2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node
);
77 EXPORT_PER_CPU_SYMBOL(numa_node
);
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
89 int _node_numa_mem_
[MAX_NUMNODES
];
93 * Array of node states.
95 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
96 [N_POSSIBLE
] = NODE_MASK_ALL
,
97 [N_ONLINE
] = { { [0] = 1UL } },
99 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY
] = { { [0] = 1UL } },
106 [N_CPU
] = { { [0] = 1UL } },
109 EXPORT_SYMBOL(node_states
);
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock
);
114 unsigned long totalram_pages __read_mostly
;
115 unsigned long totalreserve_pages __read_mostly
;
116 unsigned long totalcma_pages __read_mostly
;
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
123 unsigned long dirty_balance_reserve __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 static void free_compound_page(struct page
*page
);
233 compound_page_dtor
* const compound_page_dtors
[] = {
236 #ifdef CONFIG_HUGETLB_PAGE
241 int min_free_kbytes
= 1024;
242 int user_min_free_kbytes
= -1;
244 static unsigned long __meminitdata nr_kernel_pages
;
245 static unsigned long __meminitdata nr_all_pages
;
246 static unsigned long __meminitdata dma_reserve
;
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
251 static unsigned long __initdata required_kernelcore
;
252 static unsigned long __initdata required_movablecore
;
253 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
257 EXPORT_SYMBOL(movable_zone
);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
261 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
262 int nr_online_nodes __read_mostly
= 1;
263 EXPORT_SYMBOL(nr_node_ids
);
264 EXPORT_SYMBOL(nr_online_nodes
);
267 int page_group_by_mobility_disabled __read_mostly
;
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
270 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
272 pgdat
->first_deferred_pfn
= ULONG_MAX
;
275 /* Returns true if the struct page for the pfn is uninitialised */
276 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
278 if (pfn
>= NODE_DATA(early_pfn_to_nid(pfn
))->first_deferred_pfn
)
284 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
286 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
293 * Returns false when the remaining initialisation should be deferred until
294 * later in the boot cycle when it can be parallelised.
296 static inline bool update_defer_init(pg_data_t
*pgdat
,
297 unsigned long pfn
, unsigned long zone_end
,
298 unsigned long *nr_initialised
)
300 /* Always populate low zones for address-contrained allocations */
301 if (zone_end
< pgdat_end_pfn(pgdat
))
304 /* Initialise at least 2G of the highest zone */
306 if (*nr_initialised
> (2UL << (30 - PAGE_SHIFT
)) &&
307 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
308 pgdat
->first_deferred_pfn
= pfn
;
315 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
319 static inline bool early_page_uninitialised(unsigned long pfn
)
324 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
329 static inline bool update_defer_init(pg_data_t
*pgdat
,
330 unsigned long pfn
, unsigned long zone_end
,
331 unsigned long *nr_initialised
)
338 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
340 if (unlikely(page_group_by_mobility_disabled
&&
341 migratetype
< MIGRATE_PCPTYPES
))
342 migratetype
= MIGRATE_UNMOVABLE
;
344 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
345 PB_migrate
, PB_migrate_end
);
348 #ifdef CONFIG_DEBUG_VM
349 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
353 unsigned long pfn
= page_to_pfn(page
);
354 unsigned long sp
, start_pfn
;
357 seq
= zone_span_seqbegin(zone
);
358 start_pfn
= zone
->zone_start_pfn
;
359 sp
= zone
->spanned_pages
;
360 if (!zone_spans_pfn(zone
, pfn
))
362 } while (zone_span_seqretry(zone
, seq
));
365 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
366 pfn
, zone_to_nid(zone
), zone
->name
,
367 start_pfn
, start_pfn
+ sp
);
372 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
374 if (!pfn_valid_within(page_to_pfn(page
)))
376 if (zone
!= page_zone(page
))
382 * Temporary debugging check for pages not lying within a given zone.
384 static int bad_range(struct zone
*zone
, struct page
*page
)
386 if (page_outside_zone_boundaries(zone
, page
))
388 if (!page_is_consistent(zone
, page
))
394 static inline int bad_range(struct zone
*zone
, struct page
*page
)
400 static void bad_page(struct page
*page
, const char *reason
,
401 unsigned long bad_flags
)
403 static unsigned long resume
;
404 static unsigned long nr_shown
;
405 static unsigned long nr_unshown
;
407 /* Don't complain about poisoned pages */
408 if (PageHWPoison(page
)) {
409 page_mapcount_reset(page
); /* remove PageBuddy */
414 * Allow a burst of 60 reports, then keep quiet for that minute;
415 * or allow a steady drip of one report per second.
417 if (nr_shown
== 60) {
418 if (time_before(jiffies
, resume
)) {
424 "BUG: Bad page state: %lu messages suppressed\n",
431 resume
= jiffies
+ 60 * HZ
;
433 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
434 current
->comm
, page_to_pfn(page
));
435 dump_page_badflags(page
, reason
, bad_flags
);
440 /* Leave bad fields for debug, except PageBuddy could make trouble */
441 page_mapcount_reset(page
); /* remove PageBuddy */
442 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
446 * Higher-order pages are called "compound pages". They are structured thusly:
448 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
450 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
451 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
453 * The first tail page's ->compound_dtor holds the offset in array of compound
454 * page destructors. See compound_page_dtors.
456 * The first tail page's ->compound_order holds the order of allocation.
457 * This usage means that zero-order pages may not be compound.
460 static void free_compound_page(struct page
*page
)
462 __free_pages_ok(page
, compound_order(page
));
465 void prep_compound_page(struct page
*page
, unsigned int order
)
468 int nr_pages
= 1 << order
;
470 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
471 set_compound_order(page
, order
);
473 for (i
= 1; i
< nr_pages
; i
++) {
474 struct page
*p
= page
+ i
;
475 set_page_count(p
, 0);
476 set_compound_head(p
, page
);
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 unsigned int _debug_guardpage_minorder
;
482 bool _debug_pagealloc_enabled __read_mostly
;
483 bool _debug_guardpage_enabled __read_mostly
;
485 static int __init
early_debug_pagealloc(char *buf
)
490 if (strcmp(buf
, "on") == 0)
491 _debug_pagealloc_enabled
= true;
495 early_param("debug_pagealloc", early_debug_pagealloc
);
497 static bool need_debug_guardpage(void)
499 /* If we don't use debug_pagealloc, we don't need guard page */
500 if (!debug_pagealloc_enabled())
506 static void init_debug_guardpage(void)
508 if (!debug_pagealloc_enabled())
511 _debug_guardpage_enabled
= true;
514 struct page_ext_operations debug_guardpage_ops
= {
515 .need
= need_debug_guardpage
,
516 .init
= init_debug_guardpage
,
519 static int __init
debug_guardpage_minorder_setup(char *buf
)
523 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
524 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
527 _debug_guardpage_minorder
= res
;
528 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
531 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
533 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
534 unsigned int order
, int migratetype
)
536 struct page_ext
*page_ext
;
538 if (!debug_guardpage_enabled())
541 page_ext
= lookup_page_ext(page
);
542 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
544 INIT_LIST_HEAD(&page
->lru
);
545 set_page_private(page
, order
);
546 /* Guard pages are not available for any usage */
547 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
550 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
551 unsigned int order
, int migratetype
)
553 struct page_ext
*page_ext
;
555 if (!debug_guardpage_enabled())
558 page_ext
= lookup_page_ext(page
);
559 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
561 set_page_private(page
, 0);
562 if (!is_migrate_isolate(migratetype
))
563 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
566 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
567 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
568 unsigned int order
, int migratetype
) {}
569 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
570 unsigned int order
, int migratetype
) {}
573 static inline void set_page_order(struct page
*page
, unsigned int order
)
575 set_page_private(page
, order
);
576 __SetPageBuddy(page
);
579 static inline void rmv_page_order(struct page
*page
)
581 __ClearPageBuddy(page
);
582 set_page_private(page
, 0);
586 * This function checks whether a page is free && is the buddy
587 * we can do coalesce a page and its buddy if
588 * (a) the buddy is not in a hole &&
589 * (b) the buddy is in the buddy system &&
590 * (c) a page and its buddy have the same order &&
591 * (d) a page and its buddy are in the same zone.
593 * For recording whether a page is in the buddy system, we set ->_mapcount
594 * PAGE_BUDDY_MAPCOUNT_VALUE.
595 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
596 * serialized by zone->lock.
598 * For recording page's order, we use page_private(page).
600 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
603 if (!pfn_valid_within(page_to_pfn(buddy
)))
606 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
607 if (page_zone_id(page
) != page_zone_id(buddy
))
610 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
615 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
617 * zone check is done late to avoid uselessly
618 * calculating zone/node ids for pages that could
621 if (page_zone_id(page
) != page_zone_id(buddy
))
624 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
632 * Freeing function for a buddy system allocator.
634 * The concept of a buddy system is to maintain direct-mapped table
635 * (containing bit values) for memory blocks of various "orders".
636 * The bottom level table contains the map for the smallest allocatable
637 * units of memory (here, pages), and each level above it describes
638 * pairs of units from the levels below, hence, "buddies".
639 * At a high level, all that happens here is marking the table entry
640 * at the bottom level available, and propagating the changes upward
641 * as necessary, plus some accounting needed to play nicely with other
642 * parts of the VM system.
643 * At each level, we keep a list of pages, which are heads of continuous
644 * free pages of length of (1 << order) and marked with _mapcount
645 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
647 * So when we are allocating or freeing one, we can derive the state of the
648 * other. That is, if we allocate a small block, and both were
649 * free, the remainder of the region must be split into blocks.
650 * If a block is freed, and its buddy is also free, then this
651 * triggers coalescing into a block of larger size.
656 static inline void __free_one_page(struct page
*page
,
658 struct zone
*zone
, unsigned int order
,
661 unsigned long page_idx
;
662 unsigned long combined_idx
;
663 unsigned long uninitialized_var(buddy_idx
);
665 unsigned int max_order
= MAX_ORDER
;
667 VM_BUG_ON(!zone_is_initialized(zone
));
668 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
670 VM_BUG_ON(migratetype
== -1);
671 if (is_migrate_isolate(migratetype
)) {
673 * We restrict max order of merging to prevent merge
674 * between freepages on isolate pageblock and normal
675 * pageblock. Without this, pageblock isolation
676 * could cause incorrect freepage accounting.
678 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
680 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
683 page_idx
= pfn
& ((1 << max_order
) - 1);
685 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
686 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
688 while (order
< max_order
- 1) {
689 buddy_idx
= __find_buddy_index(page_idx
, order
);
690 buddy
= page
+ (buddy_idx
- page_idx
);
691 if (!page_is_buddy(page
, buddy
, order
))
694 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
695 * merge with it and move up one order.
697 if (page_is_guard(buddy
)) {
698 clear_page_guard(zone
, buddy
, order
, migratetype
);
700 list_del(&buddy
->lru
);
701 zone
->free_area
[order
].nr_free
--;
702 rmv_page_order(buddy
);
704 combined_idx
= buddy_idx
& page_idx
;
705 page
= page
+ (combined_idx
- page_idx
);
706 page_idx
= combined_idx
;
709 set_page_order(page
, order
);
712 * If this is not the largest possible page, check if the buddy
713 * of the next-highest order is free. If it is, it's possible
714 * that pages are being freed that will coalesce soon. In case,
715 * that is happening, add the free page to the tail of the list
716 * so it's less likely to be used soon and more likely to be merged
717 * as a higher order page
719 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
720 struct page
*higher_page
, *higher_buddy
;
721 combined_idx
= buddy_idx
& page_idx
;
722 higher_page
= page
+ (combined_idx
- page_idx
);
723 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
724 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
725 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
726 list_add_tail(&page
->lru
,
727 &zone
->free_area
[order
].free_list
[migratetype
]);
732 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
734 zone
->free_area
[order
].nr_free
++;
737 static inline int free_pages_check(struct page
*page
)
739 const char *bad_reason
= NULL
;
740 unsigned long bad_flags
= 0;
742 if (unlikely(page_mapcount(page
)))
743 bad_reason
= "nonzero mapcount";
744 if (unlikely(page
->mapping
!= NULL
))
745 bad_reason
= "non-NULL mapping";
746 if (unlikely(atomic_read(&page
->_count
) != 0))
747 bad_reason
= "nonzero _count";
748 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
749 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
750 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
753 if (unlikely(page
->mem_cgroup
))
754 bad_reason
= "page still charged to cgroup";
756 if (unlikely(bad_reason
)) {
757 bad_page(page
, bad_reason
, bad_flags
);
760 page_cpupid_reset_last(page
);
761 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
762 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
767 * Frees a number of pages from the PCP lists
768 * Assumes all pages on list are in same zone, and of same order.
769 * count is the number of pages to free.
771 * If the zone was previously in an "all pages pinned" state then look to
772 * see if this freeing clears that state.
774 * And clear the zone's pages_scanned counter, to hold off the "all pages are
775 * pinned" detection logic.
777 static void free_pcppages_bulk(struct zone
*zone
, int count
,
778 struct per_cpu_pages
*pcp
)
783 unsigned long nr_scanned
;
785 spin_lock(&zone
->lock
);
786 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
788 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
792 struct list_head
*list
;
795 * Remove pages from lists in a round-robin fashion. A
796 * batch_free count is maintained that is incremented when an
797 * empty list is encountered. This is so more pages are freed
798 * off fuller lists instead of spinning excessively around empty
803 if (++migratetype
== MIGRATE_PCPTYPES
)
805 list
= &pcp
->lists
[migratetype
];
806 } while (list_empty(list
));
808 /* This is the only non-empty list. Free them all. */
809 if (batch_free
== MIGRATE_PCPTYPES
)
810 batch_free
= to_free
;
813 int mt
; /* migratetype of the to-be-freed page */
815 page
= list_entry(list
->prev
, struct page
, lru
);
816 /* must delete as __free_one_page list manipulates */
817 list_del(&page
->lru
);
819 mt
= get_pcppage_migratetype(page
);
820 /* MIGRATE_ISOLATE page should not go to pcplists */
821 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
822 /* Pageblock could have been isolated meanwhile */
823 if (unlikely(has_isolate_pageblock(zone
)))
824 mt
= get_pageblock_migratetype(page
);
826 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
827 trace_mm_page_pcpu_drain(page
, 0, mt
);
828 } while (--to_free
&& --batch_free
&& !list_empty(list
));
830 spin_unlock(&zone
->lock
);
833 static void free_one_page(struct zone
*zone
,
834 struct page
*page
, unsigned long pfn
,
838 unsigned long nr_scanned
;
839 spin_lock(&zone
->lock
);
840 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
842 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
844 if (unlikely(has_isolate_pageblock(zone
) ||
845 is_migrate_isolate(migratetype
))) {
846 migratetype
= get_pfnblock_migratetype(page
, pfn
);
848 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
849 spin_unlock(&zone
->lock
);
852 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
857 * We rely page->lru.next never has bit 0 set, unless the page
858 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
860 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
862 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
866 if (unlikely(!PageTail(page
))) {
867 bad_page(page
, "PageTail not set", 0);
870 if (unlikely(compound_head(page
) != head_page
)) {
871 bad_page(page
, "compound_head not consistent", 0);
876 clear_compound_head(page
);
880 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
881 unsigned long zone
, int nid
)
883 set_page_links(page
, zone
, nid
, pfn
);
884 init_page_count(page
);
885 page_mapcount_reset(page
);
886 page_cpupid_reset_last(page
);
888 INIT_LIST_HEAD(&page
->lru
);
889 #ifdef WANT_PAGE_VIRTUAL
890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
891 if (!is_highmem_idx(zone
))
892 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
896 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
899 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
903 static void init_reserved_page(unsigned long pfn
)
908 if (!early_page_uninitialised(pfn
))
911 nid
= early_pfn_to_nid(pfn
);
912 pgdat
= NODE_DATA(nid
);
914 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
915 struct zone
*zone
= &pgdat
->node_zones
[zid
];
917 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
920 __init_single_pfn(pfn
, zid
, nid
);
923 static inline void init_reserved_page(unsigned long pfn
)
926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
929 * Initialised pages do not have PageReserved set. This function is
930 * called for each range allocated by the bootmem allocator and
931 * marks the pages PageReserved. The remaining valid pages are later
932 * sent to the buddy page allocator.
