages
*pcp
)
1298 int migratetype
= 0;
1300 int prefetch_nr
= 0;
1301 bool isolated_pageblocks
;
1302 struct page
*page
, *tmp
;
1306 * Ensure proper count is passed which otherwise would stuck in the
1307 * below while (list_empty(list)) loop.
1309 count
= min(pcp
->count
, count
);
1311 struct list_head
*list
;
1314 * Remove pages from lists in a round-robin fashion. A
1315 * batch_free count is maintained that is incremented when an
1316 * empty list is encountered. This is so more pages are freed
1317 * off fuller lists instead of spinning excessively around empty
1322 if (++migratetype
== MIGRATE_PCPTYPES
)
1324 list
= &pcp
->lists
[migratetype
];
1325 } while (list_empty(list
));
1327 /* This is the only non-empty list. Free them all. */
1328 if (batch_free
== MIGRATE_PCPTYPES
)
1332 page
= list_last_entry(list
, struct page
, lru
);
1333 /* must delete to avoid corrupting pcp list */
1334 list_del(&page
->lru
);
1337 if (bulkfree_pcp_prepare(page
))
1340 list_add_tail(&page
->lru
, &head
);
1343 * We are going to put the page back to the global
1344 * pool, prefetch its buddy to speed up later access
1345 * under zone->lock. It is believed the overhead of
1346 * an additional test and calculating buddy_pfn here
1347 * can be offset by reduced memory latency later. To
1348 * avoid excessive prefetching due to large count, only
1349 * prefetch buddy for the first pcp->batch nr of pages.
1351 if (prefetch_nr
++ < pcp
->batch
)
1352 prefetch_buddy(page
);
1353 } while (--count
&& --batch_free
&& !list_empty(list
));
1356 spin_lock(&zone
->lock
);
1357 isolated_pageblocks
= has_isolate_pageblock(zone
);
1360 * Use safe version since after __free_one_page(),
1361 * page->lru.next will not point to original list.
1363 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1364 int mt
= get_pcppage_migratetype(page
);
1365 /* MIGRATE_ISOLATE page should not go to pcplists */
1366 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1367 /* Pageblock could have been isolated meanwhile */
1368 if (unlikely(isolated_pageblocks
))
1369 mt
= get_pageblock_migratetype(page
);
1371 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
, true);
1372 trace_mm_page_pcpu_drain(page
, 0, mt
);
1374 spin_unlock(&zone
->lock
);
1377 static void free_one_page(struct zone
*zone
,
1378 struct page
*page
, unsigned long pfn
,
1382 spin_lock(&zone
->lock
);
1383 if (unlikely(has_isolate_pageblock(zone
) ||
1384 is_migrate_isolate(migratetype
))) {
1385 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1387 __free_one_page(page
, pfn
, zone
, order
, migratetype
, true);
1388 spin_unlock(&zone
->lock
);
1391 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1392 unsigned long zone
, int nid
)
1394 mm_zero_struct_page(page
);
1395 set_page_links(page
, zone
, nid
, pfn
);
1396 init_page_count(page
);
1397 page_mapcount_reset(page
);
1398 page_cpupid_reset_last(page
);
1399 page_kasan_tag_reset(page
);
1401 INIT_LIST_HEAD(&page
->lru
);
1402 #ifdef WANT_PAGE_VIRTUAL
1403 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 if (!is_highmem_idx(zone
))
1405 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __meminit
init_reserved_page(unsigned long pfn
)
1415 if (!early_page_uninitialised(pfn
))
1418 nid
= early_pfn_to_nid(pfn
);
1419 pgdat
= NODE_DATA(nid
);
1421 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1422 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1424 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1427 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1430 static inline void init_reserved_page(unsigned long pfn
)
1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1436 * Initialised pages do not have PageReserved set. This function is
1437 * called for each range allocated by the bootmem allocator and
1438 * marks the pages PageReserved. The remaining valid pages are later
1439 * sent to the buddy page allocator.
1441 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1443 unsigned long start_pfn
= PFN_DOWN(start
);
1444 unsigned long end_pfn
= PFN_UP(end
);
1446 for (; start_pfn
< end_pfn
; start_pfn
++) {
1447 if (pfn_valid(start_pfn
)) {
1448 struct page
*page
= pfn_to_page(start_pfn
);
1450 init_reserved_page(start_pfn
);
1452 /* Avoid false-positive PageTail() */
1453 INIT_LIST_HEAD(&page
->lru
);
1456 * no need for atomic set_bit because the struct
1457 * page is not visible yet so nobody should
1460 __SetPageReserved(page
);
1465 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1467 unsigned long flags
;
1469 unsigned long pfn
= page_to_pfn(page
);
1471 if (!free_pages_prepare(page
, order
, true))
1474 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1475 local_irq_save(flags
);
1476 __count_vm_events(PGFREE
, 1 << order
);
1477 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1478 local_irq_restore(flags
);
1481 void __free_pages_core(struct page
*page
, unsigned int order
)
1483 unsigned int nr_pages
= 1 << order
;
1484 struct page
*p
= page
;
1488 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1490 __ClearPageReserved(p
);
1491 set_page_count(p
, 0);
1493 __ClearPageReserved(p
);
1494 set_page_count(p
, 0);
1496 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1497 set_page_refcounted(page
);
1498 __free_pages(page
, order
);
1501 #ifdef CONFIG_NEED_MULTIPLE_NODES
1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
1511 struct mminit_pfnnid_cache
*state
)
1513 unsigned long start_pfn
, end_pfn
;
1516 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
1517 return state
->last_nid
;
1519 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
1520 if (nid
!= NUMA_NO_NODE
) {
1521 state
->last_start
= start_pfn
;
1522 state
->last_end
= end_pfn
;
1523 state
->last_nid
= nid
;
1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1532 static DEFINE_SPINLOCK(early_pfn_lock
);
1535 spin_lock(&early_pfn_lock
);
1536 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1538 nid
= first_online_node
;
1539 spin_unlock(&early_pfn_lock
);
1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1545 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1548 if (early_page_uninitialised(pfn
))
1550 __free_pages_core(page
, order
);
1554 * Check that the whole (or subset of) a pageblock given by the interval of
1555 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556 * with the migration of free compaction scanner. The scanners then need to
1557 * use only pfn_valid_within() check for arches that allow holes within
1560 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 * It's possible on some configurations to have a setup like node0 node1 node0
1563 * i.e. it's possible that all pages within a zones range of pages do not
1564 * belong to a single zone. We assume that a border between node0 and node1
1565 * can occur within a single pageblock, but not a node0 node1 node0
1566 * interleaving within a single pageblock. It is therefore sufficient to check
1567 * the first and last page of a pageblock and avoid checking each individual
1568 * page in a pageblock.
1570 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1571 unsigned long end_pfn
, struct zone
*zone
)
1573 struct page
*start_page
;
1574 struct page
*end_page
;
1576 /* end_pfn is one past the range we are checking */
1579 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1582 start_page
= pfn_to_online_page(start_pfn
);
1586 if (page_zone(start_page
) != zone
)
1589 end_page
= pfn_to_page(end_pfn
);
1591 /* This gives a shorter code than deriving page_zone(end_page) */
1592 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1598 void set_zone_contiguous(struct zone
*zone
)
1600 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1601 unsigned long block_end_pfn
;
1603 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1604 for (; block_start_pfn
< zone_end_pfn(zone
);
1605 block_start_pfn
= block_end_pfn
,
1606 block_end_pfn
+= pageblock_nr_pages
) {
1608 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1610 if (!__pageblock_pfn_to_page(block_start_pfn
,
1611 block_end_pfn
, zone
))
1616 /* We confirm that there is no hole */
1617 zone
->contiguous
= true;
1620 void clear_zone_contiguous(struct zone
*zone
)
1622 zone
->contiguous
= false;
1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1626 static void __init
deferred_free_range(unsigned long pfn
,
1627 unsigned long nr_pages
)
1635 page
= pfn_to_page(pfn
);
1637 /* Free a large naturally-aligned chunk if possible */
1638 if (nr_pages
== pageblock_nr_pages
&&
1639 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1640 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1641 __free_pages_core(page
, pageblock_order
);
1645 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1646 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1647 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1648 __free_pages_core(page
, 0);
1652 /* Completion tracking for deferred_init_memmap() threads */
1653 static atomic_t pgdat_init_n_undone __initdata
;
1654 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1656 static inline void __init
pgdat_init_report_one_done(void)
1658 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1659 complete(&pgdat_init_all_done_comp
);
1663 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 * First we check if pfn is valid on architectures where it is possible to have
1666 * holes within pageblock_nr_pages. On systems where it is not possible, this
1667 * function is optimized out.
1669 * Then, we check if a current large page is valid by only checking the validity
1672 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1674 if (!pfn_valid_within(pfn
))
1676 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1682 * Free pages to buddy allocator. Try to free aligned pages in
1683 * pageblock_nr_pages sizes.
1685 static void __init
deferred_free_pages(unsigned long pfn
,
1686 unsigned long end_pfn
)
1688 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1689 unsigned long nr_free
= 0;
1691 for (; pfn
< end_pfn
; pfn
++) {
1692 if (!deferred_pfn_valid(pfn
)) {
1693 deferred_free_range(pfn
- nr_free
, nr_free
);
1695 } else if (!(pfn
& nr_pgmask
)) {
1696 deferred_free_range(pfn
- nr_free
, nr_free
);
1702 /* Free the last block of pages to allocator */
1703 deferred_free_range(pfn
- nr_free
, nr_free
);
1707 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1708 * by performing it only once every pageblock_nr_pages.
1709 * Return number of pages initialized.
1711 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1713 unsigned long end_pfn
)
1715 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1716 int nid
= zone_to_nid(zone
);
1717 unsigned long nr_pages
= 0;
1718 int zid
= zone_idx(zone
);
1719 struct page
*page
= NULL
;
1721 for (; pfn
< end_pfn
; pfn
++) {
1722 if (!deferred_pfn_valid(pfn
)) {
1725 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1726 page
= pfn_to_page(pfn
);
1730 __init_single_page(page
, pfn
, zid
, nid
);
1737 * This function is meant to pre-load the iterator for the zone init.
1738 * Specifically it walks through the ranges until we are caught up to the
1739 * first_init_pfn value and exits there. If we never encounter the value we
1740 * return false indicating there are no valid ranges left.
1743 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1744 unsigned long *spfn
, unsigned long *epfn
,
1745 unsigned long first_init_pfn
)
1750 * Start out by walking through the ranges in this zone that have
1751 * already been initialized. We don't need to do anything with them
1752 * so we just need to flush them out of the system.
1754 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1755 if (*epfn
<= first_init_pfn
)
1757 if (*spfn
< first_init_pfn
)
1758 *spfn
= first_init_pfn
;
1767 * Initialize and free pages. We do it in two loops: first we initialize
1768 * struct page, then free to buddy allocator, because while we are
1769 * freeing pages we can access pages that are ahead (computing buddy
1770 * page in __free_one_page()).
1772 * In order to try and keep some memory in the cache we have the loop
1773 * broken along max page order boundaries. This way we will not cause
1774 * any issues with the buddy page computation.
1776 static unsigned long __init
1777 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1778 unsigned long *end_pfn
)
1780 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1781 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1782 unsigned long nr_pages
= 0;
1785 /* First we loop through and initialize the page values */
1786 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1789 if (mo_pfn
<= *start_pfn
)
1792 t
= min(mo_pfn
, *end_pfn
);
1793 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1795 if (mo_pfn
< *end_pfn
) {
1796 *start_pfn
= mo_pfn
;
1801 /* Reset values and now loop through freeing pages as needed */
1804 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1810 t
= min(mo_pfn
, epfn
);
1811 deferred_free_pages(spfn
, t
);
1821 deferred_init_memmap_chunk(unsigned long start_pfn
, unsigned long end_pfn
,
1824 unsigned long spfn
, epfn
;
1825 struct zone
*zone
= arg
;
1828 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
, start_pfn
);
1831 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 * can avoid introducing any issues with the buddy allocator.
1834 while (spfn
< end_pfn
) {
1835 deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1840 /* An arch may override for more concurrency. */
1842 deferred_page_init_max_threads(const struct cpumask
*node_cpumask
)
1847 /* Initialise remaining memory on a node */
1848 static int __init
deferred_init_memmap(void *data
)
1850 pg_data_t
*pgdat
= data
;
1851 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1852 unsigned long spfn
= 0, epfn
= 0;
1853 unsigned long first_init_pfn
, flags
;
1854 unsigned long start
= jiffies
;
1856 int zid
, max_threads
;
1859 /* Bind memory initialisation thread to a local node if possible */
1860 if (!cpumask_empty(cpumask
))
1861 set_cpus_allowed_ptr(current
, cpumask
);
1863 pgdat_resize_lock(pgdat
, &flags
);
1864 first_init_pfn
= pgdat
->first_deferred_pfn
;
1865 if (first_init_pfn
== ULONG_MAX
) {
1866 pgdat_resize_unlock(pgdat
, &flags
);
1867 pgdat_init_report_one_done();
1871 /* Sanity check boundaries */
1872 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1873 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1874 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1877 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 * interrupt thread must allocate this early in boot, zone must be
1879 * pre-grown prior to start of deferred page initialization.
1881 pgdat_resize_unlock(pgdat
, &flags
);
1883 /* Only the highest zone is deferred so find it */
1884 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1885 zone
= pgdat
->node_zones
+ zid
;
1886 if (first_init_pfn
< zone_end_pfn(zone
))
1890 /* If the zone is empty somebody else may have cleared out the zone */
1891 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1895 max_threads
= deferred_page_init_max_threads(cpumask
);
1897 while (spfn
< epfn
) {
1898 unsigned long epfn_align
= ALIGN(epfn
, PAGES_PER_SECTION
);
1899 struct padata_mt_job job
= {
1900 .thread_fn
= deferred_init_memmap_chunk
,
1903 .size
= epfn_align
- spfn
,
1904 .align
= PAGES_PER_SECTION
,
1905 .min_chunk
= PAGES_PER_SECTION
,
1906 .max_threads
= max_threads
,
1909 padata_do_multithreaded(&job
);
1910 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1914 /* Sanity check that the next zone really is unpopulated */
1915 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1917 pr_info("node %d deferred pages initialised in %ums\n",
1918 pgdat
->node_id
, jiffies_to_msecs(jiffies
- start
));
1920 pgdat_init_report_one_done();
1925 * If this zone has deferred pages, try to grow it by initializing enough
1926 * deferred pages to satisfy the allocation specified by order, rounded up to
1927 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1928 * of SECTION_SIZE bytes by initializing struct pages in increments of
1929 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 * Return true when zone was grown, otherwise return false. We return true even
1932 * when we grow less than requested, to let the caller decide if there are
1933 * enough pages to satisfy the allocation.
1935 * Note: We use noinline because this function is needed only during boot, and
1936 * it is called from a __ref function _deferred_grow_zone. This way we are
1937 * making sure that it is not inlined into permanent text section.
1939 static noinline
bool __init
1940 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1942 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1943 pg_data_t
*pgdat
= zone
->zone_pgdat
;
1944 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1945 unsigned long spfn
, epfn
, flags
;
1946 unsigned long nr_pages
= 0;
1949 /* Only the last zone may have deferred pages */
1950 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1953 pgdat_resize_lock(pgdat
, &flags
);
1956 * If someone grew this zone while we were waiting for spinlock, return
1957 * true, as there might be enough pages already.
1959 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1960 pgdat_resize_unlock(pgdat
, &flags
);
1964 /* If the zone is empty somebody else may have cleared out the zone */
1965 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1966 first_deferred_pfn
)) {
1967 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1968 pgdat_resize_unlock(pgdat
, &flags
);
1969 /* Retry only once. */
1970 return first_deferred_pfn
!= ULONG_MAX
;
1974 * Initialize and free pages in MAX_ORDER sized increments so
1975 * that we can avoid introducing any issues with the buddy
1978 while (spfn
< epfn
) {
1979 /* update our first deferred PFN for this section */
1980 first_deferred_pfn
= spfn
;
1982 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1983 touch_nmi_watchdog();
1985 /* We should only stop along section boundaries */
1986 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
1989 /* If our quota has been met we can stop here */
1990 if (nr_pages
>= nr_pages_needed
)
1994 pgdat
->first_deferred_pfn
= spfn
;
1995 pgdat_resize_unlock(pgdat
, &flags
);
1997 return nr_pages
> 0;
2001 * deferred_grow_zone() is __init, but it is called from
2002 * get_page_from_freelist() during early boot until deferred_pages permanently
2003 * disables this call. This is why we have refdata wrapper to avoid warning,
2004 * and to ensure that the function body gets unloaded.
2007 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
2009 return deferred_grow_zone(zone
, order
);
2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014 void __init
page_alloc_init_late(void)
2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021 /* There will be num_node_state(N_MEMORY) threads */
2022 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
2023 for_each_node_state(nid
, N_MEMORY
) {
2024 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
2027 /* Block until all are initialised */
2028 wait_for_completion(&pgdat_init_all_done_comp
);
2031 * The number of managed pages has changed due to the initialisation
2032 * so the pcpu batch and high limits needs to be updated or the limits
2033 * will be artificially small.
2035 for_each_populated_zone(zone
)
2036 zone_pcp_update(zone
);
2039 * We initialized the rest of the deferred pages. Permanently disable
2040 * on-demand struct page initialization.
2042 static_branch_disable(&deferred_pages
);
2044 /* Reinit limits that are based on free pages after the kernel is up */
2045 files_maxfiles_init();
2048 /* Discard memblock private memory */
2051 for_each_node_state(nid
, N_MEMORY
)
2052 shuffle_free_memory(NODE_DATA(nid
));
2054 for_each_populated_zone(zone
)
2055 set_zone_contiguous(zone
);
2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2060 void __init
init_cma_reserved_pageblock(struct page
*page
)
2062 unsigned i
= pageblock_nr_pages
;
2063 struct page
*p
= page
;
2066 __ClearPageReserved(p
);
2067 set_page_count(p
, 0);
2070 set_pageblock_migratetype(page
, MIGRATE_CMA
);
2072 if (pageblock_order
>= MAX_ORDER
) {
2073 i
= pageblock_nr_pages
;
2076 set_page_refcounted(p
);
2077 __free_pages(p
, MAX_ORDER
- 1);
2078 p
+= MAX_ORDER_NR_PAGES
;
2079 } while (i
-= MAX_ORDER_NR_PAGES
);
2081 set_page_refcounted(page
);
2082 __free_pages(page
, pageblock_order
);
2085 adjust_managed_page_count(page
, pageblock_nr_pages
);
2090 * The order of subdivision here is critical for the IO subsystem.
2091 * Please do not alter this order without good reasons and regression
2092 * testing. Specifically, as large blocks of memory are subdivided,
2093 * the order in which smaller blocks are delivered depends on the order
2094 * they're subdivided in this function. This is the primary factor
2095 * influencing the order in which pages are delivered to the IO
2096 * subsystem according to empirical testing, and this is also justified
2097 * by considering the behavior of a buddy system containing a single
2098 * large block of memory acted on by a series of small allocations.
2099 * This behavior is a critical factor in sglist merging's success.
2103 static inline void expand(struct zone
*zone
, struct page
*page
,
2104 int low
, int high
, int migratetype
)
2106 unsigned long size
= 1 << high
;
2108 while (high
> low
) {
2111 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2114 * Mark as guard pages (or page), that will allow to
2115 * merge back to allocator when buddy will be freed.
2116 * Corresponding page table entries will not be touched,
2117 * pages will stay not present in virtual address space
2119 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2122 add_to_free_list(&page
[size
], zone
, high
, migratetype
);
2123 set_page_order(&page
[size
], high
);
2127 static void check_new_page_bad(struct page
*page
)
2129 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2130 /* Don't complain about hwpoisoned pages */
2131 page_mapcount_reset(page
); /* remove PageBuddy */
2136 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
2140 * This page is about to be returned from the page allocator
2142 static inline int check_new_page(struct page
*page
)
2144 if (likely(page_expected_state(page
,
2145 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2148 check_new_page_bad(page
);
2152 static inline bool free_pages_prezeroed(void)
2154 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
2155 page_poisoning_enabled()) || want_init_on_free();
2158 #ifdef CONFIG_DEBUG_VM
2160 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162 * also checked when pcp lists are refilled from the free lists.
2164 static inline bool check_pcp_refill(struct page
*page
)
2166 if (debug_pagealloc_enabled_static())
2167 return check_new_page(page
);
2172 static inline bool check_new_pcp(struct page
*page
)
2174 return check_new_page(page
);
2178 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180 * enabled, they are also checked when being allocated from the pcp lists.
2182 static inline bool check_pcp_refill(struct page
*page
)
2184 return check_new_page(page
);
2186 static inline bool check_new_pcp(struct page
*page
)
2188 if (debug_pagealloc_enabled_static())
2189 return check_new_page(page
);
2193 #endif /* CONFIG_DEBUG_VM */
2195 static bool check_new_pages(struct page
*page
, unsigned int order
)
2198 for (i
= 0; i
< (1 << order
); i
++) {
2199 struct page
*p
= page
+ i
;
2201 if (unlikely(check_new_page(p
)))
2208 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2211 set_page_private(page
, 0);
2212 set_page_refcounted(page
);
2214 arch_alloc_page(page
, order
);
2215 if (debug_pagealloc_enabled_static())
2216 kernel_map_pages(page
, 1 << order
, 1);
2217 kasan_alloc_pages(page
, order
);
2218 kernel_poison_pages(page
, 1 << order
, 1);
2219 set_page_owner(page
, order
, gfp_flags
);
2222 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2223 unsigned int alloc_flags
)
2225 post_alloc_hook(page
, order
, gfp_flags
);
2227 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags
))
2228 kernel_init_free_pages(page
, 1 << order
);
2230 if (order
&& (gfp_flags
& __GFP_COMP
))
2231 prep_compound_page(page
, order
);
2234 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2235 * allocate the page. The expectation is that the caller is taking
2236 * steps that will free more memory. The caller should avoid the page
2237 * being used for !PFMEMALLOC purposes.
