1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
43 static int use_threaded_interrupts
;
44 module_param(use_threaded_interrupts
, int, 0);
46 static bool use_cmb_sqes
= true;
47 module_param(use_cmb_sqes
, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
50 static unsigned int max_host_mem_size_mb
= 128;
51 module_param(max_host_mem_size_mb
, uint
, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb
,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 static unsigned int sgl_threshold
= SZ_32K
;
56 module_param(sgl_threshold
, uint
, 0644);
57 MODULE_PARM_DESC(sgl_threshold
,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
61 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
62 static const struct kernel_param_ops io_queue_depth_ops
= {
63 .set
= io_queue_depth_set
,
67 static int io_queue_depth
= 1024;
68 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
69 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
71 static int io_queue_count_set(const char *val
, const struct kernel_param
*kp
)
76 ret
= kstrtouint(val
, 10, &n
);
77 if (ret
!= 0 || n
> num_possible_cpus())
79 return param_set_uint(val
, kp
);
82 static const struct kernel_param_ops io_queue_count_ops
= {
83 .set
= io_queue_count_set
,
84 .get
= param_get_uint
,
87 static unsigned int write_queues
;
88 module_param_cb(write_queues
, &io_queue_count_ops
, &write_queues
, 0644);
89 MODULE_PARM_DESC(write_queues
,
90 "Number of queues to use for writes. If not set, reads and writes "
91 "will share a queue set.");
93 static unsigned int poll_queues
;
94 module_param_cb(poll_queues
, &io_queue_count_ops
, &poll_queues
, 0644);
95 MODULE_PARM_DESC(poll_queues
, "Number of queues to use for polled IO.");
100 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
101 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
);
104 * Represents an NVM Express device. Each nvme_dev is a PCI function.
107 struct nvme_queue
*queues
;
108 struct blk_mq_tag_set tagset
;
109 struct blk_mq_tag_set admin_tagset
;
112 struct dma_pool
*prp_page_pool
;
113 struct dma_pool
*prp_small_pool
;
114 unsigned online_queues
;
116 unsigned io_queues
[HCTX_MAX_TYPES
];
117 unsigned int num_vecs
;
122 unsigned long bar_mapped_size
;
123 struct work_struct remove_work
;
124 struct mutex shutdown_lock
;
130 struct nvme_ctrl ctrl
;
133 mempool_t
*iod_mempool
;
135 /* shadow doorbell buffer support: */
137 dma_addr_t dbbuf_dbs_dma_addr
;
139 dma_addr_t dbbuf_eis_dma_addr
;
141 /* host memory buffer support: */
143 u32 nr_host_mem_descs
;
144 dma_addr_t host_mem_descs_dma
;
145 struct nvme_host_mem_buf_desc
*host_mem_descs
;
146 void **host_mem_desc_bufs
;
147 unsigned int nr_allocated_queues
;
148 unsigned int nr_write_queues
;
149 unsigned int nr_poll_queues
;
152 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
156 ret
= kstrtoint(val
, 10, &n
);
157 if (ret
!= 0 || n
< 2)
160 return param_set_int(val
, kp
);
163 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
165 return qid
* 2 * stride
;
168 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
170 return (qid
* 2 + 1) * stride
;
173 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
175 return container_of(ctrl
, struct nvme_dev
, ctrl
);
179 * An NVM Express queue. Each device has at least two (one for admin
180 * commands and one for I/O commands).
183 struct nvme_dev
*dev
;
186 /* only used for poll queues: */
187 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp
;
188 volatile struct nvme_completion
*cqes
;
189 dma_addr_t sq_dma_addr
;
190 dma_addr_t cq_dma_addr
;
201 #define NVMEQ_ENABLED 0
202 #define NVMEQ_SQ_CMB 1
203 #define NVMEQ_DELETE_ERROR 2
204 #define NVMEQ_POLLED 3
209 struct completion delete_done
;
213 * The nvme_iod describes the data in an I/O.
215 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
216 * to the actual struct scatterlist.
219 struct nvme_request req
;
220 struct nvme_queue
*nvmeq
;
223 int npages
; /* In the PRP list. 0 means small pool in use */
224 int nents
; /* Used in scatterlist */
225 dma_addr_t first_dma
;
226 unsigned int dma_len
; /* length of single DMA segment mapping */
228 struct scatterlist
*sg
;
231 static inline unsigned int nvme_dbbuf_size(struct nvme_dev
*dev
)
233 return dev
->nr_allocated_queues
* 8 * dev
->db_stride
;
236 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
238 unsigned int mem_size
= nvme_dbbuf_size(dev
);
243 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
244 &dev
->dbbuf_dbs_dma_addr
,
248 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
249 &dev
->dbbuf_eis_dma_addr
,
251 if (!dev
->dbbuf_eis
) {
252 dma_free_coherent(dev
->dev
, mem_size
,
253 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
254 dev
->dbbuf_dbs
= NULL
;
261 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
263 unsigned int mem_size
= nvme_dbbuf_size(dev
);
265 if (dev
->dbbuf_dbs
) {
266 dma_free_coherent(dev
->dev
, mem_size
,
267 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
268 dev
->dbbuf_dbs
= NULL
;
270 if (dev
->dbbuf_eis
) {
271 dma_free_coherent(dev
->dev
, mem_size
,
272 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
273 dev
->dbbuf_eis
= NULL
;
277 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
278 struct nvme_queue
*nvmeq
, int qid
)
280 if (!dev
->dbbuf_dbs
|| !qid
)
283 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
284 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
285 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
286 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
289 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
291 struct nvme_command c
;
296 memset(&c
, 0, sizeof(c
));
297 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
298 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
299 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
301 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
302 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
303 /* Free memory and continue on */
304 nvme_dbbuf_dma_free(dev
);
308 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
310 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
313 /* Update dbbuf and return true if an MMIO is required */
314 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
315 volatile u32
*dbbuf_ei
)
321 * Ensure that the queue is written before updating
322 * the doorbell in memory
326 old_value
= *dbbuf_db
;
330 * Ensure that the doorbell is updated before reading the event
331 * index from memory. The controller needs to provide similar
332 * ordering to ensure the envent index is updated before reading
337 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
345 * Will slightly overestimate the number of pages needed. This is OK
346 * as it only leads to a small amount of wasted memory for the lifetime of
349 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
351 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
352 dev
->ctrl
.page_size
);
353 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
357 * Calculates the number of pages needed for the SGL segments. For example a 4k
358 * page can accommodate 256 SGL descriptors.
360 static int nvme_pci_npages_sgl(unsigned int num_seg
)
362 return DIV_ROUND_UP(num_seg
* sizeof(struct nvme_sgl_desc
), PAGE_SIZE
);
365 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev
*dev
,
366 unsigned int size
, unsigned int nseg
, bool use_sgl
)
371 alloc_size
= sizeof(__le64
*) * nvme_pci_npages_sgl(nseg
);
373 alloc_size
= sizeof(__le64
*) * nvme_npages(size
, dev
);
375 return alloc_size
+ sizeof(struct scatterlist
) * nseg
;
378 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
379 unsigned int hctx_idx
)
381 struct nvme_dev
*dev
= data
;
382 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
384 WARN_ON(hctx_idx
!= 0);
385 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
387 hctx
->driver_data
= nvmeq
;
391 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
392 unsigned int hctx_idx
)
394 struct nvme_dev
*dev
= data
;
395 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
397 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
398 hctx
->driver_data
= nvmeq
;
402 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
403 unsigned int hctx_idx
, unsigned int numa_node
)
405 struct nvme_dev
*dev
= set
->driver_data
;
406 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
407 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
408 struct nvme_queue
*nvmeq
= &dev
->queues
[queue_idx
];
413 nvme_req(req
)->ctrl
= &dev
->ctrl
;
417 static int queue_irq_offset(struct nvme_dev
*dev
)
419 /* if we have more than 1 vec, admin queue offsets us by 1 */
420 if (dev
->num_vecs
> 1)
426 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
428 struct nvme_dev
*dev
= set
->driver_data
;
431 offset
= queue_irq_offset(dev
);
432 for (i
= 0, qoff
= 0; i
< set
->nr_maps
; i
++) {
433 struct blk_mq_queue_map
*map
= &set
->map
[i
];
435 map
->nr_queues
= dev
->io_queues
[i
];
436 if (!map
->nr_queues
) {
437 BUG_ON(i
== HCTX_TYPE_DEFAULT
);
442 * The poll queue(s) doesn't have an IRQ (and hence IRQ
443 * affinity), so use the regular blk-mq cpu mapping
445 map
->queue_offset
= qoff
;
446 if (i
!= HCTX_TYPE_POLL
&& offset
)
447 blk_mq_pci_map_queues(map
, to_pci_dev(dev
->dev
), offset
);
449 blk_mq_map_queues(map
);
450 qoff
+= map
->nr_queues
;
451 offset
+= map
->nr_queues
;
458 * Write sq tail if we are asked to, or if the next command would wrap.
