2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
75 DECLARE_BITMAP(system_vectors
, NR_VECTORS
);
77 static inline void cond_local_irq_enable(struct pt_regs
*regs
)
79 if (regs
->flags
& X86_EFLAGS_IF
)
83 static inline void cond_local_irq_disable(struct pt_regs
*regs
)
85 if (regs
->flags
& X86_EFLAGS_IF
)
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
95 void ist_enter(struct pt_regs
*regs
)
97 if (user_mode(regs
)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
114 NOKPROBE_SYMBOL(ist_enter
);
116 void ist_exit(struct pt_regs
*regs
)
118 preempt_enable_no_resched();
120 if (!user_mode(regs
))
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs: regs passed to the IST exception handler
128 * IST exception handlers normally cannot schedule. As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
137 void ist_begin_non_atomic(struct pt_regs
*regs
)
139 BUG_ON(!user_mode(regs
));
142 * Sanity check: we need to be on the normal thread stack. This
143 * will catch asm bugs and any attempt to use ist_preempt_enable
146 BUG_ON(!on_thread_stack());
148 preempt_enable_no_resched();
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
154 * Ends a non-atomic section started with ist_begin_non_atomic().
156 void ist_end_non_atomic(void)
161 int is_valid_bugaddr(unsigned long addr
)
165 if (addr
< TASK_SIZE_MAX
)
168 if (probe_kernel_address((unsigned short *)addr
, ud
))
171 return ud
== INSN_UD0
|| ud
== INSN_UD2
;
174 int fixup_bug(struct pt_regs
*regs
, int trapnr
)
176 if (trapnr
!= X86_TRAP_UD
)
179 switch (report_bug(regs
->ip
, regs
)) {
180 case BUG_TRAP_TYPE_NONE
:
181 case BUG_TRAP_TYPE_BUG
:
184 case BUG_TRAP_TYPE_WARN
:
192 static nokprobe_inline
int
193 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, const char *str
,
194 struct pt_regs
*regs
, long error_code
)
196 if (v8086_mode(regs
)) {
198 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199 * On nmi (interrupt 2), do_trap should not be called.
201 if (trapnr
< X86_TRAP_UD
) {
202 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
206 } else if (!user_mode(regs
)) {
207 if (fixup_exception(regs
, trapnr
, error_code
, 0))
210 tsk
->thread
.error_code
= error_code
;
211 tsk
->thread
.trap_nr
= trapnr
;
212 die(str
, regs
, error_code
);
216 * We want error_code and trap_nr set for userspace faults and
217 * kernelspace faults which result in die(), but not
218 * kernelspace faults which are fixed up. die() gives the
219 * process no chance to handle the signal and notice the
220 * kernel fault information, so that won't result in polluting
221 * the information about previously queued, but not yet
222 * delivered, faults. See also do_general_protection below.
