1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 struct nvme_rdma_device
{
38 struct ib_device
*dev
;
41 struct list_head entry
;
42 unsigned int num_inline_segments
;
51 struct nvme_rdma_queue
;
52 struct nvme_rdma_request
{
53 struct nvme_request req
;
55 struct nvme_rdma_qe sqe
;
56 union nvme_result result
;
59 struct ib_sge sge
[1 + NVME_RDMA_MAX_INLINE_SEGMENTS
];
62 struct ib_reg_wr reg_wr
;
63 struct ib_cqe reg_cqe
;
64 struct nvme_rdma_queue
*queue
;
65 struct sg_table sg_table
;
66 struct scatterlist first_sgl
[];
69 enum nvme_rdma_queue_flags
{
70 NVME_RDMA_Q_ALLOCATED
= 0,
72 NVME_RDMA_Q_TR_READY
= 2,
75 struct nvme_rdma_queue
{
76 struct nvme_rdma_qe
*rsp_ring
;
78 size_t cmnd_capsule_len
;
79 struct nvme_rdma_ctrl
*ctrl
;
80 struct nvme_rdma_device
*device
;
85 struct rdma_cm_id
*cm_id
;
87 struct completion cm_done
;
90 struct nvme_rdma_ctrl
{
91 /* read only in the hot path */
92 struct nvme_rdma_queue
*queues
;
94 /* other member variables */
95 struct blk_mq_tag_set tag_set
;
96 struct work_struct err_work
;
98 struct nvme_rdma_qe async_event_sqe
;
100 struct delayed_work reconnect_work
;
102 struct list_head list
;
104 struct blk_mq_tag_set admin_tag_set
;
105 struct nvme_rdma_device
*device
;
109 struct sockaddr_storage addr
;
110 struct sockaddr_storage src_addr
;
112 struct nvme_ctrl ctrl
;
113 bool use_inline_data
;
114 u32 io_queues
[HCTX_MAX_TYPES
];
117 static inline struct nvme_rdma_ctrl
*to_rdma_ctrl(struct nvme_ctrl
*ctrl
)
119 return container_of(ctrl
, struct nvme_rdma_ctrl
, ctrl
);
122 static LIST_HEAD(device_list
);
123 static DEFINE_MUTEX(device_list_mutex
);
125 static LIST_HEAD(nvme_rdma_ctrl_list
);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex
);
129 * Disabling this option makes small I/O goes faster, but is fundamentally
130 * unsafe. With it turned off we will have to register a global rkey that
131 * allows read and write access to all physical memory.
133 static bool register_always
= true;
134 module_param(register_always
, bool, 0444);
135 MODULE_PARM_DESC(register_always
,
136 "Use memory registration even for contiguous memory regions");
138 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
139 struct rdma_cm_event
*event
);
140 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
142 static const struct blk_mq_ops nvme_rdma_mq_ops
;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
;
145 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue
*queue
)
147 return queue
- queue
->ctrl
->queues
;
150 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue
*queue
)
152 return nvme_rdma_queue_idx(queue
) >
153 queue
->ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] +
154 queue
->ctrl
->io_queues
[HCTX_TYPE_READ
];
157 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue
*queue
)
159 return queue
->cmnd_capsule_len
- sizeof(struct nvme_command
);
162 static void nvme_rdma_free_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
163 size_t capsule_size
, enum dma_data_direction dir
)
165 ib_dma_unmap_single(ibdev
, qe
->dma
, capsule_size
, dir
);
169 static int nvme_rdma_alloc_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
170 size_t capsule_size
, enum dma_data_direction dir
)
172 qe
->data
= kzalloc(capsule_size
, GFP_KERNEL
);
176 qe
->dma
= ib_dma_map_single(ibdev
, qe
->data
, capsule_size
, dir
);
177 if (ib_dma_mapping_error(ibdev
, qe
->dma
)) {
186 static void nvme_rdma_free_ring(struct ib_device
*ibdev
,
187 struct nvme_rdma_qe
*ring
, size_t ib_queue_size
,
188 size_t capsule_size
, enum dma_data_direction dir
)
192 for (i
= 0; i
< ib_queue_size
; i
++)
193 nvme_rdma_free_qe(ibdev
, &ring
[i
], capsule_size
, dir
);
197 static struct nvme_rdma_qe
*nvme_rdma_alloc_ring(struct ib_device
*ibdev
,
198 size_t ib_queue_size
, size_t capsule_size
,
199 enum dma_data_direction dir
)
201 struct nvme_rdma_qe
*ring
;
204 ring
= kcalloc(ib_queue_size
, sizeof(struct nvme_rdma_qe
), GFP_KERNEL
);
209 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
210 * lifetime. It's safe, since any chage in the underlying RDMA device
211 * will issue error recovery and queue re-creation.
