Linux 4.9.199
[linux/fpc-iii.git] / mm / page_alloc.c
blob13a642192e1216872398aadc58e22831853ce2b6
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
100 * Array of node states.
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
116 EXPORT_SYMBOL(node_states);
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page *page)
138 return page->index;
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143 page->index = migratetype;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
187 static void __free_pages_ok(struct page *page, unsigned int order);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
209 #endif
213 EXPORT_SYMBOL(totalram_pages);
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
284 int page_group_by_mobility_disabled __read_mostly;
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
289 * Determine how many pages need to be initialized durig early boot
290 * (non-deferred initialization).
291 * The value of first_deferred_pfn will be set later, once non-deferred pages
292 * are initialized, but for now set it ULONG_MAX.
294 static inline void reset_deferred_meminit(pg_data_t *pgdat)
296 phys_addr_t start_addr, end_addr;
297 unsigned long max_pgcnt;
298 unsigned long reserved;
301 * Initialise at least 2G of a node but also take into account that
302 * two large system hashes that can take up 1GB for 0.25TB/node.
304 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
305 (pgdat->node_spanned_pages >> 8));
308 * Compensate the all the memblock reservations (e.g. crash kernel)
309 * from the initial estimation to make sure we will initialize enough
310 * memory to boot.
312 start_addr = PFN_PHYS(pgdat->node_start_pfn);
313 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
314 reserved = memblock_reserved_memory_within(start_addr, end_addr);
315 max_pgcnt += PHYS_PFN(reserved);
317 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
318 pgdat->first_deferred_pfn = ULONG_MAX;
321 /* Returns true if the struct page for the pfn is uninitialised */
322 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
324 int nid = early_pfn_to_nid(pfn);
326 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
327 return true;
329 return false;
333 * Returns false when the remaining initialisation should be deferred until
334 * later in the boot cycle when it can be parallelised.
336 static inline bool update_defer_init(pg_data_t *pgdat,
337 unsigned long pfn, unsigned long zone_end,
338 unsigned long *nr_initialised)
340 /* Always populate low zones for address-contrained allocations */
341 if (zone_end < pgdat_end_pfn(pgdat))
342 return true;
343 (*nr_initialised)++;
344 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
345 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
346 pgdat->first_deferred_pfn = pfn;
347 return false;
350 return true;
352 #else
353 static inline void reset_deferred_meminit(pg_data_t *pgdat)
357 static inline bool early_page_uninitialised(unsigned long pfn)
359 return false;
362 static inline bool update_defer_init(pg_data_t *pgdat,
363 unsigned long pfn, unsigned long zone_end,
364 unsigned long *nr_initialised)
366 return true;
368 #endif
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
371 static inline unsigned long *get_pageblock_bitmap(struct page *page,
372 unsigned long pfn)
374 #ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn)->pageblock_flags;
376 #else
377 return page_zone(page)->pageblock_flags;
378 #endif /* CONFIG_SPARSEMEM */
381 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
383 #ifdef CONFIG_SPARSEMEM
384 pfn &= (PAGES_PER_SECTION-1);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #else
387 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
389 #endif /* CONFIG_SPARSEMEM */
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
399 * Return: pageblock_bits flags
401 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
402 unsigned long pfn,
403 unsigned long end_bitidx,
404 unsigned long mask)
406 unsigned long *bitmap;
407 unsigned long bitidx, word_bitidx;
408 unsigned long word;
410 bitmap = get_pageblock_bitmap(page, pfn);
411 bitidx = pfn_to_bitidx(page, pfn);
412 word_bitidx = bitidx / BITS_PER_LONG;
413 bitidx &= (BITS_PER_LONG-1);
415 word = bitmap[word_bitidx];
416 bitidx += end_bitidx;
417 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
420 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
424 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
427 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
429 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
440 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
441 unsigned long pfn,
442 unsigned long end_bitidx,
443 unsigned long mask)
445 unsigned long *bitmap;
446 unsigned long bitidx, word_bitidx;
447 unsigned long old_word, word;
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
451 bitmap = get_pageblock_bitmap(page, pfn);
452 bitidx = pfn_to_bitidx(page, pfn);
453 word_bitidx = bitidx / BITS_PER_LONG;
454 bitidx &= (BITS_PER_LONG-1);
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
458 bitidx += end_bitidx;
459 mask <<= (BITS_PER_LONG - bitidx - 1);
460 flags <<= (BITS_PER_LONG - bitidx - 1);
462 word = READ_ONCE(bitmap[word_bitidx]);
463 for (;;) {
464 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
465 if (word == old_word)
466 break;
467 word = old_word;
471 void set_pageblock_migratetype(struct page *page, int migratetype)
473 if (unlikely(page_group_by_mobility_disabled &&
474 migratetype < MIGRATE_PCPTYPES))
475 migratetype = MIGRATE_UNMOVABLE;
477 set_pageblock_flags_group(page, (unsigned long)migratetype,
478 PB_migrate, PB_migrate_end);
481 #ifdef CONFIG_DEBUG_VM
482 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
484 int ret = 0;
485 unsigned seq;
486 unsigned long pfn = page_to_pfn(page);
487 unsigned long sp, start_pfn;
489 do {
490 seq = zone_span_seqbegin(zone);
491 start_pfn = zone->zone_start_pfn;
492 sp = zone->spanned_pages;
493 if (!zone_spans_pfn(zone, pfn))
494 ret = 1;
495 } while (zone_span_seqretry(zone, seq));
497 if (ret)
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn, zone_to_nid(zone), zone->name,
500 start_pfn, start_pfn + sp);
502 return ret;
505 static int page_is_consistent(struct zone *zone, struct page *page)
507 if (!pfn_valid_within(page_to_pfn(page)))
508 return 0;
509 if (zone != page_zone(page))
510 return 0;
512 return 1;
515 * Temporary debugging check for pages not lying within a given zone.
517 static int bad_range(struct zone *zone, struct page *page)
519 if (page_outside_zone_boundaries(zone, page))
520 return 1;
521 if (!page_is_consistent(zone, page))
522 return 1;
524 return 0;
526 #else
527 static inline int bad_range(struct zone *zone, struct page *page)
529 return 0;
531 #endif
533 static void bad_page(struct page *page, const char *reason,
534 unsigned long bad_flags)
536 static unsigned long resume;
537 static unsigned long nr_shown;
538 static unsigned long nr_unshown;
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
544 if (nr_shown == 60) {
545 if (time_before(jiffies, resume)) {
546 nr_unshown++;
547 goto out;
549 if (nr_unshown) {
550 pr_alert(
551 "BUG: Bad page state: %lu messages suppressed\n",
552 nr_unshown);
553 nr_unshown = 0;
555 nr_shown = 0;
557 if (nr_shown++ == 0)
558 resume = jiffies + 60 * HZ;
560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
561 current->comm, page_to_pfn(page));
562 __dump_page(page, reason);
563 bad_flags &= page->flags;
564 if (bad_flags)
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags, &bad_flags);
567 dump_page_owner(page);
569 print_modules();
570 dump_stack();
571 out:
572 /* Leave bad fields for debug, except PageBuddy could make trouble */
573 page_mapcount_reset(page); /* remove PageBuddy */
574 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
578 * Higher-order pages are called "compound pages". They are structured thusly:
580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
588 * The first tail page's ->compound_order holds the order of allocation.
589 * This usage means that zero-order pages may not be compound.
592 void free_compound_page(struct page *page)
594 __free_pages_ok(page, compound_order(page));
597 void prep_compound_page(struct page *page, unsigned int order)
599 int i;
600 int nr_pages = 1 << order;
602 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
603 set_compound_order(page, order);
604 __SetPageHead(page);
605 for (i = 1; i < nr_pages; i++) {
606 struct page *p = page + i;
607 set_page_count(p, 0);
608 p->mapping = TAIL_MAPPING;
609 set_compound_head(p, page);
611 atomic_set(compound_mapcount_ptr(page), -1);
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder;
616 bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled);
619 bool _debug_guardpage_enabled __read_mostly;
621 static int __init early_debug_pagealloc(char *buf)
623 if (!buf)
624 return -EINVAL;
625 return kstrtobool(buf, &_debug_pagealloc_enabled);
627 early_param("debug_pagealloc", early_debug_pagealloc);
629 static bool need_debug_guardpage(void)
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
633 return false;
635 if (!debug_guardpage_minorder())
636 return false;
638 return true;
641 static void init_debug_guardpage(void)
643 if (!debug_pagealloc_enabled())
644 return;
646 if (!debug_guardpage_minorder())
647 return;
649 _debug_guardpage_enabled = true;
652 struct page_ext_operations debug_guardpage_ops = {
653 .need = need_debug_guardpage,
654 .init = init_debug_guardpage,
657 static int __init debug_guardpage_minorder_setup(char *buf)
659 unsigned long res;
661 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
662 pr_err("Bad debug_guardpage_minorder value\n");
663 return 0;
665 _debug_guardpage_minorder = res;
666 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
667 return 0;
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
671 static inline bool set_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
674 struct page_ext *page_ext;
676 if (!debug_guardpage_enabled())
677 return false;
679 if (order >= debug_guardpage_minorder())
680 return false;
682 page_ext = lookup_page_ext(page);
683 if (unlikely(!page_ext))
684 return false;
686 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688 INIT_LIST_HEAD(&page->lru);
689 set_page_private(page, order);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
693 return true;
696 static inline void clear_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype)
699 struct page_ext *page_ext;
701 if (!debug_guardpage_enabled())
702 return;
704 page_ext = lookup_page_ext(page);
705 if (unlikely(!page_ext))
706 return;
708 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
710 set_page_private(page, 0);
711 if (!is_migrate_isolate(migratetype))
712 __mod_zone_freepage_state(zone, (1 << order), migratetype);
714 #else
715 struct page_ext_operations debug_guardpage_ops;
716 static inline bool set_page_guard(struct zone *zone, struct page *page,
717 unsigned int order, int migratetype) { return false; }
718 static inline void clear_page_guard(struct zone *zone, struct page *page,
719 unsigned int order, int migratetype) {}
720 #endif
722 static inline void set_page_order(struct page *page, unsigned int order)
724 set_page_private(page, order);
725 __SetPageBuddy(page);
728 static inline void rmv_page_order(struct page *page)
730 __ClearPageBuddy(page);
731 set_page_private(page, 0);
735 * This function checks whether a page is free && is the buddy
736 * we can do coalesce a page and its buddy if
737 * (a) the buddy is not in a hole &&
738 * (b) the buddy is in the buddy system &&
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
742 * For recording whether a page is in the buddy system, we set ->_mapcount
743 * PAGE_BUDDY_MAPCOUNT_VALUE.
744 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
745 * serialized by zone->lock.
747 * For recording page's order, we use page_private(page).
749 static inline int page_is_buddy(struct page *page, struct page *buddy,
750 unsigned int order)
752 if (!pfn_valid_within(page_to_pfn(buddy)))
753 return 0;
755 if (page_is_guard(buddy) && page_order(buddy) == order) {
756 if (page_zone_id(page) != page_zone_id(buddy))
757 return 0;
759 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
761 return 1;
764 if (PageBuddy(buddy) && page_order(buddy) == order) {
766 * zone check is done late to avoid uselessly
767 * calculating zone/node ids for pages that could
768 * never merge.
770 if (page_zone_id(page) != page_zone_id(buddy))
771 return 0;
773 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
775 return 1;
777 return 0;
781 * Freeing function for a buddy system allocator.
783 * The concept of a buddy system is to maintain direct-mapped table
784 * (containing bit values) for memory blocks of various "orders".
785 * The bottom level table contains the map for the smallest allocatable
786 * units of memory (here, pages), and each level above it describes
787 * pairs of units from the levels below, hence, "buddies".
788 * At a high level, all that happens here is marking the table entry
789 * at the bottom level available, and propagating the changes upward
790 * as necessary, plus some accounting needed to play nicely with other
791 * parts of the VM system.
792 * At each level, we keep a list of pages, which are heads of continuous
793 * free pages of length of (1 << order) and marked with _mapcount
794 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
795 * field.
796 * So when we are allocating or freeing one, we can derive the state of the
797 * other. That is, if we allocate a small block, and both were
798 * free, the remainder of the region must be split into blocks.
799 * If a block is freed, and its buddy is also free, then this
800 * triggers coalescing into a block of larger size.
802 * -- nyc
805 static inline void __free_one_page(struct page *page,
806 unsigned long pfn,
807 struct zone *zone, unsigned int order,
808 int migratetype)
810 unsigned long page_idx;
811 unsigned long combined_idx;
812 unsigned long uninitialized_var(buddy_idx);
813 struct page *buddy;
814 unsigned int max_order;
816 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
818 VM_BUG_ON(!zone_is_initialized(zone));
819 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
821 VM_BUG_ON(migratetype == -1);
822 if (likely(!is_migrate_isolate(migratetype)))
823 __mod_zone_freepage_state(zone, 1 << order, migratetype);
825 page_idx = pfn & ((1 << MAX_ORDER) - 1);
827 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
828 VM_BUG_ON_PAGE(bad_range(zone, page), page);
830 continue_merging:
831 while (order < max_order - 1) {
832 buddy_idx = __find_buddy_index(page_idx, order);
833 buddy = page + (buddy_idx - page_idx);
834 if (!page_is_buddy(page, buddy, order))
835 goto done_merging;
837 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
838 * merge with it and move up one order.
840 if (page_is_guard(buddy)) {
841 clear_page_guard(zone, buddy, order, migratetype);
842 } else {
843 list_del(&buddy->lru);
844 zone->free_area[order].nr_free--;
845 rmv_page_order(buddy);
847 combined_idx = buddy_idx & page_idx;
848 page = page + (combined_idx - page_idx);
849 page_idx = combined_idx;
850 order++;
852 if (max_order < MAX_ORDER) {
853 /* If we are here, it means order is >= pageblock_order.
854 * We want to prevent merge between freepages on isolate
855 * pageblock and normal pageblock. Without this, pageblock
856 * isolation could cause incorrect freepage or CMA accounting.
858 * We don't want to hit this code for the more frequent
859 * low-order merging.
861 if (unlikely(has_isolate_pageblock(zone))) {
862 int buddy_mt;
864 buddy_idx = __find_buddy_index(page_idx, order);
865 buddy = page + (buddy_idx - page_idx);
866 buddy_mt = get_pageblock_migratetype(buddy);
868 if (migratetype != buddy_mt
869 && (is_migrate_isolate(migratetype) ||
870 is_migrate_isolate(buddy_mt)))
871 goto done_merging;
873 max_order++;
874 goto continue_merging;
877 done_merging:
878 set_page_order(page, order);
881 * If this is not the largest possible page, check if the buddy
882 * of the next-highest order is free. If it is, it's possible
883 * that pages are being freed that will coalesce soon. In case,
884 * that is happening, add the free page to the tail of the list
885 * so it's less likely to be used soon and more likely to be merged
886 * as a higher order page
888 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
889 struct page *higher_page, *higher_buddy;
890 combined_idx = buddy_idx & page_idx;
891 higher_page = page + (combined_idx - page_idx);
892 buddy_idx = __find_buddy_index(combined_idx, order + 1);
893 higher_buddy = higher_page + (buddy_idx - combined_idx);
894 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
895 list_add_tail(&page->lru,
896 &zone->free_area[order].free_list[migratetype]);
897 goto out;
901 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
902 out:
903 zone->free_area[order].nr_free++;
907 * A bad page could be due to a number of fields. Instead of multiple branches,
908 * try and check multiple fields with one check. The caller must do a detailed
909 * check if necessary.
911 static inline bool page_expected_state(struct page *page,
912 unsigned long check_flags)
914 if (unlikely(atomic_read(&page->_mapcount) != -1))
915 return false;
917 if (unlikely((unsigned long)page->mapping |
918 page_ref_count(page) |
919 #ifdef CONFIG_MEMCG
920 (unsigned long)page->mem_cgroup |
921 #endif
922 (page->flags & check_flags)))
923 return false;
925 return true;
928 static void free_pages_check_bad(struct page *page)
930 const char *bad_reason;
931 unsigned long bad_flags;
933 bad_reason = NULL;
934 bad_flags = 0;
936 if (unlikely(atomic_read(&page->_mapcount) != -1))
937 bad_reason = "nonzero mapcount";
938 if (unlikely(page->mapping != NULL))
939 bad_reason = "non-NULL mapping";
940 if (unlikely(page_ref_count(page) != 0))
941 bad_reason = "nonzero _refcount";
942 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
943 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
946 #ifdef CONFIG_MEMCG
947 if (unlikely(page->mem_cgroup))
948 bad_reason = "page still charged to cgroup";
949 #endif
950 bad_page(page, bad_reason, bad_flags);
953 static inline int free_pages_check(struct page *page)
955 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
956 return 0;
958 /* Something has gone sideways, find it */
959 free_pages_check_bad(page);
960 return 1;
963 static int free_tail_pages_check(struct page *head_page, struct page *page)
965 int ret = 1;
968 * We rely page->lru.next never has bit 0 set, unless the page
969 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
971 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
973 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
974 ret = 0;
975 goto out;
977 switch (page - head_page) {
978 case 1:
979 /* the first tail page: ->mapping is compound_mapcount() */
980 if (unlikely(compound_mapcount(page))) {
981 bad_page(page, "nonzero compound_mapcount", 0);
982 goto out;
984 break;
985 case 2:
987 * the second tail page: ->mapping is
988 * page_deferred_list().next -- ignore value.
990 break;
991 default:
992 if (page->mapping != TAIL_MAPPING) {
993 bad_page(page, "corrupted mapping in tail page", 0);
994 goto out;
996 break;
998 if (unlikely(!PageTail(page))) {
999 bad_page(page, "PageTail not set", 0);
1000 goto out;
1002 if (unlikely(compound_head(page) != head_page)) {
1003 bad_page(page, "compound_head not consistent", 0);
1004 goto out;
1006 ret = 0;
1007 out:
1008 page->mapping = NULL;
1009 clear_compound_head(page);
1010 return ret;
1013 static __always_inline bool free_pages_prepare(struct page *page,
1014 unsigned int order, bool check_free)
1016 int bad = 0;
1018 VM_BUG_ON_PAGE(PageTail(page), page);
1020 trace_mm_page_free(page, order);
1021 kmemcheck_free_shadow(page, order);
1024 * Check tail pages before head page information is cleared to
1025 * avoid checking PageCompound for order-0 pages.
1027 if (unlikely(order)) {
1028 bool compound = PageCompound(page);
1029 int i;
1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1033 if (compound)
1034 ClearPageDoubleMap(page);
1035 for (i = 1; i < (1 << order); i++) {
1036 if (compound)
1037 bad += free_tail_pages_check(page, page + i);
1038 if (unlikely(free_pages_check(page + i))) {
1039 bad++;
1040 continue;
1042 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1045 if (PageMappingFlags(page))
1046 page->mapping = NULL;
1047 if (memcg_kmem_enabled() && PageKmemcg(page))
1048 memcg_kmem_uncharge(page, order);
1049 if (check_free)
1050 bad += free_pages_check(page);
1051 if (bad)
1052 return false;
1054 page_cpupid_reset_last(page);
1055 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1056 reset_page_owner(page, order);
1058 if (!PageHighMem(page)) {
1059 debug_check_no_locks_freed(page_address(page),
1060 PAGE_SIZE << order);
1061 debug_check_no_obj_freed(page_address(page),
1062 PAGE_SIZE << order);
1064 arch_free_page(page, order);
1065 kernel_poison_pages(page, 1 << order, 0);
1066 kernel_map_pages(page, 1 << order, 0);
1067 kasan_free_pages(page, order);
1069 return true;
1072 #ifdef CONFIG_DEBUG_VM
1073 static inline bool free_pcp_prepare(struct page *page)
1075 return free_pages_prepare(page, 0, true);
1078 static inline bool bulkfree_pcp_prepare(struct page *page)
1080 return false;
1082 #else
1083 static bool free_pcp_prepare(struct page *page)
1085 return free_pages_prepare(page, 0, false);
1088 static bool bulkfree_pcp_prepare(struct page *page)
1090 return free_pages_check(page);
1092 #endif /* CONFIG_DEBUG_VM */
1095 * Frees a number of pages from the PCP lists
1096 * Assumes all pages on list are in same zone, and of same order.
1097 * count is the number of pages to free.
1099 * If the zone was previously in an "all pages pinned" state then look to
1100 * see if this freeing clears that state.
1102 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1103 * pinned" detection logic.
1105 static void free_pcppages_bulk(struct zone *zone, int count,
1106 struct per_cpu_pages *pcp)
1108 int migratetype = 0;
1109 int batch_free = 0;
1110 unsigned long nr_scanned;
1111 bool isolated_pageblocks;
1113 spin_lock(&zone->lock);
1114 isolated_pageblocks = has_isolate_pageblock(zone);
1115 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1116 if (nr_scanned)
1117 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1119 while (count) {
1120 struct page *page;
1121 struct list_head *list;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
1130 do {
1131 batch_free++;
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1139 batch_free = count;
1141 do {
1142 int mt; /* migratetype of the to-be-freed page */
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1162 spin_unlock(&zone->lock);
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1167 unsigned int order,
1168 int migratetype)
1170 unsigned long nr_scanned;
1171 spin_lock(&zone->lock);
1172 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1173 if (nr_scanned)
1174 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1176 if (unlikely(has_isolate_pageblock(zone) ||
1177 is_migrate_isolate(migratetype))) {
1178 migratetype = get_pfnblock_migratetype(page, pfn);
1180 __free_one_page(page, pfn, zone, order, migratetype);
1181 spin_unlock(&zone->lock);
1184 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1185 unsigned long zone, int nid)
1187 set_page_links(page, zone, nid, pfn);
1188 init_page_count(page);
1189 page_mapcount_reset(page);
1190 page_cpupid_reset_last(page);
1192 INIT_LIST_HEAD(&page->lru);
1193 #ifdef WANT_PAGE_VIRTUAL
1194 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1195 if (!is_highmem_idx(zone))
1196 set_page_address(page, __va(pfn << PAGE_SHIFT));
1197 #endif
1200 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1201 int nid)
1203 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1207 static void init_reserved_page(unsigned long pfn)
1209 pg_data_t *pgdat;
1210 int nid, zid;
1212 if (!early_page_uninitialised(pfn))
1213 return;
1215 nid = early_pfn_to_nid(pfn);
1216 pgdat = NODE_DATA(nid);
1218 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1219 struct zone *zone = &pgdat->node_zones[zid];
1221 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1222 break;
1224 __init_single_pfn(pfn, zid, nid);
1226 #else
1227 static inline void init_reserved_page(unsigned long pfn)
1230 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1233 * Initialised pages do not have PageReserved set. This function is
1234 * called for each range allocated by the bootmem allocator and
1235 * marks the pages PageReserved. The remaining valid pages are later
1236 * sent to the buddy page allocator.