934 void __meminit
reserve_bootmem_region(unsigned long start
, unsigned long end
)
936 unsigned long start_pfn
= PFN_DOWN(start
);
937 unsigned long end_pfn
= PFN_UP(end
);
939 for (; start_pfn
< end_pfn
; start_pfn
++) {
940 if (pfn_valid(start_pfn
)) {
941 struct page
*page
= pfn_to_page(start_pfn
);
943 init_reserved_page(start_pfn
);
945 /* Avoid false-positive PageTail() */
946 INIT_LIST_HEAD(&page
->lru
);
948 SetPageReserved(page
);
953 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
955 bool compound
= PageCompound(page
);
958 VM_BUG_ON_PAGE(PageTail(page
), page
);
959 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
961 trace_mm_page_free(page
, order
);
962 kmemcheck_free_shadow(page
, order
);
963 kasan_free_pages(page
, order
);
966 page
->mapping
= NULL
;
967 bad
+= free_pages_check(page
);
968 for (i
= 1; i
< (1 << order
); i
++) {
970 bad
+= free_tail_pages_check(page
, page
+ i
);
971 bad
+= free_pages_check(page
+ i
);
976 reset_page_owner(page
, order
);
978 if (!PageHighMem(page
)) {
979 debug_check_no_locks_freed(page_address(page
),
981 debug_check_no_obj_freed(page_address(page
),
984 arch_free_page(page
, order
);
985 kernel_map_pages(page
, 1 << order
, 0);
990 static void __free_pages_ok(struct page
*page
, unsigned int order
)
994 unsigned long pfn
= page_to_pfn(page
);
996 if (!free_pages_prepare(page
, order
))
999 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1000 local_irq_save(flags
);
1001 __count_vm_events(PGFREE
, 1 << order
);
1002 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1003 local_irq_restore(flags
);
1006 static void __init
__free_pages_boot_core(struct page
*page
,
1007 unsigned long pfn
, unsigned int order
)
1009 unsigned int nr_pages
= 1 << order
;
1010 struct page
*p
= page
;
1014 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1016 __ClearPageReserved(p
);
1017 set_page_count(p
, 0);
1019 __ClearPageReserved(p
);
1020 set_page_count(p
, 0);
1022 page_zone(page
)->managed_pages
+= nr_pages
;
1023 set_page_refcounted(page
);
1024 __free_pages(page
, order
);
1027 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1028 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1030 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1032 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1034 static DEFINE_SPINLOCK(early_pfn_lock
);
1037 spin_lock(&early_pfn_lock
);
1038 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1041 spin_unlock(&early_pfn_lock
);
1047 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1048 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1049 struct mminit_pfnnid_cache
*state
)
1053 nid
= __early_pfn_to_nid(pfn
, state
);
1054 if (nid
>= 0 && nid
!= node
)
1059 /* Only safe to use early in boot when initialisation is single-threaded */
1060 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1062 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1067 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1071 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1072 struct mminit_pfnnid_cache
*state
)
1079 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1082 if (early_page_uninitialised(pfn
))
1084 return __free_pages_boot_core(page
, pfn
, order
);
1087 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1088 static void __init
deferred_free_range(struct page
*page
,
1089 unsigned long pfn
, int nr_pages
)
1096 /* Free a large naturally-aligned chunk if possible */
1097 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1098 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1099 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1100 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1104 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1105 __free_pages_boot_core(page
, pfn
, 0);
1108 /* Completion tracking for deferred_init_memmap() threads */
1109 static atomic_t pgdat_init_n_undone __initdata
;
1110 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1112 static inline void __init
pgdat_init_report_one_done(void)
1114 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1115 complete(&pgdat_init_all_done_comp
);
1118 /* Initialise remaining memory on a node */
1119 static int __init
deferred_init_memmap(void *data
)
1121 pg_data_t
*pgdat
= data
;
1122 int nid
= pgdat
->node_id
;
1123 struct mminit_pfnnid_cache nid_init_state
= { };
1124 unsigned long start
= jiffies
;
1125 unsigned long nr_pages
= 0;
1126 unsigned long walk_start
, walk_end
;
1129 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1130 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1132 if (first_init_pfn
== ULONG_MAX
) {
1133 pgdat_init_report_one_done();
1137 /* Bind memory initialisation thread to a local node if possible */
1138 if (!cpumask_empty(cpumask
))
1139 set_cpus_allowed_ptr(current
, cpumask
);
1141 /* Sanity check boundaries */
1142 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1143 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1144 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1146 /* Only the highest zone is deferred so find it */
1147 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1148 zone
= pgdat
->node_zones
+ zid
;
1149 if (first_init_pfn
< zone_end_pfn(zone
))
1153 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1154 unsigned long pfn
, end_pfn
;
1155 struct page
*page
= NULL
;
1156 struct page
*free_base_page
= NULL
;
1157 unsigned long free_base_pfn
= 0;
1160 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1161 pfn
= first_init_pfn
;
1162 if (pfn
< walk_start
)
1164 if (pfn
< zone
->zone_start_pfn
)
1165 pfn
= zone
->zone_start_pfn
;
1167 for (; pfn
< end_pfn
; pfn
++) {
1168 if (!pfn_valid_within(pfn
))
1172 * Ensure pfn_valid is checked every
1173 * MAX_ORDER_NR_PAGES for memory holes
1175 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1176 if (!pfn_valid(pfn
)) {
1182 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1187 /* Minimise pfn page lookups and scheduler checks */
1188 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1191 nr_pages
+= nr_to_free
;
1192 deferred_free_range(free_base_page
,
1193 free_base_pfn
, nr_to_free
);
1194 free_base_page
= NULL
;
1195 free_base_pfn
= nr_to_free
= 0;
1197 page
= pfn_to_page(pfn
);
1202 VM_BUG_ON(page_zone(page
) != zone
);
1206 __init_single_page(page
, pfn
, zid
, nid
);
1207 if (!free_base_page
) {
1208 free_base_page
= page
;
1209 free_base_pfn
= pfn
;
1214 /* Where possible, batch up pages for a single free */
1217 /* Free the current block of pages to allocator */
1218 nr_pages
+= nr_to_free
;
1219 deferred_free_range(free_base_page
, free_base_pfn
,
1221 free_base_page
= NULL
;
1222 free_base_pfn
= nr_to_free
= 0;
1225 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1228 /* Sanity check that the next zone really is unpopulated */
1229 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1231 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1232 jiffies_to_msecs(jiffies
- start
));
1234 pgdat_init_report_one_done();
1238 void __init
page_alloc_init_late(void)
1242 /* There will be num_node_state(N_MEMORY) threads */
1243 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1244 for_each_node_state(nid
, N_MEMORY
) {
1245 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1248 /* Block until all are initialised */
1249 wait_for_completion(&pgdat_init_all_done_comp
);
1251 /* Reinit limits that are based on free pages after the kernel is up */
1252 files_maxfiles_init();
1254 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1257 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1258 void __init
init_cma_reserved_pageblock(struct page
*page
)
1260 unsigned i
= pageblock_nr_pages
;
1261 struct page
*p
= page
;
1264 __ClearPageReserved(p
);
1265 set_page_count(p
, 0);
1268 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1270 if (pageblock_order
>= MAX_ORDER
) {
1271 i
= pageblock_nr_pages
;
1274 set_page_refcounted(p
);
1275 __free_pages(p
, MAX_ORDER
- 1);
1276 p
+= MAX_ORDER_NR_PAGES
;
1277 } while (i
-= MAX_ORDER_NR_PAGES
);
1279 set_page_refcounted(page
);
1280 __free_pages(page
, pageblock_order
);
1283 adjust_managed_page_count(page
, pageblock_nr_pages
);
1288 * The order of subdivision here is critical for the IO subsystem.
1289 * Please do not alter this order without good reasons and regression
1290 * testing. Specifically, as large blocks of memory are subdivided,
1291 * the order in which smaller blocks are delivered depends on the order
1292 * they're subdivided in this function. This is the primary factor
1293 * influencing the order in which pages are delivered to the IO
1294 * subsystem according to empirical testing, and this is also justified
1295 * by considering the behavior of a buddy system containing a single
1296 * large block of memory acted on by a series of small allocations.
1297 * This behavior is a critical factor in sglist merging's success.
1301 static inline void expand(struct zone
*zone
, struct page
*page
,
1302 int low
, int high
, struct free_area
*area
,
1305 unsigned long size
= 1 << high
;
1307 while (high
> low
) {
1311 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1313 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1314 debug_guardpage_enabled() &&
1315 high
< debug_guardpage_minorder()) {
1317 * Mark as guard pages (or page), that will allow to
1318 * merge back to allocator when buddy will be freed.
1319 * Corresponding page table entries will not be touched,
1320 * pages will stay not present in virtual address space
1322 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1325 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1327 set_page_order(&page
[size
], high
);
1332 * This page is about to be returned from the page allocator
1334 static inline int check_new_page(struct page
*page
)
1336 const char *bad_reason
= NULL
;
1337 unsigned long bad_flags
= 0;
1339 if (unlikely(page_mapcount(page
)))
1340 bad_reason
= "nonzero mapcount";
1341 if (unlikely(page
->mapping
!= NULL
))
1342 bad_reason
= "non-NULL mapping";
1343 if (unlikely(atomic_read(&page
->_count
) != 0))
1344 bad_reason
= "nonzero _count";
1345 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1346 bad_reason
= "HWPoisoned (hardware-corrupted)";
1347 bad_flags
= __PG_HWPOISON
;
1349 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1350 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1351 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1354 if (unlikely(page
->mem_cgroup
))
1355 bad_reason
= "page still charged to cgroup";
1357 if (unlikely(bad_reason
)) {
1358 bad_page(page
, bad_reason
, bad_flags
);
1364 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1369 for (i
= 0; i
< (1 << order
); i
++) {
1370 struct page
*p
= page
+ i
;
1371 if (unlikely(check_new_page(p
)))
1375 set_page_private(page
, 0);
1376 set_page_refcounted(page
);
1378 arch_alloc_page(page
, order
);
1379 kernel_map_pages(page
, 1 << order
, 1);
1380 kasan_alloc_pages(page
, order
);
1382 if (gfp_flags
& __GFP_ZERO
)
1383 for (i
= 0; i
< (1 << order
); i
++)
1384 clear_highpage(page
+ i
);
1386 if (order
&& (gfp_flags
& __GFP_COMP
))
1387 prep_compound_page(page
, order
);
1389 set_page_owner(page
, order
, gfp_flags
);
1392 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1393 * allocate the page. The expectation is that the caller is taking
1394 * steps that will free more memory. The caller should avoid the page
1395 * being used for !PFMEMALLOC purposes.
1397 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1398 set_page_pfmemalloc(page
);
1400 clear_page_pfmemalloc(page
);
1406 * Go through the free lists for the given migratetype and remove
1407 * the smallest available page from the freelists
1410 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1413 unsigned int current_order
;
1414 struct free_area
*area
;
1417 /* Find a page of the appropriate size in the preferred list */
1418 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1419 area
= &(zone
->free_area
[current_order
]);
1420 if (list_empty(&area
->free_list
[migratetype
]))
1423 page
= list_entry(area
->free_list
[migratetype
].next
,
1425 list_del(&page
->lru
);
1426 rmv_page_order(page
);
1428 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1429 set_pcppage_migratetype(page
, migratetype
);
1438 * This array describes the order lists are fallen back to when
1439 * the free lists for the desirable migrate type are depleted
1441 static int fallbacks
[MIGRATE_TYPES
][4] = {
1442 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1443 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1444 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1446 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1448 #ifdef CONFIG_MEMORY_ISOLATION
1449 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1454 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1457 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1460 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1461 unsigned int order
) { return NULL
; }
1465 * Move the free pages in a range to the free lists of the requested type.
1466 * Note that start_page and end_pages are not aligned on a pageblock
1467 * boundary. If alignment is required, use move_freepages_block()
1469 int move_freepages(struct zone
*zone
,
1470 struct page
*start_page
, struct page
*end_page
,
1475 int pages_moved
= 0;
1477 #ifndef CONFIG_HOLES_IN_ZONE
1479 * page_zone is not safe to call in this context when
1480 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1481 * anyway as we check zone boundaries in move_freepages_block().
1482 * Remove at a later date when no bug reports exist related to
1483 * grouping pages by mobility
1485 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1488 for (page
= start_page
; page
<= end_page
;) {
1489 /* Make sure we are not inadvertently changing nodes */
1490 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1492 if (!pfn_valid_within(page_to_pfn(page
))) {
1497 if (!PageBuddy(page
)) {
1502 order
= page_order(page
);
1503 list_move(&page
->lru
,
1504 &zone
->free_area
[order
].free_list
[migratetype
]);
1506 pages_moved
+= 1 << order
;
1512 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1515 unsigned long start_pfn
, end_pfn
;
1516 struct page
*start_page
, *end_page
;
1518 start_pfn
= page_to_pfn(page
);
1519 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1520 start_page
= pfn_to_page(start_pfn
);
1521 end_page
= start_page
+ pageblock_nr_pages
- 1;
1522 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1524 /* Do not cross zone boundaries */
1525 if (!zone_spans_pfn(zone
, start_pfn
))
1527 if (!zone_spans_pfn(zone
, end_pfn
))
1530 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1533 static void change_pageblock_range(struct page
*pageblock_page
,
1534 int start_order
, int migratetype
)
1536 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1538 while (nr_pageblocks
--) {
1539 set_pageblock_migratetype(pageblock_page
, migratetype
);
1540 pageblock_page
+= pageblock_nr_pages
;
1545 * When we are falling back to another migratetype during allocation, try to
1546 * steal extra free pages from the same pageblocks to satisfy further
1547 * allocations, instead of polluting multiple pageblocks.
1549 * If we are stealing a relatively large buddy page, it is likely there will
1550 * be more free pages in the pageblock, so try to steal them all. For
1551 * reclaimable and unmovable allocations, we steal regardless of page size,
1552 * as fragmentation caused by those allocations polluting movable pageblocks
1553 * is worse than movable allocations stealing from unmovable and reclaimable
1556 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1559 * Leaving this order check is intended, although there is
1560 * relaxed order check in next check. The reason is that
1561 * we can actually steal whole pageblock if this condition met,
1562 * but, below check doesn't guarantee it and that is just heuristic
1563 * so could be changed anytime.
1565 if (order
>= pageblock_order
)
1568 if (order
>= pageblock_order
/ 2 ||
1569 start_mt
== MIGRATE_RECLAIMABLE
||
1570 start_mt
== MIGRATE_UNMOVABLE
||
1571 page_group_by_mobility_disabled
)
1578 * This function implements actual steal behaviour. If order is large enough,
1579 * we can steal whole pageblock. If not, we first move freepages in this
1580 * pageblock and check whether half of pages are moved or not. If half of
1581 * pages are moved, we can change migratetype of pageblock and permanently
1582 * use it's pages as requested migratetype in the future.
1584 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1587 unsigned int current_order
= page_order(page
);
1590 /* Take ownership for orders >= pageblock_order */
1591 if (current_order
>= pageblock_order
) {
1592 change_pageblock_range(page
, current_order
, start_type
);
1596 pages
= move_freepages_block(zone
, page
, start_type
);
1598 /* Claim the whole block if over half of it is free */
1599 if (pages
>= (1 << (pageblock_order
-1)) ||
1600 page_group_by_mobility_disabled
)
1601 set_pageblock_migratetype(page
, start_type
);
1605 * Check whether there is a suitable fallback freepage with requested order.
1606 * If only_stealable is true, this function returns fallback_mt only if
1607 * we can steal other freepages all together. This would help to reduce
1608 * fragmentation due to mixed migratetype pages in one pageblock.
1610 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1611 int migratetype
, bool only_stealable
, bool *can_steal
)
1616 if (area
->nr_free
== 0)
1621 fallback_mt
= fallbacks
[migratetype
][i
];
1622 if (fallback_mt
== MIGRATE_TYPES
)
1625 if (list_empty(&area
->free_list
[fallback_mt
]))
1628 if (can_steal_fallback(order
, migratetype
))
1631 if (!only_stealable
)
1642 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1643 * there are no empty page blocks that contain a page with a suitable order
1645 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
1646 unsigned int alloc_order
)
1649 unsigned long max_managed
, flags
;
1652 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1653 * Check is race-prone but harmless.
1655 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
1656 if (zone
->nr_reserved_highatomic
>= max_managed
)
1659 spin_lock_irqsave(&zone
->lock
, flags
);
1661 /* Recheck the nr_reserved_highatomic limit under the lock */
1662 if (zone
->nr_reserved_highatomic
>= max_managed
)
1666 mt
= get_pageblock_migratetype(page
);
1667 if (mt
!= MIGRATE_HIGHATOMIC
&&
1668 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
1669 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
1670 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
1671 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
1675 spin_unlock_irqrestore(&zone
->lock
, flags
);
1679 * Used when an allocation is about to fail under memory pressure. This
1680 * potentially hurts the reliability of high-order allocations when under
1681 * intense memory pressure but failed atomic allocations should be easier
1682 * to recover from than an OOM.
1684 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
1686 struct zonelist
*zonelist
= ac
->zonelist
;
1687 unsigned long flags
;
1693 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
1695 /* Preserve at least one pageblock */
1696 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
1699 spin_lock_irqsave(&zone
->lock
, flags
);
1700 for (order
= 0; order
< MAX_ORDER
; order
++) {
1701 struct free_area
*area
= &(zone
->free_area
[order
]);
1703 if (list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
1706 page
= list_entry(area
->free_list
[MIGRATE_HIGHATOMIC
].next
,
1710 * It should never happen but changes to locking could
1711 * inadvertently allow a per-cpu drain to add pages
1712 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1713 * and watch for underflows.
1715 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
1716 zone
->nr_reserved_highatomic
);
1719 * Convert to ac->migratetype and avoid the normal
1720 * pageblock stealing heuristics. Minimally, the caller
1721 * is doing the work and needs the pages. More
1722 * importantly, if the block was always converted to
1723 * MIGRATE_UNMOVABLE or another type then the number
1724 * of pageblocks that cannot be completely freed
1727 set_pageblock_migratetype(page
, ac
->migratetype
);
1728 move_freepages_block(zone
, page
, ac
->migratetype
);
1729 spin_unlock_irqrestore(&zone
->lock
, flags
);
1732 spin_unlock_irqrestore(&zone
->lock
, flags
);
1736 /* Remove an element from the buddy allocator from the fallback list */
1737 static inline struct page
*
1738 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1740 struct free_area
*area
;
1741 unsigned int current_order
;
1746 /* Find the largest possible block of pages in the other list */
1747 for (current_order
= MAX_ORDER
-1;
1748 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1750 area
= &(zone
->free_area
[current_order
]);
1751 fallback_mt
= find_suitable_fallback(area
, current_order
,
1752 start_migratetype
, false, &can_steal
);
1753 if (fallback_mt
== -1)
1756 page
= list_entry(area
->free_list
[fallback_mt
].next
,
1759 steal_suitable_fallback(zone
, page
, start_migratetype
);
1761 /* Remove the page from the freelists */
1763 list_del(&page
->lru
);
1764 rmv_page_order(page
);
1766 expand(zone
, page
, order
, current_order
, area
,
1769 * The pcppage_migratetype may differ from pageblock's
1770 * migratetype depending on the decisions in
1771 * find_suitable_fallback(). This is OK as long as it does not
1772 * differ for MIGRATE_CMA pageblocks. Those can be used as
1773 * fallback only via special __rmqueue_cma_fallback() function
1775 set_pcppage_migratetype(page
, start_migratetype
);
1777 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1778 start_migratetype
, fallback_mt
);
1787 * Do the hard work of removing an element from the buddy allocator.
1788 * Call me with the zone->lock already held.
1790 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1791 int migratetype
, gfp_t gfp_flags
)
1795 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1796 if (unlikely(!page
)) {
1797 if (migratetype
== MIGRATE_MOVABLE
)
1798 page
= __rmqueue_cma_fallback(zone
, order
);
1801 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1804 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1809 * Obtain a specified number of elements from the buddy allocator, all under
1810 * a single hold of the lock, for efficiency. Add them to the supplied list.
1811 * Returns the number of new pages which were placed at *list.
1813 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1814 unsigned long count
, struct list_head
*list
,
1815 int migratetype
, bool cold
)
1819 spin_lock(&zone
->lock
);
1820 for (i
= 0; i
< count
; ++i
) {
1821 struct page
*page
= __rmqueue(zone
, order
, migratetype
, 0);
1822 if (unlikely(page
== NULL
))
1826 * Split buddy pages returned by expand() are received here
1827 * in physical page order. The page is added to the callers and
1828 * list and the list head then moves forward. From the callers
1829 * perspective, the linked list is ordered by page number in
1830 * some conditions. This is useful for IO devices that can
1831 * merge IO requests if the physical pages are ordered
1835 list_add(&page
->lru
, list
);
1837 list_add_tail(&page
->lru
, list
);
1839 if (is_migrate_cma(get_pcppage_migratetype(page
)))
1840 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1843 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1844 spin_unlock(&zone
->lock
);
1850 * Called from the vmstat counter updater to drain pagesets of this
1851 * currently executing processor on remote nodes after they have
1854 * Note that this function must be called with the thread pinned to
1855 * a single processor.
1857 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1859 unsigned long flags
;
1860 int to_drain
, batch
;
1862 local_irq_save(flags
);
1863 batch
= READ_ONCE(pcp
->batch
);
1864 to_drain
= min(pcp
->count
, batch
);
1866 free_pcppages_bulk(zone
, to_drain
, pcp
);
1867 pcp
->count
-= to_drain
;
1869 local_irq_restore(flags
);
1874 * Drain pcplists of the indicated processor and zone.