213 for (i
= 0; i
< ib_queue_size
; i
++) {
214 if (nvme_rdma_alloc_qe(ibdev
, &ring
[i
], capsule_size
, dir
))
221 nvme_rdma_free_ring(ibdev
, ring
, i
, capsule_size
, dir
);
225 static void nvme_rdma_qp_event(struct ib_event
*event
, void *context
)
227 pr_debug("QP event %s (%d)\n",
228 ib_event_msg(event
->event
), event
->event
);
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue
*queue
)
236 ret
= wait_for_completion_interruptible_timeout(&queue
->cm_done
,
237 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS
) + 1);
242 WARN_ON_ONCE(queue
->cm_error
> 0);
243 return queue
->cm_error
;
246 static int nvme_rdma_create_qp(struct nvme_rdma_queue
*queue
, const int factor
)
248 struct nvme_rdma_device
*dev
= queue
->device
;
249 struct ib_qp_init_attr init_attr
;
252 memset(&init_attr
, 0, sizeof(init_attr
));
253 init_attr
.event_handler
= nvme_rdma_qp_event
;
255 init_attr
.cap
.max_send_wr
= factor
* queue
->queue_size
+ 1;
257 init_attr
.cap
.max_recv_wr
= queue
->queue_size
+ 1;
258 init_attr
.cap
.max_recv_sge
= 1;
259 init_attr
.cap
.max_send_sge
= 1 + dev
->num_inline_segments
;
260 init_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
261 init_attr
.qp_type
= IB_QPT_RC
;
262 init_attr
.send_cq
= queue
->ib_cq
;
263 init_attr
.recv_cq
= queue
->ib_cq
;
265 ret
= rdma_create_qp(queue
->cm_id
, dev
->pd
, &init_attr
);
267 queue
->qp
= queue
->cm_id
->qp
;
271 static void nvme_rdma_exit_request(struct blk_mq_tag_set
*set
,
272 struct request
*rq
, unsigned int hctx_idx
)
274 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
276 kfree(req
->sqe
.data
);
279 static int nvme_rdma_init_request(struct blk_mq_tag_set
*set
,
280 struct request
*rq
, unsigned int hctx_idx
,
281 unsigned int numa_node
)
283 struct nvme_rdma_ctrl
*ctrl
= set
->driver_data
;
284 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
285 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
286 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
288 nvme_req(rq
)->ctrl
= &ctrl
->ctrl
;
289 req
->sqe
.data
= kzalloc(sizeof(struct nvme_command
), GFP_KERNEL
);
298 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
299 unsigned int hctx_idx
)
301 struct nvme_rdma_ctrl
*ctrl
= data
;
302 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[hctx_idx
+ 1];
304 BUG_ON(hctx_idx
>= ctrl
->ctrl
.queue_count
);
306 hctx
->driver_data
= queue
;
310 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
311 unsigned int hctx_idx
)
313 struct nvme_rdma_ctrl
*ctrl
= data
;
314 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
316 BUG_ON(hctx_idx
!= 0);
318 hctx
->driver_data
= queue
;
322 static void nvme_rdma_free_dev(struct kref
*ref
)
324 struct nvme_rdma_device
*ndev
=
325 container_of(ref
, struct nvme_rdma_device
, ref
);
327 mutex_lock(&device_list_mutex
);
328 list_del(&ndev
->entry
);
329 mutex_unlock(&device_list_mutex
);
331 ib_dealloc_pd(ndev
->pd
);
335 static void nvme_rdma_dev_put(struct nvme_rdma_device
*dev
)
337 kref_put(&dev
->ref
, nvme_rdma_free_dev
);
340 static int nvme_rdma_dev_get(struct nvme_rdma_device
*dev
)
342 return kref_get_unless_zero(&dev
->ref
);
345 static struct nvme_rdma_device
*
346 nvme_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
348 struct nvme_rdma_device