1238 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 unsigned long start_pfn = PFN_DOWN(start);
1241 unsigned long end_pfn = PFN_UP(end);
1243 for (; start_pfn < end_pfn; start_pfn++) {
1244 if (pfn_valid(start_pfn)) {
1245 struct page *page = pfn_to_page(start_pfn);
1247 init_reserved_page(start_pfn);
1249 /* Avoid false-positive PageTail() */
1250 INIT_LIST_HEAD(&page->lru);
1252 SetPageReserved(page);
1257 static void __free_pages_ok(struct page *page, unsigned int order)
1259 unsigned long flags;
1260 int migratetype;
1261 unsigned long pfn = page_to_pfn(page);
1263 if (!free_pages_prepare(page, order, true))
1264 return;
1266 migratetype = get_pfnblock_migratetype(page, pfn);
1267 local_irq_save(flags);
1268 __count_vm_events(PGFREE, 1 << order);
1269 free_one_page(page_zone(page), page, pfn, order, migratetype);
1270 local_irq_restore(flags);
1273 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 unsigned int nr_pages = 1 << order;
1276 struct page *p = page;
1277 unsigned int loop;
1279 prefetchw(p);
1280 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1281 prefetchw(p + 1);
1282 __ClearPageReserved(p);
1283 set_page_count(p, 0);
1285 __ClearPageReserved(p);
1286 set_page_count(p, 0);
1288 page_zone(page)->managed_pages += nr_pages;
1289 set_page_refcounted(page);
1290 __free_pages(page, order);
1293 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1294 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 static DEFINE_SPINLOCK(early_pfn_lock);
1301 int nid;
1303 spin_lock(&early_pfn_lock);
1304 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1305 if (nid < 0)
1306 nid = first_online_node;
1307 spin_unlock(&early_pfn_lock);
1309 return nid;
1311 #endif
1313 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1317 int nid;
1319 nid = __early_pfn_to_nid(pfn, state);
1320 if (nid >= 0 && nid != node)
1321 return false;
1322 return true;
1325 /* Only safe to use early in boot when initialisation is single-threaded */
1326 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1328 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 #else
1333 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1335 return true;
1337 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1338 struct mminit_pfnnid_cache *state)
1340 return true;
1342 #endif
1345 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1346 unsigned int order)
1348 if (early_page_uninitialised(pfn))
1349 return;
1350 return __free_pages_boot_core(page, order);
1354 * Check that the whole (or subset of) a pageblock given by the interval of
1355 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1356 * with the migration of free compaction scanner. The scanners then need to
1357 * use only pfn_valid_within() check for arches that allow holes within
1358 * pageblocks.
1360 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1362 * It's possible on some configurations to have a setup like node0 node1 node0
1363 * i.e. it's possible that all pages within a zones range of pages do not
1364 * belong to a single zone. We assume that a border between node0 and node1
1365 * can occur within a single pageblock, but not a node0 node1 node0
1366 * interleaving within a single pageblock. It is therefore sufficient to check
1367 * the first and last page of a pageblock and avoid checking each individual
1368 * page in a pageblock.
1370 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1371 unsigned long end_pfn, struct zone *zone)
1373 struct page *start_page;
1374 struct page *end_page;
1376 /* end_pfn is one past the range we are checking */
1377 end_pfn--;
1379 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1380 return NULL;
1382 start_page = pfn_to_page(start_pfn);
1384 if (page_zone(start_page) != zone)
1385 return NULL;
1387 end_page = pfn_to_page(end_pfn);
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1391 return NULL;
1393 return start_page;
1396 void set_zone_contiguous(struct zone *zone)
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1410 return;
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1417 void clear_zone_contiguous(struct zone *zone)
1419 zone->contiguous = false;
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init deferred_free_range(struct page *page,
1424 unsigned long pfn, int nr_pages)
1426 int i;
1428 if (!page)
1429 return;
1431 /* Free a large naturally-aligned chunk if possible */
1432 if (nr_pages == pageblock_nr_pages &&
1433 (pfn & (pageblock_nr_pages - 1)) == 0) {
1434 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1435 __free_pages_boot_core(page, pageblock_order);
1436 return;
1439 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1440 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1441 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1442 __free_pages_boot_core(page, 0);
1446 /* Completion tracking for deferred_init_memmap() threads */
1447 static atomic_t pgdat_init_n_undone __initdata;
1448 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450 static inline void __init pgdat_init_report_one_done(void)
1452 if (atomic_dec_and_test(&pgdat_init_n_undone))
1453 complete(&pgdat_init_all_done_comp);
1456 /* Initialise remaining memory on a node */
1457 static int __init deferred_init_memmap(void *data)
1459 pg_data_t *pgdat = data;
1460 int nid = pgdat->node_id;
1461 struct mminit_pfnnid_cache nid_init_state = { };
1462 unsigned long start = jiffies;
1463 unsigned long nr_pages = 0;
1464 unsigned long walk_start, walk_end;
1465 int i, zid;
1466 struct zone *zone;
1467 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1468 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1470 if (first_init_pfn == ULONG_MAX) {
1471 pgdat_init_report_one_done();
1472 return 0;
1475 /* Bind memory initialisation thread to a local node if possible */
1476 if (!cpumask_empty(cpumask))
1477 set_cpus_allowed_ptr(current, cpumask);
1479 /* Sanity check boundaries */
1480 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1481 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1482 pgdat->first_deferred_pfn = ULONG_MAX;
1484 /* Only the highest zone is deferred so find it */
1485 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1486 zone = pgdat->node_zones + zid;
1487 if (first_init_pfn < zone_end_pfn(zone))
1488 break;
1491 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1492 unsigned long pfn, end_pfn;
1493 struct page *page = NULL;
1494 struct page *free_base_page = NULL;
1495 unsigned long free_base_pfn = 0;
1496 int nr_to_free = 0;
1498 end_pfn = min(walk_end, zone_end_pfn(zone));
1499 pfn = first_init_pfn;
1500 if (pfn < walk_start)
1501 pfn = walk_start;
1502 if (pfn < zone->zone_start_pfn)
1503 pfn = zone->zone_start_pfn;
1505 for (; pfn < end_pfn; pfn++) {
1506 if (!pfn_valid_within(pfn))
1507 goto free_range;
1510 * Ensure pfn_valid is checked every
1511 * pageblock_nr_pages for memory holes
1513 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1514 if (!pfn_valid(pfn)) {
1515 page = NULL;
1516 goto free_range;
1520 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1521 page = NULL;
1522 goto free_range;
1525 /* Minimise pfn page lookups and scheduler checks */
1526 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1527 page++;
1528 } else {
1529 nr_pages += nr_to_free;
1530 deferred_free_range(free_base_page,
1531 free_base_pfn, nr_to_free);
1532 free_base_page = NULL;
1533 free_base_pfn = nr_to_free = 0;
1535 page = pfn_to_page(pfn);
1536 cond_resched();
1539 if (page->flags) {
1540 VM_BUG_ON(page_zone(page) != zone);
1541 goto free_range;
1544 __init_single_page(page, pfn, zid, nid);
1545 if (!free_base_page) {
1546 free_base_page = page;
1547 free_base_pfn = pfn;
1548 nr_to_free = 0;
1550 nr_to_free++;
1552 /* Where possible, batch up pages for a single free */
1553 continue;
1554 free_range:
1555 /* Free the current block of pages to allocator */
1556 nr_pages += nr_to_free;
1557 deferred_free_range(free_base_page, free_base_pfn,
1558 nr_to_free);
1559 free_base_page = NULL;
1560 free_base_pfn = nr_to_free = 0;
1562 /* Free the last block of pages to allocator */
1563 nr_pages += nr_to_free;
1564 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1566 first_init_pfn = max(end_pfn, first_init_pfn);
1569 /* Sanity check that the next zone really is unpopulated */
1570 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1572 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1573 jiffies_to_msecs(jiffies - start));
1575 pgdat_init_report_one_done();
1576 return 0;
1578 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1580 void __init page_alloc_init_late(void)
1582 struct zone *zone;
1584 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1585 int nid;
1587 /* There will be num_node_state(N_MEMORY) threads */
1588 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1589 for_each_node_state(nid, N_MEMORY) {
1590 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1593 /* Block until all are initialised */
1594 wait_for_completion(&pgdat_init_all_done_comp);
1596 /* Reinit limits that are based on free pages after the kernel is up */
1597 files_maxfiles_init();
1598 #endif
1599 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1600 /* Discard memblock private memory */
1601 memblock_discard();
1602 #endif
1604 for_each_populated_zone(zone)
1605 set_zone_contiguous(zone);
1608 #ifdef CONFIG_CMA
1609 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1610 void __init init_cma_reserved_pageblock(struct page *page)
1612 unsigned i = pageblock_nr_pages;
1613 struct page *p = page;
1615 do {
1616 __ClearPageReserved(p);
1617 set_page_count(p, 0);
1618 } while (++p, --i);
1620 set_pageblock_migratetype(page, MIGRATE_CMA);
1622 if (pageblock_order >= MAX_ORDER) {
1623 i = pageblock_nr_pages;
1624 p = page;
1625 do {
1626 set_page_refcounted(p);
1627 __free_pages(p, MAX_ORDER - 1);
1628 p += MAX_ORDER_NR_PAGES;
1629 } while (i -= MAX_ORDER_NR_PAGES);
1630 } else {
1631 set_page_refcounted(page);
1632 __free_pages(page, pageblock_order);
1635 adjust_managed_page_count(page, pageblock_nr_pages);
1637 #endif
1640 * The order of subdivision here is critical for the IO subsystem.
1641 * Please do not alter this order without good reasons and regression
1642 * testing. Specifically, as large blocks of memory are subdivided,
1643 * the order in which smaller blocks are delivered depends on the order
1644 * they're subdivided in this function. This is the primary factor
1645 * influencing the order in which pages are delivered to the IO
1646 * subsystem according to empirical testing, and this is also justified
1647 * by considering the behavior of a buddy system containing a single
1648 * large block of memory acted on by a series of small allocations.
1649 * This behavior is a critical factor in sglist merging's success.
1651 * -- nyc
1653 static inline void expand(struct zone *zone, struct page *page,
1654 int low, int high, struct free_area *area,
1655 int migratetype)
1657 unsigned long size = 1 << high;
1659 while (high > low) {
1660 area--;
1661 high--;
1662 size >>= 1;
1663 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1666 * Mark as guard pages (or page), that will allow to
1667 * merge back to allocator when buddy will be freed.
1668 * Corresponding page table entries will not be touched,
1669 * pages will stay not present in virtual address space
1671 if (set_page_guard(zone, &page[size], high, migratetype))
1672 continue;
1674 list_add(&page[size].lru, &area->free_list[migratetype]);
1675 area->nr_free++;
1676 set_page_order(&page[size], high);
1680 static void check_new_page_bad(struct page *page)
1682 const char *bad_reason = NULL;
1683 unsigned long bad_flags = 0;
1685 if (unlikely(atomic_read(&page->_mapcount) != -1))
1686 bad_reason = "nonzero mapcount";
1687 if (unlikely(page->mapping != NULL))
1688 bad_reason = "non-NULL mapping";
1689 if (unlikely(page_ref_count(page) != 0))
1690 bad_reason = "nonzero _count";
1691 if (unlikely(page->flags & __PG_HWPOISON)) {
1692 bad_reason = "HWPoisoned (hardware-corrupted)";
1693 bad_flags = __PG_HWPOISON;
1694 /* Don't complain about hwpoisoned pages */
1695 page_mapcount_reset(page); /* remove PageBuddy */
1696 return;
1698 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1699 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1700 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1702 #ifdef CONFIG_MEMCG
1703 if (unlikely(page->mem_cgroup))
1704 bad_reason = "page still charged to cgroup";
1705 #endif
1706 bad_page(page, bad_reason, bad_flags);
1710 * This page is about to be returned from the page allocator
1712 static inline int check_new_page(struct page *page)
1714 if (likely(page_expected_state(page,
1715 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1716 return 0;
1718 check_new_page_bad(page);
1719 return 1;
1722 static inline bool free_pages_prezeroed(bool poisoned)
1724 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1725 page_poisoning_enabled() && poisoned;
1728 #ifdef CONFIG_DEBUG_VM
1729 static bool check_pcp_refill(struct page *page)
1731 return false;
1734 static bool check_new_pcp(struct page *page)
1736 return check_new_page(page);
1738 #else
1739 static bool check_pcp_refill(struct page *page)
1741 return check_new_page(page);
1743 static bool check_new_pcp(struct page *page)
1745 return false;
1747 #endif /* CONFIG_DEBUG_VM */
1749 static bool check_new_pages(struct page *page, unsigned int order)
1751 int i;
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1755 if (unlikely(check_new_page(p)))
1756 return true;
1759 return false;
1762 inline void post_alloc_hook(struct page *page, unsigned int order,
1763 gfp_t gfp_flags)
1765 set_page_private(page, 0);
1766 set_page_refcounted(page);
1768 arch_alloc_page(page, order);
1769 kernel_map_pages(page, 1 << order, 1);
1770 kernel_poison_pages(page, 1 << order, 1);
1771 kasan_alloc_pages(page, order);
1772 set_page_owner(page, order, gfp_flags);
1775 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1776 unsigned int alloc_flags)
1778 int i;
1779 bool poisoned = true;
1781 for (i = 0; i < (1 << order); i++) {
1782 struct page *p = page + i;
1783 if (poisoned)
1784 poisoned &= page_is_poisoned(p);
1787 post_alloc_hook(page, order, gfp_flags);
1789 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1790 for (i = 0; i < (1 << order); i++)
1791 clear_highpage(page + i);
1793 if (order && (gfp_flags & __GFP_COMP))
1794 prep_compound_page(page, order);
1797 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1798 * allocate the page. The expectation is that the caller is taking
1799 * steps that will free more memory. The caller should avoid the page
1800 * being used for !PFMEMALLOC purposes.
1802 if (alloc_flags & ALLOC_NO_WATERMARKS)
1803 set_page_pfmemalloc(page);
1804 else
1805 clear_page_pfmemalloc(page);
1809 * Go through the free lists for the given migratetype and remove
1810 * the smallest available page from the freelists
1812 static inline
1813 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1814 int migratetype)
1816 unsigned int current_order;
1817 struct free_area *area;
1818 struct page *page;
1820 /* Find a page of the appropriate size in the preferred list */
1821 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1822 area = &(zone->free_area[current_order]);
1823 page = list_first_entry_or_null(&area->free_list[migratetype],
1824 struct page, lru);
1825 if (!page)
1826 continue;
1827 list_del(&page->lru);
1828 rmv_page_order(page);
1829 area->nr_free--;
1830 expand(zone, page, order, current_order, area, migratetype);
1831 set_pcppage_migratetype(page, migratetype);
1832 return page;
1835 return NULL;
1840 * This array describes the order lists are fallen back to when
1841 * the free lists for the desirable migrate type are depleted
1843 static int fallbacks[MIGRATE_TYPES][4] = {
1844 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1845 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1846 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1847 #ifdef CONFIG_CMA
1848 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1849 #endif
1850 #ifdef CONFIG_MEMORY_ISOLATION
1851 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1852 #endif
1855 #ifdef CONFIG_CMA
1856 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1857 unsigned int order)
1859 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1861 #else
1862 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1863 unsigned int order) { return NULL; }
1864 #endif
1867 * Move the free pages in a range to the free lists of the requested type.
1868 * Note that start_page and end_pages are not aligned on a pageblock
1869 * boundary. If alignment is required, use move_freepages_block()
1871 int move_freepages(struct zone *zone,
1872 struct page *start_page, struct page *end_page,
1873 int migratetype)
1875 struct page *page;
1876 unsigned int order;
1877 int pages_moved = 0;
1879 #ifndef CONFIG_HOLES_IN_ZONE
1881 * page_zone is not safe to call in this context when
1882 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1883 * anyway as we check zone boundaries in move_freepages_block().
1884 * Remove at a later date when no bug reports exist related to
1885 * grouping pages by mobility
1887 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1888 #endif
1890 for (page = start_page; page <= end_page;) {
1891 if (!pfn_valid_within(page_to_pfn(page))) {
1892 page++;
1893 continue;
1896 /* Make sure we are not inadvertently changing nodes */
1897 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1899 if (!PageBuddy(page)) {
1900 page++;
1901 continue;
1904 order = page_order(page);
1905 list_move(&page->lru,
1906 &zone->free_area[order].free_list[migratetype]);
1907 page += 1 << order;
1908 pages_moved += 1 << order;
1911 return pages_moved;
1914 int move_freepages_block(struct zone *zone, struct page *page,
1915 int migratetype)
1917 unsigned long start_pfn, end_pfn;
1918 struct page *start_page, *end_page;
1920 start_pfn = page_to_pfn(page);
1921 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1922 start_page = pfn_to_page(start_pfn);
1923 end_page = start_page + pageblock_nr_pages - 1;
1924 end_pfn = start_pfn + pageblock_nr_pages - 1;
1926 /* Do not cross zone boundaries */
1927 if (!zone_spans_pfn(zone, start_pfn))
1928 start_page = page;
1929 if (!zone_spans_pfn(zone, end_pfn))
1930 return 0;
1932 return move_freepages(zone, start_page, end_page, migratetype);
1935 static void change_pageblock_range(struct page *pageblock_page,
1936 int start_order, int migratetype)
1938 int nr_pageblocks = 1 << (start_order - pageblock_order);
1940 while (nr_pageblocks--) {
1941 set_pageblock_migratetype(pageblock_page, migratetype);
1942 pageblock_page += pageblock_nr_pages;
1947 * When we are falling back to another migratetype during allocation, try to
1948 * steal extra free pages from the same pageblocks to satisfy further
1949 * allocations, instead of polluting multiple pageblocks.
1951 * If we are stealing a relatively large buddy page, it is likely there will
1952 * be more free pages in the pageblock, so try to steal them all. For
1953 * reclaimable and unmovable allocations, we steal regardless of page size,
1954 * as fragmentation caused by those allocations polluting movable pageblocks
1955 * is worse than movable allocations stealing from unmovable and reclaimable
1956 * pageblocks.
1958 static bool can_steal_fallback(unsigned int order, int start_mt)
1961 * Leaving this order check is intended, although there is
1962 * relaxed order check in next check. The reason is that
1963 * we can actually steal whole pageblock if this condition met,
1964 * but, below check doesn't guarantee it and that is just heuristic
1965 * so could be changed anytime.
1967 if (order >= pageblock_order)
1968 return true;
1970 if (order >= pageblock_order / 2 ||
1971 start_mt == MIGRATE_RECLAIMABLE ||
1972 start_mt == MIGRATE_UNMOVABLE ||
1973 page_group_by_mobility_disabled)
1974 return true;
1976 return false;
1980 * This function implements actual steal behaviour. If order is large enough,
1981 * we can steal whole pageblock. If not, we first move freepages in this
1982 * pageblock and check whether half of pages are moved or not. If half of
1983 * pages are moved, we can change migratetype of pageblock and permanently
1984 * use it's pages as requested migratetype in the future.
1986 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1987 int start_type)
1989 unsigned int current_order = page_order(page);
1990 int pages;
1992 /* Take ownership for orders >= pageblock_order */
1993 if (current_order >= pageblock_order) {
1994 change_pageblock_range(page, current_order, start_type);
1995 return;
1998 pages = move_freepages_block(zone, page, start_type);
2000 /* Claim the whole block if over half of it is free */
2001 if (pages >= (1 << (pageblock_order-1)) ||
2002 page_group_by_mobility_disabled)
2003 set_pageblock_migratetype(page, start_type);
2007 * Check whether there is a suitable fallback freepage with requested order.
2008 * If only_stealable is true, this function returns fallback_mt only if
2009 * we can steal other freepages all together. This would help to reduce
2010 * fragmentation due to mixed migratetype pages in one pageblock.
2012 int find_suitable_fallback(struct free_area *area, unsigned int order,
2013 int migratetype, bool only_stealable, bool *can_steal)
2015 int i;
2016 int fallback_mt;
2018 if (area->nr_free == 0)
2019 return -1;
2021 *can_steal = false;
2022 for (i = 0;; i++) {
2023 fallback_mt = fallbacks[migratetype][i];
2024 if (fallback_mt == MIGRATE_TYPES)
2025 break;
2027 if (list_empty(&area->free_list[fallback_mt]))
2028 continue;
2030 if (can_steal_fallback(order, migratetype))
2031 *can_steal = true;
2033 if (!only_stealable)
2034 return fallback_mt;
2036 if (*can_steal)
2037 return fallback_mt;
2040 return -1;
2044 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2045 * there are no empty page blocks that contain a page with a suitable order
2047 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2048 unsigned int alloc_order)
2050 int mt;
2051 unsigned long max_managed, flags;
2054 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2055 * Check is race-prone but harmless.
2057 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2058 if (zone->nr_reserved_highatomic >= max_managed)
2059 return;
2061 spin_lock_irqsave(&zone->lock, flags);
2063 /* Recheck the nr_reserved_highatomic limit under the lock */
2064 if (zone->nr_reserved_highatomic >= max_managed)
2065 goto out_unlock;
2067 /* Yoink! */
2068 mt = get_pageblock_migratetype(page);
2069 if (mt != MIGRATE_HIGHATOMIC &&
2070 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2071 zone->nr_reserved_highatomic += pageblock_nr_pages;
2072 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2073 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2076 out_unlock:
2077 spin_unlock_irqrestore(&zone->lock, flags);
2081 * Used when an allocation is about to fail under memory pressure. This
2082 * potentially hurts the reliability of high-order allocations when under
2083 * intense memory pressure but failed atomic allocations should be easier
2084 * to recover from than an OOM.
2086 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2088 struct zonelist *zonelist = ac->zonelist;
2089 unsigned long flags;
2090 struct zoneref *z;
2091 struct zone *zone;
2092 struct page *page;
2093 int order;
2095 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2096 ac->nodemask) {
2097 /* Preserve at least one pageblock */
2098 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2099 continue;
2101 spin_lock_irqsave(&zone->lock, flags);
2102 for (order = 0; order < MAX_ORDER; order++) {
2103 struct free_area *area = &(zone->free_area[order]);
2105 page = list_first_entry_or_null(
2106 &area->free_list[MIGRATE_HIGHATOMIC],
2107 struct page, lru);
2108 if (!page)
2109 continue;
2112 * In page freeing path, migratetype change is racy so
2113 * we can counter several free pages in a pageblock
2114 * in this loop althoug we changed the pageblock type
2115 * from highatomic to ac->migratetype. So we should
2116 * adjust the count once.
2118 if (get_pageblock_migratetype(page) ==
2119 MIGRATE_HIGHATOMIC) {
2121 * It should never happen but changes to
2122 * locking could inadvertently allow a per-cpu
2123 * drain to add pages to MIGRATE_HIGHATOMIC
2124 * while unreserving so be safe and watch for
2125 * underflows.
2127 zone->nr_reserved_highatomic -= min(
2128 pageblock_nr_pages,
2129 zone->nr_reserved_highatomic);
2133 * Convert to ac->migratetype and avoid the normal
2134 * pageblock stealing heuristics. Minimally, the caller
2135 * is doing the work and needs the pages. More
2136 * importantly, if the block was always converted to
2137 * MIGRATE_UNMOVABLE or another type then the number
2138 * of pageblocks that cannot be completely freed
2139 * may increase.
2141 set_pageblock_migratetype(page, ac->migratetype);
2142 move_freepages_block(zone, page, ac->migratetype);
2143 spin_unlock_irqrestore(&zone->lock, flags);
2144 return;
2146 spin_unlock_irqrestore(&zone->lock, flags);
2150 /* Remove an element from the buddy allocator from the fallback list */
2151 static inline struct page *
2152 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2154 struct free_area *area;
2155 unsigned int current_order;
2156 struct page *page;
2157 int fallback_mt;
2158 bool can_steal;
2160 /* Find the largest possible block of pages in the other list */
2161 for (current_order = MAX_ORDER-1;
2162 current_order >= order && current_order <= MAX_ORDER-1;
2163 --current_order) {
2164 area = &(zone->free_area[current_order]);
2165 fallback_mt = find_suitable_fallback(area, current_order,
2166 start_migratetype, false, &can_steal);
2167 if (fallback_mt == -1)
2168 continue;
2170 page = list_first_entry(&area->free_list[fallback_mt],
2171 struct page, lru);
2172 if (can_steal)
2173 steal_suitable_fallback(zone, page, start_migratetype);
2175 /* Remove the page from the freelists */
2176 area->nr_free--;
2177 list_del(&page->lru);
2178 rmv_page_order(page);
2180 expand(zone, page, order, current_order, area,
2181 start_migratetype);
2183 * The pcppage_migratetype may differ from pageblock's
2184 * migratetype depending on the decisions in
2185 * find_suitable_fallback(). This is OK as long as it does not
2186 * differ for MIGRATE_CMA pageblocks. Those can be used as
2187 * fallback only via special __rmqueue_cma_fallback() function
2189 set_pcppage_migratetype(page, start_migratetype);
2191 trace_mm_page_alloc_extfrag(page, order, current_order,
2192 start_migratetype, fallback_mt);
2194 return page;
2197 return NULL;
2201 * Do the hard work of removing an element from the buddy allocator.
2202 * Call me with the zone->lock already held.
