1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
56 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
57 static unsigned long page_cache4v_flag
;
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
85 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
87 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
89 static unsigned long cpu_pgsz_mask
;
91 #define MAX_BANKS 1024
93 static struct linux_prom64_registers pavail
[MAX_BANKS
];
94 static int pavail_ents
;
96 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
98 static int cmp_p64(const void *a
, const void *b
)
100 const struct linux_prom64_registers
*x
= a
, *y
= b
;
102 if (x
->phys_addr
> y
->phys_addr
)
104 if (x
->phys_addr
< y
->phys_addr
)
109 static void __init
read_obp_memory(const char *property
,
110 struct linux_prom64_registers
*regs
,
113 phandle node
= prom_finddevice("/memory");
114 int prop_size
= prom_getproplen(node
, property
);
117 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
118 if (ents
> MAX_BANKS
) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property
, MAX_BANKS
);
125 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
127 prom_printf("Couldn't get %s property from /memory.\n",
132 /* Sanitize what we got from the firmware, by page aligning
135 for (i
= 0; i
< ents
; i
++) {
136 unsigned long base
, size
;
138 base
= regs
[i
].phys_addr
;
139 size
= regs
[i
].reg_size
;
142 if (base
& ~PAGE_MASK
) {
143 unsigned long new_base
= PAGE_ALIGN(base
);
145 size
-= new_base
- base
;
146 if ((long) size
< 0L)
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
155 memmove(®s
[i
], ®s
[i
+ 1],
156 (ents
- i
- 1) * sizeof(regs
[0]));
161 regs
[i
].phys_addr
= base
;
162 regs
[i
].reg_size
= size
;
167 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly
;
173 unsigned long kern_size __read_mostly
;
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64
;
177 extern unsigned int sparc_ramdisk_image
;
178 extern unsigned int sparc_ramdisk_size
;
180 struct page
*mem_map_zero __read_mostly
;
181 EXPORT_SYMBOL(mem_map_zero
);
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
185 unsigned long sparc64_kern_pri_context __read_mostly
;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
187 unsigned long sparc64_kern_sec_context __read_mostly
;
189 int num_kernel_image_mappings
;
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
194 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
198 inline void flush_dcache_page_impl(struct page
*page
)
200 BUG_ON(tlb_type
== hypervisor
);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes
);
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page
),
207 ((tlb_type
== spitfire
) &&
208 page_mapping_file(page
) != NULL
));
210 if (page_mapping_file(page
) != NULL
&&
211 tlb_type
== spitfire
)
212 __flush_icache_page(__pa(page_address(page
)));
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
226 unsigned long mask
= this_cpu
;
227 unsigned long non_cpu_bits
;
229 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
230 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
232 __asm__
__volatile__("1:\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
241 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
245 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
247 unsigned long mask
= (1UL << PG_dcache_dirty
);
249 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
263 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
264 "i" (PG_dcache_cpu_mask
),
265 "i" (PG_dcache_cpu_shift
)
269 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
271 unsigned long tsb_addr
= (unsigned long) ent
;
273 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
274 tsb_addr
= __pa(tsb_addr
);
276 __tsb_insert(tsb_addr
, tag
, pte
);
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
281 static void flush_dcache(unsigned long pfn
)
285 page
= pfn_to_page(pfn
);
287 unsigned long pg_flags
;
289 pg_flags
= page
->flags
;
290 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
291 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
293 int this_cpu
= get_cpu();
295 /* This is just to optimize away some function calls
299 flush_dcache_page_impl(page
);
301 smp_flush_dcache_page_impl(page
, cpu
);
303 clear_dcache_dirty_cpu(page
, cpu
);
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
312 unsigned long tsb_hash_shift
, unsigned long address
,
315 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
321 tsb
+= ((address
>> tsb_hash_shift
) &
322 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
323 tag
= (address
>> 22UL);
324 tsb_insert(tsb
, tag
, tte
);
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init
add_huge_page_size(unsigned long size
)
332 if (size_to_hstate(size
))
335 order
= ilog2(size
) - PAGE_SHIFT
;
336 hugetlb_add_hstate(order
);
339 static int __init
hugetlbpage_init(void)
341 add_huge_page_size(1UL << HPAGE_64K_SHIFT
);
342 add_huge_page_size(1UL << HPAGE_SHIFT
);
343 add_huge_page_size(1UL << HPAGE_256MB_SHIFT
);
344 add_huge_page_size(1UL << HPAGE_2GB_SHIFT
);
349 arch_initcall(hugetlbpage_init
);
351 static void __init
pud_huge_patch(void)
353 struct pud_huge_patch_entry
*p
;
356 p
= &__pud_huge_patch
;
358 *(unsigned int *)addr
= p
->insn
;
360 __asm__
__volatile__("flush %0" : : "r" (addr
));
363 static int __init
setup_hugepagesz(char *string
)
365 unsigned long long hugepage_size
;
366 unsigned int hugepage_shift
;
367 unsigned short hv_pgsz_idx
;
368 unsigned int hv_pgsz_mask
;
371 hugepage_size
= memparse(string
, &string
);
372 hugepage_shift
= ilog2(hugepage_size
);
374 switch (hugepage_shift
) {
375 case HPAGE_16GB_SHIFT
:
376 hv_pgsz_mask
= HV_PGSZ_MASK_16GB
;
377 hv_pgsz_idx
= HV_PGSZ_IDX_16GB
;
380 case HPAGE_2GB_SHIFT
:
381 hv_pgsz_mask
= HV_PGSZ_MASK_2GB
;
382 hv_pgsz_idx
= HV_PGSZ_IDX_2GB
;
384 case HPAGE_256MB_SHIFT
:
385 hv_pgsz_mask
= HV_PGSZ_MASK_256MB
;
386 hv_pgsz_idx
= HV_PGSZ_IDX_256MB
;
389 hv_pgsz_mask
= HV_PGSZ_MASK_4MB
;
390 hv_pgsz_idx
= HV_PGSZ_IDX_4MB
;
392 case HPAGE_64K_SHIFT
:
393 hv_pgsz_mask
= HV_PGSZ_MASK_64K
;
394 hv_pgsz_idx
= HV_PGSZ_IDX_64K
;
400 if ((hv_pgsz_mask
& cpu_pgsz_mask
) == 0U) {
402 pr_err("hugepagesz=%llu not supported by MMU.\n",
407 add_huge_page_size(hugepage_size
);
413 __setup("hugepagesz=", setup_hugepagesz
);
414 #endif /* CONFIG_HUGETLB_PAGE */
416 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
418 struct mm_struct
*mm
;
423 if (tlb_type
!= hypervisor
) {
424 unsigned long pfn
= pte_pfn(pte
);
432 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
433 if (!pte_accessible(mm
, pte
))
436 spin_lock_irqsave(&mm
->context
.lock
, flags
);
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 if (mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) {
441 unsigned long hugepage_size
= PAGE_SIZE
;
443 if (is_vm_hugetlb_page(vma
))
444 hugepage_size
= huge_page_size(hstate_vma(vma
));
446 if (hugepage_size
>= PUD_SIZE
) {
447 unsigned long mask
= 0x1ffc00000UL
;
449 /* Transfer bits [32:22] from address to resolve
452 pte_val(pte
) &= ~mask
;
453 pte_val(pte
) |= (address
& mask
);
454 } else if (hugepage_size
>= PMD_SIZE
) {
455 /* We are fabricating 8MB pages using 4MB
458 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
461 if (hugepage_size
>= PMD_SIZE
) {
462 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
,
463 REAL_HPAGE_SHIFT
, address
, pte_val(pte
));
469 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
470 address
, pte_val(pte
));
472 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
475 void flush_dcache_page(struct page
*page
)
477 struct address_space
*mapping
;
480 if (tlb_type
== hypervisor
)
483 /* Do not bother with the expensive D-cache flush if it
484 * is merely the zero page. The 'bigcore' testcase in GDB
485 * causes this case to run millions of times.
487 if (page
== ZERO_PAGE(0))
490 this_cpu
= get_cpu();
492 mapping
= page_mapping_file(page
);
493 if (mapping
&& !mapping_mapped(mapping
)) {
494 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
496 int dirty_cpu
= dcache_dirty_cpu(page
);
498 if (dirty_cpu
== this_cpu
)
500 smp_flush_dcache_page_impl(page
, dirty_cpu
);
502 set_dcache_dirty(page
, this_cpu
);
504 /* We could delay the flush for the !page_mapping
505 * case too. But that case is for exec env/arg
506 * pages and those are %99 certainly going to get
507 * faulted into the tlb (and thus flushed) anyways.
