2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
45 #include "remoteproc_internal.h"
47 static DEFINE_MUTEX(rproc_list_mutex
);
48 static LIST_HEAD(rproc_list
);
50 typedef int (*rproc_handle_resources_t
)(struct rproc
*rproc
,
51 struct resource_table
*table
, int len
);
52 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
53 void *, int offset
, int avail
);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index
);
58 static const char * const rproc_crash_names
[] = {
59 [RPROC_MMUFAULT
] = "mmufault",
62 /* translate rproc_crash_type to string */
63 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
65 if (type
< ARRAY_SIZE(rproc_crash_names
))
66 return rproc_crash_names
[type
];
71 * This is the IOMMU fault handler we register with the IOMMU API
72 * (when relevant; not all remote processors access memory through
75 * IOMMU core will invoke this handler whenever the remote processor
76 * will try to access an unmapped device address.
78 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
79 unsigned long iova
, int flags
, void *token
)
81 struct rproc
*rproc
= token
;
83 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
85 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
88 * Let the iommu core know we're not really handling this fault;
89 * we just used it as a recovery trigger.
94 static int rproc_enable_iommu(struct rproc
*rproc
)
96 struct iommu_domain
*domain
;
97 struct device
*dev
= rproc
->dev
.parent
;
100 if (!rproc
->has_iommu
) {
101 dev_dbg(dev
, "iommu not present\n");
105 domain
= iommu_domain_alloc(dev
->bus
);
107 dev_err(dev
, "can't alloc iommu domain\n");
111 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
113 ret
= iommu_attach_device(domain
, dev
);
115 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
119 rproc
->domain
= domain
;
124 iommu_domain_free(domain
);
128 static void rproc_disable_iommu(struct rproc
*rproc
)
130 struct iommu_domain
*domain
= rproc
->domain
;
131 struct device
*dev
= rproc
->dev
.parent
;
136 iommu_detach_device(domain
, dev
);
137 iommu_domain_free(domain
);
141 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
142 * @rproc: handle of a remote processor
143 * @da: remoteproc device address to translate
144 * @len: length of the memory region @da is pointing to
146 * Some remote processors will ask us to allocate them physically contiguous
147 * memory regions (which we call "carveouts"), and map them to specific
148 * device addresses (which are hardcoded in the firmware). They may also have
149 * dedicated memory regions internal to the processors, and use them either
150 * exclusively or alongside carveouts.
152 * They may then ask us to copy objects into specific device addresses (e.g.
153 * code/data sections) or expose us certain symbols in other device address
154 * (e.g. their trace buffer).
156 * This function is a helper function with which we can go over the allocated
157 * carveouts and translate specific device addresses to kernel virtual addresses
158 * so we can access the referenced memory. This function also allows to perform
159 * translations on the internal remoteproc memory regions through a platform
160 * implementation specific da_to_va ops, if present.
162 * The function returns a valid kernel address on success or NULL on failure.
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API for the carveouts, which should be more
169 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, int len
)
171 struct rproc_mem_entry
*carveout
;
174 if (rproc
->ops
->da_to_va
) {
175 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
);
180 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
181 int offset
= da
- carveout
->da
;
183 /* try next carveout if da is too small */
187 /* try next carveout if da is too large */
188 if (offset
+ len
> carveout
->len
)
191 ptr
= carveout
->va
+ offset
;
199 EXPORT_SYMBOL(rproc_da_to_va
);
201 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
203 struct rproc
*rproc
= rvdev
->rproc
;
204 struct device
*dev
= &rproc
->dev
;
205 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
206 struct fw_rsc_vdev
*rsc
;
209 int ret
, size
, notifyid
;
211 /* actual size of vring (in bytes) */
212 size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
215 * Allocate non-cacheable memory for the vring. In the future
216 * this call will also configure the IOMMU for us
218 va
= dma_alloc_coherent(dev
->parent
, size
, &dma
, GFP_KERNEL
);
220 dev_err(dev
->parent
, "dma_alloc_coherent failed\n");
225 * Assign an rproc-wide unique index for this vring
226 * TODO: assign a notifyid for rvdev updates as well
227 * TODO: support predefined notifyids (via resource table)
229 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
231 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
232 dma_free_coherent(dev
->parent
, size
, va
, dma
);
237 dev_dbg(dev
, "vring%d: va %p dma %llx size %x idr %d\n", i
, va
,
238 (unsigned long long)dma
, size
, notifyid
);
242 rvring
->notifyid
= notifyid
;
245 * Let the rproc know the notifyid and da of this vring.
