2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
31 /* SPI register offsets */
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_VERSION 0x00fc
45 #define SPI_RPR 0x0100
46 #define SPI_RCR 0x0104
47 #define SPI_TPR 0x0108
48 #define SPI_TCR 0x010c
49 #define SPI_RNPR 0x0110
50 #define SPI_RNCR 0x0114
51 #define SPI_TNPR 0x0118
52 #define SPI_TNCR 0x011c
53 #define SPI_PTCR 0x0120
54 #define SPI_PTSR 0x0124
57 #define SPI_SPIEN_OFFSET 0
58 #define SPI_SPIEN_SIZE 1
59 #define SPI_SPIDIS_OFFSET 1
60 #define SPI_SPIDIS_SIZE 1
61 #define SPI_SWRST_OFFSET 7
62 #define SPI_SWRST_SIZE 1
63 #define SPI_LASTXFER_OFFSET 24
64 #define SPI_LASTXFER_SIZE 1
67 #define SPI_MSTR_OFFSET 0
68 #define SPI_MSTR_SIZE 1
69 #define SPI_PS_OFFSET 1
71 #define SPI_PCSDEC_OFFSET 2
72 #define SPI_PCSDEC_SIZE 1
73 #define SPI_FDIV_OFFSET 3
74 #define SPI_FDIV_SIZE 1
75 #define SPI_MODFDIS_OFFSET 4
76 #define SPI_MODFDIS_SIZE 1
77 #define SPI_WDRBT_OFFSET 5
78 #define SPI_WDRBT_SIZE 1
79 #define SPI_LLB_OFFSET 7
80 #define SPI_LLB_SIZE 1
81 #define SPI_PCS_OFFSET 16
82 #define SPI_PCS_SIZE 4
83 #define SPI_DLYBCS_OFFSET 24
84 #define SPI_DLYBCS_SIZE 8
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET 0
88 #define SPI_RD_SIZE 16
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET 0
92 #define SPI_TD_SIZE 16
95 #define SPI_RDRF_OFFSET 0
96 #define SPI_RDRF_SIZE 1
97 #define SPI_TDRE_OFFSET 1
98 #define SPI_TDRE_SIZE 1
99 #define SPI_MODF_OFFSET 2
100 #define SPI_MODF_SIZE 1
101 #define SPI_OVRES_OFFSET 3
102 #define SPI_OVRES_SIZE 1
103 #define SPI_ENDRX_OFFSET 4
104 #define SPI_ENDRX_SIZE 1
105 #define SPI_ENDTX_OFFSET 5
106 #define SPI_ENDTX_SIZE 1
107 #define SPI_RXBUFF_OFFSET 6
108 #define SPI_RXBUFF_SIZE 1
109 #define SPI_TXBUFE_OFFSET 7
110 #define SPI_TXBUFE_SIZE 1
111 #define SPI_NSSR_OFFSET 8
112 #define SPI_NSSR_SIZE 1
113 #define SPI_TXEMPTY_OFFSET 9
114 #define SPI_TXEMPTY_SIZE 1
115 #define SPI_SPIENS_OFFSET 16
116 #define SPI_SPIENS_SIZE 1
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET 0
120 #define SPI_CPOL_SIZE 1
121 #define SPI_NCPHA_OFFSET 1
122 #define SPI_NCPHA_SIZE 1
123 #define SPI_CSAAT_OFFSET 3
124 #define SPI_CSAAT_SIZE 1
125 #define SPI_BITS_OFFSET 4
126 #define SPI_BITS_SIZE 4
127 #define SPI_SCBR_OFFSET 8
128 #define SPI_SCBR_SIZE 8
129 #define SPI_DLYBS_OFFSET 16
130 #define SPI_DLYBS_SIZE 8
131 #define SPI_DLYBCT_OFFSET 24
132 #define SPI_DLYBCT_SIZE 8
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET 0
136 #define SPI_RXCTR_SIZE 16
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET 0
140 #define SPI_TXCTR_SIZE 16
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET 0
144 #define SPI_RXNCR_SIZE 16
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET 0
148 #define SPI_TXNCR_SIZE 16
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET 0
152 #define SPI_RXTEN_SIZE 1
153 #define SPI_RXTDIS_OFFSET 1
154 #define SPI_RXTDIS_SIZE 1
155 #define SPI_TXTEN_OFFSET 8
156 #define SPI_TXTEN_SIZE 1
157 #define SPI_TXTDIS_OFFSET 9
158 #define SPI_TXTDIS_SIZE 1
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT 0
162 #define SPI_BITS_9_BPT 1
163 #define SPI_BITS_10_BPT 2
164 #define SPI_BITS_11_BPT 3
165 #define SPI_BITS_12_BPT 4
166 #define SPI_BITS_13_BPT 5
167 #define SPI_BITS_14_BPT 6
168 #define SPI_BITS_15_BPT 7
169 #define SPI_BITS_16_BPT 8
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 | SPI_BF(name, value))
182 /* Register access macros */
184 #define spi_readl(port, reg) \
185 __raw_readl((port)->regs + SPI_##reg)
186 #define spi_writel(port, reg, value) \
187 __raw_writel((value), (port)->regs + SPI_##reg)
189 #define spi_readl(port, reg) \
190 readl_relaxed((port)->regs + SPI_##reg)
191 #define spi_writel(port, reg, value) \
192 writel_relaxed((value), (port)->regs + SPI_##reg)
194 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
195 * cache operations; better heuristics consider wordsize and bitrate.
