2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock
);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node
);
78 EXPORT_PER_CPU_SYMBOL(numa_node
);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 int _node_numa_mem_
[MAX_NUMNODES
];
94 * Array of node states.
96 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
97 [N_POSSIBLE
] = NODE_MASK_ALL
,
98 [N_ONLINE
] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY
] = { { [0] = 1UL } },
107 [N_CPU
] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states
);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock
);
115 unsigned long totalram_pages __read_mostly
;
116 unsigned long totalreserve_pages __read_mostly
;
117 unsigned long totalcma_pages __read_mostly
;
119 int percpu_pagelist_fraction
;
120 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page
*page
)
135 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
137 page
->index
= migratetype
;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask
;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex
));
155 if (saved_gfp_mask
) {
156 gfp_allowed_mask
= saved_gfp_mask
;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex
));
164 WARN_ON(saved_gfp_mask
);
165 saved_gfp_mask
= gfp_allowed_mask
;
166 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly
;
181 static void __free_pages_ok(struct page
*page
, unsigned int order
);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 EXPORT_SYMBOL(totalram_pages
);
209 static char * const zone_names
[MAX_NR_ZONES
] = {
210 #ifdef CONFIG_ZONE_DMA
213 #ifdef CONFIG_ZONE_DMA32
217 #ifdef CONFIG_HIGHMEM
221 #ifdef CONFIG_ZONE_DEVICE
226 compound_page_dtor
* const compound_page_dtors
[] = {
229 #ifdef CONFIG_HUGETLB_PAGE
232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
237 int min_free_kbytes
= 1024;
238 int user_min_free_kbytes
= -1;
240 static unsigned long __meminitdata nr_kernel_pages
;
241 static unsigned long __meminitdata nr_all_pages
;
242 static unsigned long __meminitdata dma_reserve
;
244 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
245 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
246 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
247 static unsigned long __initdata required_kernelcore
;
248 static unsigned long __initdata required_movablecore
;
249 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
251 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
253 EXPORT_SYMBOL(movable_zone
);
254 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
257 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
258 int nr_online_nodes __read_mostly
= 1;
259 EXPORT_SYMBOL(nr_node_ids
);
260 EXPORT_SYMBOL(nr_online_nodes
);
263 int page_group_by_mobility_disabled __read_mostly
;
265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
266 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
268 pgdat
->first_deferred_pfn
= ULONG_MAX
;
271 /* Returns true if the struct page for the pfn is uninitialised */
272 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
274 if (pfn
>= NODE_DATA(early_pfn_to_nid(pfn
))->first_deferred_pfn
)
280 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
282 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
289 * Returns false when the remaining initialisation should be deferred until
290 * later in the boot cycle when it can be parallelised.
292 static inline bool update_defer_init(pg_data_t
*pgdat
,
293 unsigned long pfn
, unsigned long zone_end
,
294 unsigned long *nr_initialised
)
296 /* Always populate low zones for address-contrained allocations */
297 if (zone_end
< pgdat_end_pfn(pgdat
))
300 /* Initialise at least 2G of the highest zone */
302 if (*nr_initialised
> (2UL << (30 - PAGE_SHIFT
)) &&
303 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
304 pgdat
->first_deferred_pfn
= pfn
;
311 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
315 static inline bool early_page_uninitialised(unsigned long pfn
)
320 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
325 static inline bool update_defer_init(pg_data_t
*pgdat
,
326 unsigned long pfn
, unsigned long zone_end
,
327 unsigned long *nr_initialised
)
334 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
336 if (unlikely(page_group_by_mobility_disabled
&&
337 migratetype
< MIGRATE_PCPTYPES
))
338 migratetype
= MIGRATE_UNMOVABLE
;
340 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
341 PB_migrate
, PB_migrate_end
);
344 #ifdef CONFIG_DEBUG_VM
345 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
349 unsigned long pfn
= page_to_pfn(page
);
350 unsigned long sp
, start_pfn
;
353 seq
= zone_span_seqbegin(zone
);
354 start_pfn
= zone
->zone_start_pfn
;
355 sp
= zone
->spanned_pages
;
356 if (!zone_spans_pfn(zone
, pfn
))
358 } while (zone_span_seqretry(zone
, seq
));
361 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
362 pfn
, zone_to_nid(zone
), zone
->name
,
363 start_pfn
, start_pfn
+ sp
);
368 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
370 if (!pfn_valid_within(page_to_pfn(page
)))
372 if (zone
!= page_zone(page
))
378 * Temporary debugging check for pages not lying within a given zone.
380 static int bad_range(struct zone
*zone
, struct page
*page
)
382 if (page_outside_zone_boundaries(zone
, page
))
384 if (!page_is_consistent(zone
, page
))
390 static inline int bad_range(struct zone
*zone
, struct page
*page
)
396 static void bad_page(struct page
*page
, const char *reason
,
397 unsigned long bad_flags
)
399 static unsigned long resume
;
400 static unsigned long nr_shown
;
401 static unsigned long nr_unshown
;
403 /* Don't complain about poisoned pages */
404 if (PageHWPoison(page
)) {
405 page_mapcount_reset(page
); /* remove PageBuddy */
410 * Allow a burst of 60 reports, then keep quiet for that minute;
411 * or allow a steady drip of one report per second.
413 if (nr_shown
== 60) {
414 if (time_before(jiffies
, resume
)) {
420 "BUG: Bad page state: %lu messages suppressed\n",
427 resume
= jiffies
+ 60 * HZ
;
429 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
430 current
->comm
, page_to_pfn(page
));
431 dump_page_badflags(page
, reason
, bad_flags
);
436 /* Leave bad fields for debug, except PageBuddy could make trouble */
437 page_mapcount_reset(page
); /* remove PageBuddy */
438 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
442 * Higher-order pages are called "compound pages". They are structured thusly:
444 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
446 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
447 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
449 * The first tail page's ->compound_dtor holds the offset in array of compound
450 * page destructors. See compound_page_dtors.
452 * The first tail page's ->compound_order holds the order of allocation.
453 * This usage means that zero-order pages may not be compound.
456 void free_compound_page(struct page
*page
)
458 __free_pages_ok(page
, compound_order(page
));
461 void prep_compound_page(struct page
*page
, unsigned int order
)
464 int nr_pages
= 1 << order
;
466 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
467 set_compound_order(page
, order
);
469 for (i
= 1; i
< nr_pages
; i
++) {
470 struct page
*p
= page
+ i
;
471 set_page_count(p
, 0);
472 p
->mapping
= TAIL_MAPPING
;
473 set_compound_head(p
, page
);
475 atomic_set(compound_mapcount_ptr(page
), -1);
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 unsigned int _debug_guardpage_minorder
;
480 bool _debug_pagealloc_enabled __read_mostly
;
481 bool _debug_guardpage_enabled __read_mostly
;
483 static int __init
early_debug_pagealloc(char *buf
)
488 if (strcmp(buf
, "on") == 0)
489 _debug_pagealloc_enabled
= true;
493 early_param("debug_pagealloc", early_debug_pagealloc
);
495 static bool need_debug_guardpage(void)
497 /* If we don't use debug_pagealloc, we don't need guard page */
498 if (!debug_pagealloc_enabled())
504 static void init_debug_guardpage(void)
506 if (!debug_pagealloc_enabled())
509 _debug_guardpage_enabled
= true;
512 struct page_ext_operations debug_guardpage_ops
= {
513 .need
= need_debug_guardpage
,
514 .init
= init_debug_guardpage
,
517 static int __init
debug_guardpage_minorder_setup(char *buf
)
521 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
522 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
525 _debug_guardpage_minorder
= res
;
526 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
529 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
531 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
532 unsigned int order
, int migratetype
)
534 struct page_ext
*page_ext
;
536 if (!debug_guardpage_enabled())
539 page_ext
= lookup_page_ext(page
);
540 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
542 INIT_LIST_HEAD(&page
->lru
);
543 set_page_private(page
, order
);
544 /* Guard pages are not available for any usage */
545 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
548 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
549 unsigned int order
, int migratetype
)
551 struct page_ext
*page_ext
;
553 if (!debug_guardpage_enabled())
556 page_ext
= lookup_page_ext(page
);
557 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
559 set_page_private(page
, 0);
560 if (!is_migrate_isolate(migratetype
))
561 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
564 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
565 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
566 unsigned int order
, int migratetype
) {}
567 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
568 unsigned int order
, int migratetype
) {}
571 static inline void set_page_order(struct page
*page
, unsigned int order
)
573 set_page_private(page
, order
);
574 __SetPageBuddy(page
);
577 static inline void rmv_page_order(struct page
*page
)
579 __ClearPageBuddy(page
);
580 set_page_private(page
, 0);
584 * This function checks whether a page is free && is the buddy
585 * we can do coalesce a page and its buddy if
586 * (a) the buddy is not in a hole &&
587 * (b) the buddy is in the buddy system &&
588 * (c) a page and its buddy have the same order &&
589 * (d) a page and its buddy are in the same zone.
591 * For recording whether a page is in the buddy system, we set ->_mapcount
592 * PAGE_BUDDY_MAPCOUNT_VALUE.
593 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
594 * serialized by zone->lock.
596 * For recording page's order, we use page_private(page).
598 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
601 if (!pfn_valid_within(page_to_pfn(buddy
)))
604 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
605 if (page_zone_id(page
) != page_zone_id(buddy
))
608 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
613 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
615 * zone check is done late to avoid uselessly
616 * calculating zone/node ids for pages that could
619 if (page_zone_id(page
) != page_zone_id(buddy
))
622 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
630 * Freeing function for a buddy system allocator.
632 * The concept of a buddy system is to maintain direct-mapped table
633 * (containing bit values) for memory blocks of various "orders".
634 * The bottom level table contains the map for the smallest allocatable
635 * units of memory (here, pages), and each level above it describes
636 * pairs of units from the levels below, hence, "buddies".
637 * At a high level, all that happens here is marking the table entry
638 * at the bottom level available, and propagating the changes upward
639 * as necessary, plus some accounting needed to play nicely with other
640 * parts of the VM system.
641 * At each level, we keep a list of pages, which are heads of continuous
642 * free pages of length of (1 << order) and marked with _mapcount
643 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
645 * So when we are allocating or freeing one, we can derive the state of the
646 * other. That is, if we allocate a small block, and both were
647 * free, the remainder of the region must be split into blocks.
648 * If a block is freed, and its buddy is also free, then this
649 * triggers coalescing into a block of larger size.
654 static inline void __free_one_page(struct page
*page
,
656 struct zone
*zone
, unsigned int order
,
659 unsigned long page_idx
;
660 unsigned long combined_idx
;
661 unsigned long uninitialized_var(buddy_idx
);
663 unsigned int max_order
= MAX_ORDER
;
665 VM_BUG_ON(!zone_is_initialized(zone
));
666 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
668 VM_BUG_ON(migratetype
== -1);
669 if (is_migrate_isolate(migratetype
)) {
671 * We restrict max order of merging to prevent merge
672 * between freepages on isolate pageblock and normal
673 * pageblock. Without this, pageblock isolation
674 * could cause incorrect freepage accounting.
676 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
678 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
681 page_idx
= pfn
& ((1 << max_order
) - 1);
683 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
684 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
686 while (order
< max_order
- 1) {
687 buddy_idx
= __find_buddy_index(page_idx
, order
);
688 buddy
= page
+ (buddy_idx
- page_idx
);
689 if (!page_is_buddy(page
, buddy
, order
))
692 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
693 * merge with it and move up one order.
695 if (page_is_guard(buddy
)) {
696 clear_page_guard(zone
, buddy
, order
, migratetype
);
698 list_del(&buddy
->lru
);
699 zone
->free_area
[order
].nr_free
--;
700 rmv_page_order(buddy
);
702 combined_idx
= buddy_idx
& page_idx
;
703 page
= page
+ (combined_idx
- page_idx
);
704 page_idx
= combined_idx
;
707 set_page_order(page
, order
);
710 * If this is not the largest possible page, check if the buddy
711 * of the next-highest order is free. If it is, it's possible
712 * that pages are being freed that will coalesce soon. In case,
713 * that is happening, add the free page to the tail of the list
714 * so it's less likely to be used soon and more likely to be merged
715 * as a higher order page
717 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
718 struct page
*higher_page
, *higher_buddy
;
719 combined_idx
= buddy_idx
& page_idx
;
720 higher_page
= page
+ (combined_idx
- page_idx
);
721 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
722 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
723 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
724 list_add_tail(&page
->lru
,
725 &zone
->free_area
[order
].free_list
[migratetype
]);
730 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
732 zone
->free_area
[order
].nr_free
++;
735 static inline int free_pages_check(struct page
*page
)
737 const char *bad_reason
= NULL
;
738 unsigned long bad_flags
= 0;
740 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
741 bad_reason
= "nonzero mapcount";
742 if (unlikely(page
->mapping
!= NULL
))
743 bad_reason
= "non-NULL mapping";
744 if (unlikely(atomic_read(&page
->_count
) != 0))
745 bad_reason
= "nonzero _count";
746 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
747 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
748 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
751 if (unlikely(page
->mem_cgroup
))
752 bad_reason
= "page still charged to cgroup";
754 if (unlikely(bad_reason
)) {
755 bad_page(page
, bad_reason
, bad_flags
);
758 page_cpupid_reset_last(page
);
759 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
760 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
765 * Frees a number of pages from the PCP lists
766 * Assumes all pages on list are in same zone, and of same order.
767 * count is the number of pages to free.
769 * If the zone was previously in an "all pages pinned" state then look to
770 * see if this freeing clears that state.
772 * And clear the zone's pages_scanned counter, to hold off the "all pages are
773 * pinned" detection logic.
775 static void free_pcppages_bulk(struct zone
*zone
, int count
,
776 struct per_cpu_pages
*pcp
)
781 unsigned long nr_scanned
;
783 spin_lock(&zone
->lock
);
784 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
786 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
790 struct list_head
*list
;
793 * Remove pages from lists in a round-robin fashion. A
794 * batch_free count is maintained that is incremented when an
795 * empty list is encountered. This is so more pages are freed
796 * off fuller lists instead of spinning excessively around empty
801 if (++migratetype
== MIGRATE_PCPTYPES
)
803 list
= &pcp
->lists
[migratetype
];
804 } while (list_empty(list
));
806 /* This is the only non-empty list. Free them all. */
807 if (batch_free
== MIGRATE_PCPTYPES
)
808 batch_free
= to_free
;
811 int mt
; /* migratetype of the to-be-freed page */
813 page
= list_last_entry(list
, struct page
, lru
);
814 /* must delete as __free_one_page list manipulates */
815 list_del(&page
->lru
);
817 mt
= get_pcppage_migratetype(page
);
818 /* MIGRATE_ISOLATE page should not go to pcplists */
819 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
820 /* Pageblock could have been isolated meanwhile */
821 if (unlikely(has_isolate_pageblock(zone
)))
822 mt
= get_pageblock_migratetype(page
);
824 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
825 trace_mm_page_pcpu_drain(page
, 0, mt
);
826 } while (--to_free
&& --batch_free
&& !list_empty(list
));
828 spin_unlock(&zone
->lock
);
831 static void free_one_page(struct zone
*zone
,
832 struct page
*page
, unsigned long pfn
,
836 unsigned long nr_scanned
;
837 spin_lock(&zone
->lock
);
838 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
840 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
842 if (unlikely(has_isolate_pageblock(zone
) ||
843 is_migrate_isolate(migratetype
))) {
844 migratetype
= get_pfnblock_migratetype(page
, pfn
);
846 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
847 spin_unlock(&zone
->lock
);
850 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
855 * We rely page->lru.next never has bit 0 set, unless the page
856 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
858 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
860 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
864 switch (page
- head_page
) {
866 /* the first tail page: ->mapping is compound_mapcount() */
867 if (unlikely(compound_mapcount(page
))) {
868 bad_page(page
, "nonzero compound_mapcount", 0);
874 * the second tail page: ->mapping is
875 * page_deferred_list().next -- ignore value.
879 if (page
->mapping
!= TAIL_MAPPING
) {
880 bad_page(page
, "corrupted mapping in tail page", 0);
885 if (unlikely(!PageTail(page
))) {
886 bad_page(page
, "PageTail not set", 0);
889 if (unlikely(compound_head(page
) != head_page
)) {
890 bad_page(page
, "compound_head not consistent", 0);
895 page
->mapping
= NULL
;
896 clear_compound_head(page
);
900 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
901 unsigned long zone
, int nid
)
903 set_page_links(page
, zone
, nid
, pfn
);
904 init_page_count(page
);
905 page_mapcount_reset(page
);
906 page_cpupid_reset_last(page
);
908 INIT_LIST_HEAD(&page
->lru
);
909 #ifdef WANT_PAGE_VIRTUAL
910 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
911 if (!is_highmem_idx(zone
))
912 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
916 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
919 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
923 static void init_reserved_page(unsigned long pfn
)
928 if (!early_page_uninitialised(pfn
))
931 nid
= early_pfn_to_nid(pfn
);
932 pgdat
= NODE_DATA(nid
);
934 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
935 struct zone
*zone
= &pgdat
->node_zones
[zid
];
937 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
940 __init_single_pfn(pfn
, zid
, nid
);
943 static inline void init_reserved_page(unsigned long pfn
)
946 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
949 * Initialised pages do not have PageReserved set. This function is
950 * called for each range allocated by the bootmem allocator and
951 * marks the pages PageReserved. The remaining valid pages are later
952 * sent to the buddy page allocator.
