1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Kernel Probes (KProbes)
4 * arch/ia64/kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
7 * Copyright (C) Intel Corporation, 2005
9 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10 * <anil.s.keshavamurthy@intel.com> adapted from i386
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
21 #include <asm/pgtable.h>
22 #include <asm/sections.h>
23 #include <asm/exception.h>
25 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
26 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
28 struct kretprobe_blackpoint kretprobe_blacklist
[] = {{NULL
, NULL
}};
30 enum instruction_type
{A
, I
, M
, F
, B
, L
, X
, u
};
31 static enum instruction_type bundle_encoding
[32][3] = {
66 /* Insert a long branch code */
67 static void __kprobes
set_brl_inst(void *from
, void *to
)
69 s64 rel
= ((s64
) to
- (s64
) from
) >> 4;
71 brl
= (bundle_t
*) ((u64
) from
& ~0xf);
72 brl
->quad0
.template = 0x05; /* [MLX](stop) */
73 brl
->quad0
.slot0
= NOP_M_INST
; /* nop.m 0x0 */
74 brl
->quad0
.slot1_p0
= ((rel
>> 20) & 0x7fffffffff) << 2;
75 brl
->quad1
.slot1_p1
= (((rel
>> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76 /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77 brl
->quad1
.slot2
= BRL_INST(rel
>> 59, rel
& 0xfffff);
81 * In this function we check to see if the instruction
82 * is IP relative instruction and update the kprobe
83 * inst flag accordingly
85 static void __kprobes
update_kprobe_inst_flag(uint
template, uint slot
,
87 unsigned long kprobe_inst
,
90 p
->ainsn
.inst_flag
= 0;
91 p
->ainsn
.target_br_reg
= 0;
94 /* Check for Break instruction
95 * Bits 37:40 Major opcode to be zero
96 * Bits 27:32 X6 to be zero
97 * Bits 32:35 X3 to be zero
99 if ((!major_opcode
) && (!((kprobe_inst
>> 27) & 0x1FF)) ) {
100 /* is a break instruction */
101 p
->ainsn
.inst_flag
|= INST_FLAG_BREAK_INST
;
105 if (bundle_encoding
[template][slot
] == B
) {
106 switch (major_opcode
) {
107 case INDIRECT_CALL_OPCODE
:
108 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
109 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
111 case IP_RELATIVE_PREDICT_OPCODE
:
112 case IP_RELATIVE_BRANCH_OPCODE
:
113 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_RELATIVE_IP_ADDR
;
115 case IP_RELATIVE_CALL_OPCODE
:
116 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_RELATIVE_IP_ADDR
;
117 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
118 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
121 } else if (bundle_encoding
[template][slot
] == X
) {
122 switch (major_opcode
) {
123 case LONG_CALL_OPCODE
:
124 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
125 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
133 * In this function we check to see if the instruction
134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
135 * on which we are inserting kprobe is cmp instruction
138 static uint __kprobes
is_cmp_ctype_unc_inst(uint
template, uint slot
,
140 unsigned long kprobe_inst
)
145 if (!((bundle_encoding
[template][slot
] == I
) ||
146 (bundle_encoding
[template][slot
] == M
)))
149 if (!((major_opcode
== 0xC) || (major_opcode
== 0xD) ||
150 (major_opcode
== 0xE)))
153 cmp_inst
.l
= kprobe_inst
;
154 if ((cmp_inst
.f
.x2
== 0) || (cmp_inst
.f
.x2
== 1)) {
155 /* Integer compare - Register Register (A6 type)*/
156 if ((cmp_inst
.f
.tb
== 0) && (cmp_inst
.f
.ta
== 0)
157 &&(cmp_inst
.f
.c
== 1))
159 } else if ((cmp_inst
.f
.x2
== 2)||(cmp_inst
.f
.x2
== 3)) {
160 /* Integer compare - Immediate Register (A8 type)*/
161 if ((cmp_inst
.f
.ta
== 0) &&(cmp_inst
.f
.c
== 1))
169 * In this function we check to see if the instruction
170 * on which we are inserting kprobe is supported.