2239 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2240 set_page_pfmemalloc(page
);
2242 clear_page_pfmemalloc(page
);
2246 * Go through the free lists for the given migratetype and remove
2247 * the smallest available page from the freelists
2249 static __always_inline
2250 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2253 unsigned int current_order
;
2254 struct free_area
*area
;
2257 /* Find a page of the appropriate size in the preferred list */
2258 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2259 area
= &(zone
->free_area
[current_order
]);
2260 page
= get_page_from_free_area(area
, migratetype
);
2263 del_page_from_free_list(page
, zone
, current_order
);
2264 expand(zone
, page
, order
, current_order
, migratetype
);
2265 set_pcppage_migratetype(page
, migratetype
);
2274 * This array describes the order lists are fallen back to when
2275 * the free lists for the desirable migrate type are depleted
2277 static int fallbacks
[MIGRATE_TYPES
][3] = {
2278 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2279 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2280 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2282 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2284 #ifdef CONFIG_MEMORY_ISOLATION
2285 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2290 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2293 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2296 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2297 unsigned int order
) { return NULL
; }
2301 * Move the free pages in a range to the free lists of the requested type.
2302 * Note that start_page and end_pages are not aligned on a pageblock
2303 * boundary. If alignment is required, use move_freepages_block()
2305 static int move_freepages(struct zone
*zone
,
2306 struct page
*start_page
, struct page
*end_page
,
2307 int migratetype
, int *num_movable
)
2311 int pages_moved
= 0;
2313 for (page
= start_page
; page
<= end_page
;) {
2314 if (!pfn_valid_within(page_to_pfn(page
))) {
2319 if (!PageBuddy(page
)) {
2321 * We assume that pages that could be isolated for
2322 * migration are movable. But we don't actually try
2323 * isolating, as that would be expensive.
2326 (PageLRU(page
) || __PageMovable(page
)))
2333 /* Make sure we are not inadvertently changing nodes */
2334 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2335 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2337 order
= page_order(page
);
2338 move_to_free_list(page
, zone
, order
, migratetype
);
2340 pages_moved
+= 1 << order
;
2346 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2347 int migratetype
, int *num_movable
)
2349 unsigned long start_pfn
, end_pfn
;
2350 struct page
*start_page
, *end_page
;
2355 start_pfn
= page_to_pfn(page
);
2356 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2357 start_page
= pfn_to_page(start_pfn
);
2358 end_page
= start_page
+ pageblock_nr_pages
- 1;
2359 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2361 /* Do not cross zone boundaries */
2362 if (!zone_spans_pfn(zone
, start_pfn
))
2364 if (!zone_spans_pfn(zone
, end_pfn
))
2367 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2371 static void change_pageblock_range(struct page
*pageblock_page
,
2372 int start_order
, int migratetype
)
2374 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2376 while (nr_pageblocks
--) {
2377 set_pageblock_migratetype(pageblock_page
, migratetype
);
2378 pageblock_page
+= pageblock_nr_pages
;
2383 * When we are falling back to another migratetype during allocation, try to
2384 * steal extra free pages from the same pageblocks to satisfy further
2385 * allocations, instead of polluting multiple pageblocks.
2387 * If we are stealing a relatively large buddy page, it is likely there will
2388 * be more free pages in the pageblock, so try to steal them all. For
2389 * reclaimable and unmovable allocations, we steal regardless of page size,
2390 * as fragmentation caused by those allocations polluting movable pageblocks
2391 * is worse than movable allocations stealing from unmovable and reclaimable
2394 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2397 * Leaving this order check is intended, although there is
2398 * relaxed order check in next check. The reason is that
2399 * we can actually steal whole pageblock if this condition met,
2400 * but, below check doesn't guarantee it and that is just heuristic
2401 * so could be changed anytime.
2403 if (order
>= pageblock_order
)
2406 if (order
>= pageblock_order
/ 2 ||
2407 start_mt
== MIGRATE_RECLAIMABLE
||
2408 start_mt
== MIGRATE_UNMOVABLE
||
2409 page_group_by_mobility_disabled
)
2415 static inline void boost_watermark(struct zone
*zone
)
2417 unsigned long max_boost
;
2419 if (!watermark_boost_factor
)
2422 * Don't bother in zones that are unlikely to produce results.
2423 * On small machines, including kdump capture kernels running
2424 * in a small area, boosting the watermark can cause an out of
2425 * memory situation immediately.
2427 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
2430 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2431 watermark_boost_factor
, 10000);
2434 * high watermark may be uninitialised if fragmentation occurs
2435 * very early in boot so do not boost. We do not fall
2436 * through and boost by pageblock_nr_pages as failing
2437 * allocations that early means that reclaim is not going
2438 * to help and it may even be impossible to reclaim the
2439 * boosted watermark resulting in a hang.
2444 max_boost
= max(pageblock_nr_pages
, max_boost
);
2446 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2451 * This function implements actual steal behaviour. If order is large enough,
2452 * we can steal whole pageblock. If not, we first move freepages in this
2453 * pageblock to our migratetype and determine how many already-allocated pages
2454 * are there in the pageblock with a compatible migratetype. If at least half
2455 * of pages are free or compatible, we can change migratetype of the pageblock
2456 * itself, so pages freed in the future will be put on the correct free list.
2458 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2459 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2461 unsigned int current_order
= page_order(page
);
2462 int free_pages
, movable_pages
, alike_pages
;
2465 old_block_type
= get_pageblock_migratetype(page
);
2468 * This can happen due to races and we want to prevent broken
2469 * highatomic accounting.
2471 if (is_migrate_highatomic(old_block_type
))
2474 /* Take ownership for orders >= pageblock_order */
2475 if (current_order
>= pageblock_order
) {
2476 change_pageblock_range(page
, current_order
, start_type
);
2481 * Boost watermarks to increase reclaim pressure to reduce the
2482 * likelihood of future fallbacks. Wake kswapd now as the node
2483 * may be balanced overall and kswapd will not wake naturally.
2485 boost_watermark(zone
);
2486 if (alloc_flags
& ALLOC_KSWAPD
)
2487 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2489 /* We are not allowed to try stealing from the whole block */
2493 free_pages
= move_freepages_block(zone
, page
, start_type
,
2496 * Determine how many pages are compatible with our allocation.
2497 * For movable allocation, it's the number of movable pages which
2498 * we just obtained. For other types it's a bit more tricky.
2500 if (start_type
== MIGRATE_MOVABLE
) {
2501 alike_pages
= movable_pages
;
2504 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 * to MOVABLE pageblock, consider all non-movable pages as
2506 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 * vice versa, be conservative since we can't distinguish the
2508 * exact migratetype of non-movable pages.
2510 if (old_block_type
== MIGRATE_MOVABLE
)
2511 alike_pages
= pageblock_nr_pages
2512 - (free_pages
+ movable_pages
);
2517 /* moving whole block can fail due to zone boundary conditions */
2522 * If a sufficient number of pages in the block are either free or of
2523 * comparable migratability as our allocation, claim the whole block.
2525 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2526 page_group_by_mobility_disabled
)
2527 set_pageblock_migratetype(page
, start_type
);
2532 move_to_free_list(page
, zone
, current_order
, start_type
);
2536 * Check whether there is a suitable fallback freepage with requested order.
2537 * If only_stealable is true, this function returns fallback_mt only if
2538 * we can steal other freepages all together. This would help to reduce
2539 * fragmentation due to mixed migratetype pages in one pageblock.
2541 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2542 int migratetype
, bool only_stealable
, bool *can_steal
)
2547 if (area
->nr_free
== 0)
2552 fallback_mt
= fallbacks
[migratetype
][i
];
2553 if (fallback_mt
== MIGRATE_TYPES
)
2556 if (free_area_empty(area
, fallback_mt
))
2559 if (can_steal_fallback(order
, migratetype
))
2562 if (!only_stealable
)
2573 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574 * there are no empty page blocks that contain a page with a suitable order
2576 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2577 unsigned int alloc_order
)
2580 unsigned long max_managed
, flags
;
2583 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 * Check is race-prone but harmless.
2586 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2587 if (zone
->nr_reserved_highatomic
>= max_managed
)
2590 spin_lock_irqsave(&zone
->lock
, flags
);
2592 /* Recheck the nr_reserved_highatomic limit under the lock */
2593 if (zone
->nr_reserved_highatomic
>= max_managed
)
2597 mt
= get_pageblock_migratetype(page
);
2598 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2599 && !is_migrate_cma(mt
)) {
2600 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2601 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2602 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2606 spin_unlock_irqrestore(&zone
->lock
, flags
);
2610 * Used when an allocation is about to fail under memory pressure. This
2611 * potentially hurts the reliability of high-order allocations when under
2612 * intense memory pressure but failed atomic allocations should be easier
2613 * to recover from than an OOM.
2615 * If @force is true, try to unreserve a pageblock even though highatomic
2616 * pageblock is exhausted.
2618 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2621 struct zonelist
*zonelist
= ac
->zonelist
;
2622 unsigned long flags
;
2629 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2632 * Preserve at least one pageblock unless memory pressure
2635 if (!force
&& zone
->nr_reserved_highatomic
<=
2639 spin_lock_irqsave(&zone
->lock
, flags
);
2640 for (order
= 0; order
< MAX_ORDER
; order
++) {
2641 struct free_area
*area
= &(zone
->free_area
[order
]);
2643 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2648 * In page freeing path, migratetype change is racy so
2649 * we can counter several free pages in a pageblock
2650 * in this loop althoug we changed the pageblock type
2651 * from highatomic to ac->migratetype. So we should
2652 * adjust the count once.
2654 if (is_migrate_highatomic_page(page
)) {
2656 * It should never happen but changes to
2657 * locking could inadvertently allow a per-cpu
2658 * drain to add pages to MIGRATE_HIGHATOMIC
2659 * while unreserving so be safe and watch for
2662 zone
->nr_reserved_highatomic
-= min(
2664 zone
->nr_reserved_highatomic
);
2668 * Convert to ac->migratetype and avoid the normal
2669 * pageblock stealing heuristics. Minimally, the caller
2670 * is doing the work and needs the pages. More
2671 * importantly, if the block was always converted to
2672 * MIGRATE_UNMOVABLE or another type then the number
2673 * of pageblocks that cannot be completely freed
2676 set_pageblock_migratetype(page
, ac
->migratetype
);
2677 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2680 spin_unlock_irqrestore(&zone
->lock
, flags
);
2684 spin_unlock_irqrestore(&zone
->lock
, flags
);
2691 * Try finding a free buddy page on the fallback list and put it on the free
2692 * list of requested migratetype, possibly along with other pages from the same
2693 * block, depending on fragmentation avoidance heuristics. Returns true if
2694 * fallback was found so that __rmqueue_smallest() can grab it.
2696 * The use of signed ints for order and current_order is a deliberate
2697 * deviation from the rest of this file, to make the for loop
2698 * condition simpler.
2700 static __always_inline
bool
2701 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2702 unsigned int alloc_flags
)
2704 struct free_area
*area
;
2706 int min_order
= order
;
2712 * Do not steal pages from freelists belonging to other pageblocks
2713 * i.e. orders < pageblock_order. If there are no local zones free,
2714 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2717 min_order
= pageblock_order
;
2720 * Find the largest available free page in the other list. This roughly
2721 * approximates finding the pageblock with the most free pages, which
2722 * would be too costly to do exactly.
2724 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2726 area
= &(zone
->free_area
[current_order
]);
2727 fallback_mt
= find_suitable_fallback(area
, current_order
,
2728 start_migratetype
, false, &can_steal
);
2729 if (fallback_mt
== -1)
2733 * We cannot steal all free pages from the pageblock and the
2734 * requested migratetype is movable. In that case it's better to
2735 * steal and split the smallest available page instead of the
2736 * largest available page, because even if the next movable
2737 * allocation falls back into a different pageblock than this
2738 * one, it won't cause permanent fragmentation.
2740 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2741 && current_order
> order
)
2750 for (current_order
= order
; current_order
< MAX_ORDER
;
2752 area
= &(zone
->free_area
[current_order
]);
2753 fallback_mt
= find_suitable_fallback(area
, current_order
,
2754 start_migratetype
, false, &can_steal
);
2755 if (fallback_mt
!= -1)
2760 * This should not happen - we already found a suitable fallback
2761 * when looking for the largest page.
2763 VM_BUG_ON(current_order
== MAX_ORDER
);
2766 page
= get_page_from_free_area(area
, fallback_mt
);
2768 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2771 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2772 start_migratetype
, fallback_mt
);
2779 * Do the hard work of removing an element from the buddy allocator.
2780 * Call me with the zone->lock already held.
2782 static __always_inline
struct page
*
2783 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2784 unsigned int alloc_flags
)
2790 * Balance movable allocations between regular and CMA areas by
2791 * allocating from CMA when over half of the zone's free memory
2792 * is in the CMA area.
2794 if (alloc_flags
& ALLOC_CMA
&&
2795 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2796 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2797 page
= __rmqueue_cma_fallback(zone
, order
);
2803 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2804 if (unlikely(!page
)) {
2805 if (alloc_flags
& ALLOC_CMA
)
2806 page
= __rmqueue_cma_fallback(zone
, order
);
2808 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2813 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2818 * Obtain a specified number of elements from the buddy allocator, all under
2819 * a single hold of the lock, for efficiency. Add them to the supplied list.
2820 * Returns the number of new pages which were placed at *list.
2822 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2823 unsigned long count
, struct list_head
*list
,
2824 int migratetype
, unsigned int alloc_flags
)
2828 spin_lock(&zone
->lock
);
2829 for (i
= 0; i
< count
; ++i
) {
2830 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2832 if (unlikely(page
== NULL
))
2835 if (unlikely(check_pcp_refill(page
)))
2839 * Split buddy pages returned by expand() are received here in
2840 * physical page order. The page is added to the tail of
2841 * caller's list. From the callers perspective, the linked list
2842 * is ordered by page number under some conditions. This is
2843 * useful for IO devices that can forward direction from the
2844 * head, thus also in the physical page order. This is useful
2845 * for IO devices that can merge IO requests if the physical
2846 * pages are ordered properly.
2848 list_add_tail(&page
->lru
, list
);
2850 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2851 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2856 * i pages were removed from the buddy list even if some leak due
2857 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 * on i. Do not confuse with 'alloced' which is the number of
2859 * pages added to the pcp list.
2861 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2862 spin_unlock(&zone
->lock
);
2868 * Called from the vmstat counter updater to drain pagesets of this
2869 * currently executing processor on remote nodes after they have
2872 * Note that this function must be called with the thread pinned to
2873 * a single processor.
2875 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2877 unsigned long flags
;
2878 int to_drain
, batch
;
2880 local_irq_save(flags
);
2881 batch
= READ_ONCE(pcp
->batch
);
2882 to_drain
= min(pcp
->count
, batch
);
2884 free_pcppages_bulk(zone
, to_drain
, pcp
);
2885 local_irq_restore(flags
);
2890 * Drain pcplists of the indicated processor and zone.
2892 * The processor must either be the current processor and the
2893 * thread pinned to the current processor or a processor that
2896 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2898 unsigned long flags
;
2899 struct per_cpu_pageset
*pset
;
2900 struct per_cpu_pages
*pcp
;
2902 local_irq_save(flags
);
2903 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2907 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2908 local_irq_restore(flags
);
2912 * Drain pcplists of all zones on the indicated processor.
2914 * The processor must either be the current processor and the
2915 * thread pinned to the current processor or a processor that
2918 static void drain_pages(unsigned int cpu
)
2922 for_each_populated_zone(zone
) {
2923 drain_pages_zone(cpu
, zone
);
2928 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931 * the single zone's pages.
2933 void drain_local_pages(struct zone
*zone
)
2935 int cpu
= smp_processor_id();
2938 drain_pages_zone(cpu
, zone
);
2943 static void drain_local_pages_wq(struct work_struct
*work
)
2945 struct pcpu_drain
*drain
;
2947 drain
= container_of(work
, struct pcpu_drain
, work
);
2950 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 * we can race with cpu offline when the WQ can move this from
2952 * a cpu pinned worker to an unbound one. We can operate on a different
2953 * cpu which is allright but we also have to make sure to not move to
2957 drain_local_pages(drain
->zone
);
2962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 * Note that this can be extremely slow as the draining happens in a workqueue.
2968 void drain_all_pages(struct zone
*zone
)
2973 * Allocate in the BSS so we wont require allocation in
2974 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 static cpumask_t cpus_with_pcps
;
2979 * Make sure nobody triggers this path before mm_percpu_wq is fully
2982 if (WARN_ON_ONCE(!mm_percpu_wq
))
2986 * Do not drain if one is already in progress unless it's specific to
2987 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 * the drain to be complete when the call returns.
2990 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2993 mutex_lock(&pcpu_drain_mutex
);
2997 * We don't care about racing with CPU hotplug event
2998 * as offline notification will cause the notified
2999 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 * disables preemption as part of its processing
3002 for_each_online_cpu(cpu
) {
3003 struct per_cpu_pageset
*pcp
;
3005 bool has_pcps
= false;
3008 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3012 for_each_populated_zone(z
) {
3013 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
3014 if (pcp
->pcp
.count
) {
3022 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
3024 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
3027 for_each_cpu(cpu
, &cpus_with_pcps
) {
3028 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
3031 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
3032 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
3034 for_each_cpu(cpu
, &cpus_with_pcps
)
3035 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
3037 mutex_unlock(&pcpu_drain_mutex
);
3040 #ifdef CONFIG_HIBERNATION
3043 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 #define WD_PAGE_COUNT (128*1024)
3047 void mark_free_pages(struct zone
*zone
)
3049 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
3050 unsigned long flags
;
3051 unsigned int order
, t
;
3054 if (zone_is_empty(zone
))
3057 spin_lock_irqsave(&zone
->lock
, flags
);
3059 max_zone_pfn
= zone_end_pfn(zone
);
3060 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
3061 if (pfn_valid(pfn
)) {
3062 page
= pfn_to_page(pfn
);
3064 if (!--page_count
) {
3065 touch_nmi_watchdog();
3066 page_count
= WD_PAGE_COUNT
;
3069 if (page_zone(page
) != zone
)
3072 if (!swsusp_page_is_forbidden(page
))
3073 swsusp_unset_page_free(page
);
3076 for_each_migratetype_order(order
, t
) {
3077 list_for_each_entry(page
,
3078 &zone
->free_area
[order
].free_list
[t
], lru
) {
3081 pfn
= page_to_pfn(page
);
3082 for (i
= 0; i
< (1UL << order
); i
++) {
3083 if (!--page_count
) {
3084 touch_nmi_watchdog();
3085 page_count
= WD_PAGE_COUNT
;
3087 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3091 spin_unlock_irqrestore(&zone
->lock
, flags
);
3093 #endif /* CONFIG_PM */
3095 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3099 if (!free_pcp_prepare(page
))
3102 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3103 set_pcppage_migratetype(page
, migratetype
);
3107 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3109 struct zone
*zone
= page_zone(page
);
3110 struct per_cpu_pages
*pcp
;
3113 migratetype
= get_pcppage_migratetype(page
);
3114 __count_vm_event(PGFREE
);
3117 * We only track unmovable, reclaimable and movable on pcp lists.
3118 * Free ISOLATE pages back to the allocator because they are being
3119 * offlined but treat HIGHATOMIC as movable pages so we can get those
3120 * areas back if necessary. Otherwise, we may have to free
3121 * excessively into the page allocator
3123 if (migratetype
>= MIGRATE_PCPTYPES
) {
3124 if (unlikely(is_migrate_isolate(migratetype
))) {
3125 free_one_page(zone
, page
, pfn
, 0, migratetype
);
3128 migratetype
= MIGRATE_MOVABLE
;
3131 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3132 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3134 if (pcp
->count
>= pcp
->high
) {
3135 unsigned long batch
= READ_ONCE(pcp
->batch
);
3136 free_pcppages_bulk(zone
, batch
, pcp
);
3141 * Free a 0-order page
3143 void free_unref_page(struct page
*page
)
3145 unsigned long flags
;
3146 unsigned long pfn
= page_to_pfn(page
);
3148 if (!free_unref_page_prepare(page
, pfn
))
3151 local_irq_save(flags
);
3152 free_unref_page_commit(page
, pfn
);
3153 local_irq_restore(flags
);
3157 * Free a list of 0-order pages
3159 void free_unref_page_list(struct list_head
*list
)
3161 struct page
*page
, *next
;
3162 unsigned long flags
, pfn
;
3163 int batch_count
= 0;
3165 /* Prepare pages for freeing */
3166 list_for_each_entry_safe(page
, next
, list
, lru
) {
3167 pfn
= page_to_pfn(page
);
3168 if (!free_unref_page_prepare(page
, pfn
))
3169 list_del(&page
->lru
);
3170 set_page_private(page
, pfn
);
3173 local_irq_save(flags
);
3174 list_for_each_entry_safe(page
, next
, list
, lru
) {
3175 unsigned long pfn
= page_private(page
);
3177 set_page_private(page
, 0);
3178 trace_mm_page_free_batched(page
);
3179 free_unref_page_commit(page
, pfn
);
3182 * Guard against excessive IRQ disabled times when we get
3183 * a large list of pages to free.
