udf: improve error management in udf_CS0toUTF8()
[linux/fpc-iii.git] / drivers / spi / spi-atmel.c
bloba2f40b1b222500eb53d14c681ab58f3d3c445af8
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
31 /* SPI register offsets */
32 #define SPI_CR 0x0000
33 #define SPI_MR 0x0004
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
36 #define SPI_SR 0x0010
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_VERSION 0x00fc
45 #define SPI_RPR 0x0100
46 #define SPI_RCR 0x0104
47 #define SPI_TPR 0x0108
48 #define SPI_TCR 0x010c
49 #define SPI_RNPR 0x0110
50 #define SPI_RNCR 0x0114
51 #define SPI_TNPR 0x0118
52 #define SPI_TNCR 0x011c
53 #define SPI_PTCR 0x0120
54 #define SPI_PTSR 0x0124
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET 0
58 #define SPI_SPIEN_SIZE 1
59 #define SPI_SPIDIS_OFFSET 1
60 #define SPI_SPIDIS_SIZE 1
61 #define SPI_SWRST_OFFSET 7
62 #define SPI_SWRST_SIZE 1
63 #define SPI_LASTXFER_OFFSET 24
64 #define SPI_LASTXFER_SIZE 1
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET 0
68 #define SPI_MSTR_SIZE 1
69 #define SPI_PS_OFFSET 1
70 #define SPI_PS_SIZE 1
71 #define SPI_PCSDEC_OFFSET 2
72 #define SPI_PCSDEC_SIZE 1
73 #define SPI_FDIV_OFFSET 3
74 #define SPI_FDIV_SIZE 1
75 #define SPI_MODFDIS_OFFSET 4
76 #define SPI_MODFDIS_SIZE 1
77 #define SPI_WDRBT_OFFSET 5
78 #define SPI_WDRBT_SIZE 1
79 #define SPI_LLB_OFFSET 7
80 #define SPI_LLB_SIZE 1
81 #define SPI_PCS_OFFSET 16
82 #define SPI_PCS_SIZE 4
83 #define SPI_DLYBCS_OFFSET 24
84 #define SPI_DLYBCS_SIZE 8
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET 0
88 #define SPI_RD_SIZE 16
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET 0
92 #define SPI_TD_SIZE 16
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET 0
96 #define SPI_RDRF_SIZE 1
97 #define SPI_TDRE_OFFSET 1
98 #define SPI_TDRE_SIZE 1
99 #define SPI_MODF_OFFSET 2
100 #define SPI_MODF_SIZE 1
101 #define SPI_OVRES_OFFSET 3
102 #define SPI_OVRES_SIZE 1
103 #define SPI_ENDRX_OFFSET 4
104 #define SPI_ENDRX_SIZE 1
105 #define SPI_ENDTX_OFFSET 5
106 #define SPI_ENDTX_SIZE 1
107 #define SPI_RXBUFF_OFFSET 6
108 #define SPI_RXBUFF_SIZE 1
109 #define SPI_TXBUFE_OFFSET 7
110 #define SPI_TXBUFE_SIZE 1
111 #define SPI_NSSR_OFFSET 8
112 #define SPI_NSSR_SIZE 1
113 #define SPI_TXEMPTY_OFFSET 9
114 #define SPI_TXEMPTY_SIZE 1
115 #define SPI_SPIENS_OFFSET 16
116 #define SPI_SPIENS_SIZE 1
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET 0
120 #define SPI_CPOL_SIZE 1
121 #define SPI_NCPHA_OFFSET 1
122 #define SPI_NCPHA_SIZE 1
123 #define SPI_CSAAT_OFFSET 3
124 #define SPI_CSAAT_SIZE 1
125 #define SPI_BITS_OFFSET 4
126 #define SPI_BITS_SIZE 4
127 #define SPI_SCBR_OFFSET 8
128 #define SPI_SCBR_SIZE 8
129 #define SPI_DLYBS_OFFSET 16
130 #define SPI_DLYBS_SIZE 8
131 #define SPI_DLYBCT_OFFSET 24
132 #define SPI_DLYBCT_SIZE 8
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET 0
136 #define SPI_RXCTR_SIZE 16
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET 0
140 #define SPI_TXCTR_SIZE 16
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET 0
144 #define SPI_RXNCR_SIZE 16
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET 0
148 #define SPI_TXNCR_SIZE 16
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET 0
152 #define SPI_RXTEN_SIZE 1
153 #define SPI_RXTDIS_OFFSET 1
154 #define SPI_RXTDIS_SIZE 1
155 #define SPI_TXTEN_OFFSET 8
156 #define SPI_TXTEN_SIZE 1
157 #define SPI_TXTDIS_OFFSET 9
158 #define SPI_TXTDIS_SIZE 1
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT 0
162 #define SPI_BITS_9_BPT 1
163 #define SPI_BITS_10_BPT 2
164 #define SPI_BITS_11_BPT 3
165 #define SPI_BITS_12_BPT 4
166 #define SPI_BITS_13_BPT 5
167 #define SPI_BITS_14_BPT 6
168 #define SPI_BITS_15_BPT 7
169 #define SPI_BITS_16_BPT 8
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 | SPI_BF(name, value))
182 /* Register access macros */
183 #ifdef CONFIG_AVR32
184 #define spi_readl(port, reg) \
185 __raw_readl((port)->regs + SPI_##reg)
186 #define spi_writel(port, reg, value) \
187 __raw_writel((value), (port)->regs + SPI_##reg)
188 #else
189 #define spi_readl(port, reg) \
190 readl_relaxed((port)->regs + SPI_##reg)
191 #define spi_writel(port, reg, value) \
192 writel_relaxed((value), (port)->regs + SPI_##reg)
193 #endif
194 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
195 * cache operations; better heuristics consider wordsize and bitrate.