2204 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2205 int migratetype)
2207 struct page *page;
2209 page = __rmqueue_smallest(zone, order, migratetype);
2210 if (unlikely(!page)) {
2211 if (migratetype == MIGRATE_MOVABLE)
2212 page = __rmqueue_cma_fallback(zone, order);
2214 if (!page)
2215 page = __rmqueue_fallback(zone, order, migratetype);
2218 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2219 return page;
2223 * Obtain a specified number of elements from the buddy allocator, all under
2224 * a single hold of the lock, for efficiency. Add them to the supplied list.
2225 * Returns the number of new pages which were placed at *list.
2227 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2228 unsigned long count, struct list_head *list,
2229 int migratetype, bool cold)
2231 int i, alloced = 0;
2233 spin_lock(&zone->lock);
2234 for (i = 0; i < count; ++i) {
2235 struct page *page = __rmqueue(zone, order, migratetype);
2236 if (unlikely(page == NULL))
2237 break;
2239 if (unlikely(check_pcp_refill(page)))
2240 continue;
2243 * Split buddy pages returned by expand() are received here
2244 * in physical page order. The page is added to the callers and
2245 * list and the list head then moves forward. From the callers
2246 * perspective, the linked list is ordered by page number in
2247 * some conditions. This is useful for IO devices that can
2248 * merge IO requests if the physical pages are ordered
2249 * properly.
2251 if (likely(!cold))
2252 list_add(&page->lru, list);
2253 else
2254 list_add_tail(&page->lru, list);
2255 list = &page->lru;
2256 alloced++;
2257 if (is_migrate_cma(get_pcppage_migratetype(page)))
2258 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2259 -(1 << order));
2263 * i pages were removed from the buddy list even if some leak due
2264 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2265 * on i. Do not confuse with 'alloced' which is the number of
2266 * pages added to the pcp list.
2268 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2269 spin_unlock(&zone->lock);
2270 return alloced;
2273 #ifdef CONFIG_NUMA
2275 * Called from the vmstat counter updater to drain pagesets of this
2276 * currently executing processor on remote nodes after they have
2277 * expired.
2279 * Note that this function must be called with the thread pinned to
2280 * a single processor.
2282 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2284 unsigned long flags;
2285 int to_drain, batch;
2287 local_irq_save(flags);
2288 batch = READ_ONCE(pcp->batch);
2289 to_drain = min(pcp->count, batch);
2290 if (to_drain > 0) {
2291 free_pcppages_bulk(zone, to_drain, pcp);
2292 pcp->count -= to_drain;
2294 local_irq_restore(flags);
2296 #endif
2299 * Drain pcplists of the indicated processor and zone.
2301 * The processor must either be the current processor and the
2302 * thread pinned to the current processor or a processor that
2303 * is not online.
2305 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2307 unsigned long flags;
2308 struct per_cpu_pageset *pset;
2309 struct per_cpu_pages *pcp;
2311 local_irq_save(flags);
2312 pset = per_cpu_ptr(zone->pageset, cpu);
2314 pcp = &pset->pcp;
2315 if (pcp->count) {
2316 free_pcppages_bulk(zone, pcp->count, pcp);
2317 pcp->count = 0;
2319 local_irq_restore(flags);
2323 * Drain pcplists of all zones on the indicated processor.
2325 * The processor must either be the current processor and the
2326 * thread pinned to the current processor or a processor that
2327 * is not online.
2329 static void drain_pages(unsigned int cpu)
2331 struct zone *zone;
2333 for_each_populated_zone(zone) {
2334 drain_pages_zone(cpu, zone);
2339 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2341 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2342 * the single zone's pages.
2344 void drain_local_pages(struct zone *zone)
2346 int cpu = smp_processor_id();
2348 if (zone)
2349 drain_pages_zone(cpu, zone);
2350 else
2351 drain_pages(cpu);
2355 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2357 * When zone parameter is non-NULL, spill just the single zone's pages.
2359 * Note that this code is protected against sending an IPI to an offline
2360 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2361 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2362 * nothing keeps CPUs from showing up after we populated the cpumask and
2363 * before the call to on_each_cpu_mask().
2365 void drain_all_pages(struct zone *zone)
2367 int cpu;
2370 * Allocate in the BSS so we wont require allocation in
2371 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 static cpumask_t cpus_with_pcps;
2376 * We don't care about racing with CPU hotplug event
2377 * as offline notification will cause the notified
2378 * cpu to drain that CPU pcps and on_each_cpu_mask
2379 * disables preemption as part of its processing
2381 for_each_online_cpu(cpu) {
2382 struct per_cpu_pageset *pcp;
2383 struct zone *z;
2384 bool has_pcps = false;
2386 if (zone) {
2387 pcp = per_cpu_ptr(zone->pageset, cpu);
2388 if (pcp->pcp.count)
2389 has_pcps = true;
2390 } else {
2391 for_each_populated_zone(z) {
2392 pcp = per_cpu_ptr(z->pageset, cpu);
2393 if (pcp->pcp.count) {
2394 has_pcps = true;
2395 break;
2400 if (has_pcps)
2401 cpumask_set_cpu(cpu, &cpus_with_pcps);
2402 else
2403 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2405 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2406 zone, 1);
2409 #ifdef CONFIG_HIBERNATION
2411 void mark_free_pages(struct zone *zone)
2413 unsigned long pfn, max_zone_pfn;
2414 unsigned long flags;
2415 unsigned int order, t;
2416 struct page *page;
2418 if (zone_is_empty(zone))
2419 return;
2421 spin_lock_irqsave(&zone->lock, flags);
2423 max_zone_pfn = zone_end_pfn(zone);
2424 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2425 if (pfn_valid(pfn)) {
2426 page = pfn_to_page(pfn);
2428 if (page_zone(page) != zone)
2429 continue;
2431 if (!swsusp_page_is_forbidden(page))
2432 swsusp_unset_page_free(page);
2435 for_each_migratetype_order(order, t) {
2436 list_for_each_entry(page,
2437 &zone->free_area[order].free_list[t], lru) {
2438 unsigned long i;
2440 pfn = page_to_pfn(page);
2441 for (i = 0; i < (1UL << order); i++)
2442 swsusp_set_page_free(pfn_to_page(pfn + i));
2445 spin_unlock_irqrestore(&zone->lock, flags);
2447 #endif /* CONFIG_PM */
2450 * Free a 0-order page
2451 * cold == true ? free a cold page : free a hot page
2453 void free_hot_cold_page(struct page *page, bool cold)
2455 struct zone *zone = page_zone(page);
2456 struct per_cpu_pages *pcp;
2457 unsigned long flags;
2458 unsigned long pfn = page_to_pfn(page);
2459 int migratetype;
2461 if (!free_pcp_prepare(page))
2462 return;
2464 migratetype = get_pfnblock_migratetype(page, pfn);
2465 set_pcppage_migratetype(page, migratetype);
2466 local_irq_save(flags);
2467 __count_vm_event(PGFREE);
2470 * We only track unmovable, reclaimable and movable on pcp lists.
2471 * Free ISOLATE pages back to the allocator because they are being
2472 * offlined but treat RESERVE as movable pages so we can get those
2473 * areas back if necessary. Otherwise, we may have to free
2474 * excessively into the page allocator
2476 if (migratetype >= MIGRATE_PCPTYPES) {
2477 if (unlikely(is_migrate_isolate(migratetype))) {
2478 free_one_page(zone, page, pfn, 0, migratetype);
2479 goto out;
2481 migratetype = MIGRATE_MOVABLE;
2484 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2485 if (!cold)
2486 list_add(&page->lru, &pcp->lists[migratetype]);
2487 else
2488 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2489 pcp->count++;
2490 if (pcp->count >= pcp->high) {
2491 unsigned long batch = READ_ONCE(pcp->batch);
2492 free_pcppages_bulk(zone, batch, pcp);
2493 pcp->count -= batch;
2496 out:
2497 local_irq_restore(flags);
2501 * Free a list of 0-order pages
2503 void free_hot_cold_page_list(struct list_head *list, bool cold)
2505 struct page *page, *next;
2507 list_for_each_entry_safe(page, next, list, lru) {
2508 trace_mm_page_free_batched(page, cold);
2509 free_hot_cold_page(page, cold);
2514 * split_page takes a non-compound higher-order page, and splits it into
2515 * n (1<<order) sub-pages: page[0..n]
2516 * Each sub-page must be freed individually.
2518 * Note: this is probably too low level an operation for use in drivers.
2519 * Please consult with lkml before using this in your driver.
2521 void split_page(struct page *page, unsigned int order)
2523 int i;
2525 VM_BUG_ON_PAGE(PageCompound(page), page);
2526 VM_BUG_ON_PAGE(!page_count(page), page);
2528 #ifdef CONFIG_KMEMCHECK
2530 * Split shadow pages too, because free(page[0]) would
2531 * otherwise free the whole shadow.
2533 if (kmemcheck_page_is_tracked(page))
2534 split_page(virt_to_page(page[0].shadow), order);
2535 #endif
2537 for (i = 1; i < (1 << order); i++)
2538 set_page_refcounted(page + i);
2539 split_page_owner(page, order);
2541 EXPORT_SYMBOL_GPL(split_page);
2543 int __isolate_free_page(struct page *page, unsigned int order)
2545 unsigned long watermark;
2546 struct zone *zone;
2547 int mt;
2549 BUG_ON(!PageBuddy(page));
2551 zone = page_zone(page);
2552 mt = get_pageblock_migratetype(page);
2554 if (!is_migrate_isolate(mt)) {
2556 * Obey watermarks as if the page was being allocated. We can
2557 * emulate a high-order watermark check with a raised order-0
2558 * watermark, because we already know our high-order page
2559 * exists.
2561 watermark = min_wmark_pages(zone) + (1UL << order);
2562 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2563 return 0;
2565 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2568 /* Remove page from free list */
2569 list_del(&page->lru);
2570 zone->free_area[order].nr_free--;
2571 rmv_page_order(page);
2574 * Set the pageblock if the isolated page is at least half of a
2575 * pageblock
2577 if (order >= pageblock_order - 1) {
2578 struct page *endpage = page + (1 << order) - 1;
2579 for (; page < endpage; page += pageblock_nr_pages) {
2580 int mt = get_pageblock_migratetype(page);
2581 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2582 set_pageblock_migratetype(page,
2583 MIGRATE_MOVABLE);
2588 return 1UL << order;
2592 * Update NUMA hit/miss statistics
2594 * Must be called with interrupts disabled.
2596 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2597 gfp_t flags)
2599 #ifdef CONFIG_NUMA
2600 enum zone_stat_item local_stat = NUMA_LOCAL;
2602 if (z->node != numa_node_id())
2603 local_stat = NUMA_OTHER;
2605 if (z->node == preferred_zone->node)
2606 __inc_zone_state(z, NUMA_HIT);
2607 else {
2608 __inc_zone_state(z, NUMA_MISS);
2609 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2611 __inc_zone_state(z, local_stat);
2612 #endif
2616 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2618 static inline
2619 struct page *buffered_rmqueue(struct zone *preferred_zone,
2620 struct zone *zone, unsigned int order,
2621 gfp_t gfp_flags, unsigned int alloc_flags,
2622 int migratetype)
2624 unsigned long flags;
2625 struct page *page;
2626 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2628 if (likely(order == 0)) {
2629 struct per_cpu_pages *pcp;
2630 struct list_head *list;
2632 local_irq_save(flags);
2633 do {
2634 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2635 list = &pcp->lists[migratetype];
2636 if (list_empty(list)) {
2637 pcp->count += rmqueue_bulk(zone, 0,
2638 pcp->batch, list,
2639 migratetype, cold);
2640 if (unlikely(list_empty(list)))
2641 goto failed;
2644 if (cold)
2645 page = list_last_entry(list, struct page, lru);
2646 else
2647 page = list_first_entry(list, struct page, lru);
2649 list_del(&page->lru);
2650 pcp->count--;
2652 } while (check_new_pcp(page));
2653 } else {
2655 * We most definitely don't want callers attempting to
2656 * allocate greater than order-1 page units with __GFP_NOFAIL.
2658 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2659 spin_lock_irqsave(&zone->lock, flags);
2661 do {
2662 page = NULL;
2663 if (alloc_flags & ALLOC_HARDER) {
2664 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2665 if (page)
2666 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2668 if (!page)
2669 page = __rmqueue(zone, order, migratetype);
2670 } while (page && check_new_pages(page, order));
2671 spin_unlock(&zone->lock);
2672 if (!page)
2673 goto failed;
2674 __mod_zone_freepage_state(zone, -(1 << order),
2675 get_pcppage_migratetype(page));
2678 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2679 zone_statistics(preferred_zone, zone, gfp_flags);
2680 local_irq_restore(flags);
2682 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2683 return page;
2685 failed:
2686 local_irq_restore(flags);
2687 return NULL;
2690 #ifdef CONFIG_FAIL_PAGE_ALLOC
2692 static struct {
2693 struct fault_attr attr;
2695 bool ignore_gfp_highmem;
2696 bool ignore_gfp_reclaim;
2697 u32 min_order;
2698 } fail_page_alloc = {
2699 .attr = FAULT_ATTR_INITIALIZER,
2700 .ignore_gfp_reclaim = true,
2701 .ignore_gfp_highmem = true,
2702 .min_order = 1,
2705 static int __init setup_fail_page_alloc(char *str)
2707 return setup_fault_attr(&fail_page_alloc.attr, str);
2709 __setup("fail_page_alloc=", setup_fail_page_alloc);
2711 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2713 if (order < fail_page_alloc.min_order)
2714 return false;
2715 if (gfp_mask & __GFP_NOFAIL)
2716 return false;
2717 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2718 return false;
2719 if (fail_page_alloc.ignore_gfp_reclaim &&
2720 (gfp_mask & __GFP_DIRECT_RECLAIM))
2721 return false;
2723 return should_fail(&fail_page_alloc.attr, 1 << order);
2726 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2728 static int __init fail_page_alloc_debugfs(void)
2730 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2731 struct dentry *dir;
2733 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2734 &fail_page_alloc.attr);
2735 if (IS_ERR(dir))
2736 return PTR_ERR(dir);
2738 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2739 &fail_page_alloc.ignore_gfp_reclaim))
2740 goto fail;
2741 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2742 &fail_page_alloc.ignore_gfp_highmem))
2743 goto fail;
2744 if (!debugfs_create_u32("min-order", mode, dir,
2745 &fail_page_alloc.min_order))
2746 goto fail;
2748 return 0;
2749 fail:
2750 debugfs_remove_recursive(dir);
2752 return -ENOMEM;
2755 late_initcall(fail_page_alloc_debugfs);
2757 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2759 #else /* CONFIG_FAIL_PAGE_ALLOC */
2761 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2763 return false;
2766 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2769 * Return true if free base pages are above 'mark'. For high-order checks it
2770 * will return true of the order-0 watermark is reached and there is at least
2771 * one free page of a suitable size. Checking now avoids taking the zone lock
2772 * to check in the allocation paths if no pages are free.
2774 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2775 int classzone_idx, unsigned int alloc_flags,
2776 long free_pages)
2778 long min = mark;
2779 int o;
2780 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2782 /* free_pages may go negative - that's OK */
2783 free_pages -= (1 << order) - 1;
2785 if (alloc_flags & ALLOC_HIGH)
2786 min -= min / 2;
2789 * If the caller does not have rights to ALLOC_HARDER then subtract
2790 * the high-atomic reserves. This will over-estimate the size of the
2791 * atomic reserve but it avoids a search.
2793 if (likely(!alloc_harder))
2794 free_pages -= z->nr_reserved_highatomic;
2795 else
2796 min -= min / 4;
2798 #ifdef CONFIG_CMA
2799 /* If allocation can't use CMA areas don't use free CMA pages */
2800 if (!(alloc_flags & ALLOC_CMA))
2801 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2802 #endif
2805 * Check watermarks for an order-0 allocation request. If these
2806 * are not met, then a high-order request also cannot go ahead
2807 * even if a suitable page happened to be free.
2809 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2810 return false;
2812 /* If this is an order-0 request then the watermark is fine */
2813 if (!order)
2814 return true;
2816 /* For a high-order request, check at least one suitable page is free */
2817 for (o = order; o < MAX_ORDER; o++) {
2818 struct free_area *area = &z->free_area[o];
2819 int mt;
2821 if (!area->nr_free)
2822 continue;
2824 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2825 if (!list_empty(&area->free_list[mt]))
2826 return true;
2829 #ifdef CONFIG_CMA
2830 if ((alloc_flags & ALLOC_CMA) &&
2831 !list_empty(&area->free_list[MIGRATE_CMA])) {
2832 return true;
2834 #endif
2835 if (alloc_harder &&
2836 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
2837 return true;
2839 return false;
2842 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2843 int classzone_idx, unsigned int alloc_flags)
2845 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2846 zone_page_state(z, NR_FREE_PAGES));
2849 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2850 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2852 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2853 long cma_pages = 0;
2855 #ifdef CONFIG_CMA
2856 /* If allocation can't use CMA areas don't use free CMA pages */
2857 if (!(alloc_flags & ALLOC_CMA))
2858 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2859 #endif
2862 * Fast check for order-0 only. If this fails then the reserves
2863 * need to be calculated. There is a corner case where the check
2864 * passes but only the high-order atomic reserve are free. If
2865 * the caller is !atomic then it'll uselessly search the free
2866 * list. That corner case is then slower but it is harmless.
2868 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2869 return true;
2871 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2872 free_pages);
2875 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2876 unsigned long mark, int classzone_idx)
2878 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2880 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2881 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2883 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2884 free_pages);
2887 #ifdef CONFIG_NUMA
2888 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2890 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2891 RECLAIM_DISTANCE;
2893 #else /* CONFIG_NUMA */
2894 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2896 return true;
2898 #endif /* CONFIG_NUMA */
2901 * get_page_from_freelist goes through the zonelist trying to allocate
2902 * a page.
2904 static struct page *
2905 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 const struct alloc_context *ac)
2908 struct zoneref *z = ac->preferred_zoneref;
2909 struct zone *zone;
2910 struct pglist_data *last_pgdat_dirty_limit = NULL;
2913 * Scan zonelist, looking for a zone with enough free.
2914 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2916 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2917 ac->nodemask) {
2918 struct page *page;
2919 unsigned long mark;
2921 if (cpusets_enabled() &&
2922 (alloc_flags & ALLOC_CPUSET) &&
2923 !__cpuset_zone_allowed(zone, gfp_mask))
2924 continue;
2926 * When allocating a page cache page for writing, we
2927 * want to get it from a node that is within its dirty
2928 * limit, such that no single node holds more than its
2929 * proportional share of globally allowed dirty pages.
2930 * The dirty limits take into account the node's
2931 * lowmem reserves and high watermark so that kswapd
2932 * should be able to balance it without having to
2933 * write pages from its LRU list.
2935 * XXX: For now, allow allocations to potentially
2936 * exceed the per-node dirty limit in the slowpath
2937 * (spread_dirty_pages unset) before going into reclaim,
2938 * which is important when on a NUMA setup the allowed
2939 * nodes are together not big enough to reach the
2940 * global limit. The proper fix for these situations
2941 * will require awareness of nodes in the
2942 * dirty-throttling and the flusher threads.
2944 if (ac->spread_dirty_pages) {
2945 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2946 continue;
2948 if (!node_dirty_ok(zone->zone_pgdat)) {
2949 last_pgdat_dirty_limit = zone->zone_pgdat;
2950 continue;
2954 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2955 if (!zone_watermark_fast(zone, order, mark,
2956 ac_classzone_idx(ac), alloc_flags)) {
2957 int ret;
2959 /* Checked here to keep the fast path fast */
2960 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2961 if (alloc_flags & ALLOC_NO_WATERMARKS)
2962 goto try_this_zone;
2964 if (node_reclaim_mode == 0 ||
2965 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2966 continue;
2968 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2969 switch (ret) {
2970 case NODE_RECLAIM_NOSCAN:
2971 /* did not scan */
2972 continue;
2973 case NODE_RECLAIM_FULL:
2974 /* scanned but unreclaimable */
2975 continue;
2976 default:
2977 /* did we reclaim enough */
2978 if (zone_watermark_ok(zone, order, mark,
2979 ac_classzone_idx(ac), alloc_flags))
2980 goto try_this_zone;
2982 continue;
2986 try_this_zone:
2987 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2988 gfp_mask, alloc_flags, ac->migratetype);
2989 if (page) {
2990 prep_new_page(page, order, gfp_mask, alloc_flags);
2993 * If this is a high-order atomic allocation then check
2994 * if the pageblock should be reserved for the future
2996 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2997 reserve_highatomic_pageblock(page, zone, order);
2999 return page;
3003 return NULL;
3007 * Large machines with many possible nodes should not always dump per-node
3008 * meminfo in irq context.
3010 static inline bool should_suppress_show_mem(void)
3012 bool ret = false;
3014 #if NODES_SHIFT > 8
3015 ret = in_interrupt();
3016 #endif
3017 return ret;
3020 static DEFINE_RATELIMIT_STATE(nopage_rs,
3021 DEFAULT_RATELIMIT_INTERVAL,
3022 DEFAULT_RATELIMIT_BURST);
3024 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3026 unsigned int filter = SHOW_MEM_FILTER_NODES;
3027 struct va_format vaf;
3028 va_list args;
3030 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3031 debug_guardpage_minorder() > 0)
3032 return;
3035 * This documents exceptions given to allocations in certain
3036 * contexts that are allowed to allocate outside current's set
3037 * of allowed nodes.
3039 if (!(gfp_mask & __GFP_NOMEMALLOC))
3040 if (test_thread_flag(TIF_MEMDIE) ||
3041 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3042 filter &= ~SHOW_MEM_FILTER_NODES;
3043 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3044 filter &= ~SHOW_MEM_FILTER_NODES;
3046 pr_warn("%s: ", current->comm);
3048 va_start(args, fmt);
3049 vaf.fmt = fmt;
3050 vaf.va = &args;
3051 pr_cont("%pV", &vaf);
3052 va_end(args);
3054 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3056 dump_stack();
3057 if (!should_suppress_show_mem())
3058 show_mem(filter);
3061 static inline struct page *
3062 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3063 const struct alloc_context *ac, unsigned long *did_some_progress)
3065 struct oom_control oc = {
3066 .zonelist = ac->zonelist,
3067 .nodemask = ac->nodemask,
3068 .memcg = NULL,
3069 .gfp_mask = gfp_mask,
3070 .order = order,
3072 struct page *page;
3074 *did_some_progress = 0;
3077 * Acquire the oom lock. If that fails, somebody else is
3078 * making progress for us.
3080 if (!mutex_trylock(&oom_lock)) {
3081 *did_some_progress = 1;
3082 schedule_timeout_uninterruptible(1);
3083 return NULL;
3087 * Go through the zonelist yet one more time, keep very high watermark
3088 * here, this is only to catch a parallel oom killing, we must fail if
3089 * we're still under heavy pressure.
3091 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3092 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3093 if (page)
3094 goto out;
3096 if (!(gfp_mask & __GFP_NOFAIL)) {
3097 /* Coredumps can quickly deplete all memory reserves */
3098 if (current->flags & PF_DUMPCORE)
3099 goto out;
3100 /* The OOM killer will not help higher order allocs */
3101 if (order > PAGE_ALLOC_COSTLY_ORDER)
3102 goto out;
3103 /* The OOM killer does not needlessly kill tasks for lowmem */
3104 if (ac->high_zoneidx < ZONE_NORMAL)
3105 goto out;
3106 if (pm_suspended_storage())
3107 goto out;
3109 * XXX: GFP_NOFS allocations should rather fail than rely on
3110 * other request to make a forward progress.
3111 * We are in an unfortunate situation where out_of_memory cannot
3112 * do much for this context but let's try it to at least get
3113 * access to memory reserved if the current task is killed (see
3114 * out_of_memory). Once filesystems are ready to handle allocation
3115 * failures more gracefully we should just bail out here.