3185 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3186 local_irq_restore(flags
);
3188 local_irq_save(flags
);
3191 local_irq_restore(flags
);
3195 * split_page takes a non-compound higher-order page, and splits it into
3196 * n (1<<order) sub-pages: page[0..n]
3197 * Each sub-page must be freed individually.
3199 * Note: this is probably too low level an operation for use in drivers.
3200 * Please consult with lkml before using this in your driver.
3202 void split_page(struct page
*page
, unsigned int order
)
3206 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3207 VM_BUG_ON_PAGE(!page_count(page
), page
);
3209 for (i
= 1; i
< (1 << order
); i
++)
3210 set_page_refcounted(page
+ i
);
3211 split_page_owner(page
, order
);
3213 EXPORT_SYMBOL_GPL(split_page
);
3215 int __isolate_free_page(struct page
*page
, unsigned int order
)
3217 unsigned long watermark
;
3221 BUG_ON(!PageBuddy(page
));
3223 zone
= page_zone(page
);
3224 mt
= get_pageblock_migratetype(page
);
3226 if (!is_migrate_isolate(mt
)) {
3228 * Obey watermarks as if the page was being allocated. We can
3229 * emulate a high-order watermark check with a raised order-0
3230 * watermark, because we already know our high-order page
3233 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3234 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3237 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3240 /* Remove page from free list */
3242 del_page_from_free_list(page
, zone
, order
);
3245 * Set the pageblock if the isolated page is at least half of a
3248 if (order
>= pageblock_order
- 1) {
3249 struct page
*endpage
= page
+ (1 << order
) - 1;
3250 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3251 int mt
= get_pageblock_migratetype(page
);
3252 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3253 && !is_migrate_highatomic(mt
))
3254 set_pageblock_migratetype(page
,
3260 return 1UL << order
;
3264 * __putback_isolated_page - Return a now-isolated page back where we got it
3265 * @page: Page that was isolated
3266 * @order: Order of the isolated page
3267 * @mt: The page's pageblock's migratetype
3269 * This function is meant to return a page pulled from the free lists via
3270 * __isolate_free_page back to the free lists they were pulled from.
3272 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
3274 struct zone
*zone
= page_zone(page
);
3276 /* zone lock should be held when this function is called */
3277 lockdep_assert_held(&zone
->lock
);
3279 /* Return isolated page to tail of freelist. */
3280 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
, false);
3284 * Update NUMA hit/miss statistics
3286 * Must be called with interrupts disabled.
3288 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3291 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3293 /* skip numa counters update if numa stats is disabled */
3294 if (!static_branch_likely(&vm_numa_stat_key
))
3297 if (zone_to_nid(z
) != numa_node_id())
3298 local_stat
= NUMA_OTHER
;
3300 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3301 __inc_numa_state(z
, NUMA_HIT
);
3303 __inc_numa_state(z
, NUMA_MISS
);
3304 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3306 __inc_numa_state(z
, local_stat
);
3310 /* Remove page from the per-cpu list, caller must protect the list */
3311 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3312 unsigned int alloc_flags
,
3313 struct per_cpu_pages
*pcp
,
3314 struct list_head
*list
)
3319 if (list_empty(list
)) {
3320 pcp
->count
+= rmqueue_bulk(zone
, 0,
3322 migratetype
, alloc_flags
);
3323 if (unlikely(list_empty(list
)))
3327 page
= list_first_entry(list
, struct page
, lru
);
3328 list_del(&page
->lru
);
3330 } while (check_new_pcp(page
));
3335 /* Lock and remove page from the per-cpu list */
3336 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3337 struct zone
*zone
, gfp_t gfp_flags
,
3338 int migratetype
, unsigned int alloc_flags
)
3340 struct per_cpu_pages
*pcp
;
3341 struct list_head
*list
;
3343 unsigned long flags
;
3345 local_irq_save(flags
);
3346 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3347 list
= &pcp
->lists
[migratetype
];
3348 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3350 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3351 zone_statistics(preferred_zone
, zone
);
3353 local_irq_restore(flags
);
3358 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3361 struct page
*rmqueue(struct zone
*preferred_zone
,
3362 struct zone
*zone
, unsigned int order
,
3363 gfp_t gfp_flags
, unsigned int alloc_flags
,
3366 unsigned long flags
;
3369 if (likely(order
== 0)) {
3370 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3371 migratetype
, alloc_flags
);
3376 * We most definitely don't want callers attempting to
3377 * allocate greater than order-1 page units with __GFP_NOFAIL.
3379 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3380 spin_lock_irqsave(&zone
->lock
, flags
);
3384 if (alloc_flags
& ALLOC_HARDER
) {
3385 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3387 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3390 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3391 } while (page
&& check_new_pages(page
, order
));
3392 spin_unlock(&zone
->lock
);
3395 __mod_zone_freepage_state(zone
, -(1 << order
),
3396 get_pcppage_migratetype(page
));
3398 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3399 zone_statistics(preferred_zone
, zone
);
3400 local_irq_restore(flags
);
3403 /* Separate test+clear to avoid unnecessary atomics */
3404 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3405 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3406 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3409 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3413 local_irq_restore(flags
);
3417 #ifdef CONFIG_FAIL_PAGE_ALLOC
3420 struct fault_attr attr
;
3422 bool ignore_gfp_highmem
;
3423 bool ignore_gfp_reclaim
;
3425 } fail_page_alloc
= {
3426 .attr
= FAULT_ATTR_INITIALIZER
,
3427 .ignore_gfp_reclaim
= true,
3428 .ignore_gfp_highmem
= true,
3432 static int __init
setup_fail_page_alloc(char *str
)
3434 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3436 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3438 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3440 if (order
< fail_page_alloc
.min_order
)
3442 if (gfp_mask
& __GFP_NOFAIL
)
3444 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3446 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3447 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3450 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3453 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3455 static int __init
fail_page_alloc_debugfs(void)
3457 umode_t mode
= S_IFREG
| 0600;
3460 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3461 &fail_page_alloc
.attr
);
3463 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3464 &fail_page_alloc
.ignore_gfp_reclaim
);
3465 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3466 &fail_page_alloc
.ignore_gfp_highmem
);
3467 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3472 late_initcall(fail_page_alloc_debugfs
);
3474 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3476 #else /* CONFIG_FAIL_PAGE_ALLOC */
3478 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3483 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3485 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3487 return __should_fail_alloc_page(gfp_mask
, order
);
3489 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3491 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3492 unsigned int order
, unsigned int alloc_flags
)
3494 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3495 long unusable_free
= (1 << order
) - 1;
3498 * If the caller does not have rights to ALLOC_HARDER then subtract
3499 * the high-atomic reserves. This will over-estimate the size of the
3500 * atomic reserve but it avoids a search.
3502 if (likely(!alloc_harder
))
3503 unusable_free
+= z
->nr_reserved_highatomic
;
3506 /* If allocation can't use CMA areas don't use free CMA pages */
3507 if (!(alloc_flags
& ALLOC_CMA
))
3508 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3511 return unusable_free
;
3515 * Return true if free base pages are above 'mark'. For high-order checks it
3516 * will return true of the order-0 watermark is reached and there is at least
3517 * one free page of a suitable size. Checking now avoids taking the zone lock
3518 * to check in the allocation paths if no pages are free.
3520 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3521 int highest_zoneidx
, unsigned int alloc_flags
,
3526 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3528 /* free_pages may go negative - that's OK */
3529 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3531 if (alloc_flags
& ALLOC_HIGH
)
3534 if (unlikely(alloc_harder
)) {
3536 * OOM victims can try even harder than normal ALLOC_HARDER
3537 * users on the grounds that it's definitely going to be in
3538 * the exit path shortly and free memory. Any allocation it
3539 * makes during the free path will be small and short-lived.
3541 if (alloc_flags
& ALLOC_OOM
)
3548 * Check watermarks for an order-0 allocation request. If these
3549 * are not met, then a high-order request also cannot go ahead
3550 * even if a suitable page happened to be free.
3552 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3555 /* If this is an order-0 request then the watermark is fine */
3559 /* For a high-order request, check at least one suitable page is free */
3560 for (o
= order
; o
< MAX_ORDER
; o
++) {
3561 struct free_area
*area
= &z
->free_area
[o
];
3567 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3568 if (!free_area_empty(area
, mt
))
3573 if ((alloc_flags
& ALLOC_CMA
) &&
3574 !free_area_empty(area
, MIGRATE_CMA
)) {
3578 if (alloc_harder
&& !free_area_empty(area
, MIGRATE_HIGHATOMIC
))
3584 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3585 int highest_zoneidx
, unsigned int alloc_flags
)
3587 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3588 zone_page_state(z
, NR_FREE_PAGES
));
3591 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3592 unsigned long mark
, int highest_zoneidx
,
3593 unsigned int alloc_flags
, gfp_t gfp_mask
)
3597 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3600 * Fast check for order-0 only. If this fails then the reserves
3601 * need to be calculated.
3606 fast_free
= free_pages
;
3607 fast_free
-= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3608 if (fast_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3612 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3616 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3617 * when checking the min watermark. The min watermark is the
3618 * point where boosting is ignored so that kswapd is woken up
3619 * when below the low watermark.
3621 if (unlikely(!order
&& (gfp_mask
& __GFP_ATOMIC
) && z
->watermark_boost
3622 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3623 mark
= z
->_watermark
[WMARK_MIN
];
3624 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3625 alloc_flags
, free_pages
);
3631 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3632 unsigned long mark
, int highest_zoneidx
)
3634 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3636 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3637 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3639 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3644 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3646 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3647 node_reclaim_distance
;
3649 #else /* CONFIG_NUMA */
3650 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3654 #endif /* CONFIG_NUMA */
3657 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3658 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3659 * premature use of a lower zone may cause lowmem pressure problems that
3660 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3661 * probably too small. It only makes sense to spread allocations to avoid
3662 * fragmentation between the Normal and DMA32 zones.
3664 static inline unsigned int
3665 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3667 unsigned int alloc_flags
;
3670 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3673 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3675 #ifdef CONFIG_ZONE_DMA32
3679 if (zone_idx(zone
) != ZONE_NORMAL
)
3683 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3684 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3685 * on UMA that if Normal is populated then so is DMA32.
3687 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3688 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3691 alloc_flags
|= ALLOC_NOFRAGMENT
;
3692 #endif /* CONFIG_ZONE_DMA32 */
3696 static inline unsigned int current_alloc_flags(gfp_t gfp_mask
,
3697 unsigned int alloc_flags
)
3700 unsigned int pflags
= current
->flags
;
3702 if (!(pflags
& PF_MEMALLOC_NOCMA
) &&
3703 gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3704 alloc_flags
|= ALLOC_CMA
;
3711 * get_page_from_freelist goes through the zonelist trying to allocate
3714 static struct page
*
3715 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3716 const struct alloc_context
*ac
)
3720 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3725 * Scan zonelist, looking for a zone with enough free.
3726 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3728 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3729 z
= ac
->preferred_zoneref
;
3730 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3731 ac
->highest_zoneidx
, ac
->nodemask
) {
3735 if (cpusets_enabled() &&
3736 (alloc_flags
& ALLOC_CPUSET
) &&
3737 !__cpuset_zone_allowed(zone
, gfp_mask
))
3740 * When allocating a page cache page for writing, we
3741 * want to get it from a node that is within its dirty
3742 * limit, such that no single node holds more than its
3743 * proportional share of globally allowed dirty pages.
3744 * The dirty limits take into account the node's
3745 * lowmem reserves and high watermark so that kswapd
3746 * should be able to balance it without having to
3747 * write pages from its LRU list.
3749 * XXX: For now, allow allocations to potentially
3750 * exceed the per-node dirty limit in the slowpath
3751 * (spread_dirty_pages unset) before going into reclaim,
3752 * which is important when on a NUMA setup the allowed
3753 * nodes are together not big enough to reach the
3754 * global limit. The proper fix for these situations
3755 * will require awareness of nodes in the
3756 * dirty-throttling and the flusher threads.
3758 if (ac
->spread_dirty_pages
) {
3759 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3762 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3763 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3768 if (no_fallback
&& nr_online_nodes
> 1 &&
3769 zone
!= ac
->preferred_zoneref
->zone
) {
3773 * If moving to a remote node, retry but allow
3774 * fragmenting fallbacks. Locality is more important
3775 * than fragmentation avoidance.
3777 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3778 if (zone_to_nid(zone
) != local_nid
) {
3779 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3784 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3785 if (!zone_watermark_fast(zone
, order
, mark
,
3786 ac
->highest_zoneidx
, alloc_flags
,
3790 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3792 * Watermark failed for this zone, but see if we can
3793 * grow this zone if it contains deferred pages.
3795 if (static_branch_unlikely(&deferred_pages
)) {
3796 if (_deferred_grow_zone(zone
, order
))
3800 /* Checked here to keep the fast path fast */
3801 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3802 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3805 if (node_reclaim_mode
== 0 ||
3806 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3809 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3811 case NODE_RECLAIM_NOSCAN
:
3814 case NODE_RECLAIM_FULL
:
3815 /* scanned but unreclaimable */
3818 /* did we reclaim enough */
3819 if (zone_watermark_ok(zone
, order
, mark
,
3820 ac
->highest_zoneidx
, alloc_flags
))
3828 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3829 gfp_mask
, alloc_flags
, ac
->migratetype
);
3831 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3834 * If this is a high-order atomic allocation then check
3835 * if the pageblock should be reserved for the future
3837 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3838 reserve_highatomic_pageblock(page
, zone
, order
);
3842 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3843 /* Try again if zone has deferred pages */
3844 if (static_branch_unlikely(&deferred_pages
)) {
3845 if (_deferred_grow_zone(zone
, order
))
3853 * It's possible on a UMA machine to get through all zones that are
3854 * fragmented. If avoiding fragmentation, reset and try again.
3857 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3864 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3866 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3869 * This documents exceptions given to allocations in certain
3870 * contexts that are allowed to allocate outside current's set
3873 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3874 if (tsk_is_oom_victim(current
) ||
3875 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3876 filter
&= ~SHOW_MEM_FILTER_NODES
;
3877 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3878 filter
&= ~SHOW_MEM_FILTER_NODES
;
3880 show_mem(filter
, nodemask
);
3883 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3885 struct va_format vaf
;
3887 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3889 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3892 va_start(args
, fmt
);
3895 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3896 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3897 nodemask_pr_args(nodemask
));
3900 cpuset_print_current_mems_allowed();
3903 warn_alloc_show_mem(gfp_mask
, nodemask
);
3906 static inline struct page
*
3907 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3908 unsigned int alloc_flags
,
3909 const struct alloc_context
*ac
)
3913 page
= get_page_from_freelist(gfp_mask
, order
,
3914 alloc_flags
|ALLOC_CPUSET
, ac
);
3916 * fallback to ignore cpuset restriction if our nodes
3920 page
= get_page_from_freelist(gfp_mask
, order
,
3926 static inline struct page
*
3927 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3928 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3930 struct oom_control oc
= {
3931 .zonelist
= ac
->zonelist
,
3932 .nodemask
= ac
->nodemask
,
3934 .gfp_mask
= gfp_mask
,
3939 *did_some_progress
= 0;
3942 * Acquire the oom lock. If that fails, somebody else is
3943 * making progress for us.
3945 if (!mutex_trylock(&oom_lock
)) {
3946 *did_some_progress
= 1;
3947 schedule_timeout_uninterruptible(1);
3952 * Go through the zonelist yet one more time, keep very high watermark
3953 * here, this is only to catch a parallel oom killing, we must fail if
3954 * we're still under heavy pressure. But make sure that this reclaim
3955 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3956 * allocation which will never fail due to oom_lock already held.
3958 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3959 ~__GFP_DIRECT_RECLAIM
, order
,
3960 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3964 /* Coredumps can quickly deplete all memory reserves */
3965 if (current
->flags
& PF_DUMPCORE
)
3967 /* The OOM killer will not help higher order allocs */
3968 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3971 * We have already exhausted all our reclaim opportunities without any
3972 * success so it is time to admit defeat. We will skip the OOM killer
3973 * because it is very likely that the caller has a more reasonable
3974 * fallback than shooting a random task.
3976 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3978 /* The OOM killer does not needlessly kill tasks for lowmem */
3979 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
3981 if (pm_suspended_storage())
3984 * XXX: GFP_NOFS allocations should rather fail than rely on
3985 * other request to make a forward progress.
3986 * We are in an unfortunate situation where out_of_memory cannot
3987 * do much for this context but let's try it to at least get
3988 * access to memory reserved if the current task is killed (see
3989 * out_of_memory). Once filesystems are ready to handle allocation
3990 * failures more gracefully we should just bail out here.
3993 /* The OOM killer may not free memory on a specific node */
3994 if (gfp_mask
& __GFP_THISNODE
)
3997 /* Exhausted what can be done so it's blame time */
3998 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3999 *did_some_progress
= 1;
4002 * Help non-failing allocations by giving them access to memory
4005 if (gfp_mask
& __GFP_NOFAIL
)
4006 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
4007 ALLOC_NO_WATERMARKS
, ac
);
4010 mutex_unlock(&oom_lock
);
4015 * Maximum number of compaction retries wit a progress before OOM
4016 * killer is consider as the only way to move forward.
4018 #define MAX_COMPACT_RETRIES 16
4020 #ifdef CONFIG_COMPACTION
4021 /* Try memory compaction for high-order allocations before reclaim */
4022 static struct page
*
4023 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4024 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4025 enum compact_priority prio
, enum compact_result
*compact_result
)
4027 struct page
*page
= NULL
;
4028 unsigned long pflags
;
4029 unsigned int noreclaim_flag
;
4034 psi_memstall_enter(&pflags
);
4035 noreclaim_flag
= memalloc_noreclaim_save();
4037 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
4040 memalloc_noreclaim_restore(noreclaim_flag
);
4041 psi_memstall_leave(&pflags
);
4044 * At least in one zone compaction wasn't deferred or skipped, so let's
4045 * count a compaction stall
4047 count_vm_event(COMPACTSTALL
);
4049 /* Prep a captured page if available */
4051 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
4053 /* Try get a page from the freelist if available */
4055 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4058 struct zone
*zone
= page_zone(page
);
4060 zone
->compact_blockskip_flush
= false;
4061 compaction_defer_reset(zone
, order
, true);
4062 count_vm_event(COMPACTSUCCESS
);
4067 * It's bad if compaction run occurs and fails. The most likely reason
4068 * is that pages exist, but not enough to satisfy watermarks.
4070 count_vm_event(COMPACTFAIL
);
4078 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
4079 enum compact_result compact_result
,
4080 enum compact_priority
*compact_priority
,
4081 int *compaction_retries
)
4083 int max_retries
= MAX_COMPACT_RETRIES
;
4086 int retries
= *compaction_retries
;
4087 enum compact_priority priority
= *compact_priority
;
4092 if (compaction_made_progress(compact_result
))
4093 (*compaction_retries
)++;
4096 * compaction considers all the zone as desperately out of memory
4097 * so it doesn't really make much sense to retry except when the
4098 * failure could be caused by insufficient priority
4100 if (compaction_failed(compact_result
))
4101 goto check_priority
;
4104 * compaction was skipped because there are not enough order-0 pages
4105 * to work with, so we retry only if it looks like reclaim can help.
4107 if (compaction_needs_reclaim(compact_result
)) {
4108 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
4113 * make sure the compaction wasn't deferred or didn't bail out early
4114 * due to locks contention before we declare that we should give up.
4115 * But the next retry should use a higher priority if allowed, so
4116 * we don't just keep bailing out endlessly.
4118 if (compaction_withdrawn(compact_result
)) {
4119 goto check_priority
;
4123 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4124 * costly ones because they are de facto nofail and invoke OOM
4125 * killer to move on while costly can fail and users are ready
4126 * to cope with that. 1/4 retries is rather arbitrary but we
4127 * would need much more detailed feedback from compaction to
4128 * make a better decision.
4130 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4132 if (*compaction_retries
<= max_retries
) {
4138 * Make sure there are attempts at the highest priority if we exhausted
4139 * all retries or failed at the lower priorities.
4142 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4143 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4145 if (*compact_priority
> min_priority
) {
4146 (*compact_priority
)--;
4147 *compaction_retries
= 0;
4151 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4155 static inline struct page
*
4156 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4157 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4158 enum compact_priority prio
, enum compact_result
*compact_result
)
4160 *compact_result
= COMPACT_SKIPPED
;
4165 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4166 enum compact_result compact_result
,
4167 enum compact_priority
*compact_priority
,
4168 int *compaction_retries
)
4173 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4177 * There are setups with compaction disabled which would prefer to loop
4178 * inside the allocator rather than hit the oom killer prematurely.
4179 * Let's give them a good hope and keep retrying while the order-0
4180 * watermarks are OK.
