Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
blobcccd341e5d6707858141dc60278a5051e9f77e9d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
6 /**
7 * DOC: VC4 HVS module.
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19 * each CRTC.
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
33 static const struct debugfs_reg32 hvs_regs[] = {
34 VC4_REG32(SCALER_DISPCTRL),
35 VC4_REG32(SCALER_DISPSTAT),
36 VC4_REG32(SCALER_DISPID),
37 VC4_REG32(SCALER_DISPECTRL),
38 VC4_REG32(SCALER_DISPPROF),
39 VC4_REG32(SCALER_DISPDITHER),
40 VC4_REG32(SCALER_DISPEOLN),
41 VC4_REG32(SCALER_DISPLIST0),
42 VC4_REG32(SCALER_DISPLIST1),
43 VC4_REG32(SCALER_DISPLIST2),
44 VC4_REG32(SCALER_DISPLSTAT),
45 VC4_REG32(SCALER_DISPLACT0),
46 VC4_REG32(SCALER_DISPLACT1),
47 VC4_REG32(SCALER_DISPLACT2),
48 VC4_REG32(SCALER_DISPCTRL0),
49 VC4_REG32(SCALER_DISPBKGND0),
50 VC4_REG32(SCALER_DISPSTAT0),
51 VC4_REG32(SCALER_DISPBASE0),
52 VC4_REG32(SCALER_DISPCTRL1),
53 VC4_REG32(SCALER_DISPBKGND1),
54 VC4_REG32(SCALER_DISPSTAT1),
55 VC4_REG32(SCALER_DISPBASE1),
56 VC4_REG32(SCALER_DISPCTRL2),
57 VC4_REG32(SCALER_DISPBKGND2),
58 VC4_REG32(SCALER_DISPSTAT2),
59 VC4_REG32(SCALER_DISPBASE2),
60 VC4_REG32(SCALER_DISPALPHA2),
61 VC4_REG32(SCALER_OLEDOFFS),
62 VC4_REG32(SCALER_OLEDCOEF0),
63 VC4_REG32(SCALER_OLEDCOEF1),
64 VC4_REG32(SCALER_OLEDCOEF2),
67 void vc4_hvs_dump_state(struct drm_device *dev)
69 struct vc4_dev *vc4 = to_vc4_dev(dev);
70 struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
71 int i;
73 drm_print_regset32(&p, &vc4->hvs->regset);
75 DRM_INFO("HVS ctx:\n");
76 for (i = 0; i < 64; i += 4) {
77 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
78 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
79 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
80 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
81 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
82 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
86 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
88 struct drm_info_node *node = m->private;
89 struct drm_device *dev = node->minor->dev;
90 struct vc4_dev *vc4 = to_vc4_dev(dev);
91 struct drm_printer p = drm_seq_file_printer(m);
93 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
95 return 0;
98 /* The filter kernel is composed of dwords each containing 3 9-bit
99 * signed integers packed next to each other.
101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
103 ((((c0) & 0x1ff) << 0) | \
104 (((c1) & 0x1ff) << 9) | \
105 (((c2) & 0x1ff) << 18))
107 /* The whole filter kernel is arranged as the coefficients 0-16 going
108 * up, then a pad, then 17-31 going down and reversed within the
109 * dwords. This means that a linear phase kernel (where it's
110 * symmetrical at the boundary between 15 and 16) has the last 5
111 * dwords matching the first 5, but reversed.
113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
114 c9, c10, c11, c12, c13, c14, c15) \
115 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
116 VC4_PPF_FILTER_WORD(c3, c4, c5), \
117 VC4_PPF_FILTER_WORD(c6, c7, c8), \
118 VC4_PPF_FILTER_WORD(c9, c10, c11), \
119 VC4_PPF_FILTER_WORD(c12, c13, c14), \
120 VC4_PPF_FILTER_WORD(c15, c15, 0)}
122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
128 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
129 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130 50, 82, 119, 155, 187, 213, 227);
132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
133 struct drm_mm_node *space,
134 const u32 *kernel)
136 int ret, i;
137 u32 __iomem *dst_kernel;
139 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
140 if (ret) {
141 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
142 ret);
143 return ret;
146 dst_kernel = hvs->dlist + space->start;
148 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
149 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
150 writel(kernel[i], &dst_kernel[i]);
151 else {
152 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
153 &dst_kernel[i]);
157 return 0;
160 static void vc4_hvs_lut_load(struct drm_crtc *crtc)
162 struct drm_device *dev = crtc->dev;
163 struct vc4_dev *vc4 = to_vc4_dev(dev);
164 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
165 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
166 u32 i;
168 /* The LUT memory is laid out with each HVS channel in order,
169 * each of which takes 256 writes for R, 256 for G, then 256
170 * for B.