197 #define DMA_MIN_BYTES 16
199 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
201 #define AUTOSUSPEND_TIMEOUT 2000
203 struct atmel_spi_dma {
204 struct dma_chan *chan_rx;
205 struct dma_chan *chan_tx;
206 struct scatterlist sgrx;
207 struct scatterlist sgtx;
208 struct dma_async_tx_descriptor *data_desc_rx;
209 struct dma_async_tx_descriptor *data_desc_tx;
211 struct at_dma_slave dma_slave;
214 struct atmel_spi_caps {
215 bool is_spi2;
216 bool has_wdrbt;
217 bool has_dma_support;
221 * The core SPI transfer engine just talks to a register bank to set up
222 * DMA transfers; transfer queue progress is driven by IRQs. The clock
223 * framework provides the base clock, subdivided for each spi_device.
225 struct atmel_spi {
226 spinlock_t lock;
227 unsigned long flags;
229 phys_addr_t phybase;
230 void __iomem *regs;
231 int irq;
232 struct clk *clk;
233 struct platform_device *pdev;
235 struct spi_transfer *current_transfer;
236 int current_remaining_bytes;
237 int done_status;
239 struct completion xfer_completion;
241 /* scratch buffer */
242 void *buffer;
243 dma_addr_t buffer_dma;
245 struct atmel_spi_caps caps;
247 bool use_dma;
248 bool use_pdc;
249 /* dmaengine data */
250 struct atmel_spi_dma dma;
252 bool keep_cs;
253 bool cs_active;
256 /* Controller-specific per-slave state */
257 struct atmel_spi_device {
258 unsigned int npcs_pin;
259 u32 csr;
262 #define BUFFER_SIZE PAGE_SIZE
263 #define INVALID_DMA_ADDRESS 0xffffffff
266 * Version 2 of the SPI controller has
267 * - CR.LASTXFER
268 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
269 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
270 * - SPI_CSRx.CSAAT
271 * - SPI_CSRx.SBCR allows faster clocking
273 static bool atmel_spi_is_v2(struct atmel_spi *as)
275 return as->caps.is_spi2;
279 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
280 * they assume that spi slave device state will not change on deselect, so
281 * that automagic deselection is OK. ("NPCSx rises if no data is to be
282 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
283 * controllers have CSAAT and friends.
285 * Since the CSAAT functionality is a bit weird on newer controllers as
286 * well, we use GPIO to control nCSx pins on all controllers, updating
287 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
288 * support active-high chipselects despite the controller's belief that
289 * only active-low devices/systems exists.
291 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
292 * right when driven with GPIO. ("Mode Fault does not allow more than one
293 * Master on Chip Select 0.") No workaround exists for that ... so for
294 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
295 * and (c) will trigger that first erratum in some cases.
298 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
300 struct atmel_spi_device *asd = spi->controller_state;
301 unsigned active = spi->mode & SPI_CS_HIGH;
302 u32 mr;
304 if (atmel_spi_is_v2(as)) {
305 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
306 /* For the low SPI version, there is a issue that PDC transfer
307 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
309 spi_writel(as, CSR0, asd->csr);
310 if (as->caps.has_wdrbt) {
311 spi_writel(as, MR,
312 SPI_BF(PCS, ~(0x01 << spi->chip_select))
313 | SPI_BIT(WDRBT)
314 | SPI_BIT(MODFDIS)
315 | SPI_BIT(MSTR));
316 } else {
317 spi_writel(as, MR,
318 SPI_BF(PCS, ~(0x01 << spi->chip_select))
319 | SPI_BIT(MODFDIS)
320 | SPI_BIT(MSTR));
323 mr = spi_readl(as, MR);
324 gpio_set_value(asd->npcs_pin, active);
325 } else {
326 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
327 int i;
328 u32 csr;
330 /* Make sure clock polarity is correct */
331 for (i = 0; i < spi->master->num_chipselect; i++) {
332 csr = spi_readl(as, CSR0 + 4 * i);
333 if ((csr ^ cpol) & SPI_BIT(CPOL))
334 spi_writel(as, CSR0 + 4 * i,
335 csr ^ SPI_BIT(CPOL));
338 mr = spi_readl(as, MR);
339 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
340 if (spi->chip_select != 0)
341 gpio_set_value(asd->npcs_pin, active);
342 spi_writel(as, MR, mr);
345 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
346 asd->npcs_pin, active ? " (high)" : "",
347 mr);
350 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
352 struct atmel_spi_device *asd = spi->controller_state;
353 unsigned active = spi->mode & SPI_CS_HIGH;
354 u32 mr;
356 /* only deactivate *this* device; sometimes transfers to
357 * another device may be active when this routine is called.