3118 /* The OOM killer may not free memory on a specific node */
3119 if (gfp_mask & __GFP_THISNODE)
3120 goto out;
3122 /* Exhausted what can be done so it's blamo time */
3123 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3124 *did_some_progress = 1;
3126 if (gfp_mask & __GFP_NOFAIL) {
3127 page = get_page_from_freelist(gfp_mask, order,
3128 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3130 * fallback to ignore cpuset restriction if our nodes
3131 * are depleted
3133 if (!page)
3134 page = get_page_from_freelist(gfp_mask, order,
3135 ALLOC_NO_WATERMARKS, ac);
3138 out:
3139 mutex_unlock(&oom_lock);
3140 return page;
3144 * Maximum number of compaction retries wit a progress before OOM
3145 * killer is consider as the only way to move forward.
3147 #define MAX_COMPACT_RETRIES 16
3149 #ifdef CONFIG_COMPACTION
3150 /* Try memory compaction for high-order allocations before reclaim */
3151 static struct page *
3152 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3153 unsigned int alloc_flags, const struct alloc_context *ac,
3154 enum compact_priority prio, enum compact_result *compact_result)
3156 struct page *page;
3157 unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
3159 if (!order)
3160 return NULL;
3162 current->flags |= PF_MEMALLOC;
3163 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3164 prio);
3165 current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
3167 if (*compact_result <= COMPACT_INACTIVE)
3168 return NULL;
3171 * At least in one zone compaction wasn't deferred or skipped, so let's
3172 * count a compaction stall
3174 count_vm_event(COMPACTSTALL);
3176 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3178 if (page) {
3179 struct zone *zone = page_zone(page);
3181 zone->compact_blockskip_flush = false;
3182 compaction_defer_reset(zone, order, true);
3183 count_vm_event(COMPACTSUCCESS);
3184 return page;
3188 * It's bad if compaction run occurs and fails. The most likely reason
3189 * is that pages exist, but not enough to satisfy watermarks.
3191 count_vm_event(COMPACTFAIL);
3193 cond_resched();
3195 return NULL;
3198 static inline bool
3199 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3200 enum compact_result compact_result,
3201 enum compact_priority *compact_priority,
3202 int *compaction_retries)
3204 int max_retries = MAX_COMPACT_RETRIES;
3205 int min_priority;
3207 if (!order)
3208 return false;
3210 if (compaction_made_progress(compact_result))
3211 (*compaction_retries)++;
3214 * compaction considers all the zone as desperately out of memory
3215 * so it doesn't really make much sense to retry except when the
3216 * failure could be caused by insufficient priority
3218 if (compaction_failed(compact_result))
3219 goto check_priority;
3222 * make sure the compaction wasn't deferred or didn't bail out early
3223 * due to locks contention before we declare that we should give up.
3224 * But do not retry if the given zonelist is not suitable for
3225 * compaction.
3227 if (compaction_withdrawn(compact_result))
3228 return compaction_zonelist_suitable(ac, order, alloc_flags);
3231 * !costly requests are much more important than __GFP_REPEAT
3232 * costly ones because they are de facto nofail and invoke OOM
3233 * killer to move on while costly can fail and users are ready
3234 * to cope with that. 1/4 retries is rather arbitrary but we
3235 * would need much more detailed feedback from compaction to
3236 * make a better decision.
3238 if (order > PAGE_ALLOC_COSTLY_ORDER)
3239 max_retries /= 4;
3240 if (*compaction_retries <= max_retries)
3241 return true;
3244 * Make sure there are attempts at the highest priority if we exhausted
3245 * all retries or failed at the lower priorities.
3247 check_priority:
3248 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3249 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3250 if (*compact_priority > min_priority) {
3251 (*compact_priority)--;
3252 *compaction_retries = 0;
3253 return true;
3255 return false;
3257 #else
3258 static inline struct page *
3259 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3260 unsigned int alloc_flags, const struct alloc_context *ac,
3261 enum compact_priority prio, enum compact_result *compact_result)
3263 *compact_result = COMPACT_SKIPPED;
3264 return NULL;
3267 static inline bool
3268 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3269 enum compact_result compact_result,
3270 enum compact_priority *compact_priority,
3271 int *compaction_retries)
3273 struct zone *zone;
3274 struct zoneref *z;
3276 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3277 return false;
3280 * There are setups with compaction disabled which would prefer to loop
3281 * inside the allocator rather than hit the oom killer prematurely.
3282 * Let's give them a good hope and keep retrying while the order-0
3283 * watermarks are OK.
3285 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3286 ac->nodemask) {
3287 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3288 ac_classzone_idx(ac), alloc_flags))
3289 return true;
3291 return false;
3293 #endif /* CONFIG_COMPACTION */
3295 /* Perform direct synchronous page reclaim */
3296 static int
3297 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3298 const struct alloc_context *ac)
3300 struct reclaim_state reclaim_state;
3301 int progress;
3303 cond_resched();
3305 /* We now go into synchronous reclaim */
3306 cpuset_memory_pressure_bump();
3307 current->flags |= PF_MEMALLOC;
3308 lockdep_set_current_reclaim_state(gfp_mask);
3309 reclaim_state.reclaimed_slab = 0;
3310 current->reclaim_state = &reclaim_state;
3312 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3313 ac->nodemask);
3315 current->reclaim_state = NULL;
3316 lockdep_clear_current_reclaim_state();
3317 current->flags &= ~PF_MEMALLOC;
3319 cond_resched();
3321 return progress;
3324 /* The really slow allocator path where we enter direct reclaim */
3325 static inline struct page *
3326 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3327 unsigned int alloc_flags, const struct alloc_context *ac,
3328 unsigned long *did_some_progress)
3330 struct page *page = NULL;
3331 bool drained = false;
3333 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3334 if (unlikely(!(*did_some_progress)))
3335 return NULL;
3337 retry:
3338 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3341 * If an allocation failed after direct reclaim, it could be because
3342 * pages are pinned on the per-cpu lists or in high alloc reserves.
3343 * Shrink them them and try again
3345 if (!page && !drained) {
3346 unreserve_highatomic_pageblock(ac);
3347 drain_all_pages(NULL);
3348 drained = true;
3349 goto retry;
3352 return page;
3355 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3357 struct zoneref *z;
3358 struct zone *zone;
3359 pg_data_t *last_pgdat = NULL;
3361 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3362 ac->high_zoneidx, ac->nodemask) {
3363 if (last_pgdat != zone->zone_pgdat)
3364 wakeup_kswapd(zone, order, ac->high_zoneidx);
3365 last_pgdat = zone->zone_pgdat;
3369 static inline unsigned int
3370 gfp_to_alloc_flags(gfp_t gfp_mask)
3372 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3374 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3375 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3378 * The caller may dip into page reserves a bit more if the caller
3379 * cannot run direct reclaim, or if the caller has realtime scheduling
3380 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3381 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3383 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3385 if (gfp_mask & __GFP_ATOMIC) {
3387 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3388 * if it can't schedule.
3390 if (!(gfp_mask & __GFP_NOMEMALLOC))
3391 alloc_flags |= ALLOC_HARDER;
3393 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3394 * comment for __cpuset_node_allowed().
3396 alloc_flags &= ~ALLOC_CPUSET;
3397 } else if (unlikely(rt_task(current)) && !in_interrupt())
3398 alloc_flags |= ALLOC_HARDER;
3400 #ifdef CONFIG_CMA
3401 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3402 alloc_flags |= ALLOC_CMA;
3403 #endif
3404 return alloc_flags;
3407 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3409 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3410 return false;
3412 if (gfp_mask & __GFP_MEMALLOC)
3413 return true;
3414 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3415 return true;
3416 if (!in_interrupt() &&
3417 ((current->flags & PF_MEMALLOC) ||
3418 unlikely(test_thread_flag(TIF_MEMDIE))))
3419 return true;
3421 return false;
3425 * Checks whether it makes sense to retry the reclaim to make a forward progress
3426 * for the given allocation request.
3427 * The reclaim feedback represented by did_some_progress (any progress during
3428 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3429 * any progress in a row) is considered as well as the reclaimable pages on the
3430 * applicable zone list (with a backoff mechanism which is a function of
3431 * no_progress_loops).
3433 * Returns true if a retry is viable or false to enter the oom path.
3435 static inline bool
3436 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3437 struct alloc_context *ac, int alloc_flags,
3438 bool did_some_progress, int *no_progress_loops)
3440 struct zone *zone;
3441 struct zoneref *z;
3444 * Costly allocations might have made a progress but this doesn't mean
3445 * their order will become available due to high fragmentation so
3446 * always increment the no progress counter for them
3448 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3449 *no_progress_loops = 0;
3450 else
3451 (*no_progress_loops)++;
3454 * Make sure we converge to OOM if we cannot make any progress
3455 * several times in the row.
3457 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3458 return false;
3461 * Keep reclaiming pages while there is a chance this will lead
3462 * somewhere. If none of the target zones can satisfy our allocation
3463 * request even if all reclaimable pages are considered then we are
3464 * screwed and have to go OOM.
3466 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3467 ac->nodemask) {
3468 unsigned long available;
3469 unsigned long reclaimable;
3471 available = reclaimable = zone_reclaimable_pages(zone);
3472 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3473 MAX_RECLAIM_RETRIES);
3474 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3477 * Would the allocation succeed if we reclaimed the whole
3478 * available?
3480 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3481 ac_classzone_idx(ac), alloc_flags, available)) {
3483 * If we didn't make any progress and have a lot of
3484 * dirty + writeback pages then we should wait for
3485 * an IO to complete to slow down the reclaim and
3486 * prevent from pre mature OOM
3488 if (!did_some_progress) {
3489 unsigned long write_pending;
3491 write_pending = zone_page_state_snapshot(zone,
3492 NR_ZONE_WRITE_PENDING);
3494 if (2 * write_pending > reclaimable) {
3495 congestion_wait(BLK_RW_ASYNC, HZ/10);
3496 return true;
3501 * Memory allocation/reclaim might be called from a WQ
3502 * context and the current implementation of the WQ
3503 * concurrency control doesn't recognize that
3504 * a particular WQ is congested if the worker thread is
3505 * looping without ever sleeping. Therefore we have to
3506 * do a short sleep here rather than calling
3507 * cond_resched().
3509 if (current->flags & PF_WQ_WORKER)
3510 schedule_timeout_uninterruptible(1);
3511 else
3512 cond_resched();
3514 return true;
3518 return false;
3521 static inline struct page *
3522 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3523 struct alloc_context *ac)
3525 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3526 struct page *page = NULL;
3527 unsigned int alloc_flags;
3528 unsigned long did_some_progress;
3529 enum compact_priority compact_priority;
3530 enum compact_result compact_result;
3531 int compaction_retries;
3532 int no_progress_loops;
3533 unsigned int cpuset_mems_cookie;
3536 * In the slowpath, we sanity check order to avoid ever trying to
3537 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3538 * be using allocators in order of preference for an area that is
3539 * too large.
3541 if (order >= MAX_ORDER) {
3542 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3543 return NULL;
3547 * We also sanity check to catch abuse of atomic reserves being used by
3548 * callers that are not in atomic context.
3550 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3551 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3552 gfp_mask &= ~__GFP_ATOMIC;
3554 retry_cpuset:
3555 compaction_retries = 0;
3556 no_progress_loops = 0;
3557 compact_priority = DEF_COMPACT_PRIORITY;
3558 cpuset_mems_cookie = read_mems_allowed_begin();
3560 * We need to recalculate the starting point for the zonelist iterator
3561 * because we might have used different nodemask in the fast path, or
3562 * there was a cpuset modification and we are retrying - otherwise we
3563 * could end up iterating over non-eligible zones endlessly.
3565 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3566 ac->high_zoneidx, ac->nodemask);
3567 if (!ac->preferred_zoneref->zone)
3568 goto nopage;
3572 * The fast path uses conservative alloc_flags to succeed only until
3573 * kswapd needs to be woken up, and to avoid the cost of setting up
3574 * alloc_flags precisely. So we do that now.
3576 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3578 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3579 wake_all_kswapds(order, ac);
3582 * The adjusted alloc_flags might result in immediate success, so try
3583 * that first
3585 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3586 if (page)
3587 goto got_pg;
3590 * For costly allocations, try direct compaction first, as it's likely
3591 * that we have enough base pages and don't need to reclaim. Don't try
3592 * that for allocations that are allowed to ignore watermarks, as the
3593 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3595 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3596 !gfp_pfmemalloc_allowed(gfp_mask)) {
3597 page = __alloc_pages_direct_compact(gfp_mask, order,
3598 alloc_flags, ac,
3599 INIT_COMPACT_PRIORITY,
3600 &compact_result);
3601 if (page)
3602 goto got_pg;
3605 * Checks for costly allocations with __GFP_NORETRY, which
3606 * includes THP page fault allocations
3608 if (gfp_mask & __GFP_NORETRY) {
3610 * If compaction is deferred for high-order allocations,
3611 * it is because sync compaction recently failed. If
3612 * this is the case and the caller requested a THP
3613 * allocation, we do not want to heavily disrupt the
3614 * system, so we fail the allocation instead of entering
3615 * direct reclaim.
3617 if (compact_result == COMPACT_DEFERRED)
3618 goto nopage;
3621 * Looks like reclaim/compaction is worth trying, but
3622 * sync compaction could be very expensive, so keep
3623 * using async compaction.
3625 compact_priority = INIT_COMPACT_PRIORITY;
3629 retry:
3630 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3631 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3632 wake_all_kswapds(order, ac);
3634 if (gfp_pfmemalloc_allowed(gfp_mask))
3635 alloc_flags = ALLOC_NO_WATERMARKS;
3638 * Reset the zonelist iterators if memory policies can be ignored.
3639 * These allocations are high priority and system rather than user
3640 * orientated.
3642 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3643 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3644 ac->high_zoneidx, ac->nodemask);
3647 /* Attempt with potentially adjusted zonelist and alloc_flags */
3648 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3649 if (page)
3650 goto got_pg;
3652 /* Caller is not willing to reclaim, we can't balance anything */
3653 if (!can_direct_reclaim) {
3655 * All existing users of the __GFP_NOFAIL are blockable, so warn
3656 * of any new users that actually allow this type of allocation
3657 * to fail.
3659 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3660 goto nopage;
3663 /* Avoid recursion of direct reclaim */
3664 if (current->flags & PF_MEMALLOC) {
3666 * __GFP_NOFAIL request from this context is rather bizarre
3667 * because we cannot reclaim anything and only can loop waiting
3668 * for somebody to do a work for us.
3670 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3671 cond_resched();
3672 goto retry;
3674 goto nopage;
3677 /* Avoid allocations with no watermarks from looping endlessly */
3678 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3679 goto nopage;
3682 /* Try direct reclaim and then allocating */
3683 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3684 &did_some_progress);
3685 if (page)
3686 goto got_pg;
3688 /* Try direct compaction and then allocating */
3689 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3690 compact_priority, &compact_result);
3691 if (page)
3692 goto got_pg;
3694 /* Do not loop if specifically requested */
3695 if (gfp_mask & __GFP_NORETRY)
3696 goto nopage;
3699 * Do not retry costly high order allocations unless they are
3700 * __GFP_REPEAT
3702 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3703 goto nopage;
3705 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3706 did_some_progress > 0, &no_progress_loops))
3707 goto retry;
3710 * It doesn't make any sense to retry for the compaction if the order-0
3711 * reclaim is not able to make any progress because the current
3712 * implementation of the compaction depends on the sufficient amount
3713 * of free memory (see __compaction_suitable)
3715 if (did_some_progress > 0 &&
3716 should_compact_retry(ac, order, alloc_flags,
3717 compact_result, &compact_priority,
3718 &compaction_retries))
3719 goto retry;
3722 * It's possible we raced with cpuset update so the OOM would be
3723 * premature (see below the nopage: label for full explanation).
3725 if (read_mems_allowed_retry(cpuset_mems_cookie))
3726 goto retry_cpuset;
3728 /* Reclaim has failed us, start killing things */
3729 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3730 if (page)
3731 goto got_pg;
3733 /* Retry as long as the OOM killer is making progress */
3734 if (did_some_progress) {
3735 no_progress_loops = 0;
3736 goto retry;
3739 nopage:
3741 * When updating a task's mems_allowed or mempolicy nodemask, it is
3742 * possible to race with parallel threads in such a way that our
3743 * allocation can fail while the mask is being updated. If we are about
3744 * to fail, check if the cpuset changed during allocation and if so,
3745 * retry.
3747 if (read_mems_allowed_retry(cpuset_mems_cookie))
3748 goto retry_cpuset;
3750 warn_alloc(gfp_mask,
3751 "page allocation failure: order:%u", order);
3752 got_pg:
3753 return page;
3757 * This is the 'heart' of the zoned buddy allocator.
3759 struct page *
3760 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3761 struct zonelist *zonelist, nodemask_t *nodemask)
3763 struct page *page;
3764 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3765 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3766 struct alloc_context ac = {
3767 .high_zoneidx = gfp_zone(gfp_mask),
3768 .zonelist = zonelist,
3769 .nodemask = nodemask,
3770 .migratetype = gfpflags_to_migratetype(gfp_mask),
3773 if (cpusets_enabled()) {
3774 alloc_mask |= __GFP_HARDWALL;
3775 alloc_flags |= ALLOC_CPUSET;
3776 if (!ac.nodemask)
3777 ac.nodemask = &cpuset_current_mems_allowed;
3780 gfp_mask &= gfp_allowed_mask;
3782 lockdep_trace_alloc(gfp_mask);
3784 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3786 if (should_fail_alloc_page(gfp_mask, order))
3787 return NULL;
3790 * Check the zones suitable for the gfp_mask contain at least one
3791 * valid zone. It's possible to have an empty zonelist as a result
3792 * of __GFP_THISNODE and a memoryless node
3794 if (unlikely(!zonelist->_zonerefs->zone))
3795 return NULL;
3797 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3798 alloc_flags |= ALLOC_CMA;
3800 /* Dirty zone balancing only done in the fast path */
3801 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3804 * The preferred zone is used for statistics but crucially it is
3805 * also used as the starting point for the zonelist iterator. It
3806 * may get reset for allocations that ignore memory policies.
3808 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3809 ac.high_zoneidx, ac.nodemask);
3810 if (!ac.preferred_zoneref->zone) {
3811 page = NULL;
3813 * This might be due to race with cpuset_current_mems_allowed
3814 * update, so make sure we retry with original nodemask in the
3815 * slow path.
3817 goto no_zone;
3820 /* First allocation attempt */
3821 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3822 if (likely(page))
3823 goto out;
3825 no_zone:
3827 * Runtime PM, block IO and its error handling path can deadlock
3828 * because I/O on the device might not complete.
3830 alloc_mask = memalloc_noio_flags(gfp_mask);
3831 ac.spread_dirty_pages = false;
3834 * Restore the original nodemask if it was potentially replaced with
3835 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3837 if (unlikely(ac.nodemask != nodemask))
3838 ac.nodemask = nodemask;
3840 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3842 out:
3843 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3844 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3845 __free_pages(page, order);
3846 page = NULL;
3849 if (kmemcheck_enabled && page)
3850 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3852 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3854 return page;
3856 EXPORT_SYMBOL(__alloc_pages_nodemask);
3859 * Common helper functions.
3861 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3863 struct page *page;
3866 * __get_free_pages() returns a 32-bit address, which cannot represent
3867 * a highmem page
3869 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3871 page = alloc_pages(gfp_mask, order);
3872 if (!page)
3873 return 0;
3874 return (unsigned long) page_address(page);
3876 EXPORT_SYMBOL(__get_free_pages);
3878 unsigned long get_zeroed_page(gfp_t gfp_mask)
3880 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3882 EXPORT_SYMBOL(get_zeroed_page);
3884 void __free_pages(struct page *page, unsigned int order)
3886 if (put_page_testzero(page)) {
3887 if (order == 0)
3888 free_hot_cold_page(page, false);
3889 else
3890 __free_pages_ok(page, order);
3894 EXPORT_SYMBOL(__free_pages);
3896 void free_pages(unsigned long addr, unsigned int order)
3898 if (addr != 0) {
3899 VM_BUG_ON(!virt_addr_valid((void *)addr));
3900 __free_pages(virt_to_page((void *)addr), order);
3904 EXPORT_SYMBOL(free_pages);
3907 * Page Fragment:
3908 * An arbitrary-length arbitrary-offset area of memory which resides
3909 * within a 0 or higher order page. Multiple fragments within that page
3910 * are individually refcounted, in the page's reference counter.
3912 * The page_frag functions below provide a simple allocation framework for
3913 * page fragments. This is used by the network stack and network device
3914 * drivers to provide a backing region of memory for use as either an
3915 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3917 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3918 gfp_t gfp_mask)
3920 struct page *page = NULL;
3921 gfp_t gfp = gfp_mask;
3923 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3924 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3925 __GFP_NOMEMALLOC;
3926 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3927 PAGE_FRAG_CACHE_MAX_ORDER);
3928 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3929 #endif
3930 if (unlikely(!page))
3931 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3933 nc->va = page ? page_address(page) : NULL;
3935 return page;
3938 void *__alloc_page_frag(struct page_frag_cache *nc,
3939 unsigned int fragsz, gfp_t gfp_mask)
3941 unsigned int size = PAGE_SIZE;
3942 struct page *page;
3943 int offset;
3945 if (unlikely(!nc->va)) {
3946 refill:
3947 page = __page_frag_refill(nc, gfp_mask);
3948 if (!page)
3949 return NULL;
3951 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3952 /* if size can vary use size else just use PAGE_SIZE */
3953 size = nc->size;
3954 #endif
3955 /* Even if we own the page, we do not use atomic_set().
3956 * This would break get_page_unless_zero() users.
3958 page_ref_add(page, size);
3960 /* reset page count bias and offset to start of new frag */
3961 nc->pfmemalloc = page_is_pfmemalloc(page);
3962 nc->pagecnt_bias = size + 1;
3963 nc->offset = size;
3966 offset = nc->offset - fragsz;
3967 if (unlikely(offset < 0)) {
3968 page = virt_to_page(nc->va);
3970 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3971 goto refill;
3973 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 /* if size can vary use size else just use PAGE_SIZE */
3975 size = nc->size;
3976 #endif
3977 /* OK, page count is 0, we can safely set it */
3978 set_page_count(page, size + 1);
3980 /* reset page count bias and offset to start of new frag */
3981 nc->pagecnt_bias = size + 1;
3982 offset = size - fragsz;
3985 nc->pagecnt_bias--;
3986 nc->offset = offset;
3988 return nc->va + offset;
3990 EXPORT_SYMBOL(__alloc_page_frag);
3993 * Frees a page fragment allocated out of either a compound or order 0 page.
3995 void __free_page_frag(void *addr)
3997 struct page *page = virt_to_head_page(addr);
3999 if (unlikely(put_page_testzero(page)))
4000 __free_pages_ok(page, compound_order(page));
4002 EXPORT_SYMBOL(__free_page_frag);
4004 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4005 size_t size)
4007 if (addr) {
4008 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4009 unsigned long used = addr + PAGE_ALIGN(size);
4011 split_page(virt_to_page((void *)addr), order);
4012 while (used < alloc_end) {
4013 free_page(used);
4014 used += PAGE_SIZE;
4017 return (void *)addr;
4021 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4022 * @size: the number of bytes to allocate
4023 * @gfp_mask: GFP flags for the allocation
4025 * This function is similar to alloc_pages(), except that it allocates the
4026 * minimum number of pages to satisfy the request. alloc_pages() can only
4027 * allocate memory in power-of-two pages.
4029 * This function is also limited by MAX_ORDER.
4031 * Memory allocated by this function must be released by free_pages_exact().
4033 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4035 unsigned int order = get_order(size);
4036 unsigned long addr;
4038 addr = __get_free_pages(gfp_mask, order);
4039 return make_alloc_exact(addr, order, size);
4041 EXPORT_SYMBOL(alloc_pages_exact);
4044 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4045 * pages on a node.
4046 * @nid: the preferred node ID where memory should be allocated
4047 * @size: the number of bytes to allocate
4048 * @gfp_mask: GFP flags for the allocation
4050 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4051 * back.