172 HVS_WRITE(SCALER_GAMADDR,
173 SCALER_GAMADDR_AUTOINC |
174 (vc4_state->assigned_channel * 3 * crtc->gamma_size));
176 for (i = 0; i < crtc->gamma_size; i++)
177 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
178 for (i = 0; i < crtc->gamma_size; i++)
179 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
180 for (i = 0; i < crtc->gamma_size; i++)
181 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
184 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
186 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
188 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
189 u32 i;
191 for (i = 0; i < length; i++) {
192 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
193 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
194 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
197 vc4_hvs_lut_load(crtc);
200 int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output)
202 struct vc4_dev *vc4 = to_vc4_dev(dev);
203 u32 reg;
204 int ret;
206 if (!vc4->hvs->hvs5)
207 return output;
209 switch (output) {
210 case 0:
211 return 0;
213 case 1:
214 return 1;
216 case 2:
217 reg = HVS_READ(SCALER_DISPECTRL);
218 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
219 if (ret == 0)
220 return 2;
222 return 0;
224 case 3:
225 reg = HVS_READ(SCALER_DISPCTRL);
226 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
227 if (ret == 3)
228 return -EPIPE;
230 return ret;
232 case 4:
233 reg = HVS_READ(SCALER_DISPEOLN);
234 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
235 if (ret == 3)
236 return -EPIPE;
238 return ret;
240 case 5:
241 reg = HVS_READ(SCALER_DISPDITHER);
242 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
243 if (ret == 3)
244 return -EPIPE;
246 return ret;
248 default:
249 return -EPIPE;
253 static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc,
254 struct drm_display_mode *mode, bool oneshot)
256 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
257 unsigned int chan = vc4_crtc_state->assigned_channel;
258 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
259 u32 dispbkgndx;
260 u32 dispctrl;
262 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
263 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
264 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
266 /* Turn on the scaler, which will wait for vstart to start
267 * compositing.
268 * When feeding the transposer, we should operate in oneshot
269 * mode.
271 dispctrl = SCALER_DISPCTRLX_ENABLE;
273 if (!vc4->hvs->hvs5)
274 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
275 SCALER_DISPCTRLX_WIDTH) |
276 VC4_SET_FIELD(mode->vdisplay,
277 SCALER_DISPCTRLX_HEIGHT) |
278 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
279 else
280 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
281 SCALER5_DISPCTRLX_WIDTH) |
282 VC4_SET_FIELD(mode->vdisplay,
283 SCALER5_DISPCTRLX_HEIGHT) |
284 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
286 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
288 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
289 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
290 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
292 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
293 SCALER_DISPBKGND_AUTOHS |
294 ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
295 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
297 /* Reload the LUT, since the SRAMs would have been disabled if
298 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
300 vc4_hvs_lut_load(crtc);
302 return 0;
305 void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan)
307 struct vc4_dev *vc4 = to_vc4_dev(dev);
309 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
310 return;
312 HVS_WRITE(SCALER_DISPCTRLX(chan),
313 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
314 HVS_WRITE(SCALER_DISPCTRLX(chan),
315 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
317 /* Once we leave, the scaler should be disabled and its fifo empty. */
318 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
320 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
321 SCALER_DISPSTATX_MODE) !=
322 SCALER_DISPSTATX_MODE_DISABLED);
324 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
325 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
326 SCALER_DISPSTATX_EMPTY);
329 int vc4_hvs_atomic_check(struct drm_crtc *crtc,
330 struct drm_crtc_state *state)
332 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
333 struct drm_device *dev = crtc->dev;
334 struct vc4_dev *vc4 = to_vc4_dev(dev);
335 struct drm_plane *plane;
336 unsigned long flags;
337 const struct drm_plane_state *plane_state;
338 u32 dlist_count = 0;
339 int ret;
341 /* The pixelvalve can only feed one encoder (and encoders are
342 * 1:1 with connectors.)