1876 * The processor must either be the current processor and the
1877 * thread pinned to the current processor or a processor that
1880 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
1882 unsigned long flags
;
1883 struct per_cpu_pageset
*pset
;
1884 struct per_cpu_pages
*pcp
;
1886 local_irq_save(flags
);
1887 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1891 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1894 local_irq_restore(flags
);
1898 * Drain pcplists of all zones on the indicated processor.
1900 * The processor must either be the current processor and the
1901 * thread pinned to the current processor or a processor that
1904 static void drain_pages(unsigned int cpu
)
1908 for_each_populated_zone(zone
) {
1909 drain_pages_zone(cpu
, zone
);
1914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1916 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1917 * the single zone's pages.
1919 void drain_local_pages(struct zone
*zone
)
1921 int cpu
= smp_processor_id();
1924 drain_pages_zone(cpu
, zone
);
1930 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1932 * When zone parameter is non-NULL, spill just the single zone's pages.
1934 * Note that this code is protected against sending an IPI to an offline
1935 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1936 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1937 * nothing keeps CPUs from showing up after we populated the cpumask and
1938 * before the call to on_each_cpu_mask().
1940 void drain_all_pages(struct zone
*zone
)
1945 * Allocate in the BSS so we wont require allocation in
1946 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1948 static cpumask_t cpus_with_pcps
;
1951 * We don't care about racing with CPU hotplug event
1952 * as offline notification will cause the notified
1953 * cpu to drain that CPU pcps and on_each_cpu_mask
1954 * disables preemption as part of its processing
1956 for_each_online_cpu(cpu
) {
1957 struct per_cpu_pageset
*pcp
;
1959 bool has_pcps
= false;
1962 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1966 for_each_populated_zone(z
) {
1967 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
1968 if (pcp
->pcp
.count
) {
1976 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1978 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1980 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
1984 #ifdef CONFIG_HIBERNATION
1986 void mark_free_pages(struct zone
*zone
)
1988 unsigned long pfn
, max_zone_pfn
;
1989 unsigned long flags
;
1990 unsigned int order
, t
;
1991 struct list_head
*curr
;
1993 if (zone_is_empty(zone
))
1996 spin_lock_irqsave(&zone
->lock
, flags
);
1998 max_zone_pfn
= zone_end_pfn(zone
);
1999 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2000 if (pfn_valid(pfn
)) {
2001 struct page
*page
= pfn_to_page(pfn
);
2003 if (!swsusp_page_is_forbidden(page
))
2004 swsusp_unset_page_free(page
);
2007 for_each_migratetype_order(order
, t
) {
2008 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
2011 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
2012 for (i
= 0; i
< (1UL << order
); i
++)
2013 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2016 spin_unlock_irqrestore(&zone
->lock
, flags
);
2018 #endif /* CONFIG_PM */
2021 * Free a 0-order page
2022 * cold == true ? free a cold page : free a hot page
2024 void free_hot_cold_page(struct page
*page
, bool cold
)
2026 struct zone
*zone
= page_zone(page
);
2027 struct per_cpu_pages
*pcp
;
2028 unsigned long flags
;
2029 unsigned long pfn
= page_to_pfn(page
);
2032 if (!free_pages_prepare(page
, 0))
2035 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2036 set_pcppage_migratetype(page
, migratetype
);
2037 local_irq_save(flags
);
2038 __count_vm_event(PGFREE
);
2041 * We only track unmovable, reclaimable and movable on pcp lists.
2042 * Free ISOLATE pages back to the allocator because they are being
2043 * offlined but treat RESERVE as movable pages so we can get those
2044 * areas back if necessary. Otherwise, we may have to free
2045 * excessively into the page allocator
2047 if (migratetype
>= MIGRATE_PCPTYPES
) {
2048 if (unlikely(is_migrate_isolate(migratetype
))) {
2049 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2052 migratetype
= MIGRATE_MOVABLE
;
2055 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2057 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2059 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2061 if (pcp
->count
>= pcp
->high
) {
2062 unsigned long batch
= READ_ONCE(pcp
->batch
);
2063 free_pcppages_bulk(zone
, batch
, pcp
);
2064 pcp
->count
-= batch
;
2068 local_irq_restore(flags
);
2072 * Free a list of 0-order pages
2074 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2076 struct page
*page
, *next
;
2078 list_for_each_entry_safe(page
, next
, list
, lru
) {
2079 trace_mm_page_free_batched(page
, cold
);
2080 free_hot_cold_page(page
, cold
);
2085 * split_page takes a non-compound higher-order page, and splits it into
2086 * n (1<<order) sub-pages: page[0..n]
2087 * Each sub-page must be freed individually.
2089 * Note: this is probably too low level an operation for use in drivers.
2090 * Please consult with lkml before using this in your driver.
2092 void split_page(struct page
*page
, unsigned int order
)
2097 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2098 VM_BUG_ON_PAGE(!page_count(page
), page
);
2100 #ifdef CONFIG_KMEMCHECK
2102 * Split shadow pages too, because free(page[0]) would
2103 * otherwise free the whole shadow.
2105 if (kmemcheck_page_is_tracked(page
))
2106 split_page(virt_to_page(page
[0].shadow
), order
);
2109 gfp_mask
= get_page_owner_gfp(page
);
2110 set_page_owner(page
, 0, gfp_mask
);
2111 for (i
= 1; i
< (1 << order
); i
++) {
2112 set_page_refcounted(page
+ i
);
2113 set_page_owner(page
+ i
, 0, gfp_mask
);
2116 EXPORT_SYMBOL_GPL(split_page
);
2118 int __isolate_free_page(struct page
*page
, unsigned int order
)
2120 unsigned long watermark
;
2124 BUG_ON(!PageBuddy(page
));
2126 zone
= page_zone(page
);
2127 mt
= get_pageblock_migratetype(page
);
2129 if (!is_migrate_isolate(mt
)) {
2130 /* Obey watermarks as if the page was being allocated */
2131 watermark
= low_wmark_pages(zone
) + (1 << order
);
2132 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2135 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2138 /* Remove page from free list */
2139 list_del(&page
->lru
);
2140 zone
->free_area
[order
].nr_free
--;
2141 rmv_page_order(page
);
2143 set_page_owner(page
, order
, __GFP_MOVABLE
);
2145 /* Set the pageblock if the isolated page is at least a pageblock */
2146 if (order
>= pageblock_order
- 1) {
2147 struct page
*endpage
= page
+ (1 << order
) - 1;
2148 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2149 int mt
= get_pageblock_migratetype(page
);
2150 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2151 set_pageblock_migratetype(page
,
2157 return 1UL << order
;
2161 * Similar to split_page except the page is already free. As this is only
2162 * being used for migration, the migratetype of the block also changes.
2163 * As this is called with interrupts disabled, the caller is responsible
2164 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2167 * Note: this is probably too low level an operation for use in drivers.
2168 * Please consult with lkml before using this in your driver.
2170 int split_free_page(struct page
*page
)
2175 order
= page_order(page
);
2177 nr_pages
= __isolate_free_page(page
, order
);
2181 /* Split into individual pages */
2182 set_page_refcounted(page
);
2183 split_page(page
, order
);
2188 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2191 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2192 struct zone
*zone
, unsigned int order
,
2193 gfp_t gfp_flags
, int alloc_flags
, int migratetype
)
2195 unsigned long flags
;
2197 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2199 if (likely(order
== 0)) {
2200 struct per_cpu_pages
*pcp
;
2201 struct list_head
*list
;
2203 local_irq_save(flags
);
2204 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2205 list
= &pcp
->lists
[migratetype
];
2206 if (list_empty(list
)) {
2207 pcp
->count
+= rmqueue_bulk(zone
, 0,
2210 if (unlikely(list_empty(list
)))
2215 page
= list_entry(list
->prev
, struct page
, lru
);
2217 page
= list_entry(list
->next
, struct page
, lru
);
2219 list_del(&page
->lru
);
2222 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
2224 * __GFP_NOFAIL is not to be used in new code.
2226 * All __GFP_NOFAIL callers should be fixed so that they
2227 * properly detect and handle allocation failures.
2229 * We most definitely don't want callers attempting to
2230 * allocate greater than order-1 page units with
2233 WARN_ON_ONCE(order
> 1);
2235 spin_lock_irqsave(&zone
->lock
, flags
);
2238 if (alloc_flags
& ALLOC_HARDER
) {
2239 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2241 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2244 page
= __rmqueue(zone
, order
, migratetype
, gfp_flags
);
2245 spin_unlock(&zone
->lock
);
2248 __mod_zone_freepage_state(zone
, -(1 << order
),
2249 get_pcppage_migratetype(page
));
2252 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2253 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2254 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2255 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2257 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2258 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2259 local_irq_restore(flags
);
2261 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2265 local_irq_restore(flags
);
2269 #ifdef CONFIG_FAIL_PAGE_ALLOC
2272 struct fault_attr attr
;
2274 bool ignore_gfp_highmem
;
2275 bool ignore_gfp_reclaim
;
2277 } fail_page_alloc
= {
2278 .attr
= FAULT_ATTR_INITIALIZER
,
2279 .ignore_gfp_reclaim
= true,
2280 .ignore_gfp_highmem
= true,
2284 static int __init
setup_fail_page_alloc(char *str
)
2286 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2288 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2290 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2292 if (order
< fail_page_alloc
.min_order
)
2294 if (gfp_mask
& __GFP_NOFAIL
)
2296 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2298 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2299 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2302 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2307 static int __init
fail_page_alloc_debugfs(void)
2309 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2312 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2313 &fail_page_alloc
.attr
);
2315 return PTR_ERR(dir
);
2317 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2318 &fail_page_alloc
.ignore_gfp_reclaim
))
2320 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2321 &fail_page_alloc
.ignore_gfp_highmem
))
2323 if (!debugfs_create_u32("min-order", mode
, dir
,
2324 &fail_page_alloc
.min_order
))
2329 debugfs_remove_recursive(dir
);
2334 late_initcall(fail_page_alloc_debugfs
);
2336 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2338 #else /* CONFIG_FAIL_PAGE_ALLOC */
2340 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2345 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2348 * Return true if free base pages are above 'mark'. For high-order checks it
2349 * will return true of the order-0 watermark is reached and there is at least
2350 * one free page of a suitable size. Checking now avoids taking the zone lock
2351 * to check in the allocation paths if no pages are free.
2353 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2354 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2359 const int alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2361 /* free_pages may go negative - that's OK */
2362 free_pages
-= (1 << order
) - 1;
2364 if (alloc_flags
& ALLOC_HIGH
)
2368 * If the caller does not have rights to ALLOC_HARDER then subtract
2369 * the high-atomic reserves. This will over-estimate the size of the
2370 * atomic reserve but it avoids a search.
2372 if (likely(!alloc_harder
))
2373 free_pages
-= z
->nr_reserved_highatomic
;
2378 /* If allocation can't use CMA areas don't use free CMA pages */
2379 if (!(alloc_flags
& ALLOC_CMA
))
2380 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2384 * Check watermarks for an order-0 allocation request. If these
2385 * are not met, then a high-order request also cannot go ahead
2386 * even if a suitable page happened to be free.
2388 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2391 /* If this is an order-0 request then the watermark is fine */
2395 /* For a high-order request, check at least one suitable page is free */
2396 for (o
= order
; o
< MAX_ORDER
; o
++) {
2397 struct free_area
*area
= &z
->free_area
[o
];
2406 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2407 if (!list_empty(&area
->free_list
[mt
]))
2412 if ((alloc_flags
& ALLOC_CMA
) &&
2413 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2421 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2422 int classzone_idx
, int alloc_flags
)
2424 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2425 zone_page_state(z
, NR_FREE_PAGES
));
2428 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2429 unsigned long mark
, int classzone_idx
)
2431 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2433 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2434 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2436 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2441 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2443 return local_zone
->node
== zone
->node
;
2446 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2448 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2451 #else /* CONFIG_NUMA */
2452 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2457 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2461 #endif /* CONFIG_NUMA */
2463 static void reset_alloc_batches(struct zone
*preferred_zone
)
2465 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2468 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2469 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2470 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2471 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2472 } while (zone
++ != preferred_zone
);
2476 * get_page_from_freelist goes through the zonelist trying to allocate
2479 static struct page
*
2480 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2481 const struct alloc_context
*ac
)
2483 struct zonelist
*zonelist
= ac
->zonelist
;
2485 struct page
*page
= NULL
;
2487 int nr_fair_skipped
= 0;
2488 bool zonelist_rescan
;
2491 zonelist_rescan
= false;
2494 * Scan zonelist, looking for a zone with enough free.
2495 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2497 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2501 if (cpusets_enabled() &&
2502 (alloc_flags
& ALLOC_CPUSET
) &&
2503 !cpuset_zone_allowed(zone
, gfp_mask
))
2506 * Distribute pages in proportion to the individual
2507 * zone size to ensure fair page aging. The zone a
2508 * page was allocated in should have no effect on the
2509 * time the page has in memory before being reclaimed.
2511 if (alloc_flags
& ALLOC_FAIR
) {
2512 if (!zone_local(ac
->preferred_zone
, zone
))
2514 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2520 * When allocating a page cache page for writing, we
2521 * want to get it from a zone that is within its dirty
2522 * limit, such that no single zone holds more than its
2523 * proportional share of globally allowed dirty pages.
2524 * The dirty limits take into account the zone's
2525 * lowmem reserves and high watermark so that kswapd
2526 * should be able to balance it without having to
2527 * write pages from its LRU list.
2529 * This may look like it could increase pressure on
2530 * lower zones by failing allocations in higher zones
2531 * before they are full. But the pages that do spill
2532 * over are limited as the lower zones are protected
2533 * by this very same mechanism. It should not become
2534 * a practical burden to them.
2536 * XXX: For now, allow allocations to potentially
2537 * exceed the per-zone dirty limit in the slowpath
2538 * (spread_dirty_pages unset) before going into reclaim,
2539 * which is important when on a NUMA setup the allowed
2540 * zones are together not big enough to reach the
2541 * global limit. The proper fix for these situations
2542 * will require awareness of zones in the
2543 * dirty-throttling and the flusher threads.
2545 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2548 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2549 if (!zone_watermark_ok(zone
, order
, mark
,
2550 ac
->classzone_idx
, alloc_flags
)) {
2553 /* Checked here to keep the fast path fast */
2554 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2555 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2558 if (zone_reclaim_mode
== 0 ||
2559 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2562 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2564 case ZONE_RECLAIM_NOSCAN
:
2567 case ZONE_RECLAIM_FULL
:
2568 /* scanned but unreclaimable */
2571 /* did we reclaim enough */
2572 if (zone_watermark_ok(zone
, order
, mark
,
2573 ac
->classzone_idx
, alloc_flags
))
2581 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2582 gfp_mask
, alloc_flags
, ac
->migratetype
);
2584 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2588 * If this is a high-order atomic allocation then check
2589 * if the pageblock should be reserved for the future
2591 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2592 reserve_highatomic_pageblock(page
, zone
, order
);
2599 * The first pass makes sure allocations are spread fairly within the
2600 * local node. However, the local node might have free pages left
2601 * after the fairness batches are exhausted, and remote zones haven't
2602 * even been considered yet. Try once more without fairness, and
2603 * include remote zones now, before entering the slowpath and waking
2604 * kswapd: prefer spilling to a remote zone over swapping locally.
2606 if (alloc_flags
& ALLOC_FAIR
) {
2607 alloc_flags
&= ~ALLOC_FAIR
;
2608 if (nr_fair_skipped
) {
2609 zonelist_rescan
= true;
2610 reset_alloc_batches(ac
->preferred_zone
);
2612 if (nr_online_nodes
> 1)
2613 zonelist_rescan
= true;
2616 if (zonelist_rescan
)
2623 * Large machines with many possible nodes should not always dump per-node
2624 * meminfo in irq context.
2626 static inline bool should_suppress_show_mem(void)
2631 ret
= in_interrupt();
2636 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2637 DEFAULT_RATELIMIT_INTERVAL
,
2638 DEFAULT_RATELIMIT_BURST
);
2640 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
2642 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2644 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2645 debug_guardpage_minorder() > 0)
2649 * This documents exceptions given to allocations in certain
2650 * contexts that are allowed to allocate outside current's set
2653 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2654 if (test_thread_flag(TIF_MEMDIE
) ||
2655 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2656 filter
&= ~SHOW_MEM_FILTER_NODES
;
2657 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
2658 filter
&= ~SHOW_MEM_FILTER_NODES
;
2661 struct va_format vaf
;
2664 va_start(args
, fmt
);
2669 pr_warn("%pV", &vaf
);
2674 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2675 current
->comm
, order
, gfp_mask
);
2678 if (!should_suppress_show_mem())
2682 static inline struct page
*
2683 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2684 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2686 struct oom_control oc
= {
2687 .zonelist
= ac
->zonelist
,
2688 .nodemask
= ac
->nodemask
,
2689 .gfp_mask
= gfp_mask
,
2694 *did_some_progress
= 0;
2697 * Acquire the oom lock. If that fails, somebody else is
2698 * making progress for us.
2700 if (!mutex_trylock(&oom_lock
)) {
2701 *did_some_progress
= 1;
2702 schedule_timeout_uninterruptible(1);
2707 * Go through the zonelist yet one more time, keep very high watermark
2708 * here, this is only to catch a parallel oom killing, we must fail if
2709 * we're still under heavy pressure.
2711 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2712 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2716 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2717 /* Coredumps can quickly deplete all memory reserves */
2718 if (current
->flags
& PF_DUMPCORE
)
2720 /* The OOM killer will not help higher order allocs */
2721 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2723 /* The OOM killer does not needlessly kill tasks for lowmem */
2724 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2726 /* The OOM killer does not compensate for IO-less reclaim */
2727 if (!(gfp_mask
& __GFP_FS
)) {
2729 * XXX: Page reclaim didn't yield anything,
2730 * and the OOM killer can't be invoked, but
2731 * keep looping as per tradition.
2733 *did_some_progress
= 1;
2736 if (pm_suspended_storage())
2738 /* The OOM killer may not free memory on a specific node */
2739 if (gfp_mask
& __GFP_THISNODE
)
2742 /* Exhausted what can be done so it's blamo time */
2743 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
))
2744 *did_some_progress
= 1;
2746 mutex_unlock(&oom_lock
);
2750 #ifdef CONFIG_COMPACTION
2751 /* Try memory compaction for high-order allocations before reclaim */
2752 static struct page
*
2753 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2754 int alloc_flags
, const struct alloc_context
*ac
,
2755 enum migrate_mode mode
, int *contended_compaction
,
2756 bool *deferred_compaction
)
2758 unsigned long compact_result
;
2764 current
->flags
|= PF_MEMALLOC
;
2765 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2766 mode
, contended_compaction
);
2767 current
->flags
&= ~PF_MEMALLOC
;
2769 switch (compact_result
) {
2770 case COMPACT_DEFERRED
:
2771 *deferred_compaction
= true;
2773 case COMPACT_SKIPPED
:
2780 * At least in one zone compaction wasn't deferred or skipped, so let's
2781 * count a compaction stall
2783 count_vm_event(COMPACTSTALL
);
2785 page
= get_page_from_freelist(gfp_mask
, order
,
2786 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2789 struct zone
*zone
= page_zone(page
);
2791 zone
->compact_blockskip_flush
= false;
2792 compaction_defer_reset(zone
, order
, true);
2793 count_vm_event(COMPACTSUCCESS
);
2798 * It's bad if compaction run occurs and fails. The most likely reason
2799 * is that pages exist, but not enough to satisfy watermarks.