509 flush_dcache_page_impl(page
);
515 EXPORT_SYMBOL(flush_dcache_page
);
517 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
519 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 if (tlb_type
== spitfire
) {
523 /* This code only runs on Spitfire cpus so this is
524 * why we can assume _PAGE_PADDR_4U.
526 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
527 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
529 if (kaddr
>= PAGE_OFFSET
)
530 paddr
= kaddr
& mask
;
532 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
533 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
534 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
535 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
537 paddr
= pte_val(*ptep
) & mask
;
539 __flush_icache_page(paddr
);
543 EXPORT_SYMBOL(flush_icache_range
);
545 void mmu_info(struct seq_file
*m
)
547 static const char *pgsz_strings
[] = {
548 "8K", "64K", "512K", "4MB", "32MB",
549 "256MB", "2GB", "16GB",
553 if (tlb_type
== cheetah
)
554 seq_printf(m
, "MMU Type\t: Cheetah\n");
555 else if (tlb_type
== cheetah_plus
)
556 seq_printf(m
, "MMU Type\t: Cheetah+\n");
557 else if (tlb_type
== spitfire
)
558 seq_printf(m
, "MMU Type\t: Spitfire\n");
559 else if (tlb_type
== hypervisor
)
560 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
562 seq_printf(m
, "MMU Type\t: ???\n");
564 seq_printf(m
, "MMU PGSZs\t: ");
566 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
567 if (cpu_pgsz_mask
& (1UL << i
)) {
568 seq_printf(m
, "%s%s",
569 printed
? "," : "", pgsz_strings
[i
]);
575 #ifdef CONFIG_DEBUG_DCFLUSH
576 seq_printf(m
, "DCPageFlushes\t: %d\n",
577 atomic_read(&dcpage_flushes
));
579 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
580 atomic_read(&dcpage_flushes_xcall
));
581 #endif /* CONFIG_SMP */
582 #endif /* CONFIG_DEBUG_DCFLUSH */
585 struct linux_prom_translation prom_trans
[512] __read_mostly
;
586 unsigned int prom_trans_ents __read_mostly
;
588 unsigned long kern_locked_tte_data
;
590 /* The obp translations are saved based on 8k pagesize, since obp can
591 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
592 * HI_OBP_ADDRESS range are handled in ktlb.S.
594 static inline int in_obp_range(unsigned long vaddr
)
596 return (vaddr
>= LOW_OBP_ADDRESS
&&
597 vaddr
< HI_OBP_ADDRESS
);
600 static int cmp_ptrans(const void *a
, const void *b
)
602 const struct linux_prom_translation
*x
= a
, *y
= b
;
604 if (x
->virt
> y
->virt
)
606 if (x
->virt
< y
->virt
)
611 /* Read OBP translations property into 'prom_trans[]'. */
612 static void __init
read_obp_translations(void)
614 int n
, node
, ents
, first
, last
, i
;
616 node
= prom_finddevice("/virtual-memory");
617 n
= prom_getproplen(node
, "translations");
618 if (unlikely(n
== 0 || n
== -1)) {
619 prom_printf("prom_mappings: Couldn't get size.\n");
622 if (unlikely(n
> sizeof(prom_trans
))) {
623 prom_printf("prom_mappings: Size %d is too big.\n", n
);
627 if ((n
= prom_getproperty(node
, "translations",
628 (char *)&prom_trans
[0],
629 sizeof(prom_trans
))) == -1) {
630 prom_printf("prom_mappings: Couldn't get property.\n");
634 n
= n
/ sizeof(struct linux_prom_translation
);
638 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
641 /* Now kick out all the non-OBP entries. */
642 for (i
= 0; i
< ents
; i
++) {
643 if (in_obp_range(prom_trans
[i
].virt
))
647 for (; i
< ents
; i
++) {
648 if (!in_obp_range(prom_trans
[i
].virt
))
653 for (i
= 0; i
< (last
- first
); i
++) {
654 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
655 struct linux_prom_translation
*dest
= &prom_trans
[i
];
659 for (; i
< ents
; i
++) {
660 struct linux_prom_translation
*dest
= &prom_trans
[i
];
661 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
664 prom_trans_ents
= last
- first
;
666 if (tlb_type
== spitfire
) {
667 /* Clear diag TTE bits. */
668 for (i
= 0; i
< prom_trans_ents
; i
++)
669 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
672 /* Force execute bit on. */
673 for (i
= 0; i
< prom_trans_ents
; i
++)
674 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
675 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
678 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
682 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
685 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
686 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
691 static unsigned long kern_large_tte(unsigned long paddr
);
693 static void __init
remap_kernel(void)
695 unsigned long phys_page
, tte_vaddr
, tte_data
;
696 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
698 tte_vaddr
= (unsigned long) KERNBASE
;
699 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
700 tte_data
= kern_large_tte(phys_page
);
702 kern_locked_tte_data
= tte_data
;
704 /* Now lock us into the TLBs via Hypervisor or OBP. */
705 if (tlb_type
== hypervisor
) {
706 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
707 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
708 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
709 tte_vaddr
+= 0x400000;
710 tte_data
+= 0x400000;
713 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
714 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
715 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
716 tte_vaddr
+= 0x400000;
717 tte_data
+= 0x400000;
719 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
721 if (tlb_type
== cheetah_plus
) {
722 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
723 CTX_CHEETAH_PLUS_NUC
);
724 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
725 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
730 static void __init
inherit_prom_mappings(void)
732 /* Now fixup OBP's idea about where we really are mapped. */
733 printk("Remapping the kernel... ");
738 void prom_world(int enter
)
743 __asm__
__volatile__("flushw");
746 void __flush_dcache_range(unsigned long start
, unsigned long end
)
750 if (tlb_type
== spitfire
) {
753 for (va
= start
; va
< end
; va
+= 32) {
754 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
758 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
761 for (va
= start
; va
< end
; va
+= 32)
762 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
766 "i" (ASI_DCACHE_INVALIDATE
));
769 EXPORT_SYMBOL(__flush_dcache_range
);
771 /* get_new_mmu_context() uses "cache + 1". */
772 DEFINE_SPINLOCK(ctx_alloc_lock
);
773 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
;
774 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
775 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
776 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
777 DEFINE_PER_CPU(struct mm_struct
*, per_cpu_secondary_mm
) = {0};
779 static void mmu_context_wrap(void)
781 unsigned long old_ver
= tlb_context_cache
& CTX_VERSION_MASK
;
782 unsigned long new_ver
, new_ctx
, old_ctx
;
783 struct mm_struct
*mm
;
786 bitmap_zero(mmu_context_bmap
, 1 << CTX_NR_BITS
);
788 /* Reserve kernel context */
789 set_bit(0, mmu_context_bmap
);
791 new_ver
= (tlb_context_cache
& CTX_VERSION_MASK
) + CTX_FIRST_VERSION
;
792 if (unlikely(new_ver
== 0))
793 new_ver
= CTX_FIRST_VERSION
;
794 tlb_context_cache
= new_ver
;
797 * Make sure that any new mm that are added into per_cpu_secondary_mm,
798 * are going to go through get_new_mmu_context() path.
803 * Updated versions to current on those CPUs that had valid secondary
806 for_each_online_cpu(cpu
) {
808 * If a new mm is stored after we took this mm from the array,
809 * it will go into get_new_mmu_context() path, because we
810 * already bumped the version in tlb_context_cache.
812 mm
= per_cpu(per_cpu_secondary_mm
, cpu
);
814 if (unlikely(!mm
|| mm
== &init_mm
))
817 old_ctx
= mm
->context
.sparc64_ctx_val
;
818 if (likely((old_ctx
& CTX_VERSION_MASK
) == old_ver
)) {
819 new_ctx
= (old_ctx
& ~CTX_VERSION_MASK
) | new_ver
;
820 set_bit(new_ctx
& CTX_NR_MASK
, mmu_context_bmap
);
821 mm
->context
.sparc64_ctx_val
= new_ctx
;
826 /* Caller does TLB context flushing on local CPU if necessary.
827 * The caller also ensures that CTX_VALID(mm->context) is false.
829 * We must be careful about boundary cases so that we never
830 * let the user have CTX 0 (nucleus) or we ever use a CTX
831 * version of zero (and thus NO_CONTEXT would not be caught
832 * by version mis-match tests in mmu_context.h).