246 * Not all platforms use dma_alloc_coherent to automatically
247 * set up the iommu. In this case the device address (da) will
248 * hold the physical address and not the device address.
250 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
251 rsc
->vring
[i
].da
= dma
;
252 rsc
->vring
[i
].notifyid
= notifyid
;
257 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
259 struct rproc
*rproc
= rvdev
->rproc
;
260 struct device
*dev
= &rproc
->dev
;
261 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
262 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
264 dev_dbg(dev
, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
265 i
, vring
->da
, vring
->num
, vring
->align
);
267 /* make sure reserved bytes are zeroes */
268 if (vring
->reserved
) {
269 dev_err(dev
, "vring rsc has non zero reserved bytes\n");
273 /* verify queue size and vring alignment are sane */
274 if (!vring
->num
|| !vring
->align
) {
275 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
276 vring
->num
, vring
->align
);
280 rvring
->len
= vring
->num
;
281 rvring
->align
= vring
->align
;
282 rvring
->rvdev
= rvdev
;
287 void rproc_free_vring(struct rproc_vring
*rvring
)
289 int size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
290 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
291 int idx
= rvring
->rvdev
->vring
- rvring
;
292 struct fw_rsc_vdev
*rsc
;
294 dma_free_coherent(rproc
->dev
.parent
, size
, rvring
->va
, rvring
->dma
);
295 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
297 /* reset resource entry info */
298 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
299 rsc
->vring
[idx
].da
= 0;
300 rsc
->vring
[idx
].notifyid
= -1;
304 * rproc_handle_vdev() - handle a vdev fw resource
305 * @rproc: the remote processor
306 * @rsc: the vring resource descriptor
307 * @avail: size of available data (for sanity checking the image)
309 * This resource entry requests the host to statically register a virtio
310 * device (vdev), and setup everything needed to support it. It contains
311 * everything needed to make it possible: the virtio device id, virtio
312 * device features, vrings information, virtio config space, etc...
314 * Before registering the vdev, the vrings are allocated from non-cacheable
315 * physically contiguous memory. Currently we only support two vrings per
316 * remote processor (temporary limitation). We might also want to consider
317 * doing the vring allocation only later when ->find_vqs() is invoked, and
318 * then release them upon ->del_vqs().
320 * Note: @da is currently not really handled correctly: we dynamically
321 * allocate it using the DMA API, ignoring requested hard coded addresses,
322 * and we don't take care of any required IOMMU programming. This is all
323 * going to be taken care of when the generic iommu-based DMA API will be
324 * merged. Meanwhile, statically-addressed iommu-based firmware images should
325 * use RSC_DEVMEM resource entries to map their required @da to the physical
326 * address of their base CMA region (ouch, hacky!).
328 * Returns 0 on success, or an appropriate error code otherwise
330 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
331 int offset
, int avail
)
333 struct device
*dev
= &rproc
->dev
;
334 struct rproc_vdev
*rvdev
;
337 /* make sure resource isn't truncated */
338 if (sizeof(*rsc
) + rsc
->num_of_vrings
* sizeof(struct fw_rsc_vdev_vring
)
339 + rsc
->config_len
> avail
) {
340 dev_err(dev
, "vdev rsc is truncated\n");
344 /* make sure reserved bytes are zeroes */
345 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
346 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
350 dev_dbg(dev
, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
351 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
353 /* we currently support only two vrings per rvdev */
354 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
355 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
359 rvdev
= kzalloc(sizeof(struct rproc_vdev
), GFP_KERNEL
);
363 rvdev
->rproc
= rproc
;
365 /* parse the vrings */
366 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
367 ret
= rproc_parse_vring(rvdev
, rsc
, i
);
372 /* remember the resource offset*/
373 rvdev
->rsc_offset
= offset
;
375 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
377 /* it is now safe to add the virtio device */
378 ret
= rproc_add_virtio_dev(rvdev
, rsc
->id
);
385 list_del(&rvdev
->node
);
392 * rproc_handle_trace() - handle a shared trace buffer resource
393 * @rproc: the remote processor
394 * @rsc: the trace resource descriptor
395 * @avail: size of available data (for sanity checking the image)
397 * In case the remote processor dumps trace logs into memory,
398 * export it via debugfs.
400 * Currently, the 'da' member of @rsc should contain the device address
401 * where the remote processor is dumping the traces. Later we could also
402 * support dynamically allocating this address using the generic
403 * DMA API (but currently there isn't a use case for that).