4053 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4055 unsigned int order = get_order(size);
4056 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4057 if (!p)
4058 return NULL;
4059 return make_alloc_exact((unsigned long)page_address(p), order, size);
4063 * free_pages_exact - release memory allocated via alloc_pages_exact()
4064 * @virt: the value returned by alloc_pages_exact.
4065 * @size: size of allocation, same value as passed to alloc_pages_exact().
4067 * Release the memory allocated by a previous call to alloc_pages_exact.
4069 void free_pages_exact(void *virt, size_t size)
4071 unsigned long addr = (unsigned long)virt;
4072 unsigned long end = addr + PAGE_ALIGN(size);
4074 while (addr < end) {
4075 free_page(addr);
4076 addr += PAGE_SIZE;
4079 EXPORT_SYMBOL(free_pages_exact);
4082 * nr_free_zone_pages - count number of pages beyond high watermark
4083 * @offset: The zone index of the highest zone
4085 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4086 * high watermark within all zones at or below a given zone index. For each
4087 * zone, the number of pages is calculated as:
4088 * managed_pages - high_pages
4090 static unsigned long nr_free_zone_pages(int offset)
4092 struct zoneref *z;
4093 struct zone *zone;
4095 /* Just pick one node, since fallback list is circular */
4096 unsigned long sum = 0;
4098 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4100 for_each_zone_zonelist(zone, z, zonelist, offset) {
4101 unsigned long size = zone->managed_pages;
4102 unsigned long high = high_wmark_pages(zone);
4103 if (size > high)
4104 sum += size - high;
4107 return sum;
4111 * nr_free_buffer_pages - count number of pages beyond high watermark
4113 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4114 * watermark within ZONE_DMA and ZONE_NORMAL.
4116 unsigned long nr_free_buffer_pages(void)
4118 return nr_free_zone_pages(gfp_zone(GFP_USER));
4120 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4123 * nr_free_pagecache_pages - count number of pages beyond high watermark
4125 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4126 * high watermark within all zones.
4128 unsigned long nr_free_pagecache_pages(void)
4130 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4133 static inline void show_node(struct zone *zone)
4135 if (IS_ENABLED(CONFIG_NUMA))
4136 printk("Node %d ", zone_to_nid(zone));
4139 long si_mem_available(void)
4141 long available;
4142 unsigned long pagecache;
4143 unsigned long wmark_low = 0;
4144 unsigned long pages[NR_LRU_LISTS];
4145 struct zone *zone;
4146 int lru;
4148 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4149 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4151 for_each_zone(zone)
4152 wmark_low += zone->watermark[WMARK_LOW];
4155 * Estimate the amount of memory available for userspace allocations,
4156 * without causing swapping.
4158 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4161 * Not all the page cache can be freed, otherwise the system will
4162 * start swapping. Assume at least half of the page cache, or the
4163 * low watermark worth of cache, needs to stay.
4165 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4166 pagecache -= min(pagecache / 2, wmark_low);
4167 available += pagecache;
4170 * Part of the reclaimable slab consists of items that are in use,
4171 * and cannot be freed. Cap this estimate at the low watermark.
4173 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4174 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4176 if (available < 0)
4177 available = 0;
4178 return available;
4180 EXPORT_SYMBOL_GPL(si_mem_available);
4182 void si_meminfo(struct sysinfo *val)
4184 val->totalram = totalram_pages;
4185 val->sharedram = global_node_page_state(NR_SHMEM);
4186 val->freeram = global_page_state(NR_FREE_PAGES);
4187 val->bufferram = nr_blockdev_pages();
4188 val->totalhigh = totalhigh_pages;
4189 val->freehigh = nr_free_highpages();
4190 val->mem_unit = PAGE_SIZE;
4193 EXPORT_SYMBOL(si_meminfo);
4195 #ifdef CONFIG_NUMA
4196 void si_meminfo_node(struct sysinfo *val, int nid)
4198 int zone_type; /* needs to be signed */
4199 unsigned long managed_pages = 0;
4200 unsigned long managed_highpages = 0;
4201 unsigned long free_highpages = 0;
4202 pg_data_t *pgdat = NODE_DATA(nid);
4204 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4205 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4206 val->totalram = managed_pages;
4207 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4208 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4209 #ifdef CONFIG_HIGHMEM
4210 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4211 struct zone *zone = &pgdat->node_zones[zone_type];
4213 if (is_highmem(zone)) {
4214 managed_highpages += zone->managed_pages;
4215 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4218 val->totalhigh = managed_highpages;
4219 val->freehigh = free_highpages;
4220 #else
4221 val->totalhigh = managed_highpages;
4222 val->freehigh = free_highpages;
4223 #endif
4224 val->mem_unit = PAGE_SIZE;
4226 #endif
4229 * Determine whether the node should be displayed or not, depending on whether
4230 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4232 bool skip_free_areas_node(unsigned int flags, int nid)
4234 bool ret = false;
4235 unsigned int cpuset_mems_cookie;
4237 if (!(flags & SHOW_MEM_FILTER_NODES))
4238 goto out;
4240 do {
4241 cpuset_mems_cookie = read_mems_allowed_begin();
4242 ret = !node_isset(nid, cpuset_current_mems_allowed);
4243 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4244 out:
4245 return ret;
4248 #define K(x) ((x) << (PAGE_SHIFT-10))
4250 static void show_migration_types(unsigned char type)
4252 static const char types[MIGRATE_TYPES] = {
4253 [MIGRATE_UNMOVABLE] = 'U',
4254 [MIGRATE_MOVABLE] = 'M',
4255 [MIGRATE_RECLAIMABLE] = 'E',
4256 [MIGRATE_HIGHATOMIC] = 'H',
4257 #ifdef CONFIG_CMA
4258 [MIGRATE_CMA] = 'C',
4259 #endif
4260 #ifdef CONFIG_MEMORY_ISOLATION
4261 [MIGRATE_ISOLATE] = 'I',
4262 #endif
4264 char tmp[MIGRATE_TYPES + 1];
4265 char *p = tmp;
4266 int i;
4268 for (i = 0; i < MIGRATE_TYPES; i++) {
4269 if (type & (1 << i))
4270 *p++ = types[i];
4273 *p = '\0';
4274 printk(KERN_CONT "(%s) ", tmp);
4278 * Show free area list (used inside shift_scroll-lock stuff)
4279 * We also calculate the percentage fragmentation. We do this by counting the
4280 * memory on each free list with the exception of the first item on the list.
4282 * Bits in @filter:
4283 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4284 * cpuset.
4286 void show_free_areas(unsigned int filter)
4288 unsigned long free_pcp = 0;
4289 int cpu;
4290 struct zone *zone;
4291 pg_data_t *pgdat;
4293 for_each_populated_zone(zone) {
4294 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4295 continue;
4297 for_each_online_cpu(cpu)
4298 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4301 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4302 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4303 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4304 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4305 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4306 " free:%lu free_pcp:%lu free_cma:%lu\n",
4307 global_node_page_state(NR_ACTIVE_ANON),
4308 global_node_page_state(NR_INACTIVE_ANON),
4309 global_node_page_state(NR_ISOLATED_ANON),
4310 global_node_page_state(NR_ACTIVE_FILE),
4311 global_node_page_state(NR_INACTIVE_FILE),
4312 global_node_page_state(NR_ISOLATED_FILE),
4313 global_node_page_state(NR_UNEVICTABLE),
4314 global_node_page_state(NR_FILE_DIRTY),
4315 global_node_page_state(NR_WRITEBACK),
4316 global_node_page_state(NR_UNSTABLE_NFS),
4317 global_page_state(NR_SLAB_RECLAIMABLE),
4318 global_page_state(NR_SLAB_UNRECLAIMABLE),
4319 global_node_page_state(NR_FILE_MAPPED),
4320 global_node_page_state(NR_SHMEM),
4321 global_page_state(NR_PAGETABLE),
4322 global_page_state(NR_BOUNCE),
4323 global_page_state(NR_FREE_PAGES),
4324 free_pcp,
4325 global_page_state(NR_FREE_CMA_PAGES));
4327 for_each_online_pgdat(pgdat) {
4328 printk("Node %d"
4329 " active_anon:%lukB"
4330 " inactive_anon:%lukB"
4331 " active_file:%lukB"
4332 " inactive_file:%lukB"
4333 " unevictable:%lukB"
4334 " isolated(anon):%lukB"
4335 " isolated(file):%lukB"
4336 " mapped:%lukB"
4337 " dirty:%lukB"
4338 " writeback:%lukB"
4339 " shmem:%lukB"
4340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4341 " shmem_thp: %lukB"
4342 " shmem_pmdmapped: %lukB"
4343 " anon_thp: %lukB"
4344 #endif
4345 " writeback_tmp:%lukB"
4346 " unstable:%lukB"
4347 " pages_scanned:%lu"
4348 " all_unreclaimable? %s"
4349 "\n",
4350 pgdat->node_id,
4351 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4352 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4353 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4354 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4355 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4356 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4357 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4358 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4359 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4360 K(node_page_state(pgdat, NR_WRITEBACK)),
4361 K(node_page_state(pgdat, NR_SHMEM)),
4362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4363 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4364 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4365 * HPAGE_PMD_NR),
4366 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4367 #endif
4368 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4369 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4370 node_page_state(pgdat, NR_PAGES_SCANNED),
4371 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4372 "yes" : "no");
4375 for_each_populated_zone(zone) {
4376 int i;
4378 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4379 continue;
4381 free_pcp = 0;
4382 for_each_online_cpu(cpu)
4383 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4385 show_node(zone);
4386 printk(KERN_CONT
4387 "%s"
4388 " free:%lukB"
4389 " min:%lukB"
4390 " low:%lukB"
4391 " high:%lukB"
4392 " active_anon:%lukB"
4393 " inactive_anon:%lukB"
4394 " active_file:%lukB"
4395 " inactive_file:%lukB"
4396 " unevictable:%lukB"
4397 " writepending:%lukB"
4398 " present:%lukB"
4399 " managed:%lukB"
4400 " mlocked:%lukB"
4401 " slab_reclaimable:%lukB"
4402 " slab_unreclaimable:%lukB"
4403 " kernel_stack:%lukB"
4404 " pagetables:%lukB"
4405 " bounce:%lukB"
4406 " free_pcp:%lukB"
4407 " local_pcp:%ukB"
4408 " free_cma:%lukB"
4409 "\n",
4410 zone->name,
4411 K(zone_page_state(zone, NR_FREE_PAGES)),
4412 K(min_wmark_pages(zone)),
4413 K(low_wmark_pages(zone)),
4414 K(high_wmark_pages(zone)),
4415 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4416 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4417 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4418 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4419 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4420 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4421 K(zone->present_pages),
4422 K(zone->managed_pages),
4423 K(zone_page_state(zone, NR_MLOCK)),
4424 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4425 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4426 zone_page_state(zone, NR_KERNEL_STACK_KB),
4427 K(zone_page_state(zone, NR_PAGETABLE)),
4428 K(zone_page_state(zone, NR_BOUNCE)),
4429 K(free_pcp),
4430 K(this_cpu_read(zone->pageset->pcp.count)),
4431 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4432 printk("lowmem_reserve[]:");
4433 for (i = 0; i < MAX_NR_ZONES; i++)
4434 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4435 printk(KERN_CONT "\n");
4438 for_each_populated_zone(zone) {
4439 unsigned int order;
4440 unsigned long nr[MAX_ORDER], flags, total = 0;
4441 unsigned char types[MAX_ORDER];
4443 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4444 continue;
4445 show_node(zone);
4446 printk(KERN_CONT "%s: ", zone->name);
4448 spin_lock_irqsave(&zone->lock, flags);
4449 for (order = 0; order < MAX_ORDER; order++) {
4450 struct free_area *area = &zone->free_area[order];
4451 int type;
4453 nr[order] = area->nr_free;
4454 total += nr[order] << order;
4456 types[order] = 0;
4457 for (type = 0; type < MIGRATE_TYPES; type++) {
4458 if (!list_empty(&area->free_list[type]))
4459 types[order] |= 1 << type;
4462 spin_unlock_irqrestore(&zone->lock, flags);
4463 for (order = 0; order < MAX_ORDER; order++) {
4464 printk(KERN_CONT "%lu*%lukB ",
4465 nr[order], K(1UL) << order);
4466 if (nr[order])
4467 show_migration_types(types[order]);
4469 printk(KERN_CONT "= %lukB\n", K(total));
4472 hugetlb_show_meminfo();
4474 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4476 show_swap_cache_info();
4479 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4481 zoneref->zone = zone;
4482 zoneref->zone_idx = zone_idx(zone);
4486 * Builds allocation fallback zone lists.
4488 * Add all populated zones of a node to the zonelist.
4490 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4491 int nr_zones)
4493 struct zone *zone;
4494 enum zone_type zone_type = MAX_NR_ZONES;
4496 do {
4497 zone_type--;
4498 zone = pgdat->node_zones + zone_type;
4499 if (managed_zone(zone)) {
4500 zoneref_set_zone(zone,
4501 &zonelist->_zonerefs[nr_zones++]);
4502 check_highest_zone(zone_type);
4504 } while (zone_type);
4506 return nr_zones;
4511 * zonelist_order:
4512 * 0 = automatic detection of better ordering.
4513 * 1 = order by ([node] distance, -zonetype)
4514 * 2 = order by (-zonetype, [node] distance)
4516 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4517 * the same zonelist. So only NUMA can configure this param.
4519 #define ZONELIST_ORDER_DEFAULT 0
4520 #define ZONELIST_ORDER_NODE 1
4521 #define ZONELIST_ORDER_ZONE 2
4523 /* zonelist order in the kernel.
4524 * set_zonelist_order() will set this to NODE or ZONE.
4526 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4527 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4530 #ifdef CONFIG_NUMA
4531 /* The value user specified ....changed by config */
4532 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4533 /* string for sysctl */
4534 #define NUMA_ZONELIST_ORDER_LEN 16
4535 char numa_zonelist_order[16] = "default";
4538 * interface for configure zonelist ordering.
4539 * command line option "numa_zonelist_order"
4540 * = "[dD]efault - default, automatic configuration.
4541 * = "[nN]ode - order by node locality, then by zone within node
4542 * = "[zZ]one - order by zone, then by locality within zone
4545 static int __parse_numa_zonelist_order(char *s)
4547 if (*s == 'd' || *s == 'D') {
4548 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4549 } else if (*s == 'n' || *s == 'N') {
4550 user_zonelist_order = ZONELIST_ORDER_NODE;
4551 } else if (*s == 'z' || *s == 'Z') {
4552 user_zonelist_order = ZONELIST_ORDER_ZONE;
4553 } else {
4554 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4555 return -EINVAL;
4557 return 0;
4560 static __init int setup_numa_zonelist_order(char *s)
4562 int ret;
4564 if (!s)
4565 return 0;
4567 ret = __parse_numa_zonelist_order(s);
4568 if (ret == 0)
4569 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4571 return ret;
4573 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4576 * sysctl handler for numa_zonelist_order
4578 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4579 void __user *buffer, size_t *length,
4580 loff_t *ppos)
4582 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4583 int ret;
4584 static DEFINE_MUTEX(zl_order_mutex);
4586 mutex_lock(&zl_order_mutex);
4587 if (write) {
4588 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4589 ret = -EINVAL;
4590 goto out;
4592 strcpy(saved_string, (char *)table->data);
4594 ret = proc_dostring(table, write, buffer, length, ppos);
4595 if (ret)
4596 goto out;
4597 if (write) {
4598 int oldval = user_zonelist_order;
4600 ret = __parse_numa_zonelist_order((char *)table->data);
4601 if (ret) {
4603 * bogus value. restore saved string
4605 strncpy((char *)table->data, saved_string,
4606 NUMA_ZONELIST_ORDER_LEN);
4607 user_zonelist_order = oldval;
4608 } else if (oldval != user_zonelist_order) {
4609 mutex_lock(&zonelists_mutex);
4610 build_all_zonelists(NULL, NULL);
4611 mutex_unlock(&zonelists_mutex);
4614 out:
4615 mutex_unlock(&zl_order_mutex);
4616 return ret;
4620 #define MAX_NODE_LOAD (nr_online_nodes)
4621 static int node_load[MAX_NUMNODES];
4624 * find_next_best_node - find the next node that should appear in a given node's fallback list
4625 * @node: node whose fallback list we're appending
4626 * @used_node_mask: nodemask_t of already used nodes
4628 * We use a number of factors to determine which is the next node that should
4629 * appear on a given node's fallback list. The node should not have appeared
4630 * already in @node's fallback list, and it should be the next closest node
4631 * according to the distance array (which contains arbitrary distance values
4632 * from each node to each node in the system), and should also prefer nodes
4633 * with no CPUs, since presumably they'll have very little allocation pressure
4634 * on them otherwise.
4635 * It returns -1 if no node is found.
4637 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4639 int n, val;
4640 int min_val = INT_MAX;
4641 int best_node = NUMA_NO_NODE;
4642 const struct cpumask *tmp = cpumask_of_node(0);
4644 /* Use the local node if we haven't already */
4645 if (!node_isset(node, *used_node_mask)) {
4646 node_set(node, *used_node_mask);
4647 return node;
4650 for_each_node_state(n, N_MEMORY) {
4652 /* Don't want a node to appear more than once */
4653 if (node_isset(n, *used_node_mask))
4654 continue;
4656 /* Use the distance array to find the distance */
4657 val = node_distance(node, n);
4659 /* Penalize nodes under us ("prefer the next node") */
4660 val += (n < node);
4662 /* Give preference to headless and unused nodes */
4663 tmp = cpumask_of_node(n);
4664 if (!cpumask_empty(tmp))
4665 val += PENALTY_FOR_NODE_WITH_CPUS;
4667 /* Slight preference for less loaded node */
4668 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4669 val += node_load[n];
4671 if (val < min_val) {
4672 min_val = val;
4673 best_node = n;
4677 if (best_node >= 0)
4678 node_set(best_node, *used_node_mask);
4680 return best_node;
4685 * Build zonelists ordered by node and zones within node.
4686 * This results in maximum locality--normal zone overflows into local
4687 * DMA zone, if any--but risks exhausting DMA zone.
4689 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4691 int j;
4692 struct zonelist *zonelist;
4694 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4695 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4697 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4698 zonelist->_zonerefs[j].zone = NULL;
4699 zonelist->_zonerefs[j].zone_idx = 0;
4703 * Build gfp_thisnode zonelists
4705 static void build_thisnode_zonelists(pg_data_t *pgdat)
4707 int j;
4708 struct zonelist *zonelist;
4710 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4711 j = build_zonelists_node(pgdat, zonelist, 0);
4712 zonelist->_zonerefs[j].zone = NULL;
4713 zonelist->_zonerefs[j].zone_idx = 0;
4717 * Build zonelists ordered by zone and nodes within zones.
4718 * This results in conserving DMA zone[s] until all Normal memory is
4719 * exhausted, but results in overflowing to remote node while memory
4720 * may still exist in local DMA zone.
4722 static int node_order[MAX_NUMNODES];
4724 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4726 int pos, j, node;
4727 int zone_type; /* needs to be signed */
4728 struct zone *z;
4729 struct zonelist *zonelist;
4731 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4732 pos = 0;
4733 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4734 for (j = 0; j < nr_nodes; j++) {
4735 node = node_order[j];
4736 z = &NODE_DATA(node)->node_zones[zone_type];
4737 if (managed_zone(z)) {
4738 zoneref_set_zone(z,
4739 &zonelist->_zonerefs[pos++]);
4740 check_highest_zone(zone_type);
4744 zonelist->_zonerefs[pos].zone = NULL;
4745 zonelist->_zonerefs[pos].zone_idx = 0;
4748 #if defined(CONFIG_64BIT)
4750 * Devices that require DMA32/DMA are relatively rare and do not justify a
4751 * penalty to every machine in case the specialised case applies. Default
4752 * to Node-ordering on 64-bit NUMA machines
4754 static int default_zonelist_order(void)
4756 return ZONELIST_ORDER_NODE;
4758 #else
4760 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4761 * by the kernel. If processes running on node 0 deplete the low memory zone
4762 * then reclaim will occur more frequency increasing stalls and potentially
4763 * be easier to OOM if a large percentage of the zone is under writeback or
4764 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4765 * Hence, default to zone ordering on 32-bit.
4767 static int default_zonelist_order(void)
4769 return ZONELIST_ORDER_ZONE;
4771 #endif /* CONFIG_64BIT */
4773 static void set_zonelist_order(void)
4775 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4776 current_zonelist_order = default_zonelist_order();
4777 else
4778 current_zonelist_order = user_zonelist_order;
4781 static void build_zonelists(pg_data_t *pgdat)
4783 int i, node, load;
4784 nodemask_t used_mask;
4785 int local_node, prev_node;
4786 struct zonelist *zonelist;
4787 unsigned int order = current_zonelist_order;
4789 /* initialize zonelists */
4790 for (i = 0; i < MAX_ZONELISTS; i++) {
4791 zonelist = pgdat->node_zonelists + i;
4792 zonelist->_zonerefs[0].zone = NULL;
4793 zonelist->_zonerefs[0].zone_idx = 0;
4796 /* NUMA-aware ordering of nodes */
4797 local_node = pgdat->node_id;
4798 load = nr_online_nodes;
4799 prev_node = local_node;
4800 nodes_clear(used_mask);
4802 memset(node_order, 0, sizeof(node_order));
4803 i = 0;
4805 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4807 * We don't want to pressure a particular node.
4808 * So adding penalty to the first node in same
4809 * distance group to make it round-robin.
4811 if (node_distance(local_node, node) !=
4812 node_distance(local_node, prev_node))
4813 node_load[node] = load;
4815 prev_node = node;
4816 load--;
4817 if (order == ZONELIST_ORDER_NODE)
4818 build_zonelists_in_node_order(pgdat, node);
4819 else
4820 node_order[i++] = node; /* remember order */
4823 if (order == ZONELIST_ORDER_ZONE) {
4824 /* calculate node order -- i.e., DMA last! */
4825 build_zonelists_in_zone_order(pgdat, i);
4828 build_thisnode_zonelists(pgdat);
4831 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4833 * Return node id of node used for "local" allocations.
4834 * I.e., first node id of first zone in arg node's generic zonelist.
4835 * Used for initializing percpu 'numa_mem', which is used primarily
4836 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4838 int local_memory_node(int node)
4840 struct zoneref *z;
4842 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4843 gfp_zone(GFP_KERNEL),
4844 NULL);
4845 return z->zone->node;
4847 #endif
4849 static void setup_min_unmapped_ratio(void);
4850 static void setup_min_slab_ratio(void);
4851 #else /* CONFIG_NUMA */
4853 static void set_zonelist_order(void)
4855 current_zonelist_order = ZONELIST_ORDER_ZONE;
4858 static void build_zonelists(pg_data_t *pgdat)
4860 int node, local_node;
4861 enum zone_type j;
4862 struct zonelist *zonelist;
4864 local_node = pgdat->node_id;
4866 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4867 j = build_zonelists_node(pgdat, zonelist, 0);
4870 * Now we build the zonelist so that it contains the zones
4871 * of all the other nodes.
4872 * We don't want to pressure a particular node, so when
4873 * building the zones for node N, we make sure that the
4874 * zones coming right after the local ones are those from
4875 * node N+1 (modulo N)
4877 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4878 if (!node_online(node))
4879 continue;
4880 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4882 for (node = 0; node < local_node; node++) {
4883 if (!node_online(node))
4884 continue;
4885 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4888 zonelist->_zonerefs[j].zone = NULL;
4889 zonelist->_zonerefs[j].zone_idx = 0;
4892 #endif /* CONFIG_NUMA */
4895 * Boot pageset table. One per cpu which is going to be used for all
4896 * zones and all nodes. The parameters will be set in such a way
4897 * that an item put on a list will immediately be handed over to
4898 * the buddy list. This is safe since pageset manipulation is done
4899 * with interrupts disabled.
4901 * The boot_pagesets must be kept even after bootup is complete for
4902 * unused processors and/or zones. They do play a role for bootstrapping
4903 * hotplugged processors.
