mm: numa: avoid unnecessary work on the failure path
[linux/fpc-iii.git] / mm / migrate.c
bloba987525810ae3da6aec4b358944b33da80d33366
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
78 void putback_lru_pages(struct list_head *l)
80 struct page *page;
81 struct page *page2;
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
98 void putback_movable_pages(struct list_head *l)
100 struct page *page;
101 struct page *page2;
103 list_for_each_entry_safe(page, page2, l, lru) {
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
108 list_del(&page->lru);
109 dec_zone_page_state(page, NR_ISOLATED_ANON +
110 page_is_file_cache(page));
111 if (unlikely(isolated_balloon_page(page)))
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
119 * Restore a potential migration pte to a working pte entry
121 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
134 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
135 } else {
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
138 goto out;
139 if (pmd_trans_huge(*pmd))
140 goto out;
142 ptep = pte_offset_map(pmd, addr);
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
149 ptl = pte_lockptr(mm, pmd);
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
155 goto unlock;
157 entry = pte_to_swp_entry(pte);
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
169 #ifdef CONFIG_HUGETLB_PAGE
170 if (PageHuge(new)) {
171 pte = pte_mkhuge(pte);
172 pte = arch_make_huge_pte(pte, vma, new, 0);
174 #endif
175 flush_dcache_page(new);
176 set_pte_at(mm, addr, ptep, pte);
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
188 /* No need to invalidate - it was non-present before */
189 update_mmu_cache(vma, addr, ptep);
190 unlock:
191 pte_unmap_unlock(ptep, ptl);
192 out:
193 return SWAP_AGAIN;
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
200 static void remove_migration_ptes(struct page *old, struct page *new)
202 rmap_walk(new, remove_migration_pte, old);
206 * Something used the pte of a page under migration. We need to
207 * get to the page and wait until migration is finished.
208 * When we return from this function the fault will be retried.
210 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
211 spinlock_t *ptl)
213 pte_t pte;
214 swp_entry_t entry;
215 struct page *page;
217 spin_lock(ptl);
218 pte = *ptep;
219 if (!is_swap_pte(pte))
220 goto out;
222 entry = pte_to_swp_entry(pte);
223 if (!is_migration_entry(entry))
224 goto out;
226 page = migration_entry_to_page(entry);
229 * Once radix-tree replacement of page migration started, page_count
230 * *must* be zero. And, we don't want to call wait_on_page_locked()
231 * against a page without get_page().
232 * So, we use get_page_unless_zero(), here. Even failed, page fault
233 * will occur again.
235 if (!get_page_unless_zero(page))
236 goto out;
237 pte_unmap_unlock(ptep, ptl);
238 wait_on_page_locked(page);
239 put_page(page);
240 return;
241 out:
242 pte_unmap_unlock(ptep, ptl);
245 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
246 unsigned long address)
248 spinlock_t *ptl = pte_lockptr(mm, pmd);
249 pte_t *ptep = pte_offset_map(pmd, address);
250 __migration_entry_wait(mm, ptep, ptl);
253 void migration_entry_wait_huge(struct vm_area_struct *vma,
254 struct mm_struct *mm, pte_t *pte)
256 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
257 __migration_entry_wait(mm, pte, ptl);
260 #ifdef CONFIG_BLOCK
261 /* Returns true if all buffers are successfully locked */
262 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 enum migrate_mode mode)
265 struct buffer_head *bh = head;
267 /* Simple case, sync compaction */
268 if (mode != MIGRATE_ASYNC) {
269 do {
270 get_bh(bh);
271 lock_buffer(bh);
272 bh = bh->b_this_page;
274 } while (bh != head);
276 return true;
279 /* async case, we cannot block on lock_buffer so use trylock_buffer */
280 do {
281 get_bh(bh);
282 if (!trylock_buffer(bh)) {
284 * We failed to lock the buffer and cannot stall in
285 * async migration. Release the taken locks
287 struct buffer_head *failed_bh = bh;
288 put_bh(failed_bh);
289 bh = head;
290 while (bh != failed_bh) {
291 unlock_buffer(bh);
292 put_bh(bh);
293 bh = bh->b_this_page;
295 return false;
298 bh = bh->b_this_page;
299 } while (bh != head);
300 return true;
302 #else
303 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
304 enum migrate_mode mode)
306 return true;
308 #endif /* CONFIG_BLOCK */
311 * Replace the page in the mapping.
313 * The number of remaining references must be:
314 * 1 for anonymous pages without a mapping
315 * 2 for pages with a mapping
316 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
318 int migrate_page_move_mapping(struct address_space *mapping,
319 struct page *newpage, struct page *page,
320 struct buffer_head *head, enum migrate_mode mode)
322 int expected_count = 0;
323 void **pslot;
325 if (!mapping) {
326 /* Anonymous page without mapping */
327 if (page_count(page) != 1)
328 return -EAGAIN;
329 return MIGRATEPAGE_SUCCESS;
332 spin_lock_irq(&mapping->tree_lock);
334 pslot = radix_tree_lookup_slot(&mapping->page_tree,
335 page_index(page));
337 expected_count = 2 + page_has_private(page);
338 if (page_count(page) != expected_count ||
339 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
340 spin_unlock_irq(&mapping->tree_lock);
341 return -EAGAIN;
344 if (!page_freeze_refs(page, expected_count)) {
345 spin_unlock_irq(&mapping->tree_lock);
346 return -EAGAIN;
350 * In the async migration case of moving a page with buffers, lock the
351 * buffers using trylock before the mapping is moved. If the mapping
352 * was moved, we later failed to lock the buffers and could not move
353 * the mapping back due to an elevated page count, we would have to
354 * block waiting on other references to be dropped.
356 if (mode == MIGRATE_ASYNC && head &&
357 !buffer_migrate_lock_buffers(head, mode)) {
358 page_unfreeze_refs(page, expected_count);
359 spin_unlock_irq(&mapping->tree_lock);
360 return -EAGAIN;
364 * Now we know that no one else is looking at the page.