224 tsk
->thread
.error_code
= error_code
;
225 tsk
->thread
.trap_nr
= trapnr
;
230 static void show_signal(struct task_struct
*tsk
, int signr
,
231 const char *type
, const char *desc
,
232 struct pt_regs
*regs
, long error_code
)
234 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
235 printk_ratelimit()) {
236 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237 tsk
->comm
, task_pid_nr(tsk
), type
, desc
,
238 regs
->ip
, regs
->sp
, error_code
);
239 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
245 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
246 long error_code
, int sicode
, void __user
*addr
)
248 struct task_struct
*tsk
= current
;
251 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
254 show_signal(tsk
, signr
, "trap ", str
, regs
, error_code
);
257 force_sig(signr
, tsk
);
259 force_sig_fault(signr
, sicode
, addr
, tsk
);
261 NOKPROBE_SYMBOL(do_trap
);
263 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
264 unsigned long trapnr
, int signr
, int sicode
, void __user
*addr
)
266 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
269 * WARN*()s end up here; fix them up before we call the
272 if (!user_mode(regs
) && fixup_bug(regs
, trapnr
))
275 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
277 cond_local_irq_enable(regs
);
278 do_trap(trapnr
, signr
, str
, regs
, error_code
, sicode
, addr
);
282 #define IP ((void __user *)uprobe_get_trap_addr(regs))
283 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
284 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
286 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
289 DO_ERROR(X86_TRAP_DE
, SIGFPE
, FPE_INTDIV
, IP
, "divide error", divide_error
)
290 DO_ERROR(X86_TRAP_OF
, SIGSEGV
, 0, NULL
, "overflow", overflow
)
291 DO_ERROR(X86_TRAP_UD
, SIGILL
, ILL_ILLOPN
, IP
, "invalid opcode", invalid_op
)
292 DO_ERROR(X86_TRAP_OLD_MF
, SIGFPE
, 0, NULL
, "coprocessor segment overrun", coprocessor_segment_overrun
)
293 DO_ERROR(X86_TRAP_TS
, SIGSEGV
, 0, NULL
, "invalid TSS", invalid_TSS
)
294 DO_ERROR(X86_TRAP_NP
, SIGBUS
, 0, NULL
, "segment not present", segment_not_present
)
295 DO_ERROR(X86_TRAP_SS
, SIGBUS
, 0, NULL
, "stack segment", stack_segment
)
296 DO_ERROR(X86_TRAP_AC
, SIGBUS
, BUS_ADRALN
, NULL
, "alignment check", alignment_check
)
299 #ifdef CONFIG_VMAP_STACK
300 __visible
void __noreturn
handle_stack_overflow(const char *message
,
301 struct pt_regs
*regs
,
302 unsigned long fault_address
)
304 printk(KERN_EMERG
"BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305 (void *)fault_address
, current
->stack
,
306 (char *)current
->stack
+ THREAD_SIZE
- 1);
307 die(message
, regs
, 0);
309 /* Be absolutely certain we don't return. */
310 panic("%s", message
);
315 /* Runs on IST stack */
316 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
)
318 static const char str
[] = "double fault";
319 struct task_struct
*tsk
= current
;
320 #ifdef CONFIG_VMAP_STACK
324 #ifdef CONFIG_X86_ESPFIX64
325 extern unsigned char native_irq_return_iret
[];
328 * If IRET takes a non-IST fault on the espfix64 stack, then we
329 * end up promoting it to a doublefault. In that case, take
330 * advantage of the fact that we're not using the normal (TSS.sp0)
331 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
332 * and then modify our own IRET frame so that, when we return,
333 * we land directly at the #GP(0) vector with the stack already
334 * set up according to its expectations.
336 * The net result is that our #GP handler will think that we
337 * entered from usermode with the bad user context.
339 * No need for ist_enter here because we don't use RCU.
341 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
342 regs
->cs
== __KERNEL_CS
&&
343 regs
->ip
== (unsigned long)native_irq_return_iret
)
345 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
348 * regs->sp points to the failing IRET frame on the
349 * ESPFIX64 stack. Copy it to the entry stack. This fills
350 * in gpregs->ss through gpregs->ip.
353 memmove(&gpregs
->ip
, (void *)regs
->sp
, 5*8);
354 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
357 * Adjust our frame so that we return straight to the #GP
358 * vector with the expected RSP value. This is safe because
359 * we won't enable interupts or schedule before we invoke
360 * general_protection, so nothing will clobber the stack
361 * frame we just set up.
363 * We will enter general_protection with kernel GSBASE,
364 * which is what the stub expects, given that the faulting
365 * RIP will be the IRET instruction.
367 regs
->ip
= (unsigned long)general_protection
;
368 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
375 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
377 tsk
->thread
.error_code
= error_code
;
378 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
380 #ifdef CONFIG_VMAP_STACK
382 * If we overflow the stack into a guard page, the CPU will fail
383 * to deliver #PF and will send #DF instead. Similarly, if we
384 * take any non-IST exception while too close to the bottom of
385 * the stack, the processor will get a page fault while
386 * delivering the exception and will generate a double fault.