171 * Returns qp value if supported
172 * Returns -EINVAL if unsupported
174 static int __kprobes
unsupported_inst(uint
template, uint slot
,
176 unsigned long kprobe_inst
,
181 qp
= kprobe_inst
& 0x3f;
182 if (is_cmp_ctype_unc_inst(template, slot
, major_opcode
, kprobe_inst
)) {
183 if (slot
== 1 && qp
) {
184 printk(KERN_WARNING
"Kprobes on cmp unc "
185 "instruction on slot 1 at <0x%lx> "
186 "is not supported\n", addr
);
192 else if (bundle_encoding
[template][slot
] == I
) {
193 if (major_opcode
== 0) {
195 * Check for Integer speculation instruction
196 * - Bit 33-35 to be equal to 0x1
198 if (((kprobe_inst
>> 33) & 0x7) == 1) {
200 "Kprobes on speculation inst at <0x%lx> not supported\n",
205 * IP relative mov instruction
206 * - Bit 27-35 to be equal to 0x30
208 if (((kprobe_inst
>> 27) & 0x1FF) == 0x30) {
210 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
216 else if ((major_opcode
== 5) && !(kprobe_inst
& (0xFUl
<< 33)) &&
217 (kprobe_inst
& (0x1UL
<< 12))) {
218 /* test bit instructions, tbit,tnat,tf
219 * bit 33-36 to be equal to 0
220 * bit 12 to be equal to 1
222 if (slot
== 1 && qp
) {
223 printk(KERN_WARNING
"Kprobes on test bit "
224 "instruction on slot at <0x%lx> "
225 "is not supported\n", addr
);
231 else if (bundle_encoding
[template][slot
] == B
) {
232 if (major_opcode
== 7) {
233 /* IP-Relative Predict major code is 7 */
234 printk(KERN_WARNING
"Kprobes on IP-Relative"
235 "Predict is not supported\n");
238 else if (major_opcode
== 2) {
239 /* Indirect Predict, major code is 2
240 * bit 27-32 to be equal to 10 or 11
242 int x6
=(kprobe_inst
>> 27) & 0x3F;
243 if ((x6
== 0x10) || (x6
== 0x11)) {
244 printk(KERN_WARNING
"Kprobes on "
245 "Indirect Predict is not supported\n");
250 /* kernel does not use float instruction, here for safety kprobe
251 * will judge whether it is fcmp/flass/float approximation instruction
253 else if (unlikely(bundle_encoding
[template][slot
] == F
)) {
254 if ((major_opcode
== 4 || major_opcode
== 5) &&
255 (kprobe_inst
& (0x1 << 12))) {
256 /* fcmp/fclass unc instruction */
257 if (slot
== 1 && qp
) {
258 printk(KERN_WARNING
"Kprobes on fcmp/fclass "
259 "instruction on slot at <0x%lx> "
260 "is not supported\n", addr
);
266 if ((major_opcode
== 0 || major_opcode
== 1) &&
267 (kprobe_inst
& (0x1UL
<< 33))) {
268 /* float Approximation instruction */
269 if (slot
== 1 && qp
) {
270 printk(KERN_WARNING
"Kprobes on float Approx "
271 "instr at <0x%lx> is not supported\n",
282 * In this function we override the bundle with
283 * the break instruction at the given slot.