460 static inline void nvme_write_sq_db(struct nvme_queue
*nvmeq
, bool write_sq
)
463 u16 next_tail
= nvmeq
->sq_tail
+ 1;
465 if (next_tail
== nvmeq
->q_depth
)
467 if (next_tail
!= nvmeq
->last_sq_tail
)
471 if (nvme_dbbuf_update_and_check_event(nvmeq
->sq_tail
,
472 nvmeq
->dbbuf_sq_db
, nvmeq
->dbbuf_sq_ei
))
473 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
474 nvmeq
->last_sq_tail
= nvmeq
->sq_tail
;
478 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
479 * @nvmeq: The queue to use
480 * @cmd: The command to send
481 * @write_sq: whether to write to the SQ doorbell
483 static void nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
,
486 spin_lock(&nvmeq
->sq_lock
);
487 memcpy(nvmeq
->sq_cmds
+ (nvmeq
->sq_tail
<< nvmeq
->sqes
),
489 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
491 nvme_write_sq_db(nvmeq
, write_sq
);
492 spin_unlock(&nvmeq
->sq_lock
);
495 static void nvme_commit_rqs(struct blk_mq_hw_ctx
*hctx
)
497 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
499 spin_lock(&nvmeq
->sq_lock
);
500 if (nvmeq
->sq_tail
!= nvmeq
->last_sq_tail
)
501 nvme_write_sq_db(nvmeq
, true);
502 spin_unlock(&nvmeq
->sq_lock
);
505 static void **nvme_pci_iod_list(struct request
*req
)
507 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
508 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
511 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
513 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
514 int nseg
= blk_rq_nr_phys_segments(req
);
515 unsigned int avg_seg_size
;
520 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
522 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
524 if (!iod
->nvmeq
->qid
)
526 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
531 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
533 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
534 const int last_prp
= dev
->ctrl
.page_size
/ sizeof(__le64
) - 1;
535 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
539 dma_unmap_page(dev
->dev
, dma_addr
, iod
->dma_len
,
544 WARN_ON_ONCE(!iod
->nents
);
546 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
547 pci_p2pdma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
,
550 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, rq_dma_dir(req
));
553 if (iod
->npages
== 0)
554 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
557 for (i
= 0; i
< iod
->npages
; i
++) {
558 void *addr
= nvme_pci_iod_list(req
)[i
];
561 struct nvme_sgl_desc
*sg_list
= addr
;
564 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
566 __le64
*prp_list
= addr
;
568 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
571 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
572 dma_addr
= next_dma_addr
;
575 mempool_free(iod
->sg
, dev
->iod_mempool
);
578 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
581 struct scatterlist
*sg
;
583 for_each_sg(sgl
, sg
, nents
, i
) {
584 dma_addr_t phys
= sg_phys(sg
);
585 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
586 "dma_address:%pad dma_length:%d\n",
587 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
592 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
593 struct request
*req
, struct nvme_rw_command
*cmnd
)
595 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
596 struct dma_pool
*pool
;
597 int length
= blk_rq_payload_bytes(req
);
598 struct scatterlist
*sg
= iod
->sg
;
599 int dma_len
= sg_dma_len(sg
);
600 u64 dma_addr
= sg_dma_address(sg
);
601 u32 page_size
= dev
->ctrl
.page_size
;
602 int offset
= dma_addr
& (page_size
- 1);
604 void **list
= nvme_pci_iod_list(req
);
608 length
-= (page_size
- offset
);
614 dma_len
-= (page_size
- offset
);
616 dma_addr
+= (page_size
- offset
);
619 dma_addr
= sg_dma_address(sg
);
620 dma_len
= sg_dma_len(sg
);
623 if (length
<= page_size
) {
624 iod
->first_dma
= dma_addr
;
628 nprps
= DIV_ROUND_UP(length
, page_size
);
629 if (nprps
<= (256 / 8)) {
630 pool
= dev
->prp_small_pool
;
633 pool
= dev
->prp_page_pool
;
637 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
639 iod
->first_dma
= dma_addr
;
641 return BLK_STS_RESOURCE
;
644 iod
->first_dma
= prp_dma
;
647 if (i
== page_size
>> 3) {
648 __le64
*old_prp_list
= prp_list
;
649 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
651 return BLK_STS_RESOURCE
;
652 list
[iod
->npages
++] = prp_list
;
653 prp_list
[0] = old_prp_list
[i
- 1];
654 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
657 prp_list
[i
++] = cpu_to_le64(dma_addr
);
658 dma_len
-= page_size
;
659 dma_addr
+= page_size
;
665 if (unlikely(dma_len
< 0))
668 dma_addr
= sg_dma_address(sg
);
669 dma_len
= sg_dma_len(sg
);
673 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
674 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
679 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
680 "Invalid SGL for payload:%d nents:%d\n",
681 blk_rq_payload_bytes(req
), iod
->nents
);
682 return BLK_STS_IOERR
;
685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
686 struct scatterlist
*sg
)
688 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
689 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
690 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
694 dma_addr_t dma_addr
, int entries
)
696 sge
->addr
= cpu_to_le64(dma_addr
);
697 if (entries
< SGES_PER_PAGE
) {
698 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
699 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
701 sge
->length
= cpu_to_le32(PAGE_SIZE
);
702 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
706 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
707 struct request
*req
, struct nvme_rw_command
*cmd
, int entries
)
709 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
710 struct dma_pool
*pool
;
711 struct nvme_sgl_desc
*sg_list
;
712 struct scatterlist
*sg
= iod
->sg
;
716 /* setting the transfer type as SGL */
717 cmd
->flags
= NVME_CMD_SGL_METABUF
;
720 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
724 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
725 pool
= dev
->prp_small_pool
;
728 pool
= dev
->prp_page_pool
;
732 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
735 return BLK_STS_RESOURCE
;
738 nvme_pci_iod_list(req
)[0] = sg_list
;
739 iod
->first_dma
= sgl_dma
;
741 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
744 if (i
== SGES_PER_PAGE
) {
745 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
746 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
748 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
750 return BLK_STS_RESOURCE
;
753 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
754 sg_list
[i
++] = *link
;
755 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
758 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
760 } while (--entries
> 0);
765 static blk_status_t
nvme_setup_prp_simple(struct nvme_dev
*dev
,
766 struct request
*req
, struct nvme_rw_command
*cmnd
,
769 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
770 unsigned int offset
= bv
->bv_offset
& (dev
->ctrl
.page_size
- 1);
771 unsigned int first_prp_len
= dev
->ctrl
.page_size
- offset
;
773 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
774 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
775 return BLK_STS_RESOURCE
;
776 iod
->dma_len
= bv
->bv_len
;
778 cmnd
->dptr
.prp1
= cpu_to_le64(iod
->first_dma
);
779 if (bv
->bv_len
> first_prp_len
)
780 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
+ first_prp_len
);
784 static blk_status_t
nvme_setup_sgl_simple(struct nvme_dev
*dev
,
785 struct request
*req
, struct nvme_rw_command
*cmnd
,
788 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
790 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
791 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
792 return BLK_STS_RESOURCE
;
793 iod
->dma_len
= bv
->bv_len
;
795 cmnd
->flags
= NVME_CMD_SGL_METABUF
;
796 cmnd
->dptr
.sgl
.addr
= cpu_to_le64(iod
->first_dma
);
797 cmnd
->dptr
.sgl
.length
= cpu_to_le32(iod
->dma_len
);
798 cmnd
->dptr
.sgl
.type
= NVME_SGL_FMT_DATA_DESC
<< 4;
802 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
803 struct nvme_command
*cmnd
)
805 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
806 blk_status_t ret
= BLK_STS_RESOURCE
;
809 if (blk_rq_nr_phys_segments(req
) == 1) {
810 struct bio_vec bv
= req_bvec(req
);
812 if (!is_pci_p2pdma_page(bv
.bv_page
)) {
813 if (bv
.bv_offset
+ bv
.bv_len
<= dev
->ctrl
.page_size
* 2)
814 return nvme_setup_prp_simple(dev
, req
,
817 if (iod
->nvmeq
->qid
&&
818 dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1)))
819 return nvme_setup_sgl_simple(dev
, req
,
825 iod
->sg
= mempool_alloc(dev
->iod_mempool
, GFP_ATOMIC
);
827 return BLK_STS_RESOURCE
;
828 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
829 iod
->nents
= blk_rq_map_sg(req
->q
, req
, iod
->sg
);
833 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
834 nr_mapped
= pci_p2pdma_map_sg_attrs(dev
->dev
, iod
->sg
,
835 iod
->nents
, rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
837 nr_mapped
= dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
,
838 rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
842 iod
->use_sgl
= nvme_pci_use_sgls(dev
, req
);
844 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
, nr_mapped
);
846 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
848 if (ret
!= BLK_STS_OK
)
849 nvme_unmap_data(dev
, req
);
853 static blk_status_t
nvme_map_metadata(struct nvme_dev
*dev
, struct request
*req
,
854 struct nvme_command
*cmnd
)
856 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
858 iod
->meta_dma
= dma_map_bvec(dev
->dev
, rq_integrity_vec(req
),
860 if (dma_mapping_error(dev
->dev
, iod
->meta_dma
))
861 return BLK_STS_IOERR
;
862 cmnd
->rw
.metadata
= cpu_to_le64(iod
->meta_dma
);
867 * NOTE: ns is NULL when called on the admin queue.
