NFC: pn533: Fix wrong GFP flag usage
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-riic.c
blob5f1fca7880b1b28d0c2387b9f7dc414527c23e81
1 /*
2 * Renesas RIIC driver
4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
5 * Copyright (C) 2013 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
14 * some kind of state machine.
16 * 1) The main xfer routine kicks off a transmission by putting the start bit
17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
18 * since we need to send the slave address + RW bit in every case.
20 * 2) TIE sends slave address + RW bit and selects how to continue.
22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
23 * are done, we switch over to the transmission done interrupt (TEIE) and mark
24 * the message as completed (includes sending STOP) there.
26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
27 * needed to start clocking, then we keep receiving until we are done. Note
28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
30 * message to create the final NACK as sketched in the datasheet. This caused
31 * some subtle races (when byte n was processed and byte n+1 was already
32 * waiting), though, and I started with the safe approach.
34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
35 * via NAKIE.
37 * Also check the comments in the interrupt routines for some gory details.
40 #include <linux/clk.h>
41 #include <linux/completion.h>
42 #include <linux/err.h>
43 #include <linux/i2c.h>
44 #include <linux/interrupt.h>
45 #include <linux/io.h>
46 #include <linux/module.h>
47 #include <linux/of.h>
48 #include <linux/platform_device.h>
50 #define RIIC_ICCR1 0x00
51 #define RIIC_ICCR2 0x04
52 #define RIIC_ICMR1 0x08
53 #define RIIC_ICMR3 0x10
54 #define RIIC_ICSER 0x18
55 #define RIIC_ICIER 0x1c
56 #define RIIC_ICSR2 0x24
57 #define RIIC_ICBRL 0x34
58 #define RIIC_ICBRH 0x38
59 #define RIIC_ICDRT 0x3c
60 #define RIIC_ICDRR 0x40
62 #define ICCR1_ICE 0x80
63 #define ICCR1_IICRST 0x40
64 #define ICCR1_SOWP 0x10
66 #define ICCR2_BBSY 0x80
67 #define ICCR2_SP 0x08
68 #define ICCR2_RS 0x04
69 #define ICCR2_ST 0x02
71 #define ICMR1_CKS_MASK 0x70
72 #define ICMR1_BCWP 0x08
73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
75 #define ICMR3_RDRFS 0x20
76 #define ICMR3_ACKWP 0x10
77 #define ICMR3_ACKBT 0x08
79 #define ICIER_TIE 0x80
80 #define ICIER_TEIE 0x40
81 #define ICIER_RIE 0x20
82 #define ICIER_NAKIE 0x10
83 #define ICIER_SPIE 0x08
85 #define ICSR2_NACKF 0x10
87 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
89 #define RIIC_INIT_MSG -1
91 struct riic_dev {
92 void __iomem *base;
93 u8 *buf;
94 struct i2c_msg *msg;
95 int bytes_left;
96 int err;
97 int is_last;
98 struct completion msg_done;
99 struct i2c_adapter adapter;
100 struct clk *clk;
103 struct riic_irq_desc {
104 int res_num;
105 irq_handler_t isr;
106 char *name;
109 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
111 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
114 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
116 struct riic_dev *riic = i2c_get_adapdata(adap);
117 unsigned long time_left;
118 int i, ret;
119 u8 start_bit;
121 ret = clk_prepare_enable(riic->clk);
122 if (ret)
123 return ret;
125 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
126 riic->err = -EBUSY;
127 goto out;
130 reinit_completion(&riic->msg_done);
131 riic->err = 0;
133 writeb(0, riic->base + RIIC_ICSR2);
135 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
136 riic->bytes_left = RIIC_INIT_MSG;
137 riic->buf = msgs[i].buf;
138 riic->msg = &msgs[i];
139 riic->is_last = (i == num - 1);
141 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
143 writeb(start_bit, riic->base + RIIC_ICCR2);
145 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
146 if (time_left == 0)
147 riic->err = -ETIMEDOUT;
149 if (riic->err)
150 break;
152 start_bit = ICCR2_RS;
155 out:
156 clk_disable_unprepare(riic->clk);
158 return riic->err ?: num;
161 static irqreturn_t riic_tdre_isr(int irq, void *data)
163 struct riic_dev *riic = data;
164 u8 val;
166 if (!riic->bytes_left)
167 return IRQ_NONE;
169 if (riic->bytes_left == RIIC_INIT_MSG) {
170 if (riic->msg->flags & I2C_M_RD)
171 /* On read, switch over to receive interrupt */
172 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
173 else
174 /* On write, initialize length */
175 riic->bytes_left = riic->msg->len;
177 val = i2c_8bit_addr_from_msg(riic->msg);
178 } else {
179 val = *riic->buf;
180 riic->buf++;
181 riic->bytes_left--;
185 * Switch to transmission ended interrupt when done. Do check here
186 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
187 * 0 length then)
189 if (riic->bytes_left == 0)
190 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
193 * This acks the TIE interrupt. We get another TIE immediately if our
194 * value could be moved to the shadow shift register right away. So
195 * this must be after updates to ICIER (where we want to disable TIE)!