197 #define DMA_MIN_BYTES 16
199 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
201 #define AUTOSUSPEND_TIMEOUT 2000
203 struct atmel_spi_dma
{
204 struct dma_chan
*chan_rx
;
205 struct dma_chan
*chan_tx
;
206 struct scatterlist sgrx
;
207 struct scatterlist sgtx
;
208 struct dma_async_tx_descriptor
*data_desc_rx
;
209 struct dma_async_tx_descriptor
*data_desc_tx
;
211 struct at_dma_slave dma_slave
;
214 struct atmel_spi_caps
{
217 bool has_dma_support
;
221 * The core SPI transfer engine just talks to a register bank to set up
222 * DMA transfers; transfer queue progress is driven by IRQs. The clock
223 * framework provides the base clock, subdivided for each spi_device.
233 struct platform_device
*pdev
;
235 struct spi_transfer
*current_transfer
;
236 int current_remaining_bytes
;
239 struct completion xfer_completion
;
243 dma_addr_t buffer_dma
;
245 struct atmel_spi_caps caps
;
250 struct atmel_spi_dma dma
;
256 /* Controller-specific per-slave state */
257 struct atmel_spi_device
{
258 unsigned int npcs_pin
;
262 #define BUFFER_SIZE PAGE_SIZE
263 #define INVALID_DMA_ADDRESS 0xffffffff
266 * Version 2 of the SPI controller has
268 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
269 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
271 * - SPI_CSRx.SBCR allows faster clocking
273 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
275 return as
->caps
.is_spi2
;
279 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
280 * they assume that spi slave device state will not change on deselect, so
281 * that automagic deselection is OK. ("NPCSx rises if no data is to be
282 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
283 * controllers have CSAAT and friends.
285 * Since the CSAAT functionality is a bit weird on newer controllers as
286 * well, we use GPIO to control nCSx pins on all controllers, updating
287 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
288 * support active-high chipselects despite the controller's belief that
289 * only active-low devices/systems exists.
291 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
292 * right when driven with GPIO. ("Mode Fault does not allow more than one
293 * Master on Chip Select 0.") No workaround exists for that ... so for
294 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
295 * and (c) will trigger that first erratum in some cases.
298 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
300 struct atmel_spi_device
*asd
= spi
->controller_state
;
301 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
304 if (atmel_spi_is_v2(as
)) {
305 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
306 /* For the low SPI version, there is a issue that PDC transfer
307 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
309 spi_writel(as
, CSR0
, asd
->csr
);
310 if (as
->caps
.has_wdrbt
) {
312 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
318 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
323 mr
= spi_readl(as
, MR
);
324 gpio_set_value(asd
->npcs_pin
, active
);
326 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
330 /* Make sure clock polarity is correct */
331 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
332 csr
= spi_readl(as
, CSR0
+ 4 * i
);
333 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
334 spi_writel(as
, CSR0
+ 4 * i
,
335 csr
^ SPI_BIT(CPOL
));
338 mr
= spi_readl(as
, MR
);
339 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
340 if (spi
->chip_select
!= 0)
341 gpio_set_value(asd
->npcs_pin
, active
);
342 spi_writel(as
, MR
, mr
);
345 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
346 asd
->npcs_pin
, active
? " (high)" : "",
350 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
352 struct atmel_spi_device
*asd
= spi
->controller_state
;
353 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
356 /* only deactivate *this* device; sometimes transfers to
357 * another device may be active when this routine is called.