359 mr = spi_readl(as, MR);
360 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
361 mr = SPI_BFINS(PCS, 0xf, mr);
362 spi_writel(as, MR, mr);
365 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
366 asd->npcs_pin, active ? " (low)" : "",
367 mr);
369 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
370 gpio_set_value(asd->npcs_pin, !active);
373 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
375 spin_lock_irqsave(&as->lock, as->flags);
378 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
380 spin_unlock_irqrestore(&as->lock, as->flags);
383 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
384 struct spi_transfer *xfer)
386 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
389 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
390 struct dma_slave_config *slave_config,
391 u8 bits_per_word)
393 int err = 0;
395 if (bits_per_word > 8) {
396 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
397 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 } else {
399 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
400 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
403 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
404 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
405 slave_config->src_maxburst = 1;
406 slave_config->dst_maxburst = 1;
407 slave_config->device_fc = false;
409 slave_config->direction = DMA_MEM_TO_DEV;
410 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
411 dev_err(&as->pdev->dev,
412 "failed to configure tx dma channel\n");
413 err = -EINVAL;
416 slave_config->direction = DMA_DEV_TO_MEM;
417 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
418 dev_err(&as->pdev->dev,
419 "failed to configure rx dma channel\n");
420 err = -EINVAL;
423 return err;
426 static int atmel_spi_configure_dma(struct atmel_spi *as)
428 struct dma_slave_config slave_config;
429 struct device *dev = &as->pdev->dev;
430 int err;
432 dma_cap_mask_t mask;
433 dma_cap_zero(mask);
434 dma_cap_set(DMA_SLAVE, mask);
436 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
437 if (IS_ERR(as->dma.chan_tx)) {
438 err = PTR_ERR(as->dma.chan_tx);
439 if (err == -EPROBE_DEFER) {
440 dev_warn(dev, "no DMA channel available at the moment\n");
441 return err;
443 dev_err(dev,
444 "DMA TX channel not available, SPI unable to use DMA\n");
445 err = -EBUSY;
446 goto error;
450 * No reason to check EPROBE_DEFER here since we have already requested
451 * tx channel. If it fails here, it's for another reason.
453 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
455 if (!as->dma.chan_rx) {
456 dev_err(dev,
457 "DMA RX channel not available, SPI unable to use DMA\n");
458 err = -EBUSY;
459 goto error;
462 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
463 if (err)
464 goto error;
466 dev_info(&as->pdev->dev,
467 "Using %s (tx) and %s (rx) for DMA transfers\n",
468 dma_chan_name(as->dma.chan_tx),
469 dma_chan_name(as->dma.chan_rx));
470 return 0;
471 error:
472 if (as->dma.chan_rx)
473 dma_release_channel(as->dma.chan_rx);
474 if (!IS_ERR(as->dma.chan_tx))
475 dma_release_channel(as->dma.chan_tx);
476 return err;
479 static void atmel_spi_stop_dma(struct atmel_spi *as)
481 if (as->dma.chan_rx)
482 dmaengine_terminate_all(as->dma.chan_rx);
483 if (as->dma.chan_tx)
484 dmaengine_terminate_all(as->dma.chan_tx);
487 static void atmel_spi_release_dma(struct atmel_spi *as)
489 if (as->dma.chan_rx)
490 dma_release_channel(as->dma.chan_rx);
491 if (as->dma.chan_tx)
492 dma_release_channel(as->dma.chan_tx);
495 /* This function is called by the DMA driver from tasklet context */
496 static void dma_callback(void *data)
498 struct spi_master *master = data;
499 struct atmel_spi *as = spi_master_get_devdata(master);
501 complete(&as->xfer_completion);
505 * Next transfer using PIO.
507 static void atmel_spi_next_xfer_pio(struct spi_master *master,
508 struct spi_transfer *xfer)
510 struct atmel_spi *as = spi_master_get_devdata(master);
511 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
513 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
515 /* Make sure data is not remaining in RDR */
516 spi_readl(as, RDR);
517 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
518 spi_readl(as, RDR);
519 cpu_relax();
522 if (xfer->tx_buf) {
523 if (xfer->bits_per_word > 8)
524 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
525 else
526 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
527 } else {
528 spi_writel(as, TDR, 0);
531 dev_dbg(master->dev.parent,
532 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
533 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
534 xfer->bits_per_word);
536 /* Enable relevant interrupts */
537 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
541 * Submit next transfer for DMA.