366 get_page(newpage); /* add cache reference */
367 if (PageSwapCache(page)) {
368 SetPageSwapCache(newpage);
369 set_page_private(newpage, page_private(page));
372 radix_tree_replace_slot(pslot, newpage);
375 * Drop cache reference from old page by unfreezing
376 * to one less reference.
377 * We know this isn't the last reference.
379 page_unfreeze_refs(page, expected_count - 1);
382 * If moved to a different zone then also account
383 * the page for that zone. Other VM counters will be
384 * taken care of when we establish references to the
385 * new page and drop references to the old page.
387 * Note that anonymous pages are accounted for
388 * via NR_FILE_PAGES and NR_ANON_PAGES if they
389 * are mapped to swap space.
391 __dec_zone_page_state(page, NR_FILE_PAGES);
392 __inc_zone_page_state(newpage, NR_FILE_PAGES);
393 if (!PageSwapCache(page) && PageSwapBacked(page)) {
394 __dec_zone_page_state(page, NR_SHMEM);
395 __inc_zone_page_state(newpage, NR_SHMEM);
397 spin_unlock_irq(&mapping->tree_lock);
399 return MIGRATEPAGE_SUCCESS;
403 * The expected number of remaining references is the same as that
404 * of migrate_page_move_mapping().
406 int migrate_huge_page_move_mapping(struct address_space *mapping,
407 struct page *newpage, struct page *page)
409 int expected_count;
410 void **pslot;
412 if (!mapping) {
413 if (page_count(page) != 1)
414 return -EAGAIN;
415 return MIGRATEPAGE_SUCCESS;
418 spin_lock_irq(&mapping->tree_lock);
420 pslot = radix_tree_lookup_slot(&mapping->page_tree,
421 page_index(page));
423 expected_count = 2 + page_has_private(page);
424 if (page_count(page) != expected_count ||
425 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
426 spin_unlock_irq(&mapping->tree_lock);
427 return -EAGAIN;
430 if (!page_freeze_refs(page, expected_count)) {
431 spin_unlock_irq(&mapping->tree_lock);
432 return -EAGAIN;
435 get_page(newpage);
437 radix_tree_replace_slot(pslot, newpage);
439 page_unfreeze_refs(page, expected_count - 1);
441 spin_unlock_irq(&mapping->tree_lock);
442 return MIGRATEPAGE_SUCCESS;
446 * Gigantic pages are so large that we do not guarantee that page++ pointer
447 * arithmetic will work across the entire page. We need something more
448 * specialized.
450 static void __copy_gigantic_page(struct page *dst, struct page *src,
451 int nr_pages)
453 int i;
454 struct page *dst_base = dst;
455 struct page *src_base = src;
457 for (i = 0; i < nr_pages; ) {
458 cond_resched();
459 copy_highpage(dst, src);
461 i++;
462 dst = mem_map_next(dst, dst_base, i);
463 src = mem_map_next(src, src_base, i);
467 static void copy_huge_page(struct page *dst, struct page *src)
469 int i;
470 int nr_pages;
472 if (PageHuge(src)) {
473 /* hugetlbfs page */
474 struct hstate *h = page_hstate(src);
475 nr_pages = pages_per_huge_page(h);
477 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
478 __copy_gigantic_page(dst, src, nr_pages);
479 return;
481 } else {
482 /* thp page */
483 BUG_ON(!PageTransHuge(src));
484 nr_pages = hpage_nr_pages(src);
487 for (i = 0; i < nr_pages; i++) {
488 cond_resched();
489 copy_highpage(dst + i, src + i);
494 * Copy the page to its new location
496 void migrate_page_copy(struct page *newpage, struct page *page)
498 int cpupid;
500 if (PageHuge(page) || PageTransHuge(page))
501 copy_huge_page(newpage, page);
502 else
503 copy_highpage(newpage, page);
505 if (PageError(page))
506 SetPageError(newpage);
507 if (PageReferenced(page))
508 SetPageReferenced(newpage);
509 if (PageUptodate(page))
510 SetPageUptodate(newpage);
511 if (TestClearPageActive(page)) {
512 VM_BUG_ON(PageUnevictable(page));
513 SetPageActive(newpage);
514 } else if (TestClearPageUnevictable(page))
515 SetPageUnevictable(newpage);
516 if (PageChecked(page))
517 SetPageChecked(newpage);
518 if (PageMappedToDisk(page))
519 SetPageMappedToDisk(newpage);
521 if (PageDirty(page)) {
522 clear_page_dirty_for_io(page);
524 * Want to mark the page and the radix tree as dirty, and
525 * redo the accounting that clear_page_dirty_for_io undid,
526 * but we can't use set_page_dirty because that function
527 * is actually a signal that all of the page has become dirty.
528 * Whereas only part of our page may be dirty.
530 if (PageSwapBacked(page))
531 SetPageDirty(newpage);
532 else
533 __set_page_dirty_nobuffers(newpage);
537 * Copy NUMA information to the new page, to prevent over-eager
538 * future migrations of this same page.
540 cpupid = page_cpupid_xchg_last(page, -1);
541 page_cpupid_xchg_last(newpage, cpupid);
543 mlock_migrate_page(newpage, page);
544 ksm_migrate_page(newpage, page);
546 * Please do not reorder this without considering how mm/ksm.c's
547 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
549 ClearPageSwapCache(page);
550 ClearPagePrivate(page);
551 set_page_private(page, 0);
554 * If any waiters have accumulated on the new page then
555 * wake them up.
557 if (PageWriteback(newpage))
558 end_page_writeback(newpage);
561 /************************************************************
562 * Migration functions
563 ***********************************************************/
565 /* Always fail migration. Used for mappings that are not movable */
566 int fail_migrate_page(struct address_space *mapping,
567 struct page *newpage, struct page *page)
569 return -EIO;
571 EXPORT_SYMBOL(fail_migrate_page);
574 * Common logic to directly migrate a single page suitable for
575 * pages that do not use PagePrivate/PagePrivate2.