359 mr
= spi_readl(as
, MR
);
360 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
361 mr
= SPI_BFINS(PCS
, 0xf, mr
);
362 spi_writel(as
, MR
, mr
);
365 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
366 asd
->npcs_pin
, active
? " (low)" : "",
369 if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
370 gpio_set_value(asd
->npcs_pin
, !active
);
373 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
375 spin_lock_irqsave(&as
->lock
, as
->flags
);
378 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
380 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
383 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
384 struct spi_transfer
*xfer
)
386 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
389 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
390 struct dma_slave_config
*slave_config
,
395 if (bits_per_word
> 8) {
396 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
397 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
399 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
400 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
403 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
404 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
405 slave_config
->src_maxburst
= 1;
406 slave_config
->dst_maxburst
= 1;
407 slave_config
->device_fc
= false;
409 slave_config
->direction
= DMA_MEM_TO_DEV
;
410 if (dmaengine_slave_config(as
->dma
.chan_tx
, slave_config
)) {
411 dev_err(&as
->pdev
->dev
,
412 "failed to configure tx dma channel\n");
416 slave_config
->direction
= DMA_DEV_TO_MEM
;
417 if (dmaengine_slave_config(as
->dma
.chan_rx
, slave_config
)) {
418 dev_err(&as
->pdev
->dev
,
419 "failed to configure rx dma channel\n");
426 static int atmel_spi_configure_dma(struct atmel_spi
*as
)
428 struct dma_slave_config slave_config
;
429 struct device
*dev
= &as
->pdev
->dev
;
434 dma_cap_set(DMA_SLAVE
, mask
);
436 as
->dma
.chan_tx
= dma_request_slave_channel_reason(dev
, "tx");
437 if (IS_ERR(as
->dma
.chan_tx
)) {
438 err
= PTR_ERR(as
->dma
.chan_tx
);
439 if (err
== -EPROBE_DEFER
) {
440 dev_warn(dev
, "no DMA channel available at the moment\n");
444 "DMA TX channel not available, SPI unable to use DMA\n");
450 * No reason to check EPROBE_DEFER here since we have already requested
451 * tx channel. If it fails here, it's for another reason.
453 as
->dma
.chan_rx
= dma_request_slave_channel(dev
, "rx");
455 if (!as
->dma
.chan_rx
) {
457 "DMA RX channel not available, SPI unable to use DMA\n");
462 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
466 dev_info(&as
->pdev
->dev
,
467 "Using %s (tx) and %s (rx) for DMA transfers\n",
468 dma_chan_name(as
->dma
.chan_tx
),
469 dma_chan_name(as
->dma
.chan_rx
));
473 dma_release_channel(as
->dma
.chan_rx
);
474 if (!IS_ERR(as
->dma
.chan_tx
))
475 dma_release_channel(as
->dma
.chan_tx
);
479 static void atmel_spi_stop_dma(struct atmel_spi
*as
)
482 dmaengine_terminate_all(as
->dma
.chan_rx
);
484 dmaengine_terminate_all(as
->dma
.chan_tx
);
487 static void atmel_spi_release_dma(struct atmel_spi
*as
)
490 dma_release_channel(as
->dma
.chan_rx
);
492 dma_release_channel(as
->dma
.chan_tx
);
495 /* This function is called by the DMA driver from tasklet context */
496 static void dma_callback(void *data
)
498 struct spi_master
*master
= data
;
499 struct atmel_spi
*as
= spi_master_get_devdata(master
);
501 complete(&as
->xfer_completion
);
505 * Next transfer using PIO.
507 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
508 struct spi_transfer
*xfer
)
510 struct atmel_spi
*as
= spi_master_get_devdata(master
);
511 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
513 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
515 /* Make sure data is not remaining in RDR */
517 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
523 if (xfer
->bits_per_word
> 8)
524 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
526 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
528 spi_writel(as
, TDR
, 0);
531 dev_dbg(master
->dev
.parent
,
532 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
533 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
534 xfer
->bits_per_word
);
536 /* Enable relevant interrupts */
537 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
541 * Submit next transfer for DMA.