2801 count_vm_event(COMPACTFAIL
);
2808 static inline struct page
*
2809 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2810 int alloc_flags
, const struct alloc_context
*ac
,
2811 enum migrate_mode mode
, int *contended_compaction
,
2812 bool *deferred_compaction
)
2816 #endif /* CONFIG_COMPACTION */
2818 /* Perform direct synchronous page reclaim */
2820 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2821 const struct alloc_context
*ac
)
2823 struct reclaim_state reclaim_state
;
2828 /* We now go into synchronous reclaim */
2829 cpuset_memory_pressure_bump();
2830 current
->flags
|= PF_MEMALLOC
;
2831 lockdep_set_current_reclaim_state(gfp_mask
);
2832 reclaim_state
.reclaimed_slab
= 0;
2833 current
->reclaim_state
= &reclaim_state
;
2835 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
2838 current
->reclaim_state
= NULL
;
2839 lockdep_clear_current_reclaim_state();
2840 current
->flags
&= ~PF_MEMALLOC
;
2847 /* The really slow allocator path where we enter direct reclaim */
2848 static inline struct page
*
2849 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2850 int alloc_flags
, const struct alloc_context
*ac
,
2851 unsigned long *did_some_progress
)
2853 struct page
*page
= NULL
;
2854 bool drained
= false;
2856 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
2857 if (unlikely(!(*did_some_progress
)))
2861 page
= get_page_from_freelist(gfp_mask
, order
,
2862 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2865 * If an allocation failed after direct reclaim, it could be because
2866 * pages are pinned on the per-cpu lists or in high alloc reserves.
2867 * Shrink them them and try again
2869 if (!page
&& !drained
) {
2870 unreserve_highatomic_pageblock(ac
);
2871 drain_all_pages(NULL
);
2880 * This is called in the allocator slow-path if the allocation request is of
2881 * sufficient urgency to ignore watermarks and take other desperate measures
2883 static inline struct page
*
2884 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2885 const struct alloc_context
*ac
)
2890 page
= get_page_from_freelist(gfp_mask
, order
,
2891 ALLOC_NO_WATERMARKS
, ac
);
2893 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2894 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
,
2896 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2901 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
2906 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2907 ac
->high_zoneidx
, ac
->nodemask
)
2908 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
2912 gfp_to_alloc_flags(gfp_t gfp_mask
)
2914 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2916 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2917 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2920 * The caller may dip into page reserves a bit more if the caller
2921 * cannot run direct reclaim, or if the caller has realtime scheduling
2922 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2923 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2925 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2927 if (gfp_mask
& __GFP_ATOMIC
) {
2929 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2930 * if it can't schedule.
2932 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2933 alloc_flags
|= ALLOC_HARDER
;
2935 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2936 * comment for __cpuset_node_allowed().
2938 alloc_flags
&= ~ALLOC_CPUSET
;
2939 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2940 alloc_flags
|= ALLOC_HARDER
;
2942 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2943 if (gfp_mask
& __GFP_MEMALLOC
)
2944 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2945 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2946 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2947 else if (!in_interrupt() &&
2948 ((current
->flags
& PF_MEMALLOC
) ||
2949 unlikely(test_thread_flag(TIF_MEMDIE
))))
2950 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2953 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2954 alloc_flags
|= ALLOC_CMA
;
2959 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2961 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2964 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
2966 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
2969 static inline struct page
*
2970 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2971 struct alloc_context
*ac
)
2973 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
2974 struct page
*page
= NULL
;
2976 unsigned long pages_reclaimed
= 0;
2977 unsigned long did_some_progress
;
2978 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2979 bool deferred_compaction
= false;
2980 int contended_compaction
= COMPACT_CONTENDED_NONE
;
2983 * In the slowpath, we sanity check order to avoid ever trying to
2984 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2985 * be using allocators in order of preference for an area that is
2988 if (order
>= MAX_ORDER
) {
2989 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2994 * We also sanity check to catch abuse of atomic reserves being used by
2995 * callers that are not in atomic context.
2997 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
2998 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
2999 gfp_mask
&= ~__GFP_ATOMIC
;
3002 * If this allocation cannot block and it is for a specific node, then
3003 * fail early. There's no need to wakeup kswapd or retry for a
3004 * speculative node-specific allocation.
3006 if (IS_ENABLED(CONFIG_NUMA
) && (gfp_mask
& __GFP_THISNODE
) && !can_direct_reclaim
)
3010 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3011 wake_all_kswapds(order
, ac
);
3014 * OK, we're below the kswapd watermark and have kicked background
3015 * reclaim. Now things get more complex, so set up alloc_flags according
3016 * to how we want to proceed.
3018 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3021 * Find the true preferred zone if the allocation is unconstrained by
3024 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3025 struct zoneref
*preferred_zoneref
;
3026 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3027 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3028 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3031 /* This is the last chance, in general, before the goto nopage. */
3032 page
= get_page_from_freelist(gfp_mask
, order
,
3033 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3037 /* Allocate without watermarks if the context allows */
3038 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3040 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3041 * the allocation is high priority and these type of
3042 * allocations are system rather than user orientated
3044 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3046 page
= __alloc_pages_high_priority(gfp_mask
, order
, ac
);
3053 /* Caller is not willing to reclaim, we can't balance anything */
3054 if (!can_direct_reclaim
) {
3056 * All existing users of the deprecated __GFP_NOFAIL are
3057 * blockable, so warn of any new users that actually allow this
3058 * type of allocation to fail.
3060 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3064 /* Avoid recursion of direct reclaim */
3065 if (current
->flags
& PF_MEMALLOC
)
3068 /* Avoid allocations with no watermarks from looping endlessly */
3069 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3073 * Try direct compaction. The first pass is asynchronous. Subsequent
3074 * attempts after direct reclaim are synchronous
3076 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3078 &contended_compaction
,
3079 &deferred_compaction
);
3083 /* Checks for THP-specific high-order allocations */
3084 if (is_thp_gfp_mask(gfp_mask
)) {
3086 * If compaction is deferred for high-order allocations, it is
3087 * because sync compaction recently failed. If this is the case
3088 * and the caller requested a THP allocation, we do not want
3089 * to heavily disrupt the system, so we fail the allocation
3090 * instead of entering direct reclaim.
3092 if (deferred_compaction
)
3096 * In all zones where compaction was attempted (and not
3097 * deferred or skipped), lock contention has been detected.
3098 * For THP allocation we do not want to disrupt the others
3099 * so we fallback to base pages instead.
3101 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3105 * If compaction was aborted due to need_resched(), we do not
3106 * want to further increase allocation latency, unless it is
3107 * khugepaged trying to collapse.
3109 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3110 && !(current
->flags
& PF_KTHREAD
))
3115 * It can become very expensive to allocate transparent hugepages at
3116 * fault, so use asynchronous memory compaction for THP unless it is
3117 * khugepaged trying to collapse.
3119 if (!is_thp_gfp_mask(gfp_mask
) || (current
->flags
& PF_KTHREAD
))
3120 migration_mode
= MIGRATE_SYNC_LIGHT
;
3122 /* Try direct reclaim and then allocating */
3123 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3124 &did_some_progress
);
3128 /* Do not loop if specifically requested */
3129 if (gfp_mask
& __GFP_NORETRY
)
3132 /* Keep reclaiming pages as long as there is reasonable progress */
3133 pages_reclaimed
+= did_some_progress
;
3134 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3135 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3136 /* Wait for some write requests to complete then retry */
3137 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3141 /* Reclaim has failed us, start killing things */
3142 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3146 /* Retry as long as the OOM killer is making progress */
3147 if (did_some_progress
)
3152 * High-order allocations do not necessarily loop after
3153 * direct reclaim and reclaim/compaction depends on compaction
3154 * being called after reclaim so call directly if necessary
3156 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3158 &contended_compaction
,
3159 &deferred_compaction
);
3163 warn_alloc_failed(gfp_mask
, order
, NULL
);
3169 * This is the 'heart' of the zoned buddy allocator.
3172 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3173 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3175 struct zoneref
*preferred_zoneref
;
3176 struct page
*page
= NULL
;
3177 unsigned int cpuset_mems_cookie
;
3178 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3179 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3180 struct alloc_context ac
= {
3181 .high_zoneidx
= gfp_zone(gfp_mask
),
3182 .nodemask
= nodemask
,
3183 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3186 gfp_mask
&= gfp_allowed_mask
;
3188 lockdep_trace_alloc(gfp_mask
);
3190 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3192 if (should_fail_alloc_page(gfp_mask
, order
))
3196 * Check the zones suitable for the gfp_mask contain at least one
3197 * valid zone. It's possible to have an empty zonelist as a result
3198 * of __GFP_THISNODE and a memoryless node
3200 if (unlikely(!zonelist
->_zonerefs
->zone
))
3203 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3204 alloc_flags
|= ALLOC_CMA
;
3207 cpuset_mems_cookie
= read_mems_allowed_begin();
3209 /* We set it here, as __alloc_pages_slowpath might have changed it */
3210 ac
.zonelist
= zonelist
;
3212 /* Dirty zone balancing only done in the fast path */
3213 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3215 /* The preferred zone is used for statistics later */
3216 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3217 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3218 &ac
.preferred_zone
);
3219 if (!ac
.preferred_zone
)
3221 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3223 /* First allocation attempt */
3224 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3225 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3226 if (unlikely(!page
)) {
3228 * Runtime PM, block IO and its error handling path
3229 * can deadlock because I/O on the device might not
3232 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3233 ac
.spread_dirty_pages
= false;
3235 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3238 if (kmemcheck_enabled
&& page
)
3239 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3241 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3245 * When updating a task's mems_allowed, it is possible to race with
3246 * parallel threads in such a way that an allocation can fail while
3247 * the mask is being updated. If a page allocation is about to fail,
3248 * check if the cpuset changed during allocation and if so, retry.
3250 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3255 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3258 * Common helper functions.
3260 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3265 * __get_free_pages() returns a 32-bit address, which cannot represent
3268 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3270 page
= alloc_pages(gfp_mask
, order
);
3273 return (unsigned long) page_address(page
);
3275 EXPORT_SYMBOL(__get_free_pages
);
3277 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3279 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3281 EXPORT_SYMBOL(get_zeroed_page
);
3283 void __free_pages(struct page
*page
, unsigned int order
)
3285 if (put_page_testzero(page
)) {
3287 free_hot_cold_page(page
, false);
3289 __free_pages_ok(page
, order
);
3293 EXPORT_SYMBOL(__free_pages
);
3295 void free_pages(unsigned long addr
, unsigned int order
)
3298 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3299 __free_pages(virt_to_page((void *)addr
), order
);
3303 EXPORT_SYMBOL(free_pages
);
3307 * An arbitrary-length arbitrary-offset area of memory which resides
3308 * within a 0 or higher order page. Multiple fragments within that page
3309 * are individually refcounted, in the page's reference counter.
3311 * The page_frag functions below provide a simple allocation framework for
3312 * page fragments. This is used by the network stack and network device
3313 * drivers to provide a backing region of memory for use as either an
3314 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3316 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3319 struct page
*page
= NULL
;
3320 gfp_t gfp
= gfp_mask
;
3322 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3323 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3325 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3326 PAGE_FRAG_CACHE_MAX_ORDER
);
3327 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3329 if (unlikely(!page
))
3330 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3332 nc
->va
= page
? page_address(page
) : NULL
;
3337 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3338 unsigned int fragsz
, gfp_t gfp_mask
)
3340 unsigned int size
= PAGE_SIZE
;
3344 if (unlikely(!nc
->va
)) {
3346 page
= __page_frag_refill(nc
, gfp_mask
);
3350 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3351 /* if size can vary use size else just use PAGE_SIZE */
3354 /* Even if we own the page, we do not use atomic_set().
3355 * This would break get_page_unless_zero() users.
3357 atomic_add(size
- 1, &page
->_count
);
3359 /* reset page count bias and offset to start of new frag */
3360 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3361 nc
->pagecnt_bias
= size
;
3365 offset
= nc
->offset
- fragsz
;
3366 if (unlikely(offset
< 0)) {
3367 page
= virt_to_page(nc
->va
);
3369 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
3372 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3373 /* if size can vary use size else just use PAGE_SIZE */
3376 /* OK, page count is 0, we can safely set it */
3377 atomic_set(&page
->_count
, size
);
3379 /* reset page count bias and offset to start of new frag */
3380 nc
->pagecnt_bias
= size
;
3381 offset
= size
- fragsz
;
3385 nc
->offset
= offset
;
3387 return nc
->va
+ offset
;
3389 EXPORT_SYMBOL(__alloc_page_frag
);
3392 * Frees a page fragment allocated out of either a compound or order 0 page.
3394 void __free_page_frag(void *addr
)
3396 struct page
*page
= virt_to_head_page(addr
);
3398 if (unlikely(put_page_testzero(page
)))
3399 __free_pages_ok(page
, compound_order(page
));
3401 EXPORT_SYMBOL(__free_page_frag
);
3404 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3405 * of the current memory cgroup.
3407 * It should be used when the caller would like to use kmalloc, but since the
3408 * allocation is large, it has to fall back to the page allocator.
3410 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3414 page
= alloc_pages(gfp_mask
, order
);
3415 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3416 __free_pages(page
, order
);
3422 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3426 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3427 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3428 __free_pages(page
, order
);
3435 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3438 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3440 memcg_kmem_uncharge(page
, order
);
3441 __free_pages(page
, order
);
3444 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3447 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3448 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3452 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
3456 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3457 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3459 split_page(virt_to_page((void *)addr
), order
);
3460 while (used
< alloc_end
) {
3465 return (void *)addr
;
3469 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3470 * @size: the number of bytes to allocate
3471 * @gfp_mask: GFP flags for the allocation
3473 * This function is similar to alloc_pages(), except that it allocates the
3474 * minimum number of pages to satisfy the request. alloc_pages() can only
3475 * allocate memory in power-of-two pages.
3477 * This function is also limited by MAX_ORDER.
3479 * Memory allocated by this function must be released by free_pages_exact().
3481 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3483 unsigned int order
= get_order(size
);
3486 addr
= __get_free_pages(gfp_mask
, order
);
3487 return make_alloc_exact(addr
, order
, size
);
3489 EXPORT_SYMBOL(alloc_pages_exact
);
3492 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3494 * @nid: the preferred node ID where memory should be allocated
3495 * @size: the number of bytes to allocate
3496 * @gfp_mask: GFP flags for the allocation
3498 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3501 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3503 unsigned int order
= get_order(size
);
3504 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3507 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3511 * free_pages_exact - release memory allocated via alloc_pages_exact()
3512 * @virt: the value returned by alloc_pages_exact.
3513 * @size: size of allocation, same value as passed to alloc_pages_exact().
3515 * Release the memory allocated by a previous call to alloc_pages_exact.
3517 void free_pages_exact(void *virt
, size_t size
)
3519 unsigned long addr
= (unsigned long)virt
;
3520 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3522 while (addr
< end
) {
3527 EXPORT_SYMBOL(free_pages_exact
);
3530 * nr_free_zone_pages - count number of pages beyond high watermark
3531 * @offset: The zone index of the highest zone
3533 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3534 * high watermark within all zones at or below a given zone index. For each
3535 * zone, the number of pages is calculated as:
3536 * managed_pages - high_pages
3538 static unsigned long nr_free_zone_pages(int offset
)
3543 /* Just pick one node, since fallback list is circular */
3544 unsigned long sum
= 0;
3546 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3548 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3549 unsigned long size
= zone
->managed_pages
;
3550 unsigned long high
= high_wmark_pages(zone
);
3559 * nr_free_buffer_pages - count number of pages beyond high watermark
3561 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3562 * watermark within ZONE_DMA and ZONE_NORMAL.
3564 unsigned long nr_free_buffer_pages(void)
3566 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3568 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3571 * nr_free_pagecache_pages - count number of pages beyond high watermark
3573 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3574 * high watermark within all zones.
3576 unsigned long nr_free_pagecache_pages(void)
3578 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3581 static inline void show_node(struct zone
*zone
)
3583 if (IS_ENABLED(CONFIG_NUMA
))
3584 printk("Node %d ", zone_to_nid(zone
));
3587 void si_meminfo(struct sysinfo
*val
)
3589 val
->totalram
= totalram_pages
;
3590 val
->sharedram
= global_page_state(NR_SHMEM
);
3591 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3592 val
->bufferram
= nr_blockdev_pages();
3593 val
->totalhigh
= totalhigh_pages
;
3594 val
->freehigh
= nr_free_highpages();
3595 val
->mem_unit
= PAGE_SIZE
;
3598 EXPORT_SYMBOL(si_meminfo
);
3601 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3603 int zone_type
; /* needs to be signed */
3604 unsigned long managed_pages
= 0;
3605 pg_data_t
*pgdat
= NODE_DATA(nid
);
3607 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3608 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3609 val
->totalram
= managed_pages
;
3610 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3611 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3612 #ifdef CONFIG_HIGHMEM
3613 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3614 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3620 val
->mem_unit
= PAGE_SIZE
;
3625 * Determine whether the node should be displayed or not, depending on whether
3626 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3628 bool skip_free_areas_node(unsigned int flags
, int nid
)
3631 unsigned int cpuset_mems_cookie
;
3633 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3637 cpuset_mems_cookie
= read_mems_allowed_begin();
3638 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3639 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3644 #define K(x) ((x) << (PAGE_SHIFT-10))
3646 static void show_migration_types(unsigned char type
)
3648 static const char types
[MIGRATE_TYPES
] = {
3649 [MIGRATE_UNMOVABLE
] = 'U',
3650 [MIGRATE_MOVABLE
] = 'M',
3651 [MIGRATE_RECLAIMABLE
] = 'E',
3652 [MIGRATE_HIGHATOMIC
] = 'H',
3654 [MIGRATE_CMA
] = 'C',
3656 #ifdef CONFIG_MEMORY_ISOLATION
3657 [MIGRATE_ISOLATE
] = 'I',
3660 char tmp
[MIGRATE_TYPES
+ 1];
3664 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3665 if (type
& (1 << i
))
3670 printk("(%s) ", tmp
);
3674 * Show free area list (used inside shift_scroll-lock stuff)
3675 * We also calculate the percentage fragmentation. We do this by counting the
3676 * memory on each free list with the exception of the first item on the list.