834 * Always invoked with interrupts disabled.
836 void get_new_mmu_context(struct mm_struct
*mm
)
838 unsigned long ctx
, new_ctx
;
839 unsigned long orig_pgsz_bits
;
841 spin_lock(&ctx_alloc_lock
);
843 /* wrap might have happened, test again if our context became valid */
844 if (unlikely(CTX_VALID(mm
->context
)))
846 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
847 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
848 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
849 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
850 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
851 if (new_ctx
>= ctx
) {
856 if (mm
->context
.sparc64_ctx_val
)
857 cpumask_clear(mm_cpumask(mm
));
858 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
859 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
860 tlb_context_cache
= new_ctx
;
861 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
863 spin_unlock(&ctx_alloc_lock
);
866 static int numa_enabled
= 1;
867 static int numa_debug
;
869 static int __init
early_numa(char *p
)
874 if (strstr(p
, "off"))
877 if (strstr(p
, "debug"))
882 early_param("numa", early_numa
);
884 #define numadbg(f, a...) \
885 do { if (numa_debug) \
886 printk(KERN_INFO f, ## a); \
889 static void __init
find_ramdisk(unsigned long phys_base
)
891 #ifdef CONFIG_BLK_DEV_INITRD
892 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
893 unsigned long ramdisk_image
;
895 /* Older versions of the bootloader only supported a
896 * 32-bit physical address for the ramdisk image
897 * location, stored at sparc_ramdisk_image. Newer
898 * SILO versions set sparc_ramdisk_image to zero and
899 * provide a full 64-bit physical address at
900 * sparc_ramdisk_image64.
902 ramdisk_image
= sparc_ramdisk_image
;
904 ramdisk_image
= sparc_ramdisk_image64
;
906 /* Another bootloader quirk. The bootloader normalizes
907 * the physical address to KERNBASE, so we have to
908 * factor that back out and add in the lowest valid
909 * physical page address to get the true physical address.
911 ramdisk_image
-= KERNBASE
;
912 ramdisk_image
+= phys_base
;
914 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
915 ramdisk_image
, sparc_ramdisk_size
);
917 initrd_start
= ramdisk_image
;
918 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
920 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
922 initrd_start
+= PAGE_OFFSET
;
923 initrd_end
+= PAGE_OFFSET
;
928 struct node_mem_mask
{
932 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
933 static int num_node_masks
;
935 #ifdef CONFIG_NEED_MULTIPLE_NODES
937 struct mdesc_mlgroup
{
944 static struct mdesc_mlgroup
*mlgroups
;
945 static int num_mlgroups
;
947 int numa_cpu_lookup_table
[NR_CPUS
];
948 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
950 struct mdesc_mblock
{
953 u64 offset
; /* RA-to-PA */
955 static struct mdesc_mblock
*mblocks
;
956 static int num_mblocks
;
958 static struct mdesc_mblock
* __init
addr_to_mblock(unsigned long addr
)
960 struct mdesc_mblock
*m
= NULL
;
963 for (i
= 0; i
< num_mblocks
; i
++) {
966 if (addr
>= m
->base
&&
967 addr
< (m
->base
+ m
->size
)) {
975 static u64 __init
memblock_nid_range_sun4u(u64 start
, u64 end
, int *nid
)
977 int prev_nid
, new_nid
;
979 prev_nid
= NUMA_NO_NODE
;
980 for ( ; start
< end
; start
+= PAGE_SIZE
) {
981 for (new_nid
= 0; new_nid
< num_node_masks
; new_nid
++) {
982 struct node_mem_mask
*p
= &node_masks
[new_nid
];
984 if ((start
& p
->mask
) == p
->match
) {
985 if (prev_nid
== NUMA_NO_NODE
)
991 if (new_nid
== num_node_masks
) {
993 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
998 if (prev_nid
!= new_nid
)
1003 return start
> end
? end
: start
;
1006 static u64 __init
memblock_nid_range(u64 start
, u64 end
, int *nid
)
1008 u64 ret_end
, pa_start
, m_mask
, m_match
, m_end
;
1009 struct mdesc_mblock
*mblock
;
1012 if (tlb_type
!= hypervisor
)
1013 return memblock_nid_range_sun4u(start
, end
, nid
);
1015 mblock
= addr_to_mblock(start
);
1017 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1025 pa_start
= start
+ mblock
->offset
;
1029 for (_nid
= 0; _nid
< num_node_masks
; _nid
++) {
1030 struct node_mem_mask
*const m
= &node_masks
[_nid
];
1032 if ((pa_start
& m
->mask
) == m
->match
) {
1039 if (num_node_masks
== _nid
) {
1040 /* We could not find NUMA group, so default to 0, but lets
1041 * search for latency group, so we could calculate the correct
1042 * end address that we return
1046 for (i
= 0; i
< num_mlgroups
; i
++) {
1047 struct mdesc_mlgroup
*const m
= &mlgroups
[i
];
1049 if ((pa_start
& m
->mask
) == m
->match
) {
1056 if (i
== num_mlgroups
) {
1057 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1066 * Each latency group has match and mask, and each memory block has an
1067 * offset. An address belongs to a latency group if its address matches
1068 * the following formula: ((addr + offset) & mask) == match
1069 * It is, however, slow to check every single page if it matches a
1070 * particular latency group. As optimization we calculate end value by
1071 * using bit arithmetics.
1073 m_end
= m_match
+ (1ul << __ffs(m_mask
)) - mblock
->offset
;
1074 m_end
+= pa_start
& ~((1ul << fls64(m_mask
)) - 1);
1075 ret_end
= m_end
> end
? end
: m_end
;
1083 /* This must be invoked after performing all of the necessary
1084 * memblock_set_node() calls for 'nid'. We need to be able to get
1085 * correct data from get_pfn_range_for_nid().
1087 static void __init
allocate_node_data(int nid
)
1089 struct pglist_data
*p
;
1090 unsigned long start_pfn
, end_pfn
;
1091 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 NODE_DATA(nid
) = memblock_alloc_node(sizeof(struct pglist_data
),
1094 SMP_CACHE_BYTES
, nid
);
1095 if (!NODE_DATA(nid
)) {
1096 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
1100 NODE_DATA(nid
)->node_id
= nid
;
1105 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1106 p
->node_start_pfn
= start_pfn
;
1107 p
->node_spanned_pages
= end_pfn
- start_pfn
;
1110 static void init_node_masks_nonnuma(void)
1112 #ifdef CONFIG_NEED_MULTIPLE_NODES
1116 numadbg("Initializing tables for non-numa.\n");
1118 node_masks
[0].mask
= 0;
1119 node_masks
[0].match
= 0;
1122 #ifdef CONFIG_NEED_MULTIPLE_NODES
1123 for (i
= 0; i
< NR_CPUS
; i
++)
1124 numa_cpu_lookup_table
[i
] = 0;
1126 cpumask_setall(&numa_cpumask_lookup_table
[0]);
1130 #ifdef CONFIG_NEED_MULTIPLE_NODES
1131 struct pglist_data
*node_data
[MAX_NUMNODES
];
1133 EXPORT_SYMBOL(numa_cpu_lookup_table
);
1134 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
1135 EXPORT_SYMBOL(node_data
);
1137 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
1142 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
1143 u64 target
= mdesc_arc_target(md
, arc
);
1146 val
= mdesc_get_property(md
, target
,
1147 "cfg-handle", NULL
);
1148 if (val
&& *val
== cfg_handle
)
1154 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
1157 u64 arc
, candidate
, best_latency
= ~(u64
)0;
1159 candidate
= MDESC_NODE_NULL
;
1160 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1161 u64 target
= mdesc_arc_target(md
, arc
);
1162 const char *name
= mdesc_node_name(md
, target
);
1165 if (strcmp(name
, "pio-latency-group"))
1168 val
= mdesc_get_property(md
, target
, "latency", NULL
);
1172 if (*val
< best_latency
) {
1174 best_latency
= *val
;
1178 if (candidate
== MDESC_NODE_NULL
)
1181 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
1184 int of_node_to_nid(struct device_node
*dp
)
1186 const struct linux_prom64_registers
*regs
;
1187 struct mdesc_handle
*md
;
1192 /* This is the right thing to do on currently supported
1193 * SUN4U NUMA platforms as well, as the PCI controller does
1194 * not sit behind any particular memory controller.
