mtd: nand: omap: Fix comment in platform data using wrong Kconfig symbol
[linux/fpc-iii.git] / arch / x86 / kernel / machine_kexec_64.c
blobceba408ea9824ad1cd5952aa965058fd3318d69f
1 /*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) "kexec: " fmt
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
32 #ifdef CONFIG_KEXEC_FILE
33 const struct kexec_file_ops * const kexec_file_loaders[] = {
34 &kexec_bzImage64_ops,
35 NULL
37 #endif
39 static void free_transition_pgtable(struct kimage *image)
41 free_page((unsigned long)image->arch.p4d);
42 image->arch.p4d = NULL;
43 free_page((unsigned long)image->arch.pud);
44 image->arch.pud = NULL;
45 free_page((unsigned long)image->arch.pmd);
46 image->arch.pmd = NULL;
47 free_page((unsigned long)image->arch.pte);
48 image->arch.pte = NULL;
51 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
53 p4d_t *p4d;
54 pud_t *pud;
55 pmd_t *pmd;
56 pte_t *pte;
57 unsigned long vaddr, paddr;
58 int result = -ENOMEM;
60 vaddr = (unsigned long)relocate_kernel;
61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
62 pgd += pgd_index(vaddr);
63 if (!pgd_present(*pgd)) {
64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
65 if (!p4d)
66 goto err;
67 image->arch.p4d = p4d;
68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
70 p4d = p4d_offset(pgd, vaddr);
71 if (!p4d_present(*p4d)) {
72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
73 if (!pud)
74 goto err;
75 image->arch.pud = pud;
76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
78 pud = pud_offset(p4d, vaddr);
79 if (!pud_present(*pud)) {
80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
81 if (!pmd)
82 goto err;
83 image->arch.pmd = pmd;
84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
86 pmd = pmd_offset(pud, vaddr);
87 if (!pmd_present(*pmd)) {
88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
89 if (!pte)
90 goto err;
91 image->arch.pte = pte;
92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
94 pte = pte_offset_kernel(pmd, vaddr);
95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
96 return 0;
97 err:
98 return result;
101 static void *alloc_pgt_page(void *data)
103 struct kimage *image = (struct kimage *)data;
104 struct page *page;
105 void *p = NULL;
107 page = kimage_alloc_control_pages(image, 0);
108 if (page) {
109 p = page_address(page);
110 clear_page(p);
113 return p;
116 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
118 struct x86_mapping_info info = {
119 .alloc_pgt_page = alloc_pgt_page,
120 .context = image,
121 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
122 .kernpg_flag = _KERNPG_TABLE_NOENC,
124 unsigned long mstart, mend;
125 pgd_t *level4p;
126 int result;
127 int i;
129 level4p = (pgd_t *)__va(start_pgtable);
130 clear_page(level4p);
132 if (direct_gbpages)
133 info.direct_gbpages = true;
135 for (i = 0; i < nr_pfn_mapped; i++) {
136 mstart = pfn_mapped[i].start << PAGE_SHIFT;
137 mend = pfn_mapped[i].end << PAGE_SHIFT;
139 result = kernel_ident_mapping_init(&info,
140 level4p, mstart, mend);
141 if (result)
142 return result;
146 * segments's mem ranges could be outside 0 ~ max_pfn,
147 * for example when jump back to original kernel from kexeced kernel.
148 * or first kernel is booted with user mem map, and second kernel
149 * could be loaded out of that range.
151 for (i = 0; i < image->nr_segments; i++) {
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
155 result = kernel_ident_mapping_init(&info,
156 level4p, mstart, mend);
158 if (result)
159 return result;
162 return init_transition_pgtable(image, level4p);
165 static void set_idt(void *newidt, u16 limit)
167 struct desc_ptr curidt;
169 /* x86-64 supports unaliged loads & stores */
170 curidt.size = limit;
171 curidt.address = (unsigned long)newidt;
173 __asm__ __volatile__ (
174 "lidtq %0\n"
175 : : "m" (curidt)
180 static void set_gdt(void *newgdt, u16 limit)
182 struct desc_ptr curgdt;
184 /* x86-64 supports unaligned loads & stores */
185 curgdt.size = limit;
186 curgdt.address = (unsigned long)newgdt;
188 __asm__ __volatile__ (
189 "lgdtq %0\n"
190 : : "m" (curgdt)
194 static void load_segments(void)
196 __asm__ __volatile__ (
197 "\tmovl %0,%%ds\n"
198 "\tmovl %0,%%es\n"
199 "\tmovl %0,%%ss\n"
200 "\tmovl %0,%%fs\n"
201 "\tmovl %0,%%gs\n"
202 : : "a" (__KERNEL_DS) : "memory"
206 #ifdef CONFIG_KEXEC_FILE
207 /* Update purgatory as needed after various image segments have been prepared */
208 static int arch_update_purgatory(struct kimage *image)
210 int ret = 0;
212 if (!image->file_mode)
213 return 0;