4182 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4183 ac
->highest_zoneidx
, ac
->nodemask
) {
4184 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4185 ac
->highest_zoneidx
, alloc_flags
))
4190 #endif /* CONFIG_COMPACTION */
4192 #ifdef CONFIG_LOCKDEP
4193 static struct lockdep_map __fs_reclaim_map
=
4194 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4196 static bool __need_fs_reclaim(gfp_t gfp_mask
)
4198 gfp_mask
= current_gfp_context(gfp_mask
);
4200 /* no reclaim without waiting on it */
4201 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4204 /* this guy won't enter reclaim */
4205 if (current
->flags
& PF_MEMALLOC
)
4208 /* We're only interested __GFP_FS allocations for now */
4209 if (!(gfp_mask
& __GFP_FS
))
4212 if (gfp_mask
& __GFP_NOLOCKDEP
)
4218 void __fs_reclaim_acquire(void)
4220 lock_map_acquire(&__fs_reclaim_map
);
4223 void __fs_reclaim_release(void)
4225 lock_map_release(&__fs_reclaim_map
);
4228 void fs_reclaim_acquire(gfp_t gfp_mask
)
4230 if (__need_fs_reclaim(gfp_mask
))
4231 __fs_reclaim_acquire();
4233 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4235 void fs_reclaim_release(gfp_t gfp_mask
)
4237 if (__need_fs_reclaim(gfp_mask
))
4238 __fs_reclaim_release();
4240 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4243 /* Perform direct synchronous page reclaim */
4245 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4246 const struct alloc_context
*ac
)
4249 unsigned int noreclaim_flag
;
4250 unsigned long pflags
;
4254 /* We now go into synchronous reclaim */
4255 cpuset_memory_pressure_bump();
4256 psi_memstall_enter(&pflags
);
4257 fs_reclaim_acquire(gfp_mask
);
4258 noreclaim_flag
= memalloc_noreclaim_save();
4260 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4263 memalloc_noreclaim_restore(noreclaim_flag
);
4264 fs_reclaim_release(gfp_mask
);
4265 psi_memstall_leave(&pflags
);
4272 /* The really slow allocator path where we enter direct reclaim */
4273 static inline struct page
*
4274 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4275 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4276 unsigned long *did_some_progress
)
4278 struct page
*page
= NULL
;
4279 bool drained
= false;
4281 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4282 if (unlikely(!(*did_some_progress
)))
4286 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4289 * If an allocation failed after direct reclaim, it could be because
4290 * pages are pinned on the per-cpu lists or in high alloc reserves.
4291 * Shrink them and try again
4293 if (!page
&& !drained
) {
4294 unreserve_highatomic_pageblock(ac
, false);
4295 drain_all_pages(NULL
);
4303 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4304 const struct alloc_context
*ac
)
4308 pg_data_t
*last_pgdat
= NULL
;
4309 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
4311 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
4313 if (last_pgdat
!= zone
->zone_pgdat
)
4314 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
4315 last_pgdat
= zone
->zone_pgdat
;
4319 static inline unsigned int
4320 gfp_to_alloc_flags(gfp_t gfp_mask
)
4322 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4325 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4326 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4327 * to save two branches.
4329 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4330 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4333 * The caller may dip into page reserves a bit more if the caller
4334 * cannot run direct reclaim, or if the caller has realtime scheduling
4335 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4336 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4338 alloc_flags
|= (__force
int)
4339 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4341 if (gfp_mask
& __GFP_ATOMIC
) {
4343 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4344 * if it can't schedule.
4346 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4347 alloc_flags
|= ALLOC_HARDER
;
4349 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4350 * comment for __cpuset_node_allowed().
4352 alloc_flags
&= ~ALLOC_CPUSET
;
4353 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4354 alloc_flags
|= ALLOC_HARDER
;
4356 alloc_flags
= current_alloc_flags(gfp_mask
, alloc_flags
);
4361 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4363 if (!tsk_is_oom_victim(tsk
))
4367 * !MMU doesn't have oom reaper so give access to memory reserves
4368 * only to the thread with TIF_MEMDIE set
4370 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4377 * Distinguish requests which really need access to full memory
4378 * reserves from oom victims which can live with a portion of it
4380 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4382 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4384 if (gfp_mask
& __GFP_MEMALLOC
)
4385 return ALLOC_NO_WATERMARKS
;
4386 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4387 return ALLOC_NO_WATERMARKS
;
4388 if (!in_interrupt()) {
4389 if (current
->flags
& PF_MEMALLOC
)
4390 return ALLOC_NO_WATERMARKS
;
4391 else if (oom_reserves_allowed(current
))
4398 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4400 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4404 * Checks whether it makes sense to retry the reclaim to make a forward progress
4405 * for the given allocation request.
4407 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4408 * without success, or when we couldn't even meet the watermark if we
4409 * reclaimed all remaining pages on the LRU lists.
4411 * Returns true if a retry is viable or false to enter the oom path.
4414 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4415 struct alloc_context
*ac
, int alloc_flags
,
4416 bool did_some_progress
, int *no_progress_loops
)
4423 * Costly allocations might have made a progress but this doesn't mean
4424 * their order will become available due to high fragmentation so
4425 * always increment the no progress counter for them
4427 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4428 *no_progress_loops
= 0;
4430 (*no_progress_loops
)++;
4433 * Make sure we converge to OOM if we cannot make any progress
4434 * several times in the row.
4436 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4437 /* Before OOM, exhaust highatomic_reserve */
4438 return unreserve_highatomic_pageblock(ac
, true);
4442 * Keep reclaiming pages while there is a chance this will lead
4443 * somewhere. If none of the target zones can satisfy our allocation
4444 * request even if all reclaimable pages are considered then we are
4445 * screwed and have to go OOM.
4447 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4448 ac
->highest_zoneidx
, ac
->nodemask
) {
4449 unsigned long available
;
4450 unsigned long reclaimable
;
4451 unsigned long min_wmark
= min_wmark_pages(zone
);
4454 available
= reclaimable
= zone_reclaimable_pages(zone
);
4455 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4458 * Would the allocation succeed if we reclaimed all
4459 * reclaimable pages?
4461 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4462 ac
->highest_zoneidx
, alloc_flags
, available
);
4463 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4464 available
, min_wmark
, *no_progress_loops
, wmark
);
4467 * If we didn't make any progress and have a lot of
4468 * dirty + writeback pages then we should wait for
4469 * an IO to complete to slow down the reclaim and
4470 * prevent from pre mature OOM
4472 if (!did_some_progress
) {
4473 unsigned long write_pending
;
4475 write_pending
= zone_page_state_snapshot(zone
,
4476 NR_ZONE_WRITE_PENDING
);
4478 if (2 * write_pending
> reclaimable
) {
4479 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4491 * Memory allocation/reclaim might be called from a WQ context and the
4492 * current implementation of the WQ concurrency control doesn't
4493 * recognize that a particular WQ is congested if the worker thread is
4494 * looping without ever sleeping. Therefore we have to do a short sleep
4495 * here rather than calling cond_resched().
4497 if (current
->flags
& PF_WQ_WORKER
)
4498 schedule_timeout_uninterruptible(1);
4505 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4508 * It's possible that cpuset's mems_allowed and the nodemask from
4509 * mempolicy don't intersect. This should be normally dealt with by
4510 * policy_nodemask(), but it's possible to race with cpuset update in
4511 * such a way the check therein was true, and then it became false
4512 * before we got our cpuset_mems_cookie here.
4513 * This assumes that for all allocations, ac->nodemask can come only
4514 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4515 * when it does not intersect with the cpuset restrictions) or the
4516 * caller can deal with a violated nodemask.
4518 if (cpusets_enabled() && ac
->nodemask
&&
4519 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4520 ac
->nodemask
= NULL
;
4525 * When updating a task's mems_allowed or mempolicy nodemask, it is
4526 * possible to race with parallel threads in such a way that our
4527 * allocation can fail while the mask is being updated. If we are about
4528 * to fail, check if the cpuset changed during allocation and if so,
4531 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4537 static inline struct page
*
4538 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4539 struct alloc_context
*ac
)
4541 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4542 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4543 struct page
*page
= NULL
;
4544 unsigned int alloc_flags
;
4545 unsigned long did_some_progress
;
4546 enum compact_priority compact_priority
;
4547 enum compact_result compact_result
;
4548 int compaction_retries
;
4549 int no_progress_loops
;
4550 unsigned int cpuset_mems_cookie
;
4554 * We also sanity check to catch abuse of atomic reserves being used by
4555 * callers that are not in atomic context.
4557 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4558 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4559 gfp_mask
&= ~__GFP_ATOMIC
;
4562 compaction_retries
= 0;
4563 no_progress_loops
= 0;
4564 compact_priority
= DEF_COMPACT_PRIORITY
;
4565 cpuset_mems_cookie
= read_mems_allowed_begin();
4568 * The fast path uses conservative alloc_flags to succeed only until
4569 * kswapd needs to be woken up, and to avoid the cost of setting up
4570 * alloc_flags precisely. So we do that now.
4572 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4575 * We need to recalculate the starting point for the zonelist iterator
4576 * because we might have used different nodemask in the fast path, or
4577 * there was a cpuset modification and we are retrying - otherwise we
4578 * could end up iterating over non-eligible zones endlessly.
4580 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4581 ac
->highest_zoneidx
, ac
->nodemask
);
4582 if (!ac
->preferred_zoneref
->zone
)
4585 if (alloc_flags
& ALLOC_KSWAPD
)
4586 wake_all_kswapds(order
, gfp_mask
, ac
);
4589 * The adjusted alloc_flags might result in immediate success, so try
4592 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4597 * For costly allocations, try direct compaction first, as it's likely
4598 * that we have enough base pages and don't need to reclaim. For non-
4599 * movable high-order allocations, do that as well, as compaction will
4600 * try prevent permanent fragmentation by migrating from blocks of the
4602 * Don't try this for allocations that are allowed to ignore
4603 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4605 if (can_direct_reclaim
&&
4607 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4608 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4609 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4611 INIT_COMPACT_PRIORITY
,
4617 * Checks for costly allocations with __GFP_NORETRY, which
4618 * includes some THP page fault allocations
4620 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4622 * If allocating entire pageblock(s) and compaction
4623 * failed because all zones are below low watermarks
4624 * or is prohibited because it recently failed at this
4625 * order, fail immediately unless the allocator has
4626 * requested compaction and reclaim retry.
4629 * - potentially very expensive because zones are far
4630 * below their low watermarks or this is part of very
4631 * bursty high order allocations,
4632 * - not guaranteed to help because isolate_freepages()
4633 * may not iterate over freed pages as part of its
4635 * - unlikely to make entire pageblocks free on its
4638 if (compact_result
== COMPACT_SKIPPED
||
4639 compact_result
== COMPACT_DEFERRED
)
4643 * Looks like reclaim/compaction is worth trying, but
4644 * sync compaction could be very expensive, so keep
4645 * using async compaction.
4647 compact_priority
= INIT_COMPACT_PRIORITY
;
4652 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4653 if (alloc_flags
& ALLOC_KSWAPD
)
4654 wake_all_kswapds(order
, gfp_mask
, ac
);
4656 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4658 alloc_flags
= current_alloc_flags(gfp_mask
, reserve_flags
);
4661 * Reset the nodemask and zonelist iterators if memory policies can be
4662 * ignored. These allocations are high priority and system rather than
4665 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4666 ac
->nodemask
= NULL
;
4667 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4668 ac
->highest_zoneidx
, ac
->nodemask
);
4671 /* Attempt with potentially adjusted zonelist and alloc_flags */
4672 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4676 /* Caller is not willing to reclaim, we can't balance anything */
4677 if (!can_direct_reclaim
)
4680 /* Avoid recursion of direct reclaim */
4681 if (current
->flags
& PF_MEMALLOC
)
4684 /* Try direct reclaim and then allocating */
4685 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4686 &did_some_progress
);
4690 /* Try direct compaction and then allocating */
4691 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4692 compact_priority
, &compact_result
);
4696 /* Do not loop if specifically requested */
4697 if (gfp_mask
& __GFP_NORETRY
)
4701 * Do not retry costly high order allocations unless they are
4702 * __GFP_RETRY_MAYFAIL
4704 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4707 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4708 did_some_progress
> 0, &no_progress_loops
))
4712 * It doesn't make any sense to retry for the compaction if the order-0
4713 * reclaim is not able to make any progress because the current
4714 * implementation of the compaction depends on the sufficient amount
4715 * of free memory (see __compaction_suitable)
4717 if (did_some_progress
> 0 &&
4718 should_compact_retry(ac
, order
, alloc_flags
,
4719 compact_result
, &compact_priority
,
4720 &compaction_retries
))
4724 /* Deal with possible cpuset update races before we start OOM killing */
4725 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4728 /* Reclaim has failed us, start killing things */
4729 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4733 /* Avoid allocations with no watermarks from looping endlessly */
4734 if (tsk_is_oom_victim(current
) &&
4735 (alloc_flags
& ALLOC_OOM
||
4736 (gfp_mask
& __GFP_NOMEMALLOC
)))
4739 /* Retry as long as the OOM killer is making progress */
4740 if (did_some_progress
) {
4741 no_progress_loops
= 0;
4746 /* Deal with possible cpuset update races before we fail */
4747 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4751 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4754 if (gfp_mask
& __GFP_NOFAIL
) {
4756 * All existing users of the __GFP_NOFAIL are blockable, so warn
4757 * of any new users that actually require GFP_NOWAIT
4759 if (WARN_ON_ONCE(!can_direct_reclaim
))
4763 * PF_MEMALLOC request from this context is rather bizarre
4764 * because we cannot reclaim anything and only can loop waiting
4765 * for somebody to do a work for us
4767 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4770 * non failing costly orders are a hard requirement which we
4771 * are not prepared for much so let's warn about these users
4772 * so that we can identify them and convert them to something
4775 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4778 * Help non-failing allocations by giving them access to memory
4779 * reserves but do not use ALLOC_NO_WATERMARKS because this
4780 * could deplete whole memory reserves which would just make
4781 * the situation worse
4783 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4791 warn_alloc(gfp_mask
, ac
->nodemask
,
4792 "page allocation failure: order:%u", order
);
4797 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4798 int preferred_nid
, nodemask_t
*nodemask
,
4799 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4800 unsigned int *alloc_flags
)
4802 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4803 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4804 ac
->nodemask
= nodemask
;
4805 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4807 if (cpusets_enabled()) {
4808 *alloc_mask
|= __GFP_HARDWALL
;
4810 * When we are in the interrupt context, it is irrelevant
4811 * to the current task context. It means that any node ok.
4813 if (!in_interrupt() && !ac
->nodemask
)
4814 ac
->nodemask
= &cpuset_current_mems_allowed
;
4816 *alloc_flags
|= ALLOC_CPUSET
;
4819 fs_reclaim_acquire(gfp_mask
);
4820 fs_reclaim_release(gfp_mask
);
4822 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4824 if (should_fail_alloc_page(gfp_mask
, order
))
4827 *alloc_flags
= current_alloc_flags(gfp_mask
, *alloc_flags
);
4832 /* Determine whether to spread dirty pages and what the first usable zone */
4833 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4835 /* Dirty zone balancing only done in the fast path */
4836 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4839 * The preferred zone is used for statistics but crucially it is
4840 * also used as the starting point for the zonelist iterator. It
4841 * may get reset for allocations that ignore memory policies.
4843 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4844 ac
->highest_zoneidx
, ac
->nodemask
);
4848 * This is the 'heart' of the zoned buddy allocator.
4851 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4852 nodemask_t
*nodemask
)
4855 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4856 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4857 struct alloc_context ac
= { };
4860 * There are several places where we assume that the order value is sane
4861 * so bail out early if the request is out of bound.
4863 if (unlikely(order
>= MAX_ORDER
)) {
4864 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4868 gfp_mask
&= gfp_allowed_mask
;
4869 alloc_mask
= gfp_mask
;
4870 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4873 finalise_ac(gfp_mask
, &ac
);
4876 * Forbid the first pass from falling back to types that fragment
4877 * memory until all local zones are considered.
4879 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4881 /* First allocation attempt */
4882 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4887 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4888 * resp. GFP_NOIO which has to be inherited for all allocation requests
4889 * from a particular context which has been marked by
4890 * memalloc_no{fs,io}_{save,restore}.
4892 alloc_mask
= current_gfp_context(gfp_mask
);
4893 ac
.spread_dirty_pages
= false;
4896 * Restore the original nodemask if it was potentially replaced with
4897 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4899 ac
.nodemask
= nodemask
;
4901 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4904 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4905 unlikely(__memcg_kmem_charge_page(page
, gfp_mask
, order
) != 0)) {
4906 __free_pages(page
, order
);
4910 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4914 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4917 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4918 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4919 * you need to access high mem.
4921 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4925 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4928 return (unsigned long) page_address(page
);
4930 EXPORT_SYMBOL(__get_free_pages
);
4932 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4934 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4936 EXPORT_SYMBOL(get_zeroed_page
);
4938 static inline void free_the_page(struct page
*page
, unsigned int order
)
4940 if (order
== 0) /* Via pcp? */
4941 free_unref_page(page
);
4943 __free_pages_ok(page
, order
);
4946 void __free_pages(struct page
*page
, unsigned int order
)
4948 if (put_page_testzero(page
))
4949 free_the_page(page
, order
);
4951 EXPORT_SYMBOL(__free_pages
);
4953 void free_pages(unsigned long addr
, unsigned int order
)
4956 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4957 __free_pages(virt_to_page((void *)addr
), order
);
4961 EXPORT_SYMBOL(free_pages
);
4965 * An arbitrary-length arbitrary-offset area of memory which resides
4966 * within a 0 or higher order page. Multiple fragments within that page
4967 * are individually refcounted, in the page's reference counter.
4969 * The page_frag functions below provide a simple allocation framework for
4970 * page fragments. This is used by the network stack and network device
4971 * drivers to provide a backing region of memory for use as either an
4972 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4974 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4977 struct page
*page
= NULL
;
4978 gfp_t gfp
= gfp_mask
;
4980 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4981 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4983 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4984 PAGE_FRAG_CACHE_MAX_ORDER
);
4985 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4987 if (unlikely(!page
))
4988 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4990 nc
->va
= page
? page_address(page
) : NULL
;
4995 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4997 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4999 if (page_ref_sub_and_test(page
, count
))
5000 free_the_page(page
, compound_order(page
));
5002 EXPORT_SYMBOL(__page_frag_cache_drain
);
5004 void *page_frag_alloc(struct page_frag_cache
*nc
,
5005 unsigned int fragsz
, gfp_t gfp_mask
)
5007 unsigned int size
= PAGE_SIZE
;
5011 if (unlikely(!nc
->va
)) {
5013 page
= __page_frag_cache_refill(nc
, gfp_mask
);
5017 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5018 /* if size can vary use size else just use PAGE_SIZE */
5021 /* Even if we own the page, we do not use atomic_set().
5022 * This would break get_page_unless_zero() users.
5024 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
5026 /* reset page count bias and offset to start of new frag */
5027 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
5028 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5032 offset
= nc
->offset
- fragsz
;
5033 if (unlikely(offset
< 0)) {
5034 page
= virt_to_page(nc
->va
);
5036 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
5039 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5040 /* if size can vary use size else just use PAGE_SIZE */
5043 /* OK, page count is 0, we can safely set it */
5044 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
5046 /* reset page count bias and offset to start of new frag */
5047 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5048 offset
= size
- fragsz
;
5052 nc
->offset
= offset
;
5054 return nc
->va
+ offset
;
5056 EXPORT_SYMBOL(page_frag_alloc
);
5059 * Frees a page fragment allocated out of either a compound or order 0 page.
5061 void page_frag_free(void *addr
)
5063 struct page
*page
= virt_to_head_page(addr
);
5065 if (unlikely(put_page_testzero(page
)))
5066 free_the_page(page
, compound_order(page
));
5068 EXPORT_SYMBOL(page_frag_free
);
5070 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
5074 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
5075 unsigned long used
= addr
+ PAGE_ALIGN(size
);
5077 split_page(virt_to_page((void *)addr
), order
);
5078 while (used
< alloc_end
) {
5083 return (void *)addr
;
5087 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5088 * @size: the number of bytes to allocate
5089 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5091 * This function is similar to alloc_pages(), except that it allocates the
5092 * minimum number of pages to satisfy the request. alloc_pages() can only
5093 * allocate memory in power-of-two pages.
5095 * This function is also limited by MAX_ORDER.
5097 * Memory allocated by this function must be released by free_pages_exact().
5099 * Return: pointer to the allocated area or %NULL in case of error.
5101 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
5103 unsigned int order
= get_order(size
);
5106 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5107 gfp_mask
&= ~__GFP_COMP
;
5109 addr
= __get_free_pages(gfp_mask
, order
);
5110 return make_alloc_exact(addr
, order
, size
);
5112 EXPORT_SYMBOL(alloc_pages_exact
);
5115 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5117 * @nid: the preferred node ID where memory should be allocated
5118 * @size: the number of bytes to allocate
5119 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5121 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5124 * Return: pointer to the allocated area or %NULL in case of error.
5126 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5128 unsigned int order
= get_order(size
);
5131 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5132 gfp_mask
&= ~__GFP_COMP
;
5134 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5137 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5141 * free_pages_exact - release memory allocated via alloc_pages_exact()
5142 * @virt: the value returned by alloc_pages_exact.
5143 * @size: size of allocation, same value as passed to alloc_pages_exact().
5145 * Release the memory allocated by a previous call to alloc_pages_exact.
5147 void free_pages_exact(void *virt
, size_t size
)
5149 unsigned long addr
= (unsigned long)virt
;
5150 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5152 while (addr
< end
) {
5157 EXPORT_SYMBOL(free_pages_exact
);
5160 * nr_free_zone_pages - count number of pages beyond high watermark
5161 * @offset: The zone index of the highest zone
5163 * nr_free_zone_pages() counts the number of pages which are beyond the
5164 * high watermark within all zones at or below a given zone index. For each
5165 * zone, the number of pages is calculated as:
5167 * nr_free_zone_pages = managed_pages - high_pages
5169 * Return: number of pages beyond high watermark.
5171 static unsigned long nr_free_zone_pages(int offset
)
5176 /* Just pick one node, since fallback list is circular */
5177 unsigned long sum
= 0;
5179 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5181 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5182 unsigned long size
= zone_managed_pages(zone
);
5183 unsigned long high
= high_wmark_pages(zone
);
5192 * nr_free_buffer_pages - count number of pages beyond high watermark
5194 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5195 * watermark within ZONE_DMA and ZONE_NORMAL.