4905 * zoneinfo_show() and maybe other functions do
4906 * not check if the processor is online before following the pageset pointer.
4907 * Other parts of the kernel may not check if the zone is available.
4909 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4910 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4911 static void setup_zone_pageset(struct zone *zone);
4914 * Global mutex to protect against size modification of zonelists
4915 * as well as to serialize pageset setup for the new populated zone.
4917 DEFINE_MUTEX(zonelists_mutex);
4919 /* return values int ....just for stop_machine() */
4920 static int __build_all_zonelists(void *data)
4922 int nid;
4923 int cpu;
4924 pg_data_t *self = data;
4926 #ifdef CONFIG_NUMA
4927 memset(node_load, 0, sizeof(node_load));
4928 #endif
4930 if (self && !node_online(self->node_id)) {
4931 build_zonelists(self);
4934 for_each_online_node(nid) {
4935 pg_data_t *pgdat = NODE_DATA(nid);
4937 build_zonelists(pgdat);
4941 * Initialize the boot_pagesets that are going to be used
4942 * for bootstrapping processors. The real pagesets for
4943 * each zone will be allocated later when the per cpu
4944 * allocator is available.
4946 * boot_pagesets are used also for bootstrapping offline
4947 * cpus if the system is already booted because the pagesets
4948 * are needed to initialize allocators on a specific cpu too.
4949 * F.e. the percpu allocator needs the page allocator which
4950 * needs the percpu allocator in order to allocate its pagesets
4951 * (a chicken-egg dilemma).
4953 for_each_possible_cpu(cpu) {
4954 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4956 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4958 * We now know the "local memory node" for each node--
4959 * i.e., the node of the first zone in the generic zonelist.
4960 * Set up numa_mem percpu variable for on-line cpus. During
4961 * boot, only the boot cpu should be on-line; we'll init the
4962 * secondary cpus' numa_mem as they come on-line. During
4963 * node/memory hotplug, we'll fixup all on-line cpus.
4965 if (cpu_online(cpu))
4966 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4967 #endif
4970 return 0;
4973 static noinline void __init
4974 build_all_zonelists_init(void)
4976 __build_all_zonelists(NULL);
4977 mminit_verify_zonelist();
4978 cpuset_init_current_mems_allowed();
4982 * Called with zonelists_mutex held always
4983 * unless system_state == SYSTEM_BOOTING.
4985 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4986 * [we're only called with non-NULL zone through __meminit paths] and
4987 * (2) call of __init annotated helper build_all_zonelists_init
4988 * [protected by SYSTEM_BOOTING].
4990 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4992 set_zonelist_order();
4994 if (system_state == SYSTEM_BOOTING) {
4995 build_all_zonelists_init();
4996 } else {
4997 #ifdef CONFIG_MEMORY_HOTPLUG
4998 if (zone)
4999 setup_zone_pageset(zone);
5000 #endif
5001 /* we have to stop all cpus to guarantee there is no user
5002 of zonelist */
5003 stop_machine(__build_all_zonelists, pgdat, NULL);
5004 /* cpuset refresh routine should be here */
5006 vm_total_pages = nr_free_pagecache_pages();
5008 * Disable grouping by mobility if the number of pages in the
5009 * system is too low to allow the mechanism to work. It would be
5010 * more accurate, but expensive to check per-zone. This check is
5011 * made on memory-hotadd so a system can start with mobility
5012 * disabled and enable it later
5014 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5015 page_group_by_mobility_disabled = 1;
5016 else
5017 page_group_by_mobility_disabled = 0;
5019 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5020 nr_online_nodes,
5021 zonelist_order_name[current_zonelist_order],
5022 page_group_by_mobility_disabled ? "off" : "on",
5023 vm_total_pages);
5024 #ifdef CONFIG_NUMA
5025 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5026 #endif
5030 * Initially all pages are reserved - free ones are freed
5031 * up by free_all_bootmem() once the early boot process is
5032 * done. Non-atomic initialization, single-pass.
5034 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5035 unsigned long start_pfn, enum memmap_context context)
5037 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5038 unsigned long end_pfn = start_pfn + size;
5039 pg_data_t *pgdat = NODE_DATA(nid);
5040 unsigned long pfn;
5041 unsigned long nr_initialised = 0;
5042 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5043 struct memblock_region *r = NULL, *tmp;
5044 #endif
5046 if (highest_memmap_pfn < end_pfn - 1)
5047 highest_memmap_pfn = end_pfn - 1;
5050 * Honor reservation requested by the driver for this ZONE_DEVICE
5051 * memory
5053 if (altmap && start_pfn == altmap->base_pfn)
5054 start_pfn += altmap->reserve;
5056 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5058 * There can be holes in boot-time mem_map[]s handed to this
5059 * function. They do not exist on hotplugged memory.
5061 if (context != MEMMAP_EARLY)
5062 goto not_early;
5064 if (!early_pfn_valid(pfn))
5065 continue;
5066 if (!early_pfn_in_nid(pfn, nid))
5067 continue;
5068 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5069 break;
5071 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5073 * Check given memblock attribute by firmware which can affect
5074 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5075 * mirrored, it's an overlapped memmap init. skip it.
5077 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5078 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5079 for_each_memblock(memory, tmp)
5080 if (pfn < memblock_region_memory_end_pfn(tmp))
5081 break;
5082 r = tmp;
5084 if (pfn >= memblock_region_memory_base_pfn(r) &&
5085 memblock_is_mirror(r)) {
5086 /* already initialized as NORMAL */
5087 pfn = memblock_region_memory_end_pfn(r);
5088 continue;
5091 #endif
5093 not_early:
5095 * Mark the block movable so that blocks are reserved for
5096 * movable at startup. This will force kernel allocations
5097 * to reserve their blocks rather than leaking throughout
5098 * the address space during boot when many long-lived
5099 * kernel allocations are made.
5101 * bitmap is created for zone's valid pfn range. but memmap
5102 * can be created for invalid pages (for alignment)
5103 * check here not to call set_pageblock_migratetype() against
5104 * pfn out of zone.
5106 if (!(pfn & (pageblock_nr_pages - 1))) {
5107 struct page *page = pfn_to_page(pfn);
5109 __init_single_page(page, pfn, zone, nid);
5110 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5111 } else {
5112 __init_single_pfn(pfn, zone, nid);
5117 static void __meminit zone_init_free_lists(struct zone *zone)
5119 unsigned int order, t;
5120 for_each_migratetype_order(order, t) {
5121 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5122 zone->free_area[order].nr_free = 0;
5126 #ifndef __HAVE_ARCH_MEMMAP_INIT
5127 #define memmap_init(size, nid, zone, start_pfn) \
5128 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5129 #endif
5131 static int zone_batchsize(struct zone *zone)
5133 #ifdef CONFIG_MMU
5134 int batch;
5137 * The per-cpu-pages pools are set to around 1000th of the
5138 * size of the zone. But no more than 1/2 of a meg.
5140 * OK, so we don't know how big the cache is. So guess.
5142 batch = zone->managed_pages / 1024;
5143 if (batch * PAGE_SIZE > 512 * 1024)
5144 batch = (512 * 1024) / PAGE_SIZE;
5145 batch /= 4; /* We effectively *= 4 below */
5146 if (batch < 1)
5147 batch = 1;
5150 * Clamp the batch to a 2^n - 1 value. Having a power
5151 * of 2 value was found to be more likely to have
5152 * suboptimal cache aliasing properties in some cases.
5154 * For example if 2 tasks are alternately allocating
5155 * batches of pages, one task can end up with a lot
5156 * of pages of one half of the possible page colors
5157 * and the other with pages of the other colors.
5159 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5161 return batch;
5163 #else
5164 /* The deferral and batching of frees should be suppressed under NOMMU
5165 * conditions.
5167 * The problem is that NOMMU needs to be able to allocate large chunks
5168 * of contiguous memory as there's no hardware page translation to
5169 * assemble apparent contiguous memory from discontiguous pages.
5171 * Queueing large contiguous runs of pages for batching, however,
5172 * causes the pages to actually be freed in smaller chunks. As there
5173 * can be a significant delay between the individual batches being
5174 * recycled, this leads to the once large chunks of space being
5175 * fragmented and becoming unavailable for high-order allocations.
5177 return 0;
5178 #endif
5182 * pcp->high and pcp->batch values are related and dependent on one another:
5183 * ->batch must never be higher then ->high.
5184 * The following function updates them in a safe manner without read side
5185 * locking.
5187 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5188 * those fields changing asynchronously (acording the the above rule).
5190 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5191 * outside of boot time (or some other assurance that no concurrent updaters
5192 * exist).
5194 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5195 unsigned long batch)
5197 /* start with a fail safe value for batch */
5198 pcp->batch = 1;
5199 smp_wmb();
5201 /* Update high, then batch, in order */
5202 pcp->high = high;
5203 smp_wmb();
5205 pcp->batch = batch;
5208 /* a companion to pageset_set_high() */
5209 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5211 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5214 static void pageset_init(struct per_cpu_pageset *p)
5216 struct per_cpu_pages *pcp;
5217 int migratetype;
5219 memset(p, 0, sizeof(*p));
5221 pcp = &p->pcp;
5222 pcp->count = 0;
5223 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5224 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5227 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5229 pageset_init(p);
5230 pageset_set_batch(p, batch);
5234 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5235 * to the value high for the pageset p.
5237 static void pageset_set_high(struct per_cpu_pageset *p,
5238 unsigned long high)
5240 unsigned long batch = max(1UL, high / 4);
5241 if ((high / 4) > (PAGE_SHIFT * 8))
5242 batch = PAGE_SHIFT * 8;
5244 pageset_update(&p->pcp, high, batch);
5247 static void pageset_set_high_and_batch(struct zone *zone,
5248 struct per_cpu_pageset *pcp)
5250 if (percpu_pagelist_fraction)
5251 pageset_set_high(pcp,
5252 (zone->managed_pages /
5253 percpu_pagelist_fraction));
5254 else
5255 pageset_set_batch(pcp, zone_batchsize(zone));
5258 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5260 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5262 pageset_init(pcp);
5263 pageset_set_high_and_batch(zone, pcp);
5266 static void __meminit setup_zone_pageset(struct zone *zone)
5268 int cpu;
5269 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5270 for_each_possible_cpu(cpu)
5271 zone_pageset_init(zone, cpu);
5275 * Allocate per cpu pagesets and initialize them.
5276 * Before this call only boot pagesets were available.
5278 void __init setup_per_cpu_pageset(void)
5280 struct pglist_data *pgdat;
5281 struct zone *zone;
5283 for_each_populated_zone(zone)
5284 setup_zone_pageset(zone);
5286 for_each_online_pgdat(pgdat)
5287 pgdat->per_cpu_nodestats =
5288 alloc_percpu(struct per_cpu_nodestat);
5291 static __meminit void zone_pcp_init(struct zone *zone)
5294 * per cpu subsystem is not up at this point. The following code
5295 * relies on the ability of the linker to provide the
5296 * offset of a (static) per cpu variable into the per cpu area.
5298 zone->pageset = &boot_pageset;
5300 if (populated_zone(zone))
5301 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5302 zone->name, zone->present_pages,
5303 zone_batchsize(zone));
5306 int __meminit init_currently_empty_zone(struct zone *zone,
5307 unsigned long zone_start_pfn,
5308 unsigned long size)
5310 struct pglist_data *pgdat = zone->zone_pgdat;
5312 pgdat->nr_zones = zone_idx(zone) + 1;
5314 zone->zone_start_pfn = zone_start_pfn;
5316 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5317 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5318 pgdat->node_id,
5319 (unsigned long)zone_idx(zone),
5320 zone_start_pfn, (zone_start_pfn + size));
5322 zone_init_free_lists(zone);
5323 zone->initialized = 1;
5325 return 0;
5328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5329 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5332 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5334 int __meminit __early_pfn_to_nid(unsigned long pfn,
5335 struct mminit_pfnnid_cache *state)
5337 unsigned long start_pfn, end_pfn;
5338 int nid;
5340 if (state->last_start <= pfn && pfn < state->last_end)
5341 return state->last_nid;
5343 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5344 if (nid != -1) {
5345 state->last_start = start_pfn;
5346 state->last_end = end_pfn;
5347 state->last_nid = nid;
5350 return nid;
5352 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5355 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5356 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5357 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5359 * If an architecture guarantees that all ranges registered contain no holes
5360 * and may be freed, this this function may be used instead of calling
5361 * memblock_free_early_nid() manually.
5363 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5365 unsigned long start_pfn, end_pfn;
5366 int i, this_nid;
5368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5369 start_pfn = min(start_pfn, max_low_pfn);
5370 end_pfn = min(end_pfn, max_low_pfn);
5372 if (start_pfn < end_pfn)
5373 memblock_free_early_nid(PFN_PHYS(start_pfn),
5374 (end_pfn - start_pfn) << PAGE_SHIFT,
5375 this_nid);
5380 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5381 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5383 * If an architecture guarantees that all ranges registered contain no holes and may
5384 * be freed, this function may be used instead of calling memory_present() manually.
5386 void __init sparse_memory_present_with_active_regions(int nid)
5388 unsigned long start_pfn, end_pfn;
5389 int i, this_nid;
5391 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5392 memory_present(this_nid, start_pfn, end_pfn);
5396 * get_pfn_range_for_nid - Return the start and end page frames for a node
5397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5401 * It returns the start and end page frame of a node based on information
5402 * provided by memblock_set_node(). If called for a node
5403 * with no available memory, a warning is printed and the start and end
5404 * PFNs will be 0.
5406 void __meminit get_pfn_range_for_nid(unsigned int nid,
5407 unsigned long *start_pfn, unsigned long *end_pfn)
5409 unsigned long this_start_pfn, this_end_pfn;
5410 int i;
5412 *start_pfn = -1UL;
5413 *end_pfn = 0;
5415 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5416 *start_pfn = min(*start_pfn, this_start_pfn);
5417 *end_pfn = max(*end_pfn, this_end_pfn);
5420 if (*start_pfn == -1UL)
5421 *start_pfn = 0;
5425 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5426 * assumption is made that zones within a node are ordered in monotonic
5427 * increasing memory addresses so that the "highest" populated zone is used
5429 static void __init find_usable_zone_for_movable(void)
5431 int zone_index;
5432 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5433 if (zone_index == ZONE_MOVABLE)
5434 continue;
5436 if (arch_zone_highest_possible_pfn[zone_index] >
5437 arch_zone_lowest_possible_pfn[zone_index])
5438 break;
5441 VM_BUG_ON(zone_index == -1);
5442 movable_zone = zone_index;
5446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5447 * because it is sized independent of architecture. Unlike the other zones,
5448 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5449 * in each node depending on the size of each node and how evenly kernelcore
5450 * is distributed. This helper function adjusts the zone ranges
5451 * provided by the architecture for a given node by using the end of the
5452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5453 * zones within a node are in order of monotonic increases memory addresses
5455 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5456 unsigned long zone_type,
5457 unsigned long node_start_pfn,
5458 unsigned long node_end_pfn,
5459 unsigned long *zone_start_pfn,
5460 unsigned long *zone_end_pfn)
5462 /* Only adjust if ZONE_MOVABLE is on this node */
5463 if (zone_movable_pfn[nid]) {
5464 /* Size ZONE_MOVABLE */
5465 if (zone_type == ZONE_MOVABLE) {
5466 *zone_start_pfn = zone_movable_pfn[nid];
5467 *zone_end_pfn = min(node_end_pfn,
5468 arch_zone_highest_possible_pfn[movable_zone]);
5470 /* Adjust for ZONE_MOVABLE starting within this range */
5471 } else if (!mirrored_kernelcore &&
5472 *zone_start_pfn < zone_movable_pfn[nid] &&
5473 *zone_end_pfn > zone_movable_pfn[nid]) {
5474 *zone_end_pfn = zone_movable_pfn[nid];
5476 /* Check if this whole range is within ZONE_MOVABLE */
5477 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5478 *zone_start_pfn = *zone_end_pfn;
5483 * Return the number of pages a zone spans in a node, including holes
5484 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5486 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5487 unsigned long zone_type,
5488 unsigned long node_start_pfn,
5489 unsigned long node_end_pfn,
5490 unsigned long *zone_start_pfn,
5491 unsigned long *zone_end_pfn,
5492 unsigned long *ignored)
5494 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5495 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5496 /* When hotadd a new node from cpu_up(), the node should be empty */
5497 if (!node_start_pfn && !node_end_pfn)
5498 return 0;
5500 /* Get the start and end of the zone */
5501 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5502 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5503 adjust_zone_range_for_zone_movable(nid, zone_type,
5504 node_start_pfn, node_end_pfn,
5505 zone_start_pfn, zone_end_pfn);
5507 /* Check that this node has pages within the zone's required range */
5508 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5509 return 0;
5511 /* Move the zone boundaries inside the node if necessary */
5512 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5513 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5515 /* Return the spanned pages */
5516 return *zone_end_pfn - *zone_start_pfn;
5520 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5521 * then all holes in the requested range will be accounted for.
5523 unsigned long __meminit __absent_pages_in_range(int nid,
5524 unsigned long range_start_pfn,
5525 unsigned long range_end_pfn)
5527 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5528 unsigned long start_pfn, end_pfn;
5529 int i;
5531 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5532 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5533 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5534 nr_absent -= end_pfn - start_pfn;
5536 return nr_absent;
5540 * absent_pages_in_range - Return number of page frames in holes within a range
5541 * @start_pfn: The start PFN to start searching for holes
5542 * @end_pfn: The end PFN to stop searching for holes
5544 * It returns the number of pages frames in memory holes within a range.
5546 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5547 unsigned long end_pfn)
5549 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5552 /* Return the number of page frames in holes in a zone on a node */
5553 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5554 unsigned long zone_type,
5555 unsigned long node_start_pfn,
5556 unsigned long node_end_pfn,
5557 unsigned long *ignored)
5559 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5560 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5561 unsigned long zone_start_pfn, zone_end_pfn;
5562 unsigned long nr_absent;
5564 /* When hotadd a new node from cpu_up(), the node should be empty */
5565 if (!node_start_pfn && !node_end_pfn)
5566 return 0;
5568 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5569 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5571 adjust_zone_range_for_zone_movable(nid, zone_type,
5572 node_start_pfn, node_end_pfn,
5573 &zone_start_pfn, &zone_end_pfn);
5574 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5577 * ZONE_MOVABLE handling.
5578 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5579 * and vice versa.
5581 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5582 unsigned long start_pfn, end_pfn;
5583 struct memblock_region *r;
5585 for_each_memblock(memory, r) {
5586 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5587 zone_start_pfn, zone_end_pfn);
5588 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5589 zone_start_pfn, zone_end_pfn);
5591 if (zone_type == ZONE_MOVABLE &&
5592 memblock_is_mirror(r))
5593 nr_absent += end_pfn - start_pfn;
5595 if (zone_type == ZONE_NORMAL &&
5596 !memblock_is_mirror(r))
5597 nr_absent += end_pfn - start_pfn;
5601 return nr_absent;
5604 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5605 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5606 unsigned long zone_type,
5607 unsigned long node_start_pfn,
5608 unsigned long node_end_pfn,
5609 unsigned long *zone_start_pfn,
5610 unsigned long *zone_end_pfn,
5611 unsigned long *zones_size)
5613 unsigned int zone;
5615 *zone_start_pfn = node_start_pfn;
5616 for (zone = 0; zone < zone_type; zone++)
5617 *zone_start_pfn += zones_size[zone];
5619 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5621 return zones_size[zone_type];
5624 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5625 unsigned long zone_type,
5626 unsigned long node_start_pfn,
5627 unsigned long node_end_pfn,
5628 unsigned long *zholes_size)
5630 if (!zholes_size)
5631 return 0;
5633 return zholes_size[zone_type];
5636 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5638 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5639 unsigned long node_start_pfn,
5640 unsigned long node_end_pfn,
5641 unsigned long *zones_size,
5642 unsigned long *zholes_size)
5644 unsigned long realtotalpages = 0, totalpages = 0;
5645 enum zone_type i;
5647 for (i = 0; i < MAX_NR_ZONES; i++) {
5648 struct zone *zone = pgdat->node_zones + i;
5649 unsigned long zone_start_pfn, zone_end_pfn;
5650 unsigned long size, real_size;
5652 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5653 node_start_pfn,
5654 node_end_pfn,
5655 &zone_start_pfn,
5656 &zone_end_pfn,
5657 zones_size);
5658 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5659 node_start_pfn, node_end_pfn,
5660 zholes_size);
5661 if (size)
5662 zone->zone_start_pfn = zone_start_pfn;
5663 else
5664 zone->zone_start_pfn = 0;
5665 zone->spanned_pages = size;
5666 zone->present_pages = real_size;
5668 totalpages += size;
5669 realtotalpages += real_size;
5672 pgdat->node_spanned_pages = totalpages;
5673 pgdat->node_present_pages = realtotalpages;
5674 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5675 realtotalpages);
5678 #ifndef CONFIG_SPARSEMEM
5680 * Calculate the size of the zone->blockflags rounded to an unsigned long
5681 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5682 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5683 * round what is now in bits to nearest long in bits, then return it in
5684 * bytes.
5686 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5688 unsigned long usemapsize;
5690 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5691 usemapsize = roundup(zonesize, pageblock_nr_pages);
5692 usemapsize = usemapsize >> pageblock_order;
5693 usemapsize *= NR_PAGEBLOCK_BITS;
5694 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5696 return usemapsize / 8;
5699 static void __init setup_usemap(struct pglist_data *pgdat,
5700 struct zone *zone,
5701 unsigned long zone_start_pfn,
5702 unsigned long zonesize)
5704 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5705 zone->pageblock_flags = NULL;
5706 if (usemapsize)
5707 zone->pageblock_flags =
5708 memblock_virt_alloc_node_nopanic(usemapsize,
5709 pgdat->node_id);
5711 #else
5712 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5713 unsigned long zone_start_pfn, unsigned long zonesize) {}
5714 #endif /* CONFIG_SPARSEMEM */
5716 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5718 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5719 void __paginginit set_pageblock_order(void)
5721 unsigned int order;
5723 /* Check that pageblock_nr_pages has not already been setup */
5724 if (pageblock_order)
5725 return;
5727 if (HPAGE_SHIFT > PAGE_SHIFT)
5728 order = HUGETLB_PAGE_ORDER;
5729 else
5730 order = MAX_ORDER - 1;
5733 * Assume the largest contiguous order of interest is a huge page.
5734 * This value may be variable depending on boot parameters on IA64 and
5735 * powerpc.
5737 pageblock_order = order;
5739 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5742 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5743 * is unused as pageblock_order is set at compile-time. See
5744 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5745 * the kernel config
5747 void __paginginit set_pageblock_order(void)
5751 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5753 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5754 unsigned long present_pages)
5756 unsigned long pages = spanned_pages;
5759 * Provide a more accurate estimation if there are holes within
5760 * the zone and SPARSEMEM is in use. If there are holes within the
5761 * zone, each populated memory region may cost us one or two extra
5762 * memmap pages due to alignment because memmap pages for each
5763 * populated regions may not naturally algined on page boundary.
5764 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5766 if (spanned_pages > present_pages + (present_pages >> 4) &&
5767 IS_ENABLED(CONFIG_SPARSEMEM))
5768 pages = present_pages;
5770 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5774 * Set up the zone data structures:
5775 * - mark all pages reserved
5776 * - mark all memory queues empty
5777 * - clear the memory bitmaps
5779 * NOTE: pgdat should get zeroed by caller.