869 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
870 const struct blk_mq_queue_data
*bd
)
872 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
873 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
874 struct nvme_dev
*dev
= nvmeq
->dev
;
875 struct request
*req
= bd
->rq
;
876 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
877 struct nvme_command cmnd
;
885 * We should not need to do this, but we're still using this to
886 * ensure we can drain requests on a dying queue.
888 if (unlikely(!test_bit(NVMEQ_ENABLED
, &nvmeq
->flags
)))
889 return BLK_STS_IOERR
;
891 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
895 if (blk_rq_nr_phys_segments(req
)) {
896 ret
= nvme_map_data(dev
, req
, &cmnd
);
901 if (blk_integrity_rq(req
)) {
902 ret
= nvme_map_metadata(dev
, req
, &cmnd
);
907 blk_mq_start_request(req
);
908 nvme_submit_cmd(nvmeq
, &cmnd
, bd
->last
);
911 nvme_unmap_data(dev
, req
);
913 nvme_cleanup_cmd(req
);
917 static void nvme_pci_complete_rq(struct request
*req
)
919 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
920 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
922 if (blk_integrity_rq(req
))
923 dma_unmap_page(dev
->dev
, iod
->meta_dma
,
924 rq_integrity_vec(req
)->bv_len
, rq_data_dir(req
));
925 if (blk_rq_nr_phys_segments(req
))
926 nvme_unmap_data(dev
, req
);
927 nvme_complete_rq(req
);
930 /* We read the CQE phase first to check if the rest of the entry is valid */
931 static inline bool nvme_cqe_pending(struct nvme_queue
*nvmeq
)
933 return (le16_to_cpu(nvmeq
->cqes
[nvmeq
->cq_head
].status
) & 1) ==
937 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
939 u16 head
= nvmeq
->cq_head
;
941 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
943 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
946 static inline struct blk_mq_tags
*nvme_queue_tagset(struct nvme_queue
*nvmeq
)
949 return nvmeq
->dev
->admin_tagset
.tags
[0];
950 return nvmeq
->dev
->tagset
.tags
[nvmeq
->qid
- 1];
953 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
, u16 idx
)
955 volatile struct nvme_completion
*cqe
= &nvmeq
->cqes
[idx
];
958 if (unlikely(cqe
->command_id
>= nvmeq
->q_depth
)) {
959 dev_warn(nvmeq
->dev
->ctrl
.device
,
960 "invalid id %d completed on queue %d\n",
961 cqe
->command_id
, le16_to_cpu(cqe
->sq_id
));
966 * AEN requests are special as they don't time out and can
967 * survive any kind of queue freeze and often don't respond to
968 * aborts. We don't even bother to allocate a struct request
969 * for them but rather special case them here.
971 if (unlikely(nvme_is_aen_req(nvmeq
->qid
, cqe
->command_id
))) {
972 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
973 cqe
->status
, &cqe
->result
);
977 req
= blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq
), cqe
->command_id
);
978 trace_nvme_sq(req
, cqe
->sq_head
, nvmeq
->sq_tail
);
979 nvme_end_request(req
, cqe
->status
, cqe
->result
);
982 static inline void nvme_update_cq_head(struct nvme_queue
*nvmeq
)
984 u16 tmp
= nvmeq
->cq_head
+ 1;
986 if (tmp
== nvmeq
->q_depth
) {
988 nvmeq
->cq_phase
^= 1;
990 nvmeq
->cq_head
= tmp
;
994 static inline int nvme_process_cq(struct nvme_queue
*nvmeq
)
998 while (nvme_cqe_pending(nvmeq
)) {
1001 * load-load control dependency between phase and the rest of
1002 * the cqe requires a full read memory barrier
1005 nvme_handle_cqe(nvmeq
, nvmeq
->cq_head
);
1006 nvme_update_cq_head(nvmeq
);
1010 nvme_ring_cq_doorbell(nvmeq
);
1014 static irqreturn_t
nvme_irq(int irq
, void *data
)
1016 struct nvme_queue
*nvmeq
= data
;
1017 irqreturn_t ret
= IRQ_NONE
;
1020 * The rmb/wmb pair ensures we see all updates from a previous run of
1021 * the irq handler, even if that was on another CPU.
1024 if (nvme_process_cq(nvmeq
))
1031 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1033 struct nvme_queue
*nvmeq
= data
;
1034 if (nvme_cqe_pending(nvmeq
))
1035 return IRQ_WAKE_THREAD
;
1040 * Poll for completions for any interrupt driven queue
1041 * Can be called from any context.
1043 static void nvme_poll_irqdisable(struct nvme_queue
*nvmeq
)
1045 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1047 WARN_ON_ONCE(test_bit(NVMEQ_POLLED
, &nvmeq
->flags
));
1049 disable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1050 nvme_process_cq(nvmeq
);
1051 enable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1054 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
)
1056 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1059 if (!nvme_cqe_pending(nvmeq
))
1062 spin_lock(&nvmeq
->cq_poll_lock
);
1063 found
= nvme_process_cq(nvmeq
);
1064 spin_unlock(&nvmeq
->cq_poll_lock
);
1069 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1071 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1072 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1073 struct nvme_command c
;
1075 memset(&c
, 0, sizeof(c
));
1076 c
.common
.opcode
= nvme_admin_async_event
;
1077 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1078 nvme_submit_cmd(nvmeq
, &c
, true);
1081 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1083 struct nvme_command c
;
1085 memset(&c
, 0, sizeof(c
));
1086 c
.delete_queue
.opcode
= opcode
;
1087 c
.delete_queue
.qid
= cpu_to_le16(id
);
1089 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1092 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1093 struct nvme_queue
*nvmeq
, s16 vector
)
1095 struct nvme_command c
;
1096 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1098 if (!test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1099 flags
|= NVME_CQ_IRQ_ENABLED
;
1102 * Note: we (ab)use the fact that the prp fields survive if no data
1103 * is attached to the request.
1105 memset(&c
, 0, sizeof(c
));
1106 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1107 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1108 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1109 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1110 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1111 c
.create_cq
.irq_vector
= cpu_to_le16(vector
);
1113 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1116 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1117 struct nvme_queue
*nvmeq
)
1119 struct nvme_ctrl
*ctrl
= &dev
->ctrl
;
1120 struct nvme_command c
;
1121 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1124 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1125 * set. Since URGENT priority is zeroes, it makes all queues
1128 if (ctrl
->quirks
& NVME_QUIRK_MEDIUM_PRIO_SQ
)
1129 flags
|= NVME_SQ_PRIO_MEDIUM
;
1132 * Note: we (ab)use the fact that the prp fields survive if no data
1133 * is attached to the request.
1135 memset(&c
, 0, sizeof(c
));
1136 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1137 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1138 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1139 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1140 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1141 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1143 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1146 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1148 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1151 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1153 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1156 static void abort_endio(struct request
*req
, blk_status_t error
)
1158 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1159 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1161 dev_warn(nvmeq
->dev
->ctrl
.device
,
1162 "Abort status: 0x%x", nvme_req(req
)->status
);
1163 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1164 blk_mq_free_request(req
);
1167 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1170 /* If true, indicates loss of adapter communication, possibly by a
1171 * NVMe Subsystem reset.
1173 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1175 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1176 switch (dev
->ctrl
.state
) {
1177 case NVME_CTRL_RESETTING
:
1178 case NVME_CTRL_CONNECTING
:
1184 /* We shouldn't reset unless the controller is on fatal error state
1185 * _or_ if we lost the communication with it.
1187 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1193 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1195 /* Read a config register to help see what died. */
1199 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1201 if (result
== PCIBIOS_SUCCESSFUL
)
1202 dev_warn(dev
->ctrl
.device
,
1203 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1206 dev_warn(dev
->ctrl
.device
,
1207 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1211 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1213 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1214 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1215 struct nvme_dev
*dev
= nvmeq
->dev
;
1216 struct request
*abort_req
;
1217 struct nvme_command cmd
;
1218 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1220 /* If PCI error recovery process is happening, we cannot reset or
1221 * the recovery mechanism will surely fail.
1224 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1225 return BLK_EH_RESET_TIMER
;
1228 * Reset immediately if the controller is failed
1230 if (nvme_should_reset(dev
, csts
)) {
1231 nvme_warn_reset(dev
, csts
);
1232 nvme_dev_disable(dev
, false);
1233 nvme_reset_ctrl(&dev
->ctrl
);
1238 * Did we miss an interrupt?
1240 if (test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1241 nvme_poll(req
->mq_hctx
);
1243 nvme_poll_irqdisable(nvmeq
);
1245 if (blk_mq_request_completed(req
)) {
1246 dev_warn(dev
->ctrl
.device
,
1247 "I/O %d QID %d timeout, completion polled\n",
1248 req
->tag
, nvmeq
->qid
);
1253 * Shutdown immediately if controller times out while starting. The
1254 * reset work will see the pci device disabled when it gets the forced
1255 * cancellation error. All outstanding requests are completed on
1256 * shutdown, so we return BLK_EH_DONE.
1258 switch (dev
->ctrl
.state
) {
1259 case NVME_CTRL_CONNECTING
:
1260 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1262 case NVME_CTRL_DELETING
:
1263 dev_warn_ratelimited(dev
->ctrl
.device
,
1264 "I/O %d QID %d timeout, disable controller\n",
1265 req
->tag
, nvmeq
->qid
);
1266 nvme_dev_disable(dev
, true);
1267 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1269 case NVME_CTRL_RESETTING
:
1270 return BLK_EH_RESET_TIMER
;
1276 * Shutdown the controller immediately and schedule a reset if the
1277 * command was already aborted once before and still hasn't been
1278 * returned to the driver, or if this is the admin queue.