388 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
389 * Page-Fault Exception (#PF):
391 * Processors update CR2 whenever a page fault is detected. If a
392 * second page fault occurs while an earlier page fault is being
393 * delivered, the faulting linear address of the second fault will
394 * overwrite the contents of CR2 (replacing the previous
395 * address). These updates to CR2 occur even if the page fault
396 * results in a double fault or occurs during the delivery of a
399 * The logic below has a small possibility of incorrectly diagnosing
400 * some errors as stack overflows. For example, if the IDT or GDT
401 * gets corrupted such that #GP delivery fails due to a bad descriptor
402 * causing #GP and we hit this condition while CR2 coincidentally
403 * points to the stack guard page, we'll think we overflowed the
404 * stack. Given that we're going to panic one way or another
405 * if this happens, this isn't necessarily worth fixing.
407 * If necessary, we could improve the test by only diagnosing
408 * a stack overflow if the saved RSP points within 47 bytes of
409 * the bottom of the stack: if RSP == tsk_stack + 48 and we
410 * take an exception, the stack is already aligned and there
411 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
412 * possible error code, so a stack overflow would *not* double
413 * fault. With any less space left, exception delivery could
414 * fail, and, as a practical matter, we've overflowed the
415 * stack even if the actual trigger for the double fault was
419 if ((unsigned long)task_stack_page(tsk
) - 1 - cr2
< PAGE_SIZE
)
420 handle_stack_overflow("kernel stack overflow (double-fault)", regs
, cr2
);
423 #ifdef CONFIG_DOUBLEFAULT
424 df_debug(regs
, error_code
);
427 * This is always a kernel trap and never fixable (and thus must
431 die(str
, regs
, error_code
);
435 dotraplinkage
void do_bounds(struct pt_regs
*regs
, long error_code
)
437 const struct mpx_bndcsr
*bndcsr
;
439 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
440 if (notify_die(DIE_TRAP
, "bounds", regs
, error_code
,
441 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
443 cond_local_irq_enable(regs
);
445 if (!user_mode(regs
))
446 die("bounds", regs
, error_code
);
448 if (!cpu_feature_enabled(X86_FEATURE_MPX
)) {
449 /* The exception is not from Intel MPX */
454 * We need to look at BNDSTATUS to resolve this exception.
455 * A NULL here might mean that it is in its 'init state',
456 * which is all zeros which indicates MPX was not
457 * responsible for the exception.
459 bndcsr
= get_xsave_field_ptr(XFEATURE_MASK_BNDCSR
);
463 trace_bounds_exception_mpx(bndcsr
);
465 * The error code field of the BNDSTATUS register communicates status
466 * information of a bound range exception #BR or operation involving
469 switch (bndcsr
->bndstatus
& MPX_BNDSTA_ERROR_CODE
) {
470 case 2: /* Bound directory has invalid entry. */
471 if (mpx_handle_bd_fault())
473 break; /* Success, it was handled */
474 case 1: /* Bound violation. */
476 struct task_struct
*tsk
= current
;
477 struct mpx_fault_info mpx
;
479 if (mpx_fault_info(&mpx
, regs
)) {
481 * We failed to decode the MPX instruction. Act as if
482 * the exception was not caused by MPX.
487 * Success, we decoded the instruction and retrieved
488 * an 'mpx' containing the address being accessed
489 * which caused the exception. This information
490 * allows and application to possibly handle the
491 * #BR exception itself.