3679 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3682 void show_free_areas(unsigned int filter
)
3684 unsigned long free_pcp
= 0;
3688 for_each_populated_zone(zone
) {
3689 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3692 for_each_online_cpu(cpu
)
3693 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3696 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3697 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3698 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3699 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3700 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3701 " free:%lu free_pcp:%lu free_cma:%lu\n",
3702 global_page_state(NR_ACTIVE_ANON
),
3703 global_page_state(NR_INACTIVE_ANON
),
3704 global_page_state(NR_ISOLATED_ANON
),
3705 global_page_state(NR_ACTIVE_FILE
),
3706 global_page_state(NR_INACTIVE_FILE
),
3707 global_page_state(NR_ISOLATED_FILE
),
3708 global_page_state(NR_UNEVICTABLE
),
3709 global_page_state(NR_FILE_DIRTY
),
3710 global_page_state(NR_WRITEBACK
),
3711 global_page_state(NR_UNSTABLE_NFS
),
3712 global_page_state(NR_SLAB_RECLAIMABLE
),
3713 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3714 global_page_state(NR_FILE_MAPPED
),
3715 global_page_state(NR_SHMEM
),
3716 global_page_state(NR_PAGETABLE
),
3717 global_page_state(NR_BOUNCE
),
3718 global_page_state(NR_FREE_PAGES
),
3720 global_page_state(NR_FREE_CMA_PAGES
));
3722 for_each_populated_zone(zone
) {
3725 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3729 for_each_online_cpu(cpu
)
3730 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3738 " active_anon:%lukB"
3739 " inactive_anon:%lukB"
3740 " active_file:%lukB"
3741 " inactive_file:%lukB"
3742 " unevictable:%lukB"
3743 " isolated(anon):%lukB"
3744 " isolated(file):%lukB"
3752 " slab_reclaimable:%lukB"
3753 " slab_unreclaimable:%lukB"
3754 " kernel_stack:%lukB"
3761 " writeback_tmp:%lukB"
3762 " pages_scanned:%lu"
3763 " all_unreclaimable? %s"
3766 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3767 K(min_wmark_pages(zone
)),
3768 K(low_wmark_pages(zone
)),
3769 K(high_wmark_pages(zone
)),
3770 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3771 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3772 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3773 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3774 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3775 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3776 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3777 K(zone
->present_pages
),
3778 K(zone
->managed_pages
),
3779 K(zone_page_state(zone
, NR_MLOCK
)),
3780 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3781 K(zone_page_state(zone
, NR_WRITEBACK
)),
3782 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3783 K(zone_page_state(zone
, NR_SHMEM
)),
3784 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3785 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3786 zone_page_state(zone
, NR_KERNEL_STACK
) *
3788 K(zone_page_state(zone
, NR_PAGETABLE
)),
3789 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3790 K(zone_page_state(zone
, NR_BOUNCE
)),
3792 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3793 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3794 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3795 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3796 (!zone_reclaimable(zone
) ? "yes" : "no")
3798 printk("lowmem_reserve[]:");
3799 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3800 printk(" %ld", zone
->lowmem_reserve
[i
]);
3804 for_each_populated_zone(zone
) {
3806 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
3807 unsigned char types
[MAX_ORDER
];
3809 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3812 printk("%s: ", zone
->name
);
3814 spin_lock_irqsave(&zone
->lock
, flags
);
3815 for (order
= 0; order
< MAX_ORDER
; order
++) {
3816 struct free_area
*area
= &zone
->free_area
[order
];
3819 nr
[order
] = area
->nr_free
;
3820 total
+= nr
[order
] << order
;
3823 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3824 if (!list_empty(&area
->free_list
[type
]))
3825 types
[order
] |= 1 << type
;
3828 spin_unlock_irqrestore(&zone
->lock
, flags
);
3829 for (order
= 0; order
< MAX_ORDER
; order
++) {
3830 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3832 show_migration_types(types
[order
]);
3834 printk("= %lukB\n", K(total
));
3837 hugetlb_show_meminfo();
3839 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3841 show_swap_cache_info();
3844 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3846 zoneref
->zone
= zone
;
3847 zoneref
->zone_idx
= zone_idx(zone
);
3851 * Builds allocation fallback zone lists.
3853 * Add all populated zones of a node to the zonelist.
3855 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3859 enum zone_type zone_type
= MAX_NR_ZONES
;
3863 zone
= pgdat
->node_zones
+ zone_type
;
3864 if (populated_zone(zone
)) {
3865 zoneref_set_zone(zone
,
3866 &zonelist
->_zonerefs
[nr_zones
++]);
3867 check_highest_zone(zone_type
);
3869 } while (zone_type
);
3877 * 0 = automatic detection of better ordering.
3878 * 1 = order by ([node] distance, -zonetype)
3879 * 2 = order by (-zonetype, [node] distance)
3881 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3882 * the same zonelist. So only NUMA can configure this param.
3884 #define ZONELIST_ORDER_DEFAULT 0
3885 #define ZONELIST_ORDER_NODE 1
3886 #define ZONELIST_ORDER_ZONE 2
3888 /* zonelist order in the kernel.
3889 * set_zonelist_order() will set this to NODE or ZONE.
3891 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3892 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3896 /* The value user specified ....changed by config */
3897 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3898 /* string for sysctl */
3899 #define NUMA_ZONELIST_ORDER_LEN 16
3900 char numa_zonelist_order
[16] = "default";
3903 * interface for configure zonelist ordering.
3904 * command line option "numa_zonelist_order"
3905 * = "[dD]efault - default, automatic configuration.
3906 * = "[nN]ode - order by node locality, then by zone within node
3907 * = "[zZ]one - order by zone, then by locality within zone
3910 static int __parse_numa_zonelist_order(char *s
)
3912 if (*s
== 'd' || *s
== 'D') {
3913 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3914 } else if (*s
== 'n' || *s
== 'N') {
3915 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3916 } else if (*s
== 'z' || *s
== 'Z') {
3917 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3920 "Ignoring invalid numa_zonelist_order value: "
3927 static __init
int setup_numa_zonelist_order(char *s
)
3934 ret
= __parse_numa_zonelist_order(s
);
3936 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3940 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3943 * sysctl handler for numa_zonelist_order
3945 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3946 void __user
*buffer
, size_t *length
,
3949 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3951 static DEFINE_MUTEX(zl_order_mutex
);
3953 mutex_lock(&zl_order_mutex
);
3955 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3959 strcpy(saved_string
, (char *)table
->data
);
3961 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3965 int oldval
= user_zonelist_order
;
3967 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3970 * bogus value. restore saved string
3972 strncpy((char *)table
->data
, saved_string
,
3973 NUMA_ZONELIST_ORDER_LEN
);
3974 user_zonelist_order
= oldval
;
3975 } else if (oldval
!= user_zonelist_order
) {
3976 mutex_lock(&zonelists_mutex
);
3977 build_all_zonelists(NULL
, NULL
);
3978 mutex_unlock(&zonelists_mutex
);
3982 mutex_unlock(&zl_order_mutex
);
3987 #define MAX_NODE_LOAD (nr_online_nodes)
3988 static int node_load
[MAX_NUMNODES
];
3991 * find_next_best_node - find the next node that should appear in a given node's fallback list
3992 * @node: node whose fallback list we're appending
3993 * @used_node_mask: nodemask_t of already used nodes
3995 * We use a number of factors to determine which is the next node that should
3996 * appear on a given node's fallback list. The node should not have appeared
3997 * already in @node's fallback list, and it should be the next closest node
3998 * according to the distance array (which contains arbitrary distance values
3999 * from each node to each node in the system), and should also prefer nodes
4000 * with no CPUs, since presumably they'll have very little allocation pressure
4001 * on them otherwise.
4002 * It returns -1 if no node is found.
4004 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4007 int min_val
= INT_MAX
;
4008 int best_node
= NUMA_NO_NODE
;
4009 const struct cpumask
*tmp
= cpumask_of_node(0);
4011 /* Use the local node if we haven't already */
4012 if (!node_isset(node
, *used_node_mask
)) {
4013 node_set(node
, *used_node_mask
);
4017 for_each_node_state(n
, N_MEMORY
) {
4019 /* Don't want a node to appear more than once */
4020 if (node_isset(n
, *used_node_mask
))
4023 /* Use the distance array to find the distance */
4024 val
= node_distance(node
, n
);
4026 /* Penalize nodes under us ("prefer the next node") */
4029 /* Give preference to headless and unused nodes */
4030 tmp
= cpumask_of_node(n
);
4031 if (!cpumask_empty(tmp
))
4032 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4034 /* Slight preference for less loaded node */
4035 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4036 val
+= node_load
[n
];
4038 if (val
< min_val
) {
4045 node_set(best_node
, *used_node_mask
);
4052 * Build zonelists ordered by node and zones within node.
4053 * This results in maximum locality--normal zone overflows into local
4054 * DMA zone, if any--but risks exhausting DMA zone.
4056 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4059 struct zonelist
*zonelist
;
4061 zonelist
= &pgdat
->node_zonelists
[0];
4062 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4064 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4065 zonelist
->_zonerefs
[j
].zone
= NULL
;
4066 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4070 * Build gfp_thisnode zonelists
4072 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4075 struct zonelist
*zonelist
;
4077 zonelist
= &pgdat
->node_zonelists
[1];
4078 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4079 zonelist
->_zonerefs
[j
].zone
= NULL
;
4080 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4084 * Build zonelists ordered by zone and nodes within zones.
4085 * This results in conserving DMA zone[s] until all Normal memory is
4086 * exhausted, but results in overflowing to remote node while memory
4087 * may still exist in local DMA zone.
4089 static int node_order
[MAX_NUMNODES
];
4091 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4094 int zone_type
; /* needs to be signed */
4096 struct zonelist
*zonelist
;
4098 zonelist
= &pgdat
->node_zonelists
[0];
4100 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4101 for (j
= 0; j
< nr_nodes
; j
++) {
4102 node
= node_order
[j
];
4103 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4104 if (populated_zone(z
)) {
4106 &zonelist
->_zonerefs
[pos
++]);
4107 check_highest_zone(zone_type
);
4111 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4112 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4115 #if defined(CONFIG_64BIT)
4117 * Devices that require DMA32/DMA are relatively rare and do not justify a
4118 * penalty to every machine in case the specialised case applies. Default
4119 * to Node-ordering on 64-bit NUMA machines
4121 static int default_zonelist_order(void)
4123 return ZONELIST_ORDER_NODE
;
4127 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4128 * by the kernel. If processes running on node 0 deplete the low memory zone
4129 * then reclaim will occur more frequency increasing stalls and potentially
4130 * be easier to OOM if a large percentage of the zone is under writeback or
4131 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4132 * Hence, default to zone ordering on 32-bit.
4134 static int default_zonelist_order(void)
4136 return ZONELIST_ORDER_ZONE
;
4138 #endif /* CONFIG_64BIT */
4140 static void set_zonelist_order(void)
4142 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4143 current_zonelist_order
= default_zonelist_order();
4145 current_zonelist_order
= user_zonelist_order
;
4148 static void build_zonelists(pg_data_t
*pgdat
)
4152 nodemask_t used_mask
;
4153 int local_node
, prev_node
;
4154 struct zonelist
*zonelist
;
4155 unsigned int order
= current_zonelist_order
;
4157 /* initialize zonelists */
4158 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4159 zonelist
= pgdat
->node_zonelists
+ i
;
4160 zonelist
->_zonerefs
[0].zone
= NULL
;
4161 zonelist
->_zonerefs
[0].zone_idx
= 0;
4164 /* NUMA-aware ordering of nodes */
4165 local_node
= pgdat
->node_id
;
4166 load
= nr_online_nodes
;
4167 prev_node
= local_node
;
4168 nodes_clear(used_mask
);
4170 memset(node_order
, 0, sizeof(node_order
));
4173 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4175 * We don't want to pressure a particular node.
4176 * So adding penalty to the first node in same
4177 * distance group to make it round-robin.
4179 if (node_distance(local_node
, node
) !=
4180 node_distance(local_node
, prev_node
))
4181 node_load
[node
] = load
;
4185 if (order
== ZONELIST_ORDER_NODE
)
4186 build_zonelists_in_node_order(pgdat
, node
);
4188 node_order
[j
++] = node
; /* remember order */
4191 if (order
== ZONELIST_ORDER_ZONE
) {
4192 /* calculate node order -- i.e., DMA last! */
4193 build_zonelists_in_zone_order(pgdat
, j
);
4196 build_thisnode_zonelists(pgdat
);
4199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4201 * Return node id of node used for "local" allocations.
4202 * I.e., first node id of first zone in arg node's generic zonelist.
4203 * Used for initializing percpu 'numa_mem', which is used primarily
4204 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4206 int local_memory_node(int node
)
4210 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4211 gfp_zone(GFP_KERNEL
),
4218 #else /* CONFIG_NUMA */
4220 static void set_zonelist_order(void)
4222 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4225 static void build_zonelists(pg_data_t
*pgdat
)
4227 int node
, local_node
;
4229 struct zonelist
*zonelist
;
4231 local_node
= pgdat
->node_id
;
4233 zonelist
= &pgdat
->node_zonelists
[0];
4234 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4237 * Now we build the zonelist so that it contains the zones
4238 * of all the other nodes.
4239 * We don't want to pressure a particular node, so when
4240 * building the zones for node N, we make sure that the
4241 * zones coming right after the local ones are those from
4242 * node N+1 (modulo N)
4244 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4245 if (!node_online(node
))
4247 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4249 for (node
= 0; node
< local_node
; node
++) {
4250 if (!node_online(node
))
4252 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4255 zonelist
->_zonerefs
[j
].zone
= NULL
;
4256 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4259 #endif /* CONFIG_NUMA */
4262 * Boot pageset table. One per cpu which is going to be used for all
4263 * zones and all nodes. The parameters will be set in such a way
4264 * that an item put on a list will immediately be handed over to
4265 * the buddy list. This is safe since pageset manipulation is done
4266 * with interrupts disabled.
4268 * The boot_pagesets must be kept even after bootup is complete for
4269 * unused processors and/or zones. They do play a role for bootstrapping
4270 * hotplugged processors.
4272 * zoneinfo_show() and maybe other functions do
4273 * not check if the processor is online before following the pageset pointer.
4274 * Other parts of the kernel may not check if the zone is available.
4276 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4277 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4278 static void setup_zone_pageset(struct zone
*zone
);
4281 * Global mutex to protect against size modification of zonelists
4282 * as well as to serialize pageset setup for the new populated zone.
4284 DEFINE_MUTEX(zonelists_mutex
);
4286 /* return values int ....just for stop_machine() */
4287 static int __build_all_zonelists(void *data
)
4291 pg_data_t
*self
= data
;
4294 memset(node_load
, 0, sizeof(node_load
));
4297 if (self
&& !node_online(self
->node_id
)) {
4298 build_zonelists(self
);
4301 for_each_online_node(nid
) {
4302 pg_data_t
*pgdat
= NODE_DATA(nid
);
4304 build_zonelists(pgdat
);
4308 * Initialize the boot_pagesets that are going to be used
4309 * for bootstrapping processors. The real pagesets for
4310 * each zone will be allocated later when the per cpu
4311 * allocator is available.
4313 * boot_pagesets are used also for bootstrapping offline
4314 * cpus if the system is already booted because the pagesets
4315 * are needed to initialize allocators on a specific cpu too.
4316 * F.e. the percpu allocator needs the page allocator which
4317 * needs the percpu allocator in order to allocate its pagesets
4318 * (a chicken-egg dilemma).
4320 for_each_possible_cpu(cpu
) {
4321 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4325 * We now know the "local memory node" for each node--
4326 * i.e., the node of the first zone in the generic zonelist.
4327 * Set up numa_mem percpu variable for on-line cpus. During
4328 * boot, only the boot cpu should be on-line; we'll init the
4329 * secondary cpus' numa_mem as they come on-line. During
4330 * node/memory hotplug, we'll fixup all on-line cpus.
4332 if (cpu_online(cpu
))
4333 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4340 static noinline
void __init
4341 build_all_zonelists_init(void)
4343 __build_all_zonelists(NULL
);
4344 mminit_verify_zonelist();
4345 cpuset_init_current_mems_allowed();
4349 * Called with zonelists_mutex held always
4350 * unless system_state == SYSTEM_BOOTING.
4352 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4353 * [we're only called with non-NULL zone through __meminit paths] and
4354 * (2) call of __init annotated helper build_all_zonelists_init
4355 * [protected by SYSTEM_BOOTING].
4357 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4359 set_zonelist_order();
4361 if (system_state
== SYSTEM_BOOTING
) {
4362 build_all_zonelists_init();
4364 #ifdef CONFIG_MEMORY_HOTPLUG
4366 setup_zone_pageset(zone
);
4368 /* we have to stop all cpus to guarantee there is no user
4370 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4371 /* cpuset refresh routine should be here */
4373 vm_total_pages
= nr_free_pagecache_pages();
4375 * Disable grouping by mobility if the number of pages in the
4376 * system is too low to allow the mechanism to work. It would be
4377 * more accurate, but expensive to check per-zone. This check is
4378 * made on memory-hotadd so a system can start with mobility
4379 * disabled and enable it later
4381 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4382 page_group_by_mobility_disabled
= 1;
4384 page_group_by_mobility_disabled
= 0;
4386 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4387 "Total pages: %ld\n",
4389 zonelist_order_name
[current_zonelist_order
],
4390 page_group_by_mobility_disabled
? "off" : "on",
4393 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4398 * Helper functions to size the waitqueue hash table.
4399 * Essentially these want to choose hash table sizes sufficiently
4400 * large so that collisions trying to wait on pages are rare.
4401 * But in fact, the number of active page waitqueues on typical
4402 * systems is ridiculously low, less than 200. So this is even
4403 * conservative, even though it seems large.
4405 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4406 * waitqueues, i.e. the size of the waitq table given the number of pages.
4408 #define PAGES_PER_WAITQUEUE 256
4410 #ifndef CONFIG_MEMORY_HOTPLUG
4411 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4413 unsigned long size
= 1;
4415 pages
/= PAGES_PER_WAITQUEUE
;
4417 while (size
< pages
)
4421 * Once we have dozens or even hundreds of threads sleeping
4422 * on IO we've got bigger problems than wait queue collision.
4423 * Limit the size of the wait table to a reasonable size.
4425 size
= min(size
, 4096UL);
4427 return max(size
, 4UL);
4431 * A zone's size might be changed by hot-add, so it is not possible to determine
4432 * a suitable size for its wait_table. So we use the maximum size now.
4434 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4436 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4437 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4438 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4440 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4441 * or more by the traditional way. (See above). It equals:
4443 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4444 * ia64(16K page size) : = ( 8G + 4M)byte.
4445 * powerpc (64K page size) : = (32G +16M)byte.
4447 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4454 * This is an integer logarithm so that shifts can be used later
4455 * to extract the more random high bits from the multiplicative
4456 * hash function before the remainder is taken.
4458 static inline unsigned long wait_table_bits(unsigned long size
)
4464 * Initially all pages are reserved - free ones are freed
4465 * up by free_all_bootmem() once the early boot process is
4466 * done. Non-atomic initialization, single-pass.
4468 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4469 unsigned long start_pfn
, enum memmap_context context
)
4471 pg_data_t
*pgdat
= NODE_DATA(nid
);
4472 unsigned long end_pfn
= start_pfn
+ size
;
4475 unsigned long nr_initialised
= 0;
4477 if (highest_memmap_pfn
< end_pfn
- 1)
4478 highest_memmap_pfn
= end_pfn
- 1;
4480 z
= &pgdat
->node_zones
[zone
];
4481 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4483 * There can be holes in boot-time mem_map[]s
4484 * handed to this function. They do not
4485 * exist on hotplugged memory.