405 * Returns 0 on success, or an appropriate error code otherwise
407 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
408 int offset
, int avail
)
410 struct rproc_mem_entry
*trace
;
411 struct device
*dev
= &rproc
->dev
;
415 if (sizeof(*rsc
) > avail
) {
416 dev_err(dev
, "trace rsc is truncated\n");
420 /* make sure reserved bytes are zeroes */
422 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
426 /* what's the kernel address of this resource ? */
427 ptr
= rproc_da_to_va(rproc
, rsc
->da
, rsc
->len
);
429 dev_err(dev
, "erroneous trace resource entry\n");
433 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
437 /* set the trace buffer dma properties */
438 trace
->len
= rsc
->len
;
441 /* make sure snprintf always null terminates, even if truncating */
442 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
444 /* create the debugfs entry */
445 trace
->priv
= rproc_create_trace_file(name
, rproc
, trace
);
452 list_add_tail(&trace
->node
, &rproc
->traces
);
456 dev_dbg(dev
, "%s added: va %p, da 0x%x, len 0x%x\n", name
, ptr
,
463 * rproc_handle_devmem() - handle devmem resource entry
464 * @rproc: remote processor handle
465 * @rsc: the devmem resource entry
466 * @avail: size of available data (for sanity checking the image)
468 * Remote processors commonly need to access certain on-chip peripherals.
470 * Some of these remote processors access memory via an iommu device,
471 * and might require us to configure their iommu before they can access
472 * the on-chip peripherals they need.
474 * This resource entry is a request to map such a peripheral device.
476 * These devmem entries will contain the physical address of the device in
477 * the 'pa' member. If a specific device address is expected, then 'da' will
478 * contain it (currently this is the only use case supported). 'len' will
479 * contain the size of the physical region we need to map.
481 * Currently we just "trust" those devmem entries to contain valid physical
482 * addresses, but this is going to change: we want the implementations to
483 * tell us ranges of physical addresses the firmware is allowed to request,
484 * and not allow firmwares to request access to physical addresses that
485 * are outside those ranges.
487 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
488 int offset
, int avail
)
490 struct rproc_mem_entry
*mapping
;
491 struct device
*dev
= &rproc
->dev
;
494 /* no point in handling this resource without a valid iommu domain */
498 if (sizeof(*rsc
) > avail
) {
499 dev_err(dev
, "devmem rsc is truncated\n");
503 /* make sure reserved bytes are zeroes */
505 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
509 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
513 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
515 dev_err(dev
, "failed to map devmem: %d\n", ret
);
520 * We'll need this info later when we'll want to unmap everything
521 * (e.g. on shutdown).
523 * We can't trust the remote processor not to change the resource
524 * table, so we must maintain this info independently.
526 mapping
->da
= rsc
->da
;
527 mapping
->len
= rsc
->len
;
528 list_add_tail(&mapping
->node
, &rproc
->mappings
);
530 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
531 rsc
->pa
, rsc
->da
, rsc
->len
);
541 * rproc_handle_carveout() - handle phys contig memory allocation requests
542 * @rproc: rproc handle
543 * @rsc: the resource entry
544 * @avail: size of available data (for image validation)
546 * This function will handle firmware requests for allocation of physically
547 * contiguous memory regions.
549 * These request entries should come first in the firmware's resource table,
550 * as other firmware entries might request placing other data objects inside
551 * these memory regions (e.g. data/code segments, trace resource entries, ...).
553 * Allocating memory this way helps utilizing the reserved physical memory
554 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
555 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
556 * pressure is important; it may have a substantial impact on performance.
558 static int rproc_handle_carveout(struct rproc
*rproc
,
559 struct fw_rsc_carveout
*rsc
,
560 int offset
, int avail
)
563 struct rproc_mem_entry
*carveout
, *mapping
;
564 struct device
*dev
= &rproc
->dev
;
569 if (sizeof(*rsc
) > avail
) {
570 dev_err(dev
, "carveout rsc is truncated\n");
574 /* make sure reserved bytes are zeroes */
576 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
580 dev_dbg(dev
, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
581 rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
583 carveout
= kzalloc(sizeof(*carveout
), GFP_KERNEL
);
587 va
= dma_alloc_coherent(dev
->parent
, rsc
->len
, &dma
, GFP_KERNEL
);
589 dev_err(dev
->parent
, "dma_alloc_coherent err: %d\n", rsc
->len
);
594 dev_dbg(dev
, "carveout va %p, dma %llx, len 0x%x\n", va
,
595 (unsigned long long)dma
, rsc
->len
);
598 * Ok, this is non-standard.