1280 if (!nvmeq
->qid
|| iod
->aborted
) {
1281 dev_warn(dev
->ctrl
.device
,
1282 "I/O %d QID %d timeout, reset controller\n",
1283 req
->tag
, nvmeq
->qid
);
1284 nvme_dev_disable(dev
, false);
1285 nvme_reset_ctrl(&dev
->ctrl
);
1287 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1291 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1292 atomic_inc(&dev
->ctrl
.abort_limit
);
1293 return BLK_EH_RESET_TIMER
;
1297 memset(&cmd
, 0, sizeof(cmd
));
1298 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1299 cmd
.abort
.cid
= req
->tag
;
1300 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1302 dev_warn(nvmeq
->dev
->ctrl
.device
,
1303 "I/O %d QID %d timeout, aborting\n",
1304 req
->tag
, nvmeq
->qid
);
1306 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1307 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1308 if (IS_ERR(abort_req
)) {
1309 atomic_inc(&dev
->ctrl
.abort_limit
);
1310 return BLK_EH_RESET_TIMER
;
1313 abort_req
->timeout
= ADMIN_TIMEOUT
;
1314 abort_req
->end_io_data
= NULL
;
1315 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1318 * The aborted req will be completed on receiving the abort req.
1319 * We enable the timer again. If hit twice, it'll cause a device reset,
1320 * as the device then is in a faulty state.
1322 return BLK_EH_RESET_TIMER
;
1325 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1327 dma_free_coherent(nvmeq
->dev
->dev
, CQ_SIZE(nvmeq
),
1328 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1329 if (!nvmeq
->sq_cmds
)
1332 if (test_and_clear_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
)) {
1333 pci_free_p2pmem(to_pci_dev(nvmeq
->dev
->dev
),
1334 nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1336 dma_free_coherent(nvmeq
->dev
->dev
, SQ_SIZE(nvmeq
),
1337 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1341 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1345 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1346 dev
->ctrl
.queue_count
--;
1347 nvme_free_queue(&dev
->queues
[i
]);
1352 * nvme_suspend_queue - put queue into suspended state
1353 * @nvmeq: queue to suspend
1355 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1357 if (!test_and_clear_bit(NVMEQ_ENABLED
, &nvmeq
->flags
))
1360 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1363 nvmeq
->dev
->online_queues
--;
1364 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1365 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1366 if (!test_and_clear_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1367 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), nvmeq
->cq_vector
, nvmeq
);
1371 static void nvme_suspend_io_queues(struct nvme_dev
*dev
)
1375 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--)
1376 nvme_suspend_queue(&dev
->queues
[i
]);
1379 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1381 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1384 nvme_shutdown_ctrl(&dev
->ctrl
);
1386 nvme_disable_ctrl(&dev
->ctrl
);
1388 nvme_poll_irqdisable(nvmeq
);
1392 * Called only on a device that has been disabled and after all other threads
1393 * that can check this device's completion queues have synced, except
1394 * nvme_poll(). This is the last chance for the driver to see a natural
1395 * completion before nvme_cancel_request() terminates all incomplete requests.
1397 static void nvme_reap_pending_cqes(struct nvme_dev
*dev
)
1401 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--) {
1402 spin_lock(&dev
->queues
[i
].cq_poll_lock
);
1403 nvme_process_cq(&dev
->queues
[i
]);
1404 spin_unlock(&dev
->queues
[i
].cq_poll_lock
);
1408 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1411 int q_depth
= dev
->q_depth
;
1412 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1413 dev
->ctrl
.page_size
);
1415 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1416 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1417 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1418 q_depth
= div_u64(mem_per_q
, entry_size
);
1421 * Ensure the reduced q_depth is above some threshold where it
1422 * would be better to map queues in system memory with the
1432 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1435 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1437 if (qid
&& dev
->cmb_use_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1438 nvmeq
->sq_cmds
= pci_alloc_p2pmem(pdev
, SQ_SIZE(nvmeq
));
1439 if (nvmeq
->sq_cmds
) {
1440 nvmeq
->sq_dma_addr
= pci_p2pmem_virt_to_bus(pdev
,
1442 if (nvmeq
->sq_dma_addr
) {
1443 set_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
);
1447 pci_free_p2pmem(pdev
, nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1451 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(nvmeq
),
1452 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1453 if (!nvmeq
->sq_cmds
)
1458 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
, int depth
)
1460 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1462 if (dev
->ctrl
.queue_count
> qid
)
1465 nvmeq
->sqes
= qid
? dev
->io_sqes
: NVME_ADM_SQES
;
1466 nvmeq
->q_depth
= depth
;
1467 nvmeq
->cqes
= dma_alloc_coherent(dev
->dev
, CQ_SIZE(nvmeq
),
1468 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1472 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
))
1476 spin_lock_init(&nvmeq
->sq_lock
);
1477 spin_lock_init(&nvmeq
->cq_poll_lock
);
1479 nvmeq
->cq_phase
= 1;
1480 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1482 dev
->ctrl
.queue_count
++;
1487 dma_free_coherent(dev
->dev
, CQ_SIZE(nvmeq
), (void *)nvmeq
->cqes
,
1488 nvmeq
->cq_dma_addr
);
1493 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1495 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1496 int nr
= nvmeq
->dev
->ctrl
.instance
;
1498 if (use_threaded_interrupts
) {
1499 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1500 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1502 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1503 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1507 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1509 struct nvme_dev
*dev
= nvmeq
->dev
;
1512 nvmeq
->last_sq_tail
= 0;
1514 nvmeq
->cq_phase
= 1;
1515 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1516 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
));
1517 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1518 dev
->online_queues
++;
1519 wmb(); /* ensure the first interrupt sees the initialization */
1522 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
, bool polled
)
1524 struct nvme_dev
*dev
= nvmeq
->dev
;
1528 clear_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
1531 * A queue's vector matches the queue identifier unless the controller
1532 * has only one vector available.
1535 vector
= dev
->num_vecs
== 1 ? 0 : qid
;
1537 set_bit(NVMEQ_POLLED
, &nvmeq
->flags
);
1539 result
= adapter_alloc_cq(dev
, qid
, nvmeq
, vector
);
1543 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1549 nvmeq
->cq_vector
= vector
;
1550 nvme_init_queue(nvmeq
, qid
);
1553 result
= queue_request_irq(nvmeq
);
1558 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1562 dev
->online_queues
--;
1563 adapter_delete_sq(dev
, qid
);
1565 adapter_delete_cq(dev
, qid
);
1569 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1570 .queue_rq
= nvme_queue_rq
,
1571 .complete
= nvme_pci_complete_rq
,
1572 .init_hctx
= nvme_admin_init_hctx
,
1573 .init_request
= nvme_init_request
,
1574 .timeout
= nvme_timeout
,
1577 static const struct blk_mq_ops nvme_mq_ops
= {
1578 .queue_rq
= nvme_queue_rq
,
1579 .complete
= nvme_pci_complete_rq
,
1580 .commit_rqs
= nvme_commit_rqs
,
1581 .init_hctx
= nvme_init_hctx
,
1582 .init_request
= nvme_init_request
,
1583 .map_queues
= nvme_pci_map_queues
,
1584 .timeout
= nvme_timeout
,
1588 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1590 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1592 * If the controller was reset during removal, it's possible
1593 * user requests may be waiting on a stopped queue. Start the
1594 * queue to flush these to completion.
1596 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1597 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1598 blk_mq_free_tag_set(&dev
->admin_tagset
);
1602 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1604 if (!dev
->ctrl
.admin_q
) {
1605 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1606 dev
->admin_tagset
.nr_hw_queues
= 1;
1608 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1609 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1610 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1611 dev
->admin_tagset
.cmd_size
= sizeof(struct nvme_iod
);
1612 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1613 dev
->admin_tagset
.driver_data
= dev
;
1615 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1617 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1619 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1620 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1621 blk_mq_free_tag_set(&dev
->admin_tagset
);
1624 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1625 nvme_dev_remove_admin(dev
);
1626 dev
->ctrl
.admin_q
= NULL
;
1630 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1635 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1637 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1640 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1642 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1644 if (size
<= dev
->bar_mapped_size
)
1646 if (size
> pci_resource_len(pdev
, 0))
1650 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1652 dev
->bar_mapped_size
= 0;
1655 dev
->bar_mapped_size
= size
;
1656 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1661 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1665 struct nvme_queue
*nvmeq
;
1667 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1671 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1672 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1674 if (dev
->subsystem
&&
1675 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1676 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1678 result
= nvme_disable_ctrl(&dev
->ctrl
);
1682 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1686 nvmeq
= &dev
->queues
[0];
1687 aqa
= nvmeq
->q_depth
- 1;
1690 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1691 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1692 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1694 result
= nvme_enable_ctrl(&dev
->ctrl
);
1698 nvmeq
->cq_vector
= 0;
1699 nvme_init_queue(nvmeq
, 0);
1700 result
= queue_request_irq(nvmeq
);
1702 dev
->online_queues
--;
1706 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1710 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1712 unsigned i
, max
, rw_queues
;
1715 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1716 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1722 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1723 if (max
!= 1 && dev
->io_queues
[HCTX_TYPE_POLL
]) {
1724 rw_queues
= dev
->io_queues
[HCTX_TYPE_DEFAULT
] +
1725 dev
->io_queues
[HCTX_TYPE_READ
];
1730 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1731 bool polled
= i
> rw_queues
;
1733 ret
= nvme_create_queue(&dev
->queues
[i
], i
, polled
);
1739 * Ignore failing Create SQ/CQ commands, we can continue with less
1740 * than the desired amount of queues, and even a controller without
1741 * I/O queues can still be used to issue admin commands. This might
1742 * be useful to upgrade a buggy firmware for example.