197 writeb(val, riic->base + RIIC_ICDRT);
199 return IRQ_HANDLED;
202 static irqreturn_t riic_tend_isr(int irq, void *data)
204 struct riic_dev *riic = data;
206 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
207 /* We got a NACKIE */
208 readb(riic->base + RIIC_ICDRR); /* dummy read */
209 riic->err = -ENXIO;
210 } else if (riic->bytes_left) {
211 return IRQ_NONE;
214 if (riic->is_last || riic->err) {
215 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
216 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
217 } else {
218 /* Transfer is complete, but do not send STOP */
219 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
220 complete(&riic->msg_done);
223 return IRQ_HANDLED;
226 static irqreturn_t riic_rdrf_isr(int irq, void *data)
228 struct riic_dev *riic = data;
230 if (!riic->bytes_left)
231 return IRQ_NONE;
233 if (riic->bytes_left == RIIC_INIT_MSG) {
234 riic->bytes_left = riic->msg->len;
235 readb(riic->base + RIIC_ICDRR); /* dummy read */
236 return IRQ_HANDLED;
239 if (riic->bytes_left == 1) {
240 /* STOP must come before we set ACKBT! */
241 if (riic->is_last) {
242 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
243 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
246 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
248 } else {
249 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
252 /* Reading acks the RIE interrupt */
253 *riic->buf = readb(riic->base + RIIC_ICDRR);
254 riic->buf++;
255 riic->bytes_left--;
257 return IRQ_HANDLED;
260 static irqreturn_t riic_stop_isr(int irq, void *data)
262 struct riic_dev *riic = data;
264 /* read back registers to confirm writes have fully propagated */
265 writeb(0, riic->base + RIIC_ICSR2);
266 readb(riic->base + RIIC_ICSR2);
267 writeb(0, riic->base + RIIC_ICIER);
268 readb(riic->base + RIIC_ICIER);
270 complete(&riic->msg_done);
272 return IRQ_HANDLED;
275 static u32 riic_func(struct i2c_adapter *adap)
277 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
280 static const struct i2c_algorithm riic_algo = {
281 .master_xfer = riic_xfer,
282 .functionality = riic_func,
285 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
287 int ret;
288 unsigned long rate;
289 int total_ticks, cks, brl, brh;
291 ret = clk_prepare_enable(riic->clk);
292 if (ret)
293 return ret;
295 if (t->bus_freq_hz > 400000) {
296 dev_err(&riic->adapter.dev,
297 "unsupported bus speed (%dHz). 400000 max\n",
298 t->bus_freq_hz);
299 clk_disable_unprepare(riic->clk);
300 return -EINVAL;
303 rate = clk_get_rate(riic->clk);
306 * Assume the default register settings:
307 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
308 * FER.NFE = 1 (noise circuit enabled)
309 * MR3.NF = 0 (1 cycle of noise filtered out)
311 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
312 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
316 * Determine reference clock rate. We must be able to get the desired
317 * frequency with only 62 clock ticks max (31 high, 31 low).
318 * Aim for a duty of 60% LOW, 40% HIGH.