600 * Sometimes we can't rely on the generic iommu-based DMA API
601 * to dynamically allocate the device address and then set the IOMMU
602 * tables accordingly, because some remote processors might
603 * _require_ us to use hard coded device addresses that their
604 * firmware was compiled with.
606 * In this case, we must use the IOMMU API directly and map
607 * the memory to the device address as expected by the remote
610 * Obviously such remote processor devices should not be configured
611 * to use the iommu-based DMA API: we expect 'dma' to contain the
612 * physical address in this case.
615 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
617 dev_err(dev
, "kzalloc mapping failed\n");
622 ret
= iommu_map(rproc
->domain
, rsc
->da
, dma
, rsc
->len
,
625 dev_err(dev
, "iommu_map failed: %d\n", ret
);
630 * We'll need this info later when we'll want to unmap
631 * everything (e.g. on shutdown).
633 * We can't trust the remote processor not to change the
634 * resource table, so we must maintain this info independently.
636 mapping
->da
= rsc
->da
;
637 mapping
->len
= rsc
->len
;
638 list_add_tail(&mapping
->node
, &rproc
->mappings
);
640 dev_dbg(dev
, "carveout mapped 0x%x to 0x%llx\n",
641 rsc
->da
, (unsigned long long)dma
);
645 * Some remote processors might need to know the pa
646 * even though they are behind an IOMMU. E.g., OMAP4's
647 * remote M3 processor needs this so it can control
648 * on-chip hardware accelerators that are not behind
649 * the IOMMU, and therefor must know the pa.
651 * Generally we don't want to expose physical addresses
652 * if we don't have to (remote processors are generally
653 * _not_ trusted), so we might want to do this only for
654 * remote processor that _must_ have this (e.g. OMAP4's
655 * dual M3 subsystem).
657 * Non-IOMMU processors might also want to have this info.
658 * In this case, the device address and the physical address
664 carveout
->len
= rsc
->len
;
666 carveout
->da
= rsc
->da
;
668 list_add_tail(&carveout
->node
, &rproc
->carveouts
);
675 dma_free_coherent(dev
->parent
, rsc
->len
, va
, dma
);
681 static int rproc_count_vrings(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
682 int offset
, int avail
)
684 /* Summarize the number of notification IDs */
685 rproc
->max_notifyid
+= rsc
->num_of_vrings
;
691 * A lookup table for resource handlers. The indices are defined in
692 * enum fw_resource_type.
694 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
695 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
696 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
697 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
698 [RSC_VDEV
] = NULL
, /* VDEVs were handled upon registrarion */
701 static rproc_handle_resource_t rproc_vdev_handler
[RSC_LAST
] = {
702 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_handle_vdev
,
705 static rproc_handle_resource_t rproc_count_vrings_handler
[RSC_LAST
] = {
706 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_count_vrings
,
709 /* handle firmware resource entries before booting the remote processor */
710 static int rproc_handle_resources(struct rproc
*rproc
, int len
,
711 rproc_handle_resource_t handlers
[RSC_LAST
])
713 struct device
*dev
= &rproc
->dev
;
714 rproc_handle_resource_t handler
;
717 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
718 int offset
= rproc
->table_ptr
->offset
[i
];
719 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
720 int avail
= len
- offset
- sizeof(*hdr
);
721 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
723 /* make sure table isn't truncated */
725 dev_err(dev
, "rsc table is truncated\n");
729 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
731 if (hdr
->type
>= RSC_LAST
) {
732 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
736 handler
= handlers
[hdr
->type
];
740 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
749 * rproc_resource_cleanup() - clean up and free all acquired resources
750 * @rproc: rproc handle
752 * This function will free all resources acquired for @rproc, and it
753 * is called whenever @rproc either shuts down or fails to boot.
755 static void rproc_resource_cleanup(struct rproc
*rproc
)
757 struct rproc_mem_entry
*entry
, *tmp
;
758 struct device
*dev
= &rproc
->dev
;
760 /* clean up debugfs trace entries */
761 list_for_each_entry_safe(entry
, tmp
, &rproc
->traces
, node
) {
762 rproc_remove_trace_file(entry
->priv
);
764 list_del(&entry
->node
);
768 /* clean up iommu mapping entries */
769 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
772 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
773 if (unmapped
!= entry
->len
) {
774 /* nothing much to do besides complaining */
775 dev_err(dev
, "failed to unmap %u/%zu\n", entry
->len
,
779 list_del(&entry
->node
);
783 /* clean up carveout allocations */
784 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
785 dma_free_coherent(dev
->parent
, entry
->len
, entry
->va
,
787 list_del(&entry
->node
);
793 * take a firmware and boot a remote processor with it.
