2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
49 struct rtc_device
*rtc
;
52 struct resource
*iomem
;
53 time64_t alarm_expires
;
55 void (*wake_on
)(struct device
*);
56 void (*wake_off
)(struct device
*);
61 /* newer hardware extends the original register set */
67 /* both platform and pnp busses use negative numbers for invalid irqs */
68 #define is_valid_irq(n) ((n) > 0)
70 static const char driver_name
[] = "rtc_cmos";
72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
76 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
78 static inline int is_intr(u8 rtc_intr
)
80 if (!(rtc_intr
& RTC_IRQF
))
82 return rtc_intr
& RTC_IRQMASK
;
85 /*----------------------------------------------------------------*/
87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode. The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
95 * want to use HPET for anything except those IRQs though...
97 #ifdef CONFIG_HPET_EMULATE_RTC
101 static inline int is_hpet_enabled(void)
106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
111 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
117 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
122 static inline int hpet_set_periodic_freq(unsigned long freq
)
127 static inline int hpet_rtc_dropped_irq(void)
132 static inline int hpet_rtc_timer_init(void)
137 extern irq_handler_t hpet_rtc_interrupt
;
139 static inline int hpet_register_irq_handler(irq_handler_t handler
)
144 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
151 /*----------------------------------------------------------------*/
155 /* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM. Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
159 #define can_bank2 true
161 static inline unsigned char cmos_read_bank2(unsigned char addr
)
163 outb(addr
, RTC_PORT(2));
164 return inb(RTC_PORT(3));
167 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
169 outb(addr
, RTC_PORT(2));
170 outb(val
, RTC_PORT(3));
175 #define can_bank2 false
177 static inline unsigned char cmos_read_bank2(unsigned char addr
)
182 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
188 /*----------------------------------------------------------------*/
190 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
192 /* REVISIT: if the clock has a "century" register, use
193 * that instead of the heuristic in mc146818_get_time().
194 * That'll make Y3K compatility (year > 2070) easy!
196 mc146818_get_time(t
);
200 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
202 /* REVISIT: set the "century" register if available
204 * NOTE: this ignores the issue whereby updating the seconds
205 * takes effect exactly 500ms after we write the register.
206 * (Also queueing and other delays before we get this far.)
208 return mc146818_set_time(t
);
211 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
213 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
214 unsigned char rtc_control
;
216 if (!is_valid_irq(cmos
->irq
))
219 /* Basic alarms only support hour, minute, and seconds fields.
220 * Some also support day and month, for alarms up to a year in
224 spin_lock_irq(&rtc_lock
);
225 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
226 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
227 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
229 if (cmos
->day_alrm
) {
230 /* ignore upper bits on readback per ACPI spec */
231 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
232 if (!t
->time
.tm_mday
)
233 t
->time
.tm_mday
= -1;
235 if (cmos
->mon_alrm
) {
236 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
242 rtc_control
= CMOS_READ(RTC_CONTROL
);
243 spin_unlock_irq(&rtc_lock
);
245 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
246 if (((unsigned)t
->time
.tm_sec
) < 0x60)
247 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
250 if (((unsigned)t
->time
.tm_min
) < 0x60)
251 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
254 if (((unsigned)t
->time
.tm_hour
) < 0x24)
255 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
257 t
->time
.tm_hour
= -1;
259 if (cmos
->day_alrm
) {
260 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
261 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
263 t
->time
.tm_mday
= -1;
265 if (cmos
->mon_alrm
) {
266 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
267 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
274 t
->enabled
= !!(rtc_control
& RTC_AIE
);
280 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
282 unsigned char rtc_intr
;
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
287 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
289 if (is_hpet_enabled())
292 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
293 if (is_intr(rtc_intr
))