215 /* Setup copying of backup region */
216 if (image->type == KEXEC_TYPE_CRASH) {
217 ret = kexec_purgatory_get_set_symbol(image,
218 "purgatory_backup_dest",
219 &image->arch.backup_load_addr,
220 sizeof(image->arch.backup_load_addr), 0);
221 if (ret)
222 return ret;
224 ret = kexec_purgatory_get_set_symbol(image,
225 "purgatory_backup_src",
226 &image->arch.backup_src_start,
227 sizeof(image->arch.backup_src_start), 0);
228 if (ret)
229 return ret;
231 ret = kexec_purgatory_get_set_symbol(image,
232 "purgatory_backup_sz",
233 &image->arch.backup_src_sz,
234 sizeof(image->arch.backup_src_sz), 0);
235 if (ret)
236 return ret;
239 return ret;
241 #else /* !CONFIG_KEXEC_FILE */
242 static inline int arch_update_purgatory(struct kimage *image)
244 return 0;
246 #endif /* CONFIG_KEXEC_FILE */
248 int machine_kexec_prepare(struct kimage *image)
250 unsigned long start_pgtable;
251 int result;
253 /* Calculate the offsets */
254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
256 /* Setup the identity mapped 64bit page table */
257 result = init_pgtable(image, start_pgtable);
258 if (result)
259 return result;
261 /* update purgatory as needed */
262 result = arch_update_purgatory(image);
263 if (result)
264 return result;
266 return 0;
269 void machine_kexec_cleanup(struct kimage *image)
271 free_transition_pgtable(image);
275 * Do not allocate memory (or fail in any way) in machine_kexec().
276 * We are past the point of no return, committed to rebooting now.
278 void machine_kexec(struct kimage *image)
280 unsigned long page_list[PAGES_NR];
281 void *control_page;
282 int save_ftrace_enabled;
284 #ifdef CONFIG_KEXEC_JUMP
285 if (image->preserve_context)
286 save_processor_state();
287 #endif
289 save_ftrace_enabled = __ftrace_enabled_save();
291 /* Interrupts aren't acceptable while we reboot */
292 local_irq_disable();
293 hw_breakpoint_disable();
295 if (image->preserve_context) {
296 #ifdef CONFIG_X86_IO_APIC
298 * We need to put APICs in legacy mode so that we can
299 * get timer interrupts in second kernel. kexec/kdump
300 * paths already have calls to restore_boot_irq_mode()
301 * in one form or other. kexec jump path also need one.
303 clear_IO_APIC();
304 restore_boot_irq_mode();
305 #endif
308 control_page = page_address(image->control_code_page) + PAGE_SIZE;
309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
313 page_list[PA_TABLE_PAGE] =
314 (unsigned long)__pa(page_address(image->control_code_page));
316 if (image->type == KEXEC_TYPE_DEFAULT)
317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
318 << PAGE_SHIFT);
321 * The segment registers are funny things, they have both a
322 * visible and an invisible part. Whenever the visible part is
323 * set to a specific selector, the invisible part is loaded
324 * with from a table in memory. At no other time is the
325 * descriptor table in memory accessed.
327 * I take advantage of this here by force loading the
328 * segments, before I zap the gdt with an invalid value.
330 load_segments();
332 * The gdt & idt are now invalid.
333 * If you want to load them you must set up your own idt & gdt.
335 set_gdt(phys_to_virt(0), 0);
336 set_idt(phys_to_virt(0), 0);
338 /* now call it */
339 image->start = relocate_kernel((unsigned long)image->head,
340 (unsigned long)page_list,
341 image->start,
342 image->preserve_context,
343 sme_active());
345 #ifdef CONFIG_KEXEC_JUMP
346 if (image->preserve_context)
347 restore_processor_state();
348 #endif
350 __ftrace_enabled_restore(save_ftrace_enabled);
353 void arch_crash_save_vmcoreinfo(void)
355 u64 sme_mask = sme_me_mask;
357 VMCOREINFO_NUMBER(phys_base);
358 VMCOREINFO_SYMBOL(init_top_pgt);
359 vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
360 pgtable_l5_enabled());
362 #ifdef CONFIG_NUMA
363 VMCOREINFO_SYMBOL(node_data);
364 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
365 #endif
366 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
367 kaslr_offset());
368 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
369 VMCOREINFO_NUMBER(sme_mask);
372 /* arch-dependent functionality related to kexec file-based syscall */
374 #ifdef CONFIG_KEXEC_FILE
375 void *arch_kexec_kernel_image_load(struct kimage *image)
377 vfree(image->arch.elf_headers);
378 image->arch.elf_headers = NULL;
380 if (!image->fops || !image->fops->load)
381 return ERR_PTR(-ENOEXEC);
383 return image->fops->load(image, image->kernel_buf,
384 image->kernel_buf_len, image->initrd_buf,
385 image->initrd_buf_len, image->cmdline_buf,
386 image->cmdline_buf_len);
390 * Apply purgatory relocations.