543 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
544 struct spi_transfer
*xfer
,
547 struct atmel_spi
*as
= spi_master_get_devdata(master
);
548 struct dma_chan
*rxchan
= as
->dma
.chan_rx
;
549 struct dma_chan
*txchan
= as
->dma
.chan_tx
;
550 struct dma_async_tx_descriptor
*rxdesc
;
551 struct dma_async_tx_descriptor
*txdesc
;
552 struct dma_slave_config slave_config
;
556 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
558 /* Check that the channels are available */
559 if (!rxchan
|| !txchan
)
562 /* release lock for DMA operations */
563 atmel_spi_unlock(as
);
565 /* prepare the RX dma transfer */
566 sg_init_table(&as
->dma
.sgrx
, 1);
568 as
->dma
.sgrx
.dma_address
= xfer
->rx_dma
+ xfer
->len
- *plen
;
570 as
->dma
.sgrx
.dma_address
= as
->buffer_dma
;
571 if (len
> BUFFER_SIZE
)
575 /* prepare the TX dma transfer */
576 sg_init_table(&as
->dma
.sgtx
, 1);
578 as
->dma
.sgtx
.dma_address
= xfer
->tx_dma
+ xfer
->len
- *plen
;
580 as
->dma
.sgtx
.dma_address
= as
->buffer_dma
;
581 if (len
> BUFFER_SIZE
)
583 memset(as
->buffer
, 0, len
);
586 sg_dma_len(&as
->dma
.sgtx
) = len
;
587 sg_dma_len(&as
->dma
.sgrx
) = len
;
591 if (atmel_spi_dma_slave_config(as
, &slave_config
, 8))
594 /* Send both scatterlists */
595 rxdesc
= dmaengine_prep_slave_sg(rxchan
, &as
->dma
.sgrx
, 1,
597 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
601 txdesc
= dmaengine_prep_slave_sg(txchan
, &as
->dma
.sgtx
, 1,
603 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
607 dev_dbg(master
->dev
.parent
,
608 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
609 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
610 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
612 /* Enable relevant interrupts */
613 spi_writel(as
, IER
, SPI_BIT(OVRES
));
615 /* Put the callback on the RX transfer only, that should finish last */
616 rxdesc
->callback
= dma_callback
;
617 rxdesc
->callback_param
= master
;
619 /* Submit and fire RX and TX with TX last so we're ready to read! */
620 cookie
= rxdesc
->tx_submit(rxdesc
);
621 if (dma_submit_error(cookie
))
623 cookie
= txdesc
->tx_submit(txdesc
);
624 if (dma_submit_error(cookie
))
626 rxchan
->device
->device_issue_pending(rxchan
);
627 txchan
->device
->device_issue_pending(txchan
);
634 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
635 atmel_spi_stop_dma(as
);
641 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
642 struct spi_transfer
*xfer
,
647 struct atmel_spi
*as
= spi_master_get_devdata(master
);
650 /* use scratch buffer only when rx or tx data is unspecified */
652 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
654 *rx_dma
= as
->buffer_dma
;
655 if (len
> BUFFER_SIZE
)
660 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
662 *tx_dma
= as
->buffer_dma
;
663 if (len
> BUFFER_SIZE
)
665 memset(as
->buffer
, 0, len
);
666 dma_sync_single_for_device(&as
->pdev
->dev
,
667 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
673 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
674 struct spi_device
*spi
,
675 struct spi_transfer
*xfer
)
678 unsigned long bus_hz
;
680 /* v1 chips start out at half the peripheral bus speed. */
681 bus_hz
= clk_get_rate(as
->clk
);
682 if (!atmel_spi_is_v2(as
))
686 * Calculate the lowest divider that satisfies the
687 * constraint, assuming div32/fdiv/mbz == 0.
690 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
693 * This can happend if max_speed is null.
694 * In this case, we set the lowest possible speed
699 * If the resulting divider doesn't fit into the
700 * register bitfield, we can't satisfy the constraint.
702 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
704 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
705 xfer
->speed_hz
, scbr
, bus_hz
/255);
710 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
711 xfer
->speed_hz
, scbr
, bus_hz
);
714 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
715 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
716 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
722 * Submit next transfer for PDC.