954 void __meminit
reserve_bootmem_region(unsigned long start
, unsigned long end
)
956 unsigned long start_pfn
= PFN_DOWN(start
);
957 unsigned long end_pfn
= PFN_UP(end
);
959 for (; start_pfn
< end_pfn
; start_pfn
++) {
960 if (pfn_valid(start_pfn
)) {
961 struct page
*page
= pfn_to_page(start_pfn
);
963 init_reserved_page(start_pfn
);
965 /* Avoid false-positive PageTail() */
966 INIT_LIST_HEAD(&page
->lru
);
968 SetPageReserved(page
);
973 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
975 bool compound
= PageCompound(page
);
978 VM_BUG_ON_PAGE(PageTail(page
), page
);
979 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
981 trace_mm_page_free(page
, order
);
982 kmemcheck_free_shadow(page
, order
);
983 kasan_free_pages(page
, order
);
986 page
->mapping
= NULL
;
987 bad
+= free_pages_check(page
);
988 for (i
= 1; i
< (1 << order
); i
++) {
990 bad
+= free_tail_pages_check(page
, page
+ i
);
991 bad
+= free_pages_check(page
+ i
);
996 reset_page_owner(page
, order
);
998 if (!PageHighMem(page
)) {
999 debug_check_no_locks_freed(page_address(page
),
1000 PAGE_SIZE
<< order
);
1001 debug_check_no_obj_freed(page_address(page
),
1002 PAGE_SIZE
<< order
);
1004 arch_free_page(page
, order
);
1005 kernel_map_pages(page
, 1 << order
, 0);
1010 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1012 unsigned long flags
;
1014 unsigned long pfn
= page_to_pfn(page
);
1016 if (!free_pages_prepare(page
, order
))
1019 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1020 local_irq_save(flags
);
1021 __count_vm_events(PGFREE
, 1 << order
);
1022 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1023 local_irq_restore(flags
);
1026 static void __init
__free_pages_boot_core(struct page
*page
,
1027 unsigned long pfn
, unsigned int order
)
1029 unsigned int nr_pages
= 1 << order
;
1030 struct page
*p
= page
;
1034 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1036 __ClearPageReserved(p
);
1037 set_page_count(p
, 0);
1039 __ClearPageReserved(p
);
1040 set_page_count(p
, 0);
1042 page_zone(page
)->managed_pages
+= nr_pages
;
1043 set_page_refcounted(page
);
1044 __free_pages(page
, order
);
1047 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1048 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1050 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1052 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1054 static DEFINE_SPINLOCK(early_pfn_lock
);
1057 spin_lock(&early_pfn_lock
);
1058 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1061 spin_unlock(&early_pfn_lock
);
1067 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1068 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1069 struct mminit_pfnnid_cache
*state
)
1073 nid
= __early_pfn_to_nid(pfn
, state
);
1074 if (nid
>= 0 && nid
!= node
)
1079 /* Only safe to use early in boot when initialisation is single-threaded */
1080 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1082 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1087 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1091 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1092 struct mminit_pfnnid_cache
*state
)
1099 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1102 if (early_page_uninitialised(pfn
))
1104 return __free_pages_boot_core(page
, pfn
, order
);
1107 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1108 static void __init
deferred_free_range(struct page
*page
,
1109 unsigned long pfn
, int nr_pages
)
1116 /* Free a large naturally-aligned chunk if possible */
1117 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1118 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1119 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1120 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1124 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1125 __free_pages_boot_core(page
, pfn
, 0);
1128 /* Completion tracking for deferred_init_memmap() threads */
1129 static atomic_t pgdat_init_n_undone __initdata
;
1130 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1132 static inline void __init
pgdat_init_report_one_done(void)
1134 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1135 complete(&pgdat_init_all_done_comp
);
1138 /* Initialise remaining memory on a node */
1139 static int __init
deferred_init_memmap(void *data
)
1141 pg_data_t
*pgdat
= data
;
1142 int nid
= pgdat
->node_id
;
1143 struct mminit_pfnnid_cache nid_init_state
= { };
1144 unsigned long start
= jiffies
;
1145 unsigned long nr_pages
= 0;
1146 unsigned long walk_start
, walk_end
;
1149 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1150 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1152 if (first_init_pfn
== ULONG_MAX
) {
1153 pgdat_init_report_one_done();
1157 /* Bind memory initialisation thread to a local node if possible */
1158 if (!cpumask_empty(cpumask
))
1159 set_cpus_allowed_ptr(current
, cpumask
);
1161 /* Sanity check boundaries */
1162 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1163 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1164 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1166 /* Only the highest zone is deferred so find it */
1167 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1168 zone
= pgdat
->node_zones
+ zid
;
1169 if (first_init_pfn
< zone_end_pfn(zone
))
1173 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1174 unsigned long pfn
, end_pfn
;
1175 struct page
*page
= NULL
;
1176 struct page
*free_base_page
= NULL
;
1177 unsigned long free_base_pfn
= 0;
1180 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1181 pfn
= first_init_pfn
;
1182 if (pfn
< walk_start
)
1184 if (pfn
< zone
->zone_start_pfn
)
1185 pfn
= zone
->zone_start_pfn
;
1187 for (; pfn
< end_pfn
; pfn
++) {
1188 if (!pfn_valid_within(pfn
))
1192 * Ensure pfn_valid is checked every
1193 * MAX_ORDER_NR_PAGES for memory holes
1195 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1196 if (!pfn_valid(pfn
)) {
1202 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1207 /* Minimise pfn page lookups and scheduler checks */
1208 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1211 nr_pages
+= nr_to_free
;
1212 deferred_free_range(free_base_page
,
1213 free_base_pfn
, nr_to_free
);
1214 free_base_page
= NULL
;
1215 free_base_pfn
= nr_to_free
= 0;
1217 page
= pfn_to_page(pfn
);
1222 VM_BUG_ON(page_zone(page
) != zone
);
1226 __init_single_page(page
, pfn
, zid
, nid
);
1227 if (!free_base_page
) {
1228 free_base_page
= page
;
1229 free_base_pfn
= pfn
;
1234 /* Where possible, batch up pages for a single free */
1237 /* Free the current block of pages to allocator */
1238 nr_pages
+= nr_to_free
;
1239 deferred_free_range(free_base_page
, free_base_pfn
,
1241 free_base_page
= NULL
;
1242 free_base_pfn
= nr_to_free
= 0;
1245 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1248 /* Sanity check that the next zone really is unpopulated */
1249 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1251 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1252 jiffies_to_msecs(jiffies
- start
));
1254 pgdat_init_report_one_done();
1258 void __init
page_alloc_init_late(void)
1262 /* There will be num_node_state(N_MEMORY) threads */
1263 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1264 for_each_node_state(nid
, N_MEMORY
) {
1265 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1268 /* Block until all are initialised */
1269 wait_for_completion(&pgdat_init_all_done_comp
);
1271 /* Reinit limits that are based on free pages after the kernel is up */
1272 files_maxfiles_init();
1274 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1277 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1278 void __init
init_cma_reserved_pageblock(struct page
*page
)
1280 unsigned i
= pageblock_nr_pages
;
1281 struct page
*p
= page
;
1284 __ClearPageReserved(p
);
1285 set_page_count(p
, 0);
1288 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1290 if (pageblock_order
>= MAX_ORDER
) {
1291 i
= pageblock_nr_pages
;
1294 set_page_refcounted(p
);
1295 __free_pages(p
, MAX_ORDER
- 1);
1296 p
+= MAX_ORDER_NR_PAGES
;
1297 } while (i
-= MAX_ORDER_NR_PAGES
);
1299 set_page_refcounted(page
);
1300 __free_pages(page
, pageblock_order
);
1303 adjust_managed_page_count(page
, pageblock_nr_pages
);
1308 * The order of subdivision here is critical for the IO subsystem.
1309 * Please do not alter this order without good reasons and regression
1310 * testing. Specifically, as large blocks of memory are subdivided,
1311 * the order in which smaller blocks are delivered depends on the order
1312 * they're subdivided in this function. This is the primary factor
1313 * influencing the order in which pages are delivered to the IO
1314 * subsystem according to empirical testing, and this is also justified
1315 * by considering the behavior of a buddy system containing a single
1316 * large block of memory acted on by a series of small allocations.
1317 * This behavior is a critical factor in sglist merging's success.
1321 static inline void expand(struct zone
*zone
, struct page
*page
,
1322 int low
, int high
, struct free_area
*area
,
1325 unsigned long size
= 1 << high
;
1327 while (high
> low
) {
1331 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1333 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1334 debug_guardpage_enabled() &&
1335 high
< debug_guardpage_minorder()) {
1337 * Mark as guard pages (or page), that will allow to
1338 * merge back to allocator when buddy will be freed.
1339 * Corresponding page table entries will not be touched,
1340 * pages will stay not present in virtual address space
1342 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1345 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1347 set_page_order(&page
[size
], high
);
1352 * This page is about to be returned from the page allocator
1354 static inline int check_new_page(struct page
*page
)
1356 const char *bad_reason
= NULL
;
1357 unsigned long bad_flags
= 0;
1359 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1360 bad_reason
= "nonzero mapcount";
1361 if (unlikely(page
->mapping
!= NULL
))
1362 bad_reason
= "non-NULL mapping";
1363 if (unlikely(atomic_read(&page
->_count
) != 0))
1364 bad_reason
= "nonzero _count";
1365 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1366 bad_reason
= "HWPoisoned (hardware-corrupted)";
1367 bad_flags
= __PG_HWPOISON
;
1369 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1370 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1371 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1374 if (unlikely(page
->mem_cgroup
))
1375 bad_reason
= "page still charged to cgroup";
1377 if (unlikely(bad_reason
)) {
1378 bad_page(page
, bad_reason
, bad_flags
);
1384 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1389 for (i
= 0; i
< (1 << order
); i
++) {
1390 struct page
*p
= page
+ i
;
1391 if (unlikely(check_new_page(p
)))
1395 set_page_private(page
, 0);
1396 set_page_refcounted(page
);
1398 arch_alloc_page(page
, order
);
1399 kernel_map_pages(page
, 1 << order
, 1);
1400 kasan_alloc_pages(page
, order
);
1402 if (gfp_flags
& __GFP_ZERO
)
1403 for (i
= 0; i
< (1 << order
); i
++)
1404 clear_highpage(page
+ i
);
1406 if (order
&& (gfp_flags
& __GFP_COMP
))
1407 prep_compound_page(page
, order
);
1409 set_page_owner(page
, order
, gfp_flags
);
1412 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1413 * allocate the page. The expectation is that the caller is taking
1414 * steps that will free more memory. The caller should avoid the page
1415 * being used for !PFMEMALLOC purposes.
1417 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1418 set_page_pfmemalloc(page
);
1420 clear_page_pfmemalloc(page
);
1426 * Go through the free lists for the given migratetype and remove
1427 * the smallest available page from the freelists
1430 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1433 unsigned int current_order
;
1434 struct free_area
*area
;
1437 /* Find a page of the appropriate size in the preferred list */
1438 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1439 area
= &(zone
->free_area
[current_order
]);
1440 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1444 list_del(&page
->lru
);
1445 rmv_page_order(page
);
1447 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1448 set_pcppage_migratetype(page
, migratetype
);
1457 * This array describes the order lists are fallen back to when
1458 * the free lists for the desirable migrate type are depleted
1460 static int fallbacks
[MIGRATE_TYPES
][4] = {
1461 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1462 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1463 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1465 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1467 #ifdef CONFIG_MEMORY_ISOLATION
1468 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1473 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1476 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1479 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1480 unsigned int order
) { return NULL
; }
1484 * Move the free pages in a range to the free lists of the requested type.
1485 * Note that start_page and end_pages are not aligned on a pageblock
1486 * boundary. If alignment is required, use move_freepages_block()
1488 int move_freepages(struct zone
*zone
,
1489 struct page
*start_page
, struct page
*end_page
,
1494 int pages_moved
= 0;
1496 #ifndef CONFIG_HOLES_IN_ZONE
1498 * page_zone is not safe to call in this context when
1499 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1500 * anyway as we check zone boundaries in move_freepages_block().
1501 * Remove at a later date when no bug reports exist related to
1502 * grouping pages by mobility
1504 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1507 for (page
= start_page
; page
<= end_page
;) {
1508 /* Make sure we are not inadvertently changing nodes */
1509 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1511 if (!pfn_valid_within(page_to_pfn(page
))) {
1516 if (!PageBuddy(page
)) {
1521 order
= page_order(page
);
1522 list_move(&page
->lru
,
1523 &zone
->free_area
[order
].free_list
[migratetype
]);
1525 pages_moved
+= 1 << order
;
1531 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1534 unsigned long start_pfn
, end_pfn
;
1535 struct page
*start_page
, *end_page
;
1537 start_pfn
= page_to_pfn(page
);
1538 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1539 start_page
= pfn_to_page(start_pfn
);
1540 end_page
= start_page
+ pageblock_nr_pages
- 1;
1541 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1543 /* Do not cross zone boundaries */
1544 if (!zone_spans_pfn(zone
, start_pfn
))
1546 if (!zone_spans_pfn(zone
, end_pfn
))
1549 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1552 static void change_pageblock_range(struct page
*pageblock_page
,
1553 int start_order
, int migratetype
)
1555 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1557 while (nr_pageblocks
--) {
1558 set_pageblock_migratetype(pageblock_page
, migratetype
);
1559 pageblock_page
+= pageblock_nr_pages
;
1564 * When we are falling back to another migratetype during allocation, try to
1565 * steal extra free pages from the same pageblocks to satisfy further
1566 * allocations, instead of polluting multiple pageblocks.
1568 * If we are stealing a relatively large buddy page, it is likely there will
1569 * be more free pages in the pageblock, so try to steal them all. For
1570 * reclaimable and unmovable allocations, we steal regardless of page size,
1571 * as fragmentation caused by those allocations polluting movable pageblocks
1572 * is worse than movable allocations stealing from unmovable and reclaimable
1575 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1578 * Leaving this order check is intended, although there is
1579 * relaxed order check in next check. The reason is that
1580 * we can actually steal whole pageblock if this condition met,
1581 * but, below check doesn't guarantee it and that is just heuristic
1582 * so could be changed anytime.
1584 if (order
>= pageblock_order
)
1587 if (order
>= pageblock_order
/ 2 ||
1588 start_mt
== MIGRATE_RECLAIMABLE
||
1589 start_mt
== MIGRATE_UNMOVABLE
||
1590 page_group_by_mobility_disabled
)
1597 * This function implements actual steal behaviour. If order is large enough,
1598 * we can steal whole pageblock. If not, we first move freepages in this
1599 * pageblock and check whether half of pages are moved or not. If half of
1600 * pages are moved, we can change migratetype of pageblock and permanently
1601 * use it's pages as requested migratetype in the future.
1603 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1606 unsigned int current_order
= page_order(page
);
1609 /* Take ownership for orders >= pageblock_order */
1610 if (current_order
>= pageblock_order
) {
1611 change_pageblock_range(page
, current_order
, start_type
);
1615 pages
= move_freepages_block(zone
, page
, start_type
);
1617 /* Claim the whole block if over half of it is free */
1618 if (pages
>= (1 << (pageblock_order
-1)) ||
1619 page_group_by_mobility_disabled
)
1620 set_pageblock_migratetype(page
, start_type
);
1624 * Check whether there is a suitable fallback freepage with requested order.
1625 * If only_stealable is true, this function returns fallback_mt only if
1626 * we can steal other freepages all together. This would help to reduce
1627 * fragmentation due to mixed migratetype pages in one pageblock.
1629 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1630 int migratetype
, bool only_stealable
, bool *can_steal
)
1635 if (area
->nr_free
== 0)
1640 fallback_mt
= fallbacks
[migratetype
][i
];
1641 if (fallback_mt
== MIGRATE_TYPES
)
1644 if (list_empty(&area
->free_list
[fallback_mt
]))
1647 if (can_steal_fallback(order
, migratetype
))
1650 if (!only_stealable
)
1661 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1662 * there are no empty page blocks that contain a page with a suitable order
1664 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
1665 unsigned int alloc_order
)
1668 unsigned long max_managed
, flags
;
1671 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1672 * Check is race-prone but harmless.
1674 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
1675 if (zone
->nr_reserved_highatomic
>= max_managed
)
1678 spin_lock_irqsave(&zone
->lock
, flags
);
1680 /* Recheck the nr_reserved_highatomic limit under the lock */
1681 if (zone
->nr_reserved_highatomic
>= max_managed
)
1685 mt
= get_pageblock_migratetype(page
);
1686 if (mt
!= MIGRATE_HIGHATOMIC
&&
1687 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
1688 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
1689 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
1690 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
1694 spin_unlock_irqrestore(&zone
->lock
, flags
);
1698 * Used when an allocation is about to fail under memory pressure. This
1699 * potentially hurts the reliability of high-order allocations when under
1700 * intense memory pressure but failed atomic allocations should be easier
1701 * to recover from than an OOM.
1703 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
1705 struct zonelist
*zonelist
= ac
->zonelist
;
1706 unsigned long flags
;
1712 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
1714 /* Preserve at least one pageblock */
1715 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
1718 spin_lock_irqsave(&zone
->lock
, flags
);
1719 for (order
= 0; order
< MAX_ORDER
; order
++) {
1720 struct free_area
*area
= &(zone
->free_area
[order
]);
1722 page
= list_first_entry_or_null(
1723 &area
->free_list
[MIGRATE_HIGHATOMIC
],
1729 * It should never happen but changes to locking could
1730 * inadvertently allow a per-cpu drain to add pages
1731 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1732 * and watch for underflows.
1734 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
1735 zone
->nr_reserved_highatomic
);
1738 * Convert to ac->migratetype and avoid the normal
1739 * pageblock stealing heuristics. Minimally, the caller
1740 * is doing the work and needs the pages. More
1741 * importantly, if the block was always converted to
1742 * MIGRATE_UNMOVABLE or another type then the number
1743 * of pageblocks that cannot be completely freed
1746 set_pageblock_migratetype(page
, ac
->migratetype
);
1747 move_freepages_block(zone
, page
, ac
->migratetype
);
1748 spin_unlock_irqrestore(&zone
->lock
, flags
);
1751 spin_unlock_irqrestore(&zone
->lock
, flags
);
1755 /* Remove an element from the buddy allocator from the fallback list */
1756 static inline struct page
*
1757 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1759 struct free_area
*area
;
1760 unsigned int current_order
;
1765 /* Find the largest possible block of pages in the other list */
1766 for (current_order
= MAX_ORDER
-1;
1767 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1769 area
= &(zone
->free_area
[current_order
]);
1770 fallback_mt
= find_suitable_fallback(area
, current_order
,
1771 start_migratetype
, false, &can_steal
);
1772 if (fallback_mt
== -1)
1775 page
= list_first_entry(&area
->free_list
[fallback_mt
],
1778 steal_suitable_fallback(zone
, page
, start_migratetype
);
1780 /* Remove the page from the freelists */
1782 list_del(&page
->lru
);
1783 rmv_page_order(page
);
1785 expand(zone
, page
, order
, current_order
, area
,
1788 * The pcppage_migratetype may differ from pageblock's
1789 * migratetype depending on the decisions in
1790 * find_suitable_fallback(). This is OK as long as it does not
1791 * differ for MIGRATE_CMA pageblocks. Those can be used as
1792 * fallback only via special __rmqueue_cma_fallback() function
1794 set_pcppage_migratetype(page
, start_migratetype
);
1796 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1797 start_migratetype
, fallback_mt
);
1806 * Do the hard work of removing an element from the buddy allocator.
1807 * Call me with the zone->lock already held.
1809 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1814 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1815 if (unlikely(!page
)) {
1816 if (migratetype
== MIGRATE_MOVABLE
)
1817 page
= __rmqueue_cma_fallback(zone
, order
);
1820 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1823 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1828 * Obtain a specified number of elements from the buddy allocator, all under
1829 * a single hold of the lock, for efficiency. Add them to the supplied list.
1830 * Returns the number of new pages which were placed at *list.
1832 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1833 unsigned long count
, struct list_head
*list
,
1834 int migratetype
, bool cold
)
1838 spin_lock(&zone
->lock
);
1839 for (i
= 0; i
< count
; ++i
) {
1840 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1841 if (unlikely(page
== NULL
))
1845 * Split buddy pages returned by expand() are received here
1846 * in physical page order. The page is added to the callers and
1847 * list and the list head then moves forward. From the callers
1848 * perspective, the linked list is ordered by page number in
1849 * some conditions. This is useful for IO devices that can
1850 * merge IO requests if the physical pages are ordered
1854 list_add(&page
->lru
, list
);
1856 list_add_tail(&page
->lru
, list
);
1858 if (is_migrate_cma(get_pcppage_migratetype(page
)))
1859 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1862 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1863 spin_unlock(&zone
->lock
);
1869 * Called from the vmstat counter updater to drain pagesets of this
1870 * currently executing processor on remote nodes after they have
1873 * Note that this function must be called with the thread pinned to
1874 * a single processor.