5197 * Return: number of pages beyond high watermark within ZONE_DMA and
5200 unsigned long nr_free_buffer_pages(void)
5202 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5204 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5206 static inline void show_node(struct zone
*zone
)
5208 if (IS_ENABLED(CONFIG_NUMA
))
5209 printk("Node %d ", zone_to_nid(zone
));
5212 long si_mem_available(void)
5215 unsigned long pagecache
;
5216 unsigned long wmark_low
= 0;
5217 unsigned long pages
[NR_LRU_LISTS
];
5218 unsigned long reclaimable
;
5222 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5223 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5226 wmark_low
+= low_wmark_pages(zone
);
5229 * Estimate the amount of memory available for userspace allocations,
5230 * without causing swapping.
5232 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5235 * Not all the page cache can be freed, otherwise the system will
5236 * start swapping. Assume at least half of the page cache, or the
5237 * low watermark worth of cache, needs to stay.
5239 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5240 pagecache
-= min(pagecache
/ 2, wmark_low
);
5241 available
+= pagecache
;
5244 * Part of the reclaimable slab and other kernel memory consists of
5245 * items that are in use, and cannot be freed. Cap this estimate at the
5248 reclaimable
= global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
) +
5249 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5250 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5256 EXPORT_SYMBOL_GPL(si_mem_available
);
5258 void si_meminfo(struct sysinfo
*val
)
5260 val
->totalram
= totalram_pages();
5261 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5262 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5263 val
->bufferram
= nr_blockdev_pages();
5264 val
->totalhigh
= totalhigh_pages();
5265 val
->freehigh
= nr_free_highpages();
5266 val
->mem_unit
= PAGE_SIZE
;
5269 EXPORT_SYMBOL(si_meminfo
);
5272 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5274 int zone_type
; /* needs to be signed */
5275 unsigned long managed_pages
= 0;
5276 unsigned long managed_highpages
= 0;
5277 unsigned long free_highpages
= 0;
5278 pg_data_t
*pgdat
= NODE_DATA(nid
);
5280 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5281 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5282 val
->totalram
= managed_pages
;
5283 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5284 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5285 #ifdef CONFIG_HIGHMEM
5286 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5287 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5289 if (is_highmem(zone
)) {
5290 managed_highpages
+= zone_managed_pages(zone
);
5291 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5294 val
->totalhigh
= managed_highpages
;
5295 val
->freehigh
= free_highpages
;
5297 val
->totalhigh
= managed_highpages
;
5298 val
->freehigh
= free_highpages
;
5300 val
->mem_unit
= PAGE_SIZE
;
5305 * Determine whether the node should be displayed or not, depending on whether
5306 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5308 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5310 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5314 * no node mask - aka implicit memory numa policy. Do not bother with
5315 * the synchronization - read_mems_allowed_begin - because we do not
5316 * have to be precise here.
5319 nodemask
= &cpuset_current_mems_allowed
;
5321 return !node_isset(nid
, *nodemask
);
5324 #define K(x) ((x) << (PAGE_SHIFT-10))
5326 static void show_migration_types(unsigned char type
)
5328 static const char types
[MIGRATE_TYPES
] = {
5329 [MIGRATE_UNMOVABLE
] = 'U',
5330 [MIGRATE_MOVABLE
] = 'M',
5331 [MIGRATE_RECLAIMABLE
] = 'E',
5332 [MIGRATE_HIGHATOMIC
] = 'H',
5334 [MIGRATE_CMA
] = 'C',
5336 #ifdef CONFIG_MEMORY_ISOLATION
5337 [MIGRATE_ISOLATE
] = 'I',
5340 char tmp
[MIGRATE_TYPES
+ 1];
5344 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5345 if (type
& (1 << i
))
5350 printk(KERN_CONT
"(%s) ", tmp
);
5354 * Show free area list (used inside shift_scroll-lock stuff)
5355 * We also calculate the percentage fragmentation. We do this by counting the
5356 * memory on each free list with the exception of the first item on the list.
5359 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5362 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5364 unsigned long free_pcp
= 0;
5369 for_each_populated_zone(zone
) {
5370 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5373 for_each_online_cpu(cpu
)
5374 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5377 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5378 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5379 " unevictable:%lu dirty:%lu writeback:%lu\n"
5380 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5381 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5382 " free:%lu free_pcp:%lu free_cma:%lu\n",
5383 global_node_page_state(NR_ACTIVE_ANON
),
5384 global_node_page_state(NR_INACTIVE_ANON
),
5385 global_node_page_state(NR_ISOLATED_ANON
),
5386 global_node_page_state(NR_ACTIVE_FILE
),
5387 global_node_page_state(NR_INACTIVE_FILE
),
5388 global_node_page_state(NR_ISOLATED_FILE
),
5389 global_node_page_state(NR_UNEVICTABLE
),
5390 global_node_page_state(NR_FILE_DIRTY
),
5391 global_node_page_state(NR_WRITEBACK
),
5392 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
),
5393 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B
),
5394 global_node_page_state(NR_FILE_MAPPED
),
5395 global_node_page_state(NR_SHMEM
),
5396 global_zone_page_state(NR_PAGETABLE
),
5397 global_zone_page_state(NR_BOUNCE
),
5398 global_zone_page_state(NR_FREE_PAGES
),
5400 global_zone_page_state(NR_FREE_CMA_PAGES
));
5402 for_each_online_pgdat(pgdat
) {
5403 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5407 " active_anon:%lukB"
5408 " inactive_anon:%lukB"
5409 " active_file:%lukB"
5410 " inactive_file:%lukB"
5411 " unevictable:%lukB"
5412 " isolated(anon):%lukB"
5413 " isolated(file):%lukB"
5418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5420 " shmem_pmdmapped: %lukB"
5423 " writeback_tmp:%lukB"
5424 " kernel_stack:%lukB"
5425 #ifdef CONFIG_SHADOW_CALL_STACK
5426 " shadow_call_stack:%lukB"
5428 " all_unreclaimable? %s"
5431 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5432 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5433 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5434 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5435 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5436 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5437 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5438 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5439 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5440 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5441 K(node_page_state(pgdat
, NR_SHMEM
)),
5442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5443 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5444 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5446 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5448 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5449 node_page_state(pgdat
, NR_KERNEL_STACK_KB
),
5450 #ifdef CONFIG_SHADOW_CALL_STACK
5451 node_page_state(pgdat
, NR_KERNEL_SCS_KB
),
5453 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5457 for_each_populated_zone(zone
) {
5460 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5464 for_each_online_cpu(cpu
)
5465 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5474 " reserved_highatomic:%luKB"
5475 " active_anon:%lukB"
5476 " inactive_anon:%lukB"
5477 " active_file:%lukB"
5478 " inactive_file:%lukB"
5479 " unevictable:%lukB"
5480 " writepending:%lukB"
5491 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5492 K(min_wmark_pages(zone
)),
5493 K(low_wmark_pages(zone
)),
5494 K(high_wmark_pages(zone
)),
5495 K(zone
->nr_reserved_highatomic
),
5496 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5497 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5498 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5499 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5500 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5501 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5502 K(zone
->present_pages
),
5503 K(zone_managed_pages(zone
)),
5504 K(zone_page_state(zone
, NR_MLOCK
)),
5505 K(zone_page_state(zone
, NR_PAGETABLE
)),
5506 K(zone_page_state(zone
, NR_BOUNCE
)),
5508 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5509 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5510 printk("lowmem_reserve[]:");
5511 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5512 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5513 printk(KERN_CONT
"\n");
5516 for_each_populated_zone(zone
) {
5518 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5519 unsigned char types
[MAX_ORDER
];
5521 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5524 printk(KERN_CONT
"%s: ", zone
->name
);
5526 spin_lock_irqsave(&zone
->lock
, flags
);
5527 for (order
= 0; order
< MAX_ORDER
; order
++) {
5528 struct free_area
*area
= &zone
->free_area
[order
];
5531 nr
[order
] = area
->nr_free
;
5532 total
+= nr
[order
] << order
;
5535 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5536 if (!free_area_empty(area
, type
))
5537 types
[order
] |= 1 << type
;
5540 spin_unlock_irqrestore(&zone
->lock
, flags
);
5541 for (order
= 0; order
< MAX_ORDER
; order
++) {
5542 printk(KERN_CONT
"%lu*%lukB ",
5543 nr
[order
], K(1UL) << order
);
5545 show_migration_types(types
[order
]);
5547 printk(KERN_CONT
"= %lukB\n", K(total
));
5550 hugetlb_show_meminfo();
5552 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5554 show_swap_cache_info();
5557 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5559 zoneref
->zone
= zone
;
5560 zoneref
->zone_idx
= zone_idx(zone
);
5564 * Builds allocation fallback zone lists.
5566 * Add all populated zones of a node to the zonelist.
5568 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5571 enum zone_type zone_type
= MAX_NR_ZONES
;
5576 zone
= pgdat
->node_zones
+ zone_type
;
5577 if (managed_zone(zone
)) {
5578 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5579 check_highest_zone(zone_type
);
5581 } while (zone_type
);
5588 static int __parse_numa_zonelist_order(char *s
)
5591 * We used to support different zonlists modes but they turned
5592 * out to be just not useful. Let's keep the warning in place
5593 * if somebody still use the cmd line parameter so that we do
5594 * not fail it silently
5596 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5597 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5603 char numa_zonelist_order
[] = "Node";
5606 * sysctl handler for numa_zonelist_order
5608 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5609 void *buffer
, size_t *length
, loff_t
*ppos
)
5612 return __parse_numa_zonelist_order(buffer
);
5613 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5617 #define MAX_NODE_LOAD (nr_online_nodes)
5618 static int node_load
[MAX_NUMNODES
];
5621 * find_next_best_node - find the next node that should appear in a given node's fallback list
5622 * @node: node whose fallback list we're appending
5623 * @used_node_mask: nodemask_t of already used nodes
5625 * We use a number of factors to determine which is the next node that should
5626 * appear on a given node's fallback list. The node should not have appeared
5627 * already in @node's fallback list, and it should be the next closest node
5628 * according to the distance array (which contains arbitrary distance values
5629 * from each node to each node in the system), and should also prefer nodes
5630 * with no CPUs, since presumably they'll have very little allocation pressure
5631 * on them otherwise.
5633 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5635 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5638 int min_val
= INT_MAX
;
5639 int best_node
= NUMA_NO_NODE
;
5640 const struct cpumask
*tmp
= cpumask_of_node(0);
5642 /* Use the local node if we haven't already */
5643 if (!node_isset(node
, *used_node_mask
)) {
5644 node_set(node
, *used_node_mask
);
5648 for_each_node_state(n
, N_MEMORY
) {
5650 /* Don't want a node to appear more than once */
5651 if (node_isset(n
, *used_node_mask
))
5654 /* Use the distance array to find the distance */
5655 val
= node_distance(node
, n
);
5657 /* Penalize nodes under us ("prefer the next node") */
5660 /* Give preference to headless and unused nodes */
5661 tmp
= cpumask_of_node(n
);
5662 if (!cpumask_empty(tmp
))
5663 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5665 /* Slight preference for less loaded node */
5666 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5667 val
+= node_load
[n
];
5669 if (val
< min_val
) {
5676 node_set(best_node
, *used_node_mask
);
5683 * Build zonelists ordered by node and zones within node.
5684 * This results in maximum locality--normal zone overflows into local
5685 * DMA zone, if any--but risks exhausting DMA zone.
5687 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5690 struct zoneref
*zonerefs
;
5693 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5695 for (i
= 0; i
< nr_nodes
; i
++) {
5698 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5700 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5701 zonerefs
+= nr_zones
;
5703 zonerefs
->zone
= NULL
;
5704 zonerefs
->zone_idx
= 0;
5708 * Build gfp_thisnode zonelists
5710 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5712 struct zoneref
*zonerefs
;
5715 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5716 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5717 zonerefs
+= nr_zones
;
5718 zonerefs
->zone
= NULL
;
5719 zonerefs
->zone_idx
= 0;
5723 * Build zonelists ordered by zone and nodes within zones.
5724 * This results in conserving DMA zone[s] until all Normal memory is
5725 * exhausted, but results in overflowing to remote node while memory
5726 * may still exist in local DMA zone.
5729 static void build_zonelists(pg_data_t
*pgdat
)
5731 static int node_order
[MAX_NUMNODES
];
5732 int node
, load
, nr_nodes
= 0;
5733 nodemask_t used_mask
= NODE_MASK_NONE
;
5734 int local_node
, prev_node
;
5736 /* NUMA-aware ordering of nodes */
5737 local_node
= pgdat
->node_id
;
5738 load
= nr_online_nodes
;
5739 prev_node
= local_node
;
5741 memset(node_order
, 0, sizeof(node_order
));
5742 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5744 * We don't want to pressure a particular node.
5745 * So adding penalty to the first node in same
5746 * distance group to make it round-robin.
5748 if (node_distance(local_node
, node
) !=
5749 node_distance(local_node
, prev_node
))
5750 node_load
[node
] = load
;
5752 node_order
[nr_nodes
++] = node
;
5757 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5758 build_thisnode_zonelists(pgdat
);
5761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5763 * Return node id of node used for "local" allocations.
5764 * I.e., first node id of first zone in arg node's generic zonelist.
5765 * Used for initializing percpu 'numa_mem', which is used primarily
5766 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5768 int local_memory_node(int node
)
5772 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5773 gfp_zone(GFP_KERNEL
),
5775 return zone_to_nid(z
->zone
);
5779 static void setup_min_unmapped_ratio(void);
5780 static void setup_min_slab_ratio(void);
5781 #else /* CONFIG_NUMA */
5783 static void build_zonelists(pg_data_t
*pgdat
)
5785 int node
, local_node
;
5786 struct zoneref
*zonerefs
;
5789 local_node
= pgdat
->node_id
;
5791 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5792 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5793 zonerefs
+= nr_zones
;
5796 * Now we build the zonelist so that it contains the zones
5797 * of all the other nodes.
5798 * We don't want to pressure a particular node, so when
5799 * building the zones for node N, we make sure that the
5800 * zones coming right after the local ones are those from
5801 * node N+1 (modulo N)
5803 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5804 if (!node_online(node
))
5806 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5807 zonerefs
+= nr_zones
;
5809 for (node
= 0; node
< local_node
; node
++) {
5810 if (!node_online(node
))
5812 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5813 zonerefs
+= nr_zones
;
5816 zonerefs
->zone
= NULL
;
5817 zonerefs
->zone_idx
= 0;
5820 #endif /* CONFIG_NUMA */
5823 * Boot pageset table. One per cpu which is going to be used for all
5824 * zones and all nodes. The parameters will be set in such a way
5825 * that an item put on a list will immediately be handed over to
5826 * the buddy list. This is safe since pageset manipulation is done
5827 * with interrupts disabled.
5829 * The boot_pagesets must be kept even after bootup is complete for
5830 * unused processors and/or zones. They do play a role for bootstrapping
5831 * hotplugged processors.
5833 * zoneinfo_show() and maybe other functions do
5834 * not check if the processor is online before following the pageset pointer.
5835 * Other parts of the kernel may not check if the zone is available.
5837 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5838 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5839 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5841 static void __build_all_zonelists(void *data
)
5844 int __maybe_unused cpu
;
5845 pg_data_t
*self
= data
;
5846 static DEFINE_SPINLOCK(lock
);
5851 memset(node_load
, 0, sizeof(node_load
));
5855 * This node is hotadded and no memory is yet present. So just
5856 * building zonelists is fine - no need to touch other nodes.
5858 if (self
&& !node_online(self
->node_id
)) {
5859 build_zonelists(self
);
5861 for_each_online_node(nid
) {
5862 pg_data_t
*pgdat
= NODE_DATA(nid
);
5864 build_zonelists(pgdat
);
5867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5869 * We now know the "local memory node" for each node--
5870 * i.e., the node of the first zone in the generic zonelist.
5871 * Set up numa_mem percpu variable for on-line cpus. During
5872 * boot, only the boot cpu should be on-line; we'll init the
5873 * secondary cpus' numa_mem as they come on-line. During
5874 * node/memory hotplug, we'll fixup all on-line cpus.
5876 for_each_online_cpu(cpu
)
5877 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5884 static noinline
void __init
5885 build_all_zonelists_init(void)
5889 __build_all_zonelists(NULL
);
5892 * Initialize the boot_pagesets that are going to be used
5893 * for bootstrapping processors. The real pagesets for
5894 * each zone will be allocated later when the per cpu
5895 * allocator is available.
5897 * boot_pagesets are used also for bootstrapping offline
5898 * cpus if the system is already booted because the pagesets
5899 * are needed to initialize allocators on a specific cpu too.
5900 * F.e. the percpu allocator needs the page allocator which
5901 * needs the percpu allocator in order to allocate its pagesets
5902 * (a chicken-egg dilemma).
5904 for_each_possible_cpu(cpu
)
5905 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5907 mminit_verify_zonelist();
5908 cpuset_init_current_mems_allowed();
5912 * unless system_state == SYSTEM_BOOTING.
5914 * __ref due to call of __init annotated helper build_all_zonelists_init
5915 * [protected by SYSTEM_BOOTING].
5917 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5919 unsigned long vm_total_pages
;
5921 if (system_state
== SYSTEM_BOOTING
) {
5922 build_all_zonelists_init();
5924 __build_all_zonelists(pgdat
);
5925 /* cpuset refresh routine should be here */
5927 /* Get the number of free pages beyond high watermark in all zones. */
5928 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5930 * Disable grouping by mobility if the number of pages in the
5931 * system is too low to allow the mechanism to work. It would be
5932 * more accurate, but expensive to check per-zone. This check is
5933 * made on memory-hotadd so a system can start with mobility
5934 * disabled and enable it later
5936 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5937 page_group_by_mobility_disabled
= 1;
5939 page_group_by_mobility_disabled
= 0;
5941 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5943 page_group_by_mobility_disabled
? "off" : "on",
5946 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5950 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5951 static bool __meminit
5952 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5954 static struct memblock_region
*r
;
5956 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5957 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5958 for_each_memblock(memory
, r
) {
5959 if (*pfn
< memblock_region_memory_end_pfn(r
))
5963 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5964 memblock_is_mirror(r
)) {
5965 *pfn
= memblock_region_memory_end_pfn(r
);
5973 * Initially all pages are reserved - free ones are freed
5974 * up by memblock_free_all() once the early boot process is
5975 * done. Non-atomic initialization, single-pass.
5977 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5978 unsigned long start_pfn
, enum memmap_context context
,
5979 struct vmem_altmap
*altmap
)
5981 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5984 if (highest_memmap_pfn
< end_pfn
- 1)
5985 highest_memmap_pfn
= end_pfn
- 1;
5987 #ifdef CONFIG_ZONE_DEVICE
5989 * Honor reservation requested by the driver for this ZONE_DEVICE
5990 * memory. We limit the total number of pages to initialize to just
5991 * those that might contain the memory mapping. We will defer the
5992 * ZONE_DEVICE page initialization until after we have released
5995 if (zone
== ZONE_DEVICE
) {
5999 if (start_pfn
== altmap
->base_pfn
)
6000 start_pfn
+= altmap
->reserve
;
6001 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6005 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
6007 * There can be holes in boot-time mem_map[]s handed to this
6008 * function. They do not exist on hotplugged memory.
6010 if (context
== MEMMAP_EARLY
) {
6011 if (overlap_memmap_init(zone
, &pfn
))
6013 if (defer_init(nid
, pfn
, end_pfn
))
6017 page
= pfn_to_page(pfn
);
6018 __init_single_page(page
, pfn
, zone
, nid
);
6019 if (context
== MEMMAP_HOTPLUG
)
6020 __SetPageReserved(page
);
6023 * Mark the block movable so that blocks are reserved for
6024 * movable at startup. This will force kernel allocations
6025 * to reserve their blocks rather than leaking throughout
6026 * the address space during boot when many long-lived
6027 * kernel allocations are made.
6029 * bitmap is created for zone's valid pfn range. but memmap
6030 * can be created for invalid pages (for alignment)
6031 * check here not to call set_pageblock_migratetype() against
6034 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6035 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6042 #ifdef CONFIG_ZONE_DEVICE
6043 void __ref
memmap_init_zone_device(struct zone
*zone
,
6044 unsigned long start_pfn
,
6045 unsigned long nr_pages
,
6046 struct dev_pagemap
*pgmap
)
6048 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
6049 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6050 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
6051 unsigned long zone_idx
= zone_idx(zone
);
6052 unsigned long start
= jiffies
;
6053 int nid
= pgdat
->node_id
;
6055 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
6059 * The call to memmap_init_zone should have already taken care
6060 * of the pages reserved for the memmap, so we can just jump to
6061 * the end of that region and start processing the device pages.
6064 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6065 nr_pages
= end_pfn
- start_pfn
;
6068 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
6069 struct page
*page
= pfn_to_page(pfn
);
6071 __init_single_page(page
, pfn
, zone_idx
, nid
);
6074 * Mark page reserved as it will need to wait for onlining
6075 * phase for it to be fully associated with a zone.
6077 * We can use the non-atomic __set_bit operation for setting
6078 * the flag as we are still initializing the pages.
6080 __SetPageReserved(page
);
6083 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6084 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6085 * ever freed or placed on a driver-private list.
6087 page
->pgmap
= pgmap
;
6088 page
->zone_device_data
= NULL
;
6091 * Mark the block movable so that blocks are reserved for
6092 * movable at startup. This will force kernel allocations
6093 * to reserve their blocks rather than leaking throughout
6094 * the address space during boot when many long-lived
6095 * kernel allocations are made.