294 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
297 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
299 unsigned char rtc_control
;
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
304 rtc_control
= CMOS_READ(RTC_CONTROL
);
305 cmos_checkintr(cmos
, rtc_control
);
308 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
309 hpet_set_rtc_irq_bit(mask
);
311 cmos_checkintr(cmos
, rtc_control
);
314 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
316 unsigned char rtc_control
;
318 rtc_control
= CMOS_READ(RTC_CONTROL
);
319 rtc_control
&= ~mask
;
320 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
321 hpet_mask_rtc_irq_bit(mask
);
323 cmos_checkintr(cmos
, rtc_control
);
326 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
328 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
329 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
331 if (!is_valid_irq(cmos
->irq
))
334 mon
= t
->time
.tm_mon
+ 1;
335 mday
= t
->time
.tm_mday
;
336 hrs
= t
->time
.tm_hour
;
337 min
= t
->time
.tm_min
;
338 sec
= t
->time
.tm_sec
;
340 rtc_control
= CMOS_READ(RTC_CONTROL
);
341 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
344 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
345 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
346 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
347 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
350 spin_lock_irq(&rtc_lock
);
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos
, RTC_AIE
);
356 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
357 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
358 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
360 /* the system may support an "enhanced" alarm */
361 if (cmos
->day_alrm
) {
362 CMOS_WRITE(mday
, cmos
->day_alrm
);
364 CMOS_WRITE(mon
, cmos
->mon_alrm
);
367 /* FIXME the HPET alarm glue currently ignores day_alrm
370 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
373 cmos_irq_enable(cmos
, RTC_AIE
);
375 spin_unlock_irq(&rtc_lock
);
377 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
382 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
384 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
387 if (!is_valid_irq(cmos
->irq
))
390 spin_lock_irqsave(&rtc_lock
, flags
);
393 cmos_irq_enable(cmos
, RTC_AIE
);
395 cmos_irq_disable(cmos
, RTC_AIE
);
397 spin_unlock_irqrestore(&rtc_lock
, flags
);
401 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
403 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
405 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
406 unsigned char rtc_control
, valid
;
408 spin_lock_irq(&rtc_lock
);
409 rtc_control
= CMOS_READ(RTC_CONTROL
);
410 valid
= CMOS_READ(RTC_VALID
);
411 spin_unlock_irq(&rtc_lock
);
413 /* NOTE: at least ICH6 reports battery status using a different
414 * (non-RTC) bit; and SQWE is ignored on many current systems.
417 "periodic_IRQ\t: %s\n"
419 "HPET_emulated\t: %s\n"
420 // "square_wave\t: %s\n"
423 "periodic_freq\t: %d\n"
424 "batt_status\t: %s\n",
425 (rtc_control
& RTC_PIE
) ? "yes" : "no",
426 (rtc_control
& RTC_UIE
) ? "yes" : "no",
427 is_hpet_enabled() ? "yes" : "no",
428 // (rtc_control & RTC_SQWE) ? "yes" : "no",
429 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
430 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
432 (valid
& RTC_VRT
) ? "okay" : "dead");
438 #define cmos_procfs NULL
441 static const struct rtc_class_ops cmos_rtc_ops
= {
442 .read_time
= cmos_read_time
,
443 .set_time
= cmos_set_time
,
444 .read_alarm
= cmos_read_alarm
,
445 .set_alarm
= cmos_set_alarm
,
447 .alarm_irq_enable
= cmos_alarm_irq_enable
,
450 /*----------------------------------------------------------------*/
453 * All these chips have at least 64 bytes of address space, shared by
454 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
455 * by boot firmware. Modern chips have 128 or 256 bytes.
458 #define NVRAM_OFFSET (RTC_REG_D + 1)
461 cmos_nvram_read(struct file
*filp
, struct kobject
*kobj
,
462 struct bin_attribute
*attr
,
463 char *buf
, loff_t off
, size_t count
)
468 spin_lock_irq(&rtc_lock
);
469 for (retval
= 0; count
; count
--, off
++, retval
++) {
471 *buf
++ = CMOS_READ(off
);
473 *buf
++ = cmos_read_bank2(off
);
477 spin_unlock_irq(&rtc_lock
);
483 cmos_nvram_write(struct file
*filp
, struct kobject
*kobj
,
484 struct bin_attribute
*attr
,
485 char *buf
, loff_t off
, size_t count
)
487 struct cmos_rtc
*cmos
;
490 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
492 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
493 * checksum on part of the NVRAM data. That's currently ignored
494 * here. If userspace is smart enough to know what fields of
495 * NVRAM to update, updating checksums is also part of its job.