4487 if (context
== MEMMAP_EARLY
) {
4488 if (!early_pfn_valid(pfn
))
4490 if (!early_pfn_in_nid(pfn
, nid
))
4492 if (!update_defer_init(pgdat
, pfn
, end_pfn
,
4498 * Mark the block movable so that blocks are reserved for
4499 * movable at startup. This will force kernel allocations
4500 * to reserve their blocks rather than leaking throughout
4501 * the address space during boot when many long-lived
4502 * kernel allocations are made.
4504 * bitmap is created for zone's valid pfn range. but memmap
4505 * can be created for invalid pages (for alignment)
4506 * check here not to call set_pageblock_migratetype() against
4509 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4510 struct page
*page
= pfn_to_page(pfn
);
4512 __init_single_page(page
, pfn
, zone
, nid
);
4513 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4515 __init_single_pfn(pfn
, zone
, nid
);
4520 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4522 unsigned int order
, t
;
4523 for_each_migratetype_order(order
, t
) {
4524 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4525 zone
->free_area
[order
].nr_free
= 0;
4529 #ifndef __HAVE_ARCH_MEMMAP_INIT
4530 #define memmap_init(size, nid, zone, start_pfn) \
4531 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4534 static int zone_batchsize(struct zone
*zone
)
4540 * The per-cpu-pages pools are set to around 1000th of the
4541 * size of the zone. But no more than 1/2 of a meg.
4543 * OK, so we don't know how big the cache is. So guess.
4545 batch
= zone
->managed_pages
/ 1024;
4546 if (batch
* PAGE_SIZE
> 512 * 1024)
4547 batch
= (512 * 1024) / PAGE_SIZE
;
4548 batch
/= 4; /* We effectively *= 4 below */
4553 * Clamp the batch to a 2^n - 1 value. Having a power
4554 * of 2 value was found to be more likely to have
4555 * suboptimal cache aliasing properties in some cases.
4557 * For example if 2 tasks are alternately allocating
4558 * batches of pages, one task can end up with a lot
4559 * of pages of one half of the possible page colors
4560 * and the other with pages of the other colors.
4562 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4567 /* The deferral and batching of frees should be suppressed under NOMMU
4570 * The problem is that NOMMU needs to be able to allocate large chunks
4571 * of contiguous memory as there's no hardware page translation to
4572 * assemble apparent contiguous memory from discontiguous pages.
4574 * Queueing large contiguous runs of pages for batching, however,
4575 * causes the pages to actually be freed in smaller chunks. As there
4576 * can be a significant delay between the individual batches being
4577 * recycled, this leads to the once large chunks of space being
4578 * fragmented and becoming unavailable for high-order allocations.
4585 * pcp->high and pcp->batch values are related and dependent on one another:
4586 * ->batch must never be higher then ->high.
4587 * The following function updates them in a safe manner without read side
4590 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4591 * those fields changing asynchronously (acording the the above rule).
4593 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4594 * outside of boot time (or some other assurance that no concurrent updaters
4597 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4598 unsigned long batch
)
4600 /* start with a fail safe value for batch */
4604 /* Update high, then batch, in order */
4611 /* a companion to pageset_set_high() */
4612 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4614 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4617 static void pageset_init(struct per_cpu_pageset
*p
)
4619 struct per_cpu_pages
*pcp
;
4622 memset(p
, 0, sizeof(*p
));
4626 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4627 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4630 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4633 pageset_set_batch(p
, batch
);
4637 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4638 * to the value high for the pageset p.
4640 static void pageset_set_high(struct per_cpu_pageset
*p
,
4643 unsigned long batch
= max(1UL, high
/ 4);
4644 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4645 batch
= PAGE_SHIFT
* 8;
4647 pageset_update(&p
->pcp
, high
, batch
);
4650 static void pageset_set_high_and_batch(struct zone
*zone
,
4651 struct per_cpu_pageset
*pcp
)
4653 if (percpu_pagelist_fraction
)
4654 pageset_set_high(pcp
,
4655 (zone
->managed_pages
/
4656 percpu_pagelist_fraction
));
4658 pageset_set_batch(pcp
, zone_batchsize(zone
));
4661 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4663 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4666 pageset_set_high_and_batch(zone
, pcp
);
4669 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4672 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4673 for_each_possible_cpu(cpu
)
4674 zone_pageset_init(zone
, cpu
);
4678 * Allocate per cpu pagesets and initialize them.
4679 * Before this call only boot pagesets were available.
4681 void __init
setup_per_cpu_pageset(void)
4685 for_each_populated_zone(zone
)
4686 setup_zone_pageset(zone
);
4689 static noinline __init_refok
4690 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4696 * The per-page waitqueue mechanism uses hashed waitqueues
4699 zone
->wait_table_hash_nr_entries
=
4700 wait_table_hash_nr_entries(zone_size_pages
);
4701 zone
->wait_table_bits
=
4702 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4703 alloc_size
= zone
->wait_table_hash_nr_entries
4704 * sizeof(wait_queue_head_t
);
4706 if (!slab_is_available()) {
4707 zone
->wait_table
= (wait_queue_head_t
*)
4708 memblock_virt_alloc_node_nopanic(
4709 alloc_size
, zone
->zone_pgdat
->node_id
);
4712 * This case means that a zone whose size was 0 gets new memory
4713 * via memory hot-add.
4714 * But it may be the case that a new node was hot-added. In
4715 * this case vmalloc() will not be able to use this new node's
4716 * memory - this wait_table must be initialized to use this new
4717 * node itself as well.
4718 * To use this new node's memory, further consideration will be
4721 zone
->wait_table
= vmalloc(alloc_size
);
4723 if (!zone
->wait_table
)
4726 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4727 init_waitqueue_head(zone
->wait_table
+ i
);
4732 static __meminit
void zone_pcp_init(struct zone
*zone
)
4735 * per cpu subsystem is not up at this point. The following code
4736 * relies on the ability of the linker to provide the
4737 * offset of a (static) per cpu variable into the per cpu area.
4739 zone
->pageset
= &boot_pageset
;
4741 if (populated_zone(zone
))
4742 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4743 zone
->name
, zone
->present_pages
,
4744 zone_batchsize(zone
));
4747 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4748 unsigned long zone_start_pfn
,
4751 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4753 ret
= zone_wait_table_init(zone
, size
);
4756 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4758 zone
->zone_start_pfn
= zone_start_pfn
;
4760 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4761 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4763 (unsigned long)zone_idx(zone
),
4764 zone_start_pfn
, (zone_start_pfn
+ size
));
4766 zone_init_free_lists(zone
);
4771 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4772 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4777 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
4778 struct mminit_pfnnid_cache
*state
)
4780 unsigned long start_pfn
, end_pfn
;
4783 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
4784 return state
->last_nid
;
4786 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4788 state
->last_start
= start_pfn
;
4789 state
->last_end
= end_pfn
;
4790 state
->last_nid
= nid
;
4795 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4798 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4799 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4800 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4802 * If an architecture guarantees that all ranges registered contain no holes
4803 * and may be freed, this this function may be used instead of calling
4804 * memblock_free_early_nid() manually.
4806 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4808 unsigned long start_pfn
, end_pfn
;
4811 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4812 start_pfn
= min(start_pfn
, max_low_pfn
);
4813 end_pfn
= min(end_pfn
, max_low_pfn
);
4815 if (start_pfn
< end_pfn
)
4816 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4817 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4823 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4824 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4826 * If an architecture guarantees that all ranges registered contain no holes and may
4827 * be freed, this function may be used instead of calling memory_present() manually.
4829 void __init
sparse_memory_present_with_active_regions(int nid
)
4831 unsigned long start_pfn
, end_pfn
;
4834 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4835 memory_present(this_nid
, start_pfn
, end_pfn
);
4839 * get_pfn_range_for_nid - Return the start and end page frames for a node
4840 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4841 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4842 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4844 * It returns the start and end page frame of a node based on information
4845 * provided by memblock_set_node(). If called for a node
4846 * with no available memory, a warning is printed and the start and end
4849 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4850 unsigned long *start_pfn
, unsigned long *end_pfn
)
4852 unsigned long this_start_pfn
, this_end_pfn
;
4858 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4859 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4860 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4863 if (*start_pfn
== -1UL)
4868 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4869 * assumption is made that zones within a node are ordered in monotonic
4870 * increasing memory addresses so that the "highest" populated zone is used
4872 static void __init
find_usable_zone_for_movable(void)
4875 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4876 if (zone_index
== ZONE_MOVABLE
)
4879 if (arch_zone_highest_possible_pfn
[zone_index
] >
4880 arch_zone_lowest_possible_pfn
[zone_index
])
4884 VM_BUG_ON(zone_index
== -1);
4885 movable_zone
= zone_index
;
4889 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4890 * because it is sized independent of architecture. Unlike the other zones,
4891 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4892 * in each node depending on the size of each node and how evenly kernelcore
4893 * is distributed. This helper function adjusts the zone ranges
4894 * provided by the architecture for a given node by using the end of the
4895 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4896 * zones within a node are in order of monotonic increases memory addresses
4898 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4899 unsigned long zone_type
,
4900 unsigned long node_start_pfn
,
4901 unsigned long node_end_pfn
,
4902 unsigned long *zone_start_pfn
,
4903 unsigned long *zone_end_pfn
)
4905 /* Only adjust if ZONE_MOVABLE is on this node */
4906 if (zone_movable_pfn
[nid
]) {
4907 /* Size ZONE_MOVABLE */
4908 if (zone_type
== ZONE_MOVABLE
) {
4909 *zone_start_pfn
= zone_movable_pfn
[nid
];
4910 *zone_end_pfn
= min(node_end_pfn
,
4911 arch_zone_highest_possible_pfn
[movable_zone
]);
4913 /* Adjust for ZONE_MOVABLE starting within this range */
4914 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4915 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4916 *zone_end_pfn
= zone_movable_pfn
[nid
];
4918 /* Check if this whole range is within ZONE_MOVABLE */
4919 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4920 *zone_start_pfn
= *zone_end_pfn
;
4925 * Return the number of pages a zone spans in a node, including holes
4926 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4928 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4929 unsigned long zone_type
,
4930 unsigned long node_start_pfn
,
4931 unsigned long node_end_pfn
,
4932 unsigned long *ignored
)
4934 unsigned long zone_start_pfn
, zone_end_pfn
;
4936 /* When hotadd a new node from cpu_up(), the node should be empty */
4937 if (!node_start_pfn
&& !node_end_pfn
)
4940 /* Get the start and end of the zone */
4941 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4942 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4943 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4944 node_start_pfn
, node_end_pfn
,
4945 &zone_start_pfn
, &zone_end_pfn
);
4947 /* Check that this node has pages within the zone's required range */
4948 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4951 /* Move the zone boundaries inside the node if necessary */
4952 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4953 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4955 /* Return the spanned pages */
4956 return zone_end_pfn
- zone_start_pfn
;
4960 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4961 * then all holes in the requested range will be accounted for.
4963 unsigned long __meminit
__absent_pages_in_range(int nid
,
4964 unsigned long range_start_pfn
,
4965 unsigned long range_end_pfn
)
4967 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4968 unsigned long start_pfn
, end_pfn
;
4971 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4972 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4973 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4974 nr_absent
-= end_pfn
- start_pfn
;
4980 * absent_pages_in_range - Return number of page frames in holes within a range
4981 * @start_pfn: The start PFN to start searching for holes
4982 * @end_pfn: The end PFN to stop searching for holes
4984 * It returns the number of pages frames in memory holes within a range.
4986 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4987 unsigned long end_pfn
)
4989 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4992 /* Return the number of page frames in holes in a zone on a node */
4993 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4994 unsigned long zone_type
,
4995 unsigned long node_start_pfn
,
4996 unsigned long node_end_pfn
,
4997 unsigned long *ignored
)
4999 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5000 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5001 unsigned long zone_start_pfn
, zone_end_pfn
;
5003 /* When hotadd a new node from cpu_up(), the node should be empty */
5004 if (!node_start_pfn
&& !node_end_pfn
)
5007 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5008 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5010 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5011 node_start_pfn
, node_end_pfn
,
5012 &zone_start_pfn
, &zone_end_pfn
);
5013 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5016 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5017 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5018 unsigned long zone_type
,
5019 unsigned long node_start_pfn
,
5020 unsigned long node_end_pfn
,
5021 unsigned long *zones_size
)
5023 return zones_size
[zone_type
];
5026 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5027 unsigned long zone_type
,
5028 unsigned long node_start_pfn
,
5029 unsigned long node_end_pfn
,
5030 unsigned long *zholes_size
)
5035 return zholes_size
[zone_type
];
5038 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5040 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5041 unsigned long node_start_pfn
,
5042 unsigned long node_end_pfn
,
5043 unsigned long *zones_size
,
5044 unsigned long *zholes_size
)
5046 unsigned long realtotalpages
= 0, totalpages
= 0;
5049 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5050 struct zone
*zone
= pgdat
->node_zones
+ i
;
5051 unsigned long size
, real_size
;
5053 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5057 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5058 node_start_pfn
, node_end_pfn
,
5060 zone
->spanned_pages
= size
;
5061 zone
->present_pages
= real_size
;
5064 realtotalpages
+= real_size
;
5067 pgdat
->node_spanned_pages
= totalpages
;
5068 pgdat
->node_present_pages
= realtotalpages
;
5069 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5073 #ifndef CONFIG_SPARSEMEM
5075 * Calculate the size of the zone->blockflags rounded to an unsigned long
5076 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5077 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5078 * round what is now in bits to nearest long in bits, then return it in
5081 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5083 unsigned long usemapsize
;
5085 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5086 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5087 usemapsize
= usemapsize
>> pageblock_order
;
5088 usemapsize
*= NR_PAGEBLOCK_BITS
;
5089 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5091 return usemapsize
/ 8;
5094 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5096 unsigned long zone_start_pfn
,
5097 unsigned long zonesize
)
5099 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5100 zone
->pageblock_flags
= NULL
;
5102 zone
->pageblock_flags
=
5103 memblock_virt_alloc_node_nopanic(usemapsize
,
5107 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5108 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5109 #endif /* CONFIG_SPARSEMEM */
5111 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5113 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5114 void __paginginit
set_pageblock_order(void)
5118 /* Check that pageblock_nr_pages has not already been setup */
5119 if (pageblock_order
)
5122 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5123 order
= HUGETLB_PAGE_ORDER
;
5125 order
= MAX_ORDER
- 1;
5128 * Assume the largest contiguous order of interest is a huge page.
5129 * This value may be variable depending on boot parameters on IA64 and
5132 pageblock_order
= order
;
5134 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5137 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5138 * is unused as pageblock_order is set at compile-time. See
5139 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5142 void __paginginit
set_pageblock_order(void)
5146 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5148 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5149 unsigned long present_pages
)
5151 unsigned long pages
= spanned_pages
;
5154 * Provide a more accurate estimation if there are holes within
5155 * the zone and SPARSEMEM is in use. If there are holes within the
5156 * zone, each populated memory region may cost us one or two extra
5157 * memmap pages due to alignment because memmap pages for each
5158 * populated regions may not naturally algined on page boundary.
5159 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5161 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5162 IS_ENABLED(CONFIG_SPARSEMEM
))
5163 pages
= present_pages
;
5165 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5169 * Set up the zone data structures:
5170 * - mark all pages reserved
5171 * - mark all memory queues empty
5172 * - clear the memory bitmaps
5174 * NOTE: pgdat should get zeroed by caller.
5176 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5179 int nid
= pgdat
->node_id
;
5180 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
5183 pgdat_resize_init(pgdat
);
5184 #ifdef CONFIG_NUMA_BALANCING
5185 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5186 pgdat
->numabalancing_migrate_nr_pages
= 0;
5187 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5189 init_waitqueue_head(&pgdat
->kswapd_wait
);
5190 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5191 pgdat_page_ext_init(pgdat
);
5193 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5194 struct zone
*zone
= pgdat
->node_zones
+ j
;
5195 unsigned long size
, realsize
, freesize
, memmap_pages
;
5197 size
= zone
->spanned_pages
;
5198 realsize
= freesize
= zone
->present_pages
;
5201 * Adjust freesize so that it accounts for how much memory
5202 * is used by this zone for memmap. This affects the watermark
5203 * and per-cpu initialisations
5205 memmap_pages
= calc_memmap_size(size
, realsize
);
5206 if (!is_highmem_idx(j
)) {
5207 if (freesize
>= memmap_pages
) {
5208 freesize
-= memmap_pages
;
5211 " %s zone: %lu pages used for memmap\n",
5212 zone_names
[j
], memmap_pages
);
5215 " %s zone: %lu pages exceeds freesize %lu\n",
5216 zone_names
[j
], memmap_pages
, freesize
);
5219 /* Account for reserved pages */
5220 if (j
== 0 && freesize
> dma_reserve
) {
5221 freesize
-= dma_reserve
;
5222 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5223 zone_names
[0], dma_reserve
);
5226 if (!is_highmem_idx(j
))
5227 nr_kernel_pages
+= freesize
;
5228 /* Charge for highmem memmap if there are enough kernel pages */
5229 else if (nr_kernel_pages
> memmap_pages
* 2)
5230 nr_kernel_pages
-= memmap_pages
;
5231 nr_all_pages
+= freesize
;
5234 * Set an approximate value for lowmem here, it will be adjusted
5235 * when the bootmem allocator frees pages into the buddy system.
5236 * And all highmem pages will be managed by the buddy system.
5238 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5241 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5243 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5245 zone
->name
= zone_names
[j
];
5246 spin_lock_init(&zone
->lock
);
5247 spin_lock_init(&zone
->lru_lock
);
5248 zone_seqlock_init(zone
);
5249 zone
->zone_pgdat
= pgdat
;
5250 zone_pcp_init(zone
);
5252 /* For bootup, initialized properly in watermark setup */
5253 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5255 lruvec_init(&zone
->lruvec
);
5259 set_pageblock_order();
5260 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5261 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5263 memmap_init(size
, nid
, j
, zone_start_pfn
);
5264 zone_start_pfn
+= size
;
5268 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5270 unsigned long __maybe_unused start
= 0;
5271 unsigned long __maybe_unused offset
= 0;
5273 /* Skip empty nodes */
5274 if (!pgdat
->node_spanned_pages
)
5277 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5278 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5279 offset
= pgdat
->node_start_pfn
- start
;
5280 /* ia64 gets its own node_mem_map, before this, without bootmem */
5281 if (!pgdat
->node_mem_map
) {
5282 unsigned long size
, end
;
5286 * The zone's endpoints aren't required to be MAX_ORDER
5287 * aligned but the node_mem_map endpoints must be in order
5288 * for the buddy allocator to function correctly.