285 static void __kprobes
prepare_break_inst(uint
template, uint slot
,
287 unsigned long kprobe_inst
,
291 unsigned long break_inst
= BREAK_INST
;
292 bundle_t
*bundle
= &p
->opcode
.bundle
;
295 * Copy the original kprobe_inst qualifying predicate(qp)
296 * to the break instruction
302 bundle
->quad0
.slot0
= break_inst
;
305 bundle
->quad0
.slot1_p0
= break_inst
;
306 bundle
->quad1
.slot1_p1
= break_inst
>> (64-46);
309 bundle
->quad1
.slot2
= break_inst
;
314 * Update the instruction flag, so that we can
315 * emulate the instruction properly after we
316 * single step on original instruction
318 update_kprobe_inst_flag(template, slot
, major_opcode
, kprobe_inst
, p
);
321 static void __kprobes
get_kprobe_inst(bundle_t
*bundle
, uint slot
,
322 unsigned long *kprobe_inst
, uint
*major_opcode
)
324 unsigned long kprobe_inst_p0
, kprobe_inst_p1
;
325 unsigned int template;
327 template = bundle
->quad0
.template;
331 *major_opcode
= (bundle
->quad0
.slot0
>> SLOT0_OPCODE_SHIFT
);
332 *kprobe_inst
= bundle
->quad0
.slot0
;
335 *major_opcode
= (bundle
->quad1
.slot1_p1
>> SLOT1_p1_OPCODE_SHIFT
);
336 kprobe_inst_p0
= bundle
->quad0
.slot1_p0
;
337 kprobe_inst_p1
= bundle
->quad1
.slot1_p1
;
338 *kprobe_inst
= kprobe_inst_p0
| (kprobe_inst_p1
<< (64-46));
341 *major_opcode
= (bundle
->quad1
.slot2
>> SLOT2_OPCODE_SHIFT
);
342 *kprobe_inst
= bundle
->quad1
.slot2
;
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
348 static int __kprobes
in_ivt_functions(unsigned long addr
)
350 return (addr
>= (unsigned long)__start_ivt_text
351 && addr
< (unsigned long)__end_ivt_text
);
354 static int __kprobes
valid_kprobe_addr(int template, int slot
,
357 if ((slot
> 2) || ((bundle_encoding
[template][1] == L
) && slot
> 1)) {
358 printk(KERN_WARNING
"Attempting to insert unaligned kprobe "
363 if (in_ivt_functions(addr
)) {
364 printk(KERN_WARNING
"Kprobes can't be inserted inside "
365 "IVT functions at 0x%lx\n", addr
);
372 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
375 i
= atomic_add_return(1, &kcb
->prev_kprobe_index
);
376 kcb
->prev_kprobe
[i
-1].kp
= kprobe_running();
377 kcb
->prev_kprobe
[i
-1].status
= kcb
->kprobe_status
;
380 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
383 i
= atomic_read(&kcb
->prev_kprobe_index
);
384 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
[i
-1].kp
);
385 kcb
->kprobe_status
= kcb
->prev_kprobe
[i
-1].status
;
386 atomic_sub(1, &kcb
->prev_kprobe_index
);
389 static void __kprobes
set_current_kprobe(struct kprobe
*p
,
390 struct kprobe_ctlblk
*kcb
)
392 __this_cpu_write(current_kprobe
, p
);
395 static void kretprobe_trampoline(void)
400 * At this point the target function has been tricked into
401 * returning into our trampoline. Lookup the associated instance
403 * - call the handler function
404 * - cleanup by marking the instance as unused
405 * - long jump back to the original return address
407 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
409 struct kretprobe_instance
*ri
= NULL
;
410 struct hlist_head
*head
, empty_rp
;
411 struct hlist_node
*tmp
;
412 unsigned long flags
, orig_ret_address
= 0;
413 unsigned long trampoline_address
=
414 ((struct fnptr
*)kretprobe_trampoline
)->ip
;
416 INIT_HLIST_HEAD(&empty_rp
);
417 kretprobe_hash_lock(current
, &head
, &flags
);
420 * It is possible to have multiple instances associated with a given
421 * task either because an multiple functions in the call path
422 * have a return probe installed on them, and/or more than one return
423 * return probe was registered for a target function.
