2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock
);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node
);
79 EXPORT_PER_CPU_SYMBOL(numa_node
);
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
89 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
91 int _node_numa_mem_
[MAX_NUMNODES
];
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy
;
96 EXPORT_SYMBOL(latent_entropy
);
100 * Array of node states.
102 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
103 [N_POSSIBLE
] = NODE_MASK_ALL
,
104 [N_ONLINE
] = { { [0] = 1UL } },
106 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY
] = { { [0] = 1UL } },
113 [N_CPU
] = { { [0] = 1UL } },
116 EXPORT_SYMBOL(node_states
);
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock
);
121 unsigned long totalram_pages __read_mostly
;
122 unsigned long totalreserve_pages __read_mostly
;
123 unsigned long totalcma_pages __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 char * const migratetype_names
[MIGRATE_TYPES
] = {
240 #ifdef CONFIG_MEMORY_ISOLATION
245 compound_page_dtor
* const compound_page_dtors
[] = {
248 #ifdef CONFIG_HUGETLB_PAGE
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 int min_free_kbytes
= 1024;
257 int user_min_free_kbytes
= -1;
258 int watermark_scale_factor
= 10;
260 static unsigned long __meminitdata nr_kernel_pages
;
261 static unsigned long __meminitdata nr_all_pages
;
262 static unsigned long __meminitdata dma_reserve
;
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
267 static unsigned long __initdata required_kernelcore
;
268 static unsigned long __initdata required_movablecore
;
269 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
270 static bool mirrored_kernelcore
;
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 EXPORT_SYMBOL(movable_zone
);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
278 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
279 int nr_online_nodes __read_mostly
= 1;
280 EXPORT_SYMBOL(nr_node_ids
);
281 EXPORT_SYMBOL(nr_online_nodes
);
284 int page_group_by_mobility_disabled __read_mostly
;
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
289 * Determine how many pages need to be initialized durig early boot
290 * (non-deferred initialization).
291 * The value of first_deferred_pfn will be set later, once non-deferred pages
292 * are initialized, but for now set it ULONG_MAX.
294 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
296 phys_addr_t start_addr
, end_addr
;
297 unsigned long max_pgcnt
;
298 unsigned long reserved
;
301 * Initialise at least 2G of a node but also take into account that
302 * two large system hashes that can take up 1GB for 0.25TB/node.
304 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
305 (pgdat
->node_spanned_pages
>> 8));
308 * Compensate the all the memblock reservations (e.g. crash kernel)
309 * from the initial estimation to make sure we will initialize enough
312 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
313 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
314 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
315 max_pgcnt
+= PHYS_PFN(reserved
);
317 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
318 pgdat
->first_deferred_pfn
= ULONG_MAX
;
321 /* Returns true if the struct page for the pfn is uninitialised */
322 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
324 int nid
= early_pfn_to_nid(pfn
);
326 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
333 * Returns false when the remaining initialisation should be deferred until
334 * later in the boot cycle when it can be parallelised.
336 static inline bool update_defer_init(pg_data_t
*pgdat
,
337 unsigned long pfn
, unsigned long zone_end
,
338 unsigned long *nr_initialised
)
340 /* Always populate low zones for address-contrained allocations */
341 if (zone_end
< pgdat_end_pfn(pgdat
))
344 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
345 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
346 pgdat
->first_deferred_pfn
= pfn
;
353 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
357 static inline bool early_page_uninitialised(unsigned long pfn
)
362 static inline bool update_defer_init(pg_data_t
*pgdat
,
363 unsigned long pfn
, unsigned long zone_end
,
364 unsigned long *nr_initialised
)
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
371 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
374 #ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn
)->pageblock_flags
;
377 return page_zone(page
)->pageblock_flags
;
378 #endif /* CONFIG_SPARSEMEM */
381 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
383 #ifdef CONFIG_SPARSEMEM
384 pfn
&= (PAGES_PER_SECTION
-1);
385 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
387 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
388 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
389 #endif /* CONFIG_SPARSEMEM */
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
399 * Return: pageblock_bits flags
401 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
403 unsigned long end_bitidx
,
406 unsigned long *bitmap
;
407 unsigned long bitidx
, word_bitidx
;
410 bitmap
= get_pageblock_bitmap(page
, pfn
);
411 bitidx
= pfn_to_bitidx(page
, pfn
);
412 word_bitidx
= bitidx
/ BITS_PER_LONG
;
413 bitidx
&= (BITS_PER_LONG
-1);
415 word
= bitmap
[word_bitidx
];
416 bitidx
+= end_bitidx
;
417 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
420 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
421 unsigned long end_bitidx
,
424 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
427 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
429 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
440 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
442 unsigned long end_bitidx
,
445 unsigned long *bitmap
;
446 unsigned long bitidx
, word_bitidx
;
447 unsigned long old_word
, word
;
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
451 bitmap
= get_pageblock_bitmap(page
, pfn
);
452 bitidx
= pfn_to_bitidx(page
, pfn
);
453 word_bitidx
= bitidx
/ BITS_PER_LONG
;
454 bitidx
&= (BITS_PER_LONG
-1);
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
458 bitidx
+= end_bitidx
;
459 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
460 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
462 word
= READ_ONCE(bitmap
[word_bitidx
]);
464 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
465 if (word
== old_word
)
471 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
473 if (unlikely(page_group_by_mobility_disabled
&&
474 migratetype
< MIGRATE_PCPTYPES
))
475 migratetype
= MIGRATE_UNMOVABLE
;
477 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
478 PB_migrate
, PB_migrate_end
);
481 #ifdef CONFIG_DEBUG_VM
482 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
486 unsigned long pfn
= page_to_pfn(page
);
487 unsigned long sp
, start_pfn
;
490 seq
= zone_span_seqbegin(zone
);
491 start_pfn
= zone
->zone_start_pfn
;
492 sp
= zone
->spanned_pages
;
493 if (!zone_spans_pfn(zone
, pfn
))
495 } while (zone_span_seqretry(zone
, seq
));
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn
, zone_to_nid(zone
), zone
->name
,
500 start_pfn
, start_pfn
+ sp
);
505 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
507 if (!pfn_valid_within(page_to_pfn(page
)))
509 if (zone
!= page_zone(page
))
515 * Temporary debugging check for pages not lying within a given zone.
517 static int bad_range(struct zone
*zone
, struct page
*page
)
519 if (page_outside_zone_boundaries(zone
, page
))
521 if (!page_is_consistent(zone
, page
))
527 static inline int bad_range(struct zone
*zone
, struct page
*page
)
533 static void bad_page(struct page
*page
, const char *reason
,
534 unsigned long bad_flags
)
536 static unsigned long resume
;
537 static unsigned long nr_shown
;
538 static unsigned long nr_unshown
;
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
544 if (nr_shown
== 60) {
545 if (time_before(jiffies
, resume
)) {
551 "BUG: Bad page state: %lu messages suppressed\n",
558 resume
= jiffies
+ 60 * HZ
;
560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
561 current
->comm
, page_to_pfn(page
));
562 __dump_page(page
, reason
);
563 bad_flags
&= page
->flags
;
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags
, &bad_flags
);
567 dump_page_owner(page
);
572 /* Leave bad fields for debug, except PageBuddy could make trouble */
573 page_mapcount_reset(page
); /* remove PageBuddy */
574 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
578 * Higher-order pages are called "compound pages". They are structured thusly:
580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
588 * The first tail page's ->compound_order holds the order of allocation.
589 * This usage means that zero-order pages may not be compound.
592 void free_compound_page(struct page
*page
)
594 __free_pages_ok(page
, compound_order(page
));
597 void prep_compound_page(struct page
*page
, unsigned int order
)
600 int nr_pages
= 1 << order
;
602 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
603 set_compound_order(page
, order
);
605 for (i
= 1; i
< nr_pages
; i
++) {
606 struct page
*p
= page
+ i
;
607 set_page_count(p
, 0);
608 p
->mapping
= TAIL_MAPPING
;
609 set_compound_head(p
, page
);
611 atomic_set(compound_mapcount_ptr(page
), -1);
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder
;
616 bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
619 bool _debug_guardpage_enabled __read_mostly
;
621 static int __init
early_debug_pagealloc(char *buf
)
625 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
627 early_param("debug_pagealloc", early_debug_pagealloc
);
629 static bool need_debug_guardpage(void)
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
635 if (!debug_guardpage_minorder())
641 static void init_debug_guardpage(void)
643 if (!debug_pagealloc_enabled())
646 if (!debug_guardpage_minorder())
649 _debug_guardpage_enabled
= true;
652 struct page_ext_operations debug_guardpage_ops
= {
653 .need
= need_debug_guardpage
,
654 .init
= init_debug_guardpage
,
657 static int __init
debug_guardpage_minorder_setup(char *buf
)
661 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
662 pr_err("Bad debug_guardpage_minorder value\n");
665 _debug_guardpage_minorder
= res
;
666 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
671 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
672 unsigned int order
, int migratetype
)
674 struct page_ext
*page_ext
;
676 if (!debug_guardpage_enabled())
679 if (order
>= debug_guardpage_minorder())
682 page_ext
= lookup_page_ext(page
);
683 if (unlikely(!page_ext
))
686 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
688 INIT_LIST_HEAD(&page
->lru
);
689 set_page_private(page
, order
);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
696 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
697 unsigned int order
, int migratetype
)
699 struct page_ext
*page_ext
;
701 if (!debug_guardpage_enabled())
704 page_ext
= lookup_page_ext(page
);
705 if (unlikely(!page_ext
))
708 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
710 set_page_private(page
, 0);
711 if (!is_migrate_isolate(migratetype
))
712 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
715 struct page_ext_operations debug_guardpage_ops
;
716 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
717 unsigned int order
, int migratetype
) { return false; }
718 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
719 unsigned int order
, int migratetype
) {}
722 static inline void set_page_order(struct page
*page
, unsigned int order
)
724 set_page_private(page
, order
);
725 __SetPageBuddy(page
);
728 static inline void rmv_page_order(struct page
*page
)
730 __ClearPageBuddy(page
);
731 set_page_private(page
, 0);
735 * This function checks whether a page is free && is the buddy
736 * we can do coalesce a page and its buddy if
737 * (a) the buddy is not in a hole &&
738 * (b) the buddy is in the buddy system &&
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
742 * For recording whether a page is in the buddy system, we set ->_mapcount
743 * PAGE_BUDDY_MAPCOUNT_VALUE.
744 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
745 * serialized by zone->lock.
747 * For recording page's order, we use page_private(page).
749 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
752 if (!pfn_valid_within(page_to_pfn(buddy
)))
755 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
756 if (page_zone_id(page
) != page_zone_id(buddy
))
759 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
764 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
766 * zone check is done late to avoid uselessly
767 * calculating zone/node ids for pages that could
770 if (page_zone_id(page
) != page_zone_id(buddy
))
773 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
781 * Freeing function for a buddy system allocator.
783 * The concept of a buddy system is to maintain direct-mapped table
784 * (containing bit values) for memory blocks of various "orders".
785 * The bottom level table contains the map for the smallest allocatable
786 * units of memory (here, pages), and each level above it describes
787 * pairs of units from the levels below, hence, "buddies".
788 * At a high level, all that happens here is marking the table entry
789 * at the bottom level available, and propagating the changes upward
790 * as necessary, plus some accounting needed to play nicely with other
791 * parts of the VM system.
792 * At each level, we keep a list of pages, which are heads of continuous
793 * free pages of length of (1 << order) and marked with _mapcount
794 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
796 * So when we are allocating or freeing one, we can derive the state of the
797 * other. That is, if we allocate a small block, and both were
798 * free, the remainder of the region must be split into blocks.
799 * If a block is freed, and its buddy is also free, then this
800 * triggers coalescing into a block of larger size.
805 static inline void __free_one_page(struct page
*page
,
807 struct zone
*zone
, unsigned int order
,
810 unsigned long page_idx
;
811 unsigned long combined_idx
;
812 unsigned long uninitialized_var(buddy_idx
);
814 unsigned int max_order
;
816 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
818 VM_BUG_ON(!zone_is_initialized(zone
));
819 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
821 VM_BUG_ON(migratetype
== -1);
822 if (likely(!is_migrate_isolate(migratetype
)))
823 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
825 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
827 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
828 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
831 while (order
< max_order
- 1) {
832 buddy_idx
= __find_buddy_index(page_idx
, order
);
833 buddy
= page
+ (buddy_idx
- page_idx
);
834 if (!page_is_buddy(page
, buddy
, order
))
837 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
838 * merge with it and move up one order.
840 if (page_is_guard(buddy
)) {
841 clear_page_guard(zone
, buddy
, order
, migratetype
);
843 list_del(&buddy
->lru
);
844 zone
->free_area
[order
].nr_free
--;
845 rmv_page_order(buddy
);
847 combined_idx
= buddy_idx
& page_idx
;
848 page
= page
+ (combined_idx
- page_idx
);
849 page_idx
= combined_idx
;
852 if (max_order
< MAX_ORDER
) {
853 /* If we are here, it means order is >= pageblock_order.
854 * We want to prevent merge between freepages on isolate
855 * pageblock and normal pageblock. Without this, pageblock
856 * isolation could cause incorrect freepage or CMA accounting.
858 * We don't want to hit this code for the more frequent
861 if (unlikely(has_isolate_pageblock(zone
))) {
864 buddy_idx
= __find_buddy_index(page_idx
, order
);
865 buddy
= page
+ (buddy_idx
- page_idx
);
866 buddy_mt
= get_pageblock_migratetype(buddy
);
868 if (migratetype
!= buddy_mt
869 && (is_migrate_isolate(migratetype
) ||
870 is_migrate_isolate(buddy_mt
)))
874 goto continue_merging
;
878 set_page_order(page
, order
);
881 * If this is not the largest possible page, check if the buddy
882 * of the next-highest order is free. If it is, it's possible
883 * that pages are being freed that will coalesce soon. In case,
884 * that is happening, add the free page to the tail of the list
885 * so it's less likely to be used soon and more likely to be merged
886 * as a higher order page
888 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
889 struct page
*higher_page
, *higher_buddy
;
890 combined_idx
= buddy_idx
& page_idx
;
891 higher_page
= page
+ (combined_idx
- page_idx
);
892 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
893 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
894 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
895 list_add_tail(&page
->lru
,
896 &zone
->free_area
[order
].free_list
[migratetype
]);
901 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
903 zone
->free_area
[order
].nr_free
++;
907 * A bad page could be due to a number of fields. Instead of multiple branches,
908 * try and check multiple fields with one check. The caller must do a detailed
909 * check if necessary.
911 static inline bool page_expected_state(struct page
*page
,
912 unsigned long check_flags
)
914 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
917 if (unlikely((unsigned long)page
->mapping
|
918 page_ref_count(page
) |
920 (unsigned long)page
->mem_cgroup
|
922 (page
->flags
& check_flags
)))
928 static void free_pages_check_bad(struct page
*page
)
930 const char *bad_reason
;
931 unsigned long bad_flags
;
936 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
937 bad_reason
= "nonzero mapcount";
938 if (unlikely(page
->mapping
!= NULL
))
939 bad_reason
= "non-NULL mapping";
940 if (unlikely(page_ref_count(page
) != 0))
941 bad_reason
= "nonzero _refcount";
942 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
943 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
947 if (unlikely(page
->mem_cgroup
))
948 bad_reason
= "page still charged to cgroup";
950 bad_page(page
, bad_reason
, bad_flags
);
953 static inline int free_pages_check(struct page
*page
)
955 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
958 /* Something has gone sideways, find it */
959 free_pages_check_bad(page
);
963 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
968 * We rely page->lru.next never has bit 0 set, unless the page
969 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
971 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
973 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
977 switch (page
- head_page
) {
979 /* the first tail page: ->mapping is compound_mapcount() */
980 if (unlikely(compound_mapcount(page
))) {
981 bad_page(page
, "nonzero compound_mapcount", 0);
987 * the second tail page: ->mapping is
988 * page_deferred_list().next -- ignore value.
992 if (page
->mapping
!= TAIL_MAPPING
) {
993 bad_page(page
, "corrupted mapping in tail page", 0);
998 if (unlikely(!PageTail(page
))) {
999 bad_page(page
, "PageTail not set", 0);
1002 if (unlikely(compound_head(page
) != head_page
)) {
1003 bad_page(page
, "compound_head not consistent", 0);
1008 page
->mapping
= NULL
;
1009 clear_compound_head(page
);
1013 static __always_inline
bool free_pages_prepare(struct page
*page
,
1014 unsigned int order
, bool check_free
)
1018 VM_BUG_ON_PAGE(PageTail(page
), page
);
1020 trace_mm_page_free(page
, order
);
1021 kmemcheck_free_shadow(page
, order
);
1024 * Check tail pages before head page information is cleared to
1025 * avoid checking PageCompound for order-0 pages.
1027 if (unlikely(order
)) {
1028 bool compound
= PageCompound(page
);
1031 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1034 ClearPageDoubleMap(page
);
1035 for (i
= 1; i
< (1 << order
); i
++) {
1037 bad
+= free_tail_pages_check(page
, page
+ i
);
1038 if (unlikely(free_pages_check(page
+ i
))) {
1042 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1045 if (PageMappingFlags(page
))
1046 page
->mapping
= NULL
;
1047 if (memcg_kmem_enabled() && PageKmemcg(page
))
1048 memcg_kmem_uncharge(page
, order
);
1050 bad
+= free_pages_check(page
);
1054 page_cpupid_reset_last(page
);
1055 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1056 reset_page_owner(page
, order
);
1058 if (!PageHighMem(page
)) {
1059 debug_check_no_locks_freed(page_address(page
),
1060 PAGE_SIZE
<< order
);
1061 debug_check_no_obj_freed(page_address(page
),
1062 PAGE_SIZE
<< order
);
1064 arch_free_page(page
, order
);
1065 kernel_poison_pages(page
, 1 << order
, 0);
1066 kernel_map_pages(page
, 1 << order
, 0);
1067 kasan_free_pages(page
, order
);
1072 #ifdef CONFIG_DEBUG_VM
1073 static inline bool free_pcp_prepare(struct page
*page
)
1075 return free_pages_prepare(page
, 0, true);
1078 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1083 static bool free_pcp_prepare(struct page
*page
)
1085 return free_pages_prepare(page
, 0, false);
1088 static bool bulkfree_pcp_prepare(struct page
*page
)
1090 return free_pages_check(page
);
1092 #endif /* CONFIG_DEBUG_VM */
1095 * Frees a number of pages from the PCP lists
1096 * Assumes all pages on list are in same zone, and of same order.
1097 * count is the number of pages to free.
1099 * If the zone was previously in an "all pages pinned" state then look to
1100 * see if this freeing clears that state.
1102 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1103 * pinned" detection logic.
1105 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1106 struct per_cpu_pages
*pcp
)
1108 int migratetype
= 0;
1110 unsigned long nr_scanned
;
1111 bool isolated_pageblocks
;
1113 spin_lock(&zone
->lock
);
1114 isolated_pageblocks
= has_isolate_pageblock(zone
);
1115 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1117 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1121 struct list_head
*list
;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1132 if (++migratetype
== MIGRATE_PCPTYPES
)
1134 list
= &pcp
->lists
[migratetype
];
1135 } while (list_empty(list
));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free
== MIGRATE_PCPTYPES
)
1142 int mt
; /* migratetype of the to-be-freed page */
1144 page
= list_last_entry(list
, struct page
, lru
);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page
->lru
);
1148 mt
= get_pcppage_migratetype(page
);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks
))
1153 mt
= get_pageblock_migratetype(page
);
1155 if (bulkfree_pcp_prepare(page
))
1158 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1159 trace_mm_page_pcpu_drain(page
, 0, mt
);
1160 } while (--count
&& --batch_free
&& !list_empty(list
));
1162 spin_unlock(&zone
->lock
);
1165 static void free_one_page(struct zone
*zone
,
1166 struct page
*page
, unsigned long pfn
,
1170 unsigned long nr_scanned
;
1171 spin_lock(&zone
->lock
);
1172 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1174 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1176 if (unlikely(has_isolate_pageblock(zone
) ||
1177 is_migrate_isolate(migratetype
))) {
1178 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1180 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1181 spin_unlock(&zone
->lock
);
1184 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1185 unsigned long zone
, int nid
)
1187 set_page_links(page
, zone
, nid
, pfn
);
1188 init_page_count(page
);
1189 page_mapcount_reset(page
);
1190 page_cpupid_reset_last(page
);
1192 INIT_LIST_HEAD(&page
->lru
);
1193 #ifdef WANT_PAGE_VIRTUAL
1194 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1195 if (!is_highmem_idx(zone
))
1196 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1200 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1203 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1207 static void init_reserved_page(unsigned long pfn
)
1212 if (!early_page_uninitialised(pfn
))
1215 nid
= early_pfn_to_nid(pfn
);
1216 pgdat
= NODE_DATA(nid
);
1218 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1219 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1221 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1224 __init_single_pfn(pfn
, zid
, nid
);
1227 static inline void init_reserved_page(unsigned long pfn
)
1230 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1233 * Initialised pages do not have PageReserved set. This function is
1234 * called for each range allocated by the bootmem allocator and
1235 * marks the pages PageReserved. The remaining valid pages are later
1236 * sent to the buddy page allocator.