*ndev
;
350 mutex_lock(&device_list_mutex
);
351 list_for_each_entry(ndev
, &device_list
, entry
) {
352 if (ndev
->dev
->node_guid
== cm_id
->device
->node_guid
&&
353 nvme_rdma_dev_get(ndev
))
357 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
361 ndev
->dev
= cm_id
->device
;
362 kref_init(&ndev
->ref
);
364 ndev
->pd
= ib_alloc_pd(ndev
->dev
,
365 register_always
? 0 : IB_PD_UNSAFE_GLOBAL_RKEY
);
366 if (IS_ERR(ndev
->pd
))
369 if (!(ndev
->dev
->attrs
.device_cap_flags
&
370 IB_DEVICE_MEM_MGT_EXTENSIONS
)) {
371 dev_err(&ndev
->dev
->dev
,
372 "Memory registrations not supported.\n");
376 ndev
->num_inline_segments
= min(NVME_RDMA_MAX_INLINE_SEGMENTS
,
377 ndev
->dev
->attrs
.max_send_sge
- 1);
378 list_add(&ndev
->entry
, &device_list
);
380 mutex_unlock(&device_list_mutex
);
384 ib_dealloc_pd(ndev
->pd
);
388 mutex_unlock(&device_list_mutex
);
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue
*queue
)
394 struct nvme_rdma_device
*dev
;
395 struct ib_device
*ibdev
;
397 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
))
403 ib_mr_pool_destroy(queue
->qp
, &queue
->qp
->rdma_mrs
);
406 * The cm_id object might have been destroyed during RDMA connection
407 * establishment error flow to avoid getting other cma events, thus
408 * the destruction of the QP shouldn't use rdma_cm API.
410 ib_destroy_qp(queue
->qp
);
411 ib_free_cq(queue
->ib_cq
);
413 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
414 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
416 nvme_rdma_dev_put(dev
);
419 static int nvme_rdma_get_max_fr_pages(struct ib_device
*ibdev
)
421 return min_t(u32
, NVME_RDMA_MAX_SEGMENTS
,
422 ibdev
->attrs
.max_fast_reg_page_list_len
- 1);
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue
*queue
)
427 struct ib_device
*ibdev
;
428 const int send_wr_factor
= 3; /* MR, SEND, INV */
429 const int cq_factor
= send_wr_factor
+ 1; /* + RECV */
430 int comp_vector
, idx
= nvme_rdma_queue_idx(queue
);
431 enum ib_poll_context poll_ctx
;
432 int ret
, pages_per_mr
;
434 queue
->device
= nvme_rdma_find_get_device(queue
->cm_id
);
435 if (!queue
->device
) {
436 dev_err(queue
->cm_id
->device
->dev
.parent
,
437 "no client data found!\n");
438 return -ECONNREFUSED
;
440 ibdev
= queue
->device
->dev
;
443 * Spread I/O queues completion vectors according their queue index.
444 * Admin queues can always go on completion vector 0.
446 comp_vector
= idx
== 0 ? idx
: idx
- 1;
448 /* Polling queues need direct cq polling context */
449 if (nvme_rdma_poll_queue(queue
))
450 poll_ctx
= IB_POLL_DIRECT
;
452 poll_ctx
= IB_POLL_SOFTIRQ
;
454 /* +1 for ib_stop_cq */
455 queue
->ib_cq
= ib_alloc_cq(ibdev
, queue
,
456 cq_factor
* queue
->queue_size
+ 1,
457 comp_vector
, poll_ctx
);
458 if (IS_ERR(queue
->ib_cq
)) {
459 ret
= PTR_ERR(queue
->ib_cq
);
463 ret
= nvme_rdma_create_qp(queue
, send_wr_factor
);
465 goto out_destroy_ib_cq
;
467 queue
->rsp_ring
= nvme_rdma_alloc_ring(ibdev
, queue
->queue_size
,
468 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
469 if (!queue
->rsp_ring
) {
475 * Currently we don't use SG_GAPS MR's so if the first entry is
476 * misaligned we'll end up using two entries for a single data page,
477 * so one additional entry is required.