425 * We can handle this because:
426 * - instances are always inserted at the head of the list
427 * - when multiple return probes are registered for the same
428 * function, the first instance's ret_addr will point to the
429 * real return address, and all the rest will point to
430 * kretprobe_trampoline
432 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
433 if (ri
->task
!= current
)
434 /* another task is sharing our hash bucket */
437 orig_ret_address
= (unsigned long)ri
->ret_addr
;
438 if (orig_ret_address
!= trampoline_address
)
440 * This is the real return address. Any other
441 * instances associated with this task are for
442 * other calls deeper on the call stack
447 regs
->cr_iip
= orig_ret_address
;
449 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
450 if (ri
->task
!= current
)
451 /* another task is sharing our hash bucket */
454 if (ri
->rp
&& ri
->rp
->handler
)
455 ri
->rp
->handler(ri
, regs
);
457 orig_ret_address
= (unsigned long)ri
->ret_addr
;
458 recycle_rp_inst(ri
, &empty_rp
);
460 if (orig_ret_address
!= trampoline_address
)
462 * This is the real return address. Any other
463 * instances associated with this task are for
464 * other calls deeper on the call stack
468 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
470 kretprobe_hash_unlock(current
, &flags
);
472 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
473 hlist_del(&ri
->hlist
);
477 * By returning a non-zero value, we are telling
478 * kprobe_handler() that we don't want the post_handler
479 * to run (and have re-enabled preemption)
484 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
485 struct pt_regs
*regs
)
487 ri
->ret_addr
= (kprobe_opcode_t
*)regs
->b0
;
489 /* Replace the return addr with trampoline addr */
490 regs
->b0
= ((struct fnptr
*)kretprobe_trampoline
)->ip
;
493 /* Check the instruction in the slot is break */
494 static int __kprobes
__is_ia64_break_inst(bundle_t
*bundle
, uint slot
)
496 unsigned int major_opcode
;
497 unsigned int template = bundle
->quad0
.template;
498 unsigned long kprobe_inst
;
500 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
501 if (slot
== 1 && bundle_encoding
[template][1] == L
)
504 /* Get Kprobe probe instruction at given slot*/
505 get_kprobe_inst(bundle
, slot
, &kprobe_inst
, &major_opcode
);
507 /* For break instruction,
508 * Bits 37:40 Major opcode to be zero
509 * Bits 27:32 X6 to be zero
510 * Bits 32:35 X3 to be zero
512 if (major_opcode
|| ((kprobe_inst
>> 27) & 0x1FF)) {
513 /* Not a break instruction */
517 /* Is a break instruction */
522 * In this function, we check whether the target bundle modifies IP or
523 * it triggers an exception. If so, it cannot be boostable.
525 static int __kprobes
can_boost(bundle_t
*bundle
, uint slot
,
526 unsigned long bundle_addr
)
528 unsigned int template = bundle
->quad0
.template;
531 if (search_exception_tables(bundle_addr
+ slot
) ||
532 __is_ia64_break_inst(bundle
, slot
))
533 return 0; /* exception may occur in this bundle*/
534 } while ((++slot
) < 3);
536 if (template >= 0x10 /* including B unit */ ||
537 template == 0x04 /* including X unit */ ||
538 template == 0x06) /* undefined */
544 /* Prepare long jump bundle and disables other boosters if need */
545 static void __kprobes
prepare_booster(struct kprobe
*p
)
547 unsigned long addr