344 if (hweight32(state->connector_mask) > 1)
345 return -EINVAL;
347 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
348 dlist_count += vc4_plane_dlist_size(plane_state);
350 dlist_count++; /* Account for SCALER_CTL0_END. */
352 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
353 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
354 dlist_count);
355 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
356 if (ret)
357 return ret;
359 return 0;
362 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
364 struct drm_device *dev = crtc->dev;
365 struct vc4_dev *vc4 = to_vc4_dev(dev);
366 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
367 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
369 if (crtc->state->event) {
370 unsigned long flags;
372 crtc->state->event->pipe = drm_crtc_index(crtc);
374 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
376 spin_lock_irqsave(&dev->event_lock, flags);
378 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
379 vc4_crtc->event = crtc->state->event;
380 crtc->state->event = NULL;
383 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
384 vc4_state->mm.start);
386 spin_unlock_irqrestore(&dev->event_lock, flags);
387 } else {
388 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
389 vc4_state->mm.start);
393 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
394 struct drm_crtc_state *old_state)
396 struct drm_device *dev = crtc->dev;
397 struct vc4_dev *vc4 = to_vc4_dev(dev);
398 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
399 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
400 bool oneshot = vc4_state->feed_txp;
402 vc4_hvs_update_dlist(crtc);
403 vc4_hvs_init_channel(vc4, crtc, mode, oneshot);
406 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
407 struct drm_crtc_state *old_state)
409 struct drm_device *dev = crtc->dev;
410 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
411 unsigned int chan = vc4_state->assigned_channel;
413 vc4_hvs_stop_channel(dev, chan);
416 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
417 struct drm_atomic_state *state)
419 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
420 crtc);
421 struct drm_device *dev = crtc->dev;
422 struct vc4_dev *vc4 = to_vc4_dev(dev);
423 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
424 struct drm_plane *plane;
425 struct vc4_plane_state *vc4_plane_state;
426 bool debug_dump_regs = false;
427 bool enable_bg_fill = false;
428 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
429 u32 __iomem *dlist_next = dlist_start;
431 if (debug_dump_regs) {
432 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
433 vc4_hvs_dump_state(dev);
436 /* Copy all the active planes' dlist contents to the hardware dlist. */
437 drm_atomic_crtc_for_each_plane(plane, crtc) {
438 /* Is this the first active plane? */
439 if (dlist_next == dlist_start) {
440 /* We need to enable background fill when a plane
441 * could be alpha blending from the background, i.e.
442 * where no other plane is underneath. It suffices to
443 * consider the first active plane here since we set
444 * needs_bg_fill such that either the first plane
445 * already needs it or all planes on top blend from
446 * the first or a lower plane.
448 vc4_plane_state = to_vc4_plane_state(plane->state);
449 enable_bg_fill = vc4_plane_state->needs_bg_fill;
452 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
455 writel(SCALER_CTL0_END, dlist_next);
456 dlist_next++;
458 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
460 if (enable_bg_fill)
461 /* This sets a black background color fill, as is the case
462 * with other DRM drivers.
464 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
465 HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
466 SCALER_DISPBKGND_FILL);
468 /* Only update DISPLIST if the CRTC was already running and is not
469 * being disabled.
470 * vc4_crtc_enable() takes care of updating the dlist just after
471 * re-enabling VBLANK interrupts and before enabling the engine.
472 * If the CRTC is being disabled, there's no point in updating this
473 * information.
475 if (crtc->state->active && old_state->active)
476 vc4_hvs_update_dlist(crtc);
478 if (crtc->state->color_mgmt_changed) {
479 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
481 if (crtc->state->gamma_lut) {
482 vc4_hvs_update_gamma_lut(crtc);
483 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
484 } else {
485 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
486 * in hardware, which is the same as a linear lut that
487 * DRM expects us to use in absence of a user lut.
489 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
491 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
494 if (debug_dump_regs) {
495 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
496 vc4_hvs_dump_state(dev);
500 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
502 struct vc4_dev *vc4 = to_vc4_dev(dev);
503 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
505 dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
507 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
510 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
512 struct vc4_dev *vc4 = to_vc4_dev(dev);
513 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
515 dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
517 HVS_WRITE(SCALER_DISPSTAT,
518 SCALER_DISPSTAT_EUFLOW(channel));
519 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
522 static void vc4_hvs_report_underrun(struct drm_device *dev)
524 struct vc4_dev *vc4 = to_vc4_dev(dev);
526 atomic_inc(&vc4->underrun);
527 DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
530 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
532 struct drm_device *dev = data;
533 struct vc4_dev *vc4 = to_vc4_dev(dev);
534 irqreturn_t irqret = IRQ_NONE;
535 int channel;
536 u32 control;
537 u32 status;
539 status = HVS_READ(SCALER_DISPSTAT);
540 control = HVS_READ(SCALER_DISPCTRL);
542 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
543 /* Interrupt masking is not always honored, so check it here. */
544 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
545 control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
546 vc4_hvs_mask_underrun(dev, channel);
547 vc4_hvs_report_underrun(dev);
549 irqret = IRQ_HANDLED;
553 /* Clear every per-channel interrupt flag. */
554 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
555 SCALER_DISPSTAT_IRQMASK(1) |
556 SCALER_DISPSTAT_IRQMASK(2));
558 return irqret;
561 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
563 struct platform_device *pdev = to_platform_device(dev);
564 struct drm_device *drm = dev_get_drvdata(master);
565 struct vc4_dev *vc4 = to_vc4_dev(drm);
566 struct vc4_hvs *hvs = NULL;
567 int ret;
568 u32 dispctrl;
570 hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
571 if (!hvs)
572 return -ENOMEM;
574 hvs->pdev = pdev;
576 if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
577 hvs->hvs5 = true;
579 hvs->regs = vc4_ioremap_regs(pdev, 0);
580 if (IS_ERR(hvs->regs))
581 return PTR_ERR(hvs->regs);
583 hvs->regset.base = hvs->regs;
584 hvs->regset.regs = hvs_regs;
585 hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
587 if (hvs->hvs5) {
588 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
589 if (IS_ERR(hvs->core_clk)) {
590 dev_err(&pdev->dev, "Couldn't get core clock\n");
591 return PTR_ERR(hvs->core_clk);
594 ret = clk_prepare_enable(hvs->core_clk);
595 if (ret) {
596 dev_err(&pdev->dev, "Couldn't enable the core clock\n");
597 return ret;
601 if (!hvs->hvs5)
602 hvs->dlist = hvs->regs + SCALER_DLIST_START;
603 else
604 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
606 spin_lock_init(&hvs->mm_lock);
608 /* Set up the HVS display list memory manager. We never
609 * overwrite the setup from the bootloader (just 128b out of
610 * our 16K), since we don't want to scramble the screen when
611 * transitioning from the firmware's boot setup to runtime.