1744 return ret
>= 0 ? 0 : ret
;
1747 static ssize_t
nvme_cmb_show(struct device
*dev
,
1748 struct device_attribute
*attr
,
1751 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1753 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1754 ndev
->cmbloc
, ndev
->cmbsz
);
1756 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1758 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1760 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1762 return 1ULL << (12 + 4 * szu
);
1765 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1767 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1770 static void nvme_map_cmb(struct nvme_dev
*dev
)
1773 resource_size_t bar_size
;
1774 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1780 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1783 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1785 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1786 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1787 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1788 bar_size
= pci_resource_len(pdev
, bar
);
1790 if (offset
> bar_size
)
1794 * Controllers may support a CMB size larger than their BAR,
1795 * for example, due to being behind a bridge. Reduce the CMB to
1796 * the reported size of the BAR
1798 if (size
> bar_size
- offset
)
1799 size
= bar_size
- offset
;
1801 if (pci_p2pdma_add_resource(pdev
, bar
, size
, offset
)) {
1802 dev_warn(dev
->ctrl
.device
,
1803 "failed to register the CMB\n");
1807 dev
->cmb_size
= size
;
1808 dev
->cmb_use_sqes
= use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
);
1810 if ((dev
->cmbsz
& (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
)) ==
1811 (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
))
1812 pci_p2pmem_publish(pdev
, true);
1814 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1815 &dev_attr_cmb
.attr
, NULL
))
1816 dev_warn(dev
->ctrl
.device
,
1817 "failed to add sysfs attribute for CMB\n");
1820 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1822 if (dev
->cmb_size
) {
1823 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1824 &dev_attr_cmb
.attr
, NULL
);
1829 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1831 u64 dma_addr
= dev
->host_mem_descs_dma
;
1832 struct nvme_command c
;
1835 memset(&c
, 0, sizeof(c
));
1836 c
.features
.opcode
= nvme_admin_set_features
;
1837 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1838 c
.features
.dword11
= cpu_to_le32(bits
);
1839 c
.features
.dword12
= cpu_to_le32(dev
->host_mem_size
>>
1840 ilog2(dev
->ctrl
.page_size
));
1841 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1842 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1843 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1845 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1847 dev_warn(dev
->ctrl
.device
,
1848 "failed to set host mem (err %d, flags %#x).\n",
1854 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1858 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1859 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1860 size_t size
= le32_to_cpu(desc
->size
) * dev
->ctrl
.page_size
;
1862 dma_free_attrs(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1863 le64_to_cpu(desc
->addr
),
1864 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1867 kfree(dev
->host_mem_desc_bufs
);
1868 dev
->host_mem_desc_bufs
= NULL
;
1869 dma_free_coherent(dev
->dev
,
1870 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1871 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1872 dev
->host_mem_descs
= NULL
;
1873 dev
->nr_host_mem_descs
= 0;
1876 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1879 struct nvme_host_mem_buf_desc
*descs
;
1880 u32 max_entries
, len
;
1881 dma_addr_t descs_dma
;
1886 tmp
= (preferred
+ chunk_size
- 1);
1887 do_div(tmp
, chunk_size
);
1890 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1891 max_entries
= dev
->ctrl
.hmmaxd
;
1893 descs
= dma_alloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1894 &descs_dma
, GFP_KERNEL
);
1898 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1900 goto out_free_descs
;
1902 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1903 dma_addr_t dma_addr
;
1905 len
= min_t(u64
, chunk_size
, preferred
- size
);
1906 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1907 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1911 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1912 descs
[i
].size
= cpu_to_le32(len
/ dev
->ctrl
.page_size
);
1919 dev
->nr_host_mem_descs
= i
;
1920 dev
->host_mem_size
= size
;
1921 dev
->host_mem_descs
= descs
;
1922 dev
->host_mem_descs_dma
= descs_dma
;
1923 dev
->host_mem_desc_bufs
= bufs
;
1928 size_t size
= le32_to_cpu(descs
[i
].size
) * dev
->ctrl
.page_size
;
1930 dma_free_attrs(dev
->dev
, size
, bufs
[i
],
1931 le64_to_cpu(descs
[i
].addr
),
1932 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1937 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1940 dev
->host_mem_descs
= NULL
;
1944 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1948 /* start big and work our way down */
1949 for (chunk_size
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1950 chunk_size
>= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1952 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1953 if (!min
|| dev
->host_mem_size
>= min
)
1955 nvme_free_host_mem(dev
);
1962 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1964 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1965 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1966 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1967 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1970 preferred
= min(preferred
, max
);
1972 dev_warn(dev
->ctrl
.device
,
1973 "min host memory (%lld MiB) above limit (%d MiB).\n",
1974 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1975 nvme_free_host_mem(dev
);
1980 * If we already have a buffer allocated check if we can reuse it.
1982 if (dev
->host_mem_descs
) {
1983 if (dev
->host_mem_size
>= min
)
1984 enable_bits
|= NVME_HOST_MEM_RETURN
;
1986 nvme_free_host_mem(dev
);
1989 if (!dev
->host_mem_descs
) {
1990 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
1991 dev_warn(dev
->ctrl
.device
,
1992 "failed to allocate host memory buffer.\n");
1993 return 0; /* controller must work without HMB */
1996 dev_info(dev
->ctrl
.device
,
1997 "allocated %lld MiB host memory buffer.\n",
1998 dev
->host_mem_size
>> ilog2(SZ_1M
));
2001 ret
= nvme_set_host_mem(dev
, enable_bits
);
2003 nvme_free_host_mem(dev
);
2008 * nirqs is the number of interrupts available for write and read
2009 * queues. The core already reserved an interrupt for the admin queue.
2011 static void nvme_calc_irq_sets(struct irq_affinity
*affd
, unsigned int nrirqs
)
2013 struct nvme_dev
*dev
= affd
->priv
;
2014 unsigned int nr_read_queues
, nr_write_queues
= dev
->nr_write_queues
;
2017 * If there is no interupt available for queues, ensure that
2018 * the default queue is set to 1. The affinity set size is
2019 * also set to one, but the irq core ignores it for this case.
2021 * If only one interrupt is available or 'write_queue' == 0, combine
2022 * write and read queues.
2024 * If 'write_queues' > 0, ensure it leaves room for at least one read
2030 } else if (nrirqs
== 1 || !nr_write_queues
) {
2032 } else if (nr_write_queues
>= nrirqs
) {
2035 nr_read_queues
= nrirqs
- nr_write_queues
;
2038 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2039 affd
->set_size
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2040 dev
->io_queues
[HCTX_TYPE_READ
] = nr_read_queues
;
2041 affd
->set_size
[HCTX_TYPE_READ
] = nr_read_queues
;
2042 affd
->nr_sets
= nr_read_queues
? 2 : 1;
2045 static int nvme_setup_irqs(struct nvme_dev
*dev
, unsigned int nr_io_queues
)
2047 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2048 struct irq_affinity affd
= {
2050 .calc_sets
= nvme_calc_irq_sets
,
2053 unsigned int irq_queues
, this_p_queues
;
2056 * Poll queues don't need interrupts, but we need at least one IO
2057 * queue left over for non-polled IO.
2059 this_p_queues
= dev
->nr_poll_queues
;
2060 if (this_p_queues
>= nr_io_queues
) {
2061 this_p_queues
= nr_io_queues
- 1;
2064 irq_queues
= nr_io_queues
- this_p_queues
+ 1;
2066 dev
->io_queues
[HCTX_TYPE_POLL
] = this_p_queues
;
2068 /* Initialize for the single interrupt case */
2069 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = 1;
2070 dev
->io_queues
[HCTX_TYPE_READ
] = 0;
2073 * Some Apple controllers require all queues to use the
2076 if (dev
->ctrl
.quirks
& NVME_QUIRK_SINGLE_VECTOR
)
2079 return pci_alloc_irq_vectors_affinity(pdev
, 1, irq_queues
,
2080 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
, &affd
);
2083 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2085 if (__nvme_disable_io_queues(dev
, nvme_admin_delete_sq
))
2086 __nvme_disable_io_queues(dev
, nvme_admin_delete_cq
);
2089 static unsigned int nvme_max_io_queues(struct nvme_dev
*dev
)
2091 return num_possible_cpus() + dev
->nr_write_queues
+ dev
->nr_poll_queues
;
2094 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2096 struct nvme_queue
*adminq
= &dev
->queues
[0];
2097 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2098 unsigned int nr_io_queues
;
2103 * Sample the module parameters once at reset time so that we have
2104 * stable values to work with.