= (unsigned long)p
->addr
& ~0xFULL
;
548 unsigned int slot
= (unsigned long)p
->addr
& 0xf;
549 struct kprobe
*other_kp
;
551 if (can_boost(&p
->ainsn
.insn
[0].bundle
, slot
, addr
)) {
552 set_brl_inst(&p
->ainsn
.insn
[1].bundle
, (bundle_t
*)addr
+ 1);
553 p
->ainsn
.inst_flag
|= INST_FLAG_BOOSTABLE
;
556 /* disables boosters in previous slots */
557 for (; addr
< (unsigned long)p
->addr
; addr
++) {
558 other_kp
= get_kprobe((void *)addr
);
560 other_kp
->ainsn
.inst_flag
&= ~INST_FLAG_BOOSTABLE
;
564 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
566 unsigned long addr
= (unsigned long) p
->addr
;
567 unsigned long *kprobe_addr
= (unsigned long *)(addr
& ~0xFULL
);
568 unsigned long kprobe_inst
=0;
569 unsigned int slot
= addr
& 0xf, template, major_opcode
= 0;
573 bundle
= &((kprobe_opcode_t
*)kprobe_addr
)->bundle
;
574 template = bundle
->quad0
.template;
576 if(valid_kprobe_addr(template, slot
, addr
))
579 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
580 if (slot
== 1 && bundle_encoding
[template][1] == L
)
583 /* Get kprobe_inst and major_opcode from the bundle */
584 get_kprobe_inst(bundle
, slot
, &kprobe_inst
, &major_opcode
);
586 qp
= unsupported_inst(template, slot
, major_opcode
, kprobe_inst
, addr
);
590 p
->ainsn
.insn
= get_insn_slot();
593 memcpy(&p
->opcode
, kprobe_addr
, sizeof(kprobe_opcode_t
));
594 memcpy(p
->ainsn
.insn
, kprobe_addr
, sizeof(kprobe_opcode_t
));
596 prepare_break_inst(template, slot
, major_opcode
, kprobe_inst
, p
, qp
);
603 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
605 unsigned long arm_addr
;
606 bundle_t
*src
, *dest
;
608 arm_addr
= ((unsigned long)p
->addr
) & ~0xFUL
;
609 dest
= &((kprobe_opcode_t
*)arm_addr
)->bundle
;
610 src
= &p
->opcode
.bundle
;
612 flush_icache_range((unsigned long)p
->ainsn
.insn
,
613 (unsigned long)p
->ainsn
.insn
+
614 sizeof(kprobe_opcode_t
) * MAX_INSN_SIZE
);
616 switch (p
->ainsn
.slot
) {
618 dest
->quad0
.slot0
= src
->quad0
.slot0
;
621 dest
->quad1
.slot1_p1
= src
->quad1
.slot1_p1
;
624 dest
->quad1
.slot2
= src
->quad1
.slot2
;
627 flush_icache_range(arm_addr
, arm_addr
+ sizeof(kprobe_opcode_t
));
630 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
632 unsigned long arm_addr
;
633 bundle_t
*src
, *dest
;
635 arm_addr
= ((unsigned long)p
->addr
) & ~0xFUL
;
636 dest
= &((kprobe_opcode_t
*)arm_addr
)->bundle
;
637 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
638 src
= &p
->ainsn
.insn
->bundle
;
639 switch (p
->ainsn
.slot
) {
641 dest
->quad0
.slot0
= src
->quad0
.slot0
;
644 dest
->quad1
.slot1_p1
= src
->quad1
.slot1_p1
;
647 dest
->quad1
.slot2
= src
->quad1
.slot2
;
650 flush_icache_range(arm_addr
, arm_addr
+ sizeof(kprobe_opcode_t
));
653 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
656 free_insn_slot(p
->ainsn
.insn
,
657 p
->ainsn
.inst_flag
& INST_FLAG_BOOSTABLE
);
658 p
->ainsn
.insn
= NULL
;
662 * We are resuming execution after a single step fault, so the pt_regs
663 * structure reflects the register state after we executed the instruction
664 * located in the kprobe (p->ainsn.insn->bundle). We still need to adjust
665 * the ip to point back to the original stack address. To set the IP address
666 * to original stack address, handle the case where we need to fixup the
667 * relative IP address and/or fixup branch register.