577 * Pages are locked upon entry and exit.
579 int migrate_page(struct address_space *mapping,
580 struct page *newpage, struct page *page,
581 enum migrate_mode mode)
583 int rc;
585 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
587 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
589 if (rc != MIGRATEPAGE_SUCCESS)
590 return rc;
592 migrate_page_copy(newpage, page);
593 return MIGRATEPAGE_SUCCESS;
595 EXPORT_SYMBOL(migrate_page);
597 #ifdef CONFIG_BLOCK
599 * Migration function for pages with buffers. This function can only be used
600 * if the underlying filesystem guarantees that no other references to "page"
601 * exist.
603 int buffer_migrate_page(struct address_space *mapping,
604 struct page *newpage, struct page *page, enum migrate_mode mode)
606 struct buffer_head *bh, *head;
607 int rc;
609 if (!page_has_buffers(page))
610 return migrate_page(mapping, newpage, page, mode);
612 head = page_buffers(page);
614 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
616 if (rc != MIGRATEPAGE_SUCCESS)
617 return rc;
620 * In the async case, migrate_page_move_mapping locked the buffers
621 * with an IRQ-safe spinlock held. In the sync case, the buffers
622 * need to be locked now
624 if (mode != MIGRATE_ASYNC)
625 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
627 ClearPagePrivate(page);
628 set_page_private(newpage, page_private(page));
629 set_page_private(page, 0);
630 put_page(page);
631 get_page(newpage);
633 bh = head;
634 do {
635 set_bh_page(bh, newpage, bh_offset(bh));
636 bh = bh->b_this_page;
638 } while (bh != head);
640 SetPagePrivate(newpage);
642 migrate_page_copy(newpage, page);
644 bh = head;
645 do {
646 unlock_buffer(bh);
647 put_bh(bh);
648 bh = bh->b_this_page;
650 } while (bh != head);
652 return MIGRATEPAGE_SUCCESS;
654 EXPORT_SYMBOL(buffer_migrate_page);
655 #endif
658 * Writeback a page to clean the dirty state
660 static int writeout(struct address_space *mapping, struct page *page)
662 struct writeback_control wbc = {
663 .sync_mode = WB_SYNC_NONE,
664 .nr_to_write = 1,
665 .range_start = 0,
666 .range_end = LLONG_MAX,
667 .for_reclaim = 1
669 int rc;
671 if (!mapping->a_ops->writepage)
672 /* No write method for the address space */
673 return -EINVAL;
675 if (!clear_page_dirty_for_io(page))
676 /* Someone else already triggered a write */
677 return -EAGAIN;
680 * A dirty page may imply that the underlying filesystem has
681 * the page on some queue. So the page must be clean for
682 * migration. Writeout may mean we loose the lock and the
683 * page state is no longer what we checked for earlier.
684 * At this point we know that the migration attempt cannot
685 * be successful.
687 remove_migration_ptes(page, page);
689 rc = mapping->a_ops->writepage(page, &wbc);
691 if (rc != AOP_WRITEPAGE_ACTIVATE)
692 /* unlocked. Relock */
693 lock_page(page);
695 return (rc < 0) ? -EIO : -EAGAIN;
699 * Default handling if a filesystem does not provide a migration function.
701 static int fallback_migrate_page(struct address_space *mapping,
702 struct page *newpage, struct page *page, enum migrate_mode mode)
704 if (PageDirty(page)) {
705 /* Only writeback pages in full synchronous migration */
706 if (mode != MIGRATE_SYNC)
707 return -EBUSY;
708 return writeout(mapping, page);
712 * Buffers may be managed in a filesystem specific way.
713 * We must have no buffers or drop them.
715 if (page_has_private(page) &&
716 !try_to_release_page(page, GFP_KERNEL))
717 return -EAGAIN;
719 return migrate_page(mapping, newpage, page, mode);
723 * Move a page to a newly allocated page
724 * The page is locked and all ptes have been successfully removed.
726 * The new page will have replaced the old page if this function
727 * is successful.
729 * Return value:
730 * < 0 - error code
731 * MIGRATEPAGE_SUCCESS - success
733 static int move_to_new_page(struct page *newpage, struct page *page,
734 int remap_swapcache, enum migrate_mode mode)
736 struct address_space *mapping;
737 int rc;
740 * Block others from accessing the page when we get around to
741 * establishing additional references. We are the only one
742 * holding a reference to the new page at this point.
744 if (!trylock_page(newpage))
745 BUG();
747 /* Prepare mapping for the new page.*/
748 newpage->index = page->index;
749 newpage->mapping = page->mapping;
750 if (PageSwapBacked(page))
751 SetPageSwapBacked(newpage);
753 mapping = page_mapping(page);
754 if (!mapping)
755 rc = migrate_page(mapping, newpage, page, mode);
756 else if (mapping->a_ops->migratepage)
758 * Most pages have a mapping and most filesystems provide a
759 * migratepage callback. Anonymous pages are part of swap
760 * space which also has its own migratepage callback. This
761 * is the most common path for page migration.
763 rc = mapping->a_ops->migratepage(mapping,
764 newpage, page, mode);
765 else
766 rc = fallback_migrate_page(mapping, newpage, page, mode);
768 if (rc != MIGRATEPAGE_SUCCESS) {
769 newpage->mapping = NULL;
770 } else {
771 if (remap_swapcache)
772 remove_migration_ptes(page, newpage);
773 page->mapping = NULL;
776 unlock_page(newpage);
778 return rc;
781 static int __unmap_and_move(struct page *page, struct page *newpage,
782 int force, enum migrate_mode mode)
784 int rc = -EAGAIN;
785 int remap_swapcache = 1;
786 struct mem_cgroup *mem;
787 struct anon_vma *anon_vma = NULL;
789 if (!trylock_page(page)) {
790 if (!force || mode == MIGRATE_ASYNC)
791 goto out;
794 * It's not safe for direct compaction to call lock_page.