2106 dev
->nr_write_queues
= write_queues
;
2107 dev
->nr_poll_queues
= poll_queues
;
2110 * If tags are shared with admin queue (Apple bug), then
2111 * make sure we only use one IO queue.
2113 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2116 nr_io_queues
= min(nvme_max_io_queues(dev
),
2117 dev
->nr_allocated_queues
- 1);
2119 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
2123 if (nr_io_queues
== 0)
2126 clear_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2128 if (dev
->cmb_use_sqes
) {
2129 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
2130 sizeof(struct nvme_command
));
2132 dev
->q_depth
= result
;
2134 dev
->cmb_use_sqes
= false;
2138 size
= db_bar_size(dev
, nr_io_queues
);
2139 result
= nvme_remap_bar(dev
, size
);
2142 if (!--nr_io_queues
)
2145 adminq
->q_db
= dev
->dbs
;
2148 /* Deregister the admin queue's interrupt */
2149 pci_free_irq(pdev
, 0, adminq
);
2152 * If we enable msix early due to not intx, disable it again before
2153 * setting up the full range we need.
2155 pci_free_irq_vectors(pdev
);
2157 result
= nvme_setup_irqs(dev
, nr_io_queues
);
2161 dev
->num_vecs
= result
;
2162 result
= max(result
- 1, 1);
2163 dev
->max_qid
= result
+ dev
->io_queues
[HCTX_TYPE_POLL
];
2166 * Should investigate if there's a performance win from allocating
2167 * more queues than interrupt vectors; it might allow the submission
2168 * path to scale better, even if the receive path is limited by the
2169 * number of interrupts.
2171 result
= queue_request_irq(adminq
);
2174 set_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2176 result
= nvme_create_io_queues(dev
);
2177 if (result
|| dev
->online_queues
< 2)
2180 if (dev
->online_queues
- 1 < dev
->max_qid
) {
2181 nr_io_queues
= dev
->online_queues
- 1;
2182 nvme_disable_io_queues(dev
);
2183 nvme_suspend_io_queues(dev
);
2186 dev_info(dev
->ctrl
.device
, "%d/%d/%d default/read/poll queues\n",
2187 dev
->io_queues
[HCTX_TYPE_DEFAULT
],
2188 dev
->io_queues
[HCTX_TYPE_READ
],
2189 dev
->io_queues
[HCTX_TYPE_POLL
]);
2193 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
2195 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2197 blk_mq_free_request(req
);
2198 complete(&nvmeq
->delete_done
);
2201 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
2203 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2206 set_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
2208 nvme_del_queue_end(req
, error
);
2211 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2213 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2214 struct request
*req
;
2215 struct nvme_command cmd
;
2217 memset(&cmd
, 0, sizeof(cmd
));
2218 cmd
.delete_queue
.opcode
= opcode
;
2219 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2221 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
2223 return PTR_ERR(req
);
2225 req
->timeout
= ADMIN_TIMEOUT
;
2226 req
->end_io_data
= nvmeq
;
2228 init_completion(&nvmeq
->delete_done
);
2229 blk_execute_rq_nowait(q
, NULL
, req
, false,
2230 opcode
== nvme_admin_delete_cq
?
2231 nvme_del_cq_end
: nvme_del_queue_end
);
2235 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
)
2237 int nr_queues
= dev
->online_queues
- 1, sent
= 0;
2238 unsigned long timeout
;
2241 timeout
= ADMIN_TIMEOUT
;
2242 while (nr_queues
> 0) {
2243 if (nvme_delete_queue(&dev
->queues
[nr_queues
], opcode
))
2249 struct nvme_queue
*nvmeq
= &dev
->queues
[nr_queues
+ sent
];
2251 timeout
= wait_for_completion_io_timeout(&nvmeq
->delete_done
,
2263 static void nvme_dev_add(struct nvme_dev
*dev
)
2267 if (!dev
->ctrl
.tagset
) {
2268 dev
->tagset
.ops
= &nvme_mq_ops
;
2269 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2270 dev
->tagset
.nr_maps
= 2; /* default + read */
2271 if (dev
->io_queues
[HCTX_TYPE_POLL
])
2272 dev
->tagset
.nr_maps
++;
2273 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2274 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
2275 dev
->tagset
.queue_depth
=
2276 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2277 dev
->tagset
.cmd_size
= sizeof(struct nvme_iod
);
2278 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2279 dev
->tagset
.driver_data
= dev
;
2282 * Some Apple controllers requires tags to be unique
2283 * across admin and IO queue, so reserve the first 32
2284 * tags of the IO queue.
2286 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2287 dev
->tagset
.reserved_tags
= NVME_AQ_DEPTH
;
2289 ret
= blk_mq_alloc_tag_set(&dev
->tagset
);
2291 dev_warn(dev
->ctrl
.device
,
2292 "IO queues tagset allocation failed %d\n", ret
);
2295 dev
->ctrl
.tagset
= &dev
->tagset
;
2297 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2299 /* Free previously allocated queues that are no longer usable */
2300 nvme_free_queues(dev
, dev
->online_queues
);
2303 nvme_dbbuf_set(dev
);
2306 static int nvme_pci_enable(struct nvme_dev
*dev
)
2308 int result
= -ENOMEM
;
2309 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2311 if (pci_enable_device_mem(pdev
))
2314 pci_set_master(pdev
);
2316 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)))
2319 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2325 * Some devices and/or platforms don't advertise or work with INTx
2326 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2327 * adjust this later.
2329 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2333 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2335 dev
->q_depth
= min_t(int, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2337 dev
->ctrl
.sqsize
= dev
->q_depth
- 1; /* 0's based queue depth */
2338 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2339 dev
->dbs
= dev
->bar
+ 4096;
2342 * Some Apple controllers require a non-standard SQE size.
2343 * Interestingly they also seem to ignore the CC:IOSQES register
2344 * so we don't bother updating it here.
2346 if (dev
->ctrl
.quirks
& NVME_QUIRK_128_BYTES_SQES
)
2349 dev
->io_sqes
= NVME_NVM_IOSQES
;
2352 * Temporary fix for the Apple controller found in the MacBook8,1 and
2353 * some MacBook7,1 to avoid controller resets and data loss.
2355 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2357 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2358 "set queue depth=%u to work around controller resets\n",
2360 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2361 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2362 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2364 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2365 "set queue depth=%u\n", dev
->q_depth
);
2369 * Controllers with the shared tags quirk need the IO queue to be
2370 * big enough so that we get 32 tags for the admin queue
2372 if ((dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
) &&
2373 (dev
->q_depth
< (NVME_AQ_DEPTH
+ 2))) {
2374 dev
->q_depth
= NVME_AQ_DEPTH
+ 2;
2375 dev_warn(dev
->ctrl
.device
, "IO queue depth clamped to %d\n",
2382 pci_enable_pcie_error_reporting(pdev
);
2383 pci_save_state(pdev
);
2387 pci_disable_device(pdev
);
2391 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2395 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2398 static void nvme_pci_disable(struct nvme_dev
*dev
)
2400 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2402 pci_free_irq_vectors(pdev
);
2404 if (pci_is_enabled(pdev
)) {
2405 pci_disable_pcie_error_reporting(pdev
);
2406 pci_disable_device(pdev
);
2410 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2412 bool dead
= true, freeze
= false;
2413 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2415 mutex_lock(&dev
->shutdown_lock
);
2416 if (pci_is_enabled(pdev
)) {
2417 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2419 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2420 dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
2422 nvme_start_freeze(&dev
->ctrl
);
2424 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2425 pdev
->error_state
!= pci_channel_io_normal
);
2429 * Give the controller a chance to complete all entered requests if
2430 * doing a safe shutdown.
2432 if (!dead
&& shutdown
&& freeze
)
2433 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2435 nvme_stop_queues(&dev
->ctrl
);
2437 if (!dead
&& dev
->ctrl
.queue_count
> 0) {
2438 nvme_disable_io_queues(dev
);
2439 nvme_disable_admin_queue(dev
, shutdown
);
2441 nvme_suspend_io_queues(dev
);
2442 nvme_suspend_queue(&dev
->queues
[0]);
2443 nvme_pci_disable(dev
);
2444 nvme_reap_pending_cqes(dev
);
2446 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2447 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2448 blk_mq_tagset_wait_completed_request(&dev
->tagset
);
2449 blk_mq_tagset_wait_completed_request(&dev
->admin_tagset
);
2452 * The driver will not be starting up queues again if shutting down so
2453 * must flush all entered requests to their failed completion to avoid
2454 * deadlocking blk-mq hot-cpu notifier.