1238 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1240 unsigned long start_pfn
= PFN_DOWN(start
);
1241 unsigned long end_pfn
= PFN_UP(end
);
1243 for (; start_pfn
< end_pfn
; start_pfn
++) {
1244 if (pfn_valid(start_pfn
)) {
1245 struct page
*page
= pfn_to_page(start_pfn
);
1247 init_reserved_page(start_pfn
);
1249 /* Avoid false-positive PageTail() */
1250 INIT_LIST_HEAD(&page
->lru
);
1252 SetPageReserved(page
);
1257 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1259 unsigned long flags
;
1261 unsigned long pfn
= page_to_pfn(page
);
1263 if (!free_pages_prepare(page
, order
, true))
1266 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1267 local_irq_save(flags
);
1268 __count_vm_events(PGFREE
, 1 << order
);
1269 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1270 local_irq_restore(flags
);
1273 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1275 unsigned int nr_pages
= 1 << order
;
1276 struct page
*p
= page
;
1280 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1282 __ClearPageReserved(p
);
1283 set_page_count(p
, 0);
1285 __ClearPageReserved(p
);
1286 set_page_count(p
, 0);
1288 page_zone(page
)->managed_pages
+= nr_pages
;
1289 set_page_refcounted(page
);
1290 __free_pages(page
, order
);
1293 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1294 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1298 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1300 static DEFINE_SPINLOCK(early_pfn_lock
);
1303 spin_lock(&early_pfn_lock
);
1304 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1306 nid
= first_online_node
;
1307 spin_unlock(&early_pfn_lock
);
1313 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1314 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1315 struct mminit_pfnnid_cache
*state
)
1319 nid
= __early_pfn_to_nid(pfn
, state
);
1320 if (nid
>= 0 && nid
!= node
)
1325 /* Only safe to use early in boot when initialisation is single-threaded */
1326 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1328 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1333 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1337 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1338 struct mminit_pfnnid_cache
*state
)
1345 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1348 if (early_page_uninitialised(pfn
))
1350 return __free_pages_boot_core(page
, order
);
1354 * Check that the whole (or subset of) a pageblock given by the interval of
1355 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1356 * with the migration of free compaction scanner. The scanners then need to
1357 * use only pfn_valid_within() check for arches that allow holes within
1360 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1362 * It's possible on some configurations to have a setup like node0 node1 node0
1363 * i.e. it's possible that all pages within a zones range of pages do not
1364 * belong to a single zone. We assume that a border between node0 and node1
1365 * can occur within a single pageblock, but not a node0 node1 node0
1366 * interleaving within a single pageblock. It is therefore sufficient to check
1367 * the first and last page of a pageblock and avoid checking each individual
1368 * page in a pageblock.
1370 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1371 unsigned long end_pfn
, struct zone
*zone
)
1373 struct page
*start_page
;
1374 struct page
*end_page
;
1376 /* end_pfn is one past the range we are checking */
1379 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1382 start_page
= pfn_to_page(start_pfn
);
1384 if (page_zone(start_page
) != zone
)
1387 end_page
= pfn_to_page(end_pfn
);
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1396 void set_zone_contiguous(struct zone
*zone
)
1398 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1399 unsigned long block_end_pfn
;
1401 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1402 for (; block_start_pfn
< zone_end_pfn(zone
);
1403 block_start_pfn
= block_end_pfn
,
1404 block_end_pfn
+= pageblock_nr_pages
) {
1406 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1408 if (!__pageblock_pfn_to_page(block_start_pfn
,
1409 block_end_pfn
, zone
))
1413 /* We confirm that there is no hole */
1414 zone
->contiguous
= true;
1417 void clear_zone_contiguous(struct zone
*zone
)
1419 zone
->contiguous
= false;
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init
deferred_free_range(struct page
*page
,
1424 unsigned long pfn
, int nr_pages
)
1431 /* Free a large naturally-aligned chunk if possible */
1432 if (nr_pages
== pageblock_nr_pages
&&
1433 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1434 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1435 __free_pages_boot_core(page
, pageblock_order
);
1439 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1440 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1441 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1442 __free_pages_boot_core(page
, 0);
1446 /* Completion tracking for deferred_init_memmap() threads */
1447 static atomic_t pgdat_init_n_undone __initdata
;
1448 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1450 static inline void __init
pgdat_init_report_one_done(void)
1452 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1453 complete(&pgdat_init_all_done_comp
);
1456 /* Initialise remaining memory on a node */
1457 static int __init
deferred_init_memmap(void *data
)
1459 pg_data_t
*pgdat
= data
;
1460 int nid
= pgdat
->node_id
;
1461 struct mminit_pfnnid_cache nid_init_state
= { };
1462 unsigned long start
= jiffies
;
1463 unsigned long nr_pages
= 0;
1464 unsigned long walk_start
, walk_end
;
1467 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1468 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1470 if (first_init_pfn
== ULONG_MAX
) {
1471 pgdat_init_report_one_done();
1475 /* Bind memory initialisation thread to a local node if possible */
1476 if (!cpumask_empty(cpumask
))
1477 set_cpus_allowed_ptr(current
, cpumask
);
1479 /* Sanity check boundaries */
1480 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1481 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1482 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1484 /* Only the highest zone is deferred so find it */
1485 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1486 zone
= pgdat
->node_zones
+ zid
;
1487 if (first_init_pfn
< zone_end_pfn(zone
))
1491 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1492 unsigned long pfn
, end_pfn
;
1493 struct page
*page
= NULL
;
1494 struct page
*free_base_page
= NULL
;
1495 unsigned long free_base_pfn
= 0;
1498 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1499 pfn
= first_init_pfn
;
1500 if (pfn
< walk_start
)
1502 if (pfn
< zone
->zone_start_pfn
)
1503 pfn
= zone
->zone_start_pfn
;
1505 for (; pfn
< end_pfn
; pfn
++) {
1506 if (!pfn_valid_within(pfn
))
1510 * Ensure pfn_valid is checked every
1511 * pageblock_nr_pages for memory holes
1513 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1514 if (!pfn_valid(pfn
)) {
1520 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1525 /* Minimise pfn page lookups and scheduler checks */
1526 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1529 nr_pages
+= nr_to_free
;
1530 deferred_free_range(free_base_page
,
1531 free_base_pfn
, nr_to_free
);
1532 free_base_page
= NULL
;
1533 free_base_pfn
= nr_to_free
= 0;
1535 page
= pfn_to_page(pfn
);
1540 VM_BUG_ON(page_zone(page
) != zone
);
1544 __init_single_page(page
, pfn
, zid
, nid
);
1545 if (!free_base_page
) {
1546 free_base_page
= page
;
1547 free_base_pfn
= pfn
;
1552 /* Where possible, batch up pages for a single free */
1555 /* Free the current block of pages to allocator */
1556 nr_pages
+= nr_to_free
;
1557 deferred_free_range(free_base_page
, free_base_pfn
,
1559 free_base_page
= NULL
;
1560 free_base_pfn
= nr_to_free
= 0;
1562 /* Free the last block of pages to allocator */
1563 nr_pages
+= nr_to_free
;
1564 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1566 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1569 /* Sanity check that the next zone really is unpopulated */
1570 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1572 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1573 jiffies_to_msecs(jiffies
- start
));
1575 pgdat_init_report_one_done();
1578 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1580 void __init
page_alloc_init_late(void)
1584 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1587 /* There will be num_node_state(N_MEMORY) threads */
1588 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1589 for_each_node_state(nid
, N_MEMORY
) {
1590 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1593 /* Block until all are initialised */
1594 wait_for_completion(&pgdat_init_all_done_comp
);
1596 /* Reinit limits that are based on free pages after the kernel is up */
1597 files_maxfiles_init();
1599 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1600 /* Discard memblock private memory */
1604 for_each_populated_zone(zone
)
1605 set_zone_contiguous(zone
);
1609 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1610 void __init
init_cma_reserved_pageblock(struct page
*page
)
1612 unsigned i
= pageblock_nr_pages
;
1613 struct page
*p
= page
;
1616 __ClearPageReserved(p
);
1617 set_page_count(p
, 0);
1620 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1622 if (pageblock_order
>= MAX_ORDER
) {
1623 i
= pageblock_nr_pages
;
1626 set_page_refcounted(p
);
1627 __free_pages(p
, MAX_ORDER
- 1);
1628 p
+= MAX_ORDER_NR_PAGES
;
1629 } while (i
-= MAX_ORDER_NR_PAGES
);
1631 set_page_refcounted(page
);
1632 __free_pages(page
, pageblock_order
);
1635 adjust_managed_page_count(page
, pageblock_nr_pages
);
1640 * The order of subdivision here is critical for the IO subsystem.
1641 * Please do not alter this order without good reasons and regression
1642 * testing. Specifically, as large blocks of memory are subdivided,
1643 * the order in which smaller blocks are delivered depends on the order
1644 * they're subdivided in this function. This is the primary factor
1645 * influencing the order in which pages are delivered to the IO
1646 * subsystem according to empirical testing, and this is also justified
1647 * by considering the behavior of a buddy system containing a single
1648 * large block of memory acted on by a series of small allocations.
1649 * This behavior is a critical factor in sglist merging's success.
1653 static inline void expand(struct zone
*zone
, struct page
*page
,
1654 int low
, int high
, struct free_area
*area
,
1657 unsigned long size
= 1 << high
;
1659 while (high
> low
) {
1663 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1666 * Mark as guard pages (or page), that will allow to
1667 * merge back to allocator when buddy will be freed.
1668 * Corresponding page table entries will not be touched,
1669 * pages will stay not present in virtual address space
1671 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1674 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1676 set_page_order(&page
[size
], high
);
1680 static void check_new_page_bad(struct page
*page
)
1682 const char *bad_reason
= NULL
;
1683 unsigned long bad_flags
= 0;
1685 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1686 bad_reason
= "nonzero mapcount";
1687 if (unlikely(page
->mapping
!= NULL
))
1688 bad_reason
= "non-NULL mapping";
1689 if (unlikely(page_ref_count(page
) != 0))
1690 bad_reason
= "nonzero _count";
1691 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1692 bad_reason
= "HWPoisoned (hardware-corrupted)";
1693 bad_flags
= __PG_HWPOISON
;
1694 /* Don't complain about hwpoisoned pages */
1695 page_mapcount_reset(page
); /* remove PageBuddy */
1698 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1699 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1700 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1703 if (unlikely(page
->mem_cgroup
))
1704 bad_reason
= "page still charged to cgroup";
1706 bad_page(page
, bad_reason
, bad_flags
);
1710 * This page is about to be returned from the page allocator
1712 static inline int check_new_page(struct page
*page
)
1714 if (likely(page_expected_state(page
,
1715 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1718 check_new_page_bad(page
);
1722 static inline bool free_pages_prezeroed(bool poisoned
)
1724 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1725 page_poisoning_enabled() && poisoned
;
1728 #ifdef CONFIG_DEBUG_VM
1729 static bool check_pcp_refill(struct page
*page
)
1734 static bool check_new_pcp(struct page
*page
)
1736 return check_new_page(page
);
1739 static bool check_pcp_refill(struct page
*page
)
1741 return check_new_page(page
);
1743 static bool check_new_pcp(struct page
*page
)
1747 #endif /* CONFIG_DEBUG_VM */
1749 static bool check_new_pages(struct page
*page
, unsigned int order
)
1752 for (i
= 0; i
< (1 << order
); i
++) {
1753 struct page
*p
= page
+ i
;
1755 if (unlikely(check_new_page(p
)))
1762 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1765 set_page_private(page
, 0);
1766 set_page_refcounted(page
);
1768 arch_alloc_page(page
, order
);
1769 kernel_map_pages(page
, 1 << order
, 1);
1770 kernel_poison_pages(page
, 1 << order
, 1);
1771 kasan_alloc_pages(page
, order
);
1772 set_page_owner(page
, order
, gfp_flags
);
1775 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1776 unsigned int alloc_flags
)
1779 bool poisoned
= true;
1781 for (i
= 0; i
< (1 << order
); i
++) {
1782 struct page
*p
= page
+ i
;
1784 poisoned
&= page_is_poisoned(p
);
1787 post_alloc_hook(page
, order
, gfp_flags
);
1789 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1790 for (i
= 0; i
< (1 << order
); i
++)
1791 clear_highpage(page
+ i
);
1793 if (order
&& (gfp_flags
& __GFP_COMP
))
1794 prep_compound_page(page
, order
);
1797 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1798 * allocate the page. The expectation is that the caller is taking
1799 * steps that will free more memory. The caller should avoid the page
1800 * being used for !PFMEMALLOC purposes.
1802 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1803 set_page_pfmemalloc(page
);
1805 clear_page_pfmemalloc(page
);
1809 * Go through the free lists for the given migratetype and remove
1810 * the smallest available page from the freelists
1813 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1816 unsigned int current_order
;
1817 struct free_area
*area
;
1820 /* Find a page of the appropriate size in the preferred list */
1821 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1822 area
= &(zone
->free_area
[current_order
]);
1823 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1827 list_del(&page
->lru
);
1828 rmv_page_order(page
);
1830 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1831 set_pcppage_migratetype(page
, migratetype
);
1840 * This array describes the order lists are fallen back to when
1841 * the free lists for the desirable migrate type are depleted
1843 static int fallbacks
[MIGRATE_TYPES
][4] = {
1844 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1845 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1846 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1848 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1850 #ifdef CONFIG_MEMORY_ISOLATION
1851 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1856 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1859 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1862 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1863 unsigned int order
) { return NULL
; }
1867 * Move the free pages in a range to the free lists of the requested type.
1868 * Note that start_page and end_pages are not aligned on a pageblock
1869 * boundary. If alignment is required, use move_freepages_block()
1871 int move_freepages(struct zone
*zone
,
1872 struct page
*start_page
, struct page
*end_page
,
1877 int pages_moved
= 0;
1879 #ifndef CONFIG_HOLES_IN_ZONE
1881 * page_zone is not safe to call in this context when
1882 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1883 * anyway as we check zone boundaries in move_freepages_block().
1884 * Remove at a later date when no bug reports exist related to
1885 * grouping pages by mobility
1887 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1890 for (page
= start_page
; page
<= end_page
;) {
1891 if (!pfn_valid_within(page_to_pfn(page
))) {
1896 /* Make sure we are not inadvertently changing nodes */
1897 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1899 if (!PageBuddy(page
)) {
1904 order
= page_order(page
);
1905 list_move(&page
->lru
,
1906 &zone
->free_area
[order
].free_list
[migratetype
]);
1908 pages_moved
+= 1 << order
;
1914 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1917 unsigned long start_pfn
, end_pfn
;
1918 struct page
*start_page
, *end_page
;
1920 start_pfn
= page_to_pfn(page
);
1921 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1922 start_page
= pfn_to_page(start_pfn
);
1923 end_page
= start_page
+ pageblock_nr_pages
- 1;
1924 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1926 /* Do not cross zone boundaries */
1927 if (!zone_spans_pfn(zone
, start_pfn
))
1929 if (!zone_spans_pfn(zone
, end_pfn
))
1932 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1935 static void change_pageblock_range(struct page
*pageblock_page
,
1936 int start_order
, int migratetype
)
1938 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1940 while (nr_pageblocks
--) {
1941 set_pageblock_migratetype(pageblock_page
, migratetype
);
1942 pageblock_page
+= pageblock_nr_pages
;
1947 * When we are falling back to another migratetype during allocation, try to
1948 * steal extra free pages from the same pageblocks to satisfy further
1949 * allocations, instead of polluting multiple pageblocks.
1951 * If we are stealing a relatively large buddy page, it is likely there will
1952 * be more free pages in the pageblock, so try to steal them all. For
1953 * reclaimable and unmovable allocations, we steal regardless of page size,
1954 * as fragmentation caused by those allocations polluting movable pageblocks
1955 * is worse than movable allocations stealing from unmovable and reclaimable
1958 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1961 * Leaving this order check is intended, although there is
1962 * relaxed order check in next check. The reason is that
1963 * we can actually steal whole pageblock if this condition met,
1964 * but, below check doesn't guarantee it and that is just heuristic
1965 * so could be changed anytime.
1967 if (order
>= pageblock_order
)
1970 if (order
>= pageblock_order
/ 2 ||
1971 start_mt
== MIGRATE_RECLAIMABLE
||
1972 start_mt
== MIGRATE_UNMOVABLE
||
1973 page_group_by_mobility_disabled
)
1980 * This function implements actual steal behaviour. If order is large enough,
1981 * we can steal whole pageblock. If not, we first move freepages in this
1982 * pageblock and check whether half of pages are moved or not. If half of
1983 * pages are moved, we can change migratetype of pageblock and permanently
1984 * use it's pages as requested migratetype in the future.
1986 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1989 unsigned int current_order
= page_order(page
);
1992 /* Take ownership for orders >= pageblock_order */
1993 if (current_order
>= pageblock_order
) {
1994 change_pageblock_range(page
, current_order
, start_type
);
1998 pages
= move_freepages_block(zone
, page
, start_type
);
2000 /* Claim the whole block if over half of it is free */
2001 if (pages
>= (1 << (pageblock_order
-1)) ||
2002 page_group_by_mobility_disabled
)
2003 set_pageblock_migratetype(page
, start_type
);
2007 * Check whether there is a suitable fallback freepage with requested order.
2008 * If only_stealable is true, this function returns fallback_mt only if
2009 * we can steal other freepages all together. This would help to reduce
2010 * fragmentation due to mixed migratetype pages in one pageblock.
2012 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2013 int migratetype
, bool only_stealable
, bool *can_steal
)
2018 if (area
->nr_free
== 0)
2023 fallback_mt
= fallbacks
[migratetype
][i
];
2024 if (fallback_mt
== MIGRATE_TYPES
)
2027 if (list_empty(&area
->free_list
[fallback_mt
]))
2030 if (can_steal_fallback(order
, migratetype
))
2033 if (!only_stealable
)
2044 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2045 * there are no empty page blocks that contain a page with a suitable order
2047 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2048 unsigned int alloc_order
)
2051 unsigned long max_managed
, flags
;
2054 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2055 * Check is race-prone but harmless.
2057 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2058 if (zone
->nr_reserved_highatomic
>= max_managed
)
2061 spin_lock_irqsave(&zone
->lock
, flags
);
2063 /* Recheck the nr_reserved_highatomic limit under the lock */
2064 if (zone
->nr_reserved_highatomic
>= max_managed
)
2068 mt
= get_pageblock_migratetype(page
);
2069 if (mt
!= MIGRATE_HIGHATOMIC
&&
2070 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
2071 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2072 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2073 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
2077 spin_unlock_irqrestore(&zone
->lock
, flags
);
2081 * Used when an allocation is about to fail under memory pressure. This
2082 * potentially hurts the reliability of high-order allocations when under
2083 * intense memory pressure but failed atomic allocations should be easier
2084 * to recover from than an OOM.
2086 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
2088 struct zonelist
*zonelist
= ac
->zonelist
;
2089 unsigned long flags
;
2095 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2097 /* Preserve at least one pageblock */
2098 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
2101 spin_lock_irqsave(&zone
->lock
, flags
);
2102 for (order
= 0; order
< MAX_ORDER
; order
++) {
2103 struct free_area
*area
= &(zone
->free_area
[order
]);
2105 page
= list_first_entry_or_null(
2106 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2112 * In page freeing path, migratetype change is racy so
2113 * we can counter several free pages in a pageblock
2114 * in this loop althoug we changed the pageblock type
2115 * from highatomic to ac->migratetype. So we should
2116 * adjust the count once.