613 drm_mm_init(&hvs->dlist_mm,
614 HVS_BOOTLOADER_DLIST_END,
615 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
617 /* Set up the HVS LBM memory manager. We could have some more
618 * complicated data structure that allowed reuse of LBM areas
619 * between planes when they don't overlap on the screen, but
620 * for now we just allocate globally.
622 if (!hvs->hvs5)
623 /* 96kB */
624 drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
625 else
626 /* 70k words */
627 drm_mm_init(&hvs->lbm_mm, 0, 70 * 2 * 1024);
629 /* Upload filter kernels. We only have the one for now, so we
630 * keep it around for the lifetime of the driver.
632 ret = vc4_hvs_upload_linear_kernel(hvs,
633 &hvs->mitchell_netravali_filter,
634 mitchell_netravali_1_3_1_3_kernel);
635 if (ret)
636 return ret;
638 vc4->hvs = hvs;
640 dispctrl = HVS_READ(SCALER_DISPCTRL);
642 dispctrl |= SCALER_DISPCTRL_ENABLE;
643 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
644 SCALER_DISPCTRL_DISPEIRQ(1) |
645 SCALER_DISPCTRL_DISPEIRQ(2);
647 /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
648 * be unused.
650 dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
651 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
652 SCALER_DISPCTRL_SLVWREIRQ |
653 SCALER_DISPCTRL_SLVRDEIRQ |
654 SCALER_DISPCTRL_DSPEIEOF(0) |
655 SCALER_DISPCTRL_DSPEIEOF(1) |
656 SCALER_DISPCTRL_DSPEIEOF(2) |
657 SCALER_DISPCTRL_DSPEIEOLN(0) |
658 SCALER_DISPCTRL_DSPEIEOLN(1) |
659 SCALER_DISPCTRL_DSPEIEOLN(2) |
660 SCALER_DISPCTRL_DSPEISLUR(0) |
661 SCALER_DISPCTRL_DSPEISLUR(1) |
662 SCALER_DISPCTRL_DSPEISLUR(2) |
663 SCALER_DISPCTRL_SCLEIRQ);
664 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
666 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
668 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
669 vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
670 if (ret)
671 return ret;
673 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
674 vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
675 NULL);
677 return 0;
680 static void vc4_hvs_unbind(struct device *dev, struct device *master,
681 void *data)
683 struct drm_device *drm = dev_get_drvdata(master);
684 struct vc4_dev *vc4 = to_vc4_dev(drm);
685 struct vc4_hvs *hvs = vc4->hvs;
687 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
688 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
690 drm_mm_takedown(&vc4->hvs->dlist_mm);
691 drm_mm_takedown(&vc4->hvs->lbm_mm);
693 clk_disable_unprepare(hvs->core_clk);
695 vc4->hvs = NULL;
698 static const struct component_ops vc4_hvs_ops = {
699 .bind = vc4_hvs_bind,
700 .unbind = vc4_hvs_unbind,
703 static int vc4_hvs_dev_probe(struct platform_device *pdev)
705 return component_add(&pdev->dev, &vc4_hvs_ops);
708 static int vc4_hvs_dev_remove(struct platform_device *pdev)
710 component_del(&pdev->dev, &vc4_hvs_ops);
711 return 0;
714 static const struct of_device_id vc4_hvs_dt_match[] = {
715 { .compatible = "brcm,bcm2711-hvs" },
716 { .compatible = "brcm,bcm2835-hvs" },
720 struct platform_driver vc4_hvs_driver = {
721 .probe = vc4_hvs_dev_probe,
722 .remove = vc4_hvs_dev_remove,
723 .driver = {
724 .name = "vc4_hvs",
725 .of_match_table = vc4_hvs_dt_match,