1876 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1878 unsigned long flags
;
1879 int to_drain
, batch
;
1881 local_irq_save(flags
);
1882 batch
= READ_ONCE(pcp
->batch
);
1883 to_drain
= min(pcp
->count
, batch
);
1885 free_pcppages_bulk(zone
, to_drain
, pcp
);
1886 pcp
->count
-= to_drain
;
1888 local_irq_restore(flags
);
1893 * Drain pcplists of the indicated processor and zone.
1895 * The processor must either be the current processor and the
1896 * thread pinned to the current processor or a processor that
1899 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
1901 unsigned long flags
;
1902 struct per_cpu_pageset
*pset
;
1903 struct per_cpu_pages
*pcp
;
1905 local_irq_save(flags
);
1906 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1910 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1913 local_irq_restore(flags
);
1917 * Drain pcplists of all zones on the indicated processor.
1919 * The processor must either be the current processor and the
1920 * thread pinned to the current processor or a processor that
1923 static void drain_pages(unsigned int cpu
)
1927 for_each_populated_zone(zone
) {
1928 drain_pages_zone(cpu
, zone
);
1933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1935 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1936 * the single zone's pages.
1938 void drain_local_pages(struct zone
*zone
)
1940 int cpu
= smp_processor_id();
1943 drain_pages_zone(cpu
, zone
);
1949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1951 * When zone parameter is non-NULL, spill just the single zone's pages.
1953 * Note that this code is protected against sending an IPI to an offline
1954 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1955 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1956 * nothing keeps CPUs from showing up after we populated the cpumask and
1957 * before the call to on_each_cpu_mask().
1959 void drain_all_pages(struct zone
*zone
)
1964 * Allocate in the BSS so we wont require allocation in
1965 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1967 static cpumask_t cpus_with_pcps
;
1970 * We don't care about racing with CPU hotplug event
1971 * as offline notification will cause the notified
1972 * cpu to drain that CPU pcps and on_each_cpu_mask
1973 * disables preemption as part of its processing
1975 for_each_online_cpu(cpu
) {
1976 struct per_cpu_pageset
*pcp
;
1978 bool has_pcps
= false;
1981 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1985 for_each_populated_zone(z
) {
1986 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
1987 if (pcp
->pcp
.count
) {
1995 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1997 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1999 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2003 #ifdef CONFIG_HIBERNATION
2005 void mark_free_pages(struct zone
*zone
)
2007 unsigned long pfn
, max_zone_pfn
;
2008 unsigned long flags
;
2009 unsigned int order
, t
;
2012 if (zone_is_empty(zone
))
2015 spin_lock_irqsave(&zone
->lock
, flags
);
2017 max_zone_pfn
= zone_end_pfn(zone
);
2018 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2019 if (pfn_valid(pfn
)) {
2020 page
= pfn_to_page(pfn
);
2021 if (!swsusp_page_is_forbidden(page
))
2022 swsusp_unset_page_free(page
);
2025 for_each_migratetype_order(order
, t
) {
2026 list_for_each_entry(page
,
2027 &zone
->free_area
[order
].free_list
[t
], lru
) {
2030 pfn
= page_to_pfn(page
);
2031 for (i
= 0; i
< (1UL << order
); i
++)
2032 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2035 spin_unlock_irqrestore(&zone
->lock
, flags
);
2037 #endif /* CONFIG_PM */
2040 * Free a 0-order page
2041 * cold == true ? free a cold page : free a hot page
2043 void free_hot_cold_page(struct page
*page
, bool cold
)
2045 struct zone
*zone
= page_zone(page
);
2046 struct per_cpu_pages
*pcp
;
2047 unsigned long flags
;
2048 unsigned long pfn
= page_to_pfn(page
);
2051 if (!free_pages_prepare(page
, 0))
2054 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2055 set_pcppage_migratetype(page
, migratetype
);
2056 local_irq_save(flags
);
2057 __count_vm_event(PGFREE
);
2060 * We only track unmovable, reclaimable and movable on pcp lists.
2061 * Free ISOLATE pages back to the allocator because they are being
2062 * offlined but treat RESERVE as movable pages so we can get those
2063 * areas back if necessary. Otherwise, we may have to free
2064 * excessively into the page allocator
2066 if (migratetype
>= MIGRATE_PCPTYPES
) {
2067 if (unlikely(is_migrate_isolate(migratetype
))) {
2068 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2071 migratetype
= MIGRATE_MOVABLE
;
2074 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2076 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2078 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2080 if (pcp
->count
>= pcp
->high
) {
2081 unsigned long batch
= READ_ONCE(pcp
->batch
);
2082 free_pcppages_bulk(zone
, batch
, pcp
);
2083 pcp
->count
-= batch
;
2087 local_irq_restore(flags
);
2091 * Free a list of 0-order pages
2093 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2095 struct page
*page
, *next
;
2097 list_for_each_entry_safe(page
, next
, list
, lru
) {
2098 trace_mm_page_free_batched(page
, cold
);
2099 free_hot_cold_page(page
, cold
);
2104 * split_page takes a non-compound higher-order page, and splits it into
2105 * n (1<<order) sub-pages: page[0..n]
2106 * Each sub-page must be freed individually.
2108 * Note: this is probably too low level an operation for use in drivers.
2109 * Please consult with lkml before using this in your driver.
2111 void split_page(struct page
*page
, unsigned int order
)
2116 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2117 VM_BUG_ON_PAGE(!page_count(page
), page
);
2119 #ifdef CONFIG_KMEMCHECK
2121 * Split shadow pages too, because free(page[0]) would
2122 * otherwise free the whole shadow.
2124 if (kmemcheck_page_is_tracked(page
))
2125 split_page(virt_to_page(page
[0].shadow
), order
);
2128 gfp_mask
= get_page_owner_gfp(page
);
2129 set_page_owner(page
, 0, gfp_mask
);
2130 for (i
= 1; i
< (1 << order
); i
++) {
2131 set_page_refcounted(page
+ i
);
2132 set_page_owner(page
+ i
, 0, gfp_mask
);
2135 EXPORT_SYMBOL_GPL(split_page
);
2137 int __isolate_free_page(struct page
*page
, unsigned int order
)
2139 unsigned long watermark
;
2143 BUG_ON(!PageBuddy(page
));
2145 zone
= page_zone(page
);
2146 mt
= get_pageblock_migratetype(page
);
2148 if (!is_migrate_isolate(mt
)) {
2149 /* Obey watermarks as if the page was being allocated */
2150 watermark
= low_wmark_pages(zone
) + (1 << order
);
2151 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2154 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2157 /* Remove page from free list */
2158 list_del(&page
->lru
);
2159 zone
->free_area
[order
].nr_free
--;
2160 rmv_page_order(page
);
2162 set_page_owner(page
, order
, __GFP_MOVABLE
);
2164 /* Set the pageblock if the isolated page is at least a pageblock */
2165 if (order
>= pageblock_order
- 1) {
2166 struct page
*endpage
= page
+ (1 << order
) - 1;
2167 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2168 int mt
= get_pageblock_migratetype(page
);
2169 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2170 set_pageblock_migratetype(page
,
2176 return 1UL << order
;
2180 * Similar to split_page except the page is already free. As this is only
2181 * being used for migration, the migratetype of the block also changes.
2182 * As this is called with interrupts disabled, the caller is responsible
2183 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2186 * Note: this is probably too low level an operation for use in drivers.
2187 * Please consult with lkml before using this in your driver.
2189 int split_free_page(struct page
*page
)
2194 order
= page_order(page
);
2196 nr_pages
= __isolate_free_page(page
, order
);
2200 /* Split into individual pages */
2201 set_page_refcounted(page
);
2202 split_page(page
, order
);
2207 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2210 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2211 struct zone
*zone
, unsigned int order
,
2212 gfp_t gfp_flags
, int alloc_flags
, int migratetype
)
2214 unsigned long flags
;
2216 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2218 if (likely(order
== 0)) {
2219 struct per_cpu_pages
*pcp
;
2220 struct list_head
*list
;
2222 local_irq_save(flags
);
2223 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2224 list
= &pcp
->lists
[migratetype
];
2225 if (list_empty(list
)) {
2226 pcp
->count
+= rmqueue_bulk(zone
, 0,
2229 if (unlikely(list_empty(list
)))
2234 page
= list_last_entry(list
, struct page
, lru
);
2236 page
= list_first_entry(list
, struct page
, lru
);
2238 list_del(&page
->lru
);
2241 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
2243 * __GFP_NOFAIL is not to be used in new code.
2245 * All __GFP_NOFAIL callers should be fixed so that they
2246 * properly detect and handle allocation failures.
2248 * We most definitely don't want callers attempting to
2249 * allocate greater than order-1 page units with
2252 WARN_ON_ONCE(order
> 1);
2254 spin_lock_irqsave(&zone
->lock
, flags
);
2257 if (alloc_flags
& ALLOC_HARDER
) {
2258 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2260 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2263 page
= __rmqueue(zone
, order
, migratetype
);
2264 spin_unlock(&zone
->lock
);
2267 __mod_zone_freepage_state(zone
, -(1 << order
),
2268 get_pcppage_migratetype(page
));
2271 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2272 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2273 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2274 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2276 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2277 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2278 local_irq_restore(flags
);
2280 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2284 local_irq_restore(flags
);
2288 #ifdef CONFIG_FAIL_PAGE_ALLOC
2291 struct fault_attr attr
;
2293 bool ignore_gfp_highmem
;
2294 bool ignore_gfp_reclaim
;
2296 } fail_page_alloc
= {
2297 .attr
= FAULT_ATTR_INITIALIZER
,
2298 .ignore_gfp_reclaim
= true,
2299 .ignore_gfp_highmem
= true,
2303 static int __init
setup_fail_page_alloc(char *str
)
2305 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2307 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2309 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2311 if (order
< fail_page_alloc
.min_order
)
2313 if (gfp_mask
& __GFP_NOFAIL
)
2315 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2317 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2318 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2321 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2324 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2326 static int __init
fail_page_alloc_debugfs(void)
2328 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2331 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2332 &fail_page_alloc
.attr
);
2334 return PTR_ERR(dir
);
2336 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2337 &fail_page_alloc
.ignore_gfp_reclaim
))
2339 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2340 &fail_page_alloc
.ignore_gfp_highmem
))
2342 if (!debugfs_create_u32("min-order", mode
, dir
,
2343 &fail_page_alloc
.min_order
))
2348 debugfs_remove_recursive(dir
);
2353 late_initcall(fail_page_alloc_debugfs
);
2355 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2357 #else /* CONFIG_FAIL_PAGE_ALLOC */
2359 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2364 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2367 * Return true if free base pages are above 'mark'. For high-order checks it
2368 * will return true of the order-0 watermark is reached and there is at least
2369 * one free page of a suitable size. Checking now avoids taking the zone lock
2370 * to check in the allocation paths if no pages are free.
2372 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2373 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2378 const int alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2380 /* free_pages may go negative - that's OK */
2381 free_pages
-= (1 << order
) - 1;
2383 if (alloc_flags
& ALLOC_HIGH
)
2387 * If the caller does not have rights to ALLOC_HARDER then subtract
2388 * the high-atomic reserves. This will over-estimate the size of the
2389 * atomic reserve but it avoids a search.
2391 if (likely(!alloc_harder
))
2392 free_pages
-= z
->nr_reserved_highatomic
;
2397 /* If allocation can't use CMA areas don't use free CMA pages */
2398 if (!(alloc_flags
& ALLOC_CMA
))
2399 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2403 * Check watermarks for an order-0 allocation request. If these
2404 * are not met, then a high-order request also cannot go ahead
2405 * even if a suitable page happened to be free.
2407 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2410 /* If this is an order-0 request then the watermark is fine */
2414 /* For a high-order request, check at least one suitable page is free */
2415 for (o
= order
; o
< MAX_ORDER
; o
++) {
2416 struct free_area
*area
= &z
->free_area
[o
];
2425 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2426 if (!list_empty(&area
->free_list
[mt
]))
2431 if ((alloc_flags
& ALLOC_CMA
) &&
2432 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2440 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2441 int classzone_idx
, int alloc_flags
)
2443 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2444 zone_page_state(z
, NR_FREE_PAGES
));
2447 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2448 unsigned long mark
, int classzone_idx
)
2450 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2452 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2453 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2455 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2460 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2462 return local_zone
->node
== zone
->node
;
2465 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2467 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2470 #else /* CONFIG_NUMA */
2471 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2476 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2480 #endif /* CONFIG_NUMA */
2482 static void reset_alloc_batches(struct zone
*preferred_zone
)
2484 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2487 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2488 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2489 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2490 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2491 } while (zone
++ != preferred_zone
);
2495 * get_page_from_freelist goes through the zonelist trying to allocate
2498 static struct page
*
2499 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2500 const struct alloc_context
*ac
)
2502 struct zonelist
*zonelist
= ac
->zonelist
;
2504 struct page
*page
= NULL
;
2506 int nr_fair_skipped
= 0;
2507 bool zonelist_rescan
;
2510 zonelist_rescan
= false;
2513 * Scan zonelist, looking for a zone with enough free.
2514 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2516 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2520 if (cpusets_enabled() &&
2521 (alloc_flags
& ALLOC_CPUSET
) &&
2522 !cpuset_zone_allowed(zone
, gfp_mask
))
2525 * Distribute pages in proportion to the individual
2526 * zone size to ensure fair page aging. The zone a
2527 * page was allocated in should have no effect on the
2528 * time the page has in memory before being reclaimed.
2530 if (alloc_flags
& ALLOC_FAIR
) {
2531 if (!zone_local(ac
->preferred_zone
, zone
))
2533 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2539 * When allocating a page cache page for writing, we
2540 * want to get it from a zone that is within its dirty
2541 * limit, such that no single zone holds more than its
2542 * proportional share of globally allowed dirty pages.
2543 * The dirty limits take into account the zone's
2544 * lowmem reserves and high watermark so that kswapd
2545 * should be able to balance it without having to
2546 * write pages from its LRU list.
2548 * This may look like it could increase pressure on
2549 * lower zones by failing allocations in higher zones
2550 * before they are full. But the pages that do spill
2551 * over are limited as the lower zones are protected
2552 * by this very same mechanism. It should not become
2553 * a practical burden to them.
2555 * XXX: For now, allow allocations to potentially
2556 * exceed the per-zone dirty limit in the slowpath
2557 * (spread_dirty_pages unset) before going into reclaim,
2558 * which is important when on a NUMA setup the allowed
2559 * zones are together not big enough to reach the
2560 * global limit. The proper fix for these situations
2561 * will require awareness of zones in the
2562 * dirty-throttling and the flusher threads.
2564 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2567 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2568 if (!zone_watermark_ok(zone
, order
, mark
,
2569 ac
->classzone_idx
, alloc_flags
)) {
2572 /* Checked here to keep the fast path fast */
2573 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2574 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2577 if (zone_reclaim_mode
== 0 ||
2578 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2581 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2583 case ZONE_RECLAIM_NOSCAN
:
2586 case ZONE_RECLAIM_FULL
:
2587 /* scanned but unreclaimable */
2590 /* did we reclaim enough */
2591 if (zone_watermark_ok(zone
, order
, mark
,
2592 ac
->classzone_idx
, alloc_flags
))
2600 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2601 gfp_mask
, alloc_flags
, ac
->migratetype
);
2603 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2607 * If this is a high-order atomic allocation then check
2608 * if the pageblock should be reserved for the future
2610 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2611 reserve_highatomic_pageblock(page
, zone
, order
);
2618 * The first pass makes sure allocations are spread fairly within the
2619 * local node. However, the local node might have free pages left
2620 * after the fairness batches are exhausted, and remote zones haven't
2621 * even been considered yet. Try once more without fairness, and
2622 * include remote zones now, before entering the slowpath and waking
2623 * kswapd: prefer spilling to a remote zone over swapping locally.
2625 if (alloc_flags
& ALLOC_FAIR
) {
2626 alloc_flags
&= ~ALLOC_FAIR
;
2627 if (nr_fair_skipped
) {
2628 zonelist_rescan
= true;
2629 reset_alloc_batches(ac
->preferred_zone
);
2631 if (nr_online_nodes
> 1)
2632 zonelist_rescan
= true;
2635 if (zonelist_rescan
)
2642 * Large machines with many possible nodes should not always dump per-node
2643 * meminfo in irq context.
2645 static inline bool should_suppress_show_mem(void)
2650 ret
= in_interrupt();
2655 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2656 DEFAULT_RATELIMIT_INTERVAL
,
2657 DEFAULT_RATELIMIT_BURST
);
2659 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
2661 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2663 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2664 debug_guardpage_minorder() > 0)
2668 * This documents exceptions given to allocations in certain
2669 * contexts that are allowed to allocate outside current's set
2672 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2673 if (test_thread_flag(TIF_MEMDIE
) ||
2674 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2675 filter
&= ~SHOW_MEM_FILTER_NODES
;
2676 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
2677 filter
&= ~SHOW_MEM_FILTER_NODES
;
2680 struct va_format vaf
;
2683 va_start(args
, fmt
);
2688 pr_warn("%pV", &vaf
);
2693 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2694 current
->comm
, order
, gfp_mask
);
2697 if (!should_suppress_show_mem())
2701 static inline struct page
*
2702 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2703 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2705 struct oom_control oc
= {
2706 .zonelist
= ac
->zonelist
,
2707 .nodemask
= ac
->nodemask
,
2708 .gfp_mask
= gfp_mask
,
2713 *did_some_progress
= 0;
2716 * Acquire the oom lock. If that fails, somebody else is
2717 * making progress for us.
2719 if (!mutex_trylock(&oom_lock
)) {
2720 *did_some_progress
= 1;
2721 schedule_timeout_uninterruptible(1);
2726 * Go through the zonelist yet one more time, keep very high watermark
2727 * here, this is only to catch a parallel oom killing, we must fail if
2728 * we're still under heavy pressure.
2730 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2731 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2735 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2736 /* Coredumps can quickly deplete all memory reserves */
2737 if (current
->flags
& PF_DUMPCORE
)
2739 /* The OOM killer will not help higher order allocs */
2740 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2742 /* The OOM killer does not needlessly kill tasks for lowmem */
2743 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2745 /* The OOM killer does not compensate for IO-less reclaim */
2746 if (!(gfp_mask
& __GFP_FS
)) {
2748 * XXX: Page reclaim didn't yield anything,
2749 * and the OOM killer can't be invoked, but
2750 * keep looping as per tradition.