498 spin_lock_irq(&rtc_lock
);
499 for (retval
= 0; count
; count
--, off
++, retval
++) {
500 /* don't trash RTC registers */
501 if (off
== cmos
->day_alrm
502 || off
== cmos
->mon_alrm
503 || off
== cmos
->century
)
506 CMOS_WRITE(*buf
++, off
);
508 cmos_write_bank2(*buf
++, off
);
512 spin_unlock_irq(&rtc_lock
);
517 static struct bin_attribute nvram
= {
520 .mode
= S_IRUGO
| S_IWUSR
,
523 .read
= cmos_nvram_read
,
524 .write
= cmos_nvram_write
,
525 /* size gets set up later */
528 /*----------------------------------------------------------------*/
530 static struct cmos_rtc cmos_rtc
;
532 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
537 spin_lock(&rtc_lock
);
539 /* When the HPET interrupt handler calls us, the interrupt
540 * status is passed as arg1 instead of the irq number. But
541 * always clear irq status, even when HPET is in the way.
543 * Note that HPET and RTC are almost certainly out of phase,
544 * giving different IRQ status ...
546 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
547 rtc_control
= CMOS_READ(RTC_CONTROL
);
548 if (is_hpet_enabled())
549 irqstat
= (unsigned long)irq
& 0xF0;
551 /* If we were suspended, RTC_CONTROL may not be accurate since the
552 * bios may have cleared it.
554 if (!cmos_rtc
.suspend_ctrl
)
555 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
557 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
559 /* All Linux RTC alarms should be treated as if they were oneshot.
560 * Similar code may be needed in system wakeup paths, in case the
561 * alarm woke the system.
563 if (irqstat
& RTC_AIE
) {
564 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
565 rtc_control
&= ~RTC_AIE
;
566 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
567 hpet_mask_rtc_irq_bit(RTC_AIE
);
568 CMOS_READ(RTC_INTR_FLAGS
);
570 spin_unlock(&rtc_lock
);
572 if (is_intr(irqstat
)) {
573 rtc_update_irq(p
, 1, irqstat
);
583 #define INITSECTION __init
586 static int INITSECTION
587 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
589 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
591 unsigned char rtc_control
;
592 unsigned address_space
;
595 /* there can be only one ... */
602 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
604 * REVISIT non-x86 systems may instead use memory space resources
605 * (needing ioremap etc), not i/o space resources like this ...
608 ports
= request_region(ports
->start
, resource_size(ports
),
611 ports
= request_mem_region(ports
->start
, resource_size(ports
),
614 dev_dbg(dev
, "i/o registers already in use\n");
618 cmos_rtc
.irq
= rtc_irq
;
619 cmos_rtc
.iomem
= ports
;
621 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
622 * driver did, but don't reject unknown configs. Old hardware
623 * won't address 128 bytes. Newer chips have multiple banks,
624 * though they may not be listed in one I/O resource.
626 #if defined(CONFIG_ATARI)
628 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
629 || defined(__sparc__) || defined(__mips__) \
630 || defined(__powerpc__) || defined(CONFIG_MN10300)
633 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
636 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
639 /* For ACPI systems extension info comes from the FADT. On others,
640 * board specific setup provides it as appropriate. Systems where
641 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
642 * some almost-clones) can provide hooks to make that behave.
644 * Note that ACPI doesn't preclude putting these registers into
645 * "extended" areas of the chip, including some that we won't yet
646 * expect CMOS_READ and friends to handle.
651 if (info
->address_space
)
652 address_space
= info
->address_space
;
654 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
655 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
656 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
657 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
658 if (info
->rtc_century
&& info
->rtc_century
< 128)
659 cmos_rtc
.century
= info
->rtc_century
;
661 if (info
->wake_on
&& info
->wake_off
) {
662 cmos_rtc
.wake_on
= info
->wake_on
;
663 cmos_rtc
.wake_off
= info
->wake_off
;
668 dev_set_drvdata(dev
, &cmos_rtc
);
670 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
671 &cmos_rtc_ops
, THIS_MODULE
);
672 if (IS_ERR(cmos_rtc
.rtc
)) {
673 retval
= PTR_ERR(cmos_rtc
.rtc
);
677 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
679 spin_lock_irq(&rtc_lock
);
681 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
682 /* force periodic irq to CMOS reset default of 1024Hz;
684 * REVISIT it's been reported that at least one x86_64 ALI
685 * mobo doesn't use 32KHz here ... for portability we might
686 * need to do something about other clock frequencies.