795 * For example, during page readahead pages are added locked
796 * to the LRU. Later, when the IO completes the pages are
797 * marked uptodate and unlocked. However, the queueing
798 * could be merging multiple pages for one bio (e.g.
799 * mpage_readpages). If an allocation happens for the
800 * second or third page, the process can end up locking
801 * the same page twice and deadlocking. Rather than
802 * trying to be clever about what pages can be locked,
803 * avoid the use of lock_page for direct compaction
804 * altogether.
806 if (current->flags & PF_MEMALLOC)
807 goto out;
809 lock_page(page);
812 /* charge against new page */
813 mem_cgroup_prepare_migration(page, newpage, &mem);
815 if (PageWriteback(page)) {
817 * Only in the case of a full synchronous migration is it
818 * necessary to wait for PageWriteback. In the async case,
819 * the retry loop is too short and in the sync-light case,
820 * the overhead of stalling is too much
822 if (mode != MIGRATE_SYNC) {
823 rc = -EBUSY;
824 goto uncharge;
826 if (!force)
827 goto uncharge;
828 wait_on_page_writeback(page);
831 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
832 * we cannot notice that anon_vma is freed while we migrates a page.
833 * This get_anon_vma() delays freeing anon_vma pointer until the end
834 * of migration. File cache pages are no problem because of page_lock()
835 * File Caches may use write_page() or lock_page() in migration, then,
836 * just care Anon page here.
838 if (PageAnon(page) && !PageKsm(page)) {
840 * Only page_lock_anon_vma_read() understands the subtleties of
841 * getting a hold on an anon_vma from outside one of its mms.
843 anon_vma = page_get_anon_vma(page);
844 if (anon_vma) {
846 * Anon page
848 } else if (PageSwapCache(page)) {
850 * We cannot be sure that the anon_vma of an unmapped
851 * swapcache page is safe to use because we don't
852 * know in advance if the VMA that this page belonged
853 * to still exists. If the VMA and others sharing the
854 * data have been freed, then the anon_vma could
855 * already be invalid.
857 * To avoid this possibility, swapcache pages get
858 * migrated but are not remapped when migration
859 * completes
861 remap_swapcache = 0;
862 } else {
863 goto uncharge;
867 if (unlikely(balloon_page_movable(page))) {
869 * A ballooned page does not need any special attention from
870 * physical to virtual reverse mapping procedures.
871 * Skip any attempt to unmap PTEs or to remap swap cache,
872 * in order to avoid burning cycles at rmap level, and perform
873 * the page migration right away (proteced by page lock).
875 rc = balloon_page_migrate(newpage, page, mode);
876 goto uncharge;
880 * Corner case handling:
881 * 1. When a new swap-cache page is read into, it is added to the LRU
882 * and treated as swapcache but it has no rmap yet.
883 * Calling try_to_unmap() against a page->mapping==NULL page will
884 * trigger a BUG. So handle it here.
885 * 2. An orphaned page (see truncate_complete_page) might have
886 * fs-private metadata. The page can be picked up due to memory
887 * offlining. Everywhere else except page reclaim, the page is
888 * invisible to the vm, so the page can not be migrated. So try to
889 * free the metadata, so the page can be freed.
891 if (!page->mapping) {
892 VM_BUG_ON(PageAnon(page));
893 if (page_has_private(page)) {
894 try_to_free_buffers(page);
895 goto uncharge;
897 goto skip_unmap;
900 /* Establish migration ptes or remove ptes */
901 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
903 skip_unmap:
904 if (!page_mapped(page))
905 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
907 if (rc && remap_swapcache)
908 remove_migration_ptes(page, page);
910 /* Drop an anon_vma reference if we took one */
911 if (anon_vma)
912 put_anon_vma(anon_vma);
914 uncharge:
915 mem_cgroup_end_migration(mem, page, newpage,
916 (rc == MIGRATEPAGE_SUCCESS ||
917 rc == MIGRATEPAGE_BALLOON_SUCCESS));
918 unlock_page(page);
919 out:
920 return rc;
924 * Obtain the lock on page, remove all ptes and migrate the page
925 * to the newly allocated page in newpage.
927 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
928 struct page *page, int force, enum migrate_mode mode)
930 int rc = 0;
931 int *result = NULL;
932 struct page *newpage = get_new_page(page, private, &result);
934 if (!newpage)
935 return -ENOMEM;
937 if (page_count(page) == 1) {
938 /* page was freed from under us. So we are done. */
939 goto out;
942 if (unlikely(PageTransHuge(page)))
943 if (unlikely(split_huge_page(page)))
944 goto out;
946 rc = __unmap_and_move(page, newpage, force, mode);
948 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
950 * A ballooned page has been migrated already.
951 * Now, it's the time to wrap-up counters,
952 * handle the page back to Buddy and return.
954 dec_zone_page_state(page, NR_ISOLATED_ANON +
955 page_is_file_cache(page));
956 balloon_page_free(page);
957 return MIGRATEPAGE_SUCCESS;
959 out:
960 if (rc != -EAGAIN) {
962 * A page that has been migrated has all references
963 * removed and will be freed. A page that has not been
964 * migrated will have kepts its references and be
965 * restored.
967 list_del(&page->lru);
968 dec_zone_page_state(page, NR_ISOLATED_ANON +
969 page_is_file_cache(page));
970 putback_lru_page(page);
973 * Move the new page to the LRU. If migration was not successful
974 * then this will free the page.
976 putback_lru_page(newpage);
977 if (result) {
978 if (rc)
979 *result = rc;
980 else
981 *result = page_to_nid(newpage);
983 return rc;
987 * Counterpart of unmap_and_move_page() for hugepage migration.