543 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
544 struct spi_transfer *xfer,
545 u32 *plen)
547 struct atmel_spi *as = spi_master_get_devdata(master);
548 struct dma_chan *rxchan = as->dma.chan_rx;
549 struct dma_chan *txchan = as->dma.chan_tx;
550 struct dma_async_tx_descriptor *rxdesc;
551 struct dma_async_tx_descriptor *txdesc;
552 struct dma_slave_config slave_config;
553 dma_cookie_t cookie;
554 u32 len = *plen;
556 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
558 /* Check that the channels are available */
559 if (!rxchan || !txchan)
560 return -ENODEV;
562 /* release lock for DMA operations */
563 atmel_spi_unlock(as);
565 /* prepare the RX dma transfer */
566 sg_init_table(&as->dma.sgrx, 1);
567 if (xfer->rx_buf) {
568 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
569 } else {
570 as->dma.sgrx.dma_address = as->buffer_dma;
571 if (len > BUFFER_SIZE)
572 len = BUFFER_SIZE;
575 /* prepare the TX dma transfer */
576 sg_init_table(&as->dma.sgtx, 1);
577 if (xfer->tx_buf) {
578 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
579 } else {
580 as->dma.sgtx.dma_address = as->buffer_dma;
581 if (len > BUFFER_SIZE)
582 len = BUFFER_SIZE;
583 memset(as->buffer, 0, len);
586 sg_dma_len(&as->dma.sgtx) = len;
587 sg_dma_len(&as->dma.sgrx) = len;
589 *plen = len;
591 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
592 goto err_exit;
594 /* Send both scatterlists */
595 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
596 DMA_FROM_DEVICE,
597 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
598 if (!rxdesc)
599 goto err_dma;
601 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
602 DMA_TO_DEVICE,
603 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
604 if (!txdesc)
605 goto err_dma;
607 dev_dbg(master->dev.parent,
608 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
609 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
610 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
612 /* Enable relevant interrupts */
613 spi_writel(as, IER, SPI_BIT(OVRES));
615 /* Put the callback on the RX transfer only, that should finish last */
616 rxdesc->callback = dma_callback;
617 rxdesc->callback_param = master;
619 /* Submit and fire RX and TX with TX last so we're ready to read! */
620 cookie = rxdesc->tx_submit(rxdesc);
621 if (dma_submit_error(cookie))
622 goto err_dma;
623 cookie = txdesc->tx_submit(txdesc);
624 if (dma_submit_error(cookie))
625 goto err_dma;
626 rxchan->device->device_issue_pending(rxchan);
627 txchan->device->device_issue_pending(txchan);
629 /* take back lock */
630 atmel_spi_lock(as);
631 return 0;
633 err_dma:
634 spi_writel(as, IDR, SPI_BIT(OVRES));
635 atmel_spi_stop_dma(as);
636 err_exit:
637 atmel_spi_lock(as);
638 return -ENOMEM;
641 static void atmel_spi_next_xfer_data(struct spi_master *master,
642 struct spi_transfer *xfer,
643 dma_addr_t *tx_dma,
644 dma_addr_t *rx_dma,
645 u32 *plen)
647 struct atmel_spi *as = spi_master_get_devdata(master);
648 u32 len = *plen;
650 /* use scratch buffer only when rx or tx data is unspecified */
651 if (xfer->rx_buf)
652 *rx_dma = xfer->rx_dma + xfer->len - *plen;
653 else {
654 *rx_dma = as->buffer_dma;
655 if (len > BUFFER_SIZE)
656 len = BUFFER_SIZE;
659 if (xfer->tx_buf)
660 *tx_dma = xfer->tx_dma + xfer->len - *plen;
661 else {
662 *tx_dma = as->buffer_dma;
663 if (len > BUFFER_SIZE)
664 len = BUFFER_SIZE;
665 memset(as->buffer, 0, len);
666 dma_sync_single_for_device(&as->pdev->dev,
667 as->buffer_dma, len, DMA_TO_DEVICE);
670 *plen = len;
673 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
674 struct spi_device *spi,
675 struct spi_transfer *xfer)
677 u32 scbr, csr;
678 unsigned long bus_hz;
680 /* v1 chips start out at half the peripheral bus speed. */
681 bus_hz = clk_get_rate(as->clk);
682 if (!atmel_spi_is_v2(as))
683 bus_hz /= 2;
686 * Calculate the lowest divider that satisfies the
687 * constraint, assuming div32/fdiv/mbz == 0.
689 if (xfer->speed_hz)
690 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
691 else
693 * This can happend if max_speed is null.
694 * In this case, we set the lowest possible speed
696 scbr = 0xff;
699 * If the resulting divider doesn't fit into the
700 * register bitfield, we can't satisfy the constraint.
702 if (scbr >= (1 << SPI_SCBR_SIZE)) {
703 dev_err(&spi->dev,
704 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
705 xfer->speed_hz, scbr, bus_hz/255);
706 return -EINVAL;
708 if (scbr == 0) {
709 dev_err(&spi->dev,
710 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
711 xfer->speed_hz, scbr, bus_hz);
712 return -EINVAL;
714 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
715 csr = SPI_BFINS(SCBR, scbr, csr);
716 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
718 return 0;
722 * Submit next transfer for PDC.
723 * lock is held, spi irq is blocked
725 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
726 struct spi_message *msg,
727 struct spi_transfer *xfer)
729 struct atmel_spi *as = spi_master_get_devdata(master);
730 u32 len;
731 dma_addr_t tx_dma, rx_dma;
733 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
735 len = as->current_remaining_bytes;
736 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
737 as->current_remaining_bytes -= len;
739 spi_writel(as, RPR, rx_dma);
740 spi_writel(as, TPR, tx_dma);
742 if (msg->spi->bits_per_word > 8)
743 len >>= 1;
744 spi_writel(as, RCR, len);
745 spi_writel(as, TCR, len);
747 dev_dbg(&msg->spi->dev,
748 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
749 xfer, xfer->len, xfer->tx_buf,
750 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
751 (unsigned long long)xfer->rx_dma);
753 if (as->current_remaining_bytes) {
754 len = as->current_remaining_bytes;
755 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
756 as->current_remaining_bytes -= len;
758 spi_writel(as, RNPR, rx_dma);
759 spi_writel(as, TNPR, tx_dma);
761 if (msg->spi->bits_per_word > 8)
762 len >>= 1;
763 spi_writel(as, RNCR, len);
764 spi_writel(as, TNCR, len);
766 dev_dbg(&msg->spi->dev,
767 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
768 xfer, xfer->len, xfer->tx_buf,
769 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
770 (unsigned long long)xfer->rx_dma);
773 /* REVISIT: We're waiting for RXBUFF before we start the next
774 * transfer because we need to handle some difficult timing
775 * issues otherwise. If we wait for TXBUFE in one transfer and
776 * then starts waiting for RXBUFF in the next, it's difficult
777 * to tell the difference between the RXBUFF interrupt we're
778 * actually waiting for and the RXBUFF interrupt of the
779 * previous transfer.