1199 regs
= of_get_property(dp
, "reg", NULL
);
1203 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1209 mdesc_for_each_node_by_name(md
, grp
, "group") {
1210 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1222 static void __init
add_node_ranges(void)
1224 struct memblock_region
*reg
;
1225 unsigned long prev_max
;
1228 prev_max
= memblock
.memory
.max
;
1230 for_each_memblock(memory
, reg
) {
1231 unsigned long size
= reg
->size
;
1232 unsigned long start
, end
;
1236 while (start
< end
) {
1237 unsigned long this_end
;
1240 this_end
= memblock_nid_range(start
, end
, &nid
);
1242 numadbg("Setting memblock NUMA node nid[%d] "
1243 "start[%lx] end[%lx]\n",
1244 nid
, start
, this_end
);
1246 memblock_set_node(start
, this_end
- start
,
1247 &memblock
.memory
, nid
);
1248 if (memblock
.memory
.max
!= prev_max
)
1249 goto memblock_resized
;
1255 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1257 unsigned long paddr
;
1261 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1266 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mlgroup
),
1271 mlgroups
= __va(paddr
);
1272 num_mlgroups
= count
;
1275 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1276 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1281 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1283 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1285 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1288 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1289 "match[%llx] mask[%llx]\n",
1290 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1296 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1298 unsigned long paddr
;
1302 mdesc_for_each_node_by_name(md
, node
, "mblock")
1307 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mblock
),
1312 mblocks
= __va(paddr
);
1313 num_mblocks
= count
;
1316 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1317 struct mdesc_mblock
*m
= &mblocks
[count
++];
1320 val
= mdesc_get_property(md
, node
, "base", NULL
);
1322 val
= mdesc_get_property(md
, node
, "size", NULL
);
1324 val
= mdesc_get_property(md
, node
,
1325 "address-congruence-offset", NULL
);
1327 /* The address-congruence-offset property is optional.
1328 * Explicity zero it be identifty this.
1335 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1336 count
- 1, m
->base
, m
->size
, m
->offset
);
1342 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1343 u64 grp
, cpumask_t
*mask
)
1347 cpumask_clear(mask
);
1349 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1350 u64 target
= mdesc_arc_target(md
, arc
);
1351 const char *name
= mdesc_node_name(md
, target
);
1354 if (strcmp(name
, "cpu"))
1356 id
= mdesc_get_property(md
, target
, "id", NULL
);
1357 if (*id
< nr_cpu_ids
)
1358 cpumask_set_cpu(*id
, mask
);
1362 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1366 for (i
= 0; i
< num_mlgroups
; i
++) {
1367 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1368 if (m
->node
== node
)
1374 int __node_distance(int from
, int to
)
1376 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1377 pr_warn("Returning default NUMA distance value for %d->%d\n",
1379 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1381 return numa_latency
[from
][to
];
1383 EXPORT_SYMBOL(__node_distance
);
1385 static int __init
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1389 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1390 struct node_mem_mask
*n
= &node_masks
[i
];
1392 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->match
))
1398 static void __init
find_numa_latencies_for_group(struct mdesc_handle
*md
,
1403 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1405 u64 target
= mdesc_arc_target(md
, arc
);
1406 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1410 tnode
= find_best_numa_node_for_mlgroup(m
);
1411 if (tnode
== MAX_NUMNODES
)
1413 numa_latency
[index
][tnode
] = m
->latency
;
1417 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1420 struct mdesc_mlgroup
*candidate
= NULL
;
1421 u64 arc
, best_latency
= ~(u64
)0;
1422 struct node_mem_mask
*n
;
1424 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1425 u64 target
= mdesc_arc_target(md
, arc
);
1426 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1429 if (m
->latency
< best_latency
) {
1431 best_latency
= m
->latency
;
1437 if (num_node_masks
!= index
) {
1438 printk(KERN_ERR
"Inconsistent NUMA state, "
1439 "index[%d] != num_node_masks[%d]\n",
1440 index
, num_node_masks
);
1444 n
= &node_masks
[num_node_masks
++];
1446 n
->mask
= candidate
->mask
;
1447 n
->match
= candidate
->match
;
1449 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1450 index
, n
->mask
, n
->match
, candidate
->latency
);
1455 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1461 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1463 for_each_cpu(cpu
, &mask
)
1464 numa_cpu_lookup_table
[cpu
] = index
;
1465 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1468 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1469 for_each_cpu(cpu
, &mask
)
1474 return numa_attach_mlgroup(md
, grp
, index
);
1477 static int __init
numa_parse_mdesc(void)
1479 struct mdesc_handle
*md
= mdesc_grab();
1480 int i
, j
, err
, count
;
1483 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1484 if (node
== MDESC_NODE_NULL
) {
1489 err
= grab_mblocks(md
);
1493 err
= grab_mlgroups(md
);
1498 mdesc_for_each_node_by_name(md
, node
, "group") {
1499 err
= numa_parse_mdesc_group(md
, node
, count
);
1506 mdesc_for_each_node_by_name(md
, node
, "group") {
1507 find_numa_latencies_for_group(md
, node
, count
);
1511 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1512 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1513 u64 self_latency
= numa_latency
[i
][i
];
1515 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1516 numa_latency
[i
][j
] =
1517 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1524 for (i
= 0; i
< num_node_masks
; i
++) {
1525 allocate_node_data(i
);
1535 static int __init
numa_parse_jbus(void)
1537 unsigned long cpu
, index
;
1539 /* NUMA node id is encoded in bits 36 and higher, and there is
1540 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1543 for_each_present_cpu(cpu
) {
1544 numa_cpu_lookup_table
[cpu
] = index
;
1545 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1546 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1547 node_masks
[index
].match
= cpu
<< 36UL;
1551 num_node_masks
= index
;
1555 for (index
= 0; index
< num_node_masks
; index
++) {
1556 allocate_node_data(index
);
1557 node_set_online(index
);
1563 static int __init
numa_parse_sun4u(void)
1565 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1568 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1569 if ((ver
>> 32UL) == __JALAPENO_ID
||
1570 (ver
>> 32UL) == __SERRANO_ID
)
1571 return numa_parse_jbus();
1576 static int __init
bootmem_init_numa(void)
1581 numadbg("bootmem_init_numa()\n");
1583 /* Some sane defaults for numa latency values */
1584 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1585 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1586 numa_latency
[i
][j
] = (i
== j
) ?