5290 end
= pgdat_end_pfn(pgdat
);
5291 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5292 size
= (end
- start
) * sizeof(struct page
);
5293 map
= alloc_remap(pgdat
->node_id
, size
);
5295 map
= memblock_virt_alloc_node_nopanic(size
,
5297 pgdat
->node_mem_map
= map
+ offset
;
5299 #ifndef CONFIG_NEED_MULTIPLE_NODES
5301 * With no DISCONTIG, the global mem_map is just set as node 0's
5303 if (pgdat
== NODE_DATA(0)) {
5304 mem_map
= NODE_DATA(0)->node_mem_map
;
5305 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5306 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5308 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5311 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5314 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5315 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5317 pg_data_t
*pgdat
= NODE_DATA(nid
);
5318 unsigned long start_pfn
= 0;
5319 unsigned long end_pfn
= 0;
5321 /* pg_data_t should be reset to zero when it's allocated */
5322 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5324 reset_deferred_meminit(pgdat
);
5325 pgdat
->node_id
= nid
;
5326 pgdat
->node_start_pfn
= node_start_pfn
;
5327 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5328 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5329 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5330 (u64
)start_pfn
<< PAGE_SHIFT
,
5331 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5333 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5334 zones_size
, zholes_size
);
5336 alloc_node_mem_map(pgdat
);
5337 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5338 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5339 nid
, (unsigned long)pgdat
,
5340 (unsigned long)pgdat
->node_mem_map
);
5343 free_area_init_core(pgdat
);
5346 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5348 #if MAX_NUMNODES > 1
5350 * Figure out the number of possible node ids.
5352 void __init
setup_nr_node_ids(void)
5354 unsigned int highest
;
5356 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5357 nr_node_ids
= highest
+ 1;
5362 * node_map_pfn_alignment - determine the maximum internode alignment
5364 * This function should be called after node map is populated and sorted.
5365 * It calculates the maximum power of two alignment which can distinguish
5368 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5369 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5370 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5371 * shifted, 1GiB is enough and this function will indicate so.
5373 * This is used to test whether pfn -> nid mapping of the chosen memory
5374 * model has fine enough granularity to avoid incorrect mapping for the
5375 * populated node map.
5377 * Returns the determined alignment in pfn's. 0 if there is no alignment
5378 * requirement (single node).
5380 unsigned long __init
node_map_pfn_alignment(void)
5382 unsigned long accl_mask
= 0, last_end
= 0;
5383 unsigned long start
, end
, mask
;
5387 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5388 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5395 * Start with a mask granular enough to pin-point to the
5396 * start pfn and tick off bits one-by-one until it becomes
5397 * too coarse to separate the current node from the last.
5399 mask
= ~((1 << __ffs(start
)) - 1);
5400 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5403 /* accumulate all internode masks */
5407 /* convert mask to number of pages */
5408 return ~accl_mask
+ 1;
5411 /* Find the lowest pfn for a node */
5412 static unsigned long __init
find_min_pfn_for_node(int nid
)
5414 unsigned long min_pfn
= ULONG_MAX
;
5415 unsigned long start_pfn
;
5418 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5419 min_pfn
= min(min_pfn
, start_pfn
);
5421 if (min_pfn
== ULONG_MAX
) {
5423 "Could not find start_pfn for node %d\n", nid
);
5431 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5433 * It returns the minimum PFN based on information provided via
5434 * memblock_set_node().
5436 unsigned long __init
find_min_pfn_with_active_regions(void)
5438 return find_min_pfn_for_node(MAX_NUMNODES
);
5442 * early_calculate_totalpages()
5443 * Sum pages in active regions for movable zone.
5444 * Populate N_MEMORY for calculating usable_nodes.
5446 static unsigned long __init
early_calculate_totalpages(void)
5448 unsigned long totalpages
= 0;
5449 unsigned long start_pfn
, end_pfn
;
5452 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5453 unsigned long pages
= end_pfn
- start_pfn
;
5455 totalpages
+= pages
;
5457 node_set_state(nid
, N_MEMORY
);
5463 * Find the PFN the Movable zone begins in each node. Kernel memory
5464 * is spread evenly between nodes as long as the nodes have enough
5465 * memory. When they don't, some nodes will have more kernelcore than
5468 static void __init
find_zone_movable_pfns_for_nodes(void)
5471 unsigned long usable_startpfn
;
5472 unsigned long kernelcore_node
, kernelcore_remaining
;
5473 /* save the state before borrow the nodemask */
5474 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5475 unsigned long totalpages
= early_calculate_totalpages();
5476 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5477 struct memblock_region
*r
;
5479 /* Need to find movable_zone earlier when movable_node is specified. */
5480 find_usable_zone_for_movable();
5483 * If movable_node is specified, ignore kernelcore and movablecore
5486 if (movable_node_is_enabled()) {
5487 for_each_memblock(memory
, r
) {
5488 if (!memblock_is_hotpluggable(r
))
5493 usable_startpfn
= PFN_DOWN(r
->base
);
5494 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5495 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5503 * If movablecore=nn[KMG] was specified, calculate what size of
5504 * kernelcore that corresponds so that memory usable for
5505 * any allocation type is evenly spread. If both kernelcore
5506 * and movablecore are specified, then the value of kernelcore
5507 * will be used for required_kernelcore if it's greater than
5508 * what movablecore would have allowed.
5510 if (required_movablecore
) {
5511 unsigned long corepages
;
5514 * Round-up so that ZONE_MOVABLE is at least as large as what
5515 * was requested by the user
5517 required_movablecore
=
5518 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5519 required_movablecore
= min(totalpages
, required_movablecore
);
5520 corepages
= totalpages
- required_movablecore
;
5522 required_kernelcore
= max(required_kernelcore
, corepages
);
5526 * If kernelcore was not specified or kernelcore size is larger
5527 * than totalpages, there is no ZONE_MOVABLE.
5529 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
5532 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5533 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5536 /* Spread kernelcore memory as evenly as possible throughout nodes */
5537 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5538 for_each_node_state(nid
, N_MEMORY
) {
5539 unsigned long start_pfn
, end_pfn
;
5542 * Recalculate kernelcore_node if the division per node
5543 * now exceeds what is necessary to satisfy the requested
5544 * amount of memory for the kernel
5546 if (required_kernelcore
< kernelcore_node
)
5547 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5550 * As the map is walked, we track how much memory is usable
5551 * by the kernel using kernelcore_remaining. When it is
5552 * 0, the rest of the node is usable by ZONE_MOVABLE
5554 kernelcore_remaining
= kernelcore_node
;
5556 /* Go through each range of PFNs within this node */
5557 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5558 unsigned long size_pages
;
5560 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5561 if (start_pfn
>= end_pfn
)
5564 /* Account for what is only usable for kernelcore */
5565 if (start_pfn
< usable_startpfn
) {
5566 unsigned long kernel_pages
;
5567 kernel_pages
= min(end_pfn
, usable_startpfn
)
5570 kernelcore_remaining
-= min(kernel_pages
,
5571 kernelcore_remaining
);
5572 required_kernelcore
-= min(kernel_pages
,
5573 required_kernelcore
);
5575 /* Continue if range is now fully accounted */
5576 if (end_pfn
<= usable_startpfn
) {
5579 * Push zone_movable_pfn to the end so
5580 * that if we have to rebalance
5581 * kernelcore across nodes, we will
5582 * not double account here
5584 zone_movable_pfn
[nid
] = end_pfn
;
5587 start_pfn
= usable_startpfn
;
5591 * The usable PFN range for ZONE_MOVABLE is from
5592 * start_pfn->end_pfn. Calculate size_pages as the
5593 * number of pages used as kernelcore
5595 size_pages
= end_pfn
- start_pfn
;
5596 if (size_pages
> kernelcore_remaining
)
5597 size_pages
= kernelcore_remaining
;
5598 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5601 * Some kernelcore has been met, update counts and
5602 * break if the kernelcore for this node has been
5605 required_kernelcore
-= min(required_kernelcore
,
5607 kernelcore_remaining
-= size_pages
;
5608 if (!kernelcore_remaining
)
5614 * If there is still required_kernelcore, we do another pass with one
5615 * less node in the count. This will push zone_movable_pfn[nid] further
5616 * along on the nodes that still have memory until kernelcore is
5620 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5624 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5625 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5626 zone_movable_pfn
[nid
] =
5627 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5630 /* restore the node_state */
5631 node_states
[N_MEMORY
] = saved_node_state
;
5634 /* Any regular or high memory on that node ? */
5635 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5637 enum zone_type zone_type
;
5639 if (N_MEMORY
== N_NORMAL_MEMORY
)
5642 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5643 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5644 if (populated_zone(zone
)) {
5645 node_set_state(nid
, N_HIGH_MEMORY
);
5646 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5647 zone_type
<= ZONE_NORMAL
)
5648 node_set_state(nid
, N_NORMAL_MEMORY
);
5655 * free_area_init_nodes - Initialise all pg_data_t and zone data
5656 * @max_zone_pfn: an array of max PFNs for each zone
5658 * This will call free_area_init_node() for each active node in the system.
5659 * Using the page ranges provided by memblock_set_node(), the size of each
5660 * zone in each node and their holes is calculated. If the maximum PFN
5661 * between two adjacent zones match, it is assumed that the zone is empty.
5662 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5663 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5664 * starts where the previous one ended. For example, ZONE_DMA32 starts
5665 * at arch_max_dma_pfn.
5667 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5669 unsigned long start_pfn
, end_pfn
;
5672 /* Record where the zone boundaries are */
5673 memset(arch_zone_lowest_possible_pfn
, 0,
5674 sizeof(arch_zone_lowest_possible_pfn
));
5675 memset(arch_zone_highest_possible_pfn
, 0,
5676 sizeof(arch_zone_highest_possible_pfn
));
5677 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5678 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5679 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5680 if (i
== ZONE_MOVABLE
)
5682 arch_zone_lowest_possible_pfn
[i
] =
5683 arch_zone_highest_possible_pfn
[i
-1];
5684 arch_zone_highest_possible_pfn
[i
] =
5685 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5687 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5688 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5690 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5691 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5692 find_zone_movable_pfns_for_nodes();
5694 /* Print out the zone ranges */
5695 pr_info("Zone ranges:\n");
5696 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5697 if (i
== ZONE_MOVABLE
)
5699 pr_info(" %-8s ", zone_names
[i
]);
5700 if (arch_zone_lowest_possible_pfn
[i
] ==
5701 arch_zone_highest_possible_pfn
[i
])
5704 pr_cont("[mem %#018Lx-%#018Lx]\n",
5705 (u64
)arch_zone_lowest_possible_pfn
[i
]
5707 ((u64
)arch_zone_highest_possible_pfn
[i
]
5708 << PAGE_SHIFT
) - 1);
5711 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5712 pr_info("Movable zone start for each node\n");
5713 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5714 if (zone_movable_pfn
[i
])
5715 pr_info(" Node %d: %#018Lx\n", i
,
5716 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
5719 /* Print out the early node map */
5720 pr_info("Early memory node ranges\n");
5721 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5722 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
5723 (u64
)start_pfn
<< PAGE_SHIFT
,
5724 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5726 /* Initialise every node */
5727 mminit_verify_pageflags_layout();
5728 setup_nr_node_ids();
5729 for_each_online_node(nid
) {
5730 pg_data_t
*pgdat
= NODE_DATA(nid
);
5731 free_area_init_node(nid
, NULL
,
5732 find_min_pfn_for_node(nid
), NULL
);
5734 /* Any memory on that node */
5735 if (pgdat
->node_present_pages
)
5736 node_set_state(nid
, N_MEMORY
);
5737 check_for_memory(pgdat
, nid
);
5741 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5743 unsigned long long coremem
;
5747 coremem
= memparse(p
, &p
);
5748 *core
= coremem
>> PAGE_SHIFT
;
5750 /* Paranoid check that UL is enough for the coremem value */
5751 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5757 * kernelcore=size sets the amount of memory for use for allocations that
5758 * cannot be reclaimed or migrated.
5760 static int __init
cmdline_parse_kernelcore(char *p
)
5762 return cmdline_parse_core(p
, &required_kernelcore
);
5766 * movablecore=size sets the amount of memory for use for allocations that
5767 * can be reclaimed or migrated.
5769 static int __init
cmdline_parse_movablecore(char *p
)
5771 return cmdline_parse_core(p
, &required_movablecore
);
5774 early_param("kernelcore", cmdline_parse_kernelcore
);
5775 early_param("movablecore", cmdline_parse_movablecore
);
5777 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5779 void adjust_managed_page_count(struct page
*page
, long count
)
5781 spin_lock(&managed_page_count_lock
);
5782 page_zone(page
)->managed_pages
+= count
;
5783 totalram_pages
+= count
;
5784 #ifdef CONFIG_HIGHMEM
5785 if (PageHighMem(page
))
5786 totalhigh_pages
+= count
;
5788 spin_unlock(&managed_page_count_lock
);
5790 EXPORT_SYMBOL(adjust_managed_page_count
);
5792 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5795 unsigned long pages
= 0;
5797 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5798 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5799 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5800 if ((unsigned int)poison
<= 0xFF)
5801 memset(pos
, poison
, PAGE_SIZE
);
5802 free_reserved_page(virt_to_page(pos
));
5806 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5807 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5811 EXPORT_SYMBOL(free_reserved_area
);
5813 #ifdef CONFIG_HIGHMEM
5814 void free_highmem_page(struct page
*page
)
5816 __free_reserved_page(page
);
5818 page_zone(page
)->managed_pages
++;
5824 void __init
mem_init_print_info(const char *str
)
5826 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5827 unsigned long init_code_size
, init_data_size
;
5829 physpages
= get_num_physpages();
5830 codesize
= _etext
- _stext
;
5831 datasize
= _edata
- _sdata
;
5832 rosize
= __end_rodata
- __start_rodata
;
5833 bss_size
= __bss_stop
- __bss_start
;
5834 init_data_size
= __init_end
- __init_begin
;
5835 init_code_size
= _einittext
- _sinittext
;
5838 * Detect special cases and adjust section sizes accordingly:
5839 * 1) .init.* may be embedded into .data sections
5840 * 2) .init.text.* may be out of [__init_begin, __init_end],
5841 * please refer to arch/tile/kernel/vmlinux.lds.S.
5842 * 3) .rodata.* may be embedded into .text or .data sections.
5844 #define adj_init_size(start, end, size, pos, adj) \
5846 if (start <= pos && pos < end && size > adj) \
5850 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5851 _sinittext
, init_code_size
);
5852 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5853 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5854 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5855 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5857 #undef adj_init_size
5859 pr_info("Memory: %luK/%luK available "
5860 "(%luK kernel code, %luK rwdata, %luK rodata, "
5861 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5862 #ifdef CONFIG_HIGHMEM
5866 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5867 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5868 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5869 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
-10),
5870 totalcma_pages
<< (PAGE_SHIFT
-10),
5871 #ifdef CONFIG_HIGHMEM
5872 totalhigh_pages
<< (PAGE_SHIFT
-10),
5874 str
? ", " : "", str
? str
: "");
5878 * set_dma_reserve - set the specified number of pages reserved in the first zone
5879 * @new_dma_reserve: The number of pages to mark reserved
5881 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5882 * In the DMA zone, a significant percentage may be consumed by kernel image
5883 * and other unfreeable allocations which can skew the watermarks badly. This
5884 * function may optionally be used to account for unfreeable pages in the
5885 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5886 * smaller per-cpu batchsize.
5888 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5890 dma_reserve
= new_dma_reserve
;
5893 void __init
free_area_init(unsigned long *zones_size
)
5895 free_area_init_node(0, zones_size
,
5896 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5899 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5900 unsigned long action
, void *hcpu
)
5902 int cpu
= (unsigned long)hcpu
;
5904 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5905 lru_add_drain_cpu(cpu
);
5909 * Spill the event counters of the dead processor
5910 * into the current processors event counters.
5911 * This artificially elevates the count of the current
5914 vm_events_fold_cpu(cpu
);
5917 * Zero the differential counters of the dead processor
5918 * so that the vm statistics are consistent.
5920 * This is only okay since the processor is dead and cannot
5921 * race with what we are doing.
5923 cpu_vm_stats_fold(cpu
);
5928 void __init
page_alloc_init(void)
5930 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5934 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5935 * or min_free_kbytes changes.
5937 static void calculate_totalreserve_pages(void)
5939 struct pglist_data
*pgdat
;
5940 unsigned long reserve_pages
= 0;
5941 enum zone_type i
, j
;
5943 for_each_online_pgdat(pgdat
) {
5944 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5945 struct zone
*zone
= pgdat
->node_zones
+ i
;
5948 /* Find valid and maximum lowmem_reserve in the zone */
5949 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5950 if (zone
->lowmem_reserve
[j
] > max
)
5951 max
= zone
->lowmem_reserve
[j
];
5954 /* we treat the high watermark as reserved pages. */
5955 max
+= high_wmark_pages(zone
);
5957 if (max
> zone
->managed_pages
)
5958 max
= zone
->managed_pages
;
5959 reserve_pages
+= max
;
5961 * Lowmem reserves are not available to
5962 * GFP_HIGHUSER page cache allocations and
5963 * kswapd tries to balance zones to their high
5964 * watermark. As a result, neither should be
5965 * regarded as dirtyable memory, to prevent a
5966 * situation where reclaim has to clean pages
5967 * in order to balance the zones.
5969 zone
->dirty_balance_reserve
= max
;
5972 dirty_balance_reserve
= reserve_pages
;
5973 totalreserve_pages
= reserve_pages
;
5977 * setup_per_zone_lowmem_reserve - called whenever
5978 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5979 * has a correct pages reserved value, so an adequate number of
5980 * pages are left in the zone after a successful __alloc_pages().
5982 static void setup_per_zone_lowmem_reserve(void)
5984 struct pglist_data
*pgdat
;
5985 enum zone_type j
, idx
;
5987 for_each_online_pgdat(pgdat
) {
5988 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5989 struct zone
*zone
= pgdat
->node_zones
+ j
;
5990 unsigned long managed_pages
= zone
->managed_pages
;
5992 zone
->lowmem_reserve
[j
] = 0;
5996 struct zone
*lower_zone
;
6000 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6001 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6003 lower_zone
= pgdat
->node_zones
+ idx
;
6004 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6005 sysctl_lowmem_reserve_ratio
[idx
];
6006 managed_pages
+= lower_zone
->managed_pages
;
6011 /* update totalreserve_pages */
6012 calculate_totalreserve_pages();
6015 static void __setup_per_zone_wmarks(void)
6017 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6018 unsigned long lowmem_pages
= 0;
6020 unsigned long flags
;
6022 /* Calculate total number of !ZONE_HIGHMEM pages */
6023 for_each_zone(zone
) {
6024 if (!is_highmem(zone
))
6025 lowmem_pages
+= zone
->managed_pages
;
6028 for_each_zone(zone
) {
6031 spin_lock_irqsave(&zone
->lock
, flags
);
6032 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6033 do_div(tmp
, lowmem_pages
);
6034 if (is_highmem(zone
)) {
6036 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6037 * need highmem pages, so cap pages_min to a small
6040 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6041 * deltas control asynch page reclaim, and so should
6042 * not be capped for highmem.