781 * It should be doable, though. Just not now...
783 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
784 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
788 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
789 * - The buffer is either valid for CPU access, else NULL
790 * - If the buffer is valid, so is its DMA address
792 * This driver manages the dma address unless message->is_dma_mapped.
794 static int
795 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
797 struct device *dev = &as->pdev->dev;
799 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
800 if (xfer->tx_buf) {
801 /* tx_buf is a const void* where we need a void * for the dma
802 * mapping */
803 void *nonconst_tx = (void *)xfer->tx_buf;
805 xfer->tx_dma = dma_map_single(dev,
806 nonconst_tx, xfer->len,
807 DMA_TO_DEVICE);
808 if (dma_mapping_error(dev, xfer->tx_dma))
809 return -ENOMEM;
811 if (xfer->rx_buf) {
812 xfer->rx_dma = dma_map_single(dev,
813 xfer->rx_buf, xfer->len,
814 DMA_FROM_DEVICE);
815 if (dma_mapping_error(dev, xfer->rx_dma)) {
816 if (xfer->tx_buf)
817 dma_unmap_single(dev,
818 xfer->tx_dma, xfer->len,
819 DMA_TO_DEVICE);
820 return -ENOMEM;
823 return 0;
826 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
827 struct spi_transfer *xfer)
829 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
830 dma_unmap_single(master->dev.parent, xfer->tx_dma,
831 xfer->len, DMA_TO_DEVICE);
832 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
833 dma_unmap_single(master->dev.parent, xfer->rx_dma,
834 xfer->len, DMA_FROM_DEVICE);
837 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
839 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
842 /* Called from IRQ
844 * Must update "current_remaining_bytes" to keep track of data
845 * to transfer.
847 static void
848 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
850 u8 *rxp;
851 u16 *rxp16;
852 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
854 if (xfer->rx_buf) {
855 if (xfer->bits_per_word > 8) {
856 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
857 *rxp16 = spi_readl(as, RDR);
858 } else {
859 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
860 *rxp = spi_readl(as, RDR);
862 } else {
863 spi_readl(as, RDR);
865 if (xfer->bits_per_word > 8) {
866 if (as->current_remaining_bytes > 2)
867 as->current_remaining_bytes -= 2;
868 else
869 as->current_remaining_bytes = 0;
870 } else {
871 as->current_remaining_bytes--;
875 /* Interrupt
877 * No need for locking in this Interrupt handler: done_status is the
878 * only information modified.
880 static irqreturn_t
881 atmel_spi_pio_interrupt(int irq, void *dev_id)
883 struct spi_master *master = dev_id;
884 struct atmel_spi *as = spi_master_get_devdata(master);
885 u32 status, pending, imr;
886 struct spi_transfer *xfer;
887 int ret = IRQ_NONE;
889 imr = spi_readl(as, IMR);
890 status = spi_readl(as, SR);
891 pending = status & imr;
893 if (pending & SPI_BIT(OVRES)) {
894 ret = IRQ_HANDLED;
895 spi_writel(as, IDR, SPI_BIT(OVRES));
896 dev_warn(master->dev.parent, "overrun\n");
899 * When we get an overrun, we disregard the current
900 * transfer. Data will not be copied back from any
901 * bounce buffer and msg->actual_len will not be
902 * updated with the last xfer.
904 * We will also not process any remaning transfers in
905 * the message.
907 as->done_status = -EIO;
908 smp_wmb();
910 /* Clear any overrun happening while cleaning up */
911 spi_readl(as, SR);
913 complete(&as->xfer_completion);
915 } else if (pending & SPI_BIT(RDRF)) {
916 atmel_spi_lock(as);
918 if (as->current_remaining_bytes) {
919 ret = IRQ_HANDLED;
920 xfer = as->current_transfer;
921 atmel_spi_pump_pio_data(as, xfer);
922 if (!as->current_remaining_bytes)
923 spi_writel(as, IDR, pending);
925 complete(&as->xfer_completion);
928 atmel_spi_unlock(as);
929 } else {
930 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
931 ret = IRQ_HANDLED;
932 spi_writel(as, IDR, pending);
935 return ret;
938 static irqreturn_t
939 atmel_spi_pdc_interrupt(int irq, void *dev_id)
941 struct spi_master *master = dev_id;
942 struct atmel_spi *as = spi_master_get_devdata(master);
943 u32 status, pending, imr;
944 int ret = IRQ_NONE;
946 imr = spi_readl(as, IMR);
947 status = spi_readl(as, SR);
948 pending = status & imr;
950 if (pending & SPI_BIT(OVRES)) {
952 ret = IRQ_HANDLED;
954 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
955 | SPI_BIT(OVRES)));
957 /* Clear any overrun happening while cleaning up */
958 spi_readl(as, SR);
960 as->done_status = -EIO;
962 complete(&as->xfer_completion);
964 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
965 ret = IRQ_HANDLED;
967 spi_writel(as, IDR, pending);
969 complete(&as->xfer_completion);
972 return ret;
975 static int atmel_spi_setup(struct spi_device *spi)
977 struct atmel_spi *as;
978 struct atmel_spi_device *asd;
979 u32 csr;
980 unsigned int bits = spi->bits_per_word;
981 unsigned int npcs_pin;
982 int ret;
984 as = spi_master_get_devdata(spi->master);
986 /* see notes above re chipselect */
987 if (!atmel_spi_is_v2(as)
988 && spi->chip_select == 0
989 && (spi->mode & SPI_CS_HIGH)) {
990 dev_dbg(&spi->dev, "setup: can't be active-high\n");
991 return -EINVAL;
994 csr = SPI_BF(BITS, bits - 8);
995 if (spi->mode & SPI_CPOL)
996 csr |= SPI_BIT(CPOL);
997 if (!(spi->mode & SPI_CPHA))
998 csr |= SPI_BIT(NCPHA);
1000 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1002 * DLYBCT would add delays between words, slowing down transfers.