493 if (!do_trap_no_signal(tsk
, X86_TRAP_BR
, "bounds", regs
,
497 show_signal(tsk
, SIGSEGV
, "trap ", "bounds", regs
, error_code
);
499 force_sig_bnderr(mpx
.addr
, mpx
.lower
, mpx
.upper
);
502 case 0: /* No exception caused by Intel MPX operations. */
505 die("bounds", regs
, error_code
);
512 * This path out is for all the cases where we could not
513 * handle the exception in some way (like allocating a
514 * table or telling userspace about it. We will also end
515 * up here if the kernel has MPX turned off at compile
518 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, 0, NULL
);
522 do_general_protection(struct pt_regs
*regs
, long error_code
)
524 const char *desc
= "general protection fault";
525 struct task_struct
*tsk
;
527 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
528 cond_local_irq_enable(regs
);
530 if (static_cpu_has(X86_FEATURE_UMIP
)) {
531 if (user_mode(regs
) && fixup_umip_exception(regs
))
535 if (v8086_mode(regs
)) {
537 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
542 if (!user_mode(regs
)) {
543 if (fixup_exception(regs
, X86_TRAP_GP
, error_code
, 0))
546 tsk
->thread
.error_code
= error_code
;
547 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
550 * To be potentially processing a kprobe fault and to
551 * trust the result from kprobe_running(), we have to
552 * be non-preemptible.
554 if (!preemptible() && kprobe_running() &&
555 kprobe_fault_handler(regs
, X86_TRAP_GP
))
558 if (notify_die(DIE_GPF
, desc
, regs
, error_code
,
559 X86_TRAP_GP
, SIGSEGV
) != NOTIFY_STOP
)
560 die(desc
, regs
, error_code
);
564 tsk
->thread
.error_code
= error_code
;
565 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
567 show_signal(tsk
, SIGSEGV
, "", desc
, regs
, error_code
);
569 force_sig(SIGSEGV
, tsk
);
571 NOKPROBE_SYMBOL(do_general_protection
);
573 dotraplinkage
void notrace
do_int3(struct pt_regs
*regs
, long error_code
)
575 #ifdef CONFIG_DYNAMIC_FTRACE
577 * ftrace must be first, everything else may cause a recursive crash.
578 * See note by declaration of modifying_ftrace_code in ftrace.c
580 if (unlikely(atomic_read(&modifying_ftrace_code
)) &&
581 ftrace_int3_handler(regs
))
584 if (poke_int3_handler(regs
))
588 * Use ist_enter despite the fact that we don't use an IST stack.
589 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
590 * mode or even during context tracking state changes.
592 * This means that we can't schedule. That's okay.
595 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
596 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
597 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
598 SIGTRAP
) == NOTIFY_STOP
)
600 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
602 #ifdef CONFIG_KPROBES
603 if (kprobe_int3_handler(regs
))
607 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
608 SIGTRAP
) == NOTIFY_STOP
)
611 cond_local_irq_enable(regs
);
612 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, error_code
, 0, NULL
);
613 cond_local_irq_disable(regs
);
618 NOKPROBE_SYMBOL(do_int3
);
622 * Help handler running on a per-cpu (IST or entry trampoline) stack
623 * to switch to the normal thread stack if the interrupted code was in
624 * user mode. The actual stack switch is done in entry_64.S
626 asmlinkage __visible notrace
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
628 struct pt_regs
*regs
= (struct pt_regs
*)this_cpu_read(cpu_current_top_of_stack
) - 1;
633 NOKPROBE_SYMBOL(sync_regs
);
635 struct bad_iret_stack
{
636 void *error_entry_ret
;
640 asmlinkage __visible notrace
641 struct bad_iret_stack
*fixup_bad_iret(struct bad_iret_stack
*s
)
644 * This is called from entry_64.S early in handling a fault
645 * caused by a bad iret to user mode. To handle the fault
646 * correctly, we want to move our stack frame to where it would
647 * be had we entered directly on the entry stack (rather than
648 * just below the IRET frame) and we want to pretend that the
649 * exception came from the IRET target.