2752 *did_some_progress
= 1;
2755 if (pm_suspended_storage())
2757 /* The OOM killer may not free memory on a specific node */
2758 if (gfp_mask
& __GFP_THISNODE
)
2761 /* Exhausted what can be done so it's blamo time */
2762 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
2763 *did_some_progress
= 1;
2765 if (gfp_mask
& __GFP_NOFAIL
) {
2766 page
= get_page_from_freelist(gfp_mask
, order
,
2767 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
2769 * fallback to ignore cpuset restriction if our nodes
2773 page
= get_page_from_freelist(gfp_mask
, order
,
2774 ALLOC_NO_WATERMARKS
, ac
);
2778 mutex_unlock(&oom_lock
);
2782 #ifdef CONFIG_COMPACTION
2783 /* Try memory compaction for high-order allocations before reclaim */
2784 static struct page
*
2785 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2786 int alloc_flags
, const struct alloc_context
*ac
,
2787 enum migrate_mode mode
, int *contended_compaction
,
2788 bool *deferred_compaction
)
2790 unsigned long compact_result
;
2796 current
->flags
|= PF_MEMALLOC
;
2797 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2798 mode
, contended_compaction
);
2799 current
->flags
&= ~PF_MEMALLOC
;
2801 switch (compact_result
) {
2802 case COMPACT_DEFERRED
:
2803 *deferred_compaction
= true;
2805 case COMPACT_SKIPPED
:
2812 * At least in one zone compaction wasn't deferred or skipped, so let's
2813 * count a compaction stall
2815 count_vm_event(COMPACTSTALL
);
2817 page
= get_page_from_freelist(gfp_mask
, order
,
2818 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2821 struct zone
*zone
= page_zone(page
);
2823 zone
->compact_blockskip_flush
= false;
2824 compaction_defer_reset(zone
, order
, true);
2825 count_vm_event(COMPACTSUCCESS
);
2830 * It's bad if compaction run occurs and fails. The most likely reason
2831 * is that pages exist, but not enough to satisfy watermarks.
2833 count_vm_event(COMPACTFAIL
);
2840 static inline struct page
*
2841 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2842 int alloc_flags
, const struct alloc_context
*ac
,
2843 enum migrate_mode mode
, int *contended_compaction
,
2844 bool *deferred_compaction
)
2848 #endif /* CONFIG_COMPACTION */
2850 /* Perform direct synchronous page reclaim */
2852 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2853 const struct alloc_context
*ac
)
2855 struct reclaim_state reclaim_state
;
2860 /* We now go into synchronous reclaim */
2861 cpuset_memory_pressure_bump();
2862 current
->flags
|= PF_MEMALLOC
;
2863 lockdep_set_current_reclaim_state(gfp_mask
);
2864 reclaim_state
.reclaimed_slab
= 0;
2865 current
->reclaim_state
= &reclaim_state
;
2867 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
2870 current
->reclaim_state
= NULL
;
2871 lockdep_clear_current_reclaim_state();
2872 current
->flags
&= ~PF_MEMALLOC
;
2879 /* The really slow allocator path where we enter direct reclaim */
2880 static inline struct page
*
2881 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2882 int alloc_flags
, const struct alloc_context
*ac
,
2883 unsigned long *did_some_progress
)
2885 struct page
*page
= NULL
;
2886 bool drained
= false;
2888 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
2889 if (unlikely(!(*did_some_progress
)))
2893 page
= get_page_from_freelist(gfp_mask
, order
,
2894 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2897 * If an allocation failed after direct reclaim, it could be because
2898 * pages are pinned on the per-cpu lists or in high alloc reserves.
2899 * Shrink them them and try again
2901 if (!page
&& !drained
) {
2902 unreserve_highatomic_pageblock(ac
);
2903 drain_all_pages(NULL
);
2911 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
2916 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2917 ac
->high_zoneidx
, ac
->nodemask
)
2918 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
2922 gfp_to_alloc_flags(gfp_t gfp_mask
)
2924 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2926 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2927 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2930 * The caller may dip into page reserves a bit more if the caller
2931 * cannot run direct reclaim, or if the caller has realtime scheduling
2932 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2933 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2935 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2937 if (gfp_mask
& __GFP_ATOMIC
) {
2939 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2940 * if it can't schedule.
2942 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2943 alloc_flags
|= ALLOC_HARDER
;
2945 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2946 * comment for __cpuset_node_allowed().
2948 alloc_flags
&= ~ALLOC_CPUSET
;
2949 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2950 alloc_flags
|= ALLOC_HARDER
;
2952 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2953 if (gfp_mask
& __GFP_MEMALLOC
)
2954 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2955 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2956 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2957 else if (!in_interrupt() &&
2958 ((current
->flags
& PF_MEMALLOC
) ||
2959 unlikely(test_thread_flag(TIF_MEMDIE
))))
2960 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2963 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2964 alloc_flags
|= ALLOC_CMA
;
2969 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2971 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2974 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
2976 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
2979 static inline struct page
*
2980 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2981 struct alloc_context
*ac
)
2983 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
2984 struct page
*page
= NULL
;
2986 unsigned long pages_reclaimed
= 0;
2987 unsigned long did_some_progress
;
2988 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2989 bool deferred_compaction
= false;
2990 int contended_compaction
= COMPACT_CONTENDED_NONE
;
2993 * In the slowpath, we sanity check order to avoid ever trying to
2994 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2995 * be using allocators in order of preference for an area that is
2998 if (order
>= MAX_ORDER
) {
2999 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3004 * We also sanity check to catch abuse of atomic reserves being used by
3005 * callers that are not in atomic context.
3007 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3008 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3009 gfp_mask
&= ~__GFP_ATOMIC
;
3012 * If this allocation cannot block and it is for a specific node, then
3013 * fail early. There's no need to wakeup kswapd or retry for a
3014 * speculative node-specific allocation.
3016 if (IS_ENABLED(CONFIG_NUMA
) && (gfp_mask
& __GFP_THISNODE
) && !can_direct_reclaim
)
3020 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3021 wake_all_kswapds(order
, ac
);
3024 * OK, we're below the kswapd watermark and have kicked background
3025 * reclaim. Now things get more complex, so set up alloc_flags according
3026 * to how we want to proceed.
3028 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3031 * Find the true preferred zone if the allocation is unconstrained by
3034 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3035 struct zoneref
*preferred_zoneref
;
3036 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3037 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3038 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3041 /* This is the last chance, in general, before the goto nopage. */
3042 page
= get_page_from_freelist(gfp_mask
, order
,
3043 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3047 /* Allocate without watermarks if the context allows */
3048 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3050 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3051 * the allocation is high priority and these type of
3052 * allocations are system rather than user orientated
3054 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3055 page
= get_page_from_freelist(gfp_mask
, order
,
3056 ALLOC_NO_WATERMARKS
, ac
);
3061 /* Caller is not willing to reclaim, we can't balance anything */
3062 if (!can_direct_reclaim
) {
3064 * All existing users of the __GFP_NOFAIL are blockable, so warn
3065 * of any new users that actually allow this type of allocation
3068 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3072 /* Avoid recursion of direct reclaim */
3073 if (current
->flags
& PF_MEMALLOC
) {
3075 * __GFP_NOFAIL request from this context is rather bizarre
3076 * because we cannot reclaim anything and only can loop waiting
3077 * for somebody to do a work for us.
3079 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3086 /* Avoid allocations with no watermarks from looping endlessly */
3087 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3091 * Try direct compaction. The first pass is asynchronous. Subsequent
3092 * attempts after direct reclaim are synchronous
3094 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3096 &contended_compaction
,
3097 &deferred_compaction
);
3101 /* Checks for THP-specific high-order allocations */
3102 if (is_thp_gfp_mask(gfp_mask
)) {
3104 * If compaction is deferred for high-order allocations, it is
3105 * because sync compaction recently failed. If this is the case
3106 * and the caller requested a THP allocation, we do not want
3107 * to heavily disrupt the system, so we fail the allocation
3108 * instead of entering direct reclaim.
3110 if (deferred_compaction
)
3114 * In all zones where compaction was attempted (and not
3115 * deferred or skipped), lock contention has been detected.
3116 * For THP allocation we do not want to disrupt the others
3117 * so we fallback to base pages instead.
3119 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3123 * If compaction was aborted due to need_resched(), we do not
3124 * want to further increase allocation latency, unless it is
3125 * khugepaged trying to collapse.
3127 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3128 && !(current
->flags
& PF_KTHREAD
))
3133 * It can become very expensive to allocate transparent hugepages at
3134 * fault, so use asynchronous memory compaction for THP unless it is
3135 * khugepaged trying to collapse.
3137 if (!is_thp_gfp_mask(gfp_mask
) || (current
->flags
& PF_KTHREAD
))
3138 migration_mode
= MIGRATE_SYNC_LIGHT
;
3140 /* Try direct reclaim and then allocating */
3141 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3142 &did_some_progress
);
3146 /* Do not loop if specifically requested */
3147 if (gfp_mask
& __GFP_NORETRY
)
3150 /* Keep reclaiming pages as long as there is reasonable progress */
3151 pages_reclaimed
+= did_some_progress
;
3152 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3153 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3154 /* Wait for some write requests to complete then retry */
3155 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3159 /* Reclaim has failed us, start killing things */
3160 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3164 /* Retry as long as the OOM killer is making progress */
3165 if (did_some_progress
)
3170 * High-order allocations do not necessarily loop after
3171 * direct reclaim and reclaim/compaction depends on compaction
3172 * being called after reclaim so call directly if necessary
3174 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3176 &contended_compaction
,
3177 &deferred_compaction
);
3181 warn_alloc_failed(gfp_mask
, order
, NULL
);
3187 * This is the 'heart' of the zoned buddy allocator.
3190 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3191 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3193 struct zoneref
*preferred_zoneref
;
3194 struct page
*page
= NULL
;
3195 unsigned int cpuset_mems_cookie
;
3196 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3197 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3198 struct alloc_context ac
= {
3199 .high_zoneidx
= gfp_zone(gfp_mask
),
3200 .nodemask
= nodemask
,
3201 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3204 gfp_mask
&= gfp_allowed_mask
;
3206 lockdep_trace_alloc(gfp_mask
);
3208 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3210 if (should_fail_alloc_page(gfp_mask
, order
))
3214 * Check the zones suitable for the gfp_mask contain at least one
3215 * valid zone. It's possible to have an empty zonelist as a result
3216 * of __GFP_THISNODE and a memoryless node
3218 if (unlikely(!zonelist
->_zonerefs
->zone
))
3221 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3222 alloc_flags
|= ALLOC_CMA
;
3225 cpuset_mems_cookie
= read_mems_allowed_begin();
3227 /* We set it here, as __alloc_pages_slowpath might have changed it */
3228 ac
.zonelist
= zonelist
;
3230 /* Dirty zone balancing only done in the fast path */
3231 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3233 /* The preferred zone is used for statistics later */
3234 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3235 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3236 &ac
.preferred_zone
);
3237 if (!ac
.preferred_zone
)
3239 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3241 /* First allocation attempt */
3242 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3243 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3244 if (unlikely(!page
)) {
3246 * Runtime PM, block IO and its error handling path
3247 * can deadlock because I/O on the device might not
3250 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3251 ac
.spread_dirty_pages
= false;
3253 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3256 if (kmemcheck_enabled
&& page
)
3257 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3259 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3263 * When updating a task's mems_allowed, it is possible to race with
3264 * parallel threads in such a way that an allocation can fail while
3265 * the mask is being updated. If a page allocation is about to fail,
3266 * check if the cpuset changed during allocation and if so, retry.
3268 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3273 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3276 * Common helper functions.
3278 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3283 * __get_free_pages() returns a 32-bit address, which cannot represent
3286 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3288 page
= alloc_pages(gfp_mask
, order
);
3291 return (unsigned long) page_address(page
);
3293 EXPORT_SYMBOL(__get_free_pages
);
3295 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3297 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3299 EXPORT_SYMBOL(get_zeroed_page
);
3301 void __free_pages(struct page
*page
, unsigned int order
)
3303 if (put_page_testzero(page
)) {
3305 free_hot_cold_page(page
, false);
3307 __free_pages_ok(page
, order
);
3311 EXPORT_SYMBOL(__free_pages
);
3313 void free_pages(unsigned long addr
, unsigned int order
)
3316 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3317 __free_pages(virt_to_page((void *)addr
), order
);
3321 EXPORT_SYMBOL(free_pages
);
3325 * An arbitrary-length arbitrary-offset area of memory which resides
3326 * within a 0 or higher order page. Multiple fragments within that page
3327 * are individually refcounted, in the page's reference counter.
3329 * The page_frag functions below provide a simple allocation framework for
3330 * page fragments. This is used by the network stack and network device
3331 * drivers to provide a backing region of memory for use as either an
3332 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3334 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3337 struct page
*page
= NULL
;
3338 gfp_t gfp
= gfp_mask
;
3340 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3341 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3343 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3344 PAGE_FRAG_CACHE_MAX_ORDER
);
3345 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3347 if (unlikely(!page
))
3348 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3350 nc
->va
= page
? page_address(page
) : NULL
;
3355 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3356 unsigned int fragsz
, gfp_t gfp_mask
)
3358 unsigned int size
= PAGE_SIZE
;
3362 if (unlikely(!nc
->va
)) {
3364 page
= __page_frag_refill(nc
, gfp_mask
);
3368 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3369 /* if size can vary use size else just use PAGE_SIZE */
3372 /* Even if we own the page, we do not use atomic_set().
3373 * This would break get_page_unless_zero() users.
3375 atomic_add(size
- 1, &page
->_count
);
3377 /* reset page count bias and offset to start of new frag */
3378 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3379 nc
->pagecnt_bias
= size
;
3383 offset
= nc
->offset
- fragsz
;
3384 if (unlikely(offset
< 0)) {
3385 page
= virt_to_page(nc
->va
);
3387 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
3390 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3391 /* if size can vary use size else just use PAGE_SIZE */
3394 /* OK, page count is 0, we can safely set it */
3395 atomic_set(&page
->_count
, size
);
3397 /* reset page count bias and offset to start of new frag */
3398 nc
->pagecnt_bias
= size
;
3399 offset
= size
- fragsz
;
3403 nc
->offset
= offset
;
3405 return nc
->va
+ offset
;
3407 EXPORT_SYMBOL(__alloc_page_frag
);
3410 * Frees a page fragment allocated out of either a compound or order 0 page.
3412 void __free_page_frag(void *addr
)
3414 struct page
*page
= virt_to_head_page(addr
);
3416 if (unlikely(put_page_testzero(page
)))
3417 __free_pages_ok(page
, compound_order(page
));
3419 EXPORT_SYMBOL(__free_page_frag
);
3422 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3423 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3424 * equivalent to alloc_pages.
3426 * It should be used when the caller would like to use kmalloc, but since the
3427 * allocation is large, it has to fall back to the page allocator.
3429 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3433 page
= alloc_pages(gfp_mask
, order
);
3434 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3435 __free_pages(page
, order
);
3441 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3445 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3446 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3447 __free_pages(page
, order
);
3454 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3457 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3459 memcg_kmem_uncharge(page
, order
);
3460 __free_pages(page
, order
);
3463 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3466 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3467 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3471 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
3475 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3476 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3478 split_page(virt_to_page((void *)addr
), order
);
3479 while (used
< alloc_end
) {
3484 return (void *)addr
;
3488 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3489 * @size: the number of bytes to allocate
3490 * @gfp_mask: GFP flags for the allocation
3492 * This function is similar to alloc_pages(), except that it allocates the
3493 * minimum number of pages to satisfy the request. alloc_pages() can only
3494 * allocate memory in power-of-two pages.
3496 * This function is also limited by MAX_ORDER.
3498 * Memory allocated by this function must be released by free_pages_exact().
3500 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3502 unsigned int order
= get_order(size
);
3505 addr
= __get_free_pages(gfp_mask
, order
);
3506 return make_alloc_exact(addr
, order
, size
);
3508 EXPORT_SYMBOL(alloc_pages_exact
);
3511 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3513 * @nid: the preferred node ID where memory should be allocated
3514 * @size: the number of bytes to allocate
3515 * @gfp_mask: GFP flags for the allocation
3517 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3520 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3522 unsigned int order
= get_order(size
);
3523 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3526 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3530 * free_pages_exact - release memory allocated via alloc_pages_exact()
3531 * @virt: the value returned by alloc_pages_exact.
3532 * @size: size of allocation, same value as passed to alloc_pages_exact().
3534 * Release the memory allocated by a previous call to alloc_pages_exact.
3536 void free_pages_exact(void *virt
, size_t size
)
3538 unsigned long addr
= (unsigned long)virt
;
3539 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3541 while (addr
< end
) {
3546 EXPORT_SYMBOL(free_pages_exact
);
3549 * nr_free_zone_pages - count number of pages beyond high watermark
3550 * @offset: The zone index of the highest zone
3552 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3553 * high watermark within all zones at or below a given zone index. For each
3554 * zone, the number of pages is calculated as:
3555 * managed_pages - high_pages
3557 static unsigned long nr_free_zone_pages(int offset
)
3562 /* Just pick one node, since fallback list is circular */
3563 unsigned long sum
= 0;
3565 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3567 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3568 unsigned long size
= zone
->managed_pages
;
3569 unsigned long high
= high_wmark_pages(zone
);
3578 * nr_free_buffer_pages - count number of pages beyond high watermark
3580 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3581 * watermark within ZONE_DMA and ZONE_NORMAL.
3583 unsigned long nr_free_buffer_pages(void)
3585 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3587 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3590 * nr_free_pagecache_pages - count number of pages beyond high watermark
3592 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3593 * high watermark within all zones.
3595 unsigned long nr_free_pagecache_pages(void)
3597 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3600 static inline void show_node(struct zone
*zone
)
3602 if (IS_ENABLED(CONFIG_NUMA
))
3603 printk("Node %d ", zone_to_nid(zone
));
3606 void si_meminfo(struct sysinfo
*val
)
3608 val
->totalram
= totalram_pages
;
3609 val
->sharedram
= global_page_state(NR_SHMEM
);
3610 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3611 val
->bufferram
= nr_blockdev_pages();
3612 val
->totalhigh
= totalhigh_pages
;
3613 val
->freehigh
= nr_free_highpages();
3614 val
->mem_unit
= PAGE_SIZE
;
3617 EXPORT_SYMBOL(si_meminfo
);
3620 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3622 int zone_type
; /* needs to be signed */
3623 unsigned long managed_pages
= 0;
3624 pg_data_t
*pgdat
= NODE_DATA(nid
);
3626 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3627 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3628 val
->totalram
= managed_pages
;
3629 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3630 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3631 #ifdef CONFIG_HIGHMEM
3632 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3633 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3639 val
->mem_unit
= PAGE_SIZE
;
3644 * Determine whether the node should be displayed or not, depending on whether
3645 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3647 bool skip_free_areas_node(unsigned int flags
, int nid
)
3650 unsigned int cpuset_mems_cookie
;
3652 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3656 cpuset_mems_cookie
= read_mems_allowed_begin();
3657 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3658 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3663 #define K(x) ((x) << (PAGE_SHIFT-10))
3665 static void show_migration_types(unsigned char type
)
3667 static const char types
[MIGRATE_TYPES
] = {
3668 [MIGRATE_UNMOVABLE
] = 'U',
3669 [MIGRATE_MOVABLE
] = 'M',
3670 [MIGRATE_RECLAIMABLE
] = 'E',
3671 [MIGRATE_HIGHATOMIC
] = 'H',
3673 [MIGRATE_CMA
] = 'C',
3675 #ifdef CONFIG_MEMORY_ISOLATION
3676 [MIGRATE_ISOLATE
] = 'I',
3679 char tmp
[MIGRATE_TYPES
+ 1];
3683 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3684 if (type
& (1 << i
))
3689 printk("(%s) ", tmp
);
3693 * Show free area list (used inside shift_scroll-lock stuff)
3694 * We also calculate the percentage fragmentation. We do this by counting the
3695 * memory on each free list with the exception of the first item on the list.