1003 * It could potentially be useful to cope with DMA bottlenecks, but
1004 * in those cases it's probably best to just use a lower bitrate.
1006 csr |= SPI_BF(DLYBS, 0);
1007 csr |= SPI_BF(DLYBCT, 0);
1009 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1010 npcs_pin = (unsigned long)spi->controller_data;
1012 if (gpio_is_valid(spi->cs_gpio))
1013 npcs_pin = spi->cs_gpio;
1015 asd = spi->controller_state;
1016 if (!asd) {
1017 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1018 if (!asd)
1019 return -ENOMEM;
1021 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1022 if (ret) {
1023 kfree(asd);
1024 return ret;
1027 asd->npcs_pin = npcs_pin;
1028 spi->controller_state = asd;
1029 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1032 asd->csr = csr;
1034 dev_dbg(&spi->dev,
1035 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1036 bits, spi->mode, spi->chip_select, csr);
1038 if (!atmel_spi_is_v2(as))
1039 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1041 return 0;
1044 static int atmel_spi_one_transfer(struct spi_master *master,
1045 struct spi_message *msg,
1046 struct spi_transfer *xfer)
1048 struct atmel_spi *as;
1049 struct spi_device *spi = msg->spi;
1050 u8 bits;
1051 u32 len;
1052 struct atmel_spi_device *asd;
1053 int timeout;
1054 int ret;
1055 unsigned long dma_timeout;
1057 as = spi_master_get_devdata(master);
1059 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1060 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1061 return -EINVAL;
1064 if (xfer->bits_per_word) {
1065 asd = spi->controller_state;
1066 bits = (asd->csr >> 4) & 0xf;
1067 if (bits != xfer->bits_per_word - 8) {
1068 dev_dbg(&spi->dev,
1069 "you can't yet change bits_per_word in transfers\n");
1070 return -ENOPROTOOPT;
1075 * DMA map early, for performance (empties dcache ASAP) and
1076 * better fault reporting.
1078 if ((!msg->is_dma_mapped)
1079 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1080 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1081 return -ENOMEM;
1084 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1086 as->done_status = 0;
1087 as->current_transfer = xfer;
1088 as->current_remaining_bytes = xfer->len;
1089 while (as->current_remaining_bytes) {
1090 reinit_completion(&as->xfer_completion);
1092 if (as->use_pdc) {
1093 atmel_spi_pdc_next_xfer(master, msg, xfer);
1094 } else if (atmel_spi_use_dma(as, xfer)) {
1095 len = as->current_remaining_bytes;
1096 ret = atmel_spi_next_xfer_dma_submit(master,
1097 xfer, &len);
1098 if (ret) {
1099 dev_err(&spi->dev,
1100 "unable to use DMA, fallback to PIO\n");
1101 atmel_spi_next_xfer_pio(master, xfer);
1102 } else {
1103 as->current_remaining_bytes -= len;
1104 if (as->current_remaining_bytes < 0)
1105 as->current_remaining_bytes = 0;
1107 } else {
1108 atmel_spi_next_xfer_pio(master, xfer);
1111 /* interrupts are disabled, so free the lock for schedule */
1112 atmel_spi_unlock(as);
1113 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1114 SPI_DMA_TIMEOUT);
1115 atmel_spi_lock(as);
1116 if (WARN_ON(dma_timeout == 0)) {
1117 dev_err(&spi->dev, "spi transfer timeout\n");
1118 as->done_status = -EIO;
1121 if (as->done_status)
1122 break;
1125 if (as->done_status) {
1126 if (as->use_pdc) {
1127 dev_warn(master->dev.parent,
1128 "overrun (%u/%u remaining)\n",
1129 spi_readl(as, TCR), spi_readl(as, RCR));
1132 * Clean up DMA registers and make sure the data
1133 * registers are empty.