2118 if (get_pageblock_migratetype(page
) ==
2119 MIGRATE_HIGHATOMIC
) {
2121 * It should never happen but changes to
2122 * locking could inadvertently allow a per-cpu
2123 * drain to add pages to MIGRATE_HIGHATOMIC
2124 * while unreserving so be safe and watch for
2127 zone
->nr_reserved_highatomic
-= min(
2129 zone
->nr_reserved_highatomic
);
2133 * Convert to ac->migratetype and avoid the normal
2134 * pageblock stealing heuristics. Minimally, the caller
2135 * is doing the work and needs the pages. More
2136 * importantly, if the block was always converted to
2137 * MIGRATE_UNMOVABLE or another type then the number
2138 * of pageblocks that cannot be completely freed
2141 set_pageblock_migratetype(page
, ac
->migratetype
);
2142 move_freepages_block(zone
, page
, ac
->migratetype
);
2143 spin_unlock_irqrestore(&zone
->lock
, flags
);
2146 spin_unlock_irqrestore(&zone
->lock
, flags
);
2150 /* Remove an element from the buddy allocator from the fallback list */
2151 static inline struct page
*
2152 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2154 struct free_area
*area
;
2155 unsigned int current_order
;
2160 /* Find the largest possible block of pages in the other list */
2161 for (current_order
= MAX_ORDER
-1;
2162 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2164 area
= &(zone
->free_area
[current_order
]);
2165 fallback_mt
= find_suitable_fallback(area
, current_order
,
2166 start_migratetype
, false, &can_steal
);
2167 if (fallback_mt
== -1)
2170 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2173 steal_suitable_fallback(zone
, page
, start_migratetype
);
2175 /* Remove the page from the freelists */
2177 list_del(&page
->lru
);
2178 rmv_page_order(page
);
2180 expand(zone
, page
, order
, current_order
, area
,
2183 * The pcppage_migratetype may differ from pageblock's
2184 * migratetype depending on the decisions in
2185 * find_suitable_fallback(). This is OK as long as it does not
2186 * differ for MIGRATE_CMA pageblocks. Those can be used as
2187 * fallback only via special __rmqueue_cma_fallback() function
2189 set_pcppage_migratetype(page
, start_migratetype
);
2191 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2192 start_migratetype
, fallback_mt
);
2201 * Do the hard work of removing an element from the buddy allocator.
2202 * Call me with the zone->lock already held.
2204 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2209 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2210 if (unlikely(!page
)) {
2211 if (migratetype
== MIGRATE_MOVABLE
)
2212 page
= __rmqueue_cma_fallback(zone
, order
);
2215 page
= __rmqueue_fallback(zone
, order
, migratetype
);
2218 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2223 * Obtain a specified number of elements from the buddy allocator, all under
2224 * a single hold of the lock, for efficiency. Add them to the supplied list.
2225 * Returns the number of new pages which were placed at *list.
2227 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2228 unsigned long count
, struct list_head
*list
,
2229 int migratetype
, bool cold
)
2233 spin_lock(&zone
->lock
);
2234 for (i
= 0; i
< count
; ++i
) {
2235 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2236 if (unlikely(page
== NULL
))
2239 if (unlikely(check_pcp_refill(page
)))
2243 * Split buddy pages returned by expand() are received here
2244 * in physical page order. The page is added to the callers and
2245 * list and the list head then moves forward. From the callers
2246 * perspective, the linked list is ordered by page number in
2247 * some conditions. This is useful for IO devices that can
2248 * merge IO requests if the physical pages are ordered
2252 list_add(&page
->lru
, list
);
2254 list_add_tail(&page
->lru
, list
);
2257 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2258 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2263 * i pages were removed from the buddy list even if some leak due
2264 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2265 * on i. Do not confuse with 'alloced' which is the number of
2266 * pages added to the pcp list.
2268 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2269 spin_unlock(&zone
->lock
);
2275 * Called from the vmstat counter updater to drain pagesets of this
2276 * currently executing processor on remote nodes after they have
2279 * Note that this function must be called with the thread pinned to
2280 * a single processor.
2282 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2284 unsigned long flags
;
2285 int to_drain
, batch
;
2287 local_irq_save(flags
);
2288 batch
= READ_ONCE(pcp
->batch
);
2289 to_drain
= min(pcp
->count
, batch
);
2291 free_pcppages_bulk(zone
, to_drain
, pcp
);
2292 pcp
->count
-= to_drain
;
2294 local_irq_restore(flags
);
2299 * Drain pcplists of the indicated processor and zone.
2301 * The processor must either be the current processor and the
2302 * thread pinned to the current processor or a processor that
2305 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2307 unsigned long flags
;
2308 struct per_cpu_pageset
*pset
;
2309 struct per_cpu_pages
*pcp
;
2311 local_irq_save(flags
);
2312 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2316 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2319 local_irq_restore(flags
);
2323 * Drain pcplists of all zones on the indicated processor.
2325 * The processor must either be the current processor and the
2326 * thread pinned to the current processor or a processor that
2329 static void drain_pages(unsigned int cpu
)
2333 for_each_populated_zone(zone
) {
2334 drain_pages_zone(cpu
, zone
);
2339 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2341 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2342 * the single zone's pages.
2344 void drain_local_pages(struct zone
*zone
)
2346 int cpu
= smp_processor_id();
2349 drain_pages_zone(cpu
, zone
);
2355 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2357 * When zone parameter is non-NULL, spill just the single zone's pages.
2359 * Note that this code is protected against sending an IPI to an offline
2360 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2361 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2362 * nothing keeps CPUs from showing up after we populated the cpumask and
2363 * before the call to on_each_cpu_mask().
2365 void drain_all_pages(struct zone
*zone
)
2370 * Allocate in the BSS so we wont require allocation in
2371 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 static cpumask_t cpus_with_pcps
;
2376 * We don't care about racing with CPU hotplug event
2377 * as offline notification will cause the notified
2378 * cpu to drain that CPU pcps and on_each_cpu_mask
2379 * disables preemption as part of its processing
2381 for_each_online_cpu(cpu
) {
2382 struct per_cpu_pageset
*pcp
;
2384 bool has_pcps
= false;
2387 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2391 for_each_populated_zone(z
) {
2392 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2393 if (pcp
->pcp
.count
) {
2401 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2403 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2405 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2409 #ifdef CONFIG_HIBERNATION
2411 void mark_free_pages(struct zone
*zone
)
2413 unsigned long pfn
, max_zone_pfn
;
2414 unsigned long flags
;
2415 unsigned int order
, t
;
2418 if (zone_is_empty(zone
))
2421 spin_lock_irqsave(&zone
->lock
, flags
);
2423 max_zone_pfn
= zone_end_pfn(zone
);
2424 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2425 if (pfn_valid(pfn
)) {
2426 page
= pfn_to_page(pfn
);
2428 if (page_zone(page
) != zone
)
2431 if (!swsusp_page_is_forbidden(page
))
2432 swsusp_unset_page_free(page
);
2435 for_each_migratetype_order(order
, t
) {
2436 list_for_each_entry(page
,
2437 &zone
->free_area
[order
].free_list
[t
], lru
) {
2440 pfn
= page_to_pfn(page
);
2441 for (i
= 0; i
< (1UL << order
); i
++)
2442 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2445 spin_unlock_irqrestore(&zone
->lock
, flags
);
2447 #endif /* CONFIG_PM */
2450 * Free a 0-order page
2451 * cold == true ? free a cold page : free a hot page
2453 void free_hot_cold_page(struct page
*page
, bool cold
)
2455 struct zone
*zone
= page_zone(page
);
2456 struct per_cpu_pages
*pcp
;
2457 unsigned long flags
;
2458 unsigned long pfn
= page_to_pfn(page
);
2461 if (!free_pcp_prepare(page
))
2464 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2465 set_pcppage_migratetype(page
, migratetype
);
2466 local_irq_save(flags
);
2467 __count_vm_event(PGFREE
);
2470 * We only track unmovable, reclaimable and movable on pcp lists.
2471 * Free ISOLATE pages back to the allocator because they are being
2472 * offlined but treat RESERVE as movable pages so we can get those
2473 * areas back if necessary. Otherwise, we may have to free
2474 * excessively into the page allocator
2476 if (migratetype
>= MIGRATE_PCPTYPES
) {
2477 if (unlikely(is_migrate_isolate(migratetype
))) {
2478 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2481 migratetype
= MIGRATE_MOVABLE
;
2484 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2486 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2488 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2490 if (pcp
->count
>= pcp
->high
) {
2491 unsigned long batch
= READ_ONCE(pcp
->batch
);
2492 free_pcppages_bulk(zone
, batch
, pcp
);
2493 pcp
->count
-= batch
;
2497 local_irq_restore(flags
);
2501 * Free a list of 0-order pages
2503 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2505 struct page
*page
, *next
;
2507 list_for_each_entry_safe(page
, next
, list
, lru
) {
2508 trace_mm_page_free_batched(page
, cold
);
2509 free_hot_cold_page(page
, cold
);
2514 * split_page takes a non-compound higher-order page, and splits it into
2515 * n (1<<order) sub-pages: page[0..n]
2516 * Each sub-page must be freed individually.
2518 * Note: this is probably too low level an operation for use in drivers.
2519 * Please consult with lkml before using this in your driver.
2521 void split_page(struct page
*page
, unsigned int order
)
2525 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2526 VM_BUG_ON_PAGE(!page_count(page
), page
);
2528 #ifdef CONFIG_KMEMCHECK
2530 * Split shadow pages too, because free(page[0]) would
2531 * otherwise free the whole shadow.
2533 if (kmemcheck_page_is_tracked(page
))
2534 split_page(virt_to_page(page
[0].shadow
), order
);
2537 for (i
= 1; i
< (1 << order
); i
++)
2538 set_page_refcounted(page
+ i
);
2539 split_page_owner(page
, order
);
2541 EXPORT_SYMBOL_GPL(split_page
);
2543 int __isolate_free_page(struct page
*page
, unsigned int order
)
2545 unsigned long watermark
;
2549 BUG_ON(!PageBuddy(page
));
2551 zone
= page_zone(page
);
2552 mt
= get_pageblock_migratetype(page
);
2554 if (!is_migrate_isolate(mt
)) {
2556 * Obey watermarks as if the page was being allocated. We can
2557 * emulate a high-order watermark check with a raised order-0
2558 * watermark, because we already know our high-order page
2561 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2562 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2565 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2568 /* Remove page from free list */
2569 list_del(&page
->lru
);
2570 zone
->free_area
[order
].nr_free
--;
2571 rmv_page_order(page
);
2574 * Set the pageblock if the isolated page is at least half of a
2577 if (order
>= pageblock_order
- 1) {
2578 struct page
*endpage
= page
+ (1 << order
) - 1;
2579 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2580 int mt
= get_pageblock_migratetype(page
);
2581 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2582 set_pageblock_migratetype(page
,
2588 return 1UL << order
;
2592 * Update NUMA hit/miss statistics
2594 * Must be called with interrupts disabled.
2596 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2600 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2602 if (z
->node
!= numa_node_id())
2603 local_stat
= NUMA_OTHER
;
2605 if (z
->node
== preferred_zone
->node
)
2606 __inc_zone_state(z
, NUMA_HIT
);
2608 __inc_zone_state(z
, NUMA_MISS
);
2609 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2611 __inc_zone_state(z
, local_stat
);
2616 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2619 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2620 struct zone
*zone
, unsigned int order
,
2621 gfp_t gfp_flags
, unsigned int alloc_flags
,
2624 unsigned long flags
;
2626 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2628 if (likely(order
== 0)) {
2629 struct per_cpu_pages
*pcp
;
2630 struct list_head
*list
;
2632 local_irq_save(flags
);
2634 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2635 list
= &pcp
->lists
[migratetype
];
2636 if (list_empty(list
)) {
2637 pcp
->count
+= rmqueue_bulk(zone
, 0,
2640 if (unlikely(list_empty(list
)))
2645 page
= list_last_entry(list
, struct page
, lru
);
2647 page
= list_first_entry(list
, struct page
, lru
);
2649 list_del(&page
->lru
);
2652 } while (check_new_pcp(page
));
2655 * We most definitely don't want callers attempting to
2656 * allocate greater than order-1 page units with __GFP_NOFAIL.
2658 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2659 spin_lock_irqsave(&zone
->lock
, flags
);
2663 if (alloc_flags
& ALLOC_HARDER
) {
2664 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2666 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2669 page
= __rmqueue(zone
, order
, migratetype
);
2670 } while (page
&& check_new_pages(page
, order
));
2671 spin_unlock(&zone
->lock
);
2674 __mod_zone_freepage_state(zone
, -(1 << order
),
2675 get_pcppage_migratetype(page
));
2678 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2679 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2680 local_irq_restore(flags
);
2682 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2686 local_irq_restore(flags
);
2690 #ifdef CONFIG_FAIL_PAGE_ALLOC
2693 struct fault_attr attr
;
2695 bool ignore_gfp_highmem
;
2696 bool ignore_gfp_reclaim
;
2698 } fail_page_alloc
= {
2699 .attr
= FAULT_ATTR_INITIALIZER
,
2700 .ignore_gfp_reclaim
= true,
2701 .ignore_gfp_highmem
= true,
2705 static int __init
setup_fail_page_alloc(char *str
)
2707 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2709 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2711 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2713 if (order
< fail_page_alloc
.min_order
)
2715 if (gfp_mask
& __GFP_NOFAIL
)
2717 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2719 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2720 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2723 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2726 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2728 static int __init
fail_page_alloc_debugfs(void)
2730 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2733 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2734 &fail_page_alloc
.attr
);
2736 return PTR_ERR(dir
);
2738 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2739 &fail_page_alloc
.ignore_gfp_reclaim
))
2741 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2742 &fail_page_alloc
.ignore_gfp_highmem
))
2744 if (!debugfs_create_u32("min-order", mode
, dir
,
2745 &fail_page_alloc
.min_order
))
2750 debugfs_remove_recursive(dir
);
2755 late_initcall(fail_page_alloc_debugfs
);
2757 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2759 #else /* CONFIG_FAIL_PAGE_ALLOC */
2761 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2766 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2769 * Return true if free base pages are above 'mark'. For high-order checks it
2770 * will return true of the order-0 watermark is reached and there is at least
2771 * one free page of a suitable size. Checking now avoids taking the zone lock
2772 * to check in the allocation paths if no pages are free.
2774 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2775 int classzone_idx
, unsigned int alloc_flags
,
2780 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2782 /* free_pages may go negative - that's OK */
2783 free_pages
-= (1 << order
) - 1;
2785 if (alloc_flags
& ALLOC_HIGH
)
2789 * If the caller does not have rights to ALLOC_HARDER then subtract
2790 * the high-atomic reserves. This will over-estimate the size of the
2791 * atomic reserve but it avoids a search.
2793 if (likely(!alloc_harder
))
2794 free_pages
-= z
->nr_reserved_highatomic
;
2799 /* If allocation can't use CMA areas don't use free CMA pages */
2800 if (!(alloc_flags
& ALLOC_CMA
))
2801 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2805 * Check watermarks for an order-0 allocation request. If these
2806 * are not met, then a high-order request also cannot go ahead
2807 * even if a suitable page happened to be free.
2809 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2812 /* If this is an order-0 request then the watermark is fine */
2816 /* For a high-order request, check at least one suitable page is free */
2817 for (o
= order
; o
< MAX_ORDER
; o
++) {
2818 struct free_area
*area
= &z
->free_area
[o
];
2824 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2825 if (!list_empty(&area
->free_list
[mt
]))
2830 if ((alloc_flags
& ALLOC_CMA
) &&
2831 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2836 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
2842 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2843 int classzone_idx
, unsigned int alloc_flags
)
2845 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2846 zone_page_state(z
, NR_FREE_PAGES
));
2849 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2850 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2852 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2856 /* If allocation can't use CMA areas don't use free CMA pages */
2857 if (!(alloc_flags
& ALLOC_CMA
))
2858 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2862 * Fast check for order-0 only. If this fails then the reserves
2863 * need to be calculated. There is a corner case where the check
2864 * passes but only the high-order atomic reserve are free. If
2865 * the caller is !atomic then it'll uselessly search the free
2866 * list. That corner case is then slower but it is harmless.
2868 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2871 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2875 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2876 unsigned long mark
, int classzone_idx
)
2878 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2880 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2881 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2883 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2888 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2890 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2893 #else /* CONFIG_NUMA */
2894 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2898 #endif /* CONFIG_NUMA */
2901 * get_page_from_freelist goes through the zonelist trying to allocate
2904 static struct page
*
2905 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2906 const struct alloc_context
*ac
)
2908 struct zoneref
*z
= ac
->preferred_zoneref
;
2910 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
2913 * Scan zonelist, looking for a zone with enough free.
2914 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2916 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2921 if (cpusets_enabled() &&
2922 (alloc_flags
& ALLOC_CPUSET
) &&
2923 !__cpuset_zone_allowed(zone
, gfp_mask
))
2926 * When allocating a page cache page for writing, we
2927 * want to get it from a node that is within its dirty
2928 * limit, such that no single node holds more than its
2929 * proportional share of globally allowed dirty pages.
2930 * The dirty limits take into account the node's
2931 * lowmem reserves and high watermark so that kswapd
2932 * should be able to balance it without having to
2933 * write pages from its LRU list.
2935 * XXX: For now, allow allocations to potentially
2936 * exceed the per-node dirty limit in the slowpath
2937 * (spread_dirty_pages unset) before going into reclaim,
2938 * which is important when on a NUMA setup the allowed
2939 * nodes are together not big enough to reach the
2940 * global limit. The proper fix for these situations
2941 * will require awareness of nodes in the
2942 * dirty-throttling and the flusher threads.
2944 if (ac
->spread_dirty_pages
) {
2945 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
2948 if (!node_dirty_ok(zone
->zone_pgdat
)) {
2949 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
2954 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2955 if (!zone_watermark_fast(zone
, order
, mark
,
2956 ac_classzone_idx(ac
), alloc_flags
)) {
2959 /* Checked here to keep the fast path fast */
2960 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2961 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2964 if (node_reclaim_mode
== 0 ||
2965 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
2968 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
2970 case NODE_RECLAIM_NOSCAN
:
2973 case NODE_RECLAIM_FULL
:
2974 /* scanned but unreclaimable */
2977 /* did we reclaim enough */
2978 if (zone_watermark_ok(zone
, order
, mark
,
2979 ac_classzone_idx(ac
), alloc_flags
))
2987 page
= buffered_rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
2988 gfp_mask
, alloc_flags
, ac
->migratetype
);
2990 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
2993 * If this is a high-order atomic allocation then check
2994 * if the pageblock should be reserved for the future
2996 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2997 reserve_highatomic_pageblock(page
, zone
, order
);
3007 * Large machines with many possible nodes should not always dump per-node
3008 * meminfo in irq context.
3010 static inline bool should_suppress_show_mem(void)
3015 ret
= in_interrupt();
3020 static DEFINE_RATELIMIT_STATE(nopage_rs
,
3021 DEFAULT_RATELIMIT_INTERVAL
,
3022 DEFAULT_RATELIMIT_BURST
);
3024 void warn_alloc(gfp_t gfp_mask
, const char *fmt
, ...)
3026 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3027 struct va_format vaf
;
3030 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
3031 debug_guardpage_minorder() > 0)
3035 * This documents exceptions given to allocations in certain
3036 * contexts that are allowed to allocate outside current's set
3039 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3040 if (test_thread_flag(TIF_MEMDIE
) ||
3041 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3042 filter
&= ~SHOW_MEM_FILTER_NODES
;
3043 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3044 filter
&= ~SHOW_MEM_FILTER_NODES
;
3046 pr_warn("%s: ", current
->comm
);
3048 va_start(args
, fmt
);
3051 pr_cont("%pV", &vaf
);
3054 pr_cont(", mode:%#x(%pGg)\n", gfp_mask
, &gfp_mask
);
3057 if (!should_suppress_show_mem())
3061 static inline struct page
*
3062 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3063 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3065 struct oom_control oc
= {
3066 .zonelist
= ac
->zonelist
,
3067 .nodemask
= ac
->nodemask
,
3069 .gfp_mask
= gfp_mask
,
3074 *did_some_progress
= 0;
3077 * Acquire the oom lock. If that fails, somebody else is
3078 * making progress for us.
3080 if (!mutex_trylock(&oom_lock
)) {
3081 *did_some_progress
= 1;
3082 schedule_timeout_uninterruptible(1);
3087 * Go through the zonelist yet one more time, keep very high watermark
3088 * here, this is only to catch a parallel oom killing, we must fail if
3089 * we're still under heavy pressure.