688 cmos_rtc
.rtc
->irq_freq
= 1024;
689 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
690 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
694 if (is_valid_irq(rtc_irq
))
695 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
697 rtc_control
= CMOS_READ(RTC_CONTROL
);
699 spin_unlock_irq(&rtc_lock
);
702 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
704 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
705 dev_warn(dev
, "only 24-hr supported\n");
710 if (is_valid_irq(rtc_irq
)) {
711 irq_handler_t rtc_cmos_int_handler
;
713 if (is_hpet_enabled()) {
714 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
715 retval
= hpet_register_irq_handler(cmos_interrupt
);
717 dev_warn(dev
, "hpet_register_irq_handler "
718 " failed in rtc_init().");
722 rtc_cmos_int_handler
= cmos_interrupt
;
724 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
725 IRQF_SHARED
, dev_name(&cmos_rtc
.rtc
->dev
),
728 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
732 hpet_rtc_timer_init();
734 /* export at least the first block of NVRAM */
735 nvram
.size
= address_space
- NVRAM_OFFSET
;
736 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
738 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
742 dev_info(dev
, "%s%s, %zd bytes nvram%s\n",
743 !is_valid_irq(rtc_irq
) ? "no alarms" :
744 cmos_rtc
.mon_alrm
? "alarms up to one year" :
745 cmos_rtc
.day_alrm
? "alarms up to one month" :
746 "alarms up to one day",
747 cmos_rtc
.century
? ", y3k" : "",
749 is_hpet_enabled() ? ", hpet irqs" : "");
754 if (is_valid_irq(rtc_irq
))
755 free_irq(rtc_irq
, cmos_rtc
.rtc
);
758 rtc_device_unregister(cmos_rtc
.rtc
);
761 release_region(ports
->start
, resource_size(ports
));
763 release_mem_region(ports
->start
, resource_size(ports
));
767 static void cmos_do_shutdown(int rtc_irq
)
769 spin_lock_irq(&rtc_lock
);
770 if (is_valid_irq(rtc_irq
))
771 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
772 spin_unlock_irq(&rtc_lock
);
775 static void __exit
cmos_do_remove(struct device
*dev
)
777 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
778 struct resource
*ports
;
780 cmos_do_shutdown(cmos
->irq
);
782 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
784 if (is_valid_irq(cmos
->irq
)) {
785 free_irq(cmos
->irq
, cmos
->rtc
);
786 hpet_unregister_irq_handler(cmos_interrupt
);
789 rtc_device_unregister(cmos
->rtc
);
794 release_region(ports
->start
, resource_size(ports
));
796 release_mem_region(ports
->start
, resource_size(ports
));
802 static int cmos_aie_poweroff(struct device
*dev
)
804 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
808 unsigned char rtc_control
;
810 if (!cmos
->alarm_expires
)
813 spin_lock_irq(&rtc_lock
);
814 rtc_control
= CMOS_READ(RTC_CONTROL
);
815 spin_unlock_irq(&rtc_lock
);
817 /* We only care about the situation where AIE is disabled. */
818 if (rtc_control
& RTC_AIE
)
821 cmos_read_time(dev
, &now
);
822 t_now
= rtc_tm_to_time64(&now
);
825 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
826 * automatically right after shutdown on some buggy boxes.
827 * This automatic rebooting issue won't happen when the alarm
828 * time is larger than now+1 seconds.
830 * If the alarm time is equal to now+1 seconds, the issue can be
831 * prevented by cancelling the alarm.