6097 * bitmap is created for zone's valid pfn range. but memmap
6098 * can be created for invalid pages (for alignment)
6099 * check here not to call set_pageblock_migratetype() against
6102 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6103 * because this is done early in section_activate()
6105 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6106 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6111 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6112 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6116 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6118 unsigned int order
, t
;
6119 for_each_migratetype_order(order
, t
) {
6120 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6121 zone
->free_area
[order
].nr_free
= 0;
6125 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6127 unsigned long range_start_pfn
)
6129 unsigned long start_pfn
, end_pfn
;
6130 unsigned long range_end_pfn
= range_start_pfn
+ size
;
6133 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6134 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6135 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6137 if (end_pfn
> start_pfn
) {
6138 size
= end_pfn
- start_pfn
;
6139 memmap_init_zone(size
, nid
, zone
, start_pfn
,
6140 MEMMAP_EARLY
, NULL
);
6145 static int zone_batchsize(struct zone
*zone
)
6151 * The per-cpu-pages pools are set to around 1000th of the
6154 batch
= zone_managed_pages(zone
) / 1024;
6155 /* But no more than a meg. */
6156 if (batch
* PAGE_SIZE
> 1024 * 1024)
6157 batch
= (1024 * 1024) / PAGE_SIZE
;
6158 batch
/= 4; /* We effectively *= 4 below */
6163 * Clamp the batch to a 2^n - 1 value. Having a power
6164 * of 2 value was found to be more likely to have
6165 * suboptimal cache aliasing properties in some cases.
6167 * For example if 2 tasks are alternately allocating
6168 * batches of pages, one task can end up with a lot
6169 * of pages of one half of the possible page colors
6170 * and the other with pages of the other colors.
6172 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6177 /* The deferral and batching of frees should be suppressed under NOMMU
6180 * The problem is that NOMMU needs to be able to allocate large chunks
6181 * of contiguous memory as there's no hardware page translation to
6182 * assemble apparent contiguous memory from discontiguous pages.
6184 * Queueing large contiguous runs of pages for batching, however,
6185 * causes the pages to actually be freed in smaller chunks. As there
6186 * can be a significant delay between the individual batches being
6187 * recycled, this leads to the once large chunks of space being
6188 * fragmented and becoming unavailable for high-order allocations.
6195 * pcp->high and pcp->batch values are related and dependent on one another:
6196 * ->batch must never be higher then ->high.
6197 * The following function updates them in a safe manner without read side
6200 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6201 * those fields changing asynchronously (acording to the above rule).
6203 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6204 * outside of boot time (or some other assurance that no concurrent updaters
6207 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6208 unsigned long batch
)
6210 /* start with a fail safe value for batch */
6214 /* Update high, then batch, in order */
6221 /* a companion to pageset_set_high() */
6222 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
6224 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
6227 static void pageset_init(struct per_cpu_pageset
*p
)
6229 struct per_cpu_pages
*pcp
;
6232 memset(p
, 0, sizeof(*p
));
6235 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6236 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6239 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
6242 pageset_set_batch(p
, batch
);
6246 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6247 * to the value high for the pageset p.
6249 static void pageset_set_high(struct per_cpu_pageset
*p
,
6252 unsigned long batch
= max(1UL, high
/ 4);
6253 if ((high
/ 4) > (PAGE_SHIFT
* 8))
6254 batch
= PAGE_SHIFT
* 8;
6256 pageset_update(&p
->pcp
, high
, batch
);
6259 static void pageset_set_high_and_batch(struct zone
*zone
,
6260 struct per_cpu_pageset
*pcp
)
6262 if (percpu_pagelist_fraction
)
6263 pageset_set_high(pcp
,
6264 (zone_managed_pages(zone
) /
6265 percpu_pagelist_fraction
));
6267 pageset_set_batch(pcp
, zone_batchsize(zone
));
6270 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6272 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6275 pageset_set_high_and_batch(zone
, pcp
);
6278 void __meminit
setup_zone_pageset(struct zone
*zone
)
6281 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6282 for_each_possible_cpu(cpu
)
6283 zone_pageset_init(zone
, cpu
);
6287 * Allocate per cpu pagesets and initialize them.
6288 * Before this call only boot pagesets were available.
6290 void __init
setup_per_cpu_pageset(void)
6292 struct pglist_data
*pgdat
;
6294 int __maybe_unused cpu
;
6296 for_each_populated_zone(zone
)
6297 setup_zone_pageset(zone
);
6301 * Unpopulated zones continue using the boot pagesets.
6302 * The numa stats for these pagesets need to be reset.
6303 * Otherwise, they will end up skewing the stats of
6304 * the nodes these zones are associated with.
6306 for_each_possible_cpu(cpu
) {
6307 struct per_cpu_pageset
*pcp
= &per_cpu(boot_pageset
, cpu
);
6308 memset(pcp
->vm_numa_stat_diff
, 0,
6309 sizeof(pcp
->vm_numa_stat_diff
));
6313 for_each_online_pgdat(pgdat
)
6314 pgdat
->per_cpu_nodestats
=
6315 alloc_percpu(struct per_cpu_nodestat
);
6318 static __meminit
void zone_pcp_init(struct zone
*zone
)
6321 * per cpu subsystem is not up at this point. The following code
6322 * relies on the ability of the linker to provide the
6323 * offset of a (static) per cpu variable into the per cpu area.
6325 zone
->pageset
= &boot_pageset
;
6327 if (populated_zone(zone
))
6328 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6329 zone
->name
, zone
->present_pages
,
6330 zone_batchsize(zone
));
6333 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6334 unsigned long zone_start_pfn
,
6337 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6338 int zone_idx
= zone_idx(zone
) + 1;
6340 if (zone_idx
> pgdat
->nr_zones
)
6341 pgdat
->nr_zones
= zone_idx
;
6343 zone
->zone_start_pfn
= zone_start_pfn
;
6345 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6346 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6348 (unsigned long)zone_idx(zone
),
6349 zone_start_pfn
, (zone_start_pfn
+ size
));
6351 zone_init_free_lists(zone
);
6352 zone
->initialized
= 1;
6356 * get_pfn_range_for_nid - Return the start and end page frames for a node
6357 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6358 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6359 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6361 * It returns the start and end page frame of a node based on information
6362 * provided by memblock_set_node(). If called for a node
6363 * with no available memory, a warning is printed and the start and end
6366 void __init
get_pfn_range_for_nid(unsigned int nid
,
6367 unsigned long *start_pfn
, unsigned long *end_pfn
)
6369 unsigned long this_start_pfn
, this_end_pfn
;
6375 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6376 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6377 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6380 if (*start_pfn
== -1UL)
6385 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6386 * assumption is made that zones within a node are ordered in monotonic
6387 * increasing memory addresses so that the "highest" populated zone is used
6389 static void __init
find_usable_zone_for_movable(void)
6392 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6393 if (zone_index
== ZONE_MOVABLE
)
6396 if (arch_zone_highest_possible_pfn
[zone_index
] >
6397 arch_zone_lowest_possible_pfn
[zone_index
])
6401 VM_BUG_ON(zone_index
== -1);
6402 movable_zone
= zone_index
;
6406 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6407 * because it is sized independent of architecture. Unlike the other zones,
6408 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6409 * in each node depending on the size of each node and how evenly kernelcore
6410 * is distributed. This helper function adjusts the zone ranges
6411 * provided by the architecture for a given node by using the end of the
6412 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6413 * zones within a node are in order of monotonic increases memory addresses
6415 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6416 unsigned long zone_type
,
6417 unsigned long node_start_pfn
,
6418 unsigned long node_end_pfn
,
6419 unsigned long *zone_start_pfn
,
6420 unsigned long *zone_end_pfn
)
6422 /* Only adjust if ZONE_MOVABLE is on this node */
6423 if (zone_movable_pfn
[nid
]) {
6424 /* Size ZONE_MOVABLE */
6425 if (zone_type
== ZONE_MOVABLE
) {
6426 *zone_start_pfn
= zone_movable_pfn
[nid
];
6427 *zone_end_pfn
= min(node_end_pfn
,
6428 arch_zone_highest_possible_pfn
[movable_zone
]);
6430 /* Adjust for ZONE_MOVABLE starting within this range */
6431 } else if (!mirrored_kernelcore
&&
6432 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6433 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6434 *zone_end_pfn
= zone_movable_pfn
[nid
];
6436 /* Check if this whole range is within ZONE_MOVABLE */
6437 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6438 *zone_start_pfn
= *zone_end_pfn
;
6443 * Return the number of pages a zone spans in a node, including holes
6444 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6446 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6447 unsigned long zone_type
,
6448 unsigned long node_start_pfn
,
6449 unsigned long node_end_pfn
,
6450 unsigned long *zone_start_pfn
,
6451 unsigned long *zone_end_pfn
)
6453 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6454 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6455 /* When hotadd a new node from cpu_up(), the node should be empty */
6456 if (!node_start_pfn
&& !node_end_pfn
)
6459 /* Get the start and end of the zone */
6460 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6461 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6462 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6463 node_start_pfn
, node_end_pfn
,
6464 zone_start_pfn
, zone_end_pfn
);
6466 /* Check that this node has pages within the zone's required range */
6467 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6470 /* Move the zone boundaries inside the node if necessary */
6471 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6472 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6474 /* Return the spanned pages */
6475 return *zone_end_pfn
- *zone_start_pfn
;
6479 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6480 * then all holes in the requested range will be accounted for.
6482 unsigned long __init
__absent_pages_in_range(int nid
,
6483 unsigned long range_start_pfn
,
6484 unsigned long range_end_pfn
)
6486 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6487 unsigned long start_pfn
, end_pfn
;
6490 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6491 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6492 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6493 nr_absent
-= end_pfn
- start_pfn
;
6499 * absent_pages_in_range - Return number of page frames in holes within a range
6500 * @start_pfn: The start PFN to start searching for holes
6501 * @end_pfn: The end PFN to stop searching for holes
6503 * Return: the number of pages frames in memory holes within a range.
6505 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6506 unsigned long end_pfn
)
6508 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6511 /* Return the number of page frames in holes in a zone on a node */
6512 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6513 unsigned long zone_type
,
6514 unsigned long node_start_pfn
,
6515 unsigned long node_end_pfn
)
6517 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6518 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6519 unsigned long zone_start_pfn
, zone_end_pfn
;
6520 unsigned long nr_absent
;
6522 /* When hotadd a new node from cpu_up(), the node should be empty */
6523 if (!node_start_pfn
&& !node_end_pfn
)
6526 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6527 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6529 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6530 node_start_pfn
, node_end_pfn
,
6531 &zone_start_pfn
, &zone_end_pfn
);
6532 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6535 * ZONE_MOVABLE handling.
6536 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6539 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6540 unsigned long start_pfn
, end_pfn
;
6541 struct memblock_region
*r
;
6543 for_each_memblock(memory
, r
) {
6544 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6545 zone_start_pfn
, zone_end_pfn
);
6546 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6547 zone_start_pfn
, zone_end_pfn
);
6549 if (zone_type
== ZONE_MOVABLE
&&
6550 memblock_is_mirror(r
))
6551 nr_absent
+= end_pfn
- start_pfn
;
6553 if (zone_type
== ZONE_NORMAL
&&
6554 !memblock_is_mirror(r
))
6555 nr_absent
+= end_pfn
- start_pfn
;
6562 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6563 unsigned long node_start_pfn
,
6564 unsigned long node_end_pfn
)
6566 unsigned long realtotalpages
= 0, totalpages
= 0;
6569 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6570 struct zone
*zone
= pgdat
->node_zones
+ i
;
6571 unsigned long zone_start_pfn
, zone_end_pfn
;
6572 unsigned long spanned
, absent
;
6573 unsigned long size
, real_size
;
6575 spanned
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6580 absent
= zone_absent_pages_in_node(pgdat
->node_id
, i
,
6585 real_size
= size
- absent
;
6588 zone
->zone_start_pfn
= zone_start_pfn
;
6590 zone
->zone_start_pfn
= 0;
6591 zone
->spanned_pages
= size
;
6592 zone
->present_pages
= real_size
;
6595 realtotalpages
+= real_size
;
6598 pgdat
->node_spanned_pages
= totalpages
;
6599 pgdat
->node_present_pages
= realtotalpages
;
6600 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6604 #ifndef CONFIG_SPARSEMEM
6606 * Calculate the size of the zone->blockflags rounded to an unsigned long
6607 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6608 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6609 * round what is now in bits to nearest long in bits, then return it in
6612 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6614 unsigned long usemapsize
;
6616 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6617 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6618 usemapsize
= usemapsize
>> pageblock_order
;
6619 usemapsize
*= NR_PAGEBLOCK_BITS
;
6620 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6622 return usemapsize
/ 8;
6625 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6627 unsigned long zone_start_pfn
,
6628 unsigned long zonesize
)
6630 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6631 zone
->pageblock_flags
= NULL
;
6633 zone
->pageblock_flags
=
6634 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6636 if (!zone
->pageblock_flags
)
6637 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6638 usemapsize
, zone
->name
, pgdat
->node_id
);
6642 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6643 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6644 #endif /* CONFIG_SPARSEMEM */
6646 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6648 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6649 void __init
set_pageblock_order(void)
6653 /* Check that pageblock_nr_pages has not already been setup */
6654 if (pageblock_order
)
6657 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6658 order
= HUGETLB_PAGE_ORDER
;
6660 order
= MAX_ORDER
- 1;
6663 * Assume the largest contiguous order of interest is a huge page.
6664 * This value may be variable depending on boot parameters on IA64 and
6667 pageblock_order
= order
;
6669 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6672 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6673 * is unused as pageblock_order is set at compile-time. See
6674 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6677 void __init
set_pageblock_order(void)
6681 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6683 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6684 unsigned long present_pages
)
6686 unsigned long pages
= spanned_pages
;
6689 * Provide a more accurate estimation if there are holes within
6690 * the zone and SPARSEMEM is in use. If there are holes within the
6691 * zone, each populated memory region may cost us one or two extra
6692 * memmap pages due to alignment because memmap pages for each
6693 * populated regions may not be naturally aligned on page boundary.
6694 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6696 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6697 IS_ENABLED(CONFIG_SPARSEMEM
))
6698 pages
= present_pages
;
6700 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6704 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6706 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6708 spin_lock_init(&ds_queue
->split_queue_lock
);
6709 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6710 ds_queue
->split_queue_len
= 0;
6713 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6716 #ifdef CONFIG_COMPACTION
6717 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6719 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6722 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6725 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6727 pgdat_resize_init(pgdat
);
6729 pgdat_init_split_queue(pgdat
);
6730 pgdat_init_kcompactd(pgdat
);
6732 init_waitqueue_head(&pgdat
->kswapd_wait
);
6733 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6735 pgdat_page_ext_init(pgdat
);
6736 spin_lock_init(&pgdat
->lru_lock
);
6737 lruvec_init(&pgdat
->__lruvec
);
6740 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6741 unsigned long remaining_pages
)
6743 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6744 zone_set_nid(zone
, nid
);
6745 zone
->name
= zone_names
[idx
];
6746 zone
->zone_pgdat
= NODE_DATA(nid
);
6747 spin_lock_init(&zone
->lock
);
6748 zone_seqlock_init(zone
);
6749 zone_pcp_init(zone
);
6753 * Set up the zone data structures
6754 * - init pgdat internals
6755 * - init all zones belonging to this node
6757 * NOTE: this function is only called during memory hotplug
6759 #ifdef CONFIG_MEMORY_HOTPLUG
6760 void __ref
free_area_init_core_hotplug(int nid
)
6763 pg_data_t
*pgdat
= NODE_DATA(nid
);
6765 pgdat_init_internals(pgdat
);
6766 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6767 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6772 * Set up the zone data structures:
6773 * - mark all pages reserved
6774 * - mark all memory queues empty
6775 * - clear the memory bitmaps
6777 * NOTE: pgdat should get zeroed by caller.
6778 * NOTE: this function is only called during early init.
6780 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6783 int nid
= pgdat
->node_id
;
6785 pgdat_init_internals(pgdat
);
6786 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6788 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6789 struct zone
*zone
= pgdat
->node_zones
+ j
;
6790 unsigned long size
, freesize
, memmap_pages
;
6791 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6793 size
= zone
->spanned_pages
;
6794 freesize
= zone
->present_pages
;
6797 * Adjust freesize so that it accounts for how much memory
6798 * is used by this zone for memmap. This affects the watermark
6799 * and per-cpu initialisations
6801 memmap_pages
= calc_memmap_size(size
, freesize
);
6802 if (!is_highmem_idx(j
)) {
6803 if (freesize
>= memmap_pages
) {
6804 freesize
-= memmap_pages
;
6807 " %s zone: %lu pages used for memmap\n",
6808 zone_names
[j
], memmap_pages
);
6810 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6811 zone_names
[j
], memmap_pages
, freesize
);
6814 /* Account for reserved pages */
6815 if (j
== 0 && freesize
> dma_reserve
) {
6816 freesize
-= dma_reserve
;
6817 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6818 zone_names
[0], dma_reserve
);
6821 if (!is_highmem_idx(j
))
6822 nr_kernel_pages
+= freesize
;
6823 /* Charge for highmem memmap if there are enough kernel pages */
6824 else if (nr_kernel_pages
> memmap_pages
* 2)
6825 nr_kernel_pages
-= memmap_pages
;
6826 nr_all_pages
+= freesize
;
6829 * Set an approximate value for lowmem here, it will be adjusted
6830 * when the bootmem allocator frees pages into the buddy system.
6831 * And all highmem pages will be managed by the buddy system.
6833 zone_init_internals(zone
, j
, nid
, freesize
);
6838 set_pageblock_order();
6839 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6840 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6841 memmap_init(size
, nid
, j
, zone_start_pfn
);
6845 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6846 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6848 unsigned long __maybe_unused start
= 0;
6849 unsigned long __maybe_unused offset
= 0;
6851 /* Skip empty nodes */
6852 if (!pgdat
->node_spanned_pages
)
6855 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6856 offset
= pgdat
->node_start_pfn
- start
;
6857 /* ia64 gets its own node_mem_map, before this, without bootmem */
6858 if (!pgdat
->node_mem_map
) {
6859 unsigned long size
, end
;
6863 * The zone's endpoints aren't required to be MAX_ORDER
6864 * aligned but the node_mem_map endpoints must be in order
6865 * for the buddy allocator to function correctly.
6867 end
= pgdat_end_pfn(pgdat
);
6868 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6869 size
= (end
- start
) * sizeof(struct page
);
6870 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6873 panic("Failed to allocate %ld bytes for node %d memory map\n",
6874 size
, pgdat
->node_id
);
6875 pgdat
->node_mem_map
= map
+ offset
;
6877 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6878 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6879 (unsigned long)pgdat
->node_mem_map
);
6880 #ifndef CONFIG_NEED_MULTIPLE_NODES
6882 * With no DISCONTIG, the global mem_map is just set as node 0's
6884 if (pgdat
== NODE_DATA(0)) {
6885 mem_map
= NODE_DATA(0)->node_mem_map
;
6886 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6892 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6893 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6895 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6896 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6898 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6901 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6904 static void __init
free_area_init_node(int nid
)
6906 pg_data_t
*pgdat
= NODE_DATA(nid
);
6907 unsigned long start_pfn
= 0;
6908 unsigned long end_pfn
= 0;
6910 /* pg_data_t should be reset to zero when it's allocated */
6911 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_highest_zoneidx
);
6913 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6915 pgdat
->node_id
= nid
;
6916 pgdat
->node_start_pfn
= start_pfn
;
6917 pgdat
->per_cpu_nodestats
= NULL
;
6919 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6920 (u64
)start_pfn
<< PAGE_SHIFT
,
6921 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6922 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
);
6924 alloc_node_mem_map(pgdat
);
6925 pgdat_set_deferred_range(pgdat
);
6927 free_area_init_core(pgdat
);
6930 void __init
free_area_init_memoryless_node(int nid
)
6932 free_area_init_node(nid
);
6935 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6937 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6938 * PageReserved(). Return the number of struct pages that were initialized.
6940 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
6945 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6946 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6947 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6948 + pageblock_nr_pages
- 1;
6952 * Use a fake node/zone (0) for now. Some of these pages
6953 * (in memblock.reserved but not in memblock.memory) will
6954 * get re-initialized via reserve_bootmem_region() later.
6956 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
6957 __SetPageReserved(pfn_to_page(pfn
));
6965 * Only struct pages that are backed by physical memory are zeroed and
6966 * initialized by going through __init_single_page(). But, there are some
6967 * struct pages which are reserved in memblock allocator and their fields
6968 * may be accessed (for example page_to_pfn() on some configuration accesses
6969 * flags). We must explicitly initialize those struct pages.
6971 * This function also addresses a similar issue where struct pages are left
6972 * uninitialized because the physical address range is not covered by
6973 * memblock.memory or memblock.reserved. That could happen when memblock
6974 * layout is manually configured via memmap=, or when the highest physical
6975 * address (max_pfn) does not end on a section boundary.
6977 static void __init
init_unavailable_mem(void)
6979 phys_addr_t start
, end
;
6981 phys_addr_t next
= 0;
6984 * Loop through unavailable ranges not covered by memblock.memory.
6987 for_each_mem_range(i
, &memblock
.memory
, NULL
,
6988 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
6990 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
6996 * Early sections always have a fully populated memmap for the whole
6997 * section - see pfn_valid(). If the last section has holes at the
6998 * end and that section is marked "online", the memmap will be
6999 * considered initialized. Make sure that memmap has a well defined
7002 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7003 round_up(max_pfn
, PAGES_PER_SECTION
));
7006 * Struct pages that do not have backing memory. This could be because
7007 * firmware is using some of this memory, or for some other reasons.