479 pages_per_mr
= nvme_rdma_get_max_fr_pages(ibdev
) + 1;
480 ret
= ib_mr_pool_init(queue
->qp
, &queue
->qp
->rdma_mrs
,
485 dev_err(queue
->ctrl
->ctrl
.device
,
486 "failed to initialize MR pool sized %d for QID %d\n",
487 queue
->queue_size
, idx
);
488 goto out_destroy_ring
;
491 set_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
);
496 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
497 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
499 rdma_destroy_qp(queue
->cm_id
);
501 ib_free_cq(queue
->ib_cq
);
503 nvme_rdma_dev_put(queue
->device
);
507 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl
*ctrl
,
508 int idx
, size_t queue_size
)
510 struct nvme_rdma_queue
*queue
;
511 struct sockaddr
*src_addr
= NULL
;
514 queue
= &ctrl
->queues
[idx
];
516 init_completion(&queue
->cm_done
);
519 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
521 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
523 queue
->queue_size
= queue_size
;
525 queue
->cm_id
= rdma_create_id(&init_net
, nvme_rdma_cm_handler
, queue
,
526 RDMA_PS_TCP
, IB_QPT_RC
);
527 if (IS_ERR(queue
->cm_id
)) {
528 dev_info(ctrl
->ctrl
.device
,
529 "failed to create CM ID: %ld\n", PTR_ERR(queue
->cm_id
));
530 return PTR_ERR(queue
->cm_id
);
533 if (ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
)
534 src_addr
= (struct sockaddr
*)&ctrl
->src_addr
;
536 queue
->cm_error
= -ETIMEDOUT
;
537 ret
= rdma_resolve_addr(queue
->cm_id
, src_addr
,
538 (struct sockaddr
*)&ctrl
->addr
,
539 NVME_RDMA_CONNECT_TIMEOUT_MS
);
541 dev_info(ctrl
->ctrl
.device
,
542 "rdma_resolve_addr failed (%d).\n", ret
);
543 goto out_destroy_cm_id
;
546 ret
= nvme_rdma_wait_for_cm(queue
);
548 dev_info(ctrl
->ctrl
.device
,
549 "rdma connection establishment failed (%d)\n", ret
);
550 goto out_destroy_cm_id
;
553 set_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
);
558 rdma_destroy_id(queue
->cm_id
);
559 nvme_rdma_destroy_queue_ib(queue
);
563 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
565 rdma_disconnect(queue
->cm_id
);
566 ib_drain_qp(queue
->qp
);
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
571 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
))
573 __nvme_rdma_stop_queue(queue
);
576 static void nvme_rdma_free_queue(struct nvme_rdma_queue
*queue
)
578 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
581 nvme_rdma_destroy_queue_ib(queue
);
582 rdma_destroy_id(queue
->cm_id
);
585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl
*ctrl
)
589 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
590 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl
*ctrl
)
597 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
598 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl
*ctrl
, int idx
)
603 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[idx
];
604 bool poll
= nvme_rdma_poll_queue(queue
);
608 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, idx
, poll
);
610 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
613 set_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
);
615 if (test_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
616 __nvme_rdma_stop_queue(queue
);
617 dev_info(ctrl
->ctrl
.device
,
618 "failed to connect queue: %d ret=%d\n", idx
, ret
);
623 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl
*ctrl
)
627 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
628 ret
= nvme_rdma_start_queue(ctrl
, i
);
630 goto out_stop_queues
;
636 for (i
--; i
>= 1; i
--)
637 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
641 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl
*ctrl
)
643 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
644 struct ib_device
*ibdev
= ctrl
->device
->dev
;
645 unsigned int nr_io_queues
, nr_default_queues
;
646 unsigned int nr_read_queues
, nr_poll_queues
;
649 nr_read_queues
= min_t(unsigned int, ibdev
->num_comp_vectors
,
650 min(opts
->nr_io_queues
, num_online_cpus()));
651 nr_default_queues
= min_t(unsigned int, ibdev
->num_comp_vectors
,
652 min(opts
->nr_write_queues
, num_online_cpus()));
653 nr_poll_queues
= min(opts
->nr_poll_queues
, num_online_cpus());
654 nr_io_queues
= nr_read_queues
+ nr_default_queues
+ nr_poll_queues
;
656 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
660 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
661 if (ctrl
->ctrl
.queue_count
< 2)
664 dev_info(ctrl
->ctrl
.device
,
665 "creating %d I/O queues.\n", nr_io_queues
);
667 if (opts
->nr_write_queues
&& nr_read_queues
< nr_io_queues
) {
669 * separate read/write queues
670 * hand out dedicated default queues only after we have
671 * sufficient read queues.