795 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
797 struct device
*dev
= &rproc
->dev
;
798 const char *name
= rproc
->firmware
;
799 struct resource_table
*table
, *loaded_table
;
802 if (!rproc
->table_ptr
)
805 ret
= rproc_fw_sanity_check(rproc
, fw
);
809 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
812 * if enabling an IOMMU isn't relevant for this rproc, this is
815 ret
= rproc_enable_iommu(rproc
);
817 dev_err(dev
, "can't enable iommu: %d\n", ret
);
821 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
824 /* look for the resource table */
825 table
= rproc_find_rsc_table(rproc
, fw
, &tablesz
);
829 /* Verify that resource table in loaded fw is unchanged */
830 if (rproc
->table_csum
!= crc32(0, table
, tablesz
)) {
831 dev_err(dev
, "resource checksum failed, fw changed?\n");
835 /* handle fw resources which are required to boot rproc */
836 ret
= rproc_handle_resources(rproc
, tablesz
, rproc_loading_handlers
);
838 dev_err(dev
, "Failed to process resources: %d\n", ret
);
842 /* load the ELF segments to memory */
843 ret
= rproc_load_segments(rproc
, fw
);
845 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
850 * The starting device has been given the rproc->cached_table as the
851 * resource table. The address of the vring along with the other
852 * allocated resources (carveouts etc) is stored in cached_table.
853 * In order to pass this information to the remote device we must
854 * copy this information to device memory.
856 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
862 memcpy(loaded_table
, rproc
->cached_table
, tablesz
);
864 /* power up the remote processor */
865 ret
= rproc
->ops
->start(rproc
);
867 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
872 * Update table_ptr so that all subsequent vring allocations and
873 * virtio fields manipulation update the actual loaded resource table
876 rproc
->table_ptr
= loaded_table
;
878 rproc
->state
= RPROC_RUNNING
;
880 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
885 rproc_resource_cleanup(rproc
);
886 rproc_disable_iommu(rproc
);
891 * take a firmware and look for virtio devices to register.
893 * Note: this function is called asynchronously upon registration of the
894 * remote processor (so we must wait until it completes before we try
895 * to unregister the device. one other option is just to use kref here,
896 * that might be cleaner).
898 static void rproc_fw_config_virtio(const struct firmware
*fw
, void *context
)
900 struct rproc
*rproc
= context
;
901 struct resource_table
*table
;
904 if (rproc_fw_sanity_check(rproc
, fw
) < 0)
907 /* look for the resource table */
908 table
= rproc_find_rsc_table(rproc
, fw
, &tablesz
);
912 rproc
->table_csum
= crc32(0, table
, tablesz
);
915 * Create a copy of the resource table. When a virtio device starts
916 * and calls vring_new_virtqueue() the address of the allocated vring
917 * will be stored in the cached_table. Before the device is started,
918 * cached_table will be copied into devic memory.
920 rproc
->cached_table
= kmemdup(table
, tablesz
, GFP_KERNEL
);
921 if (!rproc
->cached_table
)
924 rproc
->table_ptr
= rproc
->cached_table
;
926 /* count the number of notify-ids */
927 rproc
->max_notifyid
= -1;
928 ret
= rproc_handle_resources(rproc
, tablesz
,
929 rproc_count_vrings_handler
);
933 /* look for virtio devices and register them */
934 ret
= rproc_handle_resources(rproc
, tablesz
, rproc_vdev_handler
);
937 release_firmware(fw
);
938 /* allow rproc_del() contexts, if any, to proceed */
939 complete_all(&rproc
->firmware_loading_complete
);
942 static int rproc_add_virtio_devices(struct rproc
*rproc
)
946 /* rproc_del() calls must wait until async loader completes */
947 init_completion(&rproc
->firmware_loading_complete
);
950 * We must retrieve early virtio configuration info from
951 * the firmware (e.g. whether to register a virtio device,
952 * what virtio features does it support, ...).
954 * We're initiating an asynchronous firmware loading, so we can
955 * be built-in kernel code, without hanging the boot process.
957 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
958 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
959 rproc
, rproc_fw_config_virtio
);
961 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
962 complete_all(&rproc
->firmware_loading_complete
);
969 * rproc_trigger_recovery() - recover a remoteproc
970 * @rproc: the remote processor
972 * The recovery is done by reseting all the virtio devices, that way all the
973 * rpmsg drivers will be reseted along with the remote processor making the
974 * remoteproc functional again.
976 * This function can sleep, so it cannot be called from atomic context.