7010 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
7013 static inline void __init
init_unavailable_mem(void)
7016 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7018 #if MAX_NUMNODES > 1
7020 * Figure out the number of possible node ids.
7022 void __init
setup_nr_node_ids(void)
7024 unsigned int highest
;
7026 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7027 nr_node_ids
= highest
+ 1;
7032 * node_map_pfn_alignment - determine the maximum internode alignment
7034 * This function should be called after node map is populated and sorted.
7035 * It calculates the maximum power of two alignment which can distinguish
7038 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7039 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7040 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7041 * shifted, 1GiB is enough and this function will indicate so.
7043 * This is used to test whether pfn -> nid mapping of the chosen memory
7044 * model has fine enough granularity to avoid incorrect mapping for the
7045 * populated node map.
7047 * Return: the determined alignment in pfn's. 0 if there is no alignment
7048 * requirement (single node).
7050 unsigned long __init
node_map_pfn_alignment(void)
7052 unsigned long accl_mask
= 0, last_end
= 0;
7053 unsigned long start
, end
, mask
;
7054 int last_nid
= NUMA_NO_NODE
;
7057 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7058 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7065 * Start with a mask granular enough to pin-point to the
7066 * start pfn and tick off bits one-by-one until it becomes
7067 * too coarse to separate the current node from the last.
7069 mask
= ~((1 << __ffs(start
)) - 1);
7070 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7073 /* accumulate all internode masks */
7077 /* convert mask to number of pages */
7078 return ~accl_mask
+ 1;
7082 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7084 * Return: the minimum PFN based on information provided via
7085 * memblock_set_node().
7087 unsigned long __init
find_min_pfn_with_active_regions(void)
7089 return PHYS_PFN(memblock_start_of_DRAM());
7093 * early_calculate_totalpages()
7094 * Sum pages in active regions for movable zone.
7095 * Populate N_MEMORY for calculating usable_nodes.
7097 static unsigned long __init
early_calculate_totalpages(void)
7099 unsigned long totalpages
= 0;
7100 unsigned long start_pfn
, end_pfn
;
7103 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7104 unsigned long pages
= end_pfn
- start_pfn
;
7106 totalpages
+= pages
;
7108 node_set_state(nid
, N_MEMORY
);
7114 * Find the PFN the Movable zone begins in each node. Kernel memory
7115 * is spread evenly between nodes as long as the nodes have enough
7116 * memory. When they don't, some nodes will have more kernelcore than
7119 static void __init
find_zone_movable_pfns_for_nodes(void)
7122 unsigned long usable_startpfn
;
7123 unsigned long kernelcore_node
, kernelcore_remaining
;
7124 /* save the state before borrow the nodemask */
7125 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7126 unsigned long totalpages
= early_calculate_totalpages();
7127 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7128 struct memblock_region
*r
;
7130 /* Need to find movable_zone earlier when movable_node is specified. */
7131 find_usable_zone_for_movable();
7134 * If movable_node is specified, ignore kernelcore and movablecore
7137 if (movable_node_is_enabled()) {
7138 for_each_memblock(memory
, r
) {
7139 if (!memblock_is_hotpluggable(r
))
7142 nid
= memblock_get_region_node(r
);
7144 usable_startpfn
= PFN_DOWN(r
->base
);
7145 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7146 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7154 * If kernelcore=mirror is specified, ignore movablecore option
7156 if (mirrored_kernelcore
) {
7157 bool mem_below_4gb_not_mirrored
= false;
7159 for_each_memblock(memory
, r
) {
7160 if (memblock_is_mirror(r
))
7163 nid
= memblock_get_region_node(r
);
7165 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7167 if (usable_startpfn
< 0x100000) {
7168 mem_below_4gb_not_mirrored
= true;
7172 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7173 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7177 if (mem_below_4gb_not_mirrored
)
7178 pr_warn("This configuration results in unmirrored kernel memory.\n");
7184 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7185 * amount of necessary memory.
7187 if (required_kernelcore_percent
)
7188 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7190 if (required_movablecore_percent
)
7191 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7195 * If movablecore= was specified, calculate what size of
7196 * kernelcore that corresponds so that memory usable for
7197 * any allocation type is evenly spread. If both kernelcore
7198 * and movablecore are specified, then the value of kernelcore
7199 * will be used for required_kernelcore if it's greater than
7200 * what movablecore would have allowed.
7202 if (required_movablecore
) {
7203 unsigned long corepages
;
7206 * Round-up so that ZONE_MOVABLE is at least as large as what
7207 * was requested by the user
7209 required_movablecore
=
7210 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7211 required_movablecore
= min(totalpages
, required_movablecore
);
7212 corepages
= totalpages
- required_movablecore
;
7214 required_kernelcore
= max(required_kernelcore
, corepages
);
7218 * If kernelcore was not specified or kernelcore size is larger
7219 * than totalpages, there is no ZONE_MOVABLE.
7221 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7224 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7225 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7228 /* Spread kernelcore memory as evenly as possible throughout nodes */
7229 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7230 for_each_node_state(nid
, N_MEMORY
) {
7231 unsigned long start_pfn
, end_pfn
;
7234 * Recalculate kernelcore_node if the division per node
7235 * now exceeds what is necessary to satisfy the requested
7236 * amount of memory for the kernel
7238 if (required_kernelcore
< kernelcore_node
)
7239 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7242 * As the map is walked, we track how much memory is usable
7243 * by the kernel using kernelcore_remaining. When it is
7244 * 0, the rest of the node is usable by ZONE_MOVABLE
7246 kernelcore_remaining
= kernelcore_node
;
7248 /* Go through each range of PFNs within this node */
7249 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7250 unsigned long size_pages
;
7252 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7253 if (start_pfn
>= end_pfn
)
7256 /* Account for what is only usable for kernelcore */
7257 if (start_pfn
< usable_startpfn
) {
7258 unsigned long kernel_pages
;
7259 kernel_pages
= min(end_pfn
, usable_startpfn
)
7262 kernelcore_remaining
-= min(kernel_pages
,
7263 kernelcore_remaining
);
7264 required_kernelcore
-= min(kernel_pages
,
7265 required_kernelcore
);
7267 /* Continue if range is now fully accounted */
7268 if (end_pfn
<= usable_startpfn
) {
7271 * Push zone_movable_pfn to the end so
7272 * that if we have to rebalance
7273 * kernelcore across nodes, we will
7274 * not double account here
7276 zone_movable_pfn
[nid
] = end_pfn
;
7279 start_pfn
= usable_startpfn
;
7283 * The usable PFN range for ZONE_MOVABLE is from
7284 * start_pfn->end_pfn. Calculate size_pages as the
7285 * number of pages used as kernelcore
7287 size_pages
= end_pfn
- start_pfn
;
7288 if (size_pages
> kernelcore_remaining
)
7289 size_pages
= kernelcore_remaining
;
7290 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7293 * Some kernelcore has been met, update counts and
7294 * break if the kernelcore for this node has been
7297 required_kernelcore
-= min(required_kernelcore
,
7299 kernelcore_remaining
-= size_pages
;
7300 if (!kernelcore_remaining
)
7306 * If there is still required_kernelcore, we do another pass with one
7307 * less node in the count. This will push zone_movable_pfn[nid] further
7308 * along on the nodes that still have memory until kernelcore is
7312 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7316 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7317 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7318 zone_movable_pfn
[nid
] =
7319 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7322 /* restore the node_state */
7323 node_states
[N_MEMORY
] = saved_node_state
;
7326 /* Any regular or high memory on that node ? */
7327 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7329 enum zone_type zone_type
;
7331 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7332 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7333 if (populated_zone(zone
)) {
7334 if (IS_ENABLED(CONFIG_HIGHMEM
))
7335 node_set_state(nid
, N_HIGH_MEMORY
);
7336 if (zone_type
<= ZONE_NORMAL
)
7337 node_set_state(nid
, N_NORMAL_MEMORY
);
7344 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7345 * such cases we allow max_zone_pfn sorted in the descending order
7347 bool __weak
arch_has_descending_max_zone_pfns(void)
7353 * free_area_init - Initialise all pg_data_t and zone data
7354 * @max_zone_pfn: an array of max PFNs for each zone
7356 * This will call free_area_init_node() for each active node in the system.
7357 * Using the page ranges provided by memblock_set_node(), the size of each
7358 * zone in each node and their holes is calculated. If the maximum PFN
7359 * between two adjacent zones match, it is assumed that the zone is empty.
7360 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7361 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7362 * starts where the previous one ended. For example, ZONE_DMA32 starts
7363 * at arch_max_dma_pfn.
7365 void __init
free_area_init(unsigned long *max_zone_pfn
)
7367 unsigned long start_pfn
, end_pfn
;
7371 /* Record where the zone boundaries are */
7372 memset(arch_zone_lowest_possible_pfn
, 0,
7373 sizeof(arch_zone_lowest_possible_pfn
));
7374 memset(arch_zone_highest_possible_pfn
, 0,
7375 sizeof(arch_zone_highest_possible_pfn
));
7377 start_pfn
= find_min_pfn_with_active_regions();
7378 descending
= arch_has_descending_max_zone_pfns();
7380 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7382 zone
= MAX_NR_ZONES
- i
- 1;
7386 if (zone
== ZONE_MOVABLE
)
7389 end_pfn
= max(max_zone_pfn
[zone
], start_pfn
);
7390 arch_zone_lowest_possible_pfn
[zone
] = start_pfn
;
7391 arch_zone_highest_possible_pfn
[zone
] = end_pfn
;
7393 start_pfn
= end_pfn
;
7396 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7397 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7398 find_zone_movable_pfns_for_nodes();
7400 /* Print out the zone ranges */
7401 pr_info("Zone ranges:\n");
7402 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7403 if (i
== ZONE_MOVABLE
)
7405 pr_info(" %-8s ", zone_names
[i
]);
7406 if (arch_zone_lowest_possible_pfn
[i
] ==
7407 arch_zone_highest_possible_pfn
[i
])
7410 pr_cont("[mem %#018Lx-%#018Lx]\n",
7411 (u64
)arch_zone_lowest_possible_pfn
[i
]
7413 ((u64
)arch_zone_highest_possible_pfn
[i
]
7414 << PAGE_SHIFT
) - 1);
7417 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7418 pr_info("Movable zone start for each node\n");
7419 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7420 if (zone_movable_pfn
[i
])
7421 pr_info(" Node %d: %#018Lx\n", i
,
7422 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7426 * Print out the early node map, and initialize the
7427 * subsection-map relative to active online memory ranges to
7428 * enable future "sub-section" extensions of the memory map.
7430 pr_info("Early memory node ranges\n");
7431 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7432 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7433 (u64
)start_pfn
<< PAGE_SHIFT
,
7434 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7435 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7438 /* Initialise every node */
7439 mminit_verify_pageflags_layout();
7440 setup_nr_node_ids();
7441 init_unavailable_mem();
7442 for_each_online_node(nid
) {
7443 pg_data_t
*pgdat
= NODE_DATA(nid
);
7444 free_area_init_node(nid
);
7446 /* Any memory on that node */
7447 if (pgdat
->node_present_pages
)
7448 node_set_state(nid
, N_MEMORY
);
7449 check_for_memory(pgdat
, nid
);
7453 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7454 unsigned long *percent
)
7456 unsigned long long coremem
;
7462 /* Value may be a percentage of total memory, otherwise bytes */
7463 coremem
= simple_strtoull(p
, &endptr
, 0);
7464 if (*endptr
== '%') {
7465 /* Paranoid check for percent values greater than 100 */
7466 WARN_ON(coremem
> 100);
7470 coremem
= memparse(p
, &p
);
7471 /* Paranoid check that UL is enough for the coremem value */
7472 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7474 *core
= coremem
>> PAGE_SHIFT
;
7481 * kernelcore=size sets the amount of memory for use for allocations that
7482 * cannot be reclaimed or migrated.
7484 static int __init
cmdline_parse_kernelcore(char *p
)
7486 /* parse kernelcore=mirror */
7487 if (parse_option_str(p
, "mirror")) {
7488 mirrored_kernelcore
= true;
7492 return cmdline_parse_core(p
, &required_kernelcore
,
7493 &required_kernelcore_percent
);
7497 * movablecore=size sets the amount of memory for use for allocations that
7498 * can be reclaimed or migrated.
7500 static int __init
cmdline_parse_movablecore(char *p
)
7502 return cmdline_parse_core(p
, &required_movablecore
,
7503 &required_movablecore_percent
);
7506 early_param("kernelcore", cmdline_parse_kernelcore
);
7507 early_param("movablecore", cmdline_parse_movablecore
);
7509 void adjust_managed_page_count(struct page
*page
, long count
)
7511 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7512 totalram_pages_add(count
);
7513 #ifdef CONFIG_HIGHMEM
7514 if (PageHighMem(page
))
7515 totalhigh_pages_add(count
);
7518 EXPORT_SYMBOL(adjust_managed_page_count
);
7520 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7523 unsigned long pages
= 0;
7525 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7526 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7527 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7528 struct page
*page
= virt_to_page(pos
);
7529 void *direct_map_addr
;
7532 * 'direct_map_addr' might be different from 'pos'
7533 * because some architectures' virt_to_page()
7534 * work with aliases. Getting the direct map
7535 * address ensures that we get a _writeable_
7536 * alias for the memset().
7538 direct_map_addr
= page_address(page
);
7539 if ((unsigned int)poison
<= 0xFF)
7540 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7542 free_reserved_page(page
);
7546 pr_info("Freeing %s memory: %ldK\n",
7547 s
, pages
<< (PAGE_SHIFT
- 10));
7552 #ifdef CONFIG_HIGHMEM
7553 void free_highmem_page(struct page
*page
)
7555 __free_reserved_page(page
);
7556 totalram_pages_inc();
7557 atomic_long_inc(&page_zone(page
)->managed_pages
);
7558 totalhigh_pages_inc();
7563 void __init
mem_init_print_info(const char *str
)
7565 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7566 unsigned long init_code_size
, init_data_size
;
7568 physpages
= get_num_physpages();
7569 codesize
= _etext
- _stext
;
7570 datasize
= _edata
- _sdata
;
7571 rosize
= __end_rodata
- __start_rodata
;
7572 bss_size
= __bss_stop
- __bss_start
;
7573 init_data_size
= __init_end
- __init_begin
;
7574 init_code_size
= _einittext
- _sinittext
;
7577 * Detect special cases and adjust section sizes accordingly:
7578 * 1) .init.* may be embedded into .data sections
7579 * 2) .init.text.* may be out of [__init_begin, __init_end],
7580 * please refer to arch/tile/kernel/vmlinux.lds.S.
7581 * 3) .rodata.* may be embedded into .text or .data sections.
7583 #define adj_init_size(start, end, size, pos, adj) \
7585 if (start <= pos && pos < end && size > adj) \
7589 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7590 _sinittext
, init_code_size
);
7591 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7592 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7593 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7594 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7596 #undef adj_init_size
7598 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7599 #ifdef CONFIG_HIGHMEM
7603 nr_free_pages() << (PAGE_SHIFT
- 10),
7604 physpages
<< (PAGE_SHIFT
- 10),
7605 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7606 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7607 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7608 totalcma_pages
<< (PAGE_SHIFT
- 10),
7609 #ifdef CONFIG_HIGHMEM
7610 totalhigh_pages() << (PAGE_SHIFT
- 10),
7612 str
? ", " : "", str
? str
: "");
7616 * set_dma_reserve - set the specified number of pages reserved in the first zone
7617 * @new_dma_reserve: The number of pages to mark reserved
7619 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7620 * In the DMA zone, a significant percentage may be consumed by kernel image
7621 * and other unfreeable allocations which can skew the watermarks badly. This
7622 * function may optionally be used to account for unfreeable pages in the
7623 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7624 * smaller per-cpu batchsize.
7626 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7628 dma_reserve
= new_dma_reserve
;
7631 static int page_alloc_cpu_dead(unsigned int cpu
)
7634 lru_add_drain_cpu(cpu
);
7638 * Spill the event counters of the dead processor
7639 * into the current processors event counters.
7640 * This artificially elevates the count of the current
7643 vm_events_fold_cpu(cpu
);
7646 * Zero the differential counters of the dead processor
7647 * so that the vm statistics are consistent.
7649 * This is only okay since the processor is dead and cannot
7650 * race with what we are doing.
7652 cpu_vm_stats_fold(cpu
);
7657 int hashdist
= HASHDIST_DEFAULT
;
7659 static int __init
set_hashdist(char *str
)
7663 hashdist
= simple_strtoul(str
, &str
, 0);
7666 __setup("hashdist=", set_hashdist
);
7669 void __init
page_alloc_init(void)
7674 if (num_node_state(N_MEMORY
) == 1)
7678 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7679 "mm/page_alloc:dead", NULL
,
7680 page_alloc_cpu_dead
);
7685 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7686 * or min_free_kbytes changes.
7688 static void calculate_totalreserve_pages(void)
7690 struct pglist_data
*pgdat
;
7691 unsigned long reserve_pages
= 0;
7692 enum zone_type i
, j
;
7694 for_each_online_pgdat(pgdat
) {
7696 pgdat
->totalreserve_pages
= 0;
7698 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7699 struct zone
*zone
= pgdat
->node_zones
+ i
;
7701 unsigned long managed_pages
= zone_managed_pages(zone
);
7703 /* Find valid and maximum lowmem_reserve in the zone */
7704 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7705 if (zone
->lowmem_reserve
[j
] > max
)
7706 max
= zone
->lowmem_reserve
[j
];
7709 /* we treat the high watermark as reserved pages. */
7710 max
+= high_wmark_pages(zone
);
7712 if (max
> managed_pages
)
7713 max
= managed_pages
;
7715 pgdat
->totalreserve_pages
+= max
;
7717 reserve_pages
+= max
;
7720 totalreserve_pages
= reserve_pages
;
7724 * setup_per_zone_lowmem_reserve - called whenever
7725 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7726 * has a correct pages reserved value, so an adequate number of
7727 * pages are left in the zone after a successful __alloc_pages().
7729 static void setup_per_zone_lowmem_reserve(void)
7731 struct pglist_data
*pgdat
;
7732 enum zone_type j
, idx
;
7734 for_each_online_pgdat(pgdat
) {
7735 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7736 struct zone
*zone
= pgdat
->node_zones
+ j
;
7737 unsigned long managed_pages
= zone_managed_pages(zone
);
7739 zone
->lowmem_reserve
[j
] = 0;
7743 struct zone
*lower_zone
;
7746 lower_zone
= pgdat
->node_zones
+ idx
;
7748 if (!sysctl_lowmem_reserve_ratio
[idx
] ||
7749 !zone_managed_pages(lower_zone
)) {
7750 lower_zone
->lowmem_reserve
[j
] = 0;
7753 lower_zone
->lowmem_reserve
[j
] =
7754 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7756 managed_pages
+= zone_managed_pages(lower_zone
);
7761 /* update totalreserve_pages */
7762 calculate_totalreserve_pages();
7765 static void __setup_per_zone_wmarks(void)
7767 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7768 unsigned long lowmem_pages
= 0;
7770 unsigned long flags
;
7772 /* Calculate total number of !ZONE_HIGHMEM pages */
7773 for_each_zone(zone
) {
7774 if (!is_highmem(zone
))
7775 lowmem_pages
+= zone_managed_pages(zone
);
7778 for_each_zone(zone
) {
7781 spin_lock_irqsave(&zone
->lock
, flags
);
7782 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7783 do_div(tmp
, lowmem_pages
);
7784 if (is_highmem(zone
)) {
7786 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7787 * need highmem pages, so cap pages_min to a small
7790 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7791 * deltas control async page reclaim, and so should
7792 * not be capped for highmem.
7794 unsigned long min_pages
;
7796 min_pages
= zone_managed_pages(zone
) / 1024;
7797 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7798 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7801 * If it's a lowmem zone, reserve a number of pages
7802 * proportionate to the zone's size.
7804 zone
->_watermark
[WMARK_MIN
] = tmp
;
7808 * Set the kswapd watermarks distance according to the
7809 * scale factor in proportion to available memory, but
7810 * ensure a minimum size on small systems.
7812 tmp
= max_t(u64
, tmp
>> 2,
7813 mult_frac(zone_managed_pages(zone
),
7814 watermark_scale_factor
, 10000));
7816 zone
->watermark_boost
= 0;
7817 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7818 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7820 spin_unlock_irqrestore(&zone
->lock
, flags
);
7823 /* update totalreserve_pages */
7824 calculate_totalreserve_pages();
7828 * setup_per_zone_wmarks - called when min_free_kbytes changes
7829 * or when memory is hot-{added|removed}
7831 * Ensures that the watermark[min,low,high] values for each zone are set
7832 * correctly with respect to min_free_kbytes.
7834 void setup_per_zone_wmarks(void)
7836 static DEFINE_SPINLOCK(lock
);
7839 __setup_per_zone_wmarks();
7844 * Initialise min_free_kbytes.