3091 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3092 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3096 if (!(gfp_mask
& __GFP_NOFAIL
)) {
3097 /* Coredumps can quickly deplete all memory reserves */
3098 if (current
->flags
& PF_DUMPCORE
)
3100 /* The OOM killer will not help higher order allocs */
3101 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3103 /* The OOM killer does not needlessly kill tasks for lowmem */
3104 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3106 if (pm_suspended_storage())
3109 * XXX: GFP_NOFS allocations should rather fail than rely on
3110 * other request to make a forward progress.
3111 * We are in an unfortunate situation where out_of_memory cannot
3112 * do much for this context but let's try it to at least get
3113 * access to memory reserved if the current task is killed (see
3114 * out_of_memory). Once filesystems are ready to handle allocation
3115 * failures more gracefully we should just bail out here.
3118 /* The OOM killer may not free memory on a specific node */
3119 if (gfp_mask
& __GFP_THISNODE
)
3122 /* Exhausted what can be done so it's blamo time */
3123 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3124 *did_some_progress
= 1;
3126 if (gfp_mask
& __GFP_NOFAIL
) {
3127 page
= get_page_from_freelist(gfp_mask
, order
,
3128 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
3130 * fallback to ignore cpuset restriction if our nodes
3134 page
= get_page_from_freelist(gfp_mask
, order
,
3135 ALLOC_NO_WATERMARKS
, ac
);
3139 mutex_unlock(&oom_lock
);
3144 * Maximum number of compaction retries wit a progress before OOM
3145 * killer is consider as the only way to move forward.
3147 #define MAX_COMPACT_RETRIES 16
3149 #ifdef CONFIG_COMPACTION
3150 /* Try memory compaction for high-order allocations before reclaim */
3151 static struct page
*
3152 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3153 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3154 enum compact_priority prio
, enum compact_result
*compact_result
)
3157 unsigned int noreclaim_flag
= current
->flags
& PF_MEMALLOC
;
3162 current
->flags
|= PF_MEMALLOC
;
3163 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3165 current
->flags
= (current
->flags
& ~PF_MEMALLOC
) | noreclaim_flag
;
3167 if (*compact_result
<= COMPACT_INACTIVE
)
3171 * At least in one zone compaction wasn't deferred or skipped, so let's
3172 * count a compaction stall
3174 count_vm_event(COMPACTSTALL
);
3176 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3179 struct zone
*zone
= page_zone(page
);
3181 zone
->compact_blockskip_flush
= false;
3182 compaction_defer_reset(zone
, order
, true);
3183 count_vm_event(COMPACTSUCCESS
);
3188 * It's bad if compaction run occurs and fails. The most likely reason
3189 * is that pages exist, but not enough to satisfy watermarks.
3191 count_vm_event(COMPACTFAIL
);
3199 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3200 enum compact_result compact_result
,
3201 enum compact_priority
*compact_priority
,
3202 int *compaction_retries
)
3204 int max_retries
= MAX_COMPACT_RETRIES
;
3210 if (compaction_made_progress(compact_result
))
3211 (*compaction_retries
)++;
3214 * compaction considers all the zone as desperately out of memory
3215 * so it doesn't really make much sense to retry except when the
3216 * failure could be caused by insufficient priority
3218 if (compaction_failed(compact_result
))
3219 goto check_priority
;
3222 * make sure the compaction wasn't deferred or didn't bail out early
3223 * due to locks contention before we declare that we should give up.
3224 * But do not retry if the given zonelist is not suitable for
3227 if (compaction_withdrawn(compact_result
))
3228 return compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3231 * !costly requests are much more important than __GFP_REPEAT
3232 * costly ones because they are de facto nofail and invoke OOM
3233 * killer to move on while costly can fail and users are ready
3234 * to cope with that. 1/4 retries is rather arbitrary but we
3235 * would need much more detailed feedback from compaction to
3236 * make a better decision.
3238 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3240 if (*compaction_retries
<= max_retries
)
3244 * Make sure there are attempts at the highest priority if we exhausted
3245 * all retries or failed at the lower priorities.
3248 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3249 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3250 if (*compact_priority
> min_priority
) {
3251 (*compact_priority
)--;
3252 *compaction_retries
= 0;
3258 static inline struct page
*
3259 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3260 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3261 enum compact_priority prio
, enum compact_result
*compact_result
)
3263 *compact_result
= COMPACT_SKIPPED
;
3268 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3269 enum compact_result compact_result
,
3270 enum compact_priority
*compact_priority
,
3271 int *compaction_retries
)
3276 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3280 * There are setups with compaction disabled which would prefer to loop
3281 * inside the allocator rather than hit the oom killer prematurely.
3282 * Let's give them a good hope and keep retrying while the order-0
3283 * watermarks are OK.
3285 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3287 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3288 ac_classzone_idx(ac
), alloc_flags
))
3293 #endif /* CONFIG_COMPACTION */
3295 /* Perform direct synchronous page reclaim */
3297 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3298 const struct alloc_context
*ac
)
3300 struct reclaim_state reclaim_state
;
3305 /* We now go into synchronous reclaim */
3306 cpuset_memory_pressure_bump();
3307 current
->flags
|= PF_MEMALLOC
;
3308 lockdep_set_current_reclaim_state(gfp_mask
);
3309 reclaim_state
.reclaimed_slab
= 0;
3310 current
->reclaim_state
= &reclaim_state
;
3312 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3315 current
->reclaim_state
= NULL
;
3316 lockdep_clear_current_reclaim_state();
3317 current
->flags
&= ~PF_MEMALLOC
;
3324 /* The really slow allocator path where we enter direct reclaim */
3325 static inline struct page
*
3326 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3327 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3328 unsigned long *did_some_progress
)
3330 struct page
*page
= NULL
;
3331 bool drained
= false;
3333 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3334 if (unlikely(!(*did_some_progress
)))
3338 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3341 * If an allocation failed after direct reclaim, it could be because
3342 * pages are pinned on the per-cpu lists or in high alloc reserves.
3343 * Shrink them them and try again
3345 if (!page
&& !drained
) {
3346 unreserve_highatomic_pageblock(ac
);
3347 drain_all_pages(NULL
);
3355 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3359 pg_data_t
*last_pgdat
= NULL
;
3361 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3362 ac
->high_zoneidx
, ac
->nodemask
) {
3363 if (last_pgdat
!= zone
->zone_pgdat
)
3364 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3365 last_pgdat
= zone
->zone_pgdat
;
3369 static inline unsigned int
3370 gfp_to_alloc_flags(gfp_t gfp_mask
)
3372 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3374 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3375 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3378 * The caller may dip into page reserves a bit more if the caller
3379 * cannot run direct reclaim, or if the caller has realtime scheduling
3380 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3381 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3383 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3385 if (gfp_mask
& __GFP_ATOMIC
) {
3387 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3388 * if it can't schedule.
3390 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3391 alloc_flags
|= ALLOC_HARDER
;
3393 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3394 * comment for __cpuset_node_allowed().
3396 alloc_flags
&= ~ALLOC_CPUSET
;
3397 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3398 alloc_flags
|= ALLOC_HARDER
;
3401 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3402 alloc_flags
|= ALLOC_CMA
;
3407 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3409 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3412 if (gfp_mask
& __GFP_MEMALLOC
)
3414 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3416 if (!in_interrupt() &&
3417 ((current
->flags
& PF_MEMALLOC
) ||
3418 unlikely(test_thread_flag(TIF_MEMDIE
))))
3425 * Checks whether it makes sense to retry the reclaim to make a forward progress
3426 * for the given allocation request.
3427 * The reclaim feedback represented by did_some_progress (any progress during
3428 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3429 * any progress in a row) is considered as well as the reclaimable pages on the
3430 * applicable zone list (with a backoff mechanism which is a function of
3431 * no_progress_loops).
3433 * Returns true if a retry is viable or false to enter the oom path.
3436 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3437 struct alloc_context
*ac
, int alloc_flags
,
3438 bool did_some_progress
, int *no_progress_loops
)
3444 * Costly allocations might have made a progress but this doesn't mean
3445 * their order will become available due to high fragmentation so
3446 * always increment the no progress counter for them
3448 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3449 *no_progress_loops
= 0;
3451 (*no_progress_loops
)++;
3454 * Make sure we converge to OOM if we cannot make any progress
3455 * several times in the row.
3457 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
)
3461 * Keep reclaiming pages while there is a chance this will lead
3462 * somewhere. If none of the target zones can satisfy our allocation
3463 * request even if all reclaimable pages are considered then we are
3464 * screwed and have to go OOM.
3466 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3468 unsigned long available
;
3469 unsigned long reclaimable
;
3471 available
= reclaimable
= zone_reclaimable_pages(zone
);
3472 available
-= DIV_ROUND_UP((*no_progress_loops
) * available
,
3473 MAX_RECLAIM_RETRIES
);
3474 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3477 * Would the allocation succeed if we reclaimed the whole
3480 if (__zone_watermark_ok(zone
, order
, min_wmark_pages(zone
),
3481 ac_classzone_idx(ac
), alloc_flags
, available
)) {
3483 * If we didn't make any progress and have a lot of
3484 * dirty + writeback pages then we should wait for
3485 * an IO to complete to slow down the reclaim and
3486 * prevent from pre mature OOM
3488 if (!did_some_progress
) {
3489 unsigned long write_pending
;
3491 write_pending
= zone_page_state_snapshot(zone
,
3492 NR_ZONE_WRITE_PENDING
);
3494 if (2 * write_pending
> reclaimable
) {
3495 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3501 * Memory allocation/reclaim might be called from a WQ
3502 * context and the current implementation of the WQ
3503 * concurrency control doesn't recognize that
3504 * a particular WQ is congested if the worker thread is
3505 * looping without ever sleeping. Therefore we have to
3506 * do a short sleep here rather than calling
3509 if (current
->flags
& PF_WQ_WORKER
)
3510 schedule_timeout_uninterruptible(1);
3521 static inline struct page
*
3522 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3523 struct alloc_context
*ac
)
3525 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3526 struct page
*page
= NULL
;
3527 unsigned int alloc_flags
;
3528 unsigned long did_some_progress
;
3529 enum compact_priority compact_priority
;
3530 enum compact_result compact_result
;
3531 int compaction_retries
;
3532 int no_progress_loops
;
3533 unsigned int cpuset_mems_cookie
;
3536 * In the slowpath, we sanity check order to avoid ever trying to
3537 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3538 * be using allocators in order of preference for an area that is
3541 if (order
>= MAX_ORDER
) {
3542 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3547 * We also sanity check to catch abuse of atomic reserves being used by
3548 * callers that are not in atomic context.
3550 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3551 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3552 gfp_mask
&= ~__GFP_ATOMIC
;
3555 compaction_retries
= 0;
3556 no_progress_loops
= 0;
3557 compact_priority
= DEF_COMPACT_PRIORITY
;
3558 cpuset_mems_cookie
= read_mems_allowed_begin();
3560 * We need to recalculate the starting point for the zonelist iterator
3561 * because we might have used different nodemask in the fast path, or
3562 * there was a cpuset modification and we are retrying - otherwise we
3563 * could end up iterating over non-eligible zones endlessly.
3565 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3566 ac
->high_zoneidx
, ac
->nodemask
);
3567 if (!ac
->preferred_zoneref
->zone
)
3572 * The fast path uses conservative alloc_flags to succeed only until
3573 * kswapd needs to be woken up, and to avoid the cost of setting up
3574 * alloc_flags precisely. So we do that now.
3576 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3578 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3579 wake_all_kswapds(order
, ac
);
3582 * The adjusted alloc_flags might result in immediate success, so try
3585 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3590 * For costly allocations, try direct compaction first, as it's likely
3591 * that we have enough base pages and don't need to reclaim. Don't try
3592 * that for allocations that are allowed to ignore watermarks, as the
3593 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3595 if (can_direct_reclaim
&& order
> PAGE_ALLOC_COSTLY_ORDER
&&
3596 !gfp_pfmemalloc_allowed(gfp_mask
)) {
3597 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3599 INIT_COMPACT_PRIORITY
,
3605 * Checks for costly allocations with __GFP_NORETRY, which
3606 * includes THP page fault allocations
3608 if (gfp_mask
& __GFP_NORETRY
) {
3610 * If compaction is deferred for high-order allocations,
3611 * it is because sync compaction recently failed. If
3612 * this is the case and the caller requested a THP
3613 * allocation, we do not want to heavily disrupt the
3614 * system, so we fail the allocation instead of entering
3617 if (compact_result
== COMPACT_DEFERRED
)
3621 * Looks like reclaim/compaction is worth trying, but
3622 * sync compaction could be very expensive, so keep
3623 * using async compaction.
3625 compact_priority
= INIT_COMPACT_PRIORITY
;
3630 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3631 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3632 wake_all_kswapds(order
, ac
);
3634 if (gfp_pfmemalloc_allowed(gfp_mask
))
3635 alloc_flags
= ALLOC_NO_WATERMARKS
;
3638 * Reset the zonelist iterators if memory policies can be ignored.
3639 * These allocations are high priority and system rather than user
3642 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3643 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3644 ac
->high_zoneidx
, ac
->nodemask
);
3647 /* Attempt with potentially adjusted zonelist and alloc_flags */
3648 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3652 /* Caller is not willing to reclaim, we can't balance anything */
3653 if (!can_direct_reclaim
) {
3655 * All existing users of the __GFP_NOFAIL are blockable, so warn
3656 * of any new users that actually allow this type of allocation
3659 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3663 /* Avoid recursion of direct reclaim */
3664 if (current
->flags
& PF_MEMALLOC
) {
3666 * __GFP_NOFAIL request from this context is rather bizarre
3667 * because we cannot reclaim anything and only can loop waiting
3668 * for somebody to do a work for us.
3670 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3677 /* Avoid allocations with no watermarks from looping endlessly */
3678 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3682 /* Try direct reclaim and then allocating */
3683 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3684 &did_some_progress
);
3688 /* Try direct compaction and then allocating */
3689 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3690 compact_priority
, &compact_result
);
3694 /* Do not loop if specifically requested */
3695 if (gfp_mask
& __GFP_NORETRY
)
3699 * Do not retry costly high order allocations unless they are
3702 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_REPEAT
))
3705 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3706 did_some_progress
> 0, &no_progress_loops
))
3710 * It doesn't make any sense to retry for the compaction if the order-0
3711 * reclaim is not able to make any progress because the current
3712 * implementation of the compaction depends on the sufficient amount
3713 * of free memory (see __compaction_suitable)
3715 if (did_some_progress
> 0 &&
3716 should_compact_retry(ac
, order
, alloc_flags
,
3717 compact_result
, &compact_priority
,
3718 &compaction_retries
))
3722 * It's possible we raced with cpuset update so the OOM would be
3723 * premature (see below the nopage: label for full explanation).
3725 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3728 /* Reclaim has failed us, start killing things */
3729 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3733 /* Retry as long as the OOM killer is making progress */
3734 if (did_some_progress
) {
3735 no_progress_loops
= 0;
3741 * When updating a task's mems_allowed or mempolicy nodemask, it is
3742 * possible to race with parallel threads in such a way that our
3743 * allocation can fail while the mask is being updated. If we are about
3744 * to fail, check if the cpuset changed during allocation and if so,
3747 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3750 warn_alloc(gfp_mask
,
3751 "page allocation failure: order:%u", order
);
3757 * This is the 'heart' of the zoned buddy allocator.
3760 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3761 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3764 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
3765 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3766 struct alloc_context ac
= {
3767 .high_zoneidx
= gfp_zone(gfp_mask
),
3768 .zonelist
= zonelist
,
3769 .nodemask
= nodemask
,
3770 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3773 if (cpusets_enabled()) {
3774 alloc_mask
|= __GFP_HARDWALL
;
3775 alloc_flags
|= ALLOC_CPUSET
;
3777 ac
.nodemask
= &cpuset_current_mems_allowed
;
3780 gfp_mask
&= gfp_allowed_mask
;
3782 lockdep_trace_alloc(gfp_mask
);
3784 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3786 if (should_fail_alloc_page(gfp_mask
, order
))
3790 * Check the zones suitable for the gfp_mask contain at least one
3791 * valid zone. It's possible to have an empty zonelist as a result
3792 * of __GFP_THISNODE and a memoryless node
3794 if (unlikely(!zonelist
->_zonerefs
->zone
))
3797 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3798 alloc_flags
|= ALLOC_CMA
;
3800 /* Dirty zone balancing only done in the fast path */
3801 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3804 * The preferred zone is used for statistics but crucially it is
3805 * also used as the starting point for the zonelist iterator. It
3806 * may get reset for allocations that ignore memory policies.
3808 ac
.preferred_zoneref
= first_zones_zonelist(ac
.zonelist
,
3809 ac
.high_zoneidx
, ac
.nodemask
);
3810 if (!ac
.preferred_zoneref
->zone
) {
3813 * This might be due to race with cpuset_current_mems_allowed
3814 * update, so make sure we retry with original nodemask in the
3820 /* First allocation attempt */
3821 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3827 * Runtime PM, block IO and its error handling path can deadlock
3828 * because I/O on the device might not complete.
3830 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3831 ac
.spread_dirty_pages
= false;
3834 * Restore the original nodemask if it was potentially replaced with
3835 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3837 if (unlikely(ac
.nodemask
!= nodemask
))
3838 ac
.nodemask
= nodemask
;
3840 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3843 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
3844 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
3845 __free_pages(page
, order
);
3849 if (kmemcheck_enabled
&& page
)
3850 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3852 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3856 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3859 * Common helper functions.
3861 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3866 * __get_free_pages() returns a 32-bit address, which cannot represent
3869 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3871 page
= alloc_pages(gfp_mask
, order
);
3874 return (unsigned long) page_address(page
);
3876 EXPORT_SYMBOL(__get_free_pages
);
3878 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3880 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3882 EXPORT_SYMBOL(get_zeroed_page
);
3884 void __free_pages(struct page
*page
, unsigned int order
)
3886 if (put_page_testzero(page
)) {
3888 free_hot_cold_page(page
, false);
3890 __free_pages_ok(page
, order
);
3894 EXPORT_SYMBOL(__free_pages
);
3896 void free_pages(unsigned long addr
, unsigned int order
)
3899 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3900 __free_pages(virt_to_page((void *)addr
), order
);
3904 EXPORT_SYMBOL(free_pages
);
3908 * An arbitrary-length arbitrary-offset area of memory which resides
3909 * within a 0 or higher order page. Multiple fragments within that page
3910 * are individually refcounted, in the page's reference counter.
3912 * The page_frag functions below provide a simple allocation framework for
3913 * page fragments. This is used by the network stack and network device
3914 * drivers to provide a backing region of memory for use as either an
3915 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3917 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3920 struct page
*page
= NULL
;
3921 gfp_t gfp
= gfp_mask
;
3923 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3924 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3926 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3927 PAGE_FRAG_CACHE_MAX_ORDER
);
3928 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3930 if (unlikely(!page
))
3931 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3933 nc
->va
= page
? page_address(page
) : NULL
;
3938 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3939 unsigned int fragsz
, gfp_t gfp_mask
)
3941 unsigned int size
= PAGE_SIZE
;
3945 if (unlikely(!nc
->va
)) {
3947 page
= __page_frag_refill(nc
, gfp_mask
);
3951 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3952 /* if size can vary use size else just use PAGE_SIZE */
3955 /* Even if we own the page, we do not use atomic_set().
3956 * This would break get_page_unless_zero() users.
3958 page_ref_add(page
, size
);
3960 /* reset page count bias and offset to start of new frag */
3961 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3962 nc
->pagecnt_bias
= size
+ 1;
3966 offset
= nc
->offset
- fragsz
;
3967 if (unlikely(offset
< 0)) {
3968 page
= virt_to_page(nc
->va
);
3970 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3973 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 /* if size can vary use size else just use PAGE_SIZE */
3977 /* OK, page count is 0, we can safely set it */
3978 set_page_count(page
, size
+ 1);
3980 /* reset page count bias and offset to start of new frag */
3981 nc
->pagecnt_bias
= size
+ 1;
3982 offset
= size
- fragsz
;
3986 nc
->offset
= offset
;
3988 return nc
->va
+ offset
;
3990 EXPORT_SYMBOL(__alloc_page_frag
);
3993 * Frees a page fragment allocated out of either a compound or order 0 page.