5781 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5783 enum zone_type j;
5784 int nid = pgdat->node_id;
5785 int ret;
5787 pgdat_resize_init(pgdat);
5788 #ifdef CONFIG_NUMA_BALANCING
5789 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5790 pgdat->numabalancing_migrate_nr_pages = 0;
5791 pgdat->numabalancing_migrate_next_window = jiffies;
5792 #endif
5793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5794 spin_lock_init(&pgdat->split_queue_lock);
5795 INIT_LIST_HEAD(&pgdat->split_queue);
5796 pgdat->split_queue_len = 0;
5797 #endif
5798 init_waitqueue_head(&pgdat->kswapd_wait);
5799 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5800 #ifdef CONFIG_COMPACTION
5801 init_waitqueue_head(&pgdat->kcompactd_wait);
5802 #endif
5803 pgdat_page_ext_init(pgdat);
5804 spin_lock_init(&pgdat->lru_lock);
5805 lruvec_init(node_lruvec(pgdat));
5807 for (j = 0; j < MAX_NR_ZONES; j++) {
5808 struct zone *zone = pgdat->node_zones + j;
5809 unsigned long size, realsize, freesize, memmap_pages;
5810 unsigned long zone_start_pfn = zone->zone_start_pfn;
5812 size = zone->spanned_pages;
5813 realsize = freesize = zone->present_pages;
5816 * Adjust freesize so that it accounts for how much memory
5817 * is used by this zone for memmap. This affects the watermark
5818 * and per-cpu initialisations
5820 memmap_pages = calc_memmap_size(size, realsize);
5821 if (!is_highmem_idx(j)) {
5822 if (freesize >= memmap_pages) {
5823 freesize -= memmap_pages;
5824 if (memmap_pages)
5825 printk(KERN_DEBUG
5826 " %s zone: %lu pages used for memmap\n",
5827 zone_names[j], memmap_pages);
5828 } else
5829 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5830 zone_names[j], memmap_pages, freesize);
5833 /* Account for reserved pages */
5834 if (j == 0 && freesize > dma_reserve) {
5835 freesize -= dma_reserve;
5836 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5837 zone_names[0], dma_reserve);
5840 if (!is_highmem_idx(j))
5841 nr_kernel_pages += freesize;
5842 /* Charge for highmem memmap if there are enough kernel pages */
5843 else if (nr_kernel_pages > memmap_pages * 2)
5844 nr_kernel_pages -= memmap_pages;
5845 nr_all_pages += freesize;
5848 * Set an approximate value for lowmem here, it will be adjusted
5849 * when the bootmem allocator frees pages into the buddy system.
5850 * And all highmem pages will be managed by the buddy system.
5852 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5853 #ifdef CONFIG_NUMA
5854 zone->node = nid;
5855 #endif
5856 zone->name = zone_names[j];
5857 zone->zone_pgdat = pgdat;
5858 spin_lock_init(&zone->lock);
5859 zone_seqlock_init(zone);
5860 zone_pcp_init(zone);
5862 if (!size)
5863 continue;
5865 set_pageblock_order();
5866 setup_usemap(pgdat, zone, zone_start_pfn, size);
5867 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5868 BUG_ON(ret);
5869 memmap_init(size, nid, j, zone_start_pfn);
5873 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5875 unsigned long __maybe_unused start = 0;
5876 unsigned long __maybe_unused offset = 0;
5878 /* Skip empty nodes */
5879 if (!pgdat->node_spanned_pages)
5880 return;
5882 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5883 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5884 offset = pgdat->node_start_pfn - start;
5885 /* ia64 gets its own node_mem_map, before this, without bootmem */
5886 if (!pgdat->node_mem_map) {
5887 unsigned long size, end;
5888 struct page *map;
5891 * The zone's endpoints aren't required to be MAX_ORDER
5892 * aligned but the node_mem_map endpoints must be in order
5893 * for the buddy allocator to function correctly.
5895 end = pgdat_end_pfn(pgdat);
5896 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5897 size = (end - start) * sizeof(struct page);
5898 map = alloc_remap(pgdat->node_id, size);
5899 if (!map)
5900 map = memblock_virt_alloc_node_nopanic(size,
5901 pgdat->node_id);
5902 pgdat->node_mem_map = map + offset;
5904 #ifndef CONFIG_NEED_MULTIPLE_NODES
5906 * With no DISCONTIG, the global mem_map is just set as node 0's
5908 if (pgdat == NODE_DATA(0)) {
5909 mem_map = NODE_DATA(0)->node_mem_map;
5910 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5911 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5912 mem_map -= offset;
5913 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5915 #endif
5916 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5919 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5920 unsigned long node_start_pfn, unsigned long *zholes_size)
5922 pg_data_t *pgdat = NODE_DATA(nid);
5923 unsigned long start_pfn = 0;
5924 unsigned long end_pfn = 0;
5926 /* pg_data_t should be reset to zero when it's allocated */
5927 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5929 pgdat->node_id = nid;
5930 pgdat->node_start_pfn = node_start_pfn;
5931 pgdat->per_cpu_nodestats = NULL;
5932 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5933 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5934 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5935 (u64)start_pfn << PAGE_SHIFT,
5936 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5937 #else
5938 start_pfn = node_start_pfn;
5939 #endif
5940 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5941 zones_size, zholes_size);
5943 alloc_node_mem_map(pgdat);
5944 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5945 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5946 nid, (unsigned long)pgdat,
5947 (unsigned long)pgdat->node_mem_map);
5948 #endif
5950 reset_deferred_meminit(pgdat);
5951 free_area_init_core(pgdat);
5954 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5956 #if MAX_NUMNODES > 1
5958 * Figure out the number of possible node ids.
5960 void __init setup_nr_node_ids(void)
5962 unsigned int highest;
5964 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5965 nr_node_ids = highest + 1;
5967 #endif
5970 * node_map_pfn_alignment - determine the maximum internode alignment
5972 * This function should be called after node map is populated and sorted.
5973 * It calculates the maximum power of two alignment which can distinguish
5974 * all the nodes.
5976 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5977 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5978 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5979 * shifted, 1GiB is enough and this function will indicate so.
5981 * This is used to test whether pfn -> nid mapping of the chosen memory
5982 * model has fine enough granularity to avoid incorrect mapping for the
5983 * populated node map.
5985 * Returns the determined alignment in pfn's. 0 if there is no alignment
5986 * requirement (single node).
5988 unsigned long __init node_map_pfn_alignment(void)
5990 unsigned long accl_mask = 0, last_end = 0;
5991 unsigned long start, end, mask;
5992 int last_nid = -1;
5993 int i, nid;
5995 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5996 if (!start || last_nid < 0 || last_nid == nid) {
5997 last_nid = nid;
5998 last_end = end;
5999 continue;
6003 * Start with a mask granular enough to pin-point to the
6004 * start pfn and tick off bits one-by-one until it becomes
6005 * too coarse to separate the current node from the last.
6007 mask = ~((1 << __ffs(start)) - 1);
6008 while (mask && last_end <= (start & (mask << 1)))
6009 mask <<= 1;
6011 /* accumulate all internode masks */
6012 accl_mask |= mask;
6015 /* convert mask to number of pages */
6016 return ~accl_mask + 1;
6019 /* Find the lowest pfn for a node */
6020 static unsigned long __init find_min_pfn_for_node(int nid)
6022 unsigned long min_pfn = ULONG_MAX;
6023 unsigned long start_pfn;
6024 int i;
6026 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6027 min_pfn = min(min_pfn, start_pfn);
6029 if (min_pfn == ULONG_MAX) {
6030 pr_warn("Could not find start_pfn for node %d\n", nid);
6031 return 0;
6034 return min_pfn;
6038 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6040 * It returns the minimum PFN based on information provided via
6041 * memblock_set_node().
6043 unsigned long __init find_min_pfn_with_active_regions(void)
6045 return find_min_pfn_for_node(MAX_NUMNODES);
6049 * early_calculate_totalpages()
6050 * Sum pages in active regions for movable zone.
6051 * Populate N_MEMORY for calculating usable_nodes.
6053 static unsigned long __init early_calculate_totalpages(void)
6055 unsigned long totalpages = 0;
6056 unsigned long start_pfn, end_pfn;
6057 int i, nid;
6059 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6060 unsigned long pages = end_pfn - start_pfn;
6062 totalpages += pages;
6063 if (pages)
6064 node_set_state(nid, N_MEMORY);
6066 return totalpages;
6070 * Find the PFN the Movable zone begins in each node. Kernel memory
6071 * is spread evenly between nodes as long as the nodes have enough
6072 * memory. When they don't, some nodes will have more kernelcore than
6073 * others
6075 static void __init find_zone_movable_pfns_for_nodes(void)
6077 int i, nid;
6078 unsigned long usable_startpfn;
6079 unsigned long kernelcore_node, kernelcore_remaining;
6080 /* save the state before borrow the nodemask */
6081 nodemask_t saved_node_state = node_states[N_MEMORY];
6082 unsigned long totalpages = early_calculate_totalpages();
6083 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6084 struct memblock_region *r;
6086 /* Need to find movable_zone earlier when movable_node is specified. */
6087 find_usable_zone_for_movable();
6090 * If movable_node is specified, ignore kernelcore and movablecore
6091 * options.
6093 if (movable_node_is_enabled()) {
6094 for_each_memblock(memory, r) {
6095 if (!memblock_is_hotpluggable(r))
6096 continue;
6098 nid = r->nid;
6100 usable_startpfn = PFN_DOWN(r->base);
6101 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6102 min(usable_startpfn, zone_movable_pfn[nid]) :
6103 usable_startpfn;
6106 goto out2;
6110 * If kernelcore=mirror is specified, ignore movablecore option
6112 if (mirrored_kernelcore) {
6113 bool mem_below_4gb_not_mirrored = false;
6115 for_each_memblock(memory, r) {
6116 if (memblock_is_mirror(r))
6117 continue;
6119 nid = r->nid;
6121 usable_startpfn = memblock_region_memory_base_pfn(r);
6123 if (usable_startpfn < 0x100000) {
6124 mem_below_4gb_not_mirrored = true;
6125 continue;
6128 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6129 min(usable_startpfn, zone_movable_pfn[nid]) :
6130 usable_startpfn;
6133 if (mem_below_4gb_not_mirrored)
6134 pr_warn("This configuration results in unmirrored kernel memory.");
6136 goto out2;
6140 * If movablecore=nn[KMG] was specified, calculate what size of
6141 * kernelcore that corresponds so that memory usable for
6142 * any allocation type is evenly spread. If both kernelcore
6143 * and movablecore are specified, then the value of kernelcore
6144 * will be used for required_kernelcore if it's greater than
6145 * what movablecore would have allowed.
6147 if (required_movablecore) {
6148 unsigned long corepages;
6151 * Round-up so that ZONE_MOVABLE is at least as large as what
6152 * was requested by the user
6154 required_movablecore =
6155 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6156 required_movablecore = min(totalpages, required_movablecore);
6157 corepages = totalpages - required_movablecore;
6159 required_kernelcore = max(required_kernelcore, corepages);
6163 * If kernelcore was not specified or kernelcore size is larger
6164 * than totalpages, there is no ZONE_MOVABLE.
6166 if (!required_kernelcore || required_kernelcore >= totalpages)
6167 goto out;
6169 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6170 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6172 restart:
6173 /* Spread kernelcore memory as evenly as possible throughout nodes */
6174 kernelcore_node = required_kernelcore / usable_nodes;
6175 for_each_node_state(nid, N_MEMORY) {
6176 unsigned long start_pfn, end_pfn;
6179 * Recalculate kernelcore_node if the division per node
6180 * now exceeds what is necessary to satisfy the requested
6181 * amount of memory for the kernel
6183 if (required_kernelcore < kernelcore_node)
6184 kernelcore_node = required_kernelcore / usable_nodes;
6187 * As the map is walked, we track how much memory is usable
6188 * by the kernel using kernelcore_remaining. When it is
6189 * 0, the rest of the node is usable by ZONE_MOVABLE
6191 kernelcore_remaining = kernelcore_node;
6193 /* Go through each range of PFNs within this node */
6194 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6195 unsigned long size_pages;
6197 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6198 if (start_pfn >= end_pfn)
6199 continue;
6201 /* Account for what is only usable for kernelcore */
6202 if (start_pfn < usable_startpfn) {
6203 unsigned long kernel_pages;
6204 kernel_pages = min(end_pfn, usable_startpfn)
6205 - start_pfn;
6207 kernelcore_remaining -= min(kernel_pages,
6208 kernelcore_remaining);
6209 required_kernelcore -= min(kernel_pages,
6210 required_kernelcore);
6212 /* Continue if range is now fully accounted */
6213 if (end_pfn <= usable_startpfn) {
6216 * Push zone_movable_pfn to the end so
6217 * that if we have to rebalance
6218 * kernelcore across nodes, we will
6219 * not double account here
6221 zone_movable_pfn[nid] = end_pfn;
6222 continue;
6224 start_pfn = usable_startpfn;
6228 * The usable PFN range for ZONE_MOVABLE is from
6229 * start_pfn->end_pfn. Calculate size_pages as the
6230 * number of pages used as kernelcore
6232 size_pages = end_pfn - start_pfn;
6233 if (size_pages > kernelcore_remaining)
6234 size_pages = kernelcore_remaining;
6235 zone_movable_pfn[nid] = start_pfn + size_pages;
6238 * Some kernelcore has been met, update counts and
6239 * break if the kernelcore for this node has been
6240 * satisfied
6242 required_kernelcore -= min(required_kernelcore,
6243 size_pages);
6244 kernelcore_remaining -= size_pages;
6245 if (!kernelcore_remaining)
6246 break;
6251 * If there is still required_kernelcore, we do another pass with one
6252 * less node in the count. This will push zone_movable_pfn[nid] further
6253 * along on the nodes that still have memory until kernelcore is
6254 * satisfied
6256 usable_nodes--;
6257 if (usable_nodes && required_kernelcore > usable_nodes)
6258 goto restart;
6260 out2:
6261 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6262 for (nid = 0; nid < MAX_NUMNODES; nid++)
6263 zone_movable_pfn[nid] =
6264 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6266 out:
6267 /* restore the node_state */
6268 node_states[N_MEMORY] = saved_node_state;
6271 /* Any regular or high memory on that node ? */
6272 static void check_for_memory(pg_data_t *pgdat, int nid)
6274 enum zone_type zone_type;
6276 if (N_MEMORY == N_NORMAL_MEMORY)
6277 return;
6279 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6280 struct zone *zone = &pgdat->node_zones[zone_type];
6281 if (populated_zone(zone)) {
6282 node_set_state(nid, N_HIGH_MEMORY);
6283 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6284 zone_type <= ZONE_NORMAL)
6285 node_set_state(nid, N_NORMAL_MEMORY);
6286 break;
6292 * free_area_init_nodes - Initialise all pg_data_t and zone data
6293 * @max_zone_pfn: an array of max PFNs for each zone
6295 * This will call free_area_init_node() for each active node in the system.
6296 * Using the page ranges provided by memblock_set_node(), the size of each
6297 * zone in each node and their holes is calculated. If the maximum PFN
6298 * between two adjacent zones match, it is assumed that the zone is empty.
6299 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6300 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6301 * starts where the previous one ended. For example, ZONE_DMA32 starts
6302 * at arch_max_dma_pfn.
6304 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6306 unsigned long start_pfn, end_pfn;
6307 int i, nid;
6309 /* Record where the zone boundaries are */
6310 memset(arch_zone_lowest_possible_pfn, 0,
6311 sizeof(arch_zone_lowest_possible_pfn));
6312 memset(arch_zone_highest_possible_pfn, 0,
6313 sizeof(arch_zone_highest_possible_pfn));
6315 start_pfn = find_min_pfn_with_active_regions();
6317 for (i = 0; i < MAX_NR_ZONES; i++) {
6318 if (i == ZONE_MOVABLE)
6319 continue;
6321 end_pfn = max(max_zone_pfn[i], start_pfn);
6322 arch_zone_lowest_possible_pfn[i] = start_pfn;
6323 arch_zone_highest_possible_pfn[i] = end_pfn;
6325 start_pfn = end_pfn;
6327 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6328 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6330 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6331 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6332 find_zone_movable_pfns_for_nodes();
6334 /* Print out the zone ranges */
6335 pr_info("Zone ranges:\n");
6336 for (i = 0; i < MAX_NR_ZONES; i++) {
6337 if (i == ZONE_MOVABLE)
6338 continue;
6339 pr_info(" %-8s ", zone_names[i]);
6340 if (arch_zone_lowest_possible_pfn[i] ==
6341 arch_zone_highest_possible_pfn[i])
6342 pr_cont("empty\n");
6343 else
6344 pr_cont("[mem %#018Lx-%#018Lx]\n",
6345 (u64)arch_zone_lowest_possible_pfn[i]
6346 << PAGE_SHIFT,
6347 ((u64)arch_zone_highest_possible_pfn[i]
6348 << PAGE_SHIFT) - 1);
6351 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6352 pr_info("Movable zone start for each node\n");
6353 for (i = 0; i < MAX_NUMNODES; i++) {
6354 if (zone_movable_pfn[i])
6355 pr_info(" Node %d: %#018Lx\n", i,
6356 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6359 /* Print out the early node map */
6360 pr_info("Early memory node ranges\n");
6361 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6362 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6363 (u64)start_pfn << PAGE_SHIFT,
6364 ((u64)end_pfn << PAGE_SHIFT) - 1);
6366 /* Initialise every node */
6367 mminit_verify_pageflags_layout();
6368 setup_nr_node_ids();
6369 for_each_online_node(nid) {
6370 pg_data_t *pgdat = NODE_DATA(nid);
6371 free_area_init_node(nid, NULL,
6372 find_min_pfn_for_node(nid), NULL);
6374 /* Any memory on that node */
6375 if (pgdat->node_present_pages)
6376 node_set_state(nid, N_MEMORY);
6377 check_for_memory(pgdat, nid);
6381 static int __init cmdline_parse_core(char *p, unsigned long *core)
6383 unsigned long long coremem;
6384 if (!p)
6385 return -EINVAL;
6387 coremem = memparse(p, &p);
6388 *core = coremem >> PAGE_SHIFT;
6390 /* Paranoid check that UL is enough for the coremem value */
6391 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6393 return 0;
6397 * kernelcore=size sets the amount of memory for use for allocations that
6398 * cannot be reclaimed or migrated.
6400 static int __init cmdline_parse_kernelcore(char *p)
6402 /* parse kernelcore=mirror */
6403 if (parse_option_str(p, "mirror")) {
6404 mirrored_kernelcore = true;
6405 return 0;
6408 return cmdline_parse_core(p, &required_kernelcore);
6412 * movablecore=size sets the amount of memory for use for allocations that
6413 * can be reclaimed or migrated.
6415 static int __init cmdline_parse_movablecore(char *p)
6417 return cmdline_parse_core(p, &required_movablecore);
6420 early_param("kernelcore", cmdline_parse_kernelcore);
6421 early_param("movablecore", cmdline_parse_movablecore);
6423 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6425 void adjust_managed_page_count(struct page *page, long count)
6427 spin_lock(&managed_page_count_lock);
6428 page_zone(page)->managed_pages += count;
6429 totalram_pages += count;
6430 #ifdef CONFIG_HIGHMEM
6431 if (PageHighMem(page))
6432 totalhigh_pages += count;
6433 #endif
6434 spin_unlock(&managed_page_count_lock);
6436 EXPORT_SYMBOL(adjust_managed_page_count);
6438 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6440 void *pos;
6441 unsigned long pages = 0;
6443 start = (void *)PAGE_ALIGN((unsigned long)start);
6444 end = (void *)((unsigned long)end & PAGE_MASK);
6445 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6446 if ((unsigned int)poison <= 0xFF)
6447 memset(pos, poison, PAGE_SIZE);
6448 free_reserved_page(virt_to_page(pos));
6451 if (pages && s)
6452 pr_info("Freeing %s memory: %ldK\n",
6453 s, pages << (PAGE_SHIFT - 10));
6455 return pages;
6457 EXPORT_SYMBOL(free_reserved_area);
6459 #ifdef CONFIG_HIGHMEM
6460 void free_highmem_page(struct page *page)
6462 __free_reserved_page(page);
6463 totalram_pages++;
6464 page_zone(page)->managed_pages++;
6465 totalhigh_pages++;
6467 #endif
6470 void __init mem_init_print_info(const char *str)
6472 unsigned long physpages, codesize, datasize, rosize, bss_size;
6473 unsigned long init_code_size, init_data_size;
6475 physpages = get_num_physpages();
6476 codesize = _etext - _stext;
6477 datasize = _edata - _sdata;
6478 rosize = __end_rodata - __start_rodata;
6479 bss_size = __bss_stop - __bss_start;
6480 init_data_size = __init_end - __init_begin;
6481 init_code_size = _einittext - _sinittext;
6484 * Detect special cases and adjust section sizes accordingly:
6485 * 1) .init.* may be embedded into .data sections
6486 * 2) .init.text.* may be out of [__init_begin, __init_end],
6487 * please refer to arch/tile/kernel/vmlinux.lds.S.
6488 * 3) .rodata.* may be embedded into .text or .data sections.
6490 #define adj_init_size(start, end, size, pos, adj) \
6491 do { \
6492 if (start <= pos && pos < end && size > adj) \
6493 size -= adj; \
6494 } while (0)
6496 adj_init_size(__init_begin, __init_end, init_data_size,
6497 _sinittext, init_code_size);
6498 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6499 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6500 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6501 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6503 #undef adj_init_size
6505 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6506 #ifdef CONFIG_HIGHMEM
6507 ", %luK highmem"
6508 #endif
6509 "%s%s)\n",
6510 nr_free_pages() << (PAGE_SHIFT - 10),
6511 physpages << (PAGE_SHIFT - 10),
6512 codesize >> 10, datasize >> 10, rosize >> 10,
6513 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6514 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6515 totalcma_pages << (PAGE_SHIFT - 10),
6516 #ifdef CONFIG_HIGHMEM
6517 totalhigh_pages << (PAGE_SHIFT - 10),
6518 #endif
6519 str ? ", " : "", str ? str : "");
6523 * set_dma_reserve - set the specified number of pages reserved in the first zone
6524 * @new_dma_reserve: The number of pages to mark reserved
6526 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6527 * In the DMA zone, a significant percentage may be consumed by kernel image
6528 * and other unfreeable allocations which can skew the watermarks badly. This
6529 * function may optionally be used to account for unfreeable pages in the
6530 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6531 * smaller per-cpu batchsize.
6533 void __init set_dma_reserve(unsigned long new_dma_reserve)
6535 dma_reserve = new_dma_reserve;
6538 void __init free_area_init(unsigned long *zones_size)
6540 free_area_init_node(0, zones_size,
6541 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6544 static int page_alloc_cpu_notify(struct notifier_block *self,
6545 unsigned long action, void *hcpu)
6547 int cpu = (unsigned long)hcpu;
6549 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6550 lru_add_drain_cpu(cpu);
6551 drain_pages(cpu);
6554 * Spill the event counters of the dead processor
6555 * into the current processors event counters.
6556 * This artificially elevates the count of the current
6557 * processor.
6559 vm_events_fold_cpu(cpu);
6562 * Zero the differential counters of the dead processor
6563 * so that the vm statistics are consistent.
6565 * This is only okay since the processor is dead and cannot
6566 * race with what we are doing.
6568 cpu_vm_stats_fold(cpu);
6570 return NOTIFY_OK;
6573 void __init page_alloc_init(void)
6575 hotcpu_notifier(page_alloc_cpu_notify, 0);
6579 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6580 * or min_free_kbytes changes.
6582 static void calculate_totalreserve_pages(void)
6584 struct pglist_data *pgdat;
6585 unsigned long reserve_pages = 0;
6586 enum zone_type i, j;
6588 for_each_online_pgdat(pgdat) {
6590 pgdat->totalreserve_pages = 0;
6592 for (i = 0; i < MAX_NR_ZONES; i++) {
6593 struct zone *zone = pgdat->node_zones + i;
6594 long max = 0;
6596 /* Find valid and maximum lowmem_reserve in the zone */
6597 for (j = i; j < MAX_NR_ZONES; j++) {
6598 if (zone->lowmem_reserve[j] > max)
6599 max = zone->lowmem_reserve[j];
6602 /* we treat the high watermark as reserved pages. */
6603 max += high_wmark_pages(zone);
6605 if (max > zone->managed_pages)
6606 max = zone->managed_pages;
6608 pgdat->totalreserve_pages += max;
6610 reserve_pages += max;
6613 totalreserve_pages = reserve_pages;
6617 * setup_per_zone_lowmem_reserve - called whenever
6618 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6619 * has a correct pages reserved value, so an adequate number of
6620 * pages are left in the zone after a successful __alloc_pages().