989 * This function doesn't wait the completion of hugepage I/O
990 * because there is no race between I/O and migration for hugepage.
991 * Note that currently hugepage I/O occurs only in direct I/O
992 * where no lock is held and PG_writeback is irrelevant,
993 * and writeback status of all subpages are counted in the reference
994 * count of the head page (i.e. if all subpages of a 2MB hugepage are
995 * under direct I/O, the reference of the head page is 512 and a bit more.)
996 * This means that when we try to migrate hugepage whose subpages are
997 * doing direct I/O, some references remain after try_to_unmap() and
998 * hugepage migration fails without data corruption.
1000 * There is also no race when direct I/O is issued on the page under migration,
1001 * because then pte is replaced with migration swap entry and direct I/O code
1002 * will wait in the page fault for migration to complete.
1004 static int unmap_and_move_huge_page(new_page_t get_new_page,
1005 unsigned long private, struct page *hpage,
1006 int force, enum migrate_mode mode)
1008 int rc = 0;
1009 int *result = NULL;
1010 struct page *new_hpage = get_new_page(hpage, private, &result);
1011 struct anon_vma *anon_vma = NULL;
1014 * Movability of hugepages depends on architectures and hugepage size.
1015 * This check is necessary because some callers of hugepage migration
1016 * like soft offline and memory hotremove don't walk through page
1017 * tables or check whether the hugepage is pmd-based or not before
1018 * kicking migration.
1020 if (!hugepage_migration_support(page_hstate(hpage)))
1021 return -ENOSYS;
1023 if (!new_hpage)
1024 return -ENOMEM;
1026 rc = -EAGAIN;
1028 if (!trylock_page(hpage)) {
1029 if (!force || mode != MIGRATE_SYNC)
1030 goto out;
1031 lock_page(hpage);
1034 if (PageAnon(hpage))
1035 anon_vma = page_get_anon_vma(hpage);
1037 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1039 if (!page_mapped(hpage))
1040 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1042 if (rc)
1043 remove_migration_ptes(hpage, hpage);
1045 if (anon_vma)
1046 put_anon_vma(anon_vma);
1048 if (!rc)
1049 hugetlb_cgroup_migrate(hpage, new_hpage);
1051 unlock_page(hpage);
1052 out:
1053 if (rc != -EAGAIN)
1054 putback_active_hugepage(hpage);
1055 put_page(new_hpage);
1056 if (result) {
1057 if (rc)
1058 *result = rc;
1059 else
1060 *result = page_to_nid(new_hpage);
1062 return rc;
1066 * migrate_pages - migrate the pages specified in a list, to the free pages
1067 * supplied as the target for the page migration
1069 * @from: The list of pages to be migrated.
1070 * @get_new_page: The function used to allocate free pages to be used
1071 * as the target of the page migration.
1072 * @private: Private data to be passed on to get_new_page()
1073 * @mode: The migration mode that specifies the constraints for
1074 * page migration, if any.
1075 * @reason: The reason for page migration.
1077 * The function returns after 10 attempts or if no pages are movable any more
1078 * because the list has become empty or no retryable pages exist any more.
1079 * The caller should call putback_lru_pages() to return pages to the LRU
1080 * or free list only if ret != 0.
1082 * Returns the number of pages that were not migrated, or an error code.
1084 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1085 unsigned long private, enum migrate_mode mode, int reason)
1087 int retry = 1;
1088 int nr_failed = 0;
1089 int nr_succeeded = 0;
1090 int pass = 0;
1091 struct page *page;
1092 struct page *page2;
1093 int swapwrite = current->flags & PF_SWAPWRITE;
1094 int rc;
1096 if (!swapwrite)
1097 current->flags |= PF_SWAPWRITE;
1099 for(pass = 0; pass < 10 && retry; pass++) {
1100 retry = 0;
1102 list_for_each_entry_safe(page, page2, from, lru) {
1103 cond_resched();
1105 if (PageHuge(page))
1106 rc = unmap_and_move_huge_page(get_new_page,
1107 private, page, pass > 2, mode);
1108 else
1109 rc = unmap_and_move(get_new_page, private,
1110 page, pass > 2, mode);
1112 switch(rc) {
1113 case -ENOMEM:
1114 goto out;
1115 case -EAGAIN:
1116 retry++;
1117 break;
1118 case MIGRATEPAGE_SUCCESS:
1119 nr_succeeded++;
1120 break;
1121 default:
1122 /* Permanent failure */
1123 nr_failed++;
1124 break;
1128 rc = nr_failed + retry;
1129 out:
1130 if (nr_succeeded)
1131 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1132 if (nr_failed)
1133 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1134 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1136 if (!swapwrite)
1137 current->flags &= ~PF_SWAPWRITE;
1139 return rc;
1142 #ifdef CONFIG_NUMA
1144 * Move a list of individual pages
1146 struct page_to_node {
1147 unsigned long addr;
1148 struct page *page;
1149 int node;
1150 int status;
1153 static struct page *new_page_node(struct page *p, unsigned long private,
1154 int **result)
1156 struct page_to_node *pm = (struct page_to_node *)private;
1158 while (pm->node != MAX_NUMNODES && pm->page != p)
1159 pm++;
1161 if (pm->node == MAX_NUMNODES)
1162 return NULL;
1164 *result = &pm->status;
1166 if (PageHuge(p))
1167 return alloc_huge_page_node(page_hstate(compound_head(p)),
1168 pm->node);
1169 else
1170 return alloc_pages_exact_node(pm->node,
1171 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1175 * Move a set of pages as indicated in the pm array. The addr
1176 * field must be set to the virtual address of the page to be moved
1177 * and the node number must contain a valid target node.
1178 * The pm array ends with node = MAX_NUMNODES.