673 ctrl
->io_queues
[HCTX_TYPE_READ
] = nr_read_queues
;
674 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_READ
];
675 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] =
676 min(nr_default_queues
, nr_io_queues
);
677 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
680 * shared read/write queues
681 * either no write queues were requested, or we don't have
682 * sufficient queue count to have dedicated default queues.
684 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] =
685 min(nr_read_queues
, nr_io_queues
);
686 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
689 if (opts
->nr_poll_queues
&& nr_io_queues
) {
690 /* map dedicated poll queues only if we have queues left */
691 ctrl
->io_queues
[HCTX_TYPE_POLL
] =
692 min(nr_poll_queues
, nr_io_queues
);
695 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
696 ret
= nvme_rdma_alloc_queue(ctrl
, i
,
697 ctrl
->ctrl
.sqsize
+ 1);
699 goto out_free_queues
;
705 for (i
--; i
>= 1; i
--)
706 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
711 static struct blk_mq_tag_set
*nvme_rdma_alloc_tagset(struct nvme_ctrl
*nctrl
,
714 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
715 struct blk_mq_tag_set
*set
;
719 set
= &ctrl
->admin_tag_set
;
720 memset(set
, 0, sizeof(*set
));
721 set
->ops
= &nvme_rdma_admin_mq_ops
;
722 set
->queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
723 set
->reserved_tags
= 2; /* connect + keep-alive */
724 set
->numa_node
= nctrl
->numa_node
;
725 set
->cmd_size
= sizeof(struct nvme_rdma_request
) +
726 NVME_INLINE_SG_CNT
* sizeof(struct scatterlist
);
727 set
->driver_data
= ctrl
;
728 set
->nr_hw_queues
= 1;
729 set
->timeout
= ADMIN_TIMEOUT
;
730 set
->flags
= BLK_MQ_F_NO_SCHED
;
732 set
= &ctrl
->tag_set
;
733 memset(set
, 0, sizeof(*set
));
734 set
->ops
= &nvme_rdma_mq_ops
;
735 set
->queue_depth
= nctrl
->sqsize
+ 1;
736 set
->reserved_tags
= 1; /* fabric connect */
737 set
->numa_node
= nctrl
->numa_node
;
738 set
->flags
= BLK_MQ_F_SHOULD_MERGE
;
739 set
->cmd_size
= sizeof(struct nvme_rdma_request
) +
740 NVME_INLINE_SG_CNT
* sizeof(struct scatterlist
);
741 set
->driver_data
= ctrl
;
742 set
->nr_hw_queues
= nctrl
->queue_count
- 1;
743 set
->timeout
= NVME_IO_TIMEOUT
;
744 set
->nr_maps
= nctrl
->opts
->nr_poll_queues
? HCTX_MAX_TYPES
: 2;
747 ret
= blk_mq_alloc_tag_set(set
);
754 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
758 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
759 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
760 blk_mq_free_tag_set(ctrl
->ctrl
.admin_tagset
);
762 if (ctrl
->async_event_sqe
.data
) {
763 nvme_rdma_free_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
764 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
765 ctrl
->async_event_sqe
.data
= NULL
;
767 nvme_rdma_free_queue(&ctrl
->queues
[0]);
770 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
775 error
= nvme_rdma_alloc_queue(ctrl
, 0, NVME_AQ_DEPTH
);
779 ctrl
->device
= ctrl
->queues
[0].device
;
780 ctrl
->ctrl
.numa_node
= dev_to_node(ctrl
->device
->dev
->dma_device
);
782 ctrl
->max_fr_pages
= nvme_rdma_get_max_fr_pages(ctrl
->device
->dev
);
785 * Bind the async event SQE DMA mapping to the admin queue lifetime.
786 * It's safe, since any chage in the underlying RDMA device will issue
787 * error recovery and queue re-creation.