1587 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1591 if (tlb_type
== hypervisor
)
1592 err
= numa_parse_mdesc();
1594 err
= numa_parse_sun4u();
1601 static int bootmem_init_numa(void)
1608 static void __init
bootmem_init_nonnuma(void)
1610 unsigned long top_of_ram
= memblock_end_of_DRAM();
1611 unsigned long total_ram
= memblock_phys_mem_size();
1613 numadbg("bootmem_init_nonnuma()\n");
1615 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1616 top_of_ram
, total_ram
);
1617 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1618 (top_of_ram
- total_ram
) >> 20);
1620 init_node_masks_nonnuma();
1621 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
1622 allocate_node_data(0);
1626 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1628 unsigned long end_pfn
;
1630 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1631 max_pfn
= max_low_pfn
= end_pfn
;
1632 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1634 if (bootmem_init_numa() < 0)
1635 bootmem_init_nonnuma();
1637 /* Dump memblock with node info. */
1638 memblock_dump_all();
1640 /* XXX cpu notifier XXX */
1642 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1648 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1649 static int pall_ents __initdata
;
1651 static unsigned long max_phys_bits
= 40;
1653 bool kern_addr_valid(unsigned long addr
)
1660 if ((long)addr
< 0L) {
1661 unsigned long pa
= __pa(addr
);
1663 if ((pa
>> max_phys_bits
) != 0UL)
1666 return pfn_valid(pa
>> PAGE_SHIFT
);
1669 if (addr
>= (unsigned long) KERNBASE
&&
1670 addr
< (unsigned long)&_end
)
1673 pgd
= pgd_offset_k(addr
);
1677 pud
= pud_offset(pgd
, addr
);
1681 if (pud_large(*pud
))
1682 return pfn_valid(pud_pfn(*pud
));
1684 pmd
= pmd_offset(pud
, addr
);
1688 if (pmd_large(*pmd
))
1689 return pfn_valid(pmd_pfn(*pmd
));
1691 pte
= pte_offset_kernel(pmd
, addr
);
1695 return pfn_valid(pte_pfn(*pte
));
1697 EXPORT_SYMBOL(kern_addr_valid
);
1699 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1703 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1704 u64 pte_val
= vstart
;
1706 /* Each PUD is 8GB */
1707 if ((vstart
& mask16gb
) ||
1708 (vend
- vstart
<= mask16gb
)) {
1709 pte_val
^= kern_linear_pte_xor
[2];
1710 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1712 return vstart
+ PUD_SIZE
;
1715 pte_val
^= kern_linear_pte_xor
[3];
1716 pte_val
|= _PAGE_PUD_HUGE
;
1718 vend
= vstart
+ mask16gb
+ 1UL;
1719 while (vstart
< vend
) {
1720 pud_val(*pud
) = pte_val
;
1722 pte_val
+= PUD_SIZE
;
1729 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1732 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1738 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1742 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1743 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1744 u64 pte_val
= vstart
;
1746 /* Each PMD is 8MB */
1747 if ((vstart
& mask256mb
) ||
1748 (vend
- vstart
<= mask256mb
)) {
1749 pte_val
^= kern_linear_pte_xor
[0];
1750 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1752 return vstart
+ PMD_SIZE
;
1755 if ((vstart
& mask2gb
) ||
1756 (vend
- vstart
<= mask2gb
)) {
1757 pte_val
^= kern_linear_pte_xor
[1];
1758 pte_val
|= _PAGE_PMD_HUGE
;
1759 vend
= vstart
+ mask256mb
+ 1UL;
1761 pte_val
^= kern_linear_pte_xor
[2];
1762 pte_val
|= _PAGE_PMD_HUGE
;
1763 vend
= vstart
+ mask2gb
+ 1UL;
1766 while (vstart
< vend
) {
1767 pmd_val(*pmd
) = pte_val
;
1769 pte_val
+= PMD_SIZE
;
1777 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1780 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1786 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1787 unsigned long pend
, pgprot_t prot
,
1790 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1791 unsigned long vend
= PAGE_OFFSET
+ pend
;
1792 unsigned long alloc_bytes
= 0UL;
1794 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1795 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1800 while (vstart
< vend
) {
1801 unsigned long this_end
, paddr
= __pa(vstart
);
1802 pgd_t
*pgd
= pgd_offset_k(vstart
);
1807 if (pgd_none(*pgd
)) {
1810 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1814 alloc_bytes
+= PAGE_SIZE
;
1815 pgd_populate(&init_mm
, pgd
, new);
1817 pud
= pud_offset(pgd
, vstart
);
1818 if (pud_none(*pud
)) {
1821 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1822 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1825 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1829 alloc_bytes
+= PAGE_SIZE
;
1830 pud_populate(&init_mm
, pud
, new);
1833 pmd
= pmd_offset(pud
, vstart
);
1834 if (pmd_none(*pmd
)) {
1837 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1838 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1841 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1845 alloc_bytes
+= PAGE_SIZE
;
1846 pmd_populate_kernel(&init_mm
, pmd
, new);
1849 pte
= pte_offset_kernel(pmd
, vstart
);
1850 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1851 if (this_end
> vend
)
1854 while (vstart
< this_end
) {
1855 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1857 vstart
+= PAGE_SIZE
;
1866 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1867 __func__
, PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1871 static void __init
flush_all_kernel_tsbs(void)
1875 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1876 struct tsb
*ent
= &swapper_tsb
[i
];
1878 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1880 #ifndef CONFIG_DEBUG_PAGEALLOC
1881 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1882 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1884 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1889 extern unsigned int kvmap_linear_patch
[1];
1891 static void __init
kernel_physical_mapping_init(void)
1893 unsigned long i
, mem_alloced
= 0UL;
1894 bool use_huge
= true;
1896 #ifdef CONFIG_DEBUG_PAGEALLOC
1899 for (i
= 0; i
< pall_ents
; i
++) {
1900 unsigned long phys_start
, phys_end
;
1902 phys_start
= pall
[i
].phys_addr
;
1903 phys_end
= phys_start
+ pall
[i
].reg_size
;
1905 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1906 PAGE_KERNEL
, use_huge
);
1909 printk("Allocated %ld bytes for kernel page tables.\n",
1912 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1913 flushi(&kvmap_linear_patch
[0]);
1915 flush_all_kernel_tsbs();
1920 #ifdef CONFIG_DEBUG_PAGEALLOC
1921 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1923 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1924 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1926 kernel_map_range(phys_start
, phys_end
,
1927 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1929 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1930 PAGE_OFFSET
+ phys_end
);
1932 /* we should perform an IPI and flush all tlbs,
1933 * but that can deadlock->flush only current cpu.
1935 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1936 PAGE_OFFSET
+ phys_end
);
1940 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1944 for (i
= 0; i
< pavail_ents
; i
++) {
1945 if (pavail
[i
].reg_size
>= size
)
1946 return pavail
[i
].phys_addr
;
1952 unsigned long PAGE_OFFSET
;
1953 EXPORT_SYMBOL(PAGE_OFFSET
);
1955 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1956 EXPORT_SYMBOL(VMALLOC_END
);
1958 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1959 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1961 static void __init
setup_page_offset(void)
1963 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1964 /* Cheetah/Panther support a full 64-bit virtual
1965 * address, so we can use all that our page tables
1968 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1969 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1972 } else if (tlb_type
== hypervisor
) {
1973 switch (sun4v_chip_type
) {
1974 case SUN4V_CHIP_NIAGARA1
:
1975 case SUN4V_CHIP_NIAGARA2
:
1976 /* T1 and T2 support 48-bit virtual addresses. */
1977 sparc64_va_hole_top
= 0xffff800000000000UL
;
1978 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1982 case SUN4V_CHIP_NIAGARA3
:
1983 /* T3 supports 48-bit virtual addresses. */
1984 sparc64_va_hole_top
= 0xffff800000000000UL
;
1985 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1989 case SUN4V_CHIP_NIAGARA4
:
1990 case SUN4V_CHIP_NIAGARA5
:
1991 case SUN4V_CHIP_SPARC64X
:
1992 case SUN4V_CHIP_SPARC_M6
:
1993 /* T4 and later support 52-bit virtual addresses. */
1994 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1995 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1998 case SUN4V_CHIP_SPARC_M7
:
1999 case SUN4V_CHIP_SPARC_SN
:
2000 /* M7 and later support 52-bit virtual addresses. */
2001 sparc64_va_hole_top
= 0xfff8000000000000UL
;
2002 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
2005 case SUN4V_CHIP_SPARC_M8
:
2007 /* M8 and later support 54-bit virtual addresses.
2008 * However, restricting M8 and above VA bits to 53
2009 * as 4-level page table cannot support more than
2012 sparc64_va_hole_top
= 0xfff0000000000000UL
;
2013 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
2019 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
2020 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2025 PAGE_OFFSET
= sparc64_va_hole_top
;
2026 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
2027 (sparc64_va_hole_bottom
>> 2));
2029 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2030 PAGE_OFFSET
, max_phys_bits
);
2031 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2032 VMALLOC_START
, VMALLOC_END
);
2033 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2034 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
2037 static void __init
tsb_phys_patch(void)
2039 struct tsb_ldquad_phys_patch_entry
*pquad
;
2040 struct tsb_phys_patch_entry
*p
;
2042 pquad
= &__tsb_ldquad_phys_patch
;
2043 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
2044 unsigned long addr
= pquad
->addr
;
2046 if (tlb_type
== hypervisor
)
2047 *(unsigned int *) addr
= pquad
->sun4v_insn
;
2049 *(unsigned int *) addr
= pquad
->sun4u_insn
;
2051 __asm__
__volatile__("flush %0"
2058 p
= &__tsb_phys_patch
;
2059 while (p
< &__tsb_phys_patch_end
) {
2060 unsigned long addr
= p
->addr
;
2062 *(unsigned int *) addr
= p
->insn
;
2064 __asm__
__volatile__("flush %0"
2072 /* Don't mark as init, we give this to the Hypervisor. */
2073 #ifndef CONFIG_DEBUG_PAGEALLOC
2074 #define NUM_KTSB_DESCR 2
2076 #define NUM_KTSB_DESCR 1
2078 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
2080 /* The swapper TSBs are loaded with a base sequence of:
2082 * sethi %uhi(SYMBOL), REG1
2083 * sethi %hi(SYMBOL), REG2
2084 * or REG1, %ulo(SYMBOL), REG1
2085 * or REG2, %lo(SYMBOL), REG2
2086 * sllx REG1, 32, REG1
2087 * or REG1, REG2, REG1
2089 * When we use physical addressing for the TSB accesses, we patch the
2090 * first four instructions in the above sequence.