3995 void __free_page_frag(void *addr
)
3997 struct page
*page
= virt_to_head_page(addr
);
3999 if (unlikely(put_page_testzero(page
)))
4000 __free_pages_ok(page
, compound_order(page
));
4002 EXPORT_SYMBOL(__free_page_frag
);
4004 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4008 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4009 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4011 split_page(virt_to_page((void *)addr
), order
);
4012 while (used
< alloc_end
) {
4017 return (void *)addr
;
4021 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4022 * @size: the number of bytes to allocate
4023 * @gfp_mask: GFP flags for the allocation
4025 * This function is similar to alloc_pages(), except that it allocates the
4026 * minimum number of pages to satisfy the request. alloc_pages() can only
4027 * allocate memory in power-of-two pages.
4029 * This function is also limited by MAX_ORDER.
4031 * Memory allocated by this function must be released by free_pages_exact().
4033 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4035 unsigned int order
= get_order(size
);
4038 addr
= __get_free_pages(gfp_mask
, order
);
4039 return make_alloc_exact(addr
, order
, size
);
4041 EXPORT_SYMBOL(alloc_pages_exact
);
4044 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4046 * @nid: the preferred node ID where memory should be allocated
4047 * @size: the number of bytes to allocate
4048 * @gfp_mask: GFP flags for the allocation
4050 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4053 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4055 unsigned int order
= get_order(size
);
4056 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4059 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4063 * free_pages_exact - release memory allocated via alloc_pages_exact()
4064 * @virt: the value returned by alloc_pages_exact.
4065 * @size: size of allocation, same value as passed to alloc_pages_exact().
4067 * Release the memory allocated by a previous call to alloc_pages_exact.
4069 void free_pages_exact(void *virt
, size_t size
)
4071 unsigned long addr
= (unsigned long)virt
;
4072 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4074 while (addr
< end
) {
4079 EXPORT_SYMBOL(free_pages_exact
);
4082 * nr_free_zone_pages - count number of pages beyond high watermark
4083 * @offset: The zone index of the highest zone
4085 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4086 * high watermark within all zones at or below a given zone index. For each
4087 * zone, the number of pages is calculated as:
4088 * managed_pages - high_pages
4090 static unsigned long nr_free_zone_pages(int offset
)
4095 /* Just pick one node, since fallback list is circular */
4096 unsigned long sum
= 0;
4098 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4100 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4101 unsigned long size
= zone
->managed_pages
;
4102 unsigned long high
= high_wmark_pages(zone
);
4111 * nr_free_buffer_pages - count number of pages beyond high watermark
4113 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4114 * watermark within ZONE_DMA and ZONE_NORMAL.
4116 unsigned long nr_free_buffer_pages(void)
4118 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4120 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4123 * nr_free_pagecache_pages - count number of pages beyond high watermark
4125 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4126 * high watermark within all zones.
4128 unsigned long nr_free_pagecache_pages(void)
4130 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4133 static inline void show_node(struct zone
*zone
)
4135 if (IS_ENABLED(CONFIG_NUMA
))
4136 printk("Node %d ", zone_to_nid(zone
));
4139 long si_mem_available(void)
4142 unsigned long pagecache
;
4143 unsigned long wmark_low
= 0;
4144 unsigned long pages
[NR_LRU_LISTS
];
4148 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4149 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4152 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4155 * Estimate the amount of memory available for userspace allocations,
4156 * without causing swapping.
4158 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4161 * Not all the page cache can be freed, otherwise the system will
4162 * start swapping. Assume at least half of the page cache, or the
4163 * low watermark worth of cache, needs to stay.
4165 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4166 pagecache
-= min(pagecache
/ 2, wmark_low
);
4167 available
+= pagecache
;
4170 * Part of the reclaimable slab consists of items that are in use,
4171 * and cannot be freed. Cap this estimate at the low watermark.
4173 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4174 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4180 EXPORT_SYMBOL_GPL(si_mem_available
);
4182 void si_meminfo(struct sysinfo
*val
)
4184 val
->totalram
= totalram_pages
;
4185 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4186 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4187 val
->bufferram
= nr_blockdev_pages();
4188 val
->totalhigh
= totalhigh_pages
;
4189 val
->freehigh
= nr_free_highpages();
4190 val
->mem_unit
= PAGE_SIZE
;
4193 EXPORT_SYMBOL(si_meminfo
);
4196 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4198 int zone_type
; /* needs to be signed */
4199 unsigned long managed_pages
= 0;
4200 unsigned long managed_highpages
= 0;
4201 unsigned long free_highpages
= 0;
4202 pg_data_t
*pgdat
= NODE_DATA(nid
);
4204 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4205 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4206 val
->totalram
= managed_pages
;
4207 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4208 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4209 #ifdef CONFIG_HIGHMEM
4210 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4211 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4213 if (is_highmem(zone
)) {
4214 managed_highpages
+= zone
->managed_pages
;
4215 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4218 val
->totalhigh
= managed_highpages
;
4219 val
->freehigh
= free_highpages
;
4221 val
->totalhigh
= managed_highpages
;
4222 val
->freehigh
= free_highpages
;
4224 val
->mem_unit
= PAGE_SIZE
;
4229 * Determine whether the node should be displayed or not, depending on whether
4230 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4232 bool skip_free_areas_node(unsigned int flags
, int nid
)
4235 unsigned int cpuset_mems_cookie
;
4237 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4241 cpuset_mems_cookie
= read_mems_allowed_begin();
4242 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
4243 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
4248 #define K(x) ((x) << (PAGE_SHIFT-10))
4250 static void show_migration_types(unsigned char type
)
4252 static const char types
[MIGRATE_TYPES
] = {
4253 [MIGRATE_UNMOVABLE
] = 'U',
4254 [MIGRATE_MOVABLE
] = 'M',
4255 [MIGRATE_RECLAIMABLE
] = 'E',
4256 [MIGRATE_HIGHATOMIC
] = 'H',
4258 [MIGRATE_CMA
] = 'C',
4260 #ifdef CONFIG_MEMORY_ISOLATION
4261 [MIGRATE_ISOLATE
] = 'I',
4264 char tmp
[MIGRATE_TYPES
+ 1];
4268 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4269 if (type
& (1 << i
))
4274 printk(KERN_CONT
"(%s) ", tmp
);
4278 * Show free area list (used inside shift_scroll-lock stuff)
4279 * We also calculate the percentage fragmentation. We do this by counting the
4280 * memory on each free list with the exception of the first item on the list.
4283 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4286 void show_free_areas(unsigned int filter
)
4288 unsigned long free_pcp
= 0;
4293 for_each_populated_zone(zone
) {
4294 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4297 for_each_online_cpu(cpu
)
4298 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4301 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4302 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4303 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4304 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4305 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4306 " free:%lu free_pcp:%lu free_cma:%lu\n",
4307 global_node_page_state(NR_ACTIVE_ANON
),
4308 global_node_page_state(NR_INACTIVE_ANON
),
4309 global_node_page_state(NR_ISOLATED_ANON
),
4310 global_node_page_state(NR_ACTIVE_FILE
),
4311 global_node_page_state(NR_INACTIVE_FILE
),
4312 global_node_page_state(NR_ISOLATED_FILE
),
4313 global_node_page_state(NR_UNEVICTABLE
),
4314 global_node_page_state(NR_FILE_DIRTY
),
4315 global_node_page_state(NR_WRITEBACK
),
4316 global_node_page_state(NR_UNSTABLE_NFS
),
4317 global_page_state(NR_SLAB_RECLAIMABLE
),
4318 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4319 global_node_page_state(NR_FILE_MAPPED
),
4320 global_node_page_state(NR_SHMEM
),
4321 global_page_state(NR_PAGETABLE
),
4322 global_page_state(NR_BOUNCE
),
4323 global_page_state(NR_FREE_PAGES
),
4325 global_page_state(NR_FREE_CMA_PAGES
));
4327 for_each_online_pgdat(pgdat
) {
4329 " active_anon:%lukB"
4330 " inactive_anon:%lukB"
4331 " active_file:%lukB"
4332 " inactive_file:%lukB"
4333 " unevictable:%lukB"
4334 " isolated(anon):%lukB"
4335 " isolated(file):%lukB"
4340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4342 " shmem_pmdmapped: %lukB"
4345 " writeback_tmp:%lukB"
4347 " pages_scanned:%lu"
4348 " all_unreclaimable? %s"
4351 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4352 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4353 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4354 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4355 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4356 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4357 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4358 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4359 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4360 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4361 K(node_page_state(pgdat
, NR_SHMEM
)),
4362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4363 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4364 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4366 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4368 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4369 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4370 node_page_state(pgdat
, NR_PAGES_SCANNED
),
4371 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4375 for_each_populated_zone(zone
) {
4378 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4382 for_each_online_cpu(cpu
)
4383 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4392 " active_anon:%lukB"
4393 " inactive_anon:%lukB"
4394 " active_file:%lukB"
4395 " inactive_file:%lukB"
4396 " unevictable:%lukB"
4397 " writepending:%lukB"
4401 " slab_reclaimable:%lukB"
4402 " slab_unreclaimable:%lukB"
4403 " kernel_stack:%lukB"
4411 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4412 K(min_wmark_pages(zone
)),
4413 K(low_wmark_pages(zone
)),
4414 K(high_wmark_pages(zone
)),
4415 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4416 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4417 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4418 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4419 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4420 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4421 K(zone
->present_pages
),
4422 K(zone
->managed_pages
),
4423 K(zone_page_state(zone
, NR_MLOCK
)),
4424 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4425 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4426 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4427 K(zone_page_state(zone
, NR_PAGETABLE
)),
4428 K(zone_page_state(zone
, NR_BOUNCE
)),
4430 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4431 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4432 printk("lowmem_reserve[]:");
4433 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4434 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4435 printk(KERN_CONT
"\n");
4438 for_each_populated_zone(zone
) {
4440 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4441 unsigned char types
[MAX_ORDER
];
4443 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4446 printk(KERN_CONT
"%s: ", zone
->name
);
4448 spin_lock_irqsave(&zone
->lock
, flags
);
4449 for (order
= 0; order
< MAX_ORDER
; order
++) {
4450 struct free_area
*area
= &zone
->free_area
[order
];
4453 nr
[order
] = area
->nr_free
;
4454 total
+= nr
[order
] << order
;
4457 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4458 if (!list_empty(&area
->free_list
[type
]))
4459 types
[order
] |= 1 << type
;
4462 spin_unlock_irqrestore(&zone
->lock
, flags
);
4463 for (order
= 0; order
< MAX_ORDER
; order
++) {
4464 printk(KERN_CONT
"%lu*%lukB ",
4465 nr
[order
], K(1UL) << order
);
4467 show_migration_types(types
[order
]);
4469 printk(KERN_CONT
"= %lukB\n", K(total
));
4472 hugetlb_show_meminfo();
4474 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4476 show_swap_cache_info();
4479 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4481 zoneref
->zone
= zone
;
4482 zoneref
->zone_idx
= zone_idx(zone
);
4486 * Builds allocation fallback zone lists.
4488 * Add all populated zones of a node to the zonelist.
4490 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4494 enum zone_type zone_type
= MAX_NR_ZONES
;
4498 zone
= pgdat
->node_zones
+ zone_type
;
4499 if (managed_zone(zone
)) {
4500 zoneref_set_zone(zone
,
4501 &zonelist
->_zonerefs
[nr_zones
++]);
4502 check_highest_zone(zone_type
);
4504 } while (zone_type
);
4512 * 0 = automatic detection of better ordering.
4513 * 1 = order by ([node] distance, -zonetype)
4514 * 2 = order by (-zonetype, [node] distance)
4516 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4517 * the same zonelist. So only NUMA can configure this param.
4519 #define ZONELIST_ORDER_DEFAULT 0
4520 #define ZONELIST_ORDER_NODE 1
4521 #define ZONELIST_ORDER_ZONE 2
4523 /* zonelist order in the kernel.
4524 * set_zonelist_order() will set this to NODE or ZONE.
4526 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4527 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4531 /* The value user specified ....changed by config */
4532 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4533 /* string for sysctl */
4534 #define NUMA_ZONELIST_ORDER_LEN 16
4535 char numa_zonelist_order
[16] = "default";
4538 * interface for configure zonelist ordering.
4539 * command line option "numa_zonelist_order"
4540 * = "[dD]efault - default, automatic configuration.
4541 * = "[nN]ode - order by node locality, then by zone within node
4542 * = "[zZ]one - order by zone, then by locality within zone
4545 static int __parse_numa_zonelist_order(char *s
)
4547 if (*s
== 'd' || *s
== 'D') {
4548 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4549 } else if (*s
== 'n' || *s
== 'N') {
4550 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4551 } else if (*s
== 'z' || *s
== 'Z') {
4552 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4554 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4560 static __init
int setup_numa_zonelist_order(char *s
)
4567 ret
= __parse_numa_zonelist_order(s
);
4569 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4573 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4576 * sysctl handler for numa_zonelist_order
4578 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4579 void __user
*buffer
, size_t *length
,
4582 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4584 static DEFINE_MUTEX(zl_order_mutex
);
4586 mutex_lock(&zl_order_mutex
);
4588 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4592 strcpy(saved_string
, (char *)table
->data
);
4594 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4598 int oldval
= user_zonelist_order
;
4600 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4603 * bogus value. restore saved string
4605 strncpy((char *)table
->data
, saved_string
,
4606 NUMA_ZONELIST_ORDER_LEN
);
4607 user_zonelist_order
= oldval
;
4608 } else if (oldval
!= user_zonelist_order
) {
4609 mutex_lock(&zonelists_mutex
);
4610 build_all_zonelists(NULL
, NULL
);
4611 mutex_unlock(&zonelists_mutex
);
4615 mutex_unlock(&zl_order_mutex
);
4620 #define MAX_NODE_LOAD (nr_online_nodes)
4621 static int node_load
[MAX_NUMNODES
];
4624 * find_next_best_node - find the next node that should appear in a given node's fallback list
4625 * @node: node whose fallback list we're appending
4626 * @used_node_mask: nodemask_t of already used nodes
4628 * We use a number of factors to determine which is the next node that should
4629 * appear on a given node's fallback list. The node should not have appeared
4630 * already in @node's fallback list, and it should be the next closest node
4631 * according to the distance array (which contains arbitrary distance values
4632 * from each node to each node in the system), and should also prefer nodes
4633 * with no CPUs, since presumably they'll have very little allocation pressure
4634 * on them otherwise.
4635 * It returns -1 if no node is found.
4637 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4640 int min_val
= INT_MAX
;
4641 int best_node
= NUMA_NO_NODE
;
4642 const struct cpumask
*tmp
= cpumask_of_node(0);
4644 /* Use the local node if we haven't already */
4645 if (!node_isset(node
, *used_node_mask
)) {
4646 node_set(node
, *used_node_mask
);
4650 for_each_node_state(n
, N_MEMORY
) {
4652 /* Don't want a node to appear more than once */
4653 if (node_isset(n
, *used_node_mask
))
4656 /* Use the distance array to find the distance */
4657 val
= node_distance(node
, n
);
4659 /* Penalize nodes under us ("prefer the next node") */
4662 /* Give preference to headless and unused nodes */
4663 tmp
= cpumask_of_node(n
);
4664 if (!cpumask_empty(tmp
))
4665 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4667 /* Slight preference for less loaded node */
4668 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4669 val
+= node_load
[n
];
4671 if (val
< min_val
) {
4678 node_set(best_node
, *used_node_mask
);
4685 * Build zonelists ordered by node and zones within node.
4686 * This results in maximum locality--normal zone overflows into local
4687 * DMA zone, if any--but risks exhausting DMA zone.
4689 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4692 struct zonelist
*zonelist
;
4694 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4695 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4697 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4698 zonelist
->_zonerefs
[j
].zone
= NULL
;
4699 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4703 * Build gfp_thisnode zonelists
4705 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4708 struct zonelist
*zonelist
;
4710 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
4711 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4712 zonelist
->_zonerefs
[j
].zone
= NULL
;
4713 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4717 * Build zonelists ordered by zone and nodes within zones.
4718 * This results in conserving DMA zone[s] until all Normal memory is
4719 * exhausted, but results in overflowing to remote node while memory
4720 * may still exist in local DMA zone.
4722 static int node_order
[MAX_NUMNODES
];
4724 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4727 int zone_type
; /* needs to be signed */
4729 struct zonelist
*zonelist
;
4731 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4733 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4734 for (j
= 0; j
< nr_nodes
; j
++) {
4735 node
= node_order
[j
];
4736 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4737 if (managed_zone(z
)) {
4739 &zonelist
->_zonerefs
[pos
++]);
4740 check_highest_zone(zone_type
);
4744 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4745 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4748 #if defined(CONFIG_64BIT)
4750 * Devices that require DMA32/DMA are relatively rare and do not justify a
4751 * penalty to every machine in case the specialised case applies. Default
4752 * to Node-ordering on 64-bit NUMA machines
4754 static int default_zonelist_order(void)
4756 return ZONELIST_ORDER_NODE
;
4760 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4761 * by the kernel. If processes running on node 0 deplete the low memory zone
4762 * then reclaim will occur more frequency increasing stalls and potentially
4763 * be easier to OOM if a large percentage of the zone is under writeback or
4764 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4765 * Hence, default to zone ordering on 32-bit.
4767 static int default_zonelist_order(void)
4769 return ZONELIST_ORDER_ZONE
;
4771 #endif /* CONFIG_64BIT */
4773 static void set_zonelist_order(void)
4775 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4776 current_zonelist_order
= default_zonelist_order();
4778 current_zonelist_order
= user_zonelist_order
;
4781 static void build_zonelists(pg_data_t
*pgdat
)
4784 nodemask_t used_mask
;
4785 int local_node
, prev_node
;
4786 struct zonelist
*zonelist
;
4787 unsigned int order
= current_zonelist_order
;
4789 /* initialize zonelists */
4790 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4791 zonelist
= pgdat
->node_zonelists
+ i
;
4792 zonelist
->_zonerefs
[0].zone
= NULL
;
4793 zonelist
->_zonerefs
[0].zone_idx
= 0;
4796 /* NUMA-aware ordering of nodes */
4797 local_node
= pgdat
->node_id
;
4798 load
= nr_online_nodes
;
4799 prev_node
= local_node
;
4800 nodes_clear(used_mask
);
4802 memset(node_order
, 0, sizeof(node_order
));
4805 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4807 * We don't want to pressure a particular node.
4808 * So adding penalty to the first node in same
4809 * distance group to make it round-robin.
4811 if (node_distance(local_node
, node
) !=
4812 node_distance(local_node
, prev_node
))
4813 node_load
[node
] = load
;
4817 if (order
== ZONELIST_ORDER_NODE
)
4818 build_zonelists_in_node_order(pgdat
, node
);
4820 node_order
[i
++] = node
; /* remember order */
4823 if (order
== ZONELIST_ORDER_ZONE
) {
4824 /* calculate node order -- i.e., DMA last! */
4825 build_zonelists_in_zone_order(pgdat
, i
);
4828 build_thisnode_zonelists(pgdat
);
4831 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4833 * Return node id of node used for "local" allocations.
4834 * I.e., first node id of first zone in arg node's generic zonelist.
4835 * Used for initializing percpu 'numa_mem', which is used primarily
4836 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4838 int local_memory_node(int node
)
4842 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4843 gfp_zone(GFP_KERNEL
),
4845 return z
->zone
->node
;
4849 static void setup_min_unmapped_ratio(void);
4850 static void setup_min_slab_ratio(void);
4851 #else /* CONFIG_NUMA */
4853 static void set_zonelist_order(void)
4855 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4858 static void build_zonelists(pg_data_t
*pgdat
)
4860 int node
, local_node
;
4862 struct zonelist
*zonelist
;
4864 local_node
= pgdat
->node_id
;
4866 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4867 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4870 * Now we build the zonelist so that it contains the zones
4871 * of all the other nodes.
4872 * We don't want to pressure a particular node, so when
4873 * building the zones for node N, we make sure that the
4874 * zones coming right after the local ones are those from
4875 * node N+1 (modulo N)
4877 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4878 if (!node_online(node
))
4880 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4882 for (node
= 0; node
< local_node
; node
++) {
4883 if (!node_online(node
))
4885 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4888 zonelist
->_zonerefs
[j
].zone
= NULL
;
4889 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4892 #endif /* CONFIG_NUMA */
4895 * Boot pageset table. One per cpu which is going to be used for all
4896 * zones and all nodes. The parameters will be set in such a way
4897 * that an item put on a list will immediately be handed over to
4898 * the buddy list. This is safe since pageset manipulation is done
4899 * with interrupts disabled.
4901 * The boot_pagesets must be kept even after bootup is complete for
4902 * unused processors and/or zones. They do play a role for bootstrapping
4903 * hotplugged processors.