723 * lock is held, spi irq is blocked
725 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
726 struct spi_message
*msg
,
727 struct spi_transfer
*xfer
)
729 struct atmel_spi
*as
= spi_master_get_devdata(master
);
731 dma_addr_t tx_dma
, rx_dma
;
733 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
735 len
= as
->current_remaining_bytes
;
736 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
737 as
->current_remaining_bytes
-= len
;
739 spi_writel(as
, RPR
, rx_dma
);
740 spi_writel(as
, TPR
, tx_dma
);
742 if (msg
->spi
->bits_per_word
> 8)
744 spi_writel(as
, RCR
, len
);
745 spi_writel(as
, TCR
, len
);
747 dev_dbg(&msg
->spi
->dev
,
748 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
749 xfer
, xfer
->len
, xfer
->tx_buf
,
750 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
751 (unsigned long long)xfer
->rx_dma
);
753 if (as
->current_remaining_bytes
) {
754 len
= as
->current_remaining_bytes
;
755 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
756 as
->current_remaining_bytes
-= len
;
758 spi_writel(as
, RNPR
, rx_dma
);
759 spi_writel(as
, TNPR
, tx_dma
);
761 if (msg
->spi
->bits_per_word
> 8)
763 spi_writel(as
, RNCR
, len
);
764 spi_writel(as
, TNCR
, len
);
766 dev_dbg(&msg
->spi
->dev
,
767 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
768 xfer
, xfer
->len
, xfer
->tx_buf
,
769 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
770 (unsigned long long)xfer
->rx_dma
);
773 /* REVISIT: We're waiting for RXBUFF before we start the next
774 * transfer because we need to handle some difficult timing
775 * issues otherwise. If we wait for TXBUFE in one transfer and
776 * then starts waiting for RXBUFF in the next, it's difficult
777 * to tell the difference between the RXBUFF interrupt we're
778 * actually waiting for and the RXBUFF interrupt of the
781 * It should be doable, though. Just not now...
783 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
784 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
788 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
789 * - The buffer is either valid for CPU access, else NULL
790 * - If the buffer is valid, so is its DMA address
792 * This driver manages the dma address unless message->is_dma_mapped.
795 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
797 struct device
*dev
= &as
->pdev
->dev
;
799 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
801 /* tx_buf is a const void* where we need a void * for the dma
803 void *nonconst_tx
= (void *)xfer
->tx_buf
;
805 xfer
->tx_dma
= dma_map_single(dev
,
806 nonconst_tx
, xfer
->len
,
808 if (dma_mapping_error(dev
, xfer
->tx_dma
))
812 xfer
->rx_dma
= dma_map_single(dev
,
813 xfer
->rx_buf
, xfer
->len
,
815 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
817 dma_unmap_single(dev
,
818 xfer
->tx_dma
, xfer
->len
,
826 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
827 struct spi_transfer
*xfer
)
829 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
830 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
831 xfer
->len
, DMA_TO_DEVICE
);
832 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
833 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
834 xfer
->len
, DMA_FROM_DEVICE
);
837 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
839 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
844 * Must update "current_remaining_bytes" to keep track of data
848 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
852 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
855 if (xfer
->bits_per_word
> 8) {
856 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
857 *rxp16
= spi_readl(as
, RDR
);
859 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
860 *rxp
= spi_readl(as
, RDR
);
865 if (xfer
->bits_per_word
> 8) {
866 if (as
->current_remaining_bytes
> 2)
867 as
->current_remaining_bytes
-= 2;
869 as
->current_remaining_bytes
= 0;
871 as
->current_remaining_bytes
--;
877 * No need for locking in this Interrupt handler: done_status is the
878 * only information modified.
881 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
883 struct spi_master
*master
= dev_id
;
884 struct atmel_spi
*as
= spi_master_get_devdata(master
);
885 u32 status
, pending
, imr
;
886 struct spi_transfer
*xfer
;
889 imr
= spi_readl(as
, IMR
);
890 status
= spi_readl(as
, SR
);
891 pending
= status
& imr
;
893 if (pending
& SPI_BIT(OVRES
)) {
895 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
896 dev_warn(master
->dev
.parent
, "overrun\n");
899 * When we get an overrun, we disregard the current
900 * transfer. Data will not be copied back from any
901 * bounce buffer and msg->actual_len will not be
902 * updated with the last xfer.