2457 nvme_start_queues(&dev
->ctrl
);
2458 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
))
2459 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
2461 mutex_unlock(&dev
->shutdown_lock
);
2464 static int nvme_disable_prepare_reset(struct nvme_dev
*dev
, bool shutdown
)
2466 if (!nvme_wait_reset(&dev
->ctrl
))
2468 nvme_dev_disable(dev
, shutdown
);
2472 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2474 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2475 PAGE_SIZE
, PAGE_SIZE
, 0);
2476 if (!dev
->prp_page_pool
)
2479 /* Optimisation for I/Os between 4k and 128k */
2480 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2482 if (!dev
->prp_small_pool
) {
2483 dma_pool_destroy(dev
->prp_page_pool
);
2489 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2491 dma_pool_destroy(dev
->prp_page_pool
);
2492 dma_pool_destroy(dev
->prp_small_pool
);
2495 static void nvme_free_tagset(struct nvme_dev
*dev
)
2497 if (dev
->tagset
.tags
)
2498 blk_mq_free_tag_set(&dev
->tagset
);
2499 dev
->ctrl
.tagset
= NULL
;
2502 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2504 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2506 nvme_dbbuf_dma_free(dev
);
2507 nvme_free_tagset(dev
);
2508 if (dev
->ctrl
.admin_q
)
2509 blk_put_queue(dev
->ctrl
.admin_q
);
2510 free_opal_dev(dev
->ctrl
.opal_dev
);
2511 mempool_destroy(dev
->iod_mempool
);
2512 put_device(dev
->dev
);
2517 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
)
2520 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2521 * may be holding this pci_dev's device lock.
2523 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2524 nvme_get_ctrl(&dev
->ctrl
);
2525 nvme_dev_disable(dev
, false);
2526 nvme_kill_queues(&dev
->ctrl
);
2527 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2528 nvme_put_ctrl(&dev
->ctrl
);
2531 static void nvme_reset_work(struct work_struct
*work
)
2533 struct nvme_dev
*dev
=
2534 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2535 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2538 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
)) {
2544 * If we're called to reset a live controller first shut it down before
2547 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2548 nvme_dev_disable(dev
, false);
2549 nvme_sync_queues(&dev
->ctrl
);
2551 mutex_lock(&dev
->shutdown_lock
);
2552 result
= nvme_pci_enable(dev
);
2556 result
= nvme_pci_configure_admin_queue(dev
);
2560 result
= nvme_alloc_admin_tags(dev
);
2565 * Limit the max command size to prevent iod->sg allocations going
2566 * over a single page.
2568 dev
->ctrl
.max_hw_sectors
= min_t(u32
,
2569 NVME_MAX_KB_SZ
<< 1, dma_max_mapping_size(dev
->dev
) >> 9);
2570 dev
->ctrl
.max_segments
= NVME_MAX_SEGS
;
2573 * Don't limit the IOMMU merged segment size.
2575 dma_set_max_seg_size(dev
->dev
, 0xffffffff);
2577 mutex_unlock(&dev
->shutdown_lock
);
2580 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2581 * initializing procedure here.
2583 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2584 dev_warn(dev
->ctrl
.device
,
2585 "failed to mark controller CONNECTING\n");
2590 result
= nvme_init_identify(&dev
->ctrl
);
2594 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2595 if (!dev
->ctrl
.opal_dev
)
2596 dev
->ctrl
.opal_dev
=
2597 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2598 else if (was_suspend
)
2599 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2601 free_opal_dev(dev
->ctrl
.opal_dev
);
2602 dev
->ctrl
.opal_dev
= NULL
;
2605 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2606 result
= nvme_dbbuf_dma_alloc(dev
);
2609 "unable to allocate dma for dbbuf\n");
2612 if (dev
->ctrl
.hmpre
) {
2613 result
= nvme_setup_host_mem(dev
);
2618 result
= nvme_setup_io_queues(dev
);
2623 * Keep the controller around but remove all namespaces if we don't have
2624 * any working I/O queue.
2626 if (dev
->online_queues
< 2) {
2627 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2628 nvme_kill_queues(&dev
->ctrl
);
2629 nvme_remove_namespaces(&dev
->ctrl
);
2630 nvme_free_tagset(dev
);
2632 nvme_start_queues(&dev
->ctrl
);
2633 nvme_wait_freeze(&dev
->ctrl
);
2635 nvme_unfreeze(&dev
->ctrl
);
2639 * If only admin queue live, keep it to do further investigation or
2642 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
2643 dev_warn(dev
->ctrl
.device
,
2644 "failed to mark controller live state\n");
2649 nvme_start_ctrl(&dev
->ctrl
);
2653 mutex_unlock(&dev
->shutdown_lock
);
2656 dev_warn(dev
->ctrl
.device
,
2657 "Removing after probe failure status: %d\n", result
);
2658 nvme_remove_dead_ctrl(dev
);
2661 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2663 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2664 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2666 if (pci_get_drvdata(pdev
))
2667 device_release_driver(&pdev
->dev
);
2668 nvme_put_ctrl(&dev
->ctrl
);
2671 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2673 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2677 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2679 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2683 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2685 *val
= lo_hi_readq(to_nvme_dev(ctrl
)->bar
+ off
);
2689 static int nvme_pci_get_address(struct nvme_ctrl
*ctrl
, char *buf
, int size
)
2691 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
2693 return snprintf(buf
, size
, "%s\n", dev_name(&pdev
->dev
));
2696 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2698 .module
= THIS_MODULE
,
2699 .flags
= NVME_F_METADATA_SUPPORTED
|
2701 .reg_read32
= nvme_pci_reg_read32
,
2702 .reg_write32
= nvme_pci_reg_write32
,
2703 .reg_read64
= nvme_pci_reg_read64
,
2704 .free_ctrl
= nvme_pci_free_ctrl
,
2705 .submit_async_event
= nvme_pci_submit_async_event
,
2706 .get_address
= nvme_pci_get_address
,
2709 static int nvme_dev_map(struct nvme_dev
*dev
)
2711 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2713 if (pci_request_mem_regions(pdev
, "nvme"))
2716 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2721 pci_release_mem_regions(pdev
);
2725 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2727 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2729 * Several Samsung devices seem to drop off the PCIe bus
2730 * randomly when APST is on and uses the deepest sleep state.
2731 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2732 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2733 * 950 PRO 256GB", but it seems to be restricted to two Dell
2736 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2737 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2738 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2739 return NVME_QUIRK_NO_DEEPEST_PS
;
2740 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2742 * Samsung SSD 960 EVO drops off the PCIe bus after system
2743 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2744 * within few minutes after bootup on a Coffee Lake board -
2747 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2748 (dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A") ||
2749 dmi_match(DMI_BOARD_NAME
, "PRIME Z370-A")))
2750 return NVME_QUIRK_NO_APST
;
2751 } else if ((pdev
->vendor
== 0x144d && (pdev
->device
== 0xa801 ||
2752 pdev
->device
== 0xa808 || pdev
->device
== 0xa809)) ||
2753 (pdev
->vendor
== 0x1e0f && pdev
->device
== 0x0001)) {
2755 * Forcing to use host managed nvme power settings for
2756 * lowest idle power with quick resume latency on
2757 * Samsung and Toshiba SSDs based on suspend behavior
2758 * on Coffee Lake board for LENOVO C640
2760 if ((dmi_match(DMI_BOARD_VENDOR
, "LENOVO")) &&
2761 dmi_match(DMI_BOARD_NAME
, "LNVNB161216"))
2762 return NVME_QUIRK_SIMPLE_SUSPEND
;
2768 static void nvme_async_probe(void *data
, async_cookie_t cookie
)
2770 struct nvme_dev
*dev
= data
;
2772 flush_work(&dev
->ctrl
.reset_work
);
2773 flush_work(&dev
->ctrl
.scan_work
);
2774 nvme_put_ctrl(&dev
->ctrl
);
2777 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2779 int node
, result
= -ENOMEM
;
2780 struct nvme_dev
*dev
;
2781 unsigned long quirks
= id
->driver_data
;
2784 node
= dev_to_node(&pdev
->dev
);
2785 if (node
== NUMA_NO_NODE
)
2786 set_dev_node(&pdev
->dev
, first_memory_node
);
2788 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2792 dev
->nr_write_queues
= write_queues
;
2793 dev
->nr_poll_queues
= poll_queues
;
2794 dev
->nr_allocated_queues
= nvme_max_io_queues(dev
) + 1;
2795 dev
->queues
= kcalloc_node(dev
->nr_allocated_queues
,
2796 sizeof(struct nvme_queue
), GFP_KERNEL
, node
);
2800 dev
->dev
= get_device(&pdev
->dev
);
2801 pci_set_drvdata(pdev
, dev
);
2803 result
= nvme_dev_map(dev
);
2807 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2808 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2809 mutex_init(&dev
->shutdown_lock
);
2811 result
= nvme_setup_prp_pools(dev
);
2815 quirks
|= check_vendor_combination_bug(pdev
);
2818 * Double check that our mempool alloc size will cover the biggest
2819 * command we support.