4905 * zoneinfo_show() and maybe other functions do
4906 * not check if the processor is online before following the pageset pointer.
4907 * Other parts of the kernel may not check if the zone is available.
4909 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4910 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4911 static void setup_zone_pageset(struct zone
*zone
);
4914 * Global mutex to protect against size modification of zonelists
4915 * as well as to serialize pageset setup for the new populated zone.
4917 DEFINE_MUTEX(zonelists_mutex
);
4919 /* return values int ....just for stop_machine() */
4920 static int __build_all_zonelists(void *data
)
4924 pg_data_t
*self
= data
;
4927 memset(node_load
, 0, sizeof(node_load
));
4930 if (self
&& !node_online(self
->node_id
)) {
4931 build_zonelists(self
);
4934 for_each_online_node(nid
) {
4935 pg_data_t
*pgdat
= NODE_DATA(nid
);
4937 build_zonelists(pgdat
);
4941 * Initialize the boot_pagesets that are going to be used
4942 * for bootstrapping processors. The real pagesets for
4943 * each zone will be allocated later when the per cpu
4944 * allocator is available.
4946 * boot_pagesets are used also for bootstrapping offline
4947 * cpus if the system is already booted because the pagesets
4948 * are needed to initialize allocators on a specific cpu too.
4949 * F.e. the percpu allocator needs the page allocator which
4950 * needs the percpu allocator in order to allocate its pagesets
4951 * (a chicken-egg dilemma).
4953 for_each_possible_cpu(cpu
) {
4954 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4956 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4958 * We now know the "local memory node" for each node--
4959 * i.e., the node of the first zone in the generic zonelist.
4960 * Set up numa_mem percpu variable for on-line cpus. During
4961 * boot, only the boot cpu should be on-line; we'll init the
4962 * secondary cpus' numa_mem as they come on-line. During
4963 * node/memory hotplug, we'll fixup all on-line cpus.
4965 if (cpu_online(cpu
))
4966 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4973 static noinline
void __init
4974 build_all_zonelists_init(void)
4976 __build_all_zonelists(NULL
);
4977 mminit_verify_zonelist();
4978 cpuset_init_current_mems_allowed();
4982 * Called with zonelists_mutex held always
4983 * unless system_state == SYSTEM_BOOTING.
4985 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4986 * [we're only called with non-NULL zone through __meminit paths] and
4987 * (2) call of __init annotated helper build_all_zonelists_init
4988 * [protected by SYSTEM_BOOTING].
4990 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4992 set_zonelist_order();
4994 if (system_state
== SYSTEM_BOOTING
) {
4995 build_all_zonelists_init();
4997 #ifdef CONFIG_MEMORY_HOTPLUG
4999 setup_zone_pageset(zone
);
5001 /* we have to stop all cpus to guarantee there is no user
5003 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5004 /* cpuset refresh routine should be here */
5006 vm_total_pages
= nr_free_pagecache_pages();
5008 * Disable grouping by mobility if the number of pages in the
5009 * system is too low to allow the mechanism to work. It would be
5010 * more accurate, but expensive to check per-zone. This check is
5011 * made on memory-hotadd so a system can start with mobility
5012 * disabled and enable it later
5014 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5015 page_group_by_mobility_disabled
= 1;
5017 page_group_by_mobility_disabled
= 0;
5019 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5021 zonelist_order_name
[current_zonelist_order
],
5022 page_group_by_mobility_disabled
? "off" : "on",
5025 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5030 * Initially all pages are reserved - free ones are freed
5031 * up by free_all_bootmem() once the early boot process is
5032 * done. Non-atomic initialization, single-pass.
5034 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5035 unsigned long start_pfn
, enum memmap_context context
)
5037 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5038 unsigned long end_pfn
= start_pfn
+ size
;
5039 pg_data_t
*pgdat
= NODE_DATA(nid
);
5041 unsigned long nr_initialised
= 0;
5042 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5043 struct memblock_region
*r
= NULL
, *tmp
;
5046 if (highest_memmap_pfn
< end_pfn
- 1)
5047 highest_memmap_pfn
= end_pfn
- 1;
5050 * Honor reservation requested by the driver for this ZONE_DEVICE
5053 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5054 start_pfn
+= altmap
->reserve
;
5056 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5058 * There can be holes in boot-time mem_map[]s handed to this
5059 * function. They do not exist on hotplugged memory.
5061 if (context
!= MEMMAP_EARLY
)
5064 if (!early_pfn_valid(pfn
))
5066 if (!early_pfn_in_nid(pfn
, nid
))
5068 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5071 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5073 * Check given memblock attribute by firmware which can affect
5074 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5075 * mirrored, it's an overlapped memmap init. skip it.
5077 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5078 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5079 for_each_memblock(memory
, tmp
)
5080 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5084 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5085 memblock_is_mirror(r
)) {
5086 /* already initialized as NORMAL */
5087 pfn
= memblock_region_memory_end_pfn(r
);
5095 * Mark the block movable so that blocks are reserved for
5096 * movable at startup. This will force kernel allocations
5097 * to reserve their blocks rather than leaking throughout
5098 * the address space during boot when many long-lived
5099 * kernel allocations are made.
5101 * bitmap is created for zone's valid pfn range. but memmap
5102 * can be created for invalid pages (for alignment)
5103 * check here not to call set_pageblock_migratetype() against
5106 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5107 struct page
*page
= pfn_to_page(pfn
);
5109 __init_single_page(page
, pfn
, zone
, nid
);
5110 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5112 __init_single_pfn(pfn
, zone
, nid
);
5117 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5119 unsigned int order
, t
;
5120 for_each_migratetype_order(order
, t
) {
5121 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5122 zone
->free_area
[order
].nr_free
= 0;
5126 #ifndef __HAVE_ARCH_MEMMAP_INIT
5127 #define memmap_init(size, nid, zone, start_pfn) \
5128 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5131 static int zone_batchsize(struct zone
*zone
)
5137 * The per-cpu-pages pools are set to around 1000th of the
5138 * size of the zone. But no more than 1/2 of a meg.
5140 * OK, so we don't know how big the cache is. So guess.
5142 batch
= zone
->managed_pages
/ 1024;
5143 if (batch
* PAGE_SIZE
> 512 * 1024)
5144 batch
= (512 * 1024) / PAGE_SIZE
;
5145 batch
/= 4; /* We effectively *= 4 below */
5150 * Clamp the batch to a 2^n - 1 value. Having a power
5151 * of 2 value was found to be more likely to have
5152 * suboptimal cache aliasing properties in some cases.
5154 * For example if 2 tasks are alternately allocating
5155 * batches of pages, one task can end up with a lot
5156 * of pages of one half of the possible page colors
5157 * and the other with pages of the other colors.
5159 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5164 /* The deferral and batching of frees should be suppressed under NOMMU
5167 * The problem is that NOMMU needs to be able to allocate large chunks
5168 * of contiguous memory as there's no hardware page translation to
5169 * assemble apparent contiguous memory from discontiguous pages.
5171 * Queueing large contiguous runs of pages for batching, however,
5172 * causes the pages to actually be freed in smaller chunks. As there
5173 * can be a significant delay between the individual batches being
5174 * recycled, this leads to the once large chunks of space being
5175 * fragmented and becoming unavailable for high-order allocations.
5182 * pcp->high and pcp->batch values are related and dependent on one another:
5183 * ->batch must never be higher then ->high.
5184 * The following function updates them in a safe manner without read side
5187 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5188 * those fields changing asynchronously (acording the the above rule).
5190 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5191 * outside of boot time (or some other assurance that no concurrent updaters
5194 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5195 unsigned long batch
)
5197 /* start with a fail safe value for batch */
5201 /* Update high, then batch, in order */
5208 /* a companion to pageset_set_high() */
5209 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5211 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5214 static void pageset_init(struct per_cpu_pageset
*p
)
5216 struct per_cpu_pages
*pcp
;
5219 memset(p
, 0, sizeof(*p
));
5223 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5224 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5227 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5230 pageset_set_batch(p
, batch
);
5234 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5235 * to the value high for the pageset p.
5237 static void pageset_set_high(struct per_cpu_pageset
*p
,
5240 unsigned long batch
= max(1UL, high
/ 4);
5241 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5242 batch
= PAGE_SHIFT
* 8;
5244 pageset_update(&p
->pcp
, high
, batch
);
5247 static void pageset_set_high_and_batch(struct zone
*zone
,
5248 struct per_cpu_pageset
*pcp
)
5250 if (percpu_pagelist_fraction
)
5251 pageset_set_high(pcp
,
5252 (zone
->managed_pages
/
5253 percpu_pagelist_fraction
));
5255 pageset_set_batch(pcp
, zone_batchsize(zone
));
5258 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5260 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5263 pageset_set_high_and_batch(zone
, pcp
);
5266 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5269 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5270 for_each_possible_cpu(cpu
)
5271 zone_pageset_init(zone
, cpu
);
5275 * Allocate per cpu pagesets and initialize them.
5276 * Before this call only boot pagesets were available.
5278 void __init
setup_per_cpu_pageset(void)
5280 struct pglist_data
*pgdat
;
5283 for_each_populated_zone(zone
)
5284 setup_zone_pageset(zone
);
5286 for_each_online_pgdat(pgdat
)
5287 pgdat
->per_cpu_nodestats
=
5288 alloc_percpu(struct per_cpu_nodestat
);
5291 static __meminit
void zone_pcp_init(struct zone
*zone
)
5294 * per cpu subsystem is not up at this point. The following code
5295 * relies on the ability of the linker to provide the
5296 * offset of a (static) per cpu variable into the per cpu area.
5298 zone
->pageset
= &boot_pageset
;
5300 if (populated_zone(zone
))
5301 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5302 zone
->name
, zone
->present_pages
,
5303 zone_batchsize(zone
));
5306 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5307 unsigned long zone_start_pfn
,
5310 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5312 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5314 zone
->zone_start_pfn
= zone_start_pfn
;
5316 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5317 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5319 (unsigned long)zone_idx(zone
),
5320 zone_start_pfn
, (zone_start_pfn
+ size
));
5322 zone_init_free_lists(zone
);
5323 zone
->initialized
= 1;
5328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5329 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5332 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5334 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5335 struct mminit_pfnnid_cache
*state
)
5337 unsigned long start_pfn
, end_pfn
;
5340 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5341 return state
->last_nid
;
5343 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5345 state
->last_start
= start_pfn
;
5346 state
->last_end
= end_pfn
;
5347 state
->last_nid
= nid
;
5352 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5355 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5356 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5357 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5359 * If an architecture guarantees that all ranges registered contain no holes
5360 * and may be freed, this this function may be used instead of calling
5361 * memblock_free_early_nid() manually.
5363 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5365 unsigned long start_pfn
, end_pfn
;
5368 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5369 start_pfn
= min(start_pfn
, max_low_pfn
);
5370 end_pfn
= min(end_pfn
, max_low_pfn
);
5372 if (start_pfn
< end_pfn
)
5373 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5374 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5380 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5381 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5383 * If an architecture guarantees that all ranges registered contain no holes and may
5384 * be freed, this function may be used instead of calling memory_present() manually.
5386 void __init
sparse_memory_present_with_active_regions(int nid
)
5388 unsigned long start_pfn
, end_pfn
;
5391 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5392 memory_present(this_nid
, start_pfn
, end_pfn
);
5396 * get_pfn_range_for_nid - Return the start and end page frames for a node
5397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5401 * It returns the start and end page frame of a node based on information
5402 * provided by memblock_set_node(). If called for a node
5403 * with no available memory, a warning is printed and the start and end
5406 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5407 unsigned long *start_pfn
, unsigned long *end_pfn
)
5409 unsigned long this_start_pfn
, this_end_pfn
;
5415 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5416 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5417 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5420 if (*start_pfn
== -1UL)
5425 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5426 * assumption is made that zones within a node are ordered in monotonic
5427 * increasing memory addresses so that the "highest" populated zone is used
5429 static void __init
find_usable_zone_for_movable(void)
5432 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5433 if (zone_index
== ZONE_MOVABLE
)
5436 if (arch_zone_highest_possible_pfn
[zone_index
] >
5437 arch_zone_lowest_possible_pfn
[zone_index
])
5441 VM_BUG_ON(zone_index
== -1);
5442 movable_zone
= zone_index
;
5446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5447 * because it is sized independent of architecture. Unlike the other zones,
5448 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5449 * in each node depending on the size of each node and how evenly kernelcore
5450 * is distributed. This helper function adjusts the zone ranges
5451 * provided by the architecture for a given node by using the end of the
5452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5453 * zones within a node are in order of monotonic increases memory addresses
5455 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5456 unsigned long zone_type
,
5457 unsigned long node_start_pfn
,
5458 unsigned long node_end_pfn
,
5459 unsigned long *zone_start_pfn
,
5460 unsigned long *zone_end_pfn
)
5462 /* Only adjust if ZONE_MOVABLE is on this node */
5463 if (zone_movable_pfn
[nid
]) {
5464 /* Size ZONE_MOVABLE */
5465 if (zone_type
== ZONE_MOVABLE
) {
5466 *zone_start_pfn
= zone_movable_pfn
[nid
];
5467 *zone_end_pfn
= min(node_end_pfn
,
5468 arch_zone_highest_possible_pfn
[movable_zone
]);
5470 /* Adjust for ZONE_MOVABLE starting within this range */
5471 } else if (!mirrored_kernelcore
&&
5472 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5473 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5474 *zone_end_pfn
= zone_movable_pfn
[nid
];
5476 /* Check if this whole range is within ZONE_MOVABLE */
5477 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5478 *zone_start_pfn
= *zone_end_pfn
;
5483 * Return the number of pages a zone spans in a node, including holes
5484 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5486 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5487 unsigned long zone_type
,
5488 unsigned long node_start_pfn
,
5489 unsigned long node_end_pfn
,
5490 unsigned long *zone_start_pfn
,
5491 unsigned long *zone_end_pfn
,
5492 unsigned long *ignored
)
5494 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5495 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5496 /* When hotadd a new node from cpu_up(), the node should be empty */
5497 if (!node_start_pfn
&& !node_end_pfn
)
5500 /* Get the start and end of the zone */
5501 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5502 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5503 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5504 node_start_pfn
, node_end_pfn
,
5505 zone_start_pfn
, zone_end_pfn
);
5507 /* Check that this node has pages within the zone's required range */
5508 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5511 /* Move the zone boundaries inside the node if necessary */
5512 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5513 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5515 /* Return the spanned pages */
5516 return *zone_end_pfn
- *zone_start_pfn
;
5520 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5521 * then all holes in the requested range will be accounted for.
5523 unsigned long __meminit
__absent_pages_in_range(int nid
,
5524 unsigned long range_start_pfn
,
5525 unsigned long range_end_pfn
)
5527 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5528 unsigned long start_pfn
, end_pfn
;
5531 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5532 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5533 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5534 nr_absent
-= end_pfn
- start_pfn
;
5540 * absent_pages_in_range - Return number of page frames in holes within a range
5541 * @start_pfn: The start PFN to start searching for holes
5542 * @end_pfn: The end PFN to stop searching for holes
5544 * It returns the number of pages frames in memory holes within a range.
5546 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5547 unsigned long end_pfn
)
5549 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5552 /* Return the number of page frames in holes in a zone on a node */
5553 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5554 unsigned long zone_type
,
5555 unsigned long node_start_pfn
,
5556 unsigned long node_end_pfn
,
5557 unsigned long *ignored
)
5559 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5560 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5561 unsigned long zone_start_pfn
, zone_end_pfn
;
5562 unsigned long nr_absent
;
5564 /* When hotadd a new node from cpu_up(), the node should be empty */
5565 if (!node_start_pfn
&& !node_end_pfn
)
5568 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5569 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5571 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5572 node_start_pfn
, node_end_pfn
,
5573 &zone_start_pfn
, &zone_end_pfn
);
5574 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5577 * ZONE_MOVABLE handling.
5578 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5581 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5582 unsigned long start_pfn
, end_pfn
;
5583 struct memblock_region
*r
;
5585 for_each_memblock(memory
, r
) {
5586 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5587 zone_start_pfn
, zone_end_pfn
);
5588 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5589 zone_start_pfn
, zone_end_pfn
);
5591 if (zone_type
== ZONE_MOVABLE
&&
5592 memblock_is_mirror(r
))
5593 nr_absent
+= end_pfn
- start_pfn
;
5595 if (zone_type
== ZONE_NORMAL
&&
5596 !memblock_is_mirror(r
))
5597 nr_absent
+= end_pfn
- start_pfn
;
5604 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5605 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5606 unsigned long zone_type
,
5607 unsigned long node_start_pfn
,
5608 unsigned long node_end_pfn
,
5609 unsigned long *zone_start_pfn
,
5610 unsigned long *zone_end_pfn
,
5611 unsigned long *zones_size
)
5615 *zone_start_pfn
= node_start_pfn
;
5616 for (zone
= 0; zone
< zone_type
; zone
++)
5617 *zone_start_pfn
+= zones_size
[zone
];
5619 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5621 return zones_size
[zone_type
];
5624 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5625 unsigned long zone_type
,
5626 unsigned long node_start_pfn
,
5627 unsigned long node_end_pfn
,
5628 unsigned long *zholes_size
)
5633 return zholes_size
[zone_type
];
5636 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5638 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5639 unsigned long node_start_pfn
,
5640 unsigned long node_end_pfn
,
5641 unsigned long *zones_size
,
5642 unsigned long *zholes_size
)
5644 unsigned long realtotalpages
= 0, totalpages
= 0;
5647 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5648 struct zone
*zone
= pgdat
->node_zones
+ i
;
5649 unsigned long zone_start_pfn
, zone_end_pfn
;
5650 unsigned long size
, real_size
;
5652 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5658 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5659 node_start_pfn
, node_end_pfn
,
5662 zone
->zone_start_pfn
= zone_start_pfn
;
5664 zone
->zone_start_pfn
= 0;
5665 zone
->spanned_pages
= size
;
5666 zone
->present_pages
= real_size
;
5669 realtotalpages
+= real_size
;
5672 pgdat
->node_spanned_pages
= totalpages
;
5673 pgdat
->node_present_pages
= realtotalpages
;
5674 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5678 #ifndef CONFIG_SPARSEMEM
5680 * Calculate the size of the zone->blockflags rounded to an unsigned long
5681 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5682 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5683 * round what is now in bits to nearest long in bits, then return it in
5686 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5688 unsigned long usemapsize
;
5690 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5691 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5692 usemapsize
= usemapsize
>> pageblock_order
;
5693 usemapsize
*= NR_PAGEBLOCK_BITS
;
5694 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5696 return usemapsize
/ 8;
5699 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5701 unsigned long zone_start_pfn
,
5702 unsigned long zonesize
)
5704 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5705 zone
->pageblock_flags
= NULL
;
5707 zone
->pageblock_flags
=
5708 memblock_virt_alloc_node_nopanic(usemapsize
,
5712 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5713 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5714 #endif /* CONFIG_SPARSEMEM */
5716 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5718 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5719 void __paginginit
set_pageblock_order(void)
5723 /* Check that pageblock_nr_pages has not already been setup */
5724 if (pageblock_order
)
5727 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5728 order
= HUGETLB_PAGE_ORDER
;
5730 order
= MAX_ORDER
- 1;
5733 * Assume the largest contiguous order of interest is a huge page.
5734 * This value may be variable depending on boot parameters on IA64 and
5737 pageblock_order
= order
;
5739 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5742 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5743 * is unused as pageblock_order is set at compile-time. See
5744 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5747 void __paginginit
set_pageblock_order(void)
5751 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5753 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5754 unsigned long present_pages
)
5756 unsigned long pages
= spanned_pages
;
5759 * Provide a more accurate estimation if there are holes within
5760 * the zone and SPARSEMEM is in use. If there are holes within the
5761 * zone, each populated memory region may cost us one or two extra
5762 * memmap pages due to alignment because memmap pages for each
5763 * populated regions may not naturally algined on page boundary.
5764 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5766 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5767 IS_ENABLED(CONFIG_SPARSEMEM
))
5768 pages
= present_pages
;
5770 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5774 * Set up the zone data structures:
5775 * - mark all pages reserved
5776 * - mark all memory queues empty
5777 * - clear the memory bitmaps
5779 * NOTE: pgdat should get zeroed by caller.