1135 spi_writel(as, RNCR, 0);
1136 spi_writel(as, TNCR, 0);
1137 spi_writel(as, RCR, 0);
1138 spi_writel(as, TCR, 0);
1139 for (timeout = 1000; timeout; timeout--)
1140 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1141 break;
1142 if (!timeout)
1143 dev_warn(master->dev.parent,
1144 "timeout waiting for TXEMPTY");
1145 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1146 spi_readl(as, RDR);
1148 /* Clear any overrun happening while cleaning up */
1149 spi_readl(as, SR);
1151 } else if (atmel_spi_use_dma(as, xfer)) {
1152 atmel_spi_stop_dma(as);
1155 if (!msg->is_dma_mapped
1156 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1157 atmel_spi_dma_unmap_xfer(master, xfer);
1159 return 0;
1161 } else {
1162 /* only update length if no error */
1163 msg->actual_length += xfer->len;
1166 if (!msg->is_dma_mapped
1167 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1168 atmel_spi_dma_unmap_xfer(master, xfer);
1170 if (xfer->delay_usecs)
1171 udelay(xfer->delay_usecs);
1173 if (xfer->cs_change) {
1174 if (list_is_last(&xfer->transfer_list,
1175 &msg->transfers)) {
1176 as->keep_cs = true;
1177 } else {
1178 as->cs_active = !as->cs_active;
1179 if (as->cs_active)
1180 cs_activate(as, msg->spi);
1181 else
1182 cs_deactivate(as, msg->spi);
1186 return 0;
1189 static int atmel_spi_transfer_one_message(struct spi_master *master,
1190 struct spi_message *msg)
1192 struct atmel_spi *as;
1193 struct spi_transfer *xfer;
1194 struct spi_device *spi = msg->spi;
1195 int ret = 0;
1197 as = spi_master_get_devdata(master);
1199 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1200 msg, dev_name(&spi->dev));
1202 atmel_spi_lock(as);
1203 cs_activate(as, spi);
1205 as->cs_active = true;
1206 as->keep_cs = false;
1208 msg->status = 0;
1209 msg->actual_length = 0;
1211 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1212 ret = atmel_spi_one_transfer(master, msg, xfer);
1213 if (ret)
1214 goto msg_done;
1217 if (as->use_pdc)
1218 atmel_spi_disable_pdc_transfer(as);
1220 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221 dev_dbg(&spi->dev,
1222 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1223 xfer, xfer->len,
1224 xfer->tx_buf, &xfer->tx_dma,
1225 xfer->rx_buf, &xfer->rx_dma);
1228 msg_done:
1229 if (!as->keep_cs)
1230 cs_deactivate(as, msg->spi);
1232 atmel_spi_unlock(as);
1234 msg->status = as->done_status;
1235 spi_finalize_current_message(spi->master);
1237 return ret;
1240 static void atmel_spi_cleanup(struct spi_device *spi)
1242 struct atmel_spi_device *asd = spi->controller_state;
1243 unsigned gpio = (unsigned long) spi->controller_data;
1245 if (!asd)
1246 return;
1248 spi->controller_state = NULL;
1249 gpio_free(gpio);
1250 kfree(asd);
1253 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1255 return spi_readl(as, VERSION) & 0x00000fff;
1258 static void atmel_get_caps(struct atmel_spi *as)
1260 unsigned int version;
1262 version = atmel_get_version(as);
1263 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1265 as->caps.is_spi2 = version > 0x121;
1266 as->caps.has_wdrbt = version >= 0x210;
1267 as->caps.has_dma_support = version >= 0x212;
1270 /*-------------------------------------------------------------------------*/
1272 static int atmel_spi_probe(struct platform_device *pdev)
1274 struct resource *regs;
1275 int irq;
1276 struct clk *clk;
1277 int ret;
1278 struct spi_master *master;
1279 struct atmel_spi *as;
1281 /* Select default pin state */
1282 pinctrl_pm_select_default_state(&pdev->dev);
1284 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1285 if (!regs)
1286 return -ENXIO;
1288 irq = platform_get_irq(pdev, 0);
1289 if (irq < 0)
1290 return irq;
1292 clk = devm_clk_get(&pdev->dev, "spi_clk");
1293 if (IS_ERR(clk))
1294 return PTR_ERR(clk);
1296 /* setup spi core then atmel-specific driver state */
1297 ret = -ENOMEM;
1298 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1299 if (!master)
1300 goto out_free;
1302 /* the spi->mode bits understood by this driver: */
1303 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1304 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1305 master->dev.of_node = pdev->dev.of_node;
1306 master->bus_num = pdev->id;
1307 master->num_chipselect = master->dev.of_node ? 0 : 4;
1308 master->setup = atmel_spi_setup;
1309 master->transfer_one_message = atmel_spi_transfer_one_message;
1310 master->cleanup = atmel_spi_cleanup;
1311 master->auto_runtime_pm = true;
1312 platform_set_drvdata(pdev, master);
1314 as = spi_master_get_devdata(master);
1317 * Scratch buffer is used for throwaway rx and tx data.
1318 * It's coherent to minimize dcache pollution.