1180 static int do_move_page_to_node_array(struct mm_struct *mm,
1181 struct page_to_node *pm,
1182 int migrate_all)
1184 int err;
1185 struct page_to_node *pp;
1186 LIST_HEAD(pagelist);
1188 down_read(&mm->mmap_sem);
1191 * Build a list of pages to migrate
1193 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1194 struct vm_area_struct *vma;
1195 struct page *page;
1197 err = -EFAULT;
1198 vma = find_vma(mm, pp->addr);
1199 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1200 goto set_status;
1202 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1204 err = PTR_ERR(page);
1205 if (IS_ERR(page))
1206 goto set_status;
1208 err = -ENOENT;
1209 if (!page)
1210 goto set_status;
1212 /* Use PageReserved to check for zero page */
1213 if (PageReserved(page))
1214 goto put_and_set;
1216 pp->page = page;
1217 err = page_to_nid(page);
1219 if (err == pp->node)
1221 * Node already in the right place
1223 goto put_and_set;
1225 err = -EACCES;
1226 if (page_mapcount(page) > 1 &&
1227 !migrate_all)
1228 goto put_and_set;
1230 if (PageHuge(page)) {
1231 isolate_huge_page(page, &pagelist);
1232 goto put_and_set;
1235 err = isolate_lru_page(page);
1236 if (!err) {
1237 list_add_tail(&page->lru, &pagelist);
1238 inc_zone_page_state(page, NR_ISOLATED_ANON +
1239 page_is_file_cache(page));
1241 put_and_set:
1243 * Either remove the duplicate refcount from
1244 * isolate_lru_page() or drop the page ref if it was
1245 * not isolated.
1247 put_page(page);
1248 set_status:
1249 pp->status = err;
1252 err = 0;
1253 if (!list_empty(&pagelist)) {
1254 err = migrate_pages(&pagelist, new_page_node,
1255 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1256 if (err)
1257 putback_movable_pages(&pagelist);
1260 up_read(&mm->mmap_sem);
1261 return err;
1265 * Migrate an array of page address onto an array of nodes and fill
1266 * the corresponding array of status.
1268 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1269 unsigned long nr_pages,
1270 const void __user * __user *pages,
1271 const int __user *nodes,
1272 int __user *status, int flags)
1274 struct page_to_node *pm;
1275 unsigned long chunk_nr_pages;
1276 unsigned long chunk_start;
1277 int err;
1279 err = -ENOMEM;
1280 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1281 if (!pm)
1282 goto out;
1284 migrate_prep();
1287 * Store a chunk of page_to_node array in a page,
1288 * but keep the last one as a marker
1290 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1292 for (chunk_start = 0;
1293 chunk_start < nr_pages;
1294 chunk_start += chunk_nr_pages) {
1295 int j;
1297 if (chunk_start + chunk_nr_pages > nr_pages)
1298 chunk_nr_pages = nr_pages - chunk_start;
1300 /* fill the chunk pm with addrs and nodes from user-space */
1301 for (j = 0; j < chunk_nr_pages; j++) {
1302 const void __user *p;
1303 int node;
1305 err = -EFAULT;
1306 if (get_user(p, pages + j + chunk_start))
1307 goto out_pm;
1308 pm[j].addr = (unsigned long) p;
1310 if (get_user(node, nodes + j + chunk_start))
1311 goto out_pm;
1313 err = -ENODEV;
1314 if (node < 0 || node >= MAX_NUMNODES)
1315 goto out_pm;
1317 if (!node_state(node, N_MEMORY))
1318 goto out_pm;
1320 err = -EACCES;
1321 if (!node_isset(node, task_nodes))
1322 goto out_pm;
1324 pm[j].node = node;
1327 /* End marker for this chunk */
1328 pm[chunk_nr_pages].node = MAX_NUMNODES;
1330 /* Migrate this chunk */
1331 err = do_move_page_to_node_array(mm, pm,
1332 flags & MPOL_MF_MOVE_ALL);
1333 if (err < 0)
1334 goto out_pm;
1336 /* Return status information */
1337 for (j = 0; j < chunk_nr_pages; j++)
1338 if (put_user(pm[j].status, status + j + chunk_start)) {
1339 err = -EFAULT;
1340 goto out_pm;
1343 err = 0;
1345 out_pm:
1346 free_page((unsigned long)pm);
1347 out:
1348 return err;
1352 * Determine the nodes of an array of pages and store it in an array of status.
1354 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1355 const void __user **pages, int *status)
1357 unsigned long i;
1359 down_read(&mm->mmap_sem);
1361 for (i = 0; i < nr_pages; i++) {
1362 unsigned long addr = (unsigned long)(*pages);
1363 struct vm_area_struct *vma;
1364 struct page *page;
1365 int err = -EFAULT;
1367 vma = find_vma(mm, addr);
1368 if (!vma || addr < vma->vm_start)
1369 goto set_status;
1371 page = follow_page(vma, addr, 0);
1373 err = PTR_ERR(page);
1374 if (IS_ERR(page))
1375 goto set_status;
1377 err = -ENOENT;
1378 /* Use PageReserved to check for zero page */
1379 if (!page || PageReserved(page))
1380 goto set_status;
1382 err = page_to_nid(page);
1383 set_status:
1384 *status = err;
1386 pages++;
1387 status++;
1390 up_read(&mm->mmap_sem);
1394 * Determine the nodes of a user array of pages and store it in
1395 * a user array of status.
1397 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1398 const void __user * __user *pages,
1399 int __user *status)
1401 #define DO_PAGES_STAT_CHUNK_NR 16
1402 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1403 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1405 while (nr_pages) {
1406 unsigned long chunk_nr;
1408 chunk_nr = nr_pages;
1409 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1410 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1412 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1413 break;
1415 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1417 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1418 break;
1420 pages += chunk_nr;
1421 status += chunk_nr;
1422 nr_pages -= chunk_nr;
1424 return nr_pages ? -EFAULT : 0;
1428 * Move a list of pages in the address space of the currently executing
1429 * process.