320 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz);
322 for (cks = 0; cks < 7; cks++) {
324 * 60% low time must be less than BRL + 2 + 1
325 * BRL max register value is 0x1F.
327 brl = ((total_ticks * 6) / 10);
328 if (brl <= (0x1F + 3))
329 break;
331 total_ticks /= 2;
332 rate /= 2;
335 if (brl > (0x1F + 3)) {
336 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
337 (unsigned long)t->bus_freq_hz);
338 clk_disable_unprepare(riic->clk);
339 return -EINVAL;
342 brh = total_ticks - brl;
344 /* Remove automatic clock ticks for sync circuit and NF */
345 if (cks == 0) {
346 brl -= 4;
347 brh -= 4;
348 } else {
349 brl -= 3;
350 brh -= 3;
354 * Remove clock ticks for rise and fall times. Convert ns to clock
355 * ticks.
357 brl -= t->scl_fall_ns / (1000000000 / rate);
358 brh -= t->scl_rise_ns / (1000000000 / rate);
360 /* Adjust for min register values for when SCLE=1 and NFE=1 */
361 if (brl < 1)
362 brl = 1;
363 if (brh < 1)
364 brh = 1;
366 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
367 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
368 t->scl_fall_ns / (1000000000 / rate),
369 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
371 /* Changing the order of accessing IICRST and ICE may break things! */
372 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
373 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
375 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
376 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
377 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
379 writeb(0, riic->base + RIIC_ICSER);
380 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
382 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
384 clk_disable_unprepare(riic->clk);
386 return 0;
389 static struct riic_irq_desc riic_irqs[] = {
390 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
391 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
392 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
393 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
394 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
397 static int riic_i2c_probe(struct platform_device *pdev)
399 struct riic_dev *riic;
400 struct i2c_adapter *adap;
401 struct resource *res;
402 struct i2c_timings i2c_t;
403 int i, ret;
405 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
406 if (!riic)
407 return -ENOMEM;
409 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
410 riic->base = devm_ioremap_resource(&pdev->dev, res);
411 if (IS_ERR(riic->base))
412 return PTR_ERR(riic->base);
414 riic->clk = devm_clk_get(&pdev->dev, NULL);
415 if (IS_ERR(riic->clk)) {
416 dev_err(&pdev->dev, "missing controller clock");
417 return PTR_ERR(riic->clk);
420 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
421 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
422 if (!res)
423 return -ENODEV;
425 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
426 0, riic_irqs[i].name, riic);
427 if (ret) {
428 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
429 return ret;
433 adap = &riic->adapter;
434 i2c_set_adapdata(adap, riic);
435 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
436 adap->owner = THIS_MODULE;
437 adap->algo = &riic_algo;
438 adap->dev.parent = &pdev->dev;
439 adap->dev.of_node = pdev->dev.of_node;
441 init_completion(&riic->msg_done);
443 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
445 ret = riic_init_hw(riic, &i2c_t);
446 if (ret)
447 return ret;
450 ret = i2c_add_adapter(adap);
451 if (ret)
452 return ret;
454 platform_set_drvdata(pdev, riic);
456 dev_info(&pdev->dev, "registered with %dHz bus speed\n",
457 i2c_t.bus_freq_hz);
458 return 0;
461 static int riic_i2c_remove(struct platform_device *pdev)
463 struct riic_dev *riic = platform_get_drvdata(pdev);
465 writeb(0, riic->base + RIIC_ICIER);
466 i2c_del_adapter(&riic->adapter);
468 return 0;
471 static const struct of_device_id riic_i2c_dt_ids[] = {
472 { .compatible = "renesas,riic-rz" },
473 { /* Sentinel */ },
476 static struct platform_driver riic_i2c_driver = {
477 .probe = riic_i2c_probe,
478 .remove = riic_i2c_remove,
479 .driver = {
480 .name = "i2c-riic",
481 .of_match_table = riic_i2c_dt_ids,
485 module_platform_driver(riic_i2c_driver);
487 MODULE_DESCRIPTION("Renesas RIIC adapter");
488 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
489 MODULE_LICENSE("GPL v2");
490 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);