669 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
671 unsigned long bundle_addr
= (unsigned long) (&p
->ainsn
.insn
->bundle
);
672 unsigned long resume_addr
= (unsigned long)p
->addr
& ~0xFULL
;
673 unsigned long template;
674 int slot
= ((unsigned long)p
->addr
& 0xf);
676 template = p
->ainsn
.insn
->bundle
.quad0
.template;
678 if (slot
== 1 && bundle_encoding
[template][1] == L
)
681 if (p
->ainsn
.inst_flag
& ~INST_FLAG_BOOSTABLE
) {
683 if (p
->ainsn
.inst_flag
& INST_FLAG_FIX_RELATIVE_IP_ADDR
) {
684 /* Fix relative IP address */
685 regs
->cr_iip
= (regs
->cr_iip
- bundle_addr
) +
689 if (p
->ainsn
.inst_flag
& INST_FLAG_FIX_BRANCH_REG
) {
691 * Fix target branch register, software convention is
692 * to use either b0 or b6 or b7, so just checking
693 * only those registers
695 switch (p
->ainsn
.target_br_reg
) {
697 if ((regs
->b0
== bundle_addr
) ||
698 (regs
->b0
== bundle_addr
+ 0x10)) {
699 regs
->b0
= (regs
->b0
- bundle_addr
) +
704 if ((regs
->b6
== bundle_addr
) ||
705 (regs
->b6
== bundle_addr
+ 0x10)) {
706 regs
->b6
= (regs
->b6
- bundle_addr
) +
711 if ((regs
->b7
== bundle_addr
) ||
712 (regs
->b7
== bundle_addr
+ 0x10)) {
713 regs
->b7
= (regs
->b7
- bundle_addr
) +
723 if (regs
->cr_iip
== bundle_addr
+ 0x10) {
724 regs
->cr_iip
= resume_addr
+ 0x10;
727 if (regs
->cr_iip
== bundle_addr
) {
728 regs
->cr_iip
= resume_addr
;
733 /* Turn off Single Step bit */
734 ia64_psr(regs
)->ss
= 0;
737 static void __kprobes
prepare_ss(struct kprobe
*p
, struct pt_regs
*regs
)
739 unsigned long bundle_addr
= (unsigned long) &p
->ainsn
.insn
->bundle
;
740 unsigned long slot
= (unsigned long)p
->addr
& 0xf;
742 /* single step inline if break instruction */
743 if (p
->ainsn
.inst_flag
== INST_FLAG_BREAK_INST
)
744 regs
->cr_iip
= (unsigned long)p
->addr
& ~0xFULL
;
746 regs
->cr_iip
= bundle_addr
& ~0xFULL
;
751 ia64_psr(regs
)->ri
= slot
;
753 /* turn on single stepping */
754 ia64_psr(regs
)->ss
= 1;
757 static int __kprobes
is_ia64_break_inst(struct pt_regs
*regs
)
759 unsigned int slot
= ia64_psr(regs
)->ri
;
760 unsigned long *kprobe_addr
= (unsigned long *)regs
->cr_iip
;
763 memcpy(&bundle
, kprobe_addr
, sizeof(bundle_t
));
765 return __is_ia64_break_inst(&bundle
, slot
);
768 static int __kprobes
pre_kprobes_handler(struct die_args
*args
)
772 struct pt_regs
*regs
= args
->regs
;
773 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)instruction_pointer(regs
);
774 struct kprobe_ctlblk
*kcb
;
777 * We don't want to be preempted for the entire
778 * duration of kprobe processing
781 kcb
= get_kprobe_ctlblk();
783 /* Handle recursion cases */
784 if (kprobe_running()) {
785 p
= get_kprobe(addr
);
787 if ((kcb
->kprobe_status
== KPROBE_HIT_SS
) &&
788 (p
->ainsn
.inst_flag
== INST_FLAG_BREAK_INST
)) {
789 ia64_psr(regs
)->ss
= 0;
792 /* We have reentered the pre_kprobe_handler(), since
793 * another probe was hit while within the handler.
794 * We here save the original kprobes variables and
795 * just single step on the instruction of the new probe
796 * without calling any user handlers.
798 save_previous_kprobe(kcb
);
799 set_current_kprobe(p
, kcb
);
800 kprobes_inc_nmissed_count(p
);
802 kcb
->kprobe_status
= KPROBE_REENTER
;
804 } else if (!is_ia64_break_inst(regs
)) {
805 /* The breakpoint instruction was removed by
806 * another cpu right after we hit, no further
807 * handling of this interrupt is appropriate
817 p
= get_kprobe(addr
);
819 if (!is_ia64_break_inst(regs
)) {
821 * The breakpoint instruction was removed right
822 * after we hit it. Another cpu has removed
823 * either a probepoint or a debugger breakpoint
824 * at this address. In either case, no further
825 * handling of this interrupt is appropriate.