3698 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3701 void show_free_areas(unsigned int filter
)
3703 unsigned long free_pcp
= 0;
3707 for_each_populated_zone(zone
) {
3708 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3711 for_each_online_cpu(cpu
)
3712 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3715 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3716 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3717 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3718 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3719 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3720 " free:%lu free_pcp:%lu free_cma:%lu\n",
3721 global_page_state(NR_ACTIVE_ANON
),
3722 global_page_state(NR_INACTIVE_ANON
),
3723 global_page_state(NR_ISOLATED_ANON
),
3724 global_page_state(NR_ACTIVE_FILE
),
3725 global_page_state(NR_INACTIVE_FILE
),
3726 global_page_state(NR_ISOLATED_FILE
),
3727 global_page_state(NR_UNEVICTABLE
),
3728 global_page_state(NR_FILE_DIRTY
),
3729 global_page_state(NR_WRITEBACK
),
3730 global_page_state(NR_UNSTABLE_NFS
),
3731 global_page_state(NR_SLAB_RECLAIMABLE
),
3732 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3733 global_page_state(NR_FILE_MAPPED
),
3734 global_page_state(NR_SHMEM
),
3735 global_page_state(NR_PAGETABLE
),
3736 global_page_state(NR_BOUNCE
),
3737 global_page_state(NR_FREE_PAGES
),
3739 global_page_state(NR_FREE_CMA_PAGES
));
3741 for_each_populated_zone(zone
) {
3744 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3748 for_each_online_cpu(cpu
)
3749 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3757 " active_anon:%lukB"
3758 " inactive_anon:%lukB"
3759 " active_file:%lukB"
3760 " inactive_file:%lukB"
3761 " unevictable:%lukB"
3762 " isolated(anon):%lukB"
3763 " isolated(file):%lukB"
3771 " slab_reclaimable:%lukB"
3772 " slab_unreclaimable:%lukB"
3773 " kernel_stack:%lukB"
3780 " writeback_tmp:%lukB"
3781 " pages_scanned:%lu"
3782 " all_unreclaimable? %s"
3785 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3786 K(min_wmark_pages(zone
)),
3787 K(low_wmark_pages(zone
)),
3788 K(high_wmark_pages(zone
)),
3789 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3790 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3791 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3792 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3793 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3794 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3795 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3796 K(zone
->present_pages
),
3797 K(zone
->managed_pages
),
3798 K(zone_page_state(zone
, NR_MLOCK
)),
3799 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3800 K(zone_page_state(zone
, NR_WRITEBACK
)),
3801 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3802 K(zone_page_state(zone
, NR_SHMEM
)),
3803 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3804 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3805 zone_page_state(zone
, NR_KERNEL_STACK
) *
3807 K(zone_page_state(zone
, NR_PAGETABLE
)),
3808 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3809 K(zone_page_state(zone
, NR_BOUNCE
)),
3811 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3812 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3813 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3814 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3815 (!zone_reclaimable(zone
) ? "yes" : "no")
3817 printk("lowmem_reserve[]:");
3818 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3819 printk(" %ld", zone
->lowmem_reserve
[i
]);
3823 for_each_populated_zone(zone
) {
3825 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
3826 unsigned char types
[MAX_ORDER
];
3828 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3831 printk("%s: ", zone
->name
);
3833 spin_lock_irqsave(&zone
->lock
, flags
);
3834 for (order
= 0; order
< MAX_ORDER
; order
++) {
3835 struct free_area
*area
= &zone
->free_area
[order
];
3838 nr
[order
] = area
->nr_free
;
3839 total
+= nr
[order
] << order
;
3842 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3843 if (!list_empty(&area
->free_list
[type
]))
3844 types
[order
] |= 1 << type
;
3847 spin_unlock_irqrestore(&zone
->lock
, flags
);
3848 for (order
= 0; order
< MAX_ORDER
; order
++) {
3849 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3851 show_migration_types(types
[order
]);
3853 printk("= %lukB\n", K(total
));
3856 hugetlb_show_meminfo();
3858 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3860 show_swap_cache_info();
3863 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3865 zoneref
->zone
= zone
;
3866 zoneref
->zone_idx
= zone_idx(zone
);
3870 * Builds allocation fallback zone lists.
3872 * Add all populated zones of a node to the zonelist.
3874 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3878 enum zone_type zone_type
= MAX_NR_ZONES
;
3882 zone
= pgdat
->node_zones
+ zone_type
;
3883 if (populated_zone(zone
)) {
3884 zoneref_set_zone(zone
,
3885 &zonelist
->_zonerefs
[nr_zones
++]);
3886 check_highest_zone(zone_type
);
3888 } while (zone_type
);
3896 * 0 = automatic detection of better ordering.
3897 * 1 = order by ([node] distance, -zonetype)
3898 * 2 = order by (-zonetype, [node] distance)
3900 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3901 * the same zonelist. So only NUMA can configure this param.
3903 #define ZONELIST_ORDER_DEFAULT 0
3904 #define ZONELIST_ORDER_NODE 1
3905 #define ZONELIST_ORDER_ZONE 2
3907 /* zonelist order in the kernel.
3908 * set_zonelist_order() will set this to NODE or ZONE.
3910 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3911 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3915 /* The value user specified ....changed by config */
3916 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3917 /* string for sysctl */
3918 #define NUMA_ZONELIST_ORDER_LEN 16
3919 char numa_zonelist_order
[16] = "default";
3922 * interface for configure zonelist ordering.
3923 * command line option "numa_zonelist_order"
3924 * = "[dD]efault - default, automatic configuration.
3925 * = "[nN]ode - order by node locality, then by zone within node
3926 * = "[zZ]one - order by zone, then by locality within zone
3929 static int __parse_numa_zonelist_order(char *s
)
3931 if (*s
== 'd' || *s
== 'D') {
3932 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3933 } else if (*s
== 'n' || *s
== 'N') {
3934 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3935 } else if (*s
== 'z' || *s
== 'Z') {
3936 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3939 "Ignoring invalid numa_zonelist_order value: "
3946 static __init
int setup_numa_zonelist_order(char *s
)
3953 ret
= __parse_numa_zonelist_order(s
);
3955 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3959 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3962 * sysctl handler for numa_zonelist_order
3964 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3965 void __user
*buffer
, size_t *length
,
3968 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3970 static DEFINE_MUTEX(zl_order_mutex
);
3972 mutex_lock(&zl_order_mutex
);
3974 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3978 strcpy(saved_string
, (char *)table
->data
);
3980 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3984 int oldval
= user_zonelist_order
;
3986 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3989 * bogus value. restore saved string
3991 strncpy((char *)table
->data
, saved_string
,
3992 NUMA_ZONELIST_ORDER_LEN
);
3993 user_zonelist_order
= oldval
;
3994 } else if (oldval
!= user_zonelist_order
) {
3995 mutex_lock(&zonelists_mutex
);
3996 build_all_zonelists(NULL
, NULL
);
3997 mutex_unlock(&zonelists_mutex
);
4001 mutex_unlock(&zl_order_mutex
);
4006 #define MAX_NODE_LOAD (nr_online_nodes)
4007 static int node_load
[MAX_NUMNODES
];
4010 * find_next_best_node - find the next node that should appear in a given node's fallback list
4011 * @node: node whose fallback list we're appending
4012 * @used_node_mask: nodemask_t of already used nodes
4014 * We use a number of factors to determine which is the next node that should
4015 * appear on a given node's fallback list. The node should not have appeared
4016 * already in @node's fallback list, and it should be the next closest node
4017 * according to the distance array (which contains arbitrary distance values
4018 * from each node to each node in the system), and should also prefer nodes
4019 * with no CPUs, since presumably they'll have very little allocation pressure
4020 * on them otherwise.
4021 * It returns -1 if no node is found.
4023 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4026 int min_val
= INT_MAX
;
4027 int best_node
= NUMA_NO_NODE
;
4028 const struct cpumask
*tmp
= cpumask_of_node(0);
4030 /* Use the local node if we haven't already */
4031 if (!node_isset(node
, *used_node_mask
)) {
4032 node_set(node
, *used_node_mask
);
4036 for_each_node_state(n
, N_MEMORY
) {
4038 /* Don't want a node to appear more than once */
4039 if (node_isset(n
, *used_node_mask
))
4042 /* Use the distance array to find the distance */
4043 val
= node_distance(node
, n
);
4045 /* Penalize nodes under us ("prefer the next node") */
4048 /* Give preference to headless and unused nodes */
4049 tmp
= cpumask_of_node(n
);
4050 if (!cpumask_empty(tmp
))
4051 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4053 /* Slight preference for less loaded node */
4054 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4055 val
+= node_load
[n
];
4057 if (val
< min_val
) {
4064 node_set(best_node
, *used_node_mask
);
4071 * Build zonelists ordered by node and zones within node.
4072 * This results in maximum locality--normal zone overflows into local
4073 * DMA zone, if any--but risks exhausting DMA zone.
4075 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4078 struct zonelist
*zonelist
;
4080 zonelist
= &pgdat
->node_zonelists
[0];
4081 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4083 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4084 zonelist
->_zonerefs
[j
].zone
= NULL
;
4085 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4089 * Build gfp_thisnode zonelists
4091 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4094 struct zonelist
*zonelist
;
4096 zonelist
= &pgdat
->node_zonelists
[1];
4097 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4098 zonelist
->_zonerefs
[j
].zone
= NULL
;
4099 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4103 * Build zonelists ordered by zone and nodes within zones.
4104 * This results in conserving DMA zone[s] until all Normal memory is
4105 * exhausted, but results in overflowing to remote node while memory
4106 * may still exist in local DMA zone.
4108 static int node_order
[MAX_NUMNODES
];
4110 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4113 int zone_type
; /* needs to be signed */
4115 struct zonelist
*zonelist
;
4117 zonelist
= &pgdat
->node_zonelists
[0];
4119 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4120 for (j
= 0; j
< nr_nodes
; j
++) {
4121 node
= node_order
[j
];
4122 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4123 if (populated_zone(z
)) {
4125 &zonelist
->_zonerefs
[pos
++]);
4126 check_highest_zone(zone_type
);
4130 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4131 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4134 #if defined(CONFIG_64BIT)
4136 * Devices that require DMA32/DMA are relatively rare and do not justify a
4137 * penalty to every machine in case the specialised case applies. Default
4138 * to Node-ordering on 64-bit NUMA machines
4140 static int default_zonelist_order(void)
4142 return ZONELIST_ORDER_NODE
;
4146 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4147 * by the kernel. If processes running on node 0 deplete the low memory zone
4148 * then reclaim will occur more frequency increasing stalls and potentially
4149 * be easier to OOM if a large percentage of the zone is under writeback or
4150 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4151 * Hence, default to zone ordering on 32-bit.
4153 static int default_zonelist_order(void)
4155 return ZONELIST_ORDER_ZONE
;
4157 #endif /* CONFIG_64BIT */
4159 static void set_zonelist_order(void)
4161 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4162 current_zonelist_order
= default_zonelist_order();
4164 current_zonelist_order
= user_zonelist_order
;
4167 static void build_zonelists(pg_data_t
*pgdat
)
4170 nodemask_t used_mask
;
4171 int local_node
, prev_node
;
4172 struct zonelist
*zonelist
;
4173 unsigned int order
= current_zonelist_order
;
4175 /* initialize zonelists */
4176 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4177 zonelist
= pgdat
->node_zonelists
+ i
;
4178 zonelist
->_zonerefs
[0].zone
= NULL
;
4179 zonelist
->_zonerefs
[0].zone_idx
= 0;
4182 /* NUMA-aware ordering of nodes */
4183 local_node
= pgdat
->node_id
;
4184 load
= nr_online_nodes
;
4185 prev_node
= local_node
;
4186 nodes_clear(used_mask
);
4188 memset(node_order
, 0, sizeof(node_order
));
4191 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4193 * We don't want to pressure a particular node.
4194 * So adding penalty to the first node in same
4195 * distance group to make it round-robin.
4197 if (node_distance(local_node
, node
) !=
4198 node_distance(local_node
, prev_node
))
4199 node_load
[node
] = load
;
4203 if (order
== ZONELIST_ORDER_NODE
)
4204 build_zonelists_in_node_order(pgdat
, node
);
4206 node_order
[i
++] = node
; /* remember order */
4209 if (order
== ZONELIST_ORDER_ZONE
) {
4210 /* calculate node order -- i.e., DMA last! */
4211 build_zonelists_in_zone_order(pgdat
, i
);
4214 build_thisnode_zonelists(pgdat
);
4217 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4219 * Return node id of node used for "local" allocations.
4220 * I.e., first node id of first zone in arg node's generic zonelist.
4221 * Used for initializing percpu 'numa_mem', which is used primarily
4222 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4224 int local_memory_node(int node
)
4228 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4229 gfp_zone(GFP_KERNEL
),
4236 #else /* CONFIG_NUMA */
4238 static void set_zonelist_order(void)
4240 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4243 static void build_zonelists(pg_data_t
*pgdat
)
4245 int node
, local_node
;
4247 struct zonelist
*zonelist
;
4249 local_node
= pgdat
->node_id
;
4251 zonelist
= &pgdat
->node_zonelists
[0];
4252 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4255 * Now we build the zonelist so that it contains the zones
4256 * of all the other nodes.
4257 * We don't want to pressure a particular node, so when
4258 * building the zones for node N, we make sure that the
4259 * zones coming right after the local ones are those from
4260 * node N+1 (modulo N)
4262 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4263 if (!node_online(node
))
4265 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4267 for (node
= 0; node
< local_node
; node
++) {
4268 if (!node_online(node
))
4270 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4273 zonelist
->_zonerefs
[j
].zone
= NULL
;
4274 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4277 #endif /* CONFIG_NUMA */
4280 * Boot pageset table. One per cpu which is going to be used for all
4281 * zones and all nodes. The parameters will be set in such a way
4282 * that an item put on a list will immediately be handed over to
4283 * the buddy list. This is safe since pageset manipulation is done
4284 * with interrupts disabled.
4286 * The boot_pagesets must be kept even after bootup is complete for
4287 * unused processors and/or zones. They do play a role for bootstrapping
4288 * hotplugged processors.
4290 * zoneinfo_show() and maybe other functions do
4291 * not check if the processor is online before following the pageset pointer.
4292 * Other parts of the kernel may not check if the zone is available.
4294 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4295 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4296 static void setup_zone_pageset(struct zone
*zone
);
4299 * Global mutex to protect against size modification of zonelists
4300 * as well as to serialize pageset setup for the new populated zone.
4302 DEFINE_MUTEX(zonelists_mutex
);
4304 /* return values int ....just for stop_machine() */
4305 static int __build_all_zonelists(void *data
)
4309 pg_data_t
*self
= data
;
4312 memset(node_load
, 0, sizeof(node_load
));
4315 if (self
&& !node_online(self
->node_id
)) {
4316 build_zonelists(self
);
4319 for_each_online_node(nid
) {
4320 pg_data_t
*pgdat
= NODE_DATA(nid
);
4322 build_zonelists(pgdat
);
4326 * Initialize the boot_pagesets that are going to be used
4327 * for bootstrapping processors. The real pagesets for
4328 * each zone will be allocated later when the per cpu
4329 * allocator is available.
4331 * boot_pagesets are used also for bootstrapping offline
4332 * cpus if the system is already booted because the pagesets
4333 * are needed to initialize allocators on a specific cpu too.
4334 * F.e. the percpu allocator needs the page allocator which
4335 * needs the percpu allocator in order to allocate its pagesets
4336 * (a chicken-egg dilemma).
4338 for_each_possible_cpu(cpu
) {
4339 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4341 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4343 * We now know the "local memory node" for each node--
4344 * i.e., the node of the first zone in the generic zonelist.
4345 * Set up numa_mem percpu variable for on-line cpus. During
4346 * boot, only the boot cpu should be on-line; we'll init the
4347 * secondary cpus' numa_mem as they come on-line. During
4348 * node/memory hotplug, we'll fixup all on-line cpus.
4350 if (cpu_online(cpu
))
4351 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4358 static noinline
void __init
4359 build_all_zonelists_init(void)
4361 __build_all_zonelists(NULL
);
4362 mminit_verify_zonelist();
4363 cpuset_init_current_mems_allowed();
4367 * Called with zonelists_mutex held always
4368 * unless system_state == SYSTEM_BOOTING.
4370 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4371 * [we're only called with non-NULL zone through __meminit paths] and
4372 * (2) call of __init annotated helper build_all_zonelists_init
4373 * [protected by SYSTEM_BOOTING].
4375 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4377 set_zonelist_order();
4379 if (system_state
== SYSTEM_BOOTING
) {
4380 build_all_zonelists_init();
4382 #ifdef CONFIG_MEMORY_HOTPLUG
4384 setup_zone_pageset(zone
);
4386 /* we have to stop all cpus to guarantee there is no user
4388 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4389 /* cpuset refresh routine should be here */
4391 vm_total_pages
= nr_free_pagecache_pages();
4393 * Disable grouping by mobility if the number of pages in the
4394 * system is too low to allow the mechanism to work. It would be
4395 * more accurate, but expensive to check per-zone. This check is
4396 * made on memory-hotadd so a system can start with mobility
4397 * disabled and enable it later
4399 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4400 page_group_by_mobility_disabled
= 1;
4402 page_group_by_mobility_disabled
= 0;
4404 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4405 "Total pages: %ld\n",
4407 zonelist_order_name
[current_zonelist_order
],
4408 page_group_by_mobility_disabled
? "off" : "on",
4411 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4416 * Helper functions to size the waitqueue hash table.
4417 * Essentially these want to choose hash table sizes sufficiently
4418 * large so that collisions trying to wait on pages are rare.
4419 * But in fact, the number of active page waitqueues on typical
4420 * systems is ridiculously low, less than 200. So this is even
4421 * conservative, even though it seems large.
4423 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4424 * waitqueues, i.e. the size of the waitq table given the number of pages.
4426 #define PAGES_PER_WAITQUEUE 256
4428 #ifndef CONFIG_MEMORY_HOTPLUG
4429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4431 unsigned long size
= 1;
4433 pages
/= PAGES_PER_WAITQUEUE
;
4435 while (size
< pages
)
4439 * Once we have dozens or even hundreds of threads sleeping
4440 * on IO we've got bigger problems than wait queue collision.
4441 * Limit the size of the wait table to a reasonable size.
4443 size
= min(size
, 4096UL);
4445 return max(size
, 4UL);
4449 * A zone's size might be changed by hot-add, so it is not possible to determine
4450 * a suitable size for its wait_table. So we use the maximum size now.
4452 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4454 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4455 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4456 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4458 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4459 * or more by the traditional way. (See above). It equals:
4461 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4462 * ia64(16K page size) : = ( 8G + 4M)byte.
4463 * powerpc (64K page size) : = (32G +16M)byte.
4465 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4472 * This is an integer logarithm so that shifts can be used later
4473 * to extract the more random high bits from the multiplicative
4474 * hash function before the remainder is taken.
4476 static inline unsigned long wait_table_bits(unsigned long size
)
4482 * Initially all pages are reserved - free ones are freed
4483 * up by free_all_bootmem() once the early boot process is
4484 * done. Non-atomic initialization, single-pass.