651 struct bad_iret_stack
*new_stack
=
652 (struct bad_iret_stack
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
654 /* Copy the IRET target to the new stack. */
655 memmove(&new_stack
->regs
.ip
, (void *)s
->regs
.sp
, 5*8);
657 /* Copy the remainder of the stack from the current stack. */
658 memmove(new_stack
, s
, offsetof(struct bad_iret_stack
, regs
.ip
));
660 BUG_ON(!user_mode(&new_stack
->regs
));
663 NOKPROBE_SYMBOL(fixup_bad_iret
);
666 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
669 * We don't try for precision here. If we're anywhere in the region of
670 * code that can be single-stepped in the SYSENTER entry path, then
671 * assume that this is a useless single-step trap due to SYSENTER
672 * being invoked with TF set. (We don't know in advance exactly
673 * which instructions will be hit because BTF could plausibly
677 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
678 (unsigned long)__end_SYSENTER_singlestep_region
-
679 (unsigned long)__begin_SYSENTER_singlestep_region
;
680 #elif defined(CONFIG_IA32_EMULATION)
681 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
682 (unsigned long)__end_entry_SYSENTER_compat
-
683 (unsigned long)entry_SYSENTER_compat
;
690 * Our handling of the processor debug registers is non-trivial.
691 * We do not clear them on entry and exit from the kernel. Therefore
692 * it is possible to get a watchpoint trap here from inside the kernel.
693 * However, the code in ./ptrace.c has ensured that the user can
694 * only set watchpoints on userspace addresses. Therefore the in-kernel
695 * watchpoint trap can only occur in code which is reading/writing
696 * from user space. Such code must not hold kernel locks (since it
697 * can equally take a page fault), therefore it is safe to call
698 * force_sig_info even though that claims and releases locks.
700 * Code in ./signal.c ensures that the debug control register
701 * is restored before we deliver any signal, and therefore that
702 * user code runs with the correct debug control register even though
705 * Being careful here means that we don't have to be as careful in a
706 * lot of more complicated places (task switching can be a bit lazy
707 * about restoring all the debug state, and ptrace doesn't have to
708 * find every occurrence of the TF bit that could be saved away even
711 * May run on IST stack.
713 dotraplinkage
void do_debug(struct pt_regs
*regs
, long error_code
)
715 struct task_struct
*tsk
= current
;
722 get_debugreg(dr6
, 6);
724 * The Intel SDM says:
726 * Certain debug exceptions may clear bits 0-3. The remaining
727 * contents of the DR6 register are never cleared by the
728 * processor. To avoid confusion in identifying debug
729 * exceptions, debug handlers should clear the register before
730 * returning to the interrupted task.
732 * Keep it simple: clear DR6 immediately.
736 /* Filter out all the reserved bits which are preset to 1 */
737 dr6
&= ~DR6_RESERVED
;
740 * The SDM says "The processor clears the BTF flag when it
741 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
742 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
744 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
746 if (unlikely(!user_mode(regs
) && (dr6
& DR_STEP
) &&
747 is_sysenter_singlestep(regs
))) {
752 * else we might have gotten a single-step trap and hit a
753 * watchpoint at the same time, in which case we should fall
754 * through and handle the watchpoint.
759 * If dr6 has no reason to give us about the origin of this trap,
760 * then it's very likely the result of an icebp/int01 trap.
761 * User wants a sigtrap for that.
763 if (!dr6
&& user_mode(regs
))
766 /* Store the virtualized DR6 value */
767 tsk
->thread
.debugreg6
= dr6
;
769 #ifdef CONFIG_KPROBES
770 if (kprobe_debug_handler(regs
))
774 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)&dr6
, error_code
,
775 SIGTRAP
) == NOTIFY_STOP
)
779 * Let others (NMI) know that the debug stack is in use
780 * as we may switch to the interrupt stack.
782 debug_stack_usage_inc();
784 /* It's safe to allow irq's after DR6 has been saved */
785 cond_local_irq_enable(regs
);
787 if (v8086_mode(regs
)) {
788 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, error_code
,
790 cond_local_irq_disable(regs
);
791 debug_stack_usage_dec();
795 if (WARN_ON_ONCE((dr6
& DR_STEP
) && !user_mode(regs
))) {
797 * Historical junk that used to handle SYSENTER single-stepping.