978 int rproc_trigger_recovery(struct rproc
*rproc
)
980 struct rproc_vdev
*rvdev
, *rvtmp
;
982 dev_err(&rproc
->dev
, "recovering %s\n", rproc
->name
);
984 init_completion(&rproc
->crash_comp
);
986 /* clean up remote vdev entries */
987 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
988 rproc_remove_virtio_dev(rvdev
);
990 /* wait until there is no more rproc users */
991 wait_for_completion(&rproc
->crash_comp
);
993 /* Free the copy of the resource table */
994 kfree(rproc
->cached_table
);
996 return rproc_add_virtio_devices(rproc
);
1000 * rproc_crash_handler_work() - handle a crash
1002 * This function needs to handle everything related to a crash, like cpu
1003 * registers and stack dump, information to help to debug the fatal error, etc.
1005 static void rproc_crash_handler_work(struct work_struct
*work
)
1007 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1008 struct device
*dev
= &rproc
->dev
;
1010 dev_dbg(dev
, "enter %s\n", __func__
);
1012 mutex_lock(&rproc
->lock
);
1014 if (rproc
->state
== RPROC_CRASHED
|| rproc
->state
== RPROC_OFFLINE
) {
1015 /* handle only the first crash detected */
1016 mutex_unlock(&rproc
->lock
);
1020 rproc
->state
= RPROC_CRASHED
;
1021 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1024 mutex_unlock(&rproc
->lock
);
1026 if (!rproc
->recovery_disabled
)
1027 rproc_trigger_recovery(rproc
);
1031 * rproc_boot() - boot a remote processor
1032 * @rproc: handle of a remote processor
1034 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1036 * If the remote processor is already powered on, this function immediately
1037 * returns (successfully).
1039 * Returns 0 on success, and an appropriate error value otherwise.
1041 int rproc_boot(struct rproc
*rproc
)
1043 const struct firmware
*firmware_p
;
1048 pr_err("invalid rproc handle\n");
1054 ret
= mutex_lock_interruptible(&rproc
->lock
);
1056 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1060 /* loading a firmware is required */
1061 if (!rproc
->firmware
) {
1062 dev_err(dev
, "%s: no firmware to load\n", __func__
);
1067 /* prevent underlying implementation from being removed */
1068 if (!try_module_get(dev
->parent
->driver
->owner
)) {
1069 dev_err(dev
, "%s: can't get owner\n", __func__
);
1074 /* skip the boot process if rproc is already powered up */
1075 if (atomic_inc_return(&rproc
->power
) > 1) {
1080 dev_info(dev
, "powering up %s\n", rproc
->name
);
1083 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1085 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1089 ret
= rproc_fw_boot(rproc
, firmware_p
);
1091 release_firmware(firmware_p
);
1095 module_put(dev
->parent
->driver
->owner
);
1096 atomic_dec(&rproc
->power
);
1099 mutex_unlock(&rproc
->lock
);
1102 EXPORT_SYMBOL(rproc_boot
);
1105 * rproc_shutdown() - power off the remote processor
1106 * @rproc: the remote processor
1108 * Power off a remote processor (previously booted with rproc_boot()).
1110 * In case @rproc is still being used by an additional user(s), then
1111 * this function will just decrement the power refcount and exit,
1112 * without really powering off the device.
1114 * Every call to rproc_boot() must (eventually) be accompanied by a call
1115 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1118 * - we're not decrementing the rproc's refcount, only the power refcount.
1119 * which means that the @rproc handle stays valid even after rproc_shutdown()
1120 * returns, and users can still use it with a subsequent rproc_boot(), if
1123 void rproc_shutdown(struct rproc
*rproc
)
1125 struct device
*dev
= &rproc
->dev
;
1128 ret
= mutex_lock_interruptible(&rproc
->lock
);
1130 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1134 /* if the remote proc is still needed, bail out */
1135 if (!atomic_dec_and_test(&rproc
->power
))
1138 /* power off the remote processor */
1139 ret
= rproc
->ops
->stop(rproc
);
1141 atomic_inc(&rproc
->power
);
1142 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1146 /* clean up all acquired resources */
1147 rproc_resource_cleanup(rproc
);
1149 rproc_disable_iommu(rproc
);
1151 /* Give the next start a clean resource table */
1152 rproc
->table_ptr
= rproc
->cached_table
;
1154 /* if in crash state, unlock crash handler */
1155 if (rproc
->state
== RPROC_CRASHED
)
1156 complete_all(&rproc
->crash_comp
);
1158 rproc
->state
= RPROC_OFFLINE
;
1160 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1163 mutex_unlock(&rproc
->lock
);
1165 module_put(dev
->parent
->driver
->owner
);
1167 EXPORT_SYMBOL(rproc_shutdown
);
1170 * rproc_get_by_phandle() - find a remote processor by phandle
1171 * @phandle: phandle to the rproc
1173 * Finds an rproc handle using the remote processor's phandle, and then
1174 * return a handle to the rproc.