904 * We will also not process any remaning transfers in
907 as
->done_status
= -EIO
;
910 /* Clear any overrun happening while cleaning up */
913 complete(&as
->xfer_completion
);
915 } else if (pending
& SPI_BIT(RDRF
)) {
918 if (as
->current_remaining_bytes
) {
920 xfer
= as
->current_transfer
;
921 atmel_spi_pump_pio_data(as
, xfer
);
922 if (!as
->current_remaining_bytes
)
923 spi_writel(as
, IDR
, pending
);
925 complete(&as
->xfer_completion
);
928 atmel_spi_unlock(as
);
930 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
932 spi_writel(as
, IDR
, pending
);
939 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
941 struct spi_master
*master
= dev_id
;
942 struct atmel_spi
*as
= spi_master_get_devdata(master
);
943 u32 status
, pending
, imr
;
946 imr
= spi_readl(as
, IMR
);
947 status
= spi_readl(as
, SR
);
948 pending
= status
& imr
;
950 if (pending
& SPI_BIT(OVRES
)) {
954 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
957 /* Clear any overrun happening while cleaning up */
960 as
->done_status
= -EIO
;
962 complete(&as
->xfer_completion
);
964 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
967 spi_writel(as
, IDR
, pending
);
969 complete(&as
->xfer_completion
);
975 static int atmel_spi_setup(struct spi_device
*spi
)
977 struct atmel_spi
*as
;
978 struct atmel_spi_device
*asd
;
980 unsigned int bits
= spi
->bits_per_word
;
981 unsigned int npcs_pin
;
984 as
= spi_master_get_devdata(spi
->master
);
986 /* see notes above re chipselect */
987 if (!atmel_spi_is_v2(as
)
988 && spi
->chip_select
== 0
989 && (spi
->mode
& SPI_CS_HIGH
)) {
990 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
994 csr
= SPI_BF(BITS
, bits
- 8);
995 if (spi
->mode
& SPI_CPOL
)
996 csr
|= SPI_BIT(CPOL
);
997 if (!(spi
->mode
& SPI_CPHA
))
998 csr
|= SPI_BIT(NCPHA
);
1000 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1002 * DLYBCT would add delays between words, slowing down transfers.
1003 * It could potentially be useful to cope with DMA bottlenecks, but
1004 * in those cases it's probably best to just use a lower bitrate.
1006 csr
|= SPI_BF(DLYBS
, 0);
1007 csr
|= SPI_BF(DLYBCT
, 0);
1009 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1010 npcs_pin
= (unsigned long)spi
->controller_data
;
1012 if (gpio_is_valid(spi
->cs_gpio
))
1013 npcs_pin
= spi
->cs_gpio
;
1015 asd
= spi
->controller_state
;
1017 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1021 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
1027 asd
->npcs_pin
= npcs_pin
;
1028 spi
->controller_state
= asd
;
1029 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
1035 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1036 bits
, spi
->mode
, spi
->chip_select
, csr
);
1038 if (!atmel_spi_is_v2(as
))
1039 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1044 static int atmel_spi_one_transfer(struct spi_master
*master
,
1045 struct spi_message
*msg
,
1046 struct spi_transfer
*xfer
)
1048 struct atmel_spi
*as
;
1049 struct spi_device
*spi
= msg
->spi
;
1052 struct atmel_spi_device
*asd
;
1055 unsigned long dma_timeout
;
1057 as
= spi_master_get_devdata(master
);
1059 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1060 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1064 if (xfer
->bits_per_word
) {
1065 asd
= spi
->controller_state
;
1066 bits
= (asd
->csr
>> 4) & 0xf;
1067 if (bits
!= xfer
->bits_per_word
- 8) {
1069 "you can't yet change bits_per_word in transfers\n");
1070 return -ENOPROTOOPT
;
1075 * DMA map early, for performance (empties dcache ASAP) and
1076 * better fault reporting.
1078 if ((!msg
->is_dma_mapped
)
1079 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
)) {
1080 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1084 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1086 as
->done_status
= 0;
1087 as
->current_transfer
= xfer
;
1088 as
->current_remaining_bytes
= xfer
->len
;
1089 while (as
->current_remaining_bytes
) {
1090 reinit_completion(&as
->xfer_completion
);
1093 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1094 } else if (atmel_spi_use_dma(as
, xfer
)) {
1095 len
= as
->current_remaining_bytes
;
1096 ret
= atmel_spi_next_xfer_dma_submit(master
,
1100 "unable to use DMA, fallback to PIO\n");
1101 atmel_spi_next_xfer_pio(master
, xfer
);
1103 as
->current_remaining_bytes
-= len
;
1104 if (as
->current_remaining_bytes
< 0)
1105 as
->current_remaining_bytes
= 0;
1108 atmel_spi_next_xfer_pio(master
, xfer
);
1111 /* interrupts are disabled, so free the lock for schedule */
1112 atmel_spi_unlock(as
);
1113 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1116 if (WARN_ON(dma_timeout
== 0)) {
1117 dev_err(&spi
->dev
, "spi transfer timeout\n");
1118 as
->done_status
= -EIO
;
1121 if (as
->done_status
)
1125 if (as
->done_status
) {
1127 dev_warn(master
->dev
.parent
,
1128 "overrun (%u/%u remaining)\n",
1129 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1132 * Clean up DMA registers and make sure the data
1133 * registers are empty.