1320 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1321 &as->buffer_dma, GFP_KERNEL);
1322 if (!as->buffer)
1323 goto out_free;
1325 spin_lock_init(&as->lock);
1327 as->pdev = pdev;
1328 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1329 if (IS_ERR(as->regs)) {
1330 ret = PTR_ERR(as->regs);
1331 goto out_free_buffer;
1333 as->phybase = regs->start;
1334 as->irq = irq;
1335 as->clk = clk;
1337 init_completion(&as->xfer_completion);
1339 atmel_get_caps(as);
1341 as->use_dma = false;
1342 as->use_pdc = false;
1343 if (as->caps.has_dma_support) {
1344 ret = atmel_spi_configure_dma(as);
1345 if (ret == 0)
1346 as->use_dma = true;
1347 else if (ret == -EPROBE_DEFER)
1348 return ret;
1349 } else {
1350 as->use_pdc = true;
1353 if (as->caps.has_dma_support && !as->use_dma)
1354 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1356 if (as->use_pdc) {
1357 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1358 0, dev_name(&pdev->dev), master);
1359 } else {
1360 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1361 0, dev_name(&pdev->dev), master);
1363 if (ret)
1364 goto out_unmap_regs;
1366 /* Initialize the hardware */
1367 ret = clk_prepare_enable(clk);
1368 if (ret)
1369 goto out_free_irq;
1370 spi_writel(as, CR, SPI_BIT(SWRST));
1371 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1372 if (as->caps.has_wdrbt) {
1373 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1374 | SPI_BIT(MSTR));
1375 } else {
1376 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1379 if (as->use_pdc)
1380 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1381 spi_writel(as, CR, SPI_BIT(SPIEN));
1383 /* go! */
1384 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1385 (unsigned long)regs->start, irq);
1387 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1388 pm_runtime_use_autosuspend(&pdev->dev);
1389 pm_runtime_set_active(&pdev->dev);
1390 pm_runtime_enable(&pdev->dev);
1392 ret = devm_spi_register_master(&pdev->dev, master);
1393 if (ret)
1394 goto out_free_dma;
1396 return 0;
1398 out_free_dma:
1399 pm_runtime_disable(&pdev->dev);
1400 pm_runtime_set_suspended(&pdev->dev);
1402 if (as->use_dma)
1403 atmel_spi_release_dma(as);
1405 spi_writel(as, CR, SPI_BIT(SWRST));
1406 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1407 clk_disable_unprepare(clk);
1408 out_free_irq:
1409 out_unmap_regs:
1410 out_free_buffer:
1411 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1412 as->buffer_dma);
1413 out_free:
1414 spi_master_put(master);
1415 return ret;
1418 static int atmel_spi_remove(struct platform_device *pdev)
1420 struct spi_master *master = platform_get_drvdata(pdev);
1421 struct atmel_spi *as = spi_master_get_devdata(master);
1423 pm_runtime_get_sync(&pdev->dev);
1425 /* reset the hardware and block queue progress */
1426 spin_lock_irq(&as->lock);
1427 if (as->use_dma) {
1428 atmel_spi_stop_dma(as);
1429 atmel_spi_release_dma(as);
1432 spi_writel(as, CR, SPI_BIT(SWRST));
1433 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1434 spi_readl(as, SR);
1435 spin_unlock_irq(&as->lock);
1437 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1438 as->buffer_dma);
1440 clk_disable_unprepare(as->clk);
1442 pm_runtime_put_noidle(&pdev->dev);
1443 pm_runtime_disable(&pdev->dev);
1445 return 0;
1448 #ifdef CONFIG_PM
1449 static int atmel_spi_runtime_suspend(struct device *dev)
1451 struct spi_master *master = dev_get_drvdata(dev);
1452 struct atmel_spi *as = spi_master_get_devdata(master);
1454 clk_disable_unprepare(as->clk);
1455 pinctrl_pm_select_sleep_state(dev);
1457 return 0;
1460 static int atmel_spi_runtime_resume(struct device *dev)
1462 struct spi_master *master = dev_get_drvdata(dev);
1463 struct atmel_spi *as = spi_master_get_devdata(master);
1465 pinctrl_pm_select_default_state(dev);
1467 return clk_prepare_enable(as->clk);
1470 static int atmel_spi_suspend(struct device *dev)
1472 struct spi_master *master = dev_get_drvdata(dev);
1473 int ret;
1475 /* Stop the queue running */
1476 ret = spi_master_suspend(master);
1477 if (ret) {
1478 dev_warn(dev, "cannot suspend master\n");
1479 return ret;
1482 if (!pm_runtime_suspended(dev))
1483 atmel_spi_runtime_suspend(dev);
1485 return 0;
1488 static int atmel_spi_resume(struct device *dev)
1490 struct spi_master *master = dev_get_drvdata(dev);
1491 int ret;
1493 if (!pm_runtime_suspended(dev)) {
1494 ret = atmel_spi_runtime_resume(dev);
1495 if (ret)
1496 return ret;
1499 /* Start the queue running */
1500 ret = spi_master_resume(master);
1501 if (ret)
1502 dev_err(dev, "problem starting queue (%d)\n", ret);
1504 return ret;
1507 static const struct dev_pm_ops atmel_spi_pm_ops = {
1508 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1509 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1510 atmel_spi_runtime_resume, NULL)
1512 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1513 #else
1514 #define ATMEL_SPI_PM_OPS NULL
1515 #endif
1517 #if defined(CONFIG_OF)
1518 static const struct of_device_id atmel_spi_dt_ids[] = {
1519 { .compatible = "atmel,at91rm9200-spi" },
1520 { /* sentinel */ }
1523 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1524 #endif
1526 static struct platform_driver atmel_spi_driver = {
1527 .driver = {
1528 .name = "atmel_spi",
1529 .pm = ATMEL_SPI_PM_OPS,
1530 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1532 .probe = atmel_spi_probe,
1533 .remove = atmel_spi_remove,
1535 module_platform_driver(atmel_spi_driver);
1537 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1538 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1539 MODULE_LICENSE("GPL");
1540 MODULE_ALIAS("platform:atmel_spi");