6044 unsigned long min_pages
;
6046 min_pages
= zone
->managed_pages
/ 1024;
6047 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6048 zone
->watermark
[WMARK_MIN
] = min_pages
;
6051 * If it's a lowmem zone, reserve a number of pages
6052 * proportionate to the zone's size.
6054 zone
->watermark
[WMARK_MIN
] = tmp
;
6057 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
6058 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
6060 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6061 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6062 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6064 spin_unlock_irqrestore(&zone
->lock
, flags
);
6067 /* update totalreserve_pages */
6068 calculate_totalreserve_pages();
6072 * setup_per_zone_wmarks - called when min_free_kbytes changes
6073 * or when memory is hot-{added|removed}
6075 * Ensures that the watermark[min,low,high] values for each zone are set
6076 * correctly with respect to min_free_kbytes.
6078 void setup_per_zone_wmarks(void)
6080 mutex_lock(&zonelists_mutex
);
6081 __setup_per_zone_wmarks();
6082 mutex_unlock(&zonelists_mutex
);
6086 * The inactive anon list should be small enough that the VM never has to
6087 * do too much work, but large enough that each inactive page has a chance
6088 * to be referenced again before it is swapped out.
6090 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6091 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6092 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6093 * the anonymous pages are kept on the inactive list.
6096 * memory ratio inactive anon
6097 * -------------------------------------
6106 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6108 unsigned int gb
, ratio
;
6110 /* Zone size in gigabytes */
6111 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6113 ratio
= int_sqrt(10 * gb
);
6117 zone
->inactive_ratio
= ratio
;
6120 static void __meminit
setup_per_zone_inactive_ratio(void)
6125 calculate_zone_inactive_ratio(zone
);
6129 * Initialise min_free_kbytes.
6131 * For small machines we want it small (128k min). For large machines
6132 * we want it large (64MB max). But it is not linear, because network
6133 * bandwidth does not increase linearly with machine size. We use
6135 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6136 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6152 int __meminit
init_per_zone_wmark_min(void)
6154 unsigned long lowmem_kbytes
;
6155 int new_min_free_kbytes
;
6157 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6158 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6160 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6161 min_free_kbytes
= new_min_free_kbytes
;
6162 if (min_free_kbytes
< 128)
6163 min_free_kbytes
= 128;
6164 if (min_free_kbytes
> 65536)
6165 min_free_kbytes
= 65536;
6167 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6168 new_min_free_kbytes
, user_min_free_kbytes
);
6170 setup_per_zone_wmarks();
6171 refresh_zone_stat_thresholds();
6172 setup_per_zone_lowmem_reserve();
6173 setup_per_zone_inactive_ratio();
6176 module_init(init_per_zone_wmark_min
)
6179 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6180 * that we can call two helper functions whenever min_free_kbytes
6183 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6184 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6188 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6193 user_min_free_kbytes
= min_free_kbytes
;
6194 setup_per_zone_wmarks();
6200 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6201 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6206 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6211 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6212 sysctl_min_unmapped_ratio
) / 100;
6216 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6217 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6222 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6227 zone
->min_slab_pages
= (zone
->managed_pages
*
6228 sysctl_min_slab_ratio
) / 100;
6234 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6235 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6236 * whenever sysctl_lowmem_reserve_ratio changes.
6238 * The reserve ratio obviously has absolutely no relation with the
6239 * minimum watermarks. The lowmem reserve ratio can only make sense
6240 * if in function of the boot time zone sizes.
6242 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6243 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6245 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6246 setup_per_zone_lowmem_reserve();
6251 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6252 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6253 * pagelist can have before it gets flushed back to buddy allocator.
6255 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6256 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6259 int old_percpu_pagelist_fraction
;
6262 mutex_lock(&pcp_batch_high_lock
);
6263 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6265 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6266 if (!write
|| ret
< 0)
6269 /* Sanity checking to avoid pcp imbalance */
6270 if (percpu_pagelist_fraction
&&
6271 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6272 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6278 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6281 for_each_populated_zone(zone
) {
6284 for_each_possible_cpu(cpu
)
6285 pageset_set_high_and_batch(zone
,
6286 per_cpu_ptr(zone
->pageset
, cpu
));
6289 mutex_unlock(&pcp_batch_high_lock
);
6294 int hashdist
= HASHDIST_DEFAULT
;
6296 static int __init
set_hashdist(char *str
)
6300 hashdist
= simple_strtoul(str
, &str
, 0);
6303 __setup("hashdist=", set_hashdist
);
6307 * allocate a large system hash table from bootmem
6308 * - it is assumed that the hash table must contain an exact power-of-2
6309 * quantity of entries
6310 * - limit is the number of hash buckets, not the total allocation size
6312 void *__init
alloc_large_system_hash(const char *tablename
,
6313 unsigned long bucketsize
,
6314 unsigned long numentries
,
6317 unsigned int *_hash_shift
,
6318 unsigned int *_hash_mask
,
6319 unsigned long low_limit
,
6320 unsigned long high_limit
)
6322 unsigned long long max
= high_limit
;
6323 unsigned long log2qty
, size
;
6326 /* allow the kernel cmdline to have a say */
6328 /* round applicable memory size up to nearest megabyte */
6329 numentries
= nr_kernel_pages
;
6331 /* It isn't necessary when PAGE_SIZE >= 1MB */
6332 if (PAGE_SHIFT
< 20)
6333 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6335 /* limit to 1 bucket per 2^scale bytes of low memory */
6336 if (scale
> PAGE_SHIFT
)
6337 numentries
>>= (scale
- PAGE_SHIFT
);
6339 numentries
<<= (PAGE_SHIFT
- scale
);
6341 /* Make sure we've got at least a 0-order allocation.. */
6342 if (unlikely(flags
& HASH_SMALL
)) {
6343 /* Makes no sense without HASH_EARLY */
6344 WARN_ON(!(flags
& HASH_EARLY
));
6345 if (!(numentries
>> *_hash_shift
)) {
6346 numentries
= 1UL << *_hash_shift
;
6347 BUG_ON(!numentries
);
6349 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6350 numentries
= PAGE_SIZE
/ bucketsize
;
6352 numentries
= roundup_pow_of_two(numentries
);
6354 /* limit allocation size to 1/16 total memory by default */
6356 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6357 do_div(max
, bucketsize
);
6359 max
= min(max
, 0x80000000ULL
);
6361 if (numentries
< low_limit
)
6362 numentries
= low_limit
;
6363 if (numentries
> max
)
6366 log2qty
= ilog2(numentries
);
6369 size
= bucketsize
<< log2qty
;
6370 if (flags
& HASH_EARLY
)
6371 table
= memblock_virt_alloc_nopanic(size
, 0);
6373 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6376 * If bucketsize is not a power-of-two, we may free
6377 * some pages at the end of hash table which
6378 * alloc_pages_exact() automatically does
6380 if (get_order(size
) < MAX_ORDER
) {
6381 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6382 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6385 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6388 panic("Failed to allocate %s hash table\n", tablename
);
6390 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6393 ilog2(size
) - PAGE_SHIFT
,
6397 *_hash_shift
= log2qty
;
6399 *_hash_mask
= (1 << log2qty
) - 1;
6404 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6405 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6408 #ifdef CONFIG_SPARSEMEM
6409 return __pfn_to_section(pfn
)->pageblock_flags
;
6411 return zone
->pageblock_flags
;
6412 #endif /* CONFIG_SPARSEMEM */
6415 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6417 #ifdef CONFIG_SPARSEMEM
6418 pfn
&= (PAGES_PER_SECTION
-1);
6419 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6421 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6422 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6423 #endif /* CONFIG_SPARSEMEM */
6427 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6428 * @page: The page within the block of interest
6429 * @pfn: The target page frame number
6430 * @end_bitidx: The last bit of interest to retrieve
6431 * @mask: mask of bits that the caller is interested in
6433 * Return: pageblock_bits flags
6435 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6436 unsigned long end_bitidx
,
6440 unsigned long *bitmap
;
6441 unsigned long bitidx
, word_bitidx
;
6444 zone
= page_zone(page
);
6445 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6446 bitidx
= pfn_to_bitidx(zone
, pfn
);
6447 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6448 bitidx
&= (BITS_PER_LONG
-1);
6450 word
= bitmap
[word_bitidx
];
6451 bitidx
+= end_bitidx
;
6452 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6456 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6457 * @page: The page within the block of interest
6458 * @flags: The flags to set
6459 * @pfn: The target page frame number
6460 * @end_bitidx: The last bit of interest
6461 * @mask: mask of bits that the caller is interested in
6463 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6465 unsigned long end_bitidx
,
6469 unsigned long *bitmap
;
6470 unsigned long bitidx
, word_bitidx
;
6471 unsigned long old_word
, word
;
6473 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6475 zone
= page_zone(page
);
6476 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6477 bitidx
= pfn_to_bitidx(zone
, pfn
);
6478 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6479 bitidx
&= (BITS_PER_LONG
-1);
6481 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6483 bitidx
+= end_bitidx
;
6484 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6485 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6487 word
= READ_ONCE(bitmap
[word_bitidx
]);
6489 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6490 if (word
== old_word
)
6497 * This function checks whether pageblock includes unmovable pages or not.
6498 * If @count is not zero, it is okay to include less @count unmovable pages
6500 * PageLRU check without isolation or lru_lock could race so that
6501 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6502 * expect this function should be exact.
6504 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6505 bool skip_hwpoisoned_pages
)
6507 unsigned long pfn
, iter
, found
;
6511 * For avoiding noise data, lru_add_drain_all() should be called
6512 * If ZONE_MOVABLE, the zone never contains unmovable pages
6514 if (zone_idx(zone
) == ZONE_MOVABLE
)
6516 mt
= get_pageblock_migratetype(page
);
6517 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6520 pfn
= page_to_pfn(page
);
6521 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6522 unsigned long check
= pfn
+ iter
;
6524 if (!pfn_valid_within(check
))
6527 page
= pfn_to_page(check
);
6530 * Hugepages are not in LRU lists, but they're movable.
6531 * We need not scan over tail pages bacause we don't
6532 * handle each tail page individually in migration.
6534 if (PageHuge(page
)) {
6535 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6540 * We can't use page_count without pin a page
6541 * because another CPU can free compound page.
6542 * This check already skips compound tails of THP
6543 * because their page->_count is zero at all time.
6545 if (!atomic_read(&page
->_count
)) {
6546 if (PageBuddy(page
))
6547 iter
+= (1 << page_order(page
)) - 1;
6552 * The HWPoisoned page may be not in buddy system, and
6553 * page_count() is not 0.
6555 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6561 * If there are RECLAIMABLE pages, we need to check
6562 * it. But now, memory offline itself doesn't call
6563 * shrink_node_slabs() and it still to be fixed.
6566 * If the page is not RAM, page_count()should be 0.
6567 * we don't need more check. This is an _used_ not-movable page.
6569 * The problematic thing here is PG_reserved pages. PG_reserved
6570 * is set to both of a memory hole page and a _used_ kernel
6579 bool is_pageblock_removable_nolock(struct page
*page
)
6585 * We have to be careful here because we are iterating over memory
6586 * sections which are not zone aware so we might end up outside of
6587 * the zone but still within the section.
6588 * We have to take care about the node as well. If the node is offline
6589 * its NODE_DATA will be NULL - see page_zone.
6591 if (!node_online(page_to_nid(page
)))
6594 zone
= page_zone(page
);
6595 pfn
= page_to_pfn(page
);
6596 if (!zone_spans_pfn(zone
, pfn
))
6599 return !has_unmovable_pages(zone
, page
, 0, true);
6604 static unsigned long pfn_max_align_down(unsigned long pfn
)
6606 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6607 pageblock_nr_pages
) - 1);
6610 static unsigned long pfn_max_align_up(unsigned long pfn
)
6612 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6613 pageblock_nr_pages
));
6616 /* [start, end) must belong to a single zone. */
6617 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6618 unsigned long start
, unsigned long end
)
6620 /* This function is based on compact_zone() from compaction.c. */
6621 unsigned long nr_reclaimed
;
6622 unsigned long pfn
= start
;
6623 unsigned int tries
= 0;
6628 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6629 if (fatal_signal_pending(current
)) {
6634 if (list_empty(&cc
->migratepages
)) {
6635 cc
->nr_migratepages
= 0;
6636 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6642 } else if (++tries
== 5) {
6643 ret
= ret
< 0 ? ret
: -EBUSY
;
6647 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6649 cc
->nr_migratepages
-= nr_reclaimed
;
6651 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6652 NULL
, 0, cc
->mode
, MR_CMA
);
6655 putback_movable_pages(&cc
->migratepages
);
6662 * alloc_contig_range() -- tries to allocate given range of pages
6663 * @start: start PFN to allocate
6664 * @end: one-past-the-last PFN to allocate
6665 * @migratetype: migratetype of the underlaying pageblocks (either
6666 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6667 * in range must have the same migratetype and it must
6668 * be either of the two.
6670 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6671 * aligned, however it's the caller's responsibility to guarantee that
6672 * we are the only thread that changes migrate type of pageblocks the
6675 * The PFN range must belong to a single zone.
6677 * Returns zero on success or negative error code. On success all
6678 * pages which PFN is in [start, end) are allocated for the caller and
6679 * need to be freed with free_contig_range().
6681 int alloc_contig_range(unsigned long start
, unsigned long end
,
6682 unsigned migratetype
)
6684 unsigned long outer_start
, outer_end
;
6688 struct compact_control cc
= {
6689 .nr_migratepages
= 0,
6691 .zone
= page_zone(pfn_to_page(start
)),
6692 .mode
= MIGRATE_SYNC
,
6693 .ignore_skip_hint
= true,
6695 INIT_LIST_HEAD(&cc
.migratepages
);
6698 * What we do here is we mark all pageblocks in range as
6699 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6700 * have different sizes, and due to the way page allocator
6701 * work, we align the range to biggest of the two pages so
6702 * that page allocator won't try to merge buddies from
6703 * different pageblocks and change MIGRATE_ISOLATE to some
6704 * other migration type.
6706 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6707 * migrate the pages from an unaligned range (ie. pages that
6708 * we are interested in). This will put all the pages in
6709 * range back to page allocator as MIGRATE_ISOLATE.
6711 * When this is done, we take the pages in range from page
6712 * allocator removing them from the buddy system. This way
6713 * page allocator will never consider using them.
6715 * This lets us mark the pageblocks back as
6716 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6717 * aligned range but not in the unaligned, original range are
6718 * put back to page allocator so that buddy can use them.
6721 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6722 pfn_max_align_up(end
), migratetype
,
6727 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6732 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6733 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6734 * more, all pages in [start, end) are free in page allocator.
6735 * What we are going to do is to allocate all pages from
6736 * [start, end) (that is remove them from page allocator).
6738 * The only problem is that pages at the beginning and at the
6739 * end of interesting range may be not aligned with pages that
6740 * page allocator holds, ie. they can be part of higher order
6741 * pages. Because of this, we reserve the bigger range and
6742 * once this is done free the pages we are not interested in.
6744 * We don't have to hold zone->lock here because the pages are
6745 * isolated thus they won't get removed from buddy.
6748 lru_add_drain_all();
6749 drain_all_pages(cc
.zone
);
6752 outer_start
= start
;
6753 while (!PageBuddy(pfn_to_page(outer_start
))) {
6754 if (++order
>= MAX_ORDER
) {
6758 outer_start
&= ~0UL << order
;
6761 /* Make sure the range is really isolated. */
6762 if (test_pages_isolated(outer_start
, end
, false)) {
6763 pr_info("%s: [%lx, %lx) PFNs busy\n",
6764 __func__
, outer_start
, end
);
6769 /* Grab isolated pages from freelists. */
6770 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6776 /* Free head and tail (if any) */
6777 if (start
!= outer_start
)
6778 free_contig_range(outer_start
, start
- outer_start
);
6779 if (end
!= outer_end
)
6780 free_contig_range(end
, outer_end
- end
);
6783 undo_isolate_page_range(pfn_max_align_down(start
),
6784 pfn_max_align_up(end
), migratetype
);
6788 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6790 unsigned int count
= 0;
6792 for (; nr_pages
--; pfn
++) {
6793 struct page
*page
= pfn_to_page(pfn
);
6795 count
+= page_count(page
) != 1;
6798 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6802 #ifdef CONFIG_MEMORY_HOTPLUG
6804 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6805 * page high values need to be recalulated.
6807 void __meminit
zone_pcp_update(struct zone
*zone
)
6810 mutex_lock(&pcp_batch_high_lock
);
6811 for_each_possible_cpu(cpu
)
6812 pageset_set_high_and_batch(zone
,
6813 per_cpu_ptr(zone
->pageset
, cpu
));
6814 mutex_unlock(&pcp_batch_high_lock
);
6818 void zone_pcp_reset(struct zone
*zone
)
6820 unsigned long flags
;
6822 struct per_cpu_pageset
*pset
;
6824 /* avoid races with drain_pages() */
6825 local_irq_save(flags
);
6826 if (zone
->pageset
!= &boot_pageset
) {
6827 for_each_online_cpu(cpu
) {
6828 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6829 drain_zonestat(zone
, pset
);
6831 free_percpu(zone
->pageset
);
6832 zone
->pageset
= &boot_pageset
;
6834 local_irq_restore(flags
);
6837 #ifdef CONFIG_MEMORY_HOTREMOVE
6839 * All pages in the range must be isolated before calling this.
6842 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6846 unsigned int order
, i
;
6848 unsigned long flags
;
6849 /* find the first valid pfn */
6850 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6855 zone
= page_zone(pfn_to_page(pfn
));
6856 spin_lock_irqsave(&zone
->lock
, flags
);
6858 while (pfn
< end_pfn
) {
6859 if (!pfn_valid(pfn
)) {
6863 page
= pfn_to_page(pfn
);
6865 * The HWPoisoned page may be not in buddy system, and
6866 * page_count() is not 0.
6868 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6870 SetPageReserved(page
);
6874 BUG_ON(page_count(page
));
6875 BUG_ON(!PageBuddy(page
));
6876 order
= page_order(page
);
6877 #ifdef CONFIG_DEBUG_VM
6878 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6879 pfn
, 1 << order
, end_pfn
);
6881 list_del(&page
->lru
);
6882 rmv_page_order(page
);
6883 zone
->free_area
[order
].nr_free
--;
6884 for (i
= 0; i
< (1 << order
); i
++)
6885 SetPageReserved((page
+i
));
6886 pfn
+= (1 << order
);
6888 spin_unlock_irqrestore(&zone
->lock
, flags
);
6892 #ifdef CONFIG_MEMORY_FAILURE
6893 bool is_free_buddy_page(struct page
*page
)
6895 struct zone
*zone
= page_zone(page
);
6896 unsigned long pfn
= page_to_pfn(page
);
6897 unsigned long flags
;
6900 spin_lock_irqsave(&zone
->lock
, flags
);
6901 for (order
= 0; order
< MAX_ORDER
; order
++) {
6902 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6904 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6907 spin_unlock_irqrestore(&zone
->lock
, flags
);
6909 return order
< MAX_ORDER
;