1431 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1432 const void __user * __user *, pages,
1433 const int __user *, nodes,
1434 int __user *, status, int, flags)
1436 const struct cred *cred = current_cred(), *tcred;
1437 struct task_struct *task;
1438 struct mm_struct *mm;
1439 int err;
1440 nodemask_t task_nodes;
1442 /* Check flags */
1443 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1444 return -EINVAL;
1446 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1447 return -EPERM;
1449 /* Find the mm_struct */
1450 rcu_read_lock();
1451 task = pid ? find_task_by_vpid(pid) : current;
1452 if (!task) {
1453 rcu_read_unlock();
1454 return -ESRCH;
1456 get_task_struct(task);
1459 * Check if this process has the right to modify the specified
1460 * process. The right exists if the process has administrative
1461 * capabilities, superuser privileges or the same
1462 * userid as the target process.
1464 tcred = __task_cred(task);
1465 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1466 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1467 !capable(CAP_SYS_NICE)) {
1468 rcu_read_unlock();
1469 err = -EPERM;
1470 goto out;
1472 rcu_read_unlock();
1474 err = security_task_movememory(task);
1475 if (err)
1476 goto out;
1478 task_nodes = cpuset_mems_allowed(task);
1479 mm = get_task_mm(task);
1480 put_task_struct(task);
1482 if (!mm)
1483 return -EINVAL;
1485 if (nodes)
1486 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1487 nodes, status, flags);
1488 else
1489 err = do_pages_stat(mm, nr_pages, pages, status);
1491 mmput(mm);
1492 return err;
1494 out:
1495 put_task_struct(task);
1496 return err;
1500 * Call migration functions in the vma_ops that may prepare
1501 * memory in a vm for migration. migration functions may perform
1502 * the migration for vmas that do not have an underlying page struct.
1504 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1505 const nodemask_t *from, unsigned long flags)
1507 struct vm_area_struct *vma;
1508 int err = 0;
1510 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1511 if (vma->vm_ops && vma->vm_ops->migrate) {
1512 err = vma->vm_ops->migrate(vma, to, from, flags);
1513 if (err)
1514 break;
1517 return err;
1520 #ifdef CONFIG_NUMA_BALANCING
1522 * Returns true if this is a safe migration target node for misplaced NUMA
1523 * pages. Currently it only checks the watermarks which crude
1525 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1526 unsigned long nr_migrate_pages)
1528 int z;
1529 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1530 struct zone *zone = pgdat->node_zones + z;
1532 if (!populated_zone(zone))
1533 continue;
1535 if (!zone_reclaimable(zone))
1536 continue;
1538 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1539 if (!zone_watermark_ok(zone, 0,
1540 high_wmark_pages(zone) +
1541 nr_migrate_pages,
1542 0, 0))
1543 continue;
1544 return true;
1546 return false;
1549 static struct page *alloc_misplaced_dst_page(struct page *page,
1550 unsigned long data,
1551 int **result)
1553 int nid = (int) data;
1554 struct page *newpage;
1556 newpage = alloc_pages_exact_node(nid,
1557 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1558 __GFP_NOMEMALLOC | __GFP_NORETRY |
1559 __GFP_NOWARN) &
1560 ~GFP_IOFS, 0);
1561 if (newpage)
1562 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1564 return newpage;
1568 * page migration rate limiting control.
1569 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1570 * window of time. Default here says do not migrate more than 1280M per second.
1571 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1572 * as it is faults that reset the window, pte updates will happen unconditionally
1573 * if there has not been a fault since @pteupdate_interval_millisecs after the
1574 * throttle window closed.
1576 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1577 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1578 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1580 /* Returns true if NUMA migration is currently rate limited */
1581 bool migrate_ratelimited(int node)
1583 pg_data_t *pgdat = NODE_DATA(node);
1585 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1586 msecs_to_jiffies(pteupdate_interval_millisecs)))
1587 return false;
1589 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1590 return false;
1592 return true;
1595 /* Returns true if the node is migrate rate-limited after the update */
1596 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1598 bool rate_limited = false;
1601 * Rate-limit the amount of data that is being migrated to a node.
1602 * Optimal placement is no good if the memory bus is saturated and
1603 * all the time is being spent migrating!
1605 spin_lock(&pgdat->numabalancing_migrate_lock);
1606 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1607 pgdat->numabalancing_migrate_nr_pages = 0;
1608 pgdat->numabalancing_migrate_next_window = jiffies +
1609 msecs_to_jiffies(migrate_interval_millisecs);
1611 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1612 rate_limited = true;
1613 else
1614 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1615 spin_unlock(&pgdat->numabalancing_migrate_lock);
1617 return rate_limited;
1620 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1622 int page_lru;
1624 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1626 /* Avoid migrating to a node that is nearly full */
1627 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1628 return 0;
1630 if (isolate_lru_page(page))
1631 return 0;
1634 * migrate_misplaced_transhuge_page() skips page migration's usual
1635 * check on page_count(), so we must do it here, now that the page
1636 * has been isolated: a GUP pin, or any other pin, prevents migration.
1637 * The expected page count is 3: 1 for page's mapcount and 1 for the
1638 * caller's pin and 1 for the reference taken by isolate_lru_page().
1640 if (PageTransHuge(page) && page_count(page) != 3) {
1641 putback_lru_page(page);
1642 return 0;
1645 page_lru = page_is_file_cache(page);
1646 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1647 hpage_nr_pages(page));
1650 * Isolating the page has taken another reference, so the
1651 * caller's reference can be safely dropped without the page
1652 * disappearing underneath us during migration.
1654 put_page(page);
1655 return 1;
1659 * Attempt to migrate a misplaced page to the specified destination
1660 * node. Caller is expected to have an elevated reference count on
1661 * the page that will be dropped by this function before returning.
1663 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1664 int node)
1666 pg_data_t *pgdat = NODE_DATA(node);
1667 int isolated;
1668 int nr_remaining;
1669 LIST_HEAD(migratepages);
1672 * Don't migrate file pages that are mapped in multiple processes
1673 * with execute permissions as they are probably shared libraries.