4486 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4487 unsigned long start_pfn
, enum memmap_context context
)
4489 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
4490 unsigned long end_pfn
= start_pfn
+ size
;
4491 pg_data_t
*pgdat
= NODE_DATA(nid
);
4493 unsigned long nr_initialised
= 0;
4495 if (highest_memmap_pfn
< end_pfn
- 1)
4496 highest_memmap_pfn
= end_pfn
- 1;
4499 * Honor reservation requested by the driver for this ZONE_DEVICE
4502 if (altmap
&& start_pfn
== altmap
->base_pfn
)
4503 start_pfn
+= altmap
->reserve
;
4505 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4507 * There can be holes in boot-time mem_map[]s
4508 * handed to this function. They do not
4509 * exist on hotplugged memory.
4511 if (context
== MEMMAP_EARLY
) {
4512 if (!early_pfn_valid(pfn
))
4514 if (!early_pfn_in_nid(pfn
, nid
))
4516 if (!update_defer_init(pgdat
, pfn
, end_pfn
,
4522 * Mark the block movable so that blocks are reserved for
4523 * movable at startup. This will force kernel allocations
4524 * to reserve their blocks rather than leaking throughout
4525 * the address space during boot when many long-lived
4526 * kernel allocations are made.
4528 * bitmap is created for zone's valid pfn range. but memmap
4529 * can be created for invalid pages (for alignment)
4530 * check here not to call set_pageblock_migratetype() against
4533 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4534 struct page
*page
= pfn_to_page(pfn
);
4536 __init_single_page(page
, pfn
, zone
, nid
);
4537 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4539 __init_single_pfn(pfn
, zone
, nid
);
4544 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4546 unsigned int order
, t
;
4547 for_each_migratetype_order(order
, t
) {
4548 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4549 zone
->free_area
[order
].nr_free
= 0;
4553 #ifndef __HAVE_ARCH_MEMMAP_INIT
4554 #define memmap_init(size, nid, zone, start_pfn) \
4555 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4558 static int zone_batchsize(struct zone
*zone
)
4564 * The per-cpu-pages pools are set to around 1000th of the
4565 * size of the zone. But no more than 1/2 of a meg.
4567 * OK, so we don't know how big the cache is. So guess.
4569 batch
= zone
->managed_pages
/ 1024;
4570 if (batch
* PAGE_SIZE
> 512 * 1024)
4571 batch
= (512 * 1024) / PAGE_SIZE
;
4572 batch
/= 4; /* We effectively *= 4 below */
4577 * Clamp the batch to a 2^n - 1 value. Having a power
4578 * of 2 value was found to be more likely to have
4579 * suboptimal cache aliasing properties in some cases.
4581 * For example if 2 tasks are alternately allocating
4582 * batches of pages, one task can end up with a lot
4583 * of pages of one half of the possible page colors
4584 * and the other with pages of the other colors.
4586 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4591 /* The deferral and batching of frees should be suppressed under NOMMU
4594 * The problem is that NOMMU needs to be able to allocate large chunks
4595 * of contiguous memory as there's no hardware page translation to
4596 * assemble apparent contiguous memory from discontiguous pages.
4598 * Queueing large contiguous runs of pages for batching, however,
4599 * causes the pages to actually be freed in smaller chunks. As there
4600 * can be a significant delay between the individual batches being
4601 * recycled, this leads to the once large chunks of space being
4602 * fragmented and becoming unavailable for high-order allocations.
4609 * pcp->high and pcp->batch values are related and dependent on one another:
4610 * ->batch must never be higher then ->high.
4611 * The following function updates them in a safe manner without read side
4614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4615 * those fields changing asynchronously (acording the the above rule).
4617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4618 * outside of boot time (or some other assurance that no concurrent updaters
4621 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4622 unsigned long batch
)
4624 /* start with a fail safe value for batch */
4628 /* Update high, then batch, in order */
4635 /* a companion to pageset_set_high() */
4636 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4638 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4641 static void pageset_init(struct per_cpu_pageset
*p
)
4643 struct per_cpu_pages
*pcp
;
4646 memset(p
, 0, sizeof(*p
));
4650 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4651 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4654 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4657 pageset_set_batch(p
, batch
);
4661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4662 * to the value high for the pageset p.
4664 static void pageset_set_high(struct per_cpu_pageset
*p
,
4667 unsigned long batch
= max(1UL, high
/ 4);
4668 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4669 batch
= PAGE_SHIFT
* 8;
4671 pageset_update(&p
->pcp
, high
, batch
);
4674 static void pageset_set_high_and_batch(struct zone
*zone
,
4675 struct per_cpu_pageset
*pcp
)
4677 if (percpu_pagelist_fraction
)
4678 pageset_set_high(pcp
,
4679 (zone
->managed_pages
/
4680 percpu_pagelist_fraction
));
4682 pageset_set_batch(pcp
, zone_batchsize(zone
));
4685 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4687 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4690 pageset_set_high_and_batch(zone
, pcp
);
4693 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4696 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4697 for_each_possible_cpu(cpu
)
4698 zone_pageset_init(zone
, cpu
);
4702 * Allocate per cpu pagesets and initialize them.
4703 * Before this call only boot pagesets were available.
4705 void __init
setup_per_cpu_pageset(void)
4709 for_each_populated_zone(zone
)
4710 setup_zone_pageset(zone
);
4713 static noinline __init_refok
4714 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4720 * The per-page waitqueue mechanism uses hashed waitqueues
4723 zone
->wait_table_hash_nr_entries
=
4724 wait_table_hash_nr_entries(zone_size_pages
);
4725 zone
->wait_table_bits
=
4726 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4727 alloc_size
= zone
->wait_table_hash_nr_entries
4728 * sizeof(wait_queue_head_t
);
4730 if (!slab_is_available()) {
4731 zone
->wait_table
= (wait_queue_head_t
*)
4732 memblock_virt_alloc_node_nopanic(
4733 alloc_size
, zone
->zone_pgdat
->node_id
);
4736 * This case means that a zone whose size was 0 gets new memory
4737 * via memory hot-add.
4738 * But it may be the case that a new node was hot-added. In
4739 * this case vmalloc() will not be able to use this new node's
4740 * memory - this wait_table must be initialized to use this new
4741 * node itself as well.
4742 * To use this new node's memory, further consideration will be
4745 zone
->wait_table
= vmalloc(alloc_size
);
4747 if (!zone
->wait_table
)
4750 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4751 init_waitqueue_head(zone
->wait_table
+ i
);
4756 static __meminit
void zone_pcp_init(struct zone
*zone
)
4759 * per cpu subsystem is not up at this point. The following code
4760 * relies on the ability of the linker to provide the
4761 * offset of a (static) per cpu variable into the per cpu area.
4763 zone
->pageset
= &boot_pageset
;
4765 if (populated_zone(zone
))
4766 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4767 zone
->name
, zone
->present_pages
,
4768 zone_batchsize(zone
));
4771 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4772 unsigned long zone_start_pfn
,
4775 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4777 ret
= zone_wait_table_init(zone
, size
);
4780 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4782 zone
->zone_start_pfn
= zone_start_pfn
;
4784 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4785 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4787 (unsigned long)zone_idx(zone
),
4788 zone_start_pfn
, (zone_start_pfn
+ size
));
4790 zone_init_free_lists(zone
);
4795 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4796 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4799 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4801 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
4802 struct mminit_pfnnid_cache
*state
)
4804 unsigned long start_pfn
, end_pfn
;
4807 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
4808 return state
->last_nid
;
4810 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4812 state
->last_start
= start_pfn
;
4813 state
->last_end
= end_pfn
;
4814 state
->last_nid
= nid
;
4819 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4822 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4823 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4824 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4826 * If an architecture guarantees that all ranges registered contain no holes
4827 * and may be freed, this this function may be used instead of calling
4828 * memblock_free_early_nid() manually.
4830 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4832 unsigned long start_pfn
, end_pfn
;
4835 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4836 start_pfn
= min(start_pfn
, max_low_pfn
);
4837 end_pfn
= min(end_pfn
, max_low_pfn
);
4839 if (start_pfn
< end_pfn
)
4840 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4841 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4847 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4848 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4850 * If an architecture guarantees that all ranges registered contain no holes and may
4851 * be freed, this function may be used instead of calling memory_present() manually.
4853 void __init
sparse_memory_present_with_active_regions(int nid
)
4855 unsigned long start_pfn
, end_pfn
;
4858 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4859 memory_present(this_nid
, start_pfn
, end_pfn
);
4863 * get_pfn_range_for_nid - Return the start and end page frames for a node
4864 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4865 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4866 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4868 * It returns the start and end page frame of a node based on information
4869 * provided by memblock_set_node(). If called for a node
4870 * with no available memory, a warning is printed and the start and end
4873 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4874 unsigned long *start_pfn
, unsigned long *end_pfn
)
4876 unsigned long this_start_pfn
, this_end_pfn
;
4882 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4883 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4884 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4887 if (*start_pfn
== -1UL)
4892 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4893 * assumption is made that zones within a node are ordered in monotonic
4894 * increasing memory addresses so that the "highest" populated zone is used
4896 static void __init
find_usable_zone_for_movable(void)
4899 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4900 if (zone_index
== ZONE_MOVABLE
)
4903 if (arch_zone_highest_possible_pfn
[zone_index
] >
4904 arch_zone_lowest_possible_pfn
[zone_index
])
4908 VM_BUG_ON(zone_index
== -1);
4909 movable_zone
= zone_index
;
4913 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4914 * because it is sized independent of architecture. Unlike the other zones,
4915 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4916 * in each node depending on the size of each node and how evenly kernelcore
4917 * is distributed. This helper function adjusts the zone ranges
4918 * provided by the architecture for a given node by using the end of the
4919 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4920 * zones within a node are in order of monotonic increases memory addresses
4922 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4923 unsigned long zone_type
,
4924 unsigned long node_start_pfn
,
4925 unsigned long node_end_pfn
,
4926 unsigned long *zone_start_pfn
,
4927 unsigned long *zone_end_pfn
)
4929 /* Only adjust if ZONE_MOVABLE is on this node */
4930 if (zone_movable_pfn
[nid
]) {
4931 /* Size ZONE_MOVABLE */
4932 if (zone_type
== ZONE_MOVABLE
) {
4933 *zone_start_pfn
= zone_movable_pfn
[nid
];
4934 *zone_end_pfn
= min(node_end_pfn
,
4935 arch_zone_highest_possible_pfn
[movable_zone
]);
4937 /* Adjust for ZONE_MOVABLE starting within this range */
4938 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4939 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4940 *zone_end_pfn
= zone_movable_pfn
[nid
];
4942 /* Check if this whole range is within ZONE_MOVABLE */
4943 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4944 *zone_start_pfn
= *zone_end_pfn
;
4949 * Return the number of pages a zone spans in a node, including holes
4950 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4952 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4953 unsigned long zone_type
,
4954 unsigned long node_start_pfn
,
4955 unsigned long node_end_pfn
,
4956 unsigned long *ignored
)
4958 unsigned long zone_start_pfn
, zone_end_pfn
;
4960 /* When hotadd a new node from cpu_up(), the node should be empty */
4961 if (!node_start_pfn
&& !node_end_pfn
)
4964 /* Get the start and end of the zone */
4965 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4966 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4967 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4968 node_start_pfn
, node_end_pfn
,
4969 &zone_start_pfn
, &zone_end_pfn
);
4971 /* Check that this node has pages within the zone's required range */
4972 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4975 /* Move the zone boundaries inside the node if necessary */
4976 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4977 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4979 /* Return the spanned pages */
4980 return zone_end_pfn
- zone_start_pfn
;
4984 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4985 * then all holes in the requested range will be accounted for.
4987 unsigned long __meminit
__absent_pages_in_range(int nid
,
4988 unsigned long range_start_pfn
,
4989 unsigned long range_end_pfn
)
4991 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4992 unsigned long start_pfn
, end_pfn
;
4995 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4996 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4997 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4998 nr_absent
-= end_pfn
- start_pfn
;
5004 * absent_pages_in_range - Return number of page frames in holes within a range
5005 * @start_pfn: The start PFN to start searching for holes
5006 * @end_pfn: The end PFN to stop searching for holes
5008 * It returns the number of pages frames in memory holes within a range.
5010 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5011 unsigned long end_pfn
)
5013 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5016 /* Return the number of page frames in holes in a zone on a node */
5017 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5018 unsigned long zone_type
,
5019 unsigned long node_start_pfn
,
5020 unsigned long node_end_pfn
,
5021 unsigned long *ignored
)
5023 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5024 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5025 unsigned long zone_start_pfn
, zone_end_pfn
;
5027 /* When hotadd a new node from cpu_up(), the node should be empty */
5028 if (!node_start_pfn
&& !node_end_pfn
)
5031 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5032 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5034 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5035 node_start_pfn
, node_end_pfn
,
5036 &zone_start_pfn
, &zone_end_pfn
);
5037 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5040 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5041 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5042 unsigned long zone_type
,
5043 unsigned long node_start_pfn
,
5044 unsigned long node_end_pfn
,
5045 unsigned long *zones_size
)
5047 return zones_size
[zone_type
];
5050 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5051 unsigned long zone_type
,
5052 unsigned long node_start_pfn
,
5053 unsigned long node_end_pfn
,
5054 unsigned long *zholes_size
)
5059 return zholes_size
[zone_type
];
5062 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5064 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5065 unsigned long node_start_pfn
,
5066 unsigned long node_end_pfn
,
5067 unsigned long *zones_size
,
5068 unsigned long *zholes_size
)
5070 unsigned long realtotalpages
= 0, totalpages
= 0;
5073 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5074 struct zone
*zone
= pgdat
->node_zones
+ i
;
5075 unsigned long size
, real_size
;
5077 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5081 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5082 node_start_pfn
, node_end_pfn
,
5084 zone
->spanned_pages
= size
;
5085 zone
->present_pages
= real_size
;
5088 realtotalpages
+= real_size
;
5091 pgdat
->node_spanned_pages
= totalpages
;
5092 pgdat
->node_present_pages
= realtotalpages
;
5093 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5097 #ifndef CONFIG_SPARSEMEM
5099 * Calculate the size of the zone->blockflags rounded to an unsigned long
5100 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5101 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5102 * round what is now in bits to nearest long in bits, then return it in
5105 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5107 unsigned long usemapsize
;
5109 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5110 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5111 usemapsize
= usemapsize
>> pageblock_order
;
5112 usemapsize
*= NR_PAGEBLOCK_BITS
;
5113 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5115 return usemapsize
/ 8;
5118 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5120 unsigned long zone_start_pfn
,
5121 unsigned long zonesize
)
5123 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5124 zone
->pageblock_flags
= NULL
;
5126 zone
->pageblock_flags
=
5127 memblock_virt_alloc_node_nopanic(usemapsize
,
5131 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5132 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5133 #endif /* CONFIG_SPARSEMEM */
5135 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5137 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5138 void __paginginit
set_pageblock_order(void)
5142 /* Check that pageblock_nr_pages has not already been setup */
5143 if (pageblock_order
)
5146 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5147 order
= HUGETLB_PAGE_ORDER
;
5149 order
= MAX_ORDER
- 1;
5152 * Assume the largest contiguous order of interest is a huge page.
5153 * This value may be variable depending on boot parameters on IA64 and
5156 pageblock_order
= order
;
5158 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5161 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5162 * is unused as pageblock_order is set at compile-time. See
5163 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5166 void __paginginit
set_pageblock_order(void)
5170 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5172 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5173 unsigned long present_pages
)
5175 unsigned long pages
= spanned_pages
;
5178 * Provide a more accurate estimation if there are holes within
5179 * the zone and SPARSEMEM is in use. If there are holes within the
5180 * zone, each populated memory region may cost us one or two extra
5181 * memmap pages due to alignment because memmap pages for each
5182 * populated regions may not naturally algined on page boundary.
5183 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5185 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5186 IS_ENABLED(CONFIG_SPARSEMEM
))
5187 pages
= present_pages
;
5189 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5193 * Set up the zone data structures:
5194 * - mark all pages reserved
5195 * - mark all memory queues empty
5196 * - clear the memory bitmaps
5198 * NOTE: pgdat should get zeroed by caller.
5200 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5203 int nid
= pgdat
->node_id
;
5204 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
5207 pgdat_resize_init(pgdat
);
5208 #ifdef CONFIG_NUMA_BALANCING
5209 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5210 pgdat
->numabalancing_migrate_nr_pages
= 0;
5211 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5213 init_waitqueue_head(&pgdat
->kswapd_wait
);
5214 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5215 pgdat_page_ext_init(pgdat
);
5217 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5218 struct zone
*zone
= pgdat
->node_zones
+ j
;
5219 unsigned long size
, realsize
, freesize
, memmap_pages
;
5221 size
= zone
->spanned_pages
;
5222 realsize
= freesize
= zone
->present_pages
;
5225 * Adjust freesize so that it accounts for how much memory
5226 * is used by this zone for memmap. This affects the watermark
5227 * and per-cpu initialisations
5229 memmap_pages
= calc_memmap_size(size
, realsize
);
5230 if (!is_highmem_idx(j
)) {
5231 if (freesize
>= memmap_pages
) {
5232 freesize
-= memmap_pages
;
5235 " %s zone: %lu pages used for memmap\n",
5236 zone_names
[j
], memmap_pages
);
5239 " %s zone: %lu pages exceeds freesize %lu\n",
5240 zone_names
[j
], memmap_pages
, freesize
);
5243 /* Account for reserved pages */
5244 if (j
== 0 && freesize
> dma_reserve
) {
5245 freesize
-= dma_reserve
;
5246 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5247 zone_names
[0], dma_reserve
);
5250 if (!is_highmem_idx(j
))
5251 nr_kernel_pages
+= freesize
;
5252 /* Charge for highmem memmap if there are enough kernel pages */
5253 else if (nr_kernel_pages
> memmap_pages
* 2)
5254 nr_kernel_pages
-= memmap_pages
;
5255 nr_all_pages
+= freesize
;
5258 * Set an approximate value for lowmem here, it will be adjusted
5259 * when the bootmem allocator frees pages into the buddy system.
5260 * And all highmem pages will be managed by the buddy system.
5262 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5265 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5267 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5269 zone
->name
= zone_names
[j
];
5270 spin_lock_init(&zone
->lock
);
5271 spin_lock_init(&zone
->lru_lock
);
5272 zone_seqlock_init(zone
);
5273 zone
->zone_pgdat
= pgdat
;
5274 zone_pcp_init(zone
);
5276 /* For bootup, initialized properly in watermark setup */
5277 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5279 lruvec_init(&zone
->lruvec
);
5283 set_pageblock_order();
5284 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5285 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5287 memmap_init(size
, nid
, j
, zone_start_pfn
);
5288 zone_start_pfn
+= size
;
5292 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5294 unsigned long __maybe_unused start
= 0;
5295 unsigned long __maybe_unused offset
= 0;
5297 /* Skip empty nodes */
5298 if (!pgdat
->node_spanned_pages
)
5301 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5302 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5303 offset
= pgdat
->node_start_pfn
- start
;
5304 /* ia64 gets its own node_mem_map, before this, without bootmem */
5305 if (!pgdat
->node_mem_map
) {
5306 unsigned long size
, end
;
5310 * The zone's endpoints aren't required to be MAX_ORDER
5311 * aligned but the node_mem_map endpoints must be in order
5312 * for the buddy allocator to function correctly.