2093 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
2095 unsigned long high_bits
, low_bits
;
2097 high_bits
= (pa
>> 32) & 0xffffffff;
2098 low_bits
= (pa
>> 0) & 0xffffffff;
2100 while (start
< end
) {
2101 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
2103 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
2104 __asm__
__volatile__("flush %0" : : "r" (ia
));
2106 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
2107 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
2109 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
2110 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
2112 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
2113 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
2119 static void ktsb_phys_patch(void)
2121 extern unsigned int __swapper_tsb_phys_patch
;
2122 extern unsigned int __swapper_tsb_phys_patch_end
;
2123 unsigned long ktsb_pa
;
2125 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2126 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
2127 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
2128 #ifndef CONFIG_DEBUG_PAGEALLOC
2130 extern unsigned int __swapper_4m_tsb_phys_patch
;
2131 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
2132 ktsb_pa
= (kern_base
+
2133 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2134 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
2135 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
2140 static void __init
sun4v_ktsb_init(void)
2142 unsigned long ktsb_pa
;
2144 /* First KTSB for PAGE_SIZE mappings. */
2145 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2147 switch (PAGE_SIZE
) {
2150 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
2151 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
2155 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
2156 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
2160 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
2161 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
2164 case 4 * 1024 * 1024:
2165 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2166 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
2170 ktsb_descr
[0].assoc
= 1;
2171 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
2172 ktsb_descr
[0].ctx_idx
= 0;
2173 ktsb_descr
[0].tsb_base
= ktsb_pa
;
2174 ktsb_descr
[0].resv
= 0;
2176 #ifndef CONFIG_DEBUG_PAGEALLOC
2177 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2178 ktsb_pa
= (kern_base
+
2179 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2181 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2182 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
2183 HV_PGSZ_MASK_256MB
|
2185 HV_PGSZ_MASK_16GB
) &
2187 ktsb_descr
[1].assoc
= 1;
2188 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
2189 ktsb_descr
[1].ctx_idx
= 0;
2190 ktsb_descr
[1].tsb_base
= ktsb_pa
;
2191 ktsb_descr
[1].resv
= 0;
2195 void sun4v_ktsb_register(void)
2197 unsigned long pa
, ret
;
2199 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
2201 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
2203 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2204 "errors with %lx\n", pa
, ret
);
2209 static void __init
sun4u_linear_pte_xor_finalize(void)
2211 #ifndef CONFIG_DEBUG_PAGEALLOC
2212 /* This is where we would add Panther support for
2213 * 32MB and 256MB pages.
2218 static void __init
sun4v_linear_pte_xor_finalize(void)
2220 unsigned long pagecv_flag
;
2222 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2223 * enables MCD error. Do not set bit 9 on M7 processor.
2225 switch (sun4v_chip_type
) {
2226 case SUN4V_CHIP_SPARC_M7
:
2227 case SUN4V_CHIP_SPARC_M8
:
2228 case SUN4V_CHIP_SPARC_SN
:
2232 pagecv_flag
= _PAGE_CV_4V
;
2235 #ifndef CONFIG_DEBUG_PAGEALLOC
2236 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
2237 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2239 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
2240 _PAGE_P_4V
| _PAGE_W_4V
);
2242 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2245 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
2246 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2248 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2249 _PAGE_P_4V
| _PAGE_W_4V
);
2251 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2254 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2255 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2257 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2258 _PAGE_P_4V
| _PAGE_W_4V
);
2260 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2265 /* paging_init() sets up the page tables */
2267 static unsigned long last_valid_pfn
;
2269 static void sun4u_pgprot_init(void);
2270 static void sun4v_pgprot_init(void);
2272 static phys_addr_t __init
available_memory(void)
2274 phys_addr_t available
= 0ULL;
2275 phys_addr_t pa_start
, pa_end
;
2278 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2280 available
= available
+ (pa_end
- pa_start
);
2285 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2286 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2287 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2288 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2289 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2290 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2292 /* We need to exclude reserved regions. This exclusion will include
2293 * vmlinux and initrd. To be more precise the initrd size could be used to
2294 * compute a new lower limit because it is freed later during initialization.
2296 static void __init
reduce_memory(phys_addr_t limit_ram
)
2298 phys_addr_t avail_ram
= available_memory();
2299 phys_addr_t pa_start
, pa_end
;
2302 if (limit_ram
>= avail_ram
)
2305 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2307 phys_addr_t region_size
= pa_end
- pa_start
;
2308 phys_addr_t clip_start
= pa_start
;
2310 avail_ram
= avail_ram
- region_size
;
2311 /* Are we consuming too much? */
2312 if (avail_ram
< limit_ram
) {
2313 phys_addr_t give_back
= limit_ram
- avail_ram
;
2315 region_size
= region_size
- give_back
;
2316 clip_start
= clip_start
+ give_back
;
2319 memblock_remove(clip_start
, region_size
);
2321 if (avail_ram
<= limit_ram
)
2327 void __init
paging_init(void)
2329 unsigned long end_pfn
, shift
, phys_base
;
2330 unsigned long real_end
, i
;
2332 setup_page_offset();
2334 /* These build time checkes make sure that the dcache_dirty_cpu()
2335 * page->flags usage will work.
2337 * When a page gets marked as dcache-dirty, we store the
2338 * cpu number starting at bit 32 in the page->flags. Also,
2339 * functions like clear_dcache_dirty_cpu use the cpu mask
2340 * in 13-bit signed-immediate instruction fields.
2344 * Page flags must not reach into upper 32 bits that are used
2345 * for the cpu number
2347 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2350 * The bit fields placed in the high range must not reach below
2351 * the 32 bit boundary. Otherwise we cannot place the cpu field
2352 * at the 32 bit boundary.
2354 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2355 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2357 BUILD_BUG_ON(NR_CPUS
> 4096);
2359 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2360 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2362 /* Invalidate both kernel TSBs. */
2363 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2364 #ifndef CONFIG_DEBUG_PAGEALLOC
2365 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2368 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2369 * bit on M7 processor. This is a conflicting usage of the same
2370 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2371 * Detection error on all pages and this will lead to problems
2372 * later. Kernel does not run with MCD enabled and hence rest
2373 * of the required steps to fully configure memory corruption
2374 * detection are not taken. We need to ensure TTE.mcde is not
2375 * set on M7 processor. Compute the value of cacheability
2376 * flag for use later taking this into consideration.
2378 switch (sun4v_chip_type
) {
2379 case SUN4V_CHIP_SPARC_M7
:
2380 case SUN4V_CHIP_SPARC_M8
:
2381 case SUN4V_CHIP_SPARC_SN
:
2382 page_cache4v_flag
= _PAGE_CP_4V
;
2385 page_cache4v_flag
= _PAGE_CACHE_4V
;
2389 if (tlb_type
== hypervisor
)
2390 sun4v_pgprot_init();
2392 sun4u_pgprot_init();
2394 if (tlb_type
== cheetah_plus
||
2395 tlb_type
== hypervisor
) {
2400 if (tlb_type
== hypervisor
)
2401 sun4v_patch_tlb_handlers();
2403 /* Find available physical memory...
2405 * Read it twice in order to work around a bug in openfirmware.
2406 * The call to grab this table itself can cause openfirmware to
2407 * allocate memory, which in turn can take away some space from
2408 * the list of available memory. Reading it twice makes sure
2409 * we really do get the final value.
2411 read_obp_translations();
2412 read_obp_memory("reg", &pall
[0], &pall_ents
);
2413 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2414 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2416 phys_base
= 0xffffffffffffffffUL
;
2417 for (i
= 0; i
< pavail_ents
; i
++) {
2418 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2419 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2422 memblock_reserve(kern_base
, kern_size
);
2424 find_ramdisk(phys_base
);
2426 if (cmdline_memory_size
)
2427 reduce_memory(cmdline_memory_size
);
2429 memblock_allow_resize();
2430 memblock_dump_all();
2432 set_bit(0, mmu_context_bmap
);
2434 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2436 real_end
= (unsigned long)_end
;
2437 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2438 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2439 num_kernel_image_mappings
);
2441 /* Set kernel pgd to upper alias so physical page computations
2444 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2446 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2448 inherit_prom_mappings();
2450 /* Ok, we can use our TLB miss and window trap handlers safely. */
2455 prom_build_devicetree();
2456 of_populate_present_mask();
2458 of_fill_in_cpu_data();
2461 if (tlb_type
== hypervisor
) {
2463 mdesc_populate_present_mask(cpu_all_mask
);
2465 mdesc_fill_in_cpu_data(cpu_all_mask
);
2467 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2469 sun4v_linear_pte_xor_finalize();
2472 sun4v_ktsb_register();
2474 unsigned long impl
, ver
;
2476 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2477 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2479 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2480 impl
= ((ver
>> 32) & 0xffff);
2481 if (impl
== PANTHER_IMPL
)
2482 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2483 HV_PGSZ_MASK_256MB
);
2485 sun4u_linear_pte_xor_finalize();
2488 /* Flush the TLBs and the 4M TSB so that the updated linear
2489 * pte XOR settings are realized for all mappings.