789 error
= nvme_rdma_alloc_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
790 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
795 ctrl
->ctrl
.admin_tagset
= nvme_rdma_alloc_tagset(&ctrl
->ctrl
, true);
796 if (IS_ERR(ctrl
->ctrl
.admin_tagset
)) {
797 error
= PTR_ERR(ctrl
->ctrl
.admin_tagset
);
798 goto out_free_async_qe
;
801 ctrl
->ctrl
.fabrics_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
802 if (IS_ERR(ctrl
->ctrl
.fabrics_q
)) {
803 error
= PTR_ERR(ctrl
->ctrl
.fabrics_q
);
804 goto out_free_tagset
;
807 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
808 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
809 error
= PTR_ERR(ctrl
->ctrl
.admin_q
);
810 goto out_cleanup_fabrics_q
;
814 error
= nvme_rdma_start_queue(ctrl
, 0);
816 goto out_cleanup_queue
;
818 error
= nvme_enable_ctrl(&ctrl
->ctrl
);
822 ctrl
->ctrl
.max_segments
= ctrl
->max_fr_pages
;
823 ctrl
->ctrl
.max_hw_sectors
= ctrl
->max_fr_pages
<< (ilog2(SZ_4K
) - 9);
825 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
827 error
= nvme_init_identify(&ctrl
->ctrl
);
834 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
837 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
838 out_cleanup_fabrics_q
:
840 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
843 blk_mq_free_tag_set(ctrl
->ctrl
.admin_tagset
);
845 if (ctrl
->async_event_sqe
.data
) {
846 nvme_rdma_free_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
847 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
848 ctrl
->async_event_sqe
.data
= NULL
;
851 nvme_rdma_free_queue(&ctrl
->queues
[0]);
855 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl
*ctrl
,
859 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
860 blk_mq_free_tag_set(ctrl
->ctrl
.tagset
);
862 nvme_rdma_free_io_queues(ctrl
);
865 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl
*ctrl
, bool new)
869 ret
= nvme_rdma_alloc_io_queues(ctrl
);
874 ctrl
->ctrl
.tagset
= nvme_rdma_alloc_tagset(&ctrl
->ctrl
, false);
875 if (IS_ERR(ctrl
->ctrl
.tagset
)) {
876 ret
= PTR_ERR(ctrl
->ctrl
.tagset
);
877 goto out_free_io_queues
;
880 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
881 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
882 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
883 goto out_free_tag_set
;
886 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
,
887 ctrl
->ctrl
.queue_count
- 1);
890 ret
= nvme_rdma_start_io_queues(ctrl
);
892 goto out_cleanup_connect_q
;
896 out_cleanup_connect_q
:
898 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
901 blk_mq_free_tag_set(ctrl
->ctrl
.tagset
);
903 nvme_rdma_free_io_queues(ctrl
);
907 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
910 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
911 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
912 if (ctrl
->ctrl
.admin_tagset
) {
913 blk_mq_tagset_busy_iter(ctrl
->ctrl
.admin_tagset
,
914 nvme_cancel_request
, &ctrl
->ctrl
);
915 blk_mq_tagset_wait_completed_request(ctrl
->ctrl
.admin_tagset
);
918 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
919 nvme_rdma_destroy_admin_queue(ctrl
, remove
);
922 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl
*ctrl
,
925 if (ctrl
->ctrl
.queue_count
> 1) {
926 nvme_stop_queues(&ctrl
->ctrl
);
927 nvme_rdma_stop_io_queues(ctrl
);
928 if (ctrl
->ctrl
.tagset
) {
929 blk_mq_tagset_busy_iter(ctrl
->ctrl
.tagset
,
930 nvme_cancel_request
, &ctrl
->ctrl
);
931 blk_mq_tagset_wait_completed_request(ctrl
->ctrl
.tagset
);
934 nvme_start_queues(&ctrl
->ctrl
);
935 nvme_rdma_destroy_io_queues(ctrl
, remove
);
939 static void nvme_rdma_free_ctrl(struct nvme_ctrl
*nctrl
)
941 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
943 if (list_empty(&ctrl
->list
))
946 mutex_lock(&nvme_rdma_ctrl_mutex
);
947 list_del(&ctrl
->list
);
948 mutex_unlock(&nvme_rdma_ctrl_mutex
);
950 nvmf_free_options(nctrl
->opts
);
956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl
*ctrl
)
958 /* If we are resetting/deleting then do nothing */
959 if (ctrl
->ctrl
.state
!= NVME_CTRL_CONNECTING
) {
960 WARN