5314 end
= pgdat_end_pfn(pgdat
);
5315 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5316 size
= (end
- start
) * sizeof(struct page
);
5317 map
= alloc_remap(pgdat
->node_id
, size
);
5319 map
= memblock_virt_alloc_node_nopanic(size
,
5321 pgdat
->node_mem_map
= map
+ offset
;
5323 #ifndef CONFIG_NEED_MULTIPLE_NODES
5325 * With no DISCONTIG, the global mem_map is just set as node 0's
5327 if (pgdat
== NODE_DATA(0)) {
5328 mem_map
= NODE_DATA(0)->node_mem_map
;
5329 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5330 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5332 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5335 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5338 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5339 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5341 pg_data_t
*pgdat
= NODE_DATA(nid
);
5342 unsigned long start_pfn
= 0;
5343 unsigned long end_pfn
= 0;
5345 /* pg_data_t should be reset to zero when it's allocated */
5346 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5348 reset_deferred_meminit(pgdat
);
5349 pgdat
->node_id
= nid
;
5350 pgdat
->node_start_pfn
= node_start_pfn
;
5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5353 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5354 (u64
)start_pfn
<< PAGE_SHIFT
,
5355 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5357 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5358 zones_size
, zholes_size
);
5360 alloc_node_mem_map(pgdat
);
5361 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5362 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5363 nid
, (unsigned long)pgdat
,
5364 (unsigned long)pgdat
->node_mem_map
);
5367 free_area_init_core(pgdat
);
5370 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5372 #if MAX_NUMNODES > 1
5374 * Figure out the number of possible node ids.
5376 void __init
setup_nr_node_ids(void)
5378 unsigned int highest
;
5380 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5381 nr_node_ids
= highest
+ 1;
5386 * node_map_pfn_alignment - determine the maximum internode alignment
5388 * This function should be called after node map is populated and sorted.
5389 * It calculates the maximum power of two alignment which can distinguish
5392 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5393 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5394 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5395 * shifted, 1GiB is enough and this function will indicate so.
5397 * This is used to test whether pfn -> nid mapping of the chosen memory
5398 * model has fine enough granularity to avoid incorrect mapping for the
5399 * populated node map.
5401 * Returns the determined alignment in pfn's. 0 if there is no alignment
5402 * requirement (single node).
5404 unsigned long __init
node_map_pfn_alignment(void)
5406 unsigned long accl_mask
= 0, last_end
= 0;
5407 unsigned long start
, end
, mask
;
5411 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5412 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5419 * Start with a mask granular enough to pin-point to the
5420 * start pfn and tick off bits one-by-one until it becomes
5421 * too coarse to separate the current node from the last.
5423 mask
= ~((1 << __ffs(start
)) - 1);
5424 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5427 /* accumulate all internode masks */
5431 /* convert mask to number of pages */
5432 return ~accl_mask
+ 1;
5435 /* Find the lowest pfn for a node */
5436 static unsigned long __init
find_min_pfn_for_node(int nid
)
5438 unsigned long min_pfn
= ULONG_MAX
;
5439 unsigned long start_pfn
;
5442 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5443 min_pfn
= min(min_pfn
, start_pfn
);
5445 if (min_pfn
== ULONG_MAX
) {
5447 "Could not find start_pfn for node %d\n", nid
);
5455 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5457 * It returns the minimum PFN based on information provided via
5458 * memblock_set_node().
5460 unsigned long __init
find_min_pfn_with_active_regions(void)
5462 return find_min_pfn_for_node(MAX_NUMNODES
);
5466 * early_calculate_totalpages()
5467 * Sum pages in active regions for movable zone.
5468 * Populate N_MEMORY for calculating usable_nodes.
5470 static unsigned long __init
early_calculate_totalpages(void)
5472 unsigned long totalpages
= 0;
5473 unsigned long start_pfn
, end_pfn
;
5476 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5477 unsigned long pages
= end_pfn
- start_pfn
;
5479 totalpages
+= pages
;
5481 node_set_state(nid
, N_MEMORY
);
5487 * Find the PFN the Movable zone begins in each node. Kernel memory
5488 * is spread evenly between nodes as long as the nodes have enough
5489 * memory. When they don't, some nodes will have more kernelcore than
5492 static void __init
find_zone_movable_pfns_for_nodes(void)
5495 unsigned long usable_startpfn
;
5496 unsigned long kernelcore_node
, kernelcore_remaining
;
5497 /* save the state before borrow the nodemask */
5498 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5499 unsigned long totalpages
= early_calculate_totalpages();
5500 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5501 struct memblock_region
*r
;
5503 /* Need to find movable_zone earlier when movable_node is specified. */
5504 find_usable_zone_for_movable();
5507 * If movable_node is specified, ignore kernelcore and movablecore
5510 if (movable_node_is_enabled()) {
5511 for_each_memblock(memory
, r
) {
5512 if (!memblock_is_hotpluggable(r
))
5517 usable_startpfn
= PFN_DOWN(r
->base
);
5518 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5519 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5527 * If movablecore=nn[KMG] was specified, calculate what size of
5528 * kernelcore that corresponds so that memory usable for
5529 * any allocation type is evenly spread. If both kernelcore
5530 * and movablecore are specified, then the value of kernelcore
5531 * will be used for required_kernelcore if it's greater than
5532 * what movablecore would have allowed.
5534 if (required_movablecore
) {
5535 unsigned long corepages
;
5538 * Round-up so that ZONE_MOVABLE is at least as large as what
5539 * was requested by the user
5541 required_movablecore
=
5542 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5543 required_movablecore
= min(totalpages
, required_movablecore
);
5544 corepages
= totalpages
- required_movablecore
;
5546 required_kernelcore
= max(required_kernelcore
, corepages
);
5550 * If kernelcore was not specified or kernelcore size is larger
5551 * than totalpages, there is no ZONE_MOVABLE.
5553 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
5556 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5557 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5560 /* Spread kernelcore memory as evenly as possible throughout nodes */
5561 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5562 for_each_node_state(nid
, N_MEMORY
) {
5563 unsigned long start_pfn
, end_pfn
;
5566 * Recalculate kernelcore_node if the division per node
5567 * now exceeds what is necessary to satisfy the requested
5568 * amount of memory for the kernel
5570 if (required_kernelcore
< kernelcore_node
)
5571 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5574 * As the map is walked, we track how much memory is usable
5575 * by the kernel using kernelcore_remaining. When it is
5576 * 0, the rest of the node is usable by ZONE_MOVABLE
5578 kernelcore_remaining
= kernelcore_node
;
5580 /* Go through each range of PFNs within this node */
5581 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5582 unsigned long size_pages
;
5584 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5585 if (start_pfn
>= end_pfn
)
5588 /* Account for what is only usable for kernelcore */
5589 if (start_pfn
< usable_startpfn
) {
5590 unsigned long kernel_pages
;
5591 kernel_pages
= min(end_pfn
, usable_startpfn
)
5594 kernelcore_remaining
-= min(kernel_pages
,
5595 kernelcore_remaining
);
5596 required_kernelcore
-= min(kernel_pages
,
5597 required_kernelcore
);
5599 /* Continue if range is now fully accounted */
5600 if (end_pfn
<= usable_startpfn
) {
5603 * Push zone_movable_pfn to the end so
5604 * that if we have to rebalance
5605 * kernelcore across nodes, we will
5606 * not double account here
5608 zone_movable_pfn
[nid
] = end_pfn
;
5611 start_pfn
= usable_startpfn
;
5615 * The usable PFN range for ZONE_MOVABLE is from
5616 * start_pfn->end_pfn. Calculate size_pages as the
5617 * number of pages used as kernelcore
5619 size_pages
= end_pfn
- start_pfn
;
5620 if (size_pages
> kernelcore_remaining
)
5621 size_pages
= kernelcore_remaining
;
5622 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5625 * Some kernelcore has been met, update counts and
5626 * break if the kernelcore for this node has been
5629 required_kernelcore
-= min(required_kernelcore
,
5631 kernelcore_remaining
-= size_pages
;
5632 if (!kernelcore_remaining
)
5638 * If there is still required_kernelcore, we do another pass with one
5639 * less node in the count. This will push zone_movable_pfn[nid] further
5640 * along on the nodes that still have memory until kernelcore is
5644 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5648 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5649 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5650 zone_movable_pfn
[nid
] =
5651 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5654 /* restore the node_state */
5655 node_states
[N_MEMORY
] = saved_node_state
;
5658 /* Any regular or high memory on that node ? */
5659 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5661 enum zone_type zone_type
;
5663 if (N_MEMORY
== N_NORMAL_MEMORY
)
5666 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5667 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5668 if (populated_zone(zone
)) {
5669 node_set_state(nid
, N_HIGH_MEMORY
);
5670 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5671 zone_type
<= ZONE_NORMAL
)
5672 node_set_state(nid
, N_NORMAL_MEMORY
);
5679 * free_area_init_nodes - Initialise all pg_data_t and zone data
5680 * @max_zone_pfn: an array of max PFNs for each zone
5682 * This will call free_area_init_node() for each active node in the system.
5683 * Using the page ranges provided by memblock_set_node(), the size of each
5684 * zone in each node and their holes is calculated. If the maximum PFN
5685 * between two adjacent zones match, it is assumed that the zone is empty.
5686 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5687 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5688 * starts where the previous one ended. For example, ZONE_DMA32 starts
5689 * at arch_max_dma_pfn.
5691 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5693 unsigned long start_pfn
, end_pfn
;
5696 /* Record where the zone boundaries are */
5697 memset(arch_zone_lowest_possible_pfn
, 0,
5698 sizeof(arch_zone_lowest_possible_pfn
));
5699 memset(arch_zone_highest_possible_pfn
, 0,
5700 sizeof(arch_zone_highest_possible_pfn
));
5701 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5702 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5703 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5704 if (i
== ZONE_MOVABLE
)
5706 arch_zone_lowest_possible_pfn
[i
] =
5707 arch_zone_highest_possible_pfn
[i
-1];
5708 arch_zone_highest_possible_pfn
[i
] =
5709 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5711 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5712 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5714 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5715 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5716 find_zone_movable_pfns_for_nodes();
5718 /* Print out the zone ranges */
5719 pr_info("Zone ranges:\n");
5720 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5721 if (i
== ZONE_MOVABLE
)
5723 pr_info(" %-8s ", zone_names
[i
]);
5724 if (arch_zone_lowest_possible_pfn
[i
] ==
5725 arch_zone_highest_possible_pfn
[i
])
5728 pr_cont("[mem %#018Lx-%#018Lx]\n",
5729 (u64
)arch_zone_lowest_possible_pfn
[i
]
5731 ((u64
)arch_zone_highest_possible_pfn
[i
]
5732 << PAGE_SHIFT
) - 1);
5735 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5736 pr_info("Movable zone start for each node\n");
5737 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5738 if (zone_movable_pfn
[i
])
5739 pr_info(" Node %d: %#018Lx\n", i
,
5740 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
5743 /* Print out the early node map */
5744 pr_info("Early memory node ranges\n");
5745 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5746 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
5747 (u64
)start_pfn
<< PAGE_SHIFT
,
5748 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5750 /* Initialise every node */
5751 mminit_verify_pageflags_layout();
5752 setup_nr_node_ids();
5753 for_each_online_node(nid
) {
5754 pg_data_t
*pgdat
= NODE_DATA(nid
);
5755 free_area_init_node(nid
, NULL
,
5756 find_min_pfn_for_node(nid
), NULL
);
5758 /* Any memory on that node */
5759 if (pgdat
->node_present_pages
)
5760 node_set_state(nid
, N_MEMORY
);
5761 check_for_memory(pgdat
, nid
);
5765 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5767 unsigned long long coremem
;
5771 coremem
= memparse(p
, &p
);
5772 *core
= coremem
>> PAGE_SHIFT
;
5774 /* Paranoid check that UL is enough for the coremem value */
5775 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5781 * kernelcore=size sets the amount of memory for use for allocations that
5782 * cannot be reclaimed or migrated.
5784 static int __init
cmdline_parse_kernelcore(char *p
)
5786 return cmdline_parse_core(p
, &required_kernelcore
);
5790 * movablecore=size sets the amount of memory for use for allocations that
5791 * can be reclaimed or migrated.
5793 static int __init
cmdline_parse_movablecore(char *p
)
5795 return cmdline_parse_core(p
, &required_movablecore
);
5798 early_param("kernelcore", cmdline_parse_kernelcore
);
5799 early_param("movablecore", cmdline_parse_movablecore
);
5801 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5803 void adjust_managed_page_count(struct page
*page
, long count
)
5805 spin_lock(&managed_page_count_lock
);
5806 page_zone(page
)->managed_pages
+= count
;
5807 totalram_pages
+= count
;
5808 #ifdef CONFIG_HIGHMEM
5809 if (PageHighMem(page
))
5810 totalhigh_pages
+= count
;
5812 spin_unlock(&managed_page_count_lock
);
5814 EXPORT_SYMBOL(adjust_managed_page_count
);
5816 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5819 unsigned long pages
= 0;
5821 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5822 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5823 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5824 if ((unsigned int)poison
<= 0xFF)
5825 memset(pos
, poison
, PAGE_SIZE
);
5826 free_reserved_page(virt_to_page(pos
));
5830 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5831 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5835 EXPORT_SYMBOL(free_reserved_area
);
5837 #ifdef CONFIG_HIGHMEM
5838 void free_highmem_page(struct page
*page
)
5840 __free_reserved_page(page
);
5842 page_zone(page
)->managed_pages
++;
5848 void __init
mem_init_print_info(const char *str
)
5850 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5851 unsigned long init_code_size
, init_data_size
;
5853 physpages
= get_num_physpages();
5854 codesize
= _etext
- _stext
;
5855 datasize
= _edata
- _sdata
;
5856 rosize
= __end_rodata
- __start_rodata
;
5857 bss_size
= __bss_stop
- __bss_start
;
5858 init_data_size
= __init_end
- __init_begin
;
5859 init_code_size
= _einittext
- _sinittext
;
5862 * Detect special cases and adjust section sizes accordingly:
5863 * 1) .init.* may be embedded into .data sections
5864 * 2) .init.text.* may be out of [__init_begin, __init_end],
5865 * please refer to arch/tile/kernel/vmlinux.lds.S.
5866 * 3) .rodata.* may be embedded into .text or .data sections.
5868 #define adj_init_size(start, end, size, pos, adj) \
5870 if (start <= pos && pos < end && size > adj) \
5874 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5875 _sinittext
, init_code_size
);
5876 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5877 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5878 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5879 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5881 #undef adj_init_size
5883 pr_info("Memory: %luK/%luK available "
5884 "(%luK kernel code, %luK rwdata, %luK rodata, "
5885 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5886 #ifdef CONFIG_HIGHMEM
5890 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5891 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5892 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5893 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
-10),
5894 totalcma_pages
<< (PAGE_SHIFT
-10),
5895 #ifdef CONFIG_HIGHMEM
5896 totalhigh_pages
<< (PAGE_SHIFT
-10),
5898 str
? ", " : "", str
? str
: "");
5902 * set_dma_reserve - set the specified number of pages reserved in the first zone
5903 * @new_dma_reserve: The number of pages to mark reserved
5905 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5906 * In the DMA zone, a significant percentage may be consumed by kernel image
5907 * and other unfreeable allocations which can skew the watermarks badly. This
5908 * function may optionally be used to account for unfreeable pages in the
5909 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5910 * smaller per-cpu batchsize.
5912 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5914 dma_reserve
= new_dma_reserve
;
5917 void __init
free_area_init(unsigned long *zones_size
)
5919 free_area_init_node(0, zones_size
,
5920 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5923 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5924 unsigned long action
, void *hcpu
)
5926 int cpu
= (unsigned long)hcpu
;
5928 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5929 lru_add_drain_cpu(cpu
);
5933 * Spill the event counters of the dead processor
5934 * into the current processors event counters.
5935 * This artificially elevates the count of the current
5938 vm_events_fold_cpu(cpu
);
5941 * Zero the differential counters of the dead processor
5942 * so that the vm statistics are consistent.
5944 * This is only okay since the processor is dead and cannot
5945 * race with what we are doing.
5947 cpu_vm_stats_fold(cpu
);
5952 void __init
page_alloc_init(void)
5954 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5958 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5959 * or min_free_kbytes changes.
5961 static void calculate_totalreserve_pages(void)
5963 struct pglist_data
*pgdat
;
5964 unsigned long reserve_pages
= 0;
5965 enum zone_type i
, j
;
5967 for_each_online_pgdat(pgdat
) {
5968 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5969 struct zone
*zone
= pgdat
->node_zones
+ i
;
5972 /* Find valid and maximum lowmem_reserve in the zone */
5973 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5974 if (zone
->lowmem_reserve
[j
] > max
)
5975 max
= zone
->lowmem_reserve
[j
];
5978 /* we treat the high watermark as reserved pages. */
5979 max
+= high_wmark_pages(zone
);
5981 if (max
> zone
->managed_pages
)
5982 max
= zone
->managed_pages
;
5984 zone
->totalreserve_pages
= max
;
5986 reserve_pages
+= max
;
5989 totalreserve_pages
= reserve_pages
;
5993 * setup_per_zone_lowmem_reserve - called whenever
5994 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5995 * has a correct pages reserved value, so an adequate number of
5996 * pages are left in the zone after a successful __alloc_pages().
5998 static void setup_per_zone_lowmem_reserve(void)
6000 struct pglist_data
*pgdat
;
6001 enum zone_type j
, idx
;
6003 for_each_online_pgdat(pgdat
) {
6004 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6005 struct zone
*zone
= pgdat
->node_zones
+ j
;
6006 unsigned long managed_pages
= zone
->managed_pages
;
6008 zone
->lowmem_reserve
[j
] = 0;
6012 struct zone
*lower_zone
;
6016 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6017 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6019 lower_zone
= pgdat
->node_zones
+ idx
;
6020 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6021 sysctl_lowmem_reserve_ratio
[idx
];
6022 managed_pages
+= lower_zone
->managed_pages
;
6027 /* update totalreserve_pages */
6028 calculate_totalreserve_pages();
6031 static void __setup_per_zone_wmarks(void)
6033 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6034 unsigned long lowmem_pages
= 0;
6036 unsigned long flags
;
6038 /* Calculate total number of !ZONE_HIGHMEM pages */
6039 for_each_zone(zone
) {
6040 if (!is_highmem(zone
))
6041 lowmem_pages
+= zone
->managed_pages
;
6044 for_each_zone(zone
) {
6047 spin_lock_irqsave(&zone
->lock
, flags
);
6048 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6049 do_div(tmp
, lowmem_pages
);
6050 if (is_highmem(zone
)) {
6052 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6053 * need highmem pages, so cap pages_min to a small
6056 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6057 * deltas control asynch page reclaim, and so should
6058 * not be capped for highmem.
6060 unsigned long min_pages
;
6062 min_pages
= zone
->managed_pages
/ 1024;
6063 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6064 zone
->watermark
[WMARK_MIN
] = min_pages
;
6067 * If it's a lowmem zone, reserve a number of pages
6068 * proportionate to the zone's size.