5781 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5784 int nid
= pgdat
->node_id
;
5787 pgdat_resize_init(pgdat
);
5788 #ifdef CONFIG_NUMA_BALANCING
5789 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5790 pgdat
->numabalancing_migrate_nr_pages
= 0;
5791 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5794 spin_lock_init(&pgdat
->split_queue_lock
);
5795 INIT_LIST_HEAD(&pgdat
->split_queue
);
5796 pgdat
->split_queue_len
= 0;
5798 init_waitqueue_head(&pgdat
->kswapd_wait
);
5799 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5800 #ifdef CONFIG_COMPACTION
5801 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5803 pgdat_page_ext_init(pgdat
);
5804 spin_lock_init(&pgdat
->lru_lock
);
5805 lruvec_init(node_lruvec(pgdat
));
5807 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5808 struct zone
*zone
= pgdat
->node_zones
+ j
;
5809 unsigned long size
, realsize
, freesize
, memmap_pages
;
5810 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5812 size
= zone
->spanned_pages
;
5813 realsize
= freesize
= zone
->present_pages
;
5816 * Adjust freesize so that it accounts for how much memory
5817 * is used by this zone for memmap. This affects the watermark
5818 * and per-cpu initialisations
5820 memmap_pages
= calc_memmap_size(size
, realsize
);
5821 if (!is_highmem_idx(j
)) {
5822 if (freesize
>= memmap_pages
) {
5823 freesize
-= memmap_pages
;
5826 " %s zone: %lu pages used for memmap\n",
5827 zone_names
[j
], memmap_pages
);
5829 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5830 zone_names
[j
], memmap_pages
, freesize
);
5833 /* Account for reserved pages */
5834 if (j
== 0 && freesize
> dma_reserve
) {
5835 freesize
-= dma_reserve
;
5836 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5837 zone_names
[0], dma_reserve
);
5840 if (!is_highmem_idx(j
))
5841 nr_kernel_pages
+= freesize
;
5842 /* Charge for highmem memmap if there are enough kernel pages */
5843 else if (nr_kernel_pages
> memmap_pages
* 2)
5844 nr_kernel_pages
-= memmap_pages
;
5845 nr_all_pages
+= freesize
;
5848 * Set an approximate value for lowmem here, it will be adjusted
5849 * when the bootmem allocator frees pages into the buddy system.
5850 * And all highmem pages will be managed by the buddy system.
5852 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5856 zone
->name
= zone_names
[j
];
5857 zone
->zone_pgdat
= pgdat
;
5858 spin_lock_init(&zone
->lock
);
5859 zone_seqlock_init(zone
);
5860 zone_pcp_init(zone
);
5865 set_pageblock_order();
5866 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5867 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5869 memmap_init(size
, nid
, j
, zone_start_pfn
);
5873 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
5875 unsigned long __maybe_unused start
= 0;
5876 unsigned long __maybe_unused offset
= 0;
5878 /* Skip empty nodes */
5879 if (!pgdat
->node_spanned_pages
)
5882 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5883 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5884 offset
= pgdat
->node_start_pfn
- start
;
5885 /* ia64 gets its own node_mem_map, before this, without bootmem */
5886 if (!pgdat
->node_mem_map
) {
5887 unsigned long size
, end
;
5891 * The zone's endpoints aren't required to be MAX_ORDER
5892 * aligned but the node_mem_map endpoints must be in order
5893 * for the buddy allocator to function correctly.
5895 end
= pgdat_end_pfn(pgdat
);
5896 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5897 size
= (end
- start
) * sizeof(struct page
);
5898 map
= alloc_remap(pgdat
->node_id
, size
);
5900 map
= memblock_virt_alloc_node_nopanic(size
,
5902 pgdat
->node_mem_map
= map
+ offset
;
5904 #ifndef CONFIG_NEED_MULTIPLE_NODES
5906 * With no DISCONTIG, the global mem_map is just set as node 0's
5908 if (pgdat
== NODE_DATA(0)) {
5909 mem_map
= NODE_DATA(0)->node_mem_map
;
5910 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5911 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5913 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5916 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5919 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5920 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5922 pg_data_t
*pgdat
= NODE_DATA(nid
);
5923 unsigned long start_pfn
= 0;
5924 unsigned long end_pfn
= 0;
5926 /* pg_data_t should be reset to zero when it's allocated */
5927 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
5929 pgdat
->node_id
= nid
;
5930 pgdat
->node_start_pfn
= node_start_pfn
;
5931 pgdat
->per_cpu_nodestats
= NULL
;
5932 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5933 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5934 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5935 (u64
)start_pfn
<< PAGE_SHIFT
,
5936 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5938 start_pfn
= node_start_pfn
;
5940 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5941 zones_size
, zholes_size
);
5943 alloc_node_mem_map(pgdat
);
5944 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5945 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5946 nid
, (unsigned long)pgdat
,
5947 (unsigned long)pgdat
->node_mem_map
);
5950 reset_deferred_meminit(pgdat
);
5951 free_area_init_core(pgdat
);
5954 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5956 #if MAX_NUMNODES > 1
5958 * Figure out the number of possible node ids.
5960 void __init
setup_nr_node_ids(void)
5962 unsigned int highest
;
5964 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5965 nr_node_ids
= highest
+ 1;
5970 * node_map_pfn_alignment - determine the maximum internode alignment
5972 * This function should be called after node map is populated and sorted.
5973 * It calculates the maximum power of two alignment which can distinguish
5976 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5977 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5978 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5979 * shifted, 1GiB is enough and this function will indicate so.
5981 * This is used to test whether pfn -> nid mapping of the chosen memory
5982 * model has fine enough granularity to avoid incorrect mapping for the
5983 * populated node map.
5985 * Returns the determined alignment in pfn's. 0 if there is no alignment
5986 * requirement (single node).
5988 unsigned long __init
node_map_pfn_alignment(void)
5990 unsigned long accl_mask
= 0, last_end
= 0;
5991 unsigned long start
, end
, mask
;
5995 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5996 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6003 * Start with a mask granular enough to pin-point to the
6004 * start pfn and tick off bits one-by-one until it becomes
6005 * too coarse to separate the current node from the last.
6007 mask
= ~((1 << __ffs(start
)) - 1);
6008 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6011 /* accumulate all internode masks */
6015 /* convert mask to number of pages */
6016 return ~accl_mask
+ 1;
6019 /* Find the lowest pfn for a node */
6020 static unsigned long __init
find_min_pfn_for_node(int nid
)
6022 unsigned long min_pfn
= ULONG_MAX
;
6023 unsigned long start_pfn
;
6026 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6027 min_pfn
= min(min_pfn
, start_pfn
);
6029 if (min_pfn
== ULONG_MAX
) {
6030 pr_warn("Could not find start_pfn for node %d\n", nid
);
6038 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6040 * It returns the minimum PFN based on information provided via
6041 * memblock_set_node().
6043 unsigned long __init
find_min_pfn_with_active_regions(void)
6045 return find_min_pfn_for_node(MAX_NUMNODES
);
6049 * early_calculate_totalpages()
6050 * Sum pages in active regions for movable zone.
6051 * Populate N_MEMORY for calculating usable_nodes.
6053 static unsigned long __init
early_calculate_totalpages(void)
6055 unsigned long totalpages
= 0;
6056 unsigned long start_pfn
, end_pfn
;
6059 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6060 unsigned long pages
= end_pfn
- start_pfn
;
6062 totalpages
+= pages
;
6064 node_set_state(nid
, N_MEMORY
);
6070 * Find the PFN the Movable zone begins in each node. Kernel memory
6071 * is spread evenly between nodes as long as the nodes have enough
6072 * memory. When they don't, some nodes will have more kernelcore than
6075 static void __init
find_zone_movable_pfns_for_nodes(void)
6078 unsigned long usable_startpfn
;
6079 unsigned long kernelcore_node
, kernelcore_remaining
;
6080 /* save the state before borrow the nodemask */
6081 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6082 unsigned long totalpages
= early_calculate_totalpages();
6083 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6084 struct memblock_region
*r
;
6086 /* Need to find movable_zone earlier when movable_node is specified. */
6087 find_usable_zone_for_movable();
6090 * If movable_node is specified, ignore kernelcore and movablecore
6093 if (movable_node_is_enabled()) {
6094 for_each_memblock(memory
, r
) {
6095 if (!memblock_is_hotpluggable(r
))
6100 usable_startpfn
= PFN_DOWN(r
->base
);
6101 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6102 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6110 * If kernelcore=mirror is specified, ignore movablecore option
6112 if (mirrored_kernelcore
) {
6113 bool mem_below_4gb_not_mirrored
= false;
6115 for_each_memblock(memory
, r
) {
6116 if (memblock_is_mirror(r
))
6121 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6123 if (usable_startpfn
< 0x100000) {
6124 mem_below_4gb_not_mirrored
= true;
6128 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6129 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6133 if (mem_below_4gb_not_mirrored
)
6134 pr_warn("This configuration results in unmirrored kernel memory.");
6140 * If movablecore=nn[KMG] was specified, calculate what size of
6141 * kernelcore that corresponds so that memory usable for
6142 * any allocation type is evenly spread. If both kernelcore
6143 * and movablecore are specified, then the value of kernelcore
6144 * will be used for required_kernelcore if it's greater than
6145 * what movablecore would have allowed.
6147 if (required_movablecore
) {
6148 unsigned long corepages
;
6151 * Round-up so that ZONE_MOVABLE is at least as large as what
6152 * was requested by the user
6154 required_movablecore
=
6155 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6156 required_movablecore
= min(totalpages
, required_movablecore
);
6157 corepages
= totalpages
- required_movablecore
;
6159 required_kernelcore
= max(required_kernelcore
, corepages
);
6163 * If kernelcore was not specified or kernelcore size is larger
6164 * than totalpages, there is no ZONE_MOVABLE.
6166 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6169 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6170 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6173 /* Spread kernelcore memory as evenly as possible throughout nodes */
6174 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6175 for_each_node_state(nid
, N_MEMORY
) {
6176 unsigned long start_pfn
, end_pfn
;
6179 * Recalculate kernelcore_node if the division per node
6180 * now exceeds what is necessary to satisfy the requested
6181 * amount of memory for the kernel
6183 if (required_kernelcore
< kernelcore_node
)
6184 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6187 * As the map is walked, we track how much memory is usable
6188 * by the kernel using kernelcore_remaining. When it is
6189 * 0, the rest of the node is usable by ZONE_MOVABLE
6191 kernelcore_remaining
= kernelcore_node
;
6193 /* Go through each range of PFNs within this node */
6194 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6195 unsigned long size_pages
;
6197 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6198 if (start_pfn
>= end_pfn
)
6201 /* Account for what is only usable for kernelcore */
6202 if (start_pfn
< usable_startpfn
) {
6203 unsigned long kernel_pages
;
6204 kernel_pages
= min(end_pfn
, usable_startpfn
)
6207 kernelcore_remaining
-= min(kernel_pages
,
6208 kernelcore_remaining
);
6209 required_kernelcore
-= min(kernel_pages
,
6210 required_kernelcore
);
6212 /* Continue if range is now fully accounted */
6213 if (end_pfn
<= usable_startpfn
) {
6216 * Push zone_movable_pfn to the end so
6217 * that if we have to rebalance
6218 * kernelcore across nodes, we will
6219 * not double account here
6221 zone_movable_pfn
[nid
] = end_pfn
;
6224 start_pfn
= usable_startpfn
;
6228 * The usable PFN range for ZONE_MOVABLE is from
6229 * start_pfn->end_pfn. Calculate size_pages as the
6230 * number of pages used as kernelcore
6232 size_pages
= end_pfn
- start_pfn
;
6233 if (size_pages
> kernelcore_remaining
)
6234 size_pages
= kernelcore_remaining
;
6235 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6238 * Some kernelcore has been met, update counts and
6239 * break if the kernelcore for this node has been
6242 required_kernelcore
-= min(required_kernelcore
,
6244 kernelcore_remaining
-= size_pages
;
6245 if (!kernelcore_remaining
)
6251 * If there is still required_kernelcore, we do another pass with one
6252 * less node in the count. This will push zone_movable_pfn[nid] further
6253 * along on the nodes that still have memory until kernelcore is
6257 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6261 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6262 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6263 zone_movable_pfn
[nid
] =
6264 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6267 /* restore the node_state */
6268 node_states
[N_MEMORY
] = saved_node_state
;
6271 /* Any regular or high memory on that node ? */
6272 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6274 enum zone_type zone_type
;
6276 if (N_MEMORY
== N_NORMAL_MEMORY
)
6279 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6280 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6281 if (populated_zone(zone
)) {
6282 node_set_state(nid
, N_HIGH_MEMORY
);
6283 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6284 zone_type
<= ZONE_NORMAL
)
6285 node_set_state(nid
, N_NORMAL_MEMORY
);
6292 * free_area_init_nodes - Initialise all pg_data_t and zone data
6293 * @max_zone_pfn: an array of max PFNs for each zone
6295 * This will call free_area_init_node() for each active node in the system.
6296 * Using the page ranges provided by memblock_set_node(), the size of each
6297 * zone in each node and their holes is calculated. If the maximum PFN
6298 * between two adjacent zones match, it is assumed that the zone is empty.
6299 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6300 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6301 * starts where the previous one ended. For example, ZONE_DMA32 starts
6302 * at arch_max_dma_pfn.
6304 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6306 unsigned long start_pfn
, end_pfn
;
6309 /* Record where the zone boundaries are */
6310 memset(arch_zone_lowest_possible_pfn
, 0,
6311 sizeof(arch_zone_lowest_possible_pfn
));
6312 memset(arch_zone_highest_possible_pfn
, 0,
6313 sizeof(arch_zone_highest_possible_pfn
));
6315 start_pfn
= find_min_pfn_with_active_regions();
6317 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6318 if (i
== ZONE_MOVABLE
)
6321 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6322 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6323 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6325 start_pfn
= end_pfn
;
6327 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
6328 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
6330 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6331 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6332 find_zone_movable_pfns_for_nodes();
6334 /* Print out the zone ranges */
6335 pr_info("Zone ranges:\n");
6336 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6337 if (i
== ZONE_MOVABLE
)
6339 pr_info(" %-8s ", zone_names
[i
]);
6340 if (arch_zone_lowest_possible_pfn
[i
] ==
6341 arch_zone_highest_possible_pfn
[i
])
6344 pr_cont("[mem %#018Lx-%#018Lx]\n",
6345 (u64
)arch_zone_lowest_possible_pfn
[i
]
6347 ((u64
)arch_zone_highest_possible_pfn
[i
]
6348 << PAGE_SHIFT
) - 1);
6351 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6352 pr_info("Movable zone start for each node\n");
6353 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6354 if (zone_movable_pfn
[i
])
6355 pr_info(" Node %d: %#018Lx\n", i
,
6356 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6359 /* Print out the early node map */
6360 pr_info("Early memory node ranges\n");
6361 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6362 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6363 (u64
)start_pfn
<< PAGE_SHIFT
,
6364 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6366 /* Initialise every node */
6367 mminit_verify_pageflags_layout();
6368 setup_nr_node_ids();
6369 for_each_online_node(nid
) {
6370 pg_data_t
*pgdat
= NODE_DATA(nid
);
6371 free_area_init_node(nid
, NULL
,
6372 find_min_pfn_for_node(nid
), NULL
);
6374 /* Any memory on that node */
6375 if (pgdat
->node_present_pages
)
6376 node_set_state(nid
, N_MEMORY
);
6377 check_for_memory(pgdat
, nid
);
6381 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6383 unsigned long long coremem
;
6387 coremem
= memparse(p
, &p
);
6388 *core
= coremem
>> PAGE_SHIFT
;
6390 /* Paranoid check that UL is enough for the coremem value */
6391 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6397 * kernelcore=size sets the amount of memory for use for allocations that
6398 * cannot be reclaimed or migrated.
6400 static int __init
cmdline_parse_kernelcore(char *p
)
6402 /* parse kernelcore=mirror */
6403 if (parse_option_str(p
, "mirror")) {
6404 mirrored_kernelcore
= true;
6408 return cmdline_parse_core(p
, &required_kernelcore
);
6412 * movablecore=size sets the amount of memory for use for allocations that
6413 * can be reclaimed or migrated.
6415 static int __init
cmdline_parse_movablecore(char *p
)
6417 return cmdline_parse_core(p
, &required_movablecore
);
6420 early_param("kernelcore", cmdline_parse_kernelcore
);
6421 early_param("movablecore", cmdline_parse_movablecore
);
6423 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6425 void adjust_managed_page_count(struct page
*page
, long count
)
6427 spin_lock(&managed_page_count_lock
);
6428 page_zone(page
)->managed_pages
+= count
;
6429 totalram_pages
+= count
;
6430 #ifdef CONFIG_HIGHMEM
6431 if (PageHighMem(page
))
6432 totalhigh_pages
+= count
;
6434 spin_unlock(&managed_page_count_lock
);
6436 EXPORT_SYMBOL(adjust_managed_page_count
);
6438 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6441 unsigned long pages
= 0;
6443 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6444 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6445 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6446 if ((unsigned int)poison
<= 0xFF)
6447 memset(pos
, poison
, PAGE_SIZE
);
6448 free_reserved_page(virt_to_page(pos
));
6452 pr_info("Freeing %s memory: %ldK\n",
6453 s
, pages
<< (PAGE_SHIFT
- 10));
6457 EXPORT_SYMBOL(free_reserved_area
);
6459 #ifdef CONFIG_HIGHMEM
6460 void free_highmem_page(struct page
*page
)
6462 __free_reserved_page(page
);
6464 page_zone(page
)->managed_pages
++;
6470 void __init
mem_init_print_info(const char *str
)
6472 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6473 unsigned long init_code_size
, init_data_size
;
6475 physpages
= get_num_physpages();
6476 codesize
= _etext
- _stext
;
6477 datasize
= _edata
- _sdata
;
6478 rosize
= __end_rodata
- __start_rodata
;
6479 bss_size
= __bss_stop
- __bss_start
;
6480 init_data_size
= __init_end
- __init_begin
;
6481 init_code_size
= _einittext
- _sinittext
;
6484 * Detect special cases and adjust section sizes accordingly:
6485 * 1) .init.* may be embedded into .data sections
6486 * 2) .init.text.* may be out of [__init_begin, __init_end],
6487 * please refer to arch/tile/kernel/vmlinux.lds.S.
6488 * 3) .rodata.* may be embedded into .text or .data sections.
6490 #define adj_init_size(start, end, size, pos, adj) \
6492 if (start <= pos && pos < end && size > adj) \
6496 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6497 _sinittext
, init_code_size
);
6498 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6499 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6500 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6501 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6503 #undef adj_init_size
6505 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6506 #ifdef CONFIG_HIGHMEM
6510 nr_free_pages() << (PAGE_SHIFT
- 10),
6511 physpages
<< (PAGE_SHIFT
- 10),
6512 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6513 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6514 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6515 totalcma_pages
<< (PAGE_SHIFT
- 10),
6516 #ifdef CONFIG_HIGHMEM
6517 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6519 str
? ", " : "", str
? str
: "");
6523 * set_dma_reserve - set the specified number of pages reserved in the first zone
6524 * @new_dma_reserve: The number of pages to mark reserved
6526 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6527 * In the DMA zone, a significant percentage may be consumed by kernel image
6528 * and other unfreeable allocations which can skew the watermarks badly. This
6529 * function may optionally be used to account for unfreeable pages in the
6530 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6531 * smaller per-cpu batchsize.
6533 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6535 dma_reserve
= new_dma_reserve
;
6538 void __init
free_area_init(unsigned long *zones_size
)
6540 free_area_init_node(0, zones_size
,
6541 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6544 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6545 unsigned long action
, void *hcpu
)
6547 int cpu
= (unsigned long)hcpu
;
6549 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6550 lru_add_drain_cpu(cpu
);
6554 * Spill the event counters of the dead processor
6555 * into the current processors event counters.
6556 * This artificially elevates the count of the current
6559 vm_events_fold_cpu(cpu
);
6562 * Zero the differential counters of the dead processor
6563 * so that the vm statistics are consistent.
6565 * This is only okay since the processor is dead and cannot
6566 * race with what we are doing.
6568 cpu_vm_stats_fold(cpu
);
6573 void __init
page_alloc_init(void)
6575 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6579 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6580 * or min_free_kbytes changes.