831 /* Not one of our break, let kernel handle it */
835 set_current_kprobe(p
, kcb
);
836 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
838 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
839 reset_current_kprobe();
840 preempt_enable_no_resched();
844 #if !defined(CONFIG_PREEMPTION)
845 if (p
->ainsn
.inst_flag
== INST_FLAG_BOOSTABLE
&& !p
->post_handler
) {
846 /* Boost up -- we can execute copied instructions directly */
847 ia64_psr(regs
)->ri
= p
->ainsn
.slot
;
848 regs
->cr_iip
= (unsigned long)&p
->ainsn
.insn
->bundle
& ~0xFULL
;
849 /* turn single stepping off */
850 ia64_psr(regs
)->ss
= 0;
852 reset_current_kprobe();
853 preempt_enable_no_resched();
858 kcb
->kprobe_status
= KPROBE_HIT_SS
;
862 preempt_enable_no_resched();
866 static int __kprobes
post_kprobes_handler(struct pt_regs
*regs
)
868 struct kprobe
*cur
= kprobe_running();
869 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
874 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
875 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
876 cur
->post_handler(cur
, regs
, 0);
879 resume_execution(cur
, regs
);
881 /*Restore back the original saved kprobes variables and continue. */
882 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
883 restore_previous_kprobe(kcb
);
886 reset_current_kprobe();
889 preempt_enable_no_resched();
893 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
895 struct kprobe
*cur
= kprobe_running();
896 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
899 switch(kcb
->kprobe_status
) {
903 * We are here because the instruction being single
904 * stepped caused a page fault. We reset the current
905 * kprobe and the instruction pointer points back to
906 * the probe address and allow the page fault handler
907 * to continue as a normal page fault.
909 regs
->cr_iip
= ((unsigned long)cur
->addr
) & ~0xFULL
;
910 ia64_psr(regs
)->ri
= ((unsigned long)cur
->addr
) & 0xf;
911 if (kcb
->kprobe_status
== KPROBE_REENTER
)
912 restore_previous_kprobe(kcb
);
914 reset_current_kprobe();
915 preempt_enable_no_resched();
917 case KPROBE_HIT_ACTIVE
:
918 case KPROBE_HIT_SSDONE
:
920 * We increment the nmissed count for accounting,
921 * we can also use npre/npostfault count for accounting
922 * these specific fault cases.
924 kprobes_inc_nmissed_count(cur
);
927 * We come here because instructions in the pre/post
928 * handler caused the page_fault, this could happen
929 * if handler tries to access user space by
930 * copy_from_user(), get_user() etc. Let the
931 * user-specified handler try to fix it first.
933 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
936 * In case the user-specified fault handler returned
937 * zero, try to fix up.
939 if (ia64_done_with_exception(regs
))
943 * Let ia64_do_page_fault() fix it.
953 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
954 unsigned long val
, void *data
)
956 struct die_args
*args
= (struct die_args
*)data
;
957 int ret
= NOTIFY_DONE
;
959 if (args
->regs
&& user_mode(args
->regs
))
964 /* err is break number from ia64_bad_break() */
965 if ((args
->err
>> 12) == (__IA64_BREAK_KPROBE
>> 12)
967 if (pre_kprobes_handler(args
))
971 /* err is vector number from ia64_fault() */
973 if (post_kprobes_handler(args
->regs
))
982 unsigned long arch_deref_entry_point(void *entry
)
984 return ((struct fnptr
*)entry
)->ip
;
987 static struct kprobe trampoline_p
= {
988 .pre_handler
= trampoline_probe_handler
991 int __init
arch_init_kprobes(void)
994 (kprobe_opcode_t
*)((struct fnptr
*)kretprobe_trampoline
)->ip
;
995 return register_kprobe(&trampoline_p
);
998 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
1001 (kprobe_opcode_t
*)((struct fnptr
*)kretprobe_trampoline
)->ip
)