2492 #ifndef CONFIG_DEBUG_PAGEALLOC
2493 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2497 /* Setup bootmem... */
2498 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2500 kernel_physical_mapping_init();
2503 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2505 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2507 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2509 free_area_init_nodes(max_zone_pfns
);
2512 printk("Booting Linux...\n");
2515 int page_in_phys_avail(unsigned long paddr
)
2521 for (i
= 0; i
< pavail_ents
; i
++) {
2522 unsigned long start
, end
;
2524 start
= pavail
[i
].phys_addr
;
2525 end
= start
+ pavail
[i
].reg_size
;
2527 if (paddr
>= start
&& paddr
< end
)
2530 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2532 #ifdef CONFIG_BLK_DEV_INITRD
2533 if (paddr
>= __pa(initrd_start
) &&
2534 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2541 static void __init
register_page_bootmem_info(void)
2543 #ifdef CONFIG_NEED_MULTIPLE_NODES
2546 for_each_online_node(i
)
2547 if (NODE_DATA(i
)->node_spanned_pages
)
2548 register_page_bootmem_info_node(NODE_DATA(i
));
2551 void __init
mem_init(void)
2553 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2555 memblock_free_all();
2558 * Must be done after boot memory is put on freelist, because here we
2559 * might set fields in deferred struct pages that have not yet been
2560 * initialized, and memblock_free_all() initializes all the reserved
2561 * deferred pages for us.
2563 register_page_bootmem_info();
2566 * Set up the zero page, mark it reserved, so that page count
2567 * is not manipulated when freeing the page from user ptes.
2569 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2570 if (mem_map_zero
== NULL
) {
2571 prom_printf("paging_init: Cannot alloc zero page.\n");
2574 mark_page_reserved(mem_map_zero
);
2576 mem_init_print_info(NULL
);
2578 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2579 cheetah_ecache_flush_init();
2582 void free_initmem(void)
2584 unsigned long addr
, initend
;
2587 /* If the physical memory maps were trimmed by kernel command
2588 * line options, don't even try freeing this initmem stuff up.
2589 * The kernel image could have been in the trimmed out region
2590 * and if so the freeing below will free invalid page structs.
2592 if (cmdline_memory_size
)
2596 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2598 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2599 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2600 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2604 ((unsigned long) __va(kern_base
)) -
2605 ((unsigned long) KERNBASE
));
2606 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2609 free_reserved_page(virt_to_page(page
));
2613 #ifdef CONFIG_BLK_DEV_INITRD
2614 void free_initrd_mem(unsigned long start
, unsigned long end
)
2616 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2621 pgprot_t PAGE_KERNEL __read_mostly
;
2622 EXPORT_SYMBOL(PAGE_KERNEL
);
2624 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2625 pgprot_t PAGE_COPY __read_mostly
;
2627 pgprot_t PAGE_SHARED __read_mostly
;
2628 EXPORT_SYMBOL(PAGE_SHARED
);
2630 unsigned long pg_iobits __read_mostly
;
2632 unsigned long _PAGE_IE __read_mostly
;
2633 EXPORT_SYMBOL(_PAGE_IE
);
2635 unsigned long _PAGE_E __read_mostly
;
2636 EXPORT_SYMBOL(_PAGE_E
);
2638 unsigned long _PAGE_CACHE __read_mostly
;
2639 EXPORT_SYMBOL(_PAGE_CACHE
);
2641 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2642 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2643 int node
, struct vmem_altmap
*altmap
)
2645 unsigned long pte_base
;
2647 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2648 _PAGE_CP_4U
| _PAGE_CV_4U
|
2649 _PAGE_P_4U
| _PAGE_W_4U
);
2650 if (tlb_type
== hypervisor
)
2651 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2652 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2654 pte_base
|= _PAGE_PMD_HUGE
;
2656 vstart
= vstart
& PMD_MASK
;
2657 vend
= ALIGN(vend
, PMD_SIZE
);
2658 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2659 pgd_t
*pgd
= vmemmap_pgd_populate(vstart
, node
);
2667 pud
= vmemmap_pud_populate(pgd
, vstart
, node
);
2671 pmd
= pmd_offset(pud
, vstart
);
2672 pte
= pmd_val(*pmd
);
2673 if (!(pte
& _PAGE_VALID
)) {
2674 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2679 pmd_val(*pmd
) = pte_base
| __pa(block
);
2686 void vmemmap_free(unsigned long start
, unsigned long end
,
2687 struct vmem_altmap
*altmap
)
2690 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2692 static void prot_init_common(unsigned long page_none
,
2693 unsigned long page_shared
,
2694 unsigned long page_copy
,
2695 unsigned long page_readonly
,
2696 unsigned long page_exec_bit
)
2698 PAGE_COPY
= __pgprot(page_copy
);
2699 PAGE_SHARED
= __pgprot(page_shared
);
2701 protection_map
[0x0] = __pgprot(page_none
);
2702 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2703 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2704 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2705 protection_map
[0x4] = __pgprot(page_readonly
);
2706 protection_map
[0x5] = __pgprot(page_readonly
);
2707 protection_map
[0x6] = __pgprot(page_copy
);
2708 protection_map
[0x7] = __pgprot(page_copy
);
2709 protection_map
[0x8] = __pgprot(page_none
);
2710 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2711 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2712 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2713 protection_map
[0xc] = __pgprot(page_readonly
);
2714 protection_map
[0xd] = __pgprot(page_readonly
);
2715 protection_map
[0xe] = __pgprot(page_shared
);
2716 protection_map
[0xf] = __pgprot(page_shared
);
2719 static void __init
sun4u_pgprot_init(void)
2721 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2722 unsigned long page_exec_bit
;
2725 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2726 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2727 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2729 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2730 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2731 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2732 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2734 _PAGE_IE
= _PAGE_IE_4U
;
2735 _PAGE_E
= _PAGE_E_4U
;
2736 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2738 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2739 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2741 #ifdef CONFIG_DEBUG_PAGEALLOC
2742 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2744 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2747 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2748 _PAGE_P_4U
| _PAGE_W_4U
);
2750 for (i
= 1; i
< 4; i
++)
2751 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2753 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2754 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2755 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2758 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2759 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2760 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2761 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2762 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2763 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2764 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2766 page_exec_bit
= _PAGE_EXEC_4U
;
2768 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2772 static void __init
sun4v_pgprot_init(void)
2774 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2775 unsigned long page_exec_bit
;
2778 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2779 page_cache4v_flag
| _PAGE_P_4V
|
2780 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2782 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2784 _PAGE_IE
= _PAGE_IE_4V
;
2785 _PAGE_E
= _PAGE_E_4V
;
2786 _PAGE_CACHE
= page_cache4v_flag
;
2788 #ifdef CONFIG_DEBUG_PAGEALLOC
2789 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2791 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2794 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2797 for (i
= 1; i
< 4; i
++)
2798 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2800 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2801 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2803 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2804 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2805 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2806 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2808 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2809 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2810 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2811 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2812 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2813 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2814 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2816 page_exec_bit
= _PAGE_EXEC_4V
;
2818 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2822 unsigned long pte_sz_bits(unsigned long sz
)
2824 if (tlb_type
== hypervisor
) {
2828 return _PAGE_SZ8K_4V
;
2830 return _PAGE_SZ64K_4V
;
2832 return _PAGE_SZ512K_4V
;
2833 case 4 * 1024 * 1024:
2834 return _PAGE_SZ4MB_4V
;
2840 return _PAGE_SZ8K_4U
;
2842 return _PAGE_SZ64K_4U
;
2844 return _PAGE_SZ512K_4U
;
2845 case 4 * 1024 * 1024:
2846 return _PAGE_SZ4MB_4U
;
2851 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2855 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2856 pte_val(pte
) |= (((unsigned long)space
) << 32);
2857 pte_val(pte
) |= pte_sz_bits(page_size
);
2862 static unsigned long kern_large_tte(unsigned long paddr
)
2866 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2867 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2868 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2869 if (tlb_type
== hypervisor
)
2870 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2871 page_cache4v_flag
| _PAGE_P_4V
|
2872 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2877 /* If not locked, zap it. */
2878 void __flush_tlb_all(void)
2880 unsigned long pstate
;
2883 __asm__
__volatile__("flushw\n\t"
2884 "rdpr %%pstate, %0\n\t"
2885 "wrpr %0, %1, %%pstate"
2888 if (tlb_type
== hypervisor
) {
2889 sun4v_mmu_demap_all();
2890 } else if (tlb_type
== spitfire
) {
2891 for (i
= 0; i
< 64; i
++) {
2892 /* Spitfire Errata #32 workaround */
2893 /* NOTE: Always runs on spitfire, so no
2894 * cheetah+ page size encodings.