1176 * This function increments the remote processor's refcount, so always
1177 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1179 * Returns the rproc handle on success, and NULL on failure.
1182 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1184 struct rproc
*rproc
= NULL
, *r
;
1185 struct device_node
*np
;
1187 np
= of_find_node_by_phandle(phandle
);
1191 mutex_lock(&rproc_list_mutex
);
1192 list_for_each_entry(r
, &rproc_list
, node
) {
1193 if (r
->dev
.parent
&& r
->dev
.parent
->of_node
== np
) {
1195 get_device(&rproc
->dev
);
1199 mutex_unlock(&rproc_list_mutex
);
1206 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1211 EXPORT_SYMBOL(rproc_get_by_phandle
);
1214 * rproc_add() - register a remote processor
1215 * @rproc: the remote processor handle to register
1217 * Registers @rproc with the remoteproc framework, after it has been
1218 * allocated with rproc_alloc().
1220 * This is called by the platform-specific rproc implementation, whenever
1221 * a new remote processor device is probed.
1223 * Returns 0 on success and an appropriate error code otherwise.
1225 * Note: this function initiates an asynchronous firmware loading
1226 * context, which will look for virtio devices supported by the rproc's
1229 * If found, those virtio devices will be created and added, so as a result
1230 * of registering this remote processor, additional virtio drivers might be
1233 int rproc_add(struct rproc
*rproc
)
1235 struct device
*dev
= &rproc
->dev
;
1238 ret
= device_add(dev
);
1242 /* expose to rproc_get_by_phandle users */
1243 mutex_lock(&rproc_list_mutex
);
1244 list_add(&rproc
->node
, &rproc_list
);
1245 mutex_unlock(&rproc_list_mutex
);
1247 dev_info(dev
, "%s is available\n", rproc
->name
);
1249 dev_info(dev
, "Note: remoteproc is still under development and considered experimental.\n");
1250 dev_info(dev
, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1252 /* create debugfs entries */
1253 rproc_create_debug_dir(rproc
);
1255 return rproc_add_virtio_devices(rproc
);
1257 EXPORT_SYMBOL(rproc_add
);
1260 * rproc_type_release() - release a remote processor instance
1261 * @dev: the rproc's device
1263 * This function should _never_ be called directly.
1265 * It will be called by the driver core when no one holds a valid pointer
1268 static void rproc_type_release(struct device
*dev
)
1270 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
1272 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
1274 rproc_delete_debug_dir(rproc
);
1276 idr_destroy(&rproc
->notifyids
);
1278 if (rproc
->index
>= 0)
1279 ida_simple_remove(&rproc_dev_index
, rproc
->index
);
1284 static struct device_type rproc_type
= {
1285 .name
= "remoteproc",
1286 .release
= rproc_type_release
,
1290 * rproc_alloc() - allocate a remote processor handle
1291 * @dev: the underlying device
1292 * @name: name of this remote processor
1293 * @ops: platform-specific handlers (mainly start/stop)
1294 * @firmware: name of firmware file to load, can be NULL
1295 * @len: length of private data needed by the rproc driver (in bytes)
1297 * Allocates a new remote processor handle, but does not register
1298 * it yet. if @firmware is NULL, a default name is used.
1300 * This function should be used by rproc implementations during initialization
1301 * of the remote processor.
1303 * After creating an rproc handle using this function, and when ready,
1304 * implementations should then call rproc_add() to complete
1305 * the registration of the remote processor.
1307 * On success the new rproc is returned, and on failure, NULL.
1309 * Note: _never_ directly deallocate @rproc, even if it was not registered
1310 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1312 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
1313 const struct rproc_ops
*ops
,
1314 const char *firmware
, int len
)
1316 struct rproc
*rproc
;
1317 char *p
, *template = "rproc-%s-fw";
1320 if (!dev
|| !name
|| !ops
)
1325 * Make room for default firmware name (minus %s plus '\0').
1326 * If the caller didn't pass in a firmware name then
1327 * construct a default name. We're already glomming 'len'
1328 * bytes onto the end of the struct rproc allocation, so do
1329 * a few more for the default firmware name (but only if
1330 * the caller doesn't pass one).