1135 spi_writel(as
, RNCR
, 0);
1136 spi_writel(as
, TNCR
, 0);
1137 spi_writel(as
, RCR
, 0);
1138 spi_writel(as
, TCR
, 0);
1139 for (timeout
= 1000; timeout
; timeout
--)
1140 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1143 dev_warn(master
->dev
.parent
,
1144 "timeout waiting for TXEMPTY");
1145 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1148 /* Clear any overrun happening while cleaning up */
1151 } else if (atmel_spi_use_dma(as
, xfer
)) {
1152 atmel_spi_stop_dma(as
);
1155 if (!msg
->is_dma_mapped
1156 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1157 atmel_spi_dma_unmap_xfer(master
, xfer
);
1162 /* only update length if no error */
1163 msg
->actual_length
+= xfer
->len
;
1166 if (!msg
->is_dma_mapped
1167 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1168 atmel_spi_dma_unmap_xfer(master
, xfer
);
1170 if (xfer
->delay_usecs
)
1171 udelay(xfer
->delay_usecs
);
1173 if (xfer
->cs_change
) {
1174 if (list_is_last(&xfer
->transfer_list
,
1178 as
->cs_active
= !as
->cs_active
;
1180 cs_activate(as
, msg
->spi
);
1182 cs_deactivate(as
, msg
->spi
);
1189 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1190 struct spi_message
*msg
)
1192 struct atmel_spi
*as
;
1193 struct spi_transfer
*xfer
;
1194 struct spi_device
*spi
= msg
->spi
;
1197 as
= spi_master_get_devdata(master
);
1199 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1200 msg
, dev_name(&spi
->dev
));
1203 cs_activate(as
, spi
);
1205 as
->cs_active
= true;
1206 as
->keep_cs
= false;
1209 msg
->actual_length
= 0;
1211 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1212 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1218 atmel_spi_disable_pdc_transfer(as
);
1220 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1222 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1224 xfer
->tx_buf
, &xfer
->tx_dma
,
1225 xfer
->rx_buf
, &xfer
->rx_dma
);
1230 cs_deactivate(as
, msg
->spi
);
1232 atmel_spi_unlock(as
);
1234 msg
->status
= as
->done_status
;
1235 spi_finalize_current_message(spi
->master
);
1240 static void atmel_spi_cleanup(struct spi_device
*spi
)
1242 struct atmel_spi_device
*asd
= spi
->controller_state
;
1243 unsigned gpio
= (unsigned long) spi
->controller_data
;
1248 spi
->controller_state
= NULL
;
1253 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1255 return spi_readl(as
, VERSION
) & 0x00000fff;
1258 static void atmel_get_caps(struct atmel_spi
*as
)
1260 unsigned int version
;
1262 version
= atmel_get_version(as
);
1263 dev_info(&as
->pdev
->dev
, "version: 0x%x\n", version
);
1265 as
->caps
.is_spi2
= version
> 0x121;
1266 as
->caps
.has_wdrbt
= version
>= 0x210;
1267 as
->caps
.has_dma_support
= version
>= 0x212;
1270 /*-------------------------------------------------------------------------*/
1272 static int atmel_spi_probe(struct platform_device
*pdev
)
1274 struct resource
*regs
;
1278 struct spi_master
*master
;
1279 struct atmel_spi
*as
;
1281 /* Select default pin state */
1282 pinctrl_pm_select_default_state(&pdev
->dev
);
1284 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1288 irq
= platform_get_irq(pdev
, 0);
1292 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1294 return PTR_ERR(clk
);
1296 /* setup spi core then atmel-specific driver state */
1298 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1302 /* the spi->mode bits understood by this driver: */
1303 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1304 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1305 master
->dev
.of_node
= pdev
->dev
.of_node
;
1306 master
->bus_num
= pdev
->id
;
1307 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1308 master
->setup
= atmel_spi_setup
;
1309 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1310 master
->cleanup
= atmel_spi_cleanup
;
1311 master
->auto_runtime_pm
= true;
1312 platform_set_drvdata(pdev
, master
);
1314 as
= spi_master_get_devdata(master
);
1317 * Scratch buffer is used for throwaway rx and tx data.
1318 * It's coherent to minimize dcache pollution.