833 if (cmos
->alarm_expires
== t_now
+ 1) {
834 struct rtc_wkalrm alarm
;
836 /* Cancel the AIE timer by configuring the past time. */
837 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
839 retval
= cmos_set_alarm(dev
, &alarm
);
840 } else if (cmos
->alarm_expires
> t_now
+ 1) {
849 static int cmos_suspend(struct device
*dev
)
851 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
854 /* only the alarm might be a wakeup event source */
855 spin_lock_irq(&rtc_lock
);
856 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
857 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
860 if (device_may_wakeup(dev
))
861 mask
= RTC_IRQMASK
& ~RTC_AIE
;
865 CMOS_WRITE(tmp
, RTC_CONTROL
);
866 hpet_mask_rtc_irq_bit(mask
);
868 cmos_checkintr(cmos
, tmp
);
870 spin_unlock_irq(&rtc_lock
);
873 cmos
->enabled_wake
= 1;
877 enable_irq_wake(cmos
->irq
);
880 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
881 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
887 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
888 * after a detour through G3 "mechanical off", although the ACPI spec
889 * says wakeup should only work from G1/S4 "hibernate". To most users,
890 * distinctions between S4 and S5 are pointless. So when the hardware
891 * allows, don't draw that distinction.
893 static inline int cmos_poweroff(struct device
*dev
)
895 return cmos_suspend(dev
);
898 #ifdef CONFIG_PM_SLEEP
900 static int cmos_resume(struct device
*dev
)
902 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
905 if (cmos
->enabled_wake
) {
909 disable_irq_wake(cmos
->irq
);
910 cmos
->enabled_wake
= 0;
913 spin_lock_irq(&rtc_lock
);
914 tmp
= cmos
->suspend_ctrl
;
915 cmos
->suspend_ctrl
= 0;
916 /* re-enable any irqs previously active */
917 if (tmp
& RTC_IRQMASK
) {
920 if (device_may_wakeup(dev
))
921 hpet_rtc_timer_init();
924 CMOS_WRITE(tmp
, RTC_CONTROL
);
925 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
927 mask
= CMOS_READ(RTC_INTR_FLAGS
);
928 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
929 if (!is_hpet_enabled() || !is_intr(mask
))
932 /* force one-shot behavior if HPET blocked
933 * the wake alarm's irq
935 rtc_update_irq(cmos
->rtc
, 1, mask
);
937 hpet_mask_rtc_irq_bit(RTC_AIE
);
938 } while (mask
& RTC_AIE
);
940 spin_unlock_irq(&rtc_lock
);
942 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
950 static inline int cmos_poweroff(struct device
*dev
)
957 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
959 /*----------------------------------------------------------------*/
961 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
962 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
963 * probably list them in similar PNPBIOS tables; so PNP is more common.
965 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
966 * predate even PNPBIOS should set up platform_bus devices.
971 #include <linux/acpi.h>
973 static u32
rtc_handler(void *context
)
975 struct device
*dev
= context
;
977 pm_wakeup_event(dev
, 0);
978 acpi_clear_event(ACPI_EVENT_RTC
);
979 acpi_disable_event(ACPI_EVENT_RTC
, 0);
980 return ACPI_INTERRUPT_HANDLED
;
983 static inline void rtc_wake_setup(struct device
*dev
)
985 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
987 * After the RTC handler is installed, the Fixed_RTC event should
988 * be disabled. Only when the RTC alarm is set will it be enabled.
990 acpi_clear_event(ACPI_EVENT_RTC
);
991 acpi_disable_event(ACPI_EVENT_RTC
, 0);
994 static void rtc_wake_on(struct device
*dev
)
996 acpi_clear_event(ACPI_EVENT_RTC
);
997 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1000 static void rtc_wake_off(struct device
*dev
)
1002 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1005 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1006 * its device node and pass extra config data. This helps its driver use
1007 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1008 * that this board's RTC is wakeup-capable (per ACPI spec).