392 * @pi: Purgatory to be relocated.
393 * @section: Section relocations applying to.
394 * @relsec: Section containing RELAs.
395 * @symtabsec: Corresponding symtab.
397 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
399 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
400 Elf_Shdr *section, const Elf_Shdr *relsec,
401 const Elf_Shdr *symtabsec)
403 unsigned int i;
404 Elf64_Rela *rel;
405 Elf64_Sym *sym;
406 void *location;
407 unsigned long address, sec_base, value;
408 const char *strtab, *name, *shstrtab;
409 const Elf_Shdr *sechdrs;
411 /* String & section header string table */
412 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
413 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
414 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
416 rel = (void *)pi->ehdr + relsec->sh_offset;
418 pr_debug("Applying relocate section %s to %u\n",
419 shstrtab + relsec->sh_name, relsec->sh_info);
421 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
424 * rel[i].r_offset contains byte offset from beginning
425 * of section to the storage unit affected.
427 * This is location to update. This is temporary buffer
428 * where section is currently loaded. This will finally be
429 * loaded to a different address later, pointed to by
430 * ->sh_addr. kexec takes care of moving it
431 * (kexec_load_segment()).
433 location = pi->purgatory_buf;
434 location += section->sh_offset;
435 location += rel[i].r_offset;
437 /* Final address of the location */
438 address = section->sh_addr + rel[i].r_offset;
441 * rel[i].r_info contains information about symbol table index
442 * w.r.t which relocation must be made and type of relocation
443 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
444 * these respectively.
446 sym = (void *)pi->ehdr + symtabsec->sh_offset;
447 sym += ELF64_R_SYM(rel[i].r_info);
449 if (sym->st_name)
450 name = strtab + sym->st_name;
451 else
452 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
454 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
455 name, sym->st_info, sym->st_shndx, sym->st_value,
456 sym->st_size);
458 if (sym->st_shndx == SHN_UNDEF) {
459 pr_err("Undefined symbol: %s\n", name);
460 return -ENOEXEC;
463 if (sym->st_shndx == SHN_COMMON) {
464 pr_err("symbol '%s' in common section\n", name);
465 return -ENOEXEC;
468 if (sym->st_shndx == SHN_ABS)
469 sec_base = 0;
470 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
471 pr_err("Invalid section %d for symbol %s\n",
472 sym->st_shndx, name);
473 return -ENOEXEC;
474 } else
475 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
477 value = sym->st_value;
478 value += sec_base;
479 value += rel[i].r_addend;
481 switch (ELF64_R_TYPE(rel[i].r_info)) {
482 case R_X86_64_NONE:
483 break;
484 case R_X86_64_64:
485 *(u64 *)location = value;
486 break;
487 case R_X86_64_32:
488 *(u32 *)location = value;
489 if (value != *(u32 *)location)
490 goto overflow;
491 break;
492 case R_X86_64_32S:
493 *(s32 *)location = value;
494 if ((s64)value != *(s32 *)location)
495 goto overflow;
496 break;
497 case R_X86_64_PC32:
498 case R_X86_64_PLT32:
499 value -= (u64)address;
500 *(u32 *)location = value;
501 break;
502 default:
503 pr_err("Unknown rela relocation: %llu\n",
504 ELF64_R_TYPE(rel[i].r_info));
505 return -ENOEXEC;
508 return 0;
510 overflow:
511 pr_err("Overflow in relocation type %d value 0x%lx\n",
512 (int)ELF64_R_TYPE(rel[i].r_info), value);
513 return -ENOEXEC;
515 #endif /* CONFIG_KEXEC_FILE */
517 static int
518 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
520 struct page *page;
521 unsigned int nr_pages;
524 * For physical range: [start, end]. We must skip the unassigned
525 * crashk resource with zero-valued "end" member.
527 if (!end || start > end)
528 return 0;
530 page = pfn_to_page(start >> PAGE_SHIFT);
531 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
532 if (protect)
533 return set_pages_ro(page, nr_pages);
534 else
535 return set_pages_rw(page, nr_pages);
538 static void kexec_mark_crashkres(bool protect)
540 unsigned long control;
542 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
544 /* Don't touch the control code page used in crash_kexec().*/
545 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
546 /* Control code page is located in the 2nd page. */
547 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
548 control += KEXEC_CONTROL_PAGE_SIZE;
549 kexec_mark_range(control, crashk_res.end, protect);
552 void arch_kexec_protect_crashkres(void)
554 kexec_mark_crashkres(true);
557 void arch_kexec_unprotect_crashkres(void)
559 kexec_mark_crashkres(false);
562 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
565 * If SME is active we need to be sure that kexec pages are
566 * not encrypted because when we boot to the new kernel the
567 * pages won't be accessed encrypted (initially).
569 return set_memory_decrypted((unsigned long)vaddr, pages);
572 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
575 * If SME is active we need to reset the pages back to being
576 * an encrypted mapping before freeing them.
578 set_memory_encrypted((unsigned long)vaddr, pages);