1320 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
1321 &as
->buffer_dma
, GFP_KERNEL
);
1325 spin_lock_init(&as
->lock
);
1328 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1329 if (IS_ERR(as
->regs
)) {
1330 ret
= PTR_ERR(as
->regs
);
1331 goto out_free_buffer
;
1333 as
->phybase
= regs
->start
;
1337 init_completion(&as
->xfer_completion
);
1341 as
->use_dma
= false;
1342 as
->use_pdc
= false;
1343 if (as
->caps
.has_dma_support
) {
1344 ret
= atmel_spi_configure_dma(as
);
1347 else if (ret
== -EPROBE_DEFER
)
1353 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1354 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1357 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1358 0, dev_name(&pdev
->dev
), master
);
1360 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1361 0, dev_name(&pdev
->dev
), master
);
1364 goto out_unmap_regs
;
1366 /* Initialize the hardware */
1367 ret
= clk_prepare_enable(clk
);
1370 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1371 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1372 if (as
->caps
.has_wdrbt
) {
1373 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1376 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1380 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1381 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1384 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1385 (unsigned long)regs
->start
, irq
);
1387 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1388 pm_runtime_use_autosuspend(&pdev
->dev
);
1389 pm_runtime_set_active(&pdev
->dev
);
1390 pm_runtime_enable(&pdev
->dev
);
1392 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1399 pm_runtime_disable(&pdev
->dev
);
1400 pm_runtime_set_suspended(&pdev
->dev
);
1403 atmel_spi_release_dma(as
);
1405 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1406 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1407 clk_disable_unprepare(clk
);
1411 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1414 spi_master_put(master
);
1418 static int atmel_spi_remove(struct platform_device
*pdev
)
1420 struct spi_master
*master
= platform_get_drvdata(pdev
);
1421 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1423 pm_runtime_get_sync(&pdev
->dev
);
1425 /* reset the hardware and block queue progress */
1426 spin_lock_irq(&as
->lock
);
1428 atmel_spi_stop_dma(as
);
1429 atmel_spi_release_dma(as
);
1432 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1433 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1435 spin_unlock_irq(&as
->lock
);
1437 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1440 clk_disable_unprepare(as
->clk
);
1442 pm_runtime_put_noidle(&pdev
->dev
);
1443 pm_runtime_disable(&pdev
->dev
);
1449 static int atmel_spi_runtime_suspend(struct device
*dev
)
1451 struct spi_master
*master
= dev_get_drvdata(dev
);
1452 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1454 clk_disable_unprepare(as
->clk
);
1455 pinctrl_pm_select_sleep_state(dev
);
1460 static int atmel_spi_runtime_resume(struct device
*dev
)
1462 struct spi_master
*master
= dev_get_drvdata(dev
);
1463 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1465 pinctrl_pm_select_default_state(dev
);
1467 return clk_prepare_enable(as
->clk
);
1470 static int atmel_spi_suspend(struct device
*dev
)
1472 struct spi_master
*master
= dev_get_drvdata(dev
);
1475 /* Stop the queue running */
1476 ret
= spi_master_suspend(master
);
1478 dev_warn(dev
, "cannot suspend master\n");
1482 if (!pm_runtime_suspended(dev
))
1483 atmel_spi_runtime_suspend(dev
);
1488 static int atmel_spi_resume(struct device
*dev
)
1490 struct spi_master
*master
= dev_get_drvdata(dev
);
1493 if (!pm_runtime_suspended(dev
)) {
1494 ret
= atmel_spi_runtime_resume(dev
);
1499 /* Start the queue running */
1500 ret
= spi_master_resume(master
);
1502 dev_err(dev
, "problem starting queue (%d)\n", ret
);
1507 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1508 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1509 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1510 atmel_spi_runtime_resume
, NULL
)
1512 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1514 #define ATMEL_SPI_PM_OPS NULL
1517 #if defined(CONFIG_OF)
1518 static const struct of_device_id atmel_spi_dt_ids
[] = {
1519 { .compatible
= "atmel,at91rm9200-spi" },
1523 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1526 static struct platform_driver atmel_spi_driver
= {
1528 .name
= "atmel_spi",
1529 .pm
= ATMEL_SPI_PM_OPS
,
1530 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1532 .probe
= atmel_spi_probe
,
1533 .remove
= atmel_spi_remove
,
1535 module_platform_driver(atmel_spi_driver
);
1537 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1538 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1539 MODULE_LICENSE("GPL");
1540 MODULE_ALIAS("platform:atmel_spi");