1675 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1676 (vma->vm_flags & VM_EXEC))
1677 goto out;
1680 * Rate-limit the amount of data that is being migrated to a node.
1681 * Optimal placement is no good if the memory bus is saturated and
1682 * all the time is being spent migrating!
1684 if (numamigrate_update_ratelimit(pgdat, 1))
1685 goto out;
1687 isolated = numamigrate_isolate_page(pgdat, page);
1688 if (!isolated)
1689 goto out;
1691 list_add(&page->lru, &migratepages);
1692 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1693 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1694 if (nr_remaining) {
1695 putback_lru_pages(&migratepages);
1696 isolated = 0;
1697 } else
1698 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1699 BUG_ON(!list_empty(&migratepages));
1700 return isolated;
1702 out:
1703 put_page(page);
1704 return 0;
1706 #endif /* CONFIG_NUMA_BALANCING */
1708 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1710 * Migrates a THP to a given target node. page must be locked and is unlocked
1711 * before returning.
1713 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1714 struct vm_area_struct *vma,
1715 pmd_t *pmd, pmd_t entry,
1716 unsigned long address,
1717 struct page *page, int node)
1719 spinlock_t *ptl;
1720 pg_data_t *pgdat = NODE_DATA(node);
1721 int isolated = 0;
1722 struct page *new_page = NULL;
1723 struct mem_cgroup *memcg = NULL;
1724 int page_lru = page_is_file_cache(page);
1725 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1726 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1727 pmd_t orig_entry;
1730 * Rate-limit the amount of data that is being migrated to a node.
1731 * Optimal placement is no good if the memory bus is saturated and
1732 * all the time is being spent migrating!
1734 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1735 goto out_dropref;
1737 new_page = alloc_pages_node(node,
1738 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1739 if (!new_page)
1740 goto out_fail;
1742 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1744 isolated = numamigrate_isolate_page(pgdat, page);
1745 if (!isolated) {
1746 put_page(new_page);
1747 goto out_fail;
1750 /* Prepare a page as a migration target */
1751 __set_page_locked(new_page);
1752 SetPageSwapBacked(new_page);
1754 /* anon mapping, we can simply copy page->mapping to the new page: */
1755 new_page->mapping = page->mapping;
1756 new_page->index = page->index;
1757 migrate_page_copy(new_page, page);
1758 WARN_ON(PageLRU(new_page));
1760 /* Recheck the target PMD */
1761 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1762 ptl = pmd_lock(mm, pmd);
1763 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1764 fail_putback:
1765 spin_unlock(ptl);
1766 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1768 /* Reverse changes made by migrate_page_copy() */
1769 if (TestClearPageActive(new_page))
1770 SetPageActive(page);
1771 if (TestClearPageUnevictable(new_page))
1772 SetPageUnevictable(page);
1773 mlock_migrate_page(page, new_page);
1775 unlock_page(new_page);
1776 put_page(new_page); /* Free it */
1778 /* Retake the callers reference and putback on LRU */
1779 get_page(page);
1780 putback_lru_page(page);
1781 mod_zone_page_state(page_zone(page),
1782 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1784 goto out_unlock;
1788 * Traditional migration needs to prepare the memcg charge
1789 * transaction early to prevent the old page from being
1790 * uncharged when installing migration entries. Here we can
1791 * save the potential rollback and start the charge transfer
1792 * only when migration is already known to end successfully.
1794 mem_cgroup_prepare_migration(page, new_page, &memcg);
1796 orig_entry = *pmd;
1797 entry = mk_pmd(new_page, vma->vm_page_prot);
1798 entry = pmd_mkhuge(entry);
1799 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1802 * Clear the old entry under pagetable lock and establish the new PTE.
1803 * Any parallel GUP will either observe the old page blocking on the
1804 * page lock, block on the page table lock or observe the new page.
1805 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1806 * guarantee the copy is visible before the pagetable update.
1808 flush_cache_range(vma, mmun_start, mmun_end);
1809 page_add_new_anon_rmap(new_page, vma, mmun_start);
1810 pmdp_clear_flush(vma, mmun_start, pmd);
1811 set_pmd_at(mm, mmun_start, pmd, entry);
1812 flush_tlb_range(vma, mmun_start, mmun_end);
1813 update_mmu_cache_pmd(vma, address, &entry);
1815 if (page_count(page) != 2) {
1816 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1817 flush_tlb_range(vma, mmun_start, mmun_end);
1818 update_mmu_cache_pmd(vma, address, &entry);
1819 page_remove_rmap(new_page);
1820 goto fail_putback;
1823 page_remove_rmap(page);
1826 * Finish the charge transaction under the page table lock to
1827 * prevent split_huge_page() from dividing up the charge
1828 * before it's fully transferred to the new page.
1830 mem_cgroup_end_migration(memcg, page, new_page, true);
1831 spin_unlock(ptl);
1832 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1834 unlock_page(new_page);
1835 unlock_page(page);
1836 put_page(page); /* Drop the rmap reference */
1837 put_page(page); /* Drop the LRU isolation reference */
1839 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1840 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1842 mod_zone_page_state(page_zone(page),
1843 NR_ISOLATED_ANON + page_lru,
1844 -HPAGE_PMD_NR);
1845 return isolated;
1847 out_fail:
1848 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1849 out_dropref:
1850 ptl = pmd_lock(mm, pmd);
1851 if (pmd_same(*pmd, entry)) {
1852 entry = pmd_mknonnuma(entry);
1853 set_pmd_at(mm, mmun_start, pmd, entry);
1854 update_mmu_cache_pmd(vma, address, &entry);
1856 spin_unlock(ptl);
1858 out_unlock:
1859 unlock_page(page);
1860 put_page(page);
1861 return 0;
1863 #endif /* CONFIG_NUMA_BALANCING */
1865 #endif /* CONFIG_NUMA */