2821 alloc_size
= nvme_pci_iod_alloc_size(dev
, NVME_MAX_KB_SZ
,
2822 NVME_MAX_SEGS
, true);
2823 WARN_ON_ONCE(alloc_size
> PAGE_SIZE
);
2825 dev
->iod_mempool
= mempool_create_node(1, mempool_kmalloc
,
2827 (void *) alloc_size
,
2829 if (!dev
->iod_mempool
) {
2834 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2837 goto release_mempool
;
2839 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2841 nvme_reset_ctrl(&dev
->ctrl
);
2842 async_schedule(nvme_async_probe
, dev
);
2847 mempool_destroy(dev
->iod_mempool
);
2849 nvme_release_prp_pools(dev
);
2851 nvme_dev_unmap(dev
);
2853 put_device(dev
->dev
);
2860 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2862 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2865 * We don't need to check the return value from waiting for the reset
2866 * state as pci_dev device lock is held, making it impossible to race
2869 nvme_disable_prepare_reset(dev
, false);
2870 nvme_sync_queues(&dev
->ctrl
);
2873 static void nvme_reset_done(struct pci_dev
*pdev
)
2875 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2877 if (!nvme_try_sched_reset(&dev
->ctrl
))
2878 flush_work(&dev
->ctrl
.reset_work
);
2881 static void nvme_shutdown(struct pci_dev
*pdev
)
2883 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2884 nvme_disable_prepare_reset(dev
, true);
2888 * The driver's remove may be called on a device in a partially initialized
2889 * state. This function must not have any dependencies on the device state in
2892 static void nvme_remove(struct pci_dev
*pdev
)
2894 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2896 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2897 pci_set_drvdata(pdev
, NULL
);
2899 if (!pci_device_is_present(pdev
)) {
2900 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2901 nvme_dev_disable(dev
, true);
2902 nvme_dev_remove_admin(dev
);
2905 flush_work(&dev
->ctrl
.reset_work
);
2906 nvme_stop_ctrl(&dev
->ctrl
);
2907 nvme_remove_namespaces(&dev
->ctrl
);
2908 nvme_dev_disable(dev
, true);
2909 nvme_release_cmb(dev
);
2910 nvme_free_host_mem(dev
);
2911 nvme_dev_remove_admin(dev
);
2912 nvme_free_queues(dev
, 0);
2913 nvme_release_prp_pools(dev
);
2914 nvme_dev_unmap(dev
);
2915 nvme_uninit_ctrl(&dev
->ctrl
);
2918 #ifdef CONFIG_PM_SLEEP
2919 static int nvme_get_power_state(struct nvme_ctrl
*ctrl
, u32
*ps
)
2921 return nvme_get_features(ctrl
, NVME_FEAT_POWER_MGMT
, 0, NULL
, 0, ps
);
2924 static int nvme_set_power_state(struct nvme_ctrl
*ctrl
, u32 ps
)
2926 return nvme_set_features(ctrl
, NVME_FEAT_POWER_MGMT
, ps
, NULL
, 0, NULL
);
2929 static int nvme_resume(struct device
*dev
)
2931 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
2932 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
2934 if (ndev
->last_ps
== U32_MAX
||
2935 nvme_set_power_state(ctrl
, ndev
->last_ps
) != 0)
2936 return nvme_try_sched_reset(&ndev
->ctrl
);
2940 static int nvme_suspend(struct device
*dev
)
2942 struct pci_dev
*pdev
= to_pci_dev(dev
);
2943 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2944 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
2947 ndev
->last_ps
= U32_MAX
;
2950 * The platform does not remove power for a kernel managed suspend so
2951 * use host managed nvme power settings for lowest idle power if
2952 * possible. This should have quicker resume latency than a full device
2953 * shutdown. But if the firmware is involved after the suspend or the
2954 * device does not support any non-default power states, shut down the
2957 * If ASPM is not enabled for the device, shut down the device and allow
2958 * the PCI bus layer to put it into D3 in order to take the PCIe link
2959 * down, so as to allow the platform to achieve its minimum low-power
2960 * state (which may not be possible if the link is up).
2962 * If a host memory buffer is enabled, shut down the device as the NVMe
2963 * specification allows the device to access the host memory buffer in
2964 * host DRAM from all power states, but hosts will fail access to DRAM
2967 if (pm_suspend_via_firmware() || !ctrl
->npss
||
2968 !pcie_aspm_enabled(pdev
) ||
2969 ndev
->nr_host_mem_descs
||
2970 (ndev
->ctrl
.quirks
& NVME_QUIRK_SIMPLE_SUSPEND
))
2971 return nvme_disable_prepare_reset(ndev
, true);
2973 nvme_start_freeze(ctrl
);
2974 nvme_wait_freeze(ctrl
);
2975 nvme_sync_queues(ctrl
);
2977 if (ctrl
->state
!= NVME_CTRL_LIVE
)
2980 ret
= nvme_get_power_state(ctrl
, &ndev
->last_ps
);
2985 * A saved state prevents pci pm from generically controlling the
2986 * device's power. If we're using protocol specific settings, we don't
2987 * want pci interfering.
2989 pci_save_state(pdev
);
2991 ret
= nvme_set_power_state(ctrl
, ctrl
->npss
);
2996 /* discard the saved state */
2997 pci_load_saved_state(pdev
, NULL
);
3000 * Clearing npss forces a controller reset on resume. The
3001 * correct value will be rediscovered then.
3003 ret
= nvme_disable_prepare_reset(ndev
, true);
3007 nvme_unfreeze(ctrl
);
3011 static int nvme_simple_suspend(struct device
*dev
)
3013 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
3014 return nvme_disable_prepare_reset(ndev
, true);
3017 static int nvme_simple_resume(struct device
*dev
)
3019 struct pci_dev
*pdev
= to_pci_dev(dev
);
3020 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3022 return nvme_try_sched_reset(&ndev
->ctrl
);
3025 static const struct dev_pm_ops nvme_dev_pm_ops
= {
3026 .suspend
= nvme_suspend
,
3027 .resume
= nvme_resume
,
3028 .freeze
= nvme_simple_suspend
,
3029 .thaw
= nvme_simple_resume
,
3030 .poweroff
= nvme_simple_suspend
,
3031 .restore
= nvme_simple_resume
,
3033 #endif /* CONFIG_PM_SLEEP */
3035 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
3036 pci_channel_state_t state
)
3038 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3041 * A frozen channel requires a reset. When detected, this method will
3042 * shutdown the controller to quiesce. The controller will be restarted
3043 * after the slot reset through driver's slot_reset callback.
3046 case pci_channel_io_normal
:
3047 return PCI_ERS_RESULT_CAN_RECOVER
;
3048 case pci_channel_io_frozen
:
3049 dev_warn(dev
->ctrl
.device
,
3050 "frozen state error detected, reset controller\n");
3051 nvme_dev_disable(dev
, false);
3052 return PCI_ERS_RESULT_NEED_RESET
;
3053 case pci_channel_io_perm_failure
:
3054 dev_warn(dev
->ctrl
.device
,
3055 "failure state error detected, request disconnect\n");
3056 return PCI_ERS_RESULT_DISCONNECT
;
3058 return PCI_ERS_RESULT_NEED_RESET
;
3061 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
3063 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3065 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
3066 pci_restore_state(pdev
);
3067 nvme_reset_ctrl(&dev
->ctrl
);
3068 return PCI_ERS_RESULT_RECOVERED
;
3071 static void nvme_error_resume(struct pci_dev
*pdev
)
3073 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3075 flush_work(&dev
->ctrl
.reset_work
);
3078 static const struct pci_error_handlers nvme_err_handler
= {
3079 .error_detected
= nvme_error_detected
,
3080 .slot_reset
= nvme_slot_reset
,
3081 .resume
= nvme_error_resume
,
3082 .reset_prepare
= nvme_reset_prepare
,
3083 .reset_done
= nvme_reset_done
,
3086 static const struct pci_device_id nvme_id_table
[] = {
3087 { PCI_VDEVICE(INTEL
, 0x0953),
3088 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3089 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3090 { PCI_VDEVICE(INTEL
, 0x0a53),
3091 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3092 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3093 { PCI_VDEVICE(INTEL
, 0x0a54),
3094 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3095 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3096 { PCI_VDEVICE(INTEL
, 0x0a55),
3097 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3098 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3099 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
3100 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3101 NVME_QUIRK_MEDIUM_PRIO_SQ
|
3102 NVME_QUIRK_NO_TEMP_THRESH_CHANGE
},
3103 { PCI_VDEVICE(INTEL
, 0xf1a6), /* Intel 760p/Pro 7600p */
3104 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3105 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
3106 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
|
3107 NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3108 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3109 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3110 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3111 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3112 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3113 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3114 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3115 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3116 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3117 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3118 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3119 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3120 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3121 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3122 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3123 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3124 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3125 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3126 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3127 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3128 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3129 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3130 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3131 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
3132 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001),
3133 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
},
3134 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
3135 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2005),
3136 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
|
3137 NVME_QUIRK_128_BYTES_SQES
|
3138 NVME_QUIRK_SHARED_TAGS
},
3141 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
3143 static struct pci_driver nvme_driver
= {
3145 .id_table
= nvme_id_table
,
3146 .probe
= nvme_probe
,
3147 .remove
= nvme_remove
,
3148 .shutdown
= nvme_shutdown
,
3149 #ifdef CONFIG_PM_SLEEP
3151 .pm
= &nvme_dev_pm_ops
,
3154 .sriov_configure
= pci_sriov_configure_simple
,
3155 .err_handler
= &nvme_err_handler
,
3158 static int __init
nvme_init(void)
3160 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
3161 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
3162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
3163 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS
< 2);
3165 return pci_register_driver(&nvme_driver
);
3168 static void __exit
nvme_exit(void)
3170 pci_unregister_driver(&nvme_driver
);
3171 flush_workqueue(nvme_wq
);
3174 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3175 MODULE_LICENSE("GPL");
3176 MODULE_VERSION("1.0");
3177 module_init(nvme_init
);
3178 module_exit(nvme_exit
);