6070 zone
->watermark
[WMARK_MIN
] = tmp
;
6073 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
6074 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
6076 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6077 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6078 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6080 spin_unlock_irqrestore(&zone
->lock
, flags
);
6083 /* update totalreserve_pages */
6084 calculate_totalreserve_pages();
6088 * setup_per_zone_wmarks - called when min_free_kbytes changes
6089 * or when memory is hot-{added|removed}
6091 * Ensures that the watermark[min,low,high] values for each zone are set
6092 * correctly with respect to min_free_kbytes.
6094 void setup_per_zone_wmarks(void)
6096 mutex_lock(&zonelists_mutex
);
6097 __setup_per_zone_wmarks();
6098 mutex_unlock(&zonelists_mutex
);
6102 * The inactive anon list should be small enough that the VM never has to
6103 * do too much work, but large enough that each inactive page has a chance
6104 * to be referenced again before it is swapped out.
6106 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6107 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6108 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6109 * the anonymous pages are kept on the inactive list.
6112 * memory ratio inactive anon
6113 * -------------------------------------
6122 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6124 unsigned int gb
, ratio
;
6126 /* Zone size in gigabytes */
6127 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6129 ratio
= int_sqrt(10 * gb
);
6133 zone
->inactive_ratio
= ratio
;
6136 static void __meminit
setup_per_zone_inactive_ratio(void)
6141 calculate_zone_inactive_ratio(zone
);
6145 * Initialise min_free_kbytes.
6147 * For small machines we want it small (128k min). For large machines
6148 * we want it large (64MB max). But it is not linear, because network
6149 * bandwidth does not increase linearly with machine size. We use
6151 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6152 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6168 int __meminit
init_per_zone_wmark_min(void)
6170 unsigned long lowmem_kbytes
;
6171 int new_min_free_kbytes
;
6173 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6174 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6176 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6177 min_free_kbytes
= new_min_free_kbytes
;
6178 if (min_free_kbytes
< 128)
6179 min_free_kbytes
= 128;
6180 if (min_free_kbytes
> 65536)
6181 min_free_kbytes
= 65536;
6183 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6184 new_min_free_kbytes
, user_min_free_kbytes
);
6186 setup_per_zone_wmarks();
6187 refresh_zone_stat_thresholds();
6188 setup_per_zone_lowmem_reserve();
6189 setup_per_zone_inactive_ratio();
6192 module_init(init_per_zone_wmark_min
)
6195 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6196 * that we can call two helper functions whenever min_free_kbytes
6199 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6200 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6204 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6209 user_min_free_kbytes
= min_free_kbytes
;
6210 setup_per_zone_wmarks();
6216 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6217 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6222 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6227 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6228 sysctl_min_unmapped_ratio
) / 100;
6232 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6233 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6238 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6243 zone
->min_slab_pages
= (zone
->managed_pages
*
6244 sysctl_min_slab_ratio
) / 100;
6250 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6251 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6252 * whenever sysctl_lowmem_reserve_ratio changes.
6254 * The reserve ratio obviously has absolutely no relation with the
6255 * minimum watermarks. The lowmem reserve ratio can only make sense
6256 * if in function of the boot time zone sizes.
6258 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6259 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6261 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6262 setup_per_zone_lowmem_reserve();
6267 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6268 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6269 * pagelist can have before it gets flushed back to buddy allocator.
6271 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6272 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6275 int old_percpu_pagelist_fraction
;
6278 mutex_lock(&pcp_batch_high_lock
);
6279 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6281 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6282 if (!write
|| ret
< 0)
6285 /* Sanity checking to avoid pcp imbalance */
6286 if (percpu_pagelist_fraction
&&
6287 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6288 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6294 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6297 for_each_populated_zone(zone
) {
6300 for_each_possible_cpu(cpu
)
6301 pageset_set_high_and_batch(zone
,
6302 per_cpu_ptr(zone
->pageset
, cpu
));
6305 mutex_unlock(&pcp_batch_high_lock
);
6310 int hashdist
= HASHDIST_DEFAULT
;
6312 static int __init
set_hashdist(char *str
)
6316 hashdist
= simple_strtoul(str
, &str
, 0);
6319 __setup("hashdist=", set_hashdist
);
6323 * allocate a large system hash table from bootmem
6324 * - it is assumed that the hash table must contain an exact power-of-2
6325 * quantity of entries
6326 * - limit is the number of hash buckets, not the total allocation size
6328 void *__init
alloc_large_system_hash(const char *tablename
,
6329 unsigned long bucketsize
,
6330 unsigned long numentries
,
6333 unsigned int *_hash_shift
,
6334 unsigned int *_hash_mask
,
6335 unsigned long low_limit
,
6336 unsigned long high_limit
)
6338 unsigned long long max
= high_limit
;
6339 unsigned long log2qty
, size
;
6342 /* allow the kernel cmdline to have a say */
6344 /* round applicable memory size up to nearest megabyte */
6345 numentries
= nr_kernel_pages
;
6347 /* It isn't necessary when PAGE_SIZE >= 1MB */
6348 if (PAGE_SHIFT
< 20)
6349 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6351 /* limit to 1 bucket per 2^scale bytes of low memory */
6352 if (scale
> PAGE_SHIFT
)
6353 numentries
>>= (scale
- PAGE_SHIFT
);
6355 numentries
<<= (PAGE_SHIFT
- scale
);
6357 /* Make sure we've got at least a 0-order allocation.. */
6358 if (unlikely(flags
& HASH_SMALL
)) {
6359 /* Makes no sense without HASH_EARLY */
6360 WARN_ON(!(flags
& HASH_EARLY
));
6361 if (!(numentries
>> *_hash_shift
)) {
6362 numentries
= 1UL << *_hash_shift
;
6363 BUG_ON(!numentries
);
6365 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6366 numentries
= PAGE_SIZE
/ bucketsize
;
6368 numentries
= roundup_pow_of_two(numentries
);
6370 /* limit allocation size to 1/16 total memory by default */
6372 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6373 do_div(max
, bucketsize
);
6375 max
= min(max
, 0x80000000ULL
);
6377 if (numentries
< low_limit
)
6378 numentries
= low_limit
;
6379 if (numentries
> max
)
6382 log2qty
= ilog2(numentries
);
6385 size
= bucketsize
<< log2qty
;
6386 if (flags
& HASH_EARLY
)
6387 table
= memblock_virt_alloc_nopanic(size
, 0);
6389 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6392 * If bucketsize is not a power-of-two, we may free
6393 * some pages at the end of hash table which
6394 * alloc_pages_exact() automatically does
6396 if (get_order(size
) < MAX_ORDER
) {
6397 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6398 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6401 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6404 panic("Failed to allocate %s hash table\n", tablename
);
6406 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6409 ilog2(size
) - PAGE_SHIFT
,
6413 *_hash_shift
= log2qty
;
6415 *_hash_mask
= (1 << log2qty
) - 1;
6420 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6421 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6424 #ifdef CONFIG_SPARSEMEM
6425 return __pfn_to_section(pfn
)->pageblock_flags
;
6427 return zone
->pageblock_flags
;
6428 #endif /* CONFIG_SPARSEMEM */
6431 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6433 #ifdef CONFIG_SPARSEMEM
6434 pfn
&= (PAGES_PER_SECTION
-1);
6435 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6437 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6438 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6439 #endif /* CONFIG_SPARSEMEM */
6443 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6444 * @page: The page within the block of interest
6445 * @pfn: The target page frame number
6446 * @end_bitidx: The last bit of interest to retrieve
6447 * @mask: mask of bits that the caller is interested in
6449 * Return: pageblock_bits flags
6451 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6452 unsigned long end_bitidx
,
6456 unsigned long *bitmap
;
6457 unsigned long bitidx
, word_bitidx
;
6460 zone
= page_zone(page
);
6461 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6462 bitidx
= pfn_to_bitidx(zone
, pfn
);
6463 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6464 bitidx
&= (BITS_PER_LONG
-1);
6466 word
= bitmap
[word_bitidx
];
6467 bitidx
+= end_bitidx
;
6468 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6472 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6473 * @page: The page within the block of interest
6474 * @flags: The flags to set
6475 * @pfn: The target page frame number
6476 * @end_bitidx: The last bit of interest
6477 * @mask: mask of bits that the caller is interested in
6479 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6481 unsigned long end_bitidx
,
6485 unsigned long *bitmap
;
6486 unsigned long bitidx
, word_bitidx
;
6487 unsigned long old_word
, word
;
6489 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6491 zone
= page_zone(page
);
6492 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6493 bitidx
= pfn_to_bitidx(zone
, pfn
);
6494 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6495 bitidx
&= (BITS_PER_LONG
-1);
6497 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6499 bitidx
+= end_bitidx
;
6500 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6501 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6503 word
= READ_ONCE(bitmap
[word_bitidx
]);
6505 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6506 if (word
== old_word
)
6513 * This function checks whether pageblock includes unmovable pages or not.
6514 * If @count is not zero, it is okay to include less @count unmovable pages
6516 * PageLRU check without isolation or lru_lock could race so that
6517 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6518 * expect this function should be exact.
6520 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6521 bool skip_hwpoisoned_pages
)
6523 unsigned long pfn
, iter
, found
;
6527 * For avoiding noise data, lru_add_drain_all() should be called
6528 * If ZONE_MOVABLE, the zone never contains unmovable pages
6530 if (zone_idx(zone
) == ZONE_MOVABLE
)
6532 mt
= get_pageblock_migratetype(page
);
6533 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6536 pfn
= page_to_pfn(page
);
6537 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6538 unsigned long check
= pfn
+ iter
;
6540 if (!pfn_valid_within(check
))
6543 page
= pfn_to_page(check
);
6546 * Hugepages are not in LRU lists, but they're movable.
6547 * We need not scan over tail pages bacause we don't
6548 * handle each tail page individually in migration.
6550 if (PageHuge(page
)) {
6551 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6556 * We can't use page_count without pin a page
6557 * because another CPU can free compound page.
6558 * This check already skips compound tails of THP
6559 * because their page->_count is zero at all time.
6561 if (!atomic_read(&page
->_count
)) {
6562 if (PageBuddy(page
))
6563 iter
+= (1 << page_order(page
)) - 1;
6568 * The HWPoisoned page may be not in buddy system, and
6569 * page_count() is not 0.
6571 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6577 * If there are RECLAIMABLE pages, we need to check
6578 * it. But now, memory offline itself doesn't call
6579 * shrink_node_slabs() and it still to be fixed.
6582 * If the page is not RAM, page_count()should be 0.
6583 * we don't need more check. This is an _used_ not-movable page.
6585 * The problematic thing here is PG_reserved pages. PG_reserved
6586 * is set to both of a memory hole page and a _used_ kernel
6595 bool is_pageblock_removable_nolock(struct page
*page
)
6601 * We have to be careful here because we are iterating over memory
6602 * sections which are not zone aware so we might end up outside of
6603 * the zone but still within the section.
6604 * We have to take care about the node as well. If the node is offline
6605 * its NODE_DATA will be NULL - see page_zone.
6607 if (!node_online(page_to_nid(page
)))
6610 zone
= page_zone(page
);
6611 pfn
= page_to_pfn(page
);
6612 if (!zone_spans_pfn(zone
, pfn
))
6615 return !has_unmovable_pages(zone
, page
, 0, true);
6620 static unsigned long pfn_max_align_down(unsigned long pfn
)
6622 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6623 pageblock_nr_pages
) - 1);
6626 static unsigned long pfn_max_align_up(unsigned long pfn
)
6628 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6629 pageblock_nr_pages
));
6632 /* [start, end) must belong to a single zone. */
6633 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6634 unsigned long start
, unsigned long end
)
6636 /* This function is based on compact_zone() from compaction.c. */
6637 unsigned long nr_reclaimed
;
6638 unsigned long pfn
= start
;
6639 unsigned int tries
= 0;
6644 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6645 if (fatal_signal_pending(current
)) {
6650 if (list_empty(&cc
->migratepages
)) {
6651 cc
->nr_migratepages
= 0;
6652 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6658 } else if (++tries
== 5) {
6659 ret
= ret
< 0 ? ret
: -EBUSY
;
6663 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6665 cc
->nr_migratepages
-= nr_reclaimed
;
6667 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6668 NULL
, 0, cc
->mode
, MR_CMA
);
6671 putback_movable_pages(&cc
->migratepages
);
6678 * alloc_contig_range() -- tries to allocate given range of pages
6679 * @start: start PFN to allocate
6680 * @end: one-past-the-last PFN to allocate
6681 * @migratetype: migratetype of the underlaying pageblocks (either
6682 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6683 * in range must have the same migratetype and it must
6684 * be either of the two.
6686 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6687 * aligned, however it's the caller's responsibility to guarantee that
6688 * we are the only thread that changes migrate type of pageblocks the
6691 * The PFN range must belong to a single zone.
6693 * Returns zero on success or negative error code. On success all
6694 * pages which PFN is in [start, end) are allocated for the caller and
6695 * need to be freed with free_contig_range().
6697 int alloc_contig_range(unsigned long start
, unsigned long end
,
6698 unsigned migratetype
)
6700 unsigned long outer_start
, outer_end
;
6704 struct compact_control cc
= {
6705 .nr_migratepages
= 0,
6707 .zone
= page_zone(pfn_to_page(start
)),
6708 .mode
= MIGRATE_SYNC
,
6709 .ignore_skip_hint
= true,
6711 INIT_LIST_HEAD(&cc
.migratepages
);
6714 * What we do here is we mark all pageblocks in range as
6715 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6716 * have different sizes, and due to the way page allocator
6717 * work, we align the range to biggest of the two pages so
6718 * that page allocator won't try to merge buddies from
6719 * different pageblocks and change MIGRATE_ISOLATE to some
6720 * other migration type.
6722 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6723 * migrate the pages from an unaligned range (ie. pages that
6724 * we are interested in). This will put all the pages in
6725 * range back to page allocator as MIGRATE_ISOLATE.
6727 * When this is done, we take the pages in range from page
6728 * allocator removing them from the buddy system. This way
6729 * page allocator will never consider using them.
6731 * This lets us mark the pageblocks back as
6732 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6733 * aligned range but not in the unaligned, original range are
6734 * put back to page allocator so that buddy can use them.
6737 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6738 pfn_max_align_up(end
), migratetype
,
6744 * In case of -EBUSY, we'd like to know which page causes problem.
6745 * So, just fall through. We will check it in test_pages_isolated().
6747 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6748 if (ret
&& ret
!= -EBUSY
)
6752 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6753 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6754 * more, all pages in [start, end) are free in page allocator.
6755 * What we are going to do is to allocate all pages from
6756 * [start, end) (that is remove them from page allocator).
6758 * The only problem is that pages at the beginning and at the
6759 * end of interesting range may be not aligned with pages that
6760 * page allocator holds, ie. they can be part of higher order
6761 * pages. Because of this, we reserve the bigger range and
6762 * once this is done free the pages we are not interested in.
6764 * We don't have to hold zone->lock here because the pages are
6765 * isolated thus they won't get removed from buddy.
6768 lru_add_drain_all();
6769 drain_all_pages(cc
.zone
);
6772 outer_start
= start
;
6773 while (!PageBuddy(pfn_to_page(outer_start
))) {
6774 if (++order
>= MAX_ORDER
) {
6775 outer_start
= start
;
6778 outer_start
&= ~0UL << order
;
6781 if (outer_start
!= start
) {
6782 order
= page_order(pfn_to_page(outer_start
));
6785 * outer_start page could be small order buddy page and
6786 * it doesn't include start page. Adjust outer_start
6787 * in this case to report failed page properly
6788 * on tracepoint in test_pages_isolated()
6790 if (outer_start
+ (1UL << order
) <= start
)
6791 outer_start
= start
;
6794 /* Make sure the range is really isolated. */
6795 if (test_pages_isolated(outer_start
, end
, false)) {
6796 pr_info("%s: [%lx, %lx) PFNs busy\n",
6797 __func__
, outer_start
, end
);
6802 /* Grab isolated pages from freelists. */
6803 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6809 /* Free head and tail (if any) */
6810 if (start
!= outer_start
)
6811 free_contig_range(outer_start
, start
- outer_start
);
6812 if (end
!= outer_end
)
6813 free_contig_range(end
, outer_end
- end
);
6816 undo_isolate_page_range(pfn_max_align_down(start
),
6817 pfn_max_align_up(end
), migratetype
);
6821 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6823 unsigned int count
= 0;
6825 for (; nr_pages
--; pfn
++) {
6826 struct page
*page
= pfn_to_page(pfn
);
6828 count
+= page_count(page
) != 1;
6831 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6835 #ifdef CONFIG_MEMORY_HOTPLUG
6837 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6838 * page high values need to be recalulated.
6840 void __meminit
zone_pcp_update(struct zone
*zone
)
6843 mutex_lock(&pcp_batch_high_lock
);
6844 for_each_possible_cpu(cpu
)
6845 pageset_set_high_and_batch(zone
,
6846 per_cpu_ptr(zone
->pageset
, cpu
));
6847 mutex_unlock(&pcp_batch_high_lock
);
6851 void zone_pcp_reset(struct zone
*zone
)
6853 unsigned long flags
;
6855 struct per_cpu_pageset
*pset
;
6857 /* avoid races with drain_pages() */
6858 local_irq_save(flags
);
6859 if (zone
->pageset
!= &boot_pageset
) {
6860 for_each_online_cpu(cpu
) {
6861 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6862 drain_zonestat(zone
, pset
);
6864 free_percpu(zone
->pageset
);
6865 zone
->pageset
= &boot_pageset
;
6867 local_irq_restore(flags
);
6870 #ifdef CONFIG_MEMORY_HOTREMOVE
6872 * All pages in the range must be isolated before calling this.
6875 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6879 unsigned int order
, i
;
6881 unsigned long flags
;
6882 /* find the first valid pfn */
6883 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6888 zone
= page_zone(pfn_to_page(pfn
));
6889 spin_lock_irqsave(&zone
->lock
, flags
);
6891 while (pfn
< end_pfn
) {
6892 if (!pfn_valid(pfn
)) {
6896 page
= pfn_to_page(pfn
);
6898 * The HWPoisoned page may be not in buddy system, and
6899 * page_count() is not 0.
6901 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6903 SetPageReserved(page
);
6907 BUG_ON(page_count(page
));
6908 BUG_ON(!PageBuddy(page
));
6909 order
= page_order(page
);
6910 #ifdef CONFIG_DEBUG_VM
6911 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6912 pfn
, 1 << order
, end_pfn
);
6914 list_del(&page
->lru
);
6915 rmv_page_order(page
);
6916 zone
->free_area
[order
].nr_free
--;
6917 for (i
= 0; i
< (1 << order
); i
++)
6918 SetPageReserved((page
+i
));
6919 pfn
+= (1 << order
);
6921 spin_unlock_irqrestore(&zone
->lock
, flags
);
6925 #ifdef CONFIG_MEMORY_FAILURE
6926 bool is_free_buddy_page(struct page
*page
)
6928 struct zone
*zone
= page_zone(page
);
6929 unsigned long pfn
= page_to_pfn(page
);
6930 unsigned long flags
;
6933 spin_lock_irqsave(&zone
->lock
, flags
);
6934 for (order
= 0; order
< MAX_ORDER
; order
++) {
6935 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6937 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6940 spin_unlock_irqrestore(&zone
->lock
, flags
);
6942 return order
< MAX_ORDER
;