2896 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2900 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2902 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2903 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2906 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2907 spitfire_put_dtlb_data(i
, 0x0UL
);
2910 /* Spitfire Errata #32 workaround */
2911 /* NOTE: Always runs on spitfire, so no
2912 * cheetah+ page size encodings.
2914 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2918 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2920 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2921 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2924 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2925 spitfire_put_itlb_data(i
, 0x0UL
);
2928 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2929 cheetah_flush_dtlb_all();
2930 cheetah_flush_itlb_all();
2932 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2936 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
)
2938 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2942 pte
= (pte_t
*) page_address(page
);
2947 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
2949 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2952 if (!pgtable_page_ctor(page
)) {
2953 free_unref_page(page
);
2956 return (pte_t
*) page_address(page
);
2959 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2961 free_page((unsigned long)pte
);
2964 static void __pte_free(pgtable_t pte
)
2966 struct page
*page
= virt_to_page(pte
);
2968 pgtable_page_dtor(page
);
2972 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2977 void pgtable_free(void *table
, bool is_page
)
2982 kmem_cache_free(pgtable_cache
, table
);
2985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2986 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2989 unsigned long pte
, flags
;
2990 struct mm_struct
*mm
;
2993 if (!pmd_large(entry
) || !pmd_young(entry
))
2996 pte
= pmd_val(entry
);
2998 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2999 if (!(pte
& _PAGE_VALID
))
3002 /* We are fabricating 8MB pages using 4MB real hw pages. */
3003 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
3007 spin_lock_irqsave(&mm
->context
.lock
, flags
);
3009 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
3010 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
3013 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
3015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3017 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3018 static void context_reload(void *__data
)
3020 struct mm_struct
*mm
= __data
;
3022 if (mm
== current
->mm
)
3023 load_secondary_context(mm
);
3026 void hugetlb_setup(struct pt_regs
*regs
)
3028 struct mm_struct
*mm
= current
->mm
;
3029 struct tsb_config
*tp
;
3031 if (faulthandler_disabled() || !mm
) {
3032 const struct exception_table_entry
*entry
;
3034 entry
= search_exception_tables(regs
->tpc
);
3036 regs
->tpc
= entry
->fixup
;
3037 regs
->tnpc
= regs
->tpc
+ 4;
3040 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3041 die_if_kernel("HugeTSB in atomic", regs
);
3044 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
3045 if (likely(tp
->tsb
== NULL
))
3046 tsb_grow(mm
, MM_TSB_HUGE
, 0);
3048 tsb_context_switch(mm
);
3051 /* On UltraSPARC-III+ and later, configure the second half of
3052 * the Data-TLB for huge pages.
3054 if (tlb_type
== cheetah_plus
) {
3055 bool need_context_reload
= false;
3058 spin_lock_irq(&ctx_alloc_lock
);
3059 ctx
= mm
->context
.sparc64_ctx_val
;
3060 ctx
&= ~CTX_PGSZ_MASK
;
3061 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
3062 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
3064 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
3065 /* When changing the page size fields, we
3066 * must perform a context flush so that no
3067 * stale entries match. This flush must
3068 * occur with the original context register
3071 do_flush_tlb_mm(mm
);
3073 /* Reload the context register of all processors
3074 * also executing in this address space.
3076 mm
->context
.sparc64_ctx_val
= ctx
;
3077 need_context_reload
= true;
3079 spin_unlock_irq(&ctx_alloc_lock
);
3081 if (need_context_reload
)
3082 on_each_cpu(context_reload
, mm
, 0);
3087 static struct resource code_resource
= {
3088 .name
= "Kernel code",
3089 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3092 static struct resource data_resource
= {
3093 .name
= "Kernel data",
3094 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3097 static struct resource bss_resource
= {
3098 .name
= "Kernel bss",
3099 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3102 static inline resource_size_t
compute_kern_paddr(void *addr
)
3104 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
3107 static void __init
kernel_lds_init(void)
3109 code_resource
.start
= compute_kern_paddr(_text
);
3110 code_resource
.end
= compute_kern_paddr(_etext
- 1);
3111 data_resource
.start
= compute_kern_paddr(_etext
);
3112 data_resource
.end
= compute_kern_paddr(_edata
- 1);
3113 bss_resource
.start
= compute_kern_paddr(__bss_start
);
3114 bss_resource
.end
= compute_kern_paddr(_end
- 1);
3117 static int __init
report_memory(void)
3120 struct resource
*res
;
3124 for (i
= 0; i
< pavail_ents
; i
++) {
3125 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
3128 pr_warn("Failed to allocate source.\n");
3132 res
->name
= "System RAM";
3133 res
->start
= pavail
[i
].phys_addr
;
3134 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
3135 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
3137 if (insert_resource(&iomem_resource
, res
) < 0) {
3138 pr_warn("Resource insertion failed.\n");
3142 insert_resource(res
, &code_resource
);
3143 insert_resource(res
, &data_resource
);
3144 insert_resource(res
, &bss_resource
);
3149 arch_initcall(report_memory
);
3152 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3154 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3157 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
3159 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
3160 if (start
< LOW_OBP_ADDRESS
) {
3161 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
3162 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
3164 if (end
> HI_OBP_ADDRESS
) {
3165 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
3166 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
3169 flush_tsb_kernel_range(start
, end
);
3170 do_flush_tlb_kernel_range(start
, end
);
3174 void copy_user_highpage(struct page
*to
, struct page
*from
,
3175 unsigned long vaddr
, struct vm_area_struct
*vma
)
3179 vfrom
= kmap_atomic(from
);
3180 vto
= kmap_atomic(to
);
3181 copy_user_page(vto
, vfrom
, vaddr
, to
);
3183 kunmap_atomic(vfrom
);
3185 /* If this page has ADI enabled, copy over any ADI tags
3188 if (vma
->vm_flags
& VM_SPARC_ADI
) {
3189 unsigned long pfrom
, pto
, i
, adi_tag
;
3191 pfrom
= page_to_phys(from
);
3192 pto
= page_to_phys(to
);
3194 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3195 asm volatile("ldxa [%1] %2, %0\n\t"
3197 : "r" (i
), "i" (ASI_MCD_REAL
));
3198 asm volatile("stxa %0, [%1] %2\n\t"
3200 : "r" (adi_tag
), "r" (pto
),
3201 "i" (ASI_MCD_REAL
));
3202 pto
+= adi_blksize();
3204 asm volatile("membar #Sync\n\t");
3207 EXPORT_SYMBOL(copy_user_highpage
);
3209 void copy_highpage(struct page
*to
, struct page
*from
)
3213 vfrom
= kmap_atomic(from
);
3214 vto
= kmap_atomic(to
);
3215 copy_page(vto
, vfrom
);
3217 kunmap_atomic(vfrom
);
3219 /* If this platform is ADI enabled, copy any ADI tags
3222 if (adi_capable()) {
3223 unsigned long pfrom
, pto
, i
, adi_tag
;
3225 pfrom
= page_to_phys(from
);
3226 pto
= page_to_phys(to
);
3228 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3229 asm volatile("ldxa [%1] %2, %0\n\t"
3231 : "r" (i
), "i" (ASI_MCD_REAL
));
3232 asm volatile("stxa %0, [%1] %2\n\t"
3234 : "r" (adi_tag
), "r" (pto
),
3235 "i" (ASI_MCD_REAL
));
3236 pto
+= adi_blksize();
3238 asm volatile("membar #Sync\n\t");
3241 EXPORT_SYMBOL(copy_highpage
);