6582 static void calculate_totalreserve_pages(void)
6584 struct pglist_data
*pgdat
;
6585 unsigned long reserve_pages
= 0;
6586 enum zone_type i
, j
;
6588 for_each_online_pgdat(pgdat
) {
6590 pgdat
->totalreserve_pages
= 0;
6592 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6593 struct zone
*zone
= pgdat
->node_zones
+ i
;
6596 /* Find valid and maximum lowmem_reserve in the zone */
6597 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6598 if (zone
->lowmem_reserve
[j
] > max
)
6599 max
= zone
->lowmem_reserve
[j
];
6602 /* we treat the high watermark as reserved pages. */
6603 max
+= high_wmark_pages(zone
);
6605 if (max
> zone
->managed_pages
)
6606 max
= zone
->managed_pages
;
6608 pgdat
->totalreserve_pages
+= max
;
6610 reserve_pages
+= max
;
6613 totalreserve_pages
= reserve_pages
;
6617 * setup_per_zone_lowmem_reserve - called whenever
6618 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6619 * has a correct pages reserved value, so an adequate number of
6620 * pages are left in the zone after a successful __alloc_pages().
6622 static void setup_per_zone_lowmem_reserve(void)
6624 struct pglist_data
*pgdat
;
6625 enum zone_type j
, idx
;
6627 for_each_online_pgdat(pgdat
) {
6628 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6629 struct zone
*zone
= pgdat
->node_zones
+ j
;
6630 unsigned long managed_pages
= zone
->managed_pages
;
6632 zone
->lowmem_reserve
[j
] = 0;
6636 struct zone
*lower_zone
;
6640 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6641 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6643 lower_zone
= pgdat
->node_zones
+ idx
;
6644 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6645 sysctl_lowmem_reserve_ratio
[idx
];
6646 managed_pages
+= lower_zone
->managed_pages
;
6651 /* update totalreserve_pages */
6652 calculate_totalreserve_pages();
6655 static void __setup_per_zone_wmarks(void)
6657 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6658 unsigned long lowmem_pages
= 0;
6660 unsigned long flags
;
6662 /* Calculate total number of !ZONE_HIGHMEM pages */
6663 for_each_zone(zone
) {
6664 if (!is_highmem(zone
))
6665 lowmem_pages
+= zone
->managed_pages
;
6668 for_each_zone(zone
) {
6671 spin_lock_irqsave(&zone
->lock
, flags
);
6672 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6673 do_div(tmp
, lowmem_pages
);
6674 if (is_highmem(zone
)) {
6676 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6677 * need highmem pages, so cap pages_min to a small
6680 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6681 * deltas control asynch page reclaim, and so should
6682 * not be capped for highmem.
6684 unsigned long min_pages
;
6686 min_pages
= zone
->managed_pages
/ 1024;
6687 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6688 zone
->watermark
[WMARK_MIN
] = min_pages
;
6691 * If it's a lowmem zone, reserve a number of pages
6692 * proportionate to the zone's size.
6694 zone
->watermark
[WMARK_MIN
] = tmp
;
6698 * Set the kswapd watermarks distance according to the
6699 * scale factor in proportion to available memory, but
6700 * ensure a minimum size on small systems.
6702 tmp
= max_t(u64
, tmp
>> 2,
6703 mult_frac(zone
->managed_pages
,
6704 watermark_scale_factor
, 10000));
6706 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6707 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6709 spin_unlock_irqrestore(&zone
->lock
, flags
);
6712 /* update totalreserve_pages */
6713 calculate_totalreserve_pages();
6717 * setup_per_zone_wmarks - called when min_free_kbytes changes
6718 * or when memory is hot-{added|removed}
6720 * Ensures that the watermark[min,low,high] values for each zone are set
6721 * correctly with respect to min_free_kbytes.
6723 void setup_per_zone_wmarks(void)
6725 mutex_lock(&zonelists_mutex
);
6726 __setup_per_zone_wmarks();
6727 mutex_unlock(&zonelists_mutex
);
6731 * Initialise min_free_kbytes.
6733 * For small machines we want it small (128k min). For large machines
6734 * we want it large (64MB max). But it is not linear, because network
6735 * bandwidth does not increase linearly with machine size. We use
6737 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6738 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6754 int __meminit
init_per_zone_wmark_min(void)
6756 unsigned long lowmem_kbytes
;
6757 int new_min_free_kbytes
;
6759 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6760 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6762 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6763 min_free_kbytes
= new_min_free_kbytes
;
6764 if (min_free_kbytes
< 128)
6765 min_free_kbytes
= 128;
6766 if (min_free_kbytes
> 65536)
6767 min_free_kbytes
= 65536;
6769 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6770 new_min_free_kbytes
, user_min_free_kbytes
);
6772 setup_per_zone_wmarks();
6773 refresh_zone_stat_thresholds();
6774 setup_per_zone_lowmem_reserve();
6777 setup_min_unmapped_ratio();
6778 setup_min_slab_ratio();
6783 core_initcall(init_per_zone_wmark_min
)
6786 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6787 * that we can call two helper functions whenever min_free_kbytes
6790 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6791 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6795 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6800 user_min_free_kbytes
= min_free_kbytes
;
6801 setup_per_zone_wmarks();
6806 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6807 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6811 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6816 setup_per_zone_wmarks();
6822 static void setup_min_unmapped_ratio(void)
6827 for_each_online_pgdat(pgdat
)
6828 pgdat
->min_unmapped_pages
= 0;
6831 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
6832 sysctl_min_unmapped_ratio
) / 100;
6836 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6837 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6841 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6845 setup_min_unmapped_ratio();
6850 static void setup_min_slab_ratio(void)
6855 for_each_online_pgdat(pgdat
)
6856 pgdat
->min_slab_pages
= 0;
6859 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
6860 sysctl_min_slab_ratio
) / 100;
6863 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6864 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6868 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6872 setup_min_slab_ratio();
6879 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6880 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6881 * whenever sysctl_lowmem_reserve_ratio changes.
6883 * The reserve ratio obviously has absolutely no relation with the
6884 * minimum watermarks. The lowmem reserve ratio can only make sense
6885 * if in function of the boot time zone sizes.
6887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6888 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6890 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6891 setup_per_zone_lowmem_reserve();
6896 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6897 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6898 * pagelist can have before it gets flushed back to buddy allocator.
6900 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6901 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6904 int old_percpu_pagelist_fraction
;
6907 mutex_lock(&pcp_batch_high_lock
);
6908 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6910 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6911 if (!write
|| ret
< 0)
6914 /* Sanity checking to avoid pcp imbalance */
6915 if (percpu_pagelist_fraction
&&
6916 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6917 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6923 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6926 for_each_populated_zone(zone
) {
6929 for_each_possible_cpu(cpu
)
6930 pageset_set_high_and_batch(zone
,
6931 per_cpu_ptr(zone
->pageset
, cpu
));
6934 mutex_unlock(&pcp_batch_high_lock
);
6939 int hashdist
= HASHDIST_DEFAULT
;
6941 static int __init
set_hashdist(char *str
)
6945 hashdist
= simple_strtoul(str
, &str
, 0);
6948 __setup("hashdist=", set_hashdist
);
6951 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6953 * Returns the number of pages that arch has reserved but
6954 * is not known to alloc_large_system_hash().
6956 static unsigned long __init
arch_reserved_kernel_pages(void)
6963 * allocate a large system hash table from bootmem
6964 * - it is assumed that the hash table must contain an exact power-of-2
6965 * quantity of entries
6966 * - limit is the number of hash buckets, not the total allocation size
6968 void *__init
alloc_large_system_hash(const char *tablename
,
6969 unsigned long bucketsize
,
6970 unsigned long numentries
,
6973 unsigned int *_hash_shift
,
6974 unsigned int *_hash_mask
,
6975 unsigned long low_limit
,
6976 unsigned long high_limit
)
6978 unsigned long long max
= high_limit
;
6979 unsigned long log2qty
, size
;
6982 /* allow the kernel cmdline to have a say */
6984 /* round applicable memory size up to nearest megabyte */
6985 numentries
= nr_kernel_pages
;
6986 numentries
-= arch_reserved_kernel_pages();
6988 /* It isn't necessary when PAGE_SIZE >= 1MB */
6989 if (PAGE_SHIFT
< 20)
6990 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6992 /* limit to 1 bucket per 2^scale bytes of low memory */
6993 if (scale
> PAGE_SHIFT
)
6994 numentries
>>= (scale
- PAGE_SHIFT
);
6996 numentries
<<= (PAGE_SHIFT
- scale
);
6998 /* Make sure we've got at least a 0-order allocation.. */
6999 if (unlikely(flags
& HASH_SMALL
)) {
7000 /* Makes no sense without HASH_EARLY */
7001 WARN_ON(!(flags
& HASH_EARLY
));
7002 if (!(numentries
>> *_hash_shift
)) {
7003 numentries
= 1UL << *_hash_shift
;
7004 BUG_ON(!numentries
);
7006 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7007 numentries
= PAGE_SIZE
/ bucketsize
;
7009 numentries
= roundup_pow_of_two(numentries
);
7011 /* limit allocation size to 1/16 total memory by default */
7013 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7014 do_div(max
, bucketsize
);
7016 max
= min(max
, 0x80000000ULL
);
7018 if (numentries
< low_limit
)
7019 numentries
= low_limit
;
7020 if (numentries
> max
)
7023 log2qty
= ilog2(numentries
);
7026 size
= bucketsize
<< log2qty
;
7027 if (flags
& HASH_EARLY
)
7028 table
= memblock_virt_alloc_nopanic(size
, 0);
7030 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7033 * If bucketsize is not a power-of-two, we may free
7034 * some pages at the end of hash table which
7035 * alloc_pages_exact() automatically does
7037 if (get_order(size
) < MAX_ORDER
) {
7038 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7039 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7042 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7045 panic("Failed to allocate %s hash table\n", tablename
);
7047 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7048 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7051 *_hash_shift
= log2qty
;
7053 *_hash_mask
= (1 << log2qty
) - 1;
7059 * This function checks whether pageblock includes unmovable pages or not.
7060 * If @count is not zero, it is okay to include less @count unmovable pages
7062 * PageLRU check without isolation or lru_lock could race so that
7063 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7064 * expect this function should be exact.
7066 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7067 bool skip_hwpoisoned_pages
)
7069 unsigned long pfn
, iter
, found
;
7073 * For avoiding noise data, lru_add_drain_all() should be called
7074 * If ZONE_MOVABLE, the zone never contains unmovable pages
7076 if (zone_idx(zone
) == ZONE_MOVABLE
)
7078 mt
= get_pageblock_migratetype(page
);
7079 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7082 pfn
= page_to_pfn(page
);
7083 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7084 unsigned long check
= pfn
+ iter
;
7086 if (!pfn_valid_within(check
))
7089 page
= pfn_to_page(check
);
7092 * Hugepages are not in LRU lists, but they're movable.
7093 * We need not scan over tail pages bacause we don't
7094 * handle each tail page individually in migration.
7096 if (PageHuge(page
)) {
7097 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7102 * We can't use page_count without pin a page
7103 * because another CPU can free compound page.
7104 * This check already skips compound tails of THP
7105 * because their page->_refcount is zero at all time.
7107 if (!page_ref_count(page
)) {
7108 if (PageBuddy(page
))
7109 iter
+= (1 << page_order(page
)) - 1;
7114 * The HWPoisoned page may be not in buddy system, and
7115 * page_count() is not 0.
7117 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7123 * If there are RECLAIMABLE pages, we need to check
7124 * it. But now, memory offline itself doesn't call
7125 * shrink_node_slabs() and it still to be fixed.
7128 * If the page is not RAM, page_count()should be 0.
7129 * we don't need more check. This is an _used_ not-movable page.
7131 * The problematic thing here is PG_reserved pages. PG_reserved
7132 * is set to both of a memory hole page and a _used_ kernel
7141 bool is_pageblock_removable_nolock(struct page
*page
)
7147 * We have to be careful here because we are iterating over memory
7148 * sections which are not zone aware so we might end up outside of
7149 * the zone but still within the section.
7150 * We have to take care about the node as well. If the node is offline
7151 * its NODE_DATA will be NULL - see page_zone.
7153 if (!node_online(page_to_nid(page
)))
7156 zone
= page_zone(page
);
7157 pfn
= page_to_pfn(page
);
7158 if (!zone_spans_pfn(zone
, pfn
))
7161 return !has_unmovable_pages(zone
, page
, 0, true);
7164 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7166 static unsigned long pfn_max_align_down(unsigned long pfn
)
7168 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7169 pageblock_nr_pages
) - 1);
7172 static unsigned long pfn_max_align_up(unsigned long pfn
)
7174 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7175 pageblock_nr_pages
));
7178 /* [start, end) must belong to a single zone. */
7179 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7180 unsigned long start
, unsigned long end
)
7182 /* This function is based on compact_zone() from compaction.c. */
7183 unsigned long nr_reclaimed
;
7184 unsigned long pfn
= start
;
7185 unsigned int tries
= 0;
7190 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7191 if (fatal_signal_pending(current
)) {
7196 if (list_empty(&cc
->migratepages
)) {
7197 cc
->nr_migratepages
= 0;
7198 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7204 } else if (++tries
== 5) {
7205 ret
= ret
< 0 ? ret
: -EBUSY
;
7209 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7211 cc
->nr_migratepages
-= nr_reclaimed
;
7213 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7214 NULL
, 0, cc
->mode
, MR_CMA
);
7217 putback_movable_pages(&cc
->migratepages
);
7224 * alloc_contig_range() -- tries to allocate given range of pages
7225 * @start: start PFN to allocate
7226 * @end: one-past-the-last PFN to allocate
7227 * @migratetype: migratetype of the underlaying pageblocks (either
7228 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7229 * in range must have the same migratetype and it must
7230 * be either of the two.
7232 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7233 * aligned, however it's the caller's responsibility to guarantee that
7234 * we are the only thread that changes migrate type of pageblocks the
7237 * The PFN range must belong to a single zone.
7239 * Returns zero on success or negative error code. On success all
7240 * pages which PFN is in [start, end) are allocated for the caller and
7241 * need to be freed with free_contig_range().
7243 int alloc_contig_range(unsigned long start
, unsigned long end
,
7244 unsigned migratetype
)
7246 unsigned long outer_start
, outer_end
;
7250 struct compact_control cc
= {
7251 .nr_migratepages
= 0,
7253 .zone
= page_zone(pfn_to_page(start
)),
7254 .mode
= MIGRATE_SYNC
,
7255 .ignore_skip_hint
= true,
7257 INIT_LIST_HEAD(&cc
.migratepages
);
7260 * What we do here is we mark all pageblocks in range as
7261 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7262 * have different sizes, and due to the way page allocator
7263 * work, we align the range to biggest of the two pages so
7264 * that page allocator won't try to merge buddies from
7265 * different pageblocks and change MIGRATE_ISOLATE to some
7266 * other migration type.
7268 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7269 * migrate the pages from an unaligned range (ie. pages that
7270 * we are interested in). This will put all the pages in
7271 * range back to page allocator as MIGRATE_ISOLATE.
7273 * When this is done, we take the pages in range from page
7274 * allocator removing them from the buddy system. This way
7275 * page allocator will never consider using them.
7277 * This lets us mark the pageblocks back as
7278 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7279 * aligned range but not in the unaligned, original range are
7280 * put back to page allocator so that buddy can use them.
7283 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7284 pfn_max_align_up(end
), migratetype
,
7290 * In case of -EBUSY, we'd like to know which page causes problem.
7291 * So, just fall through. test_pages_isolated() has a tracepoint
7292 * which will report the busy page.
7294 * It is possible that busy pages could become available before
7295 * the call to test_pages_isolated, and the range will actually be
7296 * allocated. So, if we fall through be sure to clear ret so that
7297 * -EBUSY is not accidentally used or returned to caller.
7299 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7300 if (ret
&& ret
!= -EBUSY
)
7305 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7306 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7307 * more, all pages in [start, end) are free in page allocator.
7308 * What we are going to do is to allocate all pages from
7309 * [start, end) (that is remove them from page allocator).
7311 * The only problem is that pages at the beginning and at the
7312 * end of interesting range may be not aligned with pages that
7313 * page allocator holds, ie. they can be part of higher order
7314 * pages. Because of this, we reserve the bigger range and
7315 * once this is done free the pages we are not interested in.
7317 * We don't have to hold zone->lock here because the pages are
7318 * isolated thus they won't get removed from buddy.
7321 lru_add_drain_all();
7322 drain_all_pages(cc
.zone
);
7325 outer_start
= start
;
7326 while (!PageBuddy(pfn_to_page(outer_start
))) {
7327 if (++order
>= MAX_ORDER
) {
7328 outer_start
= start
;
7331 outer_start
&= ~0UL << order
;
7334 if (outer_start
!= start
) {
7335 order
= page_order(pfn_to_page(outer_start
));
7338 * outer_start page could be small order buddy page and
7339 * it doesn't include start page. Adjust outer_start
7340 * in this case to report failed page properly
7341 * on tracepoint in test_pages_isolated()
7343 if (outer_start
+ (1UL << order
) <= start
)
7344 outer_start
= start
;
7347 /* Make sure the range is really isolated. */
7348 if (test_pages_isolated(outer_start
, end
, false)) {
7349 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7350 __func__
, outer_start
, end
);
7355 /* Grab isolated pages from freelists. */
7356 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7362 /* Free head and tail (if any) */
7363 if (start
!= outer_start
)
7364 free_contig_range(outer_start
, start
- outer_start
);
7365 if (end
!= outer_end
)
7366 free_contig_range(end
, outer_end
- end
);
7369 undo_isolate_page_range(pfn_max_align_down(start
),
7370 pfn_max_align_up(end
), migratetype
);
7374 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7376 unsigned int count
= 0;
7378 for (; nr_pages
--; pfn
++) {
7379 struct page
*page
= pfn_to_page(pfn
);
7381 count
+= page_count(page
) != 1;
7384 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7388 #ifdef CONFIG_MEMORY_HOTPLUG
7390 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7391 * page high values need to be recalulated.
7393 void __meminit
zone_pcp_update(struct zone
*zone
)
7396 mutex_lock(&pcp_batch_high_lock
);
7397 for_each_possible_cpu(cpu
)
7398 pageset_set_high_and_batch(zone
,
7399 per_cpu_ptr(zone
->pageset
, cpu
));
7400 mutex_unlock(&pcp_batch_high_lock
);
7404 void zone_pcp_reset(struct zone
*zone
)
7406 unsigned long flags
;
7408 struct per_cpu_pageset
*pset
;
7410 /* avoid races with drain_pages() */
7411 local_irq_save(flags
);
7412 if (zone
->pageset
!= &boot_pageset
) {
7413 for_each_online_cpu(cpu
) {
7414 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7415 drain_zonestat(zone
, pset
);
7417 free_percpu(zone
->pageset
);
7418 zone
->pageset
= &boot_pageset
;
7420 local_irq_restore(flags
);
7423 #ifdef CONFIG_MEMORY_HOTREMOVE
7425 * All pages in the range must be in a single zone and isolated
7426 * before calling this.
7429 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7433 unsigned int order
, i
;
7435 unsigned long flags
;
7436 /* find the first valid pfn */
7437 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7442 zone
= page_zone(pfn_to_page(pfn
));
7443 spin_lock_irqsave(&zone
->lock
, flags
);
7445 while (pfn
< end_pfn
) {
7446 if (!pfn_valid(pfn
)) {
7450 page
= pfn_to_page(pfn
);
7452 * The HWPoisoned page may be not in buddy system, and
7453 * page_count() is not 0.
7455 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7457 SetPageReserved(page
);
7461 BUG_ON(page_count(page
));
7462 BUG_ON(!PageBuddy(page
));
7463 order
= page_order(page
);
7464 #ifdef CONFIG_DEBUG_VM
7465 pr_info("remove from free list %lx %d %lx\n",
7466 pfn
, 1 << order
, end_pfn
);
7468 list_del(&page
->lru
);
7469 rmv_page_order(page
);
7470 zone
->free_area
[order
].nr_free
--;
7471 for (i
= 0; i
< (1 << order
); i
++)
7472 SetPageReserved((page
+i
));
7473 pfn
+= (1 << order
);
7475 spin_unlock_irqrestore(&zone
->lock
, flags
);
7479 bool is_free_buddy_page(struct page
*page
)
7481 struct zone
*zone
= page_zone(page
);
7482 unsigned long pfn
= page_to_pfn(page
);
7483 unsigned long flags
;
7486 spin_lock_irqsave(&zone
->lock
, flags
);
7487 for (order
= 0; order
< MAX_ORDER
; order
++) {
7488 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7490 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7493 spin_unlock_irqrestore(&zone
->lock
, flags
);
7495 return order
< MAX_ORDER
;