6622 static void setup_per_zone_lowmem_reserve(void)
6624 struct pglist_data *pgdat;
6625 enum zone_type j, idx;
6627 for_each_online_pgdat(pgdat) {
6628 for (j = 0; j < MAX_NR_ZONES; j++) {
6629 struct zone *zone = pgdat->node_zones + j;
6630 unsigned long managed_pages = zone->managed_pages;
6632 zone->lowmem_reserve[j] = 0;
6634 idx = j;
6635 while (idx) {
6636 struct zone *lower_zone;
6638 idx--;
6640 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6641 sysctl_lowmem_reserve_ratio[idx] = 1;
6643 lower_zone = pgdat->node_zones + idx;
6644 lower_zone->lowmem_reserve[j] = managed_pages /
6645 sysctl_lowmem_reserve_ratio[idx];
6646 managed_pages += lower_zone->managed_pages;
6651 /* update totalreserve_pages */
6652 calculate_totalreserve_pages();
6655 static void __setup_per_zone_wmarks(void)
6657 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6658 unsigned long lowmem_pages = 0;
6659 struct zone *zone;
6660 unsigned long flags;
6662 /* Calculate total number of !ZONE_HIGHMEM pages */
6663 for_each_zone(zone) {
6664 if (!is_highmem(zone))
6665 lowmem_pages += zone->managed_pages;
6668 for_each_zone(zone) {
6669 u64 tmp;
6671 spin_lock_irqsave(&zone->lock, flags);
6672 tmp = (u64)pages_min * zone->managed_pages;
6673 do_div(tmp, lowmem_pages);
6674 if (is_highmem(zone)) {
6676 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6677 * need highmem pages, so cap pages_min to a small
6678 * value here.
6680 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6681 * deltas control asynch page reclaim, and so should
6682 * not be capped for highmem.
6684 unsigned long min_pages;
6686 min_pages = zone->managed_pages / 1024;
6687 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6688 zone->watermark[WMARK_MIN] = min_pages;
6689 } else {
6691 * If it's a lowmem zone, reserve a number of pages
6692 * proportionate to the zone's size.
6694 zone->watermark[WMARK_MIN] = tmp;
6698 * Set the kswapd watermarks distance according to the
6699 * scale factor in proportion to available memory, but
6700 * ensure a minimum size on small systems.
6702 tmp = max_t(u64, tmp >> 2,
6703 mult_frac(zone->managed_pages,
6704 watermark_scale_factor, 10000));
6706 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6707 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6709 spin_unlock_irqrestore(&zone->lock, flags);
6712 /* update totalreserve_pages */
6713 calculate_totalreserve_pages();
6717 * setup_per_zone_wmarks - called when min_free_kbytes changes
6718 * or when memory is hot-{added|removed}
6720 * Ensures that the watermark[min,low,high] values for each zone are set
6721 * correctly with respect to min_free_kbytes.
6723 void setup_per_zone_wmarks(void)
6725 mutex_lock(&zonelists_mutex);
6726 __setup_per_zone_wmarks();
6727 mutex_unlock(&zonelists_mutex);
6731 * Initialise min_free_kbytes.
6733 * For small machines we want it small (128k min). For large machines
6734 * we want it large (64MB max). But it is not linear, because network
6735 * bandwidth does not increase linearly with machine size. We use
6737 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6738 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6740 * which yields
6742 * 16MB: 512k
6743 * 32MB: 724k
6744 * 64MB: 1024k
6745 * 128MB: 1448k
6746 * 256MB: 2048k
6747 * 512MB: 2896k
6748 * 1024MB: 4096k
6749 * 2048MB: 5792k
6750 * 4096MB: 8192k
6751 * 8192MB: 11584k
6752 * 16384MB: 16384k
6754 int __meminit init_per_zone_wmark_min(void)
6756 unsigned long lowmem_kbytes;
6757 int new_min_free_kbytes;
6759 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6760 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6762 if (new_min_free_kbytes > user_min_free_kbytes) {
6763 min_free_kbytes = new_min_free_kbytes;
6764 if (min_free_kbytes < 128)
6765 min_free_kbytes = 128;
6766 if (min_free_kbytes > 65536)
6767 min_free_kbytes = 65536;
6768 } else {
6769 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6770 new_min_free_kbytes, user_min_free_kbytes);
6772 setup_per_zone_wmarks();
6773 refresh_zone_stat_thresholds();
6774 setup_per_zone_lowmem_reserve();
6776 #ifdef CONFIG_NUMA
6777 setup_min_unmapped_ratio();
6778 setup_min_slab_ratio();
6779 #endif
6781 return 0;
6783 core_initcall(init_per_zone_wmark_min)
6786 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6787 * that we can call two helper functions whenever min_free_kbytes
6788 * changes.
6790 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6791 void __user *buffer, size_t *length, loff_t *ppos)
6793 int rc;
6795 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6796 if (rc)
6797 return rc;
6799 if (write) {
6800 user_min_free_kbytes = min_free_kbytes;
6801 setup_per_zone_wmarks();
6803 return 0;
6806 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6807 void __user *buffer, size_t *length, loff_t *ppos)
6809 int rc;
6811 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6812 if (rc)
6813 return rc;
6815 if (write)
6816 setup_per_zone_wmarks();
6818 return 0;
6821 #ifdef CONFIG_NUMA
6822 static void setup_min_unmapped_ratio(void)
6824 pg_data_t *pgdat;
6825 struct zone *zone;
6827 for_each_online_pgdat(pgdat)
6828 pgdat->min_unmapped_pages = 0;
6830 for_each_zone(zone)
6831 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6832 sysctl_min_unmapped_ratio) / 100;
6836 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6837 void __user *buffer, size_t *length, loff_t *ppos)
6839 int rc;
6841 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6842 if (rc)
6843 return rc;
6845 setup_min_unmapped_ratio();
6847 return 0;
6850 static void setup_min_slab_ratio(void)
6852 pg_data_t *pgdat;
6853 struct zone *zone;
6855 for_each_online_pgdat(pgdat)
6856 pgdat->min_slab_pages = 0;
6858 for_each_zone(zone)
6859 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6860 sysctl_min_slab_ratio) / 100;
6863 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6864 void __user *buffer, size_t *length, loff_t *ppos)
6866 int rc;
6868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6869 if (rc)
6870 return rc;
6872 setup_min_slab_ratio();
6874 return 0;
6876 #endif
6879 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6880 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6881 * whenever sysctl_lowmem_reserve_ratio changes.
6883 * The reserve ratio obviously has absolutely no relation with the
6884 * minimum watermarks. The lowmem reserve ratio can only make sense
6885 * if in function of the boot time zone sizes.
6887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6888 void __user *buffer, size_t *length, loff_t *ppos)
6890 proc_dointvec_minmax(table, write, buffer, length, ppos);
6891 setup_per_zone_lowmem_reserve();
6892 return 0;
6896 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6897 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6898 * pagelist can have before it gets flushed back to buddy allocator.
6900 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6901 void __user *buffer, size_t *length, loff_t *ppos)
6903 struct zone *zone;
6904 int old_percpu_pagelist_fraction;
6905 int ret;
6907 mutex_lock(&pcp_batch_high_lock);
6908 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6910 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6911 if (!write || ret < 0)
6912 goto out;
6914 /* Sanity checking to avoid pcp imbalance */
6915 if (percpu_pagelist_fraction &&
6916 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6917 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6918 ret = -EINVAL;
6919 goto out;
6922 /* No change? */
6923 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6924 goto out;
6926 for_each_populated_zone(zone) {
6927 unsigned int cpu;
6929 for_each_possible_cpu(cpu)
6930 pageset_set_high_and_batch(zone,
6931 per_cpu_ptr(zone->pageset, cpu));
6933 out:
6934 mutex_unlock(&pcp_batch_high_lock);
6935 return ret;
6938 #ifdef CONFIG_NUMA
6939 int hashdist = HASHDIST_DEFAULT;
6941 static int __init set_hashdist(char *str)
6943 if (!str)
6944 return 0;
6945 hashdist = simple_strtoul(str, &str, 0);
6946 return 1;
6948 __setup("hashdist=", set_hashdist);
6949 #endif
6951 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6953 * Returns the number of pages that arch has reserved but
6954 * is not known to alloc_large_system_hash().
6956 static unsigned long __init arch_reserved_kernel_pages(void)
6958 return 0;
6960 #endif
6963 * allocate a large system hash table from bootmem
6964 * - it is assumed that the hash table must contain an exact power-of-2
6965 * quantity of entries
6966 * - limit is the number of hash buckets, not the total allocation size
6968 void *__init alloc_large_system_hash(const char *tablename,
6969 unsigned long bucketsize,
6970 unsigned long numentries,
6971 int scale,
6972 int flags,
6973 unsigned int *_hash_shift,
6974 unsigned int *_hash_mask,
6975 unsigned long low_limit,
6976 unsigned long high_limit)
6978 unsigned long long max = high_limit;
6979 unsigned long log2qty, size;
6980 void *table = NULL;
6982 /* allow the kernel cmdline to have a say */
6983 if (!numentries) {
6984 /* round applicable memory size up to nearest megabyte */
6985 numentries = nr_kernel_pages;
6986 numentries -= arch_reserved_kernel_pages();
6988 /* It isn't necessary when PAGE_SIZE >= 1MB */
6989 if (PAGE_SHIFT < 20)
6990 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6992 /* limit to 1 bucket per 2^scale bytes of low memory */
6993 if (scale > PAGE_SHIFT)
6994 numentries >>= (scale - PAGE_SHIFT);
6995 else
6996 numentries <<= (PAGE_SHIFT - scale);
6998 /* Make sure we've got at least a 0-order allocation.. */
6999 if (unlikely(flags & HASH_SMALL)) {
7000 /* Makes no sense without HASH_EARLY */
7001 WARN_ON(!(flags & HASH_EARLY));
7002 if (!(numentries >> *_hash_shift)) {
7003 numentries = 1UL << *_hash_shift;
7004 BUG_ON(!numentries);
7006 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7007 numentries = PAGE_SIZE / bucketsize;
7009 numentries = roundup_pow_of_two(numentries);
7011 /* limit allocation size to 1/16 total memory by default */
7012 if (max == 0) {
7013 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7014 do_div(max, bucketsize);
7016 max = min(max, 0x80000000ULL);
7018 if (numentries < low_limit)
7019 numentries = low_limit;
7020 if (numentries > max)
7021 numentries = max;
7023 log2qty = ilog2(numentries);
7025 do {
7026 size = bucketsize << log2qty;
7027 if (flags & HASH_EARLY)
7028 table = memblock_virt_alloc_nopanic(size, 0);
7029 else if (hashdist)
7030 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7031 else {
7033 * If bucketsize is not a power-of-two, we may free
7034 * some pages at the end of hash table which
7035 * alloc_pages_exact() automatically does
7037 if (get_order(size) < MAX_ORDER) {
7038 table = alloc_pages_exact(size, GFP_ATOMIC);
7039 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7042 } while (!table && size > PAGE_SIZE && --log2qty);
7044 if (!table)
7045 panic("Failed to allocate %s hash table\n", tablename);
7047 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7048 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7050 if (_hash_shift)
7051 *_hash_shift = log2qty;
7052 if (_hash_mask)
7053 *_hash_mask = (1 << log2qty) - 1;
7055 return table;
7059 * This function checks whether pageblock includes unmovable pages or not.
7060 * If @count is not zero, it is okay to include less @count unmovable pages
7062 * PageLRU check without isolation or lru_lock could race so that
7063 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7064 * expect this function should be exact.
7066 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7067 bool skip_hwpoisoned_pages)
7069 unsigned long pfn, iter, found;
7070 int mt;
7073 * For avoiding noise data, lru_add_drain_all() should be called
7074 * If ZONE_MOVABLE, the zone never contains unmovable pages
7076 if (zone_idx(zone) == ZONE_MOVABLE)
7077 return false;
7078 mt = get_pageblock_migratetype(page);
7079 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7080 return false;
7082 pfn = page_to_pfn(page);
7083 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7084 unsigned long check = pfn + iter;
7086 if (!pfn_valid_within(check))
7087 continue;
7089 page = pfn_to_page(check);
7092 * Hugepages are not in LRU lists, but they're movable.
7093 * We need not scan over tail pages bacause we don't
7094 * handle each tail page individually in migration.
7096 if (PageHuge(page)) {
7097 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7098 continue;
7102 * We can't use page_count without pin a page
7103 * because another CPU can free compound page.
7104 * This check already skips compound tails of THP
7105 * because their page->_refcount is zero at all time.
7107 if (!page_ref_count(page)) {
7108 if (PageBuddy(page))
7109 iter += (1 << page_order(page)) - 1;
7110 continue;
7114 * The HWPoisoned page may be not in buddy system, and
7115 * page_count() is not 0.
7117 if (skip_hwpoisoned_pages && PageHWPoison(page))
7118 continue;
7120 if (!PageLRU(page))
7121 found++;
7123 * If there are RECLAIMABLE pages, we need to check
7124 * it. But now, memory offline itself doesn't call
7125 * shrink_node_slabs() and it still to be fixed.
7128 * If the page is not RAM, page_count()should be 0.
7129 * we don't need more check. This is an _used_ not-movable page.
7131 * The problematic thing here is PG_reserved pages. PG_reserved
7132 * is set to both of a memory hole page and a _used_ kernel
7133 * page at boot.
7135 if (found > count)
7136 return true;
7138 return false;
7141 bool is_pageblock_removable_nolock(struct page *page)
7143 struct zone *zone;
7144 unsigned long pfn;
7147 * We have to be careful here because we are iterating over memory
7148 * sections which are not zone aware so we might end up outside of
7149 * the zone but still within the section.
7150 * We have to take care about the node as well. If the node is offline
7151 * its NODE_DATA will be NULL - see page_zone.
7153 if (!node_online(page_to_nid(page)))
7154 return false;
7156 zone = page_zone(page);
7157 pfn = page_to_pfn(page);
7158 if (!zone_spans_pfn(zone, pfn))
7159 return false;
7161 return !has_unmovable_pages(zone, page, 0, true);
7164 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7166 static unsigned long pfn_max_align_down(unsigned long pfn)
7168 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7169 pageblock_nr_pages) - 1);
7172 static unsigned long pfn_max_align_up(unsigned long pfn)
7174 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7175 pageblock_nr_pages));
7178 /* [start, end) must belong to a single zone. */
7179 static int __alloc_contig_migrate_range(struct compact_control *cc,
7180 unsigned long start, unsigned long end)
7182 /* This function is based on compact_zone() from compaction.c. */
7183 unsigned long nr_reclaimed;
7184 unsigned long pfn = start;
7185 unsigned int tries = 0;
7186 int ret = 0;
7188 migrate_prep();
7190 while (pfn < end || !list_empty(&cc->migratepages)) {
7191 if (fatal_signal_pending(current)) {
7192 ret = -EINTR;
7193 break;
7196 if (list_empty(&cc->migratepages)) {
7197 cc->nr_migratepages = 0;
7198 pfn = isolate_migratepages_range(cc, pfn, end);
7199 if (!pfn) {
7200 ret = -EINTR;
7201 break;
7203 tries = 0;
7204 } else if (++tries == 5) {
7205 ret = ret < 0 ? ret : -EBUSY;
7206 break;
7209 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7210 &cc->migratepages);
7211 cc->nr_migratepages -= nr_reclaimed;
7213 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7214 NULL, 0, cc->mode, MR_CMA);
7216 if (ret < 0) {
7217 putback_movable_pages(&cc->migratepages);
7218 return ret;
7220 return 0;
7224 * alloc_contig_range() -- tries to allocate given range of pages
7225 * @start: start PFN to allocate
7226 * @end: one-past-the-last PFN to allocate
7227 * @migratetype: migratetype of the underlaying pageblocks (either
7228 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7229 * in range must have the same migratetype and it must
7230 * be either of the two.
7232 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7233 * aligned, however it's the caller's responsibility to guarantee that
7234 * we are the only thread that changes migrate type of pageblocks the
7235 * pages fall in.
7237 * The PFN range must belong to a single zone.
7239 * Returns zero on success or negative error code. On success all
7240 * pages which PFN is in [start, end) are allocated for the caller and
7241 * need to be freed with free_contig_range().
7243 int alloc_contig_range(unsigned long start, unsigned long end,
7244 unsigned migratetype)
7246 unsigned long outer_start, outer_end;
7247 unsigned int order;
7248 int ret = 0;
7250 struct compact_control cc = {
7251 .nr_migratepages = 0,
7252 .order = -1,
7253 .zone = page_zone(pfn_to_page(start)),
7254 .mode = MIGRATE_SYNC,
7255 .ignore_skip_hint = true,
7257 INIT_LIST_HEAD(&cc.migratepages);
7260 * What we do here is we mark all pageblocks in range as
7261 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7262 * have different sizes, and due to the way page allocator
7263 * work, we align the range to biggest of the two pages so
7264 * that page allocator won't try to merge buddies from
7265 * different pageblocks and change MIGRATE_ISOLATE to some
7266 * other migration type.
7268 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7269 * migrate the pages from an unaligned range (ie. pages that
7270 * we are interested in). This will put all the pages in
7271 * range back to page allocator as MIGRATE_ISOLATE.
7273 * When this is done, we take the pages in range from page
7274 * allocator removing them from the buddy system. This way
7275 * page allocator will never consider using them.
7277 * This lets us mark the pageblocks back as
7278 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7279 * aligned range but not in the unaligned, original range are
7280 * put back to page allocator so that buddy can use them.
7283 ret = start_isolate_page_range(pfn_max_align_down(start),
7284 pfn_max_align_up(end), migratetype,
7285 false);
7286 if (ret)
7287 return ret;
7290 * In case of -EBUSY, we'd like to know which page causes problem.
7291 * So, just fall through. test_pages_isolated() has a tracepoint
7292 * which will report the busy page.
7294 * It is possible that busy pages could become available before
7295 * the call to test_pages_isolated, and the range will actually be
7296 * allocated. So, if we fall through be sure to clear ret so that
7297 * -EBUSY is not accidentally used or returned to caller.
7299 ret = __alloc_contig_migrate_range(&cc, start, end);
7300 if (ret && ret != -EBUSY)
7301 goto done;
7302 ret =0;
7305 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7306 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7307 * more, all pages in [start, end) are free in page allocator.
7308 * What we are going to do is to allocate all pages from
7309 * [start, end) (that is remove them from page allocator).
7311 * The only problem is that pages at the beginning and at the
7312 * end of interesting range may be not aligned with pages that
7313 * page allocator holds, ie. they can be part of higher order
7314 * pages. Because of this, we reserve the bigger range and
7315 * once this is done free the pages we are not interested in.
7317 * We don't have to hold zone->lock here because the pages are
7318 * isolated thus they won't get removed from buddy.
7321 lru_add_drain_all();
7322 drain_all_pages(cc.zone);
7324 order = 0;
7325 outer_start = start;
7326 while (!PageBuddy(pfn_to_page(outer_start))) {
7327 if (++order >= MAX_ORDER) {
7328 outer_start = start;
7329 break;
7331 outer_start &= ~0UL << order;
7334 if (outer_start != start) {
7335 order = page_order(pfn_to_page(outer_start));
7338 * outer_start page could be small order buddy page and
7339 * it doesn't include start page. Adjust outer_start
7340 * in this case to report failed page properly
7341 * on tracepoint in test_pages_isolated()
7343 if (outer_start + (1UL << order) <= start)
7344 outer_start = start;
7347 /* Make sure the range is really isolated. */
7348 if (test_pages_isolated(outer_start, end, false)) {
7349 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7350 __func__, outer_start, end);
7351 ret = -EBUSY;
7352 goto done;
7355 /* Grab isolated pages from freelists. */
7356 outer_end = isolate_freepages_range(&cc, outer_start, end);
7357 if (!outer_end) {
7358 ret = -EBUSY;
7359 goto done;
7362 /* Free head and tail (if any) */
7363 if (start != outer_start)
7364 free_contig_range(outer_start, start - outer_start);
7365 if (end != outer_end)
7366 free_contig_range(end, outer_end - end);
7368 done:
7369 undo_isolate_page_range(pfn_max_align_down(start),
7370 pfn_max_align_up(end), migratetype);
7371 return ret;
7374 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7376 unsigned int count = 0;
7378 for (; nr_pages--; pfn++) {
7379 struct page *page = pfn_to_page(pfn);
7381 count += page_count(page) != 1;
7382 __free_page(page);
7384 WARN(count != 0, "%d pages are still in use!\n", count);
7386 #endif
7388 #ifdef CONFIG_MEMORY_HOTPLUG
7390 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7391 * page high values need to be recalulated.
7393 void __meminit zone_pcp_update(struct zone *zone)
7395 unsigned cpu;
7396 mutex_lock(&pcp_batch_high_lock);
7397 for_each_possible_cpu(cpu)
7398 pageset_set_high_and_batch(zone,
7399 per_cpu_ptr(zone->pageset, cpu));
7400 mutex_unlock(&pcp_batch_high_lock);
7402 #endif
7404 void zone_pcp_reset(struct zone *zone)
7406 unsigned long flags;
7407 int cpu;
7408 struct per_cpu_pageset *pset;
7410 /* avoid races with drain_pages() */
7411 local_irq_save(flags);
7412 if (zone->pageset != &boot_pageset) {
7413 for_each_online_cpu(cpu) {
7414 pset = per_cpu_ptr(zone->pageset, cpu);
7415 drain_zonestat(zone, pset);
7417 free_percpu(zone->pageset);
7418 zone->pageset = &boot_pageset;
7420 local_irq_restore(flags);
7423 #ifdef CONFIG_MEMORY_HOTREMOVE
7425 * All pages in the range must be in a single zone and isolated
7426 * before calling this.
7428 void
7429 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7431 struct page *page;
7432 struct zone *zone;
7433 unsigned int order, i;
7434 unsigned long pfn;
7435 unsigned long flags;
7436 /* find the first valid pfn */
7437 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7438 if (pfn_valid(pfn))
7439 break;
7440 if (pfn == end_pfn)
7441 return;
7442 zone = page_zone(pfn_to_page(pfn));
7443 spin_lock_irqsave(&zone->lock, flags);
7444 pfn = start_pfn;
7445 while (pfn < end_pfn) {
7446 if (!pfn_valid(pfn)) {
7447 pfn++;
7448 continue;
7450 page = pfn_to_page(pfn);
7452 * The HWPoisoned page may be not in buddy system, and
7453 * page_count() is not 0.
7455 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7456 pfn++;
7457 SetPageReserved(page);
7458 continue;
7461 BUG_ON(page_count(page));
7462 BUG_ON(!PageBuddy(page));
7463 order = page_order(page);
7464 #ifdef CONFIG_DEBUG_VM
7465 pr_info("remove from free list %lx %d %lx\n",
7466 pfn, 1 << order, end_pfn);
7467 #endif
7468 list_del(&page->lru);
7469 rmv_page_order(page);
7470 zone->free_area[order].nr_free--;
7471 for (i = 0; i < (1 << order); i++)
7472 SetPageReserved((page+i));
7473 pfn += (1 << order);
7475 spin_unlock_irqrestore(&zone->lock, flags);
7477 #endif
7479 bool is_free_buddy_page(struct page *page)
7481 struct zone *zone = page_zone(page);
7482 unsigned long pfn = page_to_pfn(page);
7483 unsigned long flags;
7484 unsigned int order;
7486 spin_lock_irqsave(&zone->lock, flags);
7487 for (order = 0; order < MAX_ORDER; order++) {
7488 struct page *page_head = page - (pfn & ((1 << order) - 1));
7490 if (PageBuddy(page_head) && page_order(page_head) >= order)
7491 break;
7493 spin_unlock_irqrestore(&zone->lock, flags);
7495 return order < MAX_ORDER;