1010 static struct cmos_rtc_board_info acpi_rtc_info
;
1012 static void cmos_wake_setup(struct device
*dev
)
1017 rtc_wake_setup(dev
);
1018 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1019 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1021 /* workaround bug in some ACPI tables */
1022 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1023 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1024 acpi_gbl_FADT
.month_alarm
);
1025 acpi_gbl_FADT
.month_alarm
= 0;
1028 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1029 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1030 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1032 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1033 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1034 dev_info(dev
, "RTC can wake from S4\n");
1036 dev
->platform_data
= &acpi_rtc_info
;
1038 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1039 device_init_wakeup(dev
, 1);
1044 static void cmos_wake_setup(struct device
*dev
)
1052 #include <linux/pnp.h>
1054 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1056 cmos_wake_setup(&pnp
->dev
);
1058 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0))
1059 /* Some machines contain a PNP entry for the RTC, but
1060 * don't define the IRQ. It should always be safe to
1061 * hardcode it in these cases
1063 return cmos_do_probe(&pnp
->dev
,
1064 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), 8);
1066 return cmos_do_probe(&pnp
->dev
,
1067 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1071 static void __exit
cmos_pnp_remove(struct pnp_dev
*pnp
)
1073 cmos_do_remove(&pnp
->dev
);
1076 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1078 struct device
*dev
= &pnp
->dev
;
1079 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1081 if (system_state
== SYSTEM_POWER_OFF
) {
1082 int retval
= cmos_poweroff(dev
);
1084 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1088 cmos_do_shutdown(cmos
->irq
);
1091 static const struct pnp_device_id rtc_ids
[] = {
1092 { .id
= "PNP0b00", },
1093 { .id
= "PNP0b01", },
1094 { .id
= "PNP0b02", },
1097 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1099 static struct pnp_driver cmos_pnp_driver
= {
1100 .name
= (char *) driver_name
,
1101 .id_table
= rtc_ids
,
1102 .probe
= cmos_pnp_probe
,
1103 .remove
= __exit_p(cmos_pnp_remove
),
1104 .shutdown
= cmos_pnp_shutdown
,
1106 /* flag ensures resume() gets called, and stops syslog spam */
1107 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1113 #endif /* CONFIG_PNP */
1116 static const struct of_device_id of_cmos_match
[] = {
1118 .compatible
= "motorola,mc146818",
1122 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1124 static __init
void cmos_of_init(struct platform_device
*pdev
)
1126 struct device_node
*node
= pdev
->dev
.of_node
;
1127 struct rtc_time time
;
1134 val
= of_get_property(node
, "ctrl-reg", NULL
);
1136 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1138 val
= of_get_property(node
, "freq-reg", NULL
);
1140 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1142 cmos_read_time(&pdev
->dev
, &time
);
1143 ret
= rtc_valid_tm(&time
);
1145 struct rtc_time def_time
= {
1149 cmos_set_time(&pdev
->dev
, &def_time
);
1153 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1155 /*----------------------------------------------------------------*/
1157 /* Platform setup should have set up an RTC device, when PNP is
1158 * unavailable ... this could happen even on (older) PCs.
1161 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1163 struct resource
*resource
;
1167 cmos_wake_setup(&pdev
->dev
);
1170 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1172 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1173 irq
= platform_get_irq(pdev
, 0);
1177 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1180 static int __exit
cmos_platform_remove(struct platform_device
*pdev
)
1182 cmos_do_remove(&pdev
->dev
);
1186 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1188 struct device
*dev
= &pdev
->dev
;
1189 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1191 if (system_state
== SYSTEM_POWER_OFF
) {
1192 int retval
= cmos_poweroff(dev
);
1194 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1198 cmos_do_shutdown(cmos
->irq
);
1201 /* work with hotplug and coldplug */
1202 MODULE_ALIAS("platform:rtc_cmos");
1204 static struct platform_driver cmos_platform_driver
= {
1205 .remove
= __exit_p(cmos_platform_remove
),
1206 .shutdown
= cmos_platform_shutdown
,
1208 .name
= driver_name
,
1212 .of_match_table
= of_match_ptr(of_cmos_match
),
1217 static bool pnp_driver_registered
;
1219 static bool platform_driver_registered
;
1221 static int __init
cmos_init(void)
1226 retval
= pnp_register_driver(&cmos_pnp_driver
);
1228 pnp_driver_registered
= true;
1231 if (!cmos_rtc
.dev
) {
1232 retval
= platform_driver_probe(&cmos_platform_driver
,
1233 cmos_platform_probe
);
1235 platform_driver_registered
= true;
1242 if (pnp_driver_registered
)
1243 pnp_unregister_driver(&cmos_pnp_driver
);
1247 module_init(cmos_init
);
1249 static void __exit
cmos_exit(void)
1252 if (pnp_driver_registered
)
1253 pnp_unregister_driver(&cmos_pnp_driver
);
1255 if (platform_driver_registered
)
1256 platform_driver_unregister(&cmos_platform_driver
);
1258 module_exit(cmos_exit
);
1261 MODULE_AUTHOR("David Brownell");
1262 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1263 MODULE_LICENSE("GPL");