7846 * For small machines we want it small (128k min). For large machines
7847 * we want it large (256MB max). But it is not linear, because network
7848 * bandwidth does not increase linearly with machine size. We use
7850 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7851 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7867 int __meminit
init_per_zone_wmark_min(void)
7869 unsigned long lowmem_kbytes
;
7870 int new_min_free_kbytes
;
7872 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7873 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7875 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7876 min_free_kbytes
= new_min_free_kbytes
;
7877 if (min_free_kbytes
< 128)
7878 min_free_kbytes
= 128;
7879 if (min_free_kbytes
> 262144)
7880 min_free_kbytes
= 262144;
7882 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7883 new_min_free_kbytes
, user_min_free_kbytes
);
7885 setup_per_zone_wmarks();
7886 refresh_zone_stat_thresholds();
7887 setup_per_zone_lowmem_reserve();
7890 setup_min_unmapped_ratio();
7891 setup_min_slab_ratio();
7896 postcore_initcall(init_per_zone_wmark_min
)
7899 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7900 * that we can call two helper functions whenever min_free_kbytes
7903 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7904 void *buffer
, size_t *length
, loff_t
*ppos
)
7908 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7913 user_min_free_kbytes
= min_free_kbytes
;
7914 setup_per_zone_wmarks();
7919 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7920 void *buffer
, size_t *length
, loff_t
*ppos
)
7924 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7929 setup_per_zone_wmarks();
7935 static void setup_min_unmapped_ratio(void)
7940 for_each_online_pgdat(pgdat
)
7941 pgdat
->min_unmapped_pages
= 0;
7944 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
7945 sysctl_min_unmapped_ratio
) / 100;
7949 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7950 void *buffer
, size_t *length
, loff_t
*ppos
)
7954 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7958 setup_min_unmapped_ratio();
7963 static void setup_min_slab_ratio(void)
7968 for_each_online_pgdat(pgdat
)
7969 pgdat
->min_slab_pages
= 0;
7972 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
7973 sysctl_min_slab_ratio
) / 100;
7976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7977 void *buffer
, size_t *length
, loff_t
*ppos
)
7981 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7985 setup_min_slab_ratio();
7992 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7993 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7994 * whenever sysctl_lowmem_reserve_ratio changes.
7996 * The reserve ratio obviously has absolutely no relation with the
7997 * minimum watermarks. The lowmem reserve ratio can only make sense
7998 * if in function of the boot time zone sizes.
8000 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8001 void *buffer
, size_t *length
, loff_t
*ppos
)
8005 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8007 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
8008 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
8009 sysctl_lowmem_reserve_ratio
[i
] = 0;
8012 setup_per_zone_lowmem_reserve();
8016 static void __zone_pcp_update(struct zone
*zone
)
8020 for_each_possible_cpu(cpu
)
8021 pageset_set_high_and_batch(zone
,
8022 per_cpu_ptr(zone
->pageset
, cpu
));
8026 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8027 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8028 * pagelist can have before it gets flushed back to buddy allocator.
8030 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8031 void *buffer
, size_t *length
, loff_t
*ppos
)
8034 int old_percpu_pagelist_fraction
;
8037 mutex_lock(&pcp_batch_high_lock
);
8038 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8040 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8041 if (!write
|| ret
< 0)
8044 /* Sanity checking to avoid pcp imbalance */
8045 if (percpu_pagelist_fraction
&&
8046 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8047 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8053 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8056 for_each_populated_zone(zone
)
8057 __zone_pcp_update(zone
);
8059 mutex_unlock(&pcp_batch_high_lock
);
8063 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8065 * Returns the number of pages that arch has reserved but
8066 * is not known to alloc_large_system_hash().
8068 static unsigned long __init
arch_reserved_kernel_pages(void)
8075 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8076 * machines. As memory size is increased the scale is also increased but at
8077 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8078 * quadruples the scale is increased by one, which means the size of hash table
8079 * only doubles, instead of quadrupling as well.
8080 * Because 32-bit systems cannot have large physical memory, where this scaling
8081 * makes sense, it is disabled on such platforms.
8083 #if __BITS_PER_LONG > 32
8084 #define ADAPT_SCALE_BASE (64ul << 30)
8085 #define ADAPT_SCALE_SHIFT 2
8086 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8090 * allocate a large system hash table from bootmem
8091 * - it is assumed that the hash table must contain an exact power-of-2
8092 * quantity of entries
8093 * - limit is the number of hash buckets, not the total allocation size
8095 void *__init
alloc_large_system_hash(const char *tablename
,
8096 unsigned long bucketsize
,
8097 unsigned long numentries
,
8100 unsigned int *_hash_shift
,
8101 unsigned int *_hash_mask
,
8102 unsigned long low_limit
,
8103 unsigned long high_limit
)
8105 unsigned long long max
= high_limit
;
8106 unsigned long log2qty
, size
;
8111 /* allow the kernel cmdline to have a say */
8113 /* round applicable memory size up to nearest megabyte */
8114 numentries
= nr_kernel_pages
;
8115 numentries
-= arch_reserved_kernel_pages();
8117 /* It isn't necessary when PAGE_SIZE >= 1MB */
8118 if (PAGE_SHIFT
< 20)
8119 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8121 #if __BITS_PER_LONG > 32
8123 unsigned long adapt
;
8125 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8126 adapt
<<= ADAPT_SCALE_SHIFT
)
8131 /* limit to 1 bucket per 2^scale bytes of low memory */
8132 if (scale
> PAGE_SHIFT
)
8133 numentries
>>= (scale
- PAGE_SHIFT
);
8135 numentries
<<= (PAGE_SHIFT
- scale
);
8137 /* Make sure we've got at least a 0-order allocation.. */
8138 if (unlikely(flags
& HASH_SMALL
)) {
8139 /* Makes no sense without HASH_EARLY */
8140 WARN_ON(!(flags
& HASH_EARLY
));
8141 if (!(numentries
>> *_hash_shift
)) {
8142 numentries
= 1UL << *_hash_shift
;
8143 BUG_ON(!numentries
);
8145 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8146 numentries
= PAGE_SIZE
/ bucketsize
;
8148 numentries
= roundup_pow_of_two(numentries
);
8150 /* limit allocation size to 1/16 total memory by default */
8152 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8153 do_div(max
, bucketsize
);
8155 max
= min(max
, 0x80000000ULL
);
8157 if (numentries
< low_limit
)
8158 numentries
= low_limit
;
8159 if (numentries
> max
)
8162 log2qty
= ilog2(numentries
);
8164 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8167 size
= bucketsize
<< log2qty
;
8168 if (flags
& HASH_EARLY
) {
8169 if (flags
& HASH_ZERO
)
8170 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8172 table
= memblock_alloc_raw(size
,
8174 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8175 table
= __vmalloc(size
, gfp_flags
);
8179 * If bucketsize is not a power-of-two, we may free
8180 * some pages at the end of hash table which
8181 * alloc_pages_exact() automatically does
8183 table
= alloc_pages_exact(size
, gfp_flags
);
8184 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8186 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8189 panic("Failed to allocate %s hash table\n", tablename
);
8191 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8192 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8193 virt
? "vmalloc" : "linear");
8196 *_hash_shift
= log2qty
;
8198 *_hash_mask
= (1 << log2qty
) - 1;
8204 * This function checks whether pageblock includes unmovable pages or not.
8206 * PageLRU check without isolation or lru_lock could race so that
8207 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8208 * check without lock_page also may miss some movable non-lru pages at
8209 * race condition. So you can't expect this function should be exact.
8211 * Returns a page without holding a reference. If the caller wants to
8212 * dereference that page (e.g., dumping), it has to make sure that it
8213 * cannot get removed (e.g., via memory unplug) concurrently.
8216 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8217 int migratetype
, int flags
)
8219 unsigned long iter
= 0;
8220 unsigned long pfn
= page_to_pfn(page
);
8223 * TODO we could make this much more efficient by not checking every
8224 * page in the range if we know all of them are in MOVABLE_ZONE and
8225 * that the movable zone guarantees that pages are migratable but
8226 * the later is not the case right now unfortunatelly. E.g. movablecore
8227 * can still lead to having bootmem allocations in zone_movable.
8230 if (is_migrate_cma_page(page
)) {
8232 * CMA allocations (alloc_contig_range) really need to mark
8233 * isolate CMA pageblocks even when they are not movable in fact
8234 * so consider them movable here.
8236 if (is_migrate_cma(migratetype
))
8242 for (; iter
< pageblock_nr_pages
; iter
++) {
8243 if (!pfn_valid_within(pfn
+ iter
))
8246 page
= pfn_to_page(pfn
+ iter
);
8248 if (PageReserved(page
))
8252 * If the zone is movable and we have ruled out all reserved
8253 * pages then it should be reasonably safe to assume the rest
8256 if (zone_idx(zone
) == ZONE_MOVABLE
)
8260 * Hugepages are not in LRU lists, but they're movable.
8261 * THPs are on the LRU, but need to be counted as #small pages.
8262 * We need not scan over tail pages because we don't
8263 * handle each tail page individually in migration.
8265 if (PageHuge(page
) || PageTransCompound(page
)) {
8266 struct page
*head
= compound_head(page
);
8267 unsigned int skip_pages
;
8269 if (PageHuge(page
)) {
8270 if (!hugepage_migration_supported(page_hstate(head
)))
8272 } else if (!PageLRU(head
) && !__PageMovable(head
)) {
8276 skip_pages
= compound_nr(head
) - (page
- head
);
8277 iter
+= skip_pages
- 1;
8282 * We can't use page_count without pin a page
8283 * because another CPU can free compound page.
8284 * This check already skips compound tails of THP
8285 * because their page->_refcount is zero at all time.
8287 if (!page_ref_count(page
)) {
8288 if (PageBuddy(page
))
8289 iter
+= (1 << page_order(page
)) - 1;
8294 * The HWPoisoned page may be not in buddy system, and
8295 * page_count() is not 0.
8297 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8301 * We treat all PageOffline() pages as movable when offlining
8302 * to give drivers a chance to decrement their reference count
8303 * in MEM_GOING_OFFLINE in order to indicate that these pages
8304 * can be offlined as there are no direct references anymore.
8305 * For actually unmovable PageOffline() where the driver does
8306 * not support this, we will fail later when trying to actually
8307 * move these pages that still have a reference count > 0.
8308 * (false negatives in this function only)
8310 if ((flags
& MEMORY_OFFLINE
) && PageOffline(page
))
8313 if (__PageMovable(page
) || PageLRU(page
))
8317 * If there are RECLAIMABLE pages, we need to check
8318 * it. But now, memory offline itself doesn't call
8319 * shrink_node_slabs() and it still to be fixed.
8322 * If the page is not RAM, page_count()should be 0.
8323 * we don't need more check. This is an _used_ not-movable page.
8325 * The problematic thing here is PG_reserved pages. PG_reserved
8326 * is set to both of a memory hole page and a _used_ kernel
8334 #ifdef CONFIG_CONTIG_ALLOC
8335 static unsigned long pfn_max_align_down(unsigned long pfn
)
8337 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8338 pageblock_nr_pages
) - 1);
8341 static unsigned long pfn_max_align_up(unsigned long pfn
)
8343 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8344 pageblock_nr_pages
));
8347 /* [start, end) must belong to a single zone. */
8348 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8349 unsigned long start
, unsigned long end
)
8351 /* This function is based on compact_zone() from compaction.c. */
8352 unsigned int nr_reclaimed
;
8353 unsigned long pfn
= start
;
8354 unsigned int tries
= 0;
8356 struct migration_target_control mtc
= {
8357 .nid
= zone_to_nid(cc
->zone
),
8358 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
8363 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8364 if (fatal_signal_pending(current
)) {
8369 if (list_empty(&cc
->migratepages
)) {
8370 cc
->nr_migratepages
= 0;
8371 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8377 } else if (++tries
== 5) {
8378 ret
= ret
< 0 ? ret
: -EBUSY
;
8382 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8384 cc
->nr_migratepages
-= nr_reclaimed
;
8386 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
8387 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
);
8390 putback_movable_pages(&cc
->migratepages
);
8397 * alloc_contig_range() -- tries to allocate given range of pages
8398 * @start: start PFN to allocate
8399 * @end: one-past-the-last PFN to allocate
8400 * @migratetype: migratetype of the underlaying pageblocks (either
8401 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8402 * in range must have the same migratetype and it must
8403 * be either of the two.
8404 * @gfp_mask: GFP mask to use during compaction
8406 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8407 * aligned. The PFN range must belong to a single zone.
8409 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8410 * pageblocks in the range. Once isolated, the pageblocks should not
8411 * be modified by others.
8413 * Return: zero on success or negative error code. On success all
8414 * pages which PFN is in [start, end) are allocated for the caller and
8415 * need to be freed with free_contig_range().
8417 int alloc_contig_range(unsigned long start
, unsigned long end
,
8418 unsigned migratetype
, gfp_t gfp_mask
)
8420 unsigned long outer_start
, outer_end
;
8424 struct compact_control cc
= {
8425 .nr_migratepages
= 0,
8427 .zone
= page_zone(pfn_to_page(start
)),
8428 .mode
= MIGRATE_SYNC
,
8429 .ignore_skip_hint
= true,
8430 .no_set_skip_hint
= true,
8431 .gfp_mask
= current_gfp_context(gfp_mask
),
8432 .alloc_contig
= true,
8434 INIT_LIST_HEAD(&cc
.migratepages
);
8437 * What we do here is we mark all pageblocks in range as
8438 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8439 * have different sizes, and due to the way page allocator
8440 * work, we align the range to biggest of the two pages so
8441 * that page allocator won't try to merge buddies from
8442 * different pageblocks and change MIGRATE_ISOLATE to some
8443 * other migration type.
8445 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8446 * migrate the pages from an unaligned range (ie. pages that
8447 * we are interested in). This will put all the pages in
8448 * range back to page allocator as MIGRATE_ISOLATE.
8450 * When this is done, we take the pages in range from page
8451 * allocator removing them from the buddy system. This way
8452 * page allocator will never consider using them.
8454 * This lets us mark the pageblocks back as
8455 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8456 * aligned range but not in the unaligned, original range are
8457 * put back to page allocator so that buddy can use them.
8460 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8461 pfn_max_align_up(end
), migratetype
, 0);
8466 * In case of -EBUSY, we'd like to know which page causes problem.
8467 * So, just fall through. test_pages_isolated() has a tracepoint
8468 * which will report the busy page.
8470 * It is possible that busy pages could become available before
8471 * the call to test_pages_isolated, and the range will actually be
8472 * allocated. So, if we fall through be sure to clear ret so that
8473 * -EBUSY is not accidentally used or returned to caller.
8475 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8476 if (ret
&& ret
!= -EBUSY
)
8481 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8482 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8483 * more, all pages in [start, end) are free in page allocator.
8484 * What we are going to do is to allocate all pages from
8485 * [start, end) (that is remove them from page allocator).
8487 * The only problem is that pages at the beginning and at the
8488 * end of interesting range may be not aligned with pages that
8489 * page allocator holds, ie. they can be part of higher order
8490 * pages. Because of this, we reserve the bigger range and
8491 * once this is done free the pages we are not interested in.
8493 * We don't have to hold zone->lock here because the pages are
8494 * isolated thus they won't get removed from buddy.
8497 lru_add_drain_all();
8500 outer_start
= start
;
8501 while (!PageBuddy(pfn_to_page(outer_start
))) {
8502 if (++order
>= MAX_ORDER
) {
8503 outer_start
= start
;
8506 outer_start
&= ~0UL << order
;
8509 if (outer_start
!= start
) {
8510 order
= page_order(pfn_to_page(outer_start
));
8513 * outer_start page could be small order buddy page and
8514 * it doesn't include start page. Adjust outer_start
8515 * in this case to report failed page properly
8516 * on tracepoint in test_pages_isolated()
8518 if (outer_start
+ (1UL << order
) <= start
)
8519 outer_start
= start
;
8522 /* Make sure the range is really isolated. */
8523 if (test_pages_isolated(outer_start
, end
, 0)) {
8524 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8525 __func__
, outer_start
, end
);
8530 /* Grab isolated pages from freelists. */
8531 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8537 /* Free head and tail (if any) */
8538 if (start
!= outer_start
)
8539 free_contig_range(outer_start
, start
- outer_start
);
8540 if (end
!= outer_end
)
8541 free_contig_range(end
, outer_end
- end
);
8544 undo_isolate_page_range(pfn_max_align_down(start
),
8545 pfn_max_align_up(end
), migratetype
);
8548 EXPORT_SYMBOL(alloc_contig_range
);
8550 static int __alloc_contig_pages(unsigned long start_pfn
,
8551 unsigned long nr_pages
, gfp_t gfp_mask
)
8553 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8555 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8559 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8560 unsigned long nr_pages
)
8562 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8565 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8566 page
= pfn_to_online_page(i
);
8570 if (page_zone(page
) != z
)
8573 if (PageReserved(page
))
8576 if (page_count(page
) > 0)
8585 static bool zone_spans_last_pfn(const struct zone
*zone
,
8586 unsigned long start_pfn
, unsigned long nr_pages
)
8588 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8590 return zone_spans_pfn(zone
, last_pfn
);
8594 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8595 * @nr_pages: Number of contiguous pages to allocate
8596 * @gfp_mask: GFP mask to limit search and used during compaction
8598 * @nodemask: Mask for other possible nodes
8600 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8601 * on an applicable zonelist to find a contiguous pfn range which can then be
8602 * tried for allocation with alloc_contig_range(). This routine is intended
8603 * for allocation requests which can not be fulfilled with the buddy allocator.
8605 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8606 * power of two then the alignment is guaranteed to be to the given nr_pages
8607 * (e.g. 1GB request would be aligned to 1GB).
8609 * Allocated pages can be freed with free_contig_range() or by manually calling
8610 * __free_page() on each allocated page.
8612 * Return: pointer to contiguous pages on success, or NULL if not successful.
8614 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8615 int nid
, nodemask_t
*nodemask
)
8617 unsigned long ret
, pfn
, flags
;
8618 struct zonelist
*zonelist
;
8622 zonelist
= node_zonelist(nid
, gfp_mask
);
8623 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8624 gfp_zone(gfp_mask
), nodemask
) {
8625 spin_lock_irqsave(&zone
->lock
, flags
);
8627 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8628 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8629 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8631 * We release the zone lock here because
8632 * alloc_contig_range() will also lock the zone
8633 * at some point. If there's an allocation
8634 * spinning on this lock, it may win the race
8635 * and cause alloc_contig_range() to fail...
8637 spin_unlock_irqrestore(&zone
->lock
, flags
);
8638 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8641 return pfn_to_page(pfn
);
8642 spin_lock_irqsave(&zone
->lock
, flags
);
8646 spin_unlock_irqrestore(&zone
->lock
, flags
);
8650 #endif /* CONFIG_CONTIG_ALLOC */
8652 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8654 unsigned int count
= 0;
8656 for (; nr_pages
--; pfn
++) {
8657 struct page
*page
= pfn_to_page(pfn
);
8659 count
+= page_count(page
) != 1;
8662 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8664 EXPORT_SYMBOL(free_contig_range
);
8667 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8668 * page high values need to be recalulated.
8670 void __meminit
zone_pcp_update(struct zone
*zone
)
8672 mutex_lock(&pcp_batch_high_lock
);
8673 __zone_pcp_update(zone
);
8674 mutex_unlock(&pcp_batch_high_lock
);
8677 void zone_pcp_reset(struct zone
*zone
)
8679 unsigned long flags
;
8681 struct per_cpu_pageset
*pset
;
8683 /* avoid races with drain_pages() */
8684 local_irq_save(flags
);
8685 if (zone
->pageset
!= &boot_pageset
) {
8686 for_each_online_cpu(cpu
) {
8687 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8688 drain_zonestat(zone
, pset
);
8690 free_percpu(zone
->pageset
);
8691 zone
->pageset
= &boot_pageset
;
8693 local_irq_restore(flags
);
8696 #ifdef CONFIG_MEMORY_HOTREMOVE
8698 * All pages in the range must be in a single zone and isolated
8699 * before calling this.
8702 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8708 unsigned long flags
;
8709 unsigned long offlined_pages
= 0;
8711 /* find the first valid pfn */
8712 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8716 return offlined_pages
;
8718 offline_mem_sections(pfn
, end_pfn
);
8719 zone
= page_zone(pfn_to_page(pfn
));
8720 spin_lock_irqsave(&zone
->lock
, flags
);
8722 while (pfn
< end_pfn
) {
8723 if (!pfn_valid(pfn
)) {
8727 page
= pfn_to_page(pfn
);
8729 * The HWPoisoned page may be not in buddy system, and
8730 * page_count() is not 0.
8732 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8738 * At this point all remaining PageOffline() pages have a
8739 * reference count of 0 and can simply be skipped.
8741 if (PageOffline(page
)) {
8742 BUG_ON(page_count(page
));
8743 BUG_ON(PageBuddy(page
));
8749 BUG_ON(page_count(page
));
8750 BUG_ON(!PageBuddy(page
));
8751 order
= page_order(page
);
8752 offlined_pages
+= 1 << order
;
8753 del_page_from_free_list(page
, zone
, order
);
8754 pfn
+= (1 << order
);
8756 spin_unlock_irqrestore(&zone
->lock
, flags
);
8758 return offlined_pages
;
8762 bool is_free_buddy_page(struct page
*page
)
8764 struct zone
*zone
= page_zone(page
);
8765 unsigned long pfn
= page_to_pfn(page
);
8766 unsigned long flags
;
8769 spin_lock_irqsave(&zone
->lock
, flags
);
8770 for (order
= 0; order
< MAX_ORDER
; order
++) {
8771 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8773 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8776 spin_unlock_irqrestore(&zone
->lock
, flags
);
8778 return order
< MAX_ORDER
;
8781 #ifdef CONFIG_MEMORY_FAILURE
8783 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8784 * test is performed under the zone lock to prevent a race against page
8787 bool set_hwpoison_free_buddy_page(struct page
*page
)
8789 struct zone
*zone
= page_zone(page
);
8790 unsigned long pfn
= page_to_pfn(page
);
8791 unsigned long flags
;
8793 bool hwpoisoned
= false;
8795 spin_lock_irqsave(&zone
->lock
, flags
);
8796 for (order
= 0; order
< MAX_ORDER
; order
++) {
8797 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8799 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8800 if (!TestSetPageHWPoison(page
))
8805 spin_unlock_irqrestore(&zone
->lock
, flags
);