1332 name_len
= strlen(name
) + strlen(template) - 2 + 1;
1334 rproc
= kzalloc(sizeof(struct rproc
) + len
+ name_len
, GFP_KERNEL
);
1339 p
= (char *)rproc
+ sizeof(struct rproc
) + len
;
1340 snprintf(p
, name_len
, template, name
);
1342 p
= (char *)firmware
;
1345 rproc
->firmware
= p
;
1348 rproc
->priv
= &rproc
[1];
1350 device_initialize(&rproc
->dev
);
1351 rproc
->dev
.parent
= dev
;
1352 rproc
->dev
.type
= &rproc_type
;
1354 /* Assign a unique device index and name */
1355 rproc
->index
= ida_simple_get(&rproc_dev_index
, 0, 0, GFP_KERNEL
);
1356 if (rproc
->index
< 0) {
1357 dev_err(dev
, "ida_simple_get failed: %d\n", rproc
->index
);
1358 put_device(&rproc
->dev
);
1362 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
1364 atomic_set(&rproc
->power
, 0);
1366 /* Set ELF as the default fw_ops handler */
1367 rproc
->fw_ops
= &rproc_elf_fw_ops
;
1369 mutex_init(&rproc
->lock
);
1371 idr_init(&rproc
->notifyids
);
1373 INIT_LIST_HEAD(&rproc
->carveouts
);
1374 INIT_LIST_HEAD(&rproc
->mappings
);
1375 INIT_LIST_HEAD(&rproc
->traces
);
1376 INIT_LIST_HEAD(&rproc
->rvdevs
);
1378 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
1379 init_completion(&rproc
->crash_comp
);
1381 rproc
->state
= RPROC_OFFLINE
;
1385 EXPORT_SYMBOL(rproc_alloc
);
1388 * rproc_put() - unroll rproc_alloc()
1389 * @rproc: the remote processor handle
1391 * This function decrements the rproc dev refcount.
1393 * If no one holds any reference to rproc anymore, then its refcount would
1394 * now drop to zero, and it would be freed.
1396 void rproc_put(struct rproc
*rproc
)
1398 put_device(&rproc
->dev
);
1400 EXPORT_SYMBOL(rproc_put
);
1403 * rproc_del() - unregister a remote processor
1404 * @rproc: rproc handle to unregister
1406 * This function should be called when the platform specific rproc
1407 * implementation decides to remove the rproc device. it should
1408 * _only_ be called if a previous invocation of rproc_add()
1409 * has completed successfully.
1411 * After rproc_del() returns, @rproc isn't freed yet, because
1412 * of the outstanding reference created by rproc_alloc. To decrement that
1413 * one last refcount, one still needs to call rproc_put().
1415 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1417 int rproc_del(struct rproc
*rproc
)
1419 struct rproc_vdev
*rvdev
, *tmp
;
1424 /* if rproc is just being registered, wait */
1425 wait_for_completion(&rproc
->firmware_loading_complete
);
1427 /* clean up remote vdev entries */
1428 list_for_each_entry_safe(rvdev
, tmp
, &rproc
->rvdevs
, node
)
1429 rproc_remove_virtio_dev(rvdev
);
1431 /* Free the copy of the resource table */
1432 kfree(rproc
->cached_table
);
1434 /* the rproc is downref'ed as soon as it's removed from the klist */
1435 mutex_lock(&rproc_list_mutex
);
1436 list_del(&rproc
->node
);
1437 mutex_unlock(&rproc_list_mutex
);
1439 device_del(&rproc
->dev
);
1443 EXPORT_SYMBOL(rproc_del
);
1446 * rproc_report_crash() - rproc crash reporter function
1447 * @rproc: remote processor
1450 * This function must be called every time a crash is detected by the low-level
1451 * drivers implementing a specific remoteproc. This should not be called from a
1452 * non-remoteproc driver.
1454 * This function can be called from atomic/interrupt context.
1456 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
1459 pr_err("NULL rproc pointer\n");
1463 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
1464 rproc
->name
, rproc_crash_to_string(type
));
1466 /* create a new task to handle the error */
1467 schedule_work(&rproc
->crash_handler
);
1469 EXPORT_SYMBOL(rproc_report_crash
);
1471 static int __init
remoteproc_init(void)
1473 rproc_init_debugfs();
1477 module_init(remoteproc_init
);
1479 static void __exit
remoteproc_exit(void)
1481 ida_destroy(&rproc_dev_index
);
1483 rproc_exit_debugfs();
1485 module_exit(remoteproc_exit
);
1487 MODULE_LICENSE("GPL v2");
1488 MODULE_DESCRIPTION("Generic Remote Processor Framework");