798 * This should be unreachable now. If we survive for a while
799 * without anyone hitting this warning, we'll turn this into
802 tsk
->thread
.debugreg6
&= ~DR_STEP
;
803 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
804 regs
->flags
&= ~X86_EFLAGS_TF
;
806 si_code
= get_si_code(tsk
->thread
.debugreg6
);
807 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
808 send_sigtrap(tsk
, regs
, error_code
, si_code
);
809 cond_local_irq_disable(regs
);
810 debug_stack_usage_dec();
815 NOKPROBE_SYMBOL(do_debug
);
818 * Note that we play around with the 'TS' bit in an attempt to get
819 * the correct behaviour even in the presence of the asynchronous
822 static void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
824 struct task_struct
*task
= current
;
825 struct fpu
*fpu
= &task
->thread
.fpu
;
827 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
830 cond_local_irq_enable(regs
);
832 if (!user_mode(regs
)) {
833 if (fixup_exception(regs
, trapnr
, error_code
, 0))
836 task
->thread
.error_code
= error_code
;
837 task
->thread
.trap_nr
= trapnr
;
839 if (notify_die(DIE_TRAP
, str
, regs
, error_code
,
840 trapnr
, SIGFPE
) != NOTIFY_STOP
)
841 die(str
, regs
, error_code
);
846 * Save the info for the exception handler and clear the error.
850 task
->thread
.trap_nr
= trapnr
;
851 task
->thread
.error_code
= error_code
;
853 si_code
= fpu__exception_code(fpu
, trapnr
);
854 /* Retry when we get spurious exceptions: */
858 force_sig_fault(SIGFPE
, si_code
,
859 (void __user
*)uprobe_get_trap_addr(regs
), task
);
862 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
864 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
865 math_error(regs
, error_code
, X86_TRAP_MF
);
869 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
871 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
872 math_error(regs
, error_code
, X86_TRAP_XF
);
876 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
878 cond_local_irq_enable(regs
);
882 do_device_not_available(struct pt_regs
*regs
, long error_code
)
884 unsigned long cr0
= read_cr0();
886 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
888 #ifdef CONFIG_MATH_EMULATION
889 if (!boot_cpu_has(X86_FEATURE_FPU
) && (cr0
& X86_CR0_EM
)) {
890 struct math_emu_info info
= { };
892 cond_local_irq_enable(regs
);
900 /* This should not happen. */
901 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
902 /* Try to fix it up and carry on. */
903 write_cr0(cr0
& ~X86_CR0_TS
);
906 * Something terrible happened, and we're better off trying
907 * to kill the task than getting stuck in a never-ending
908 * loop of #NM faults.
910 die("unexpected #NM exception", regs
, error_code
);
913 NOKPROBE_SYMBOL(do_device_not_available
);
916 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
918 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
921 if (notify_die(DIE_TRAP
, "iret exception", regs
, error_code
,
922 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
923 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, error_code
,
924 ILL_BADSTK
, (void __user
*)NULL
);
929 void __init
trap_init(void)
931 /* Init cpu_entry_area before IST entries are set up */
932 setup_cpu_entry_areas();
937 * Set the IDT descriptor to a fixed read-only location, so that the
938 * "sidt" instruction will not leak the location of the kernel, and
939 * to defend the IDT against arbitrary memory write vulnerabilities.
940 * It will be reloaded in cpu_init() */
941 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR
, __pa_symbol(idt_table
),
943 idt_descr
.address
= CPU_ENTRY_AREA_RO_IDT
;
946 * Should be a barrier for any external CPU state:
950 idt_setup_ist_traps();
952 x86_init
.irqs
.trap_init();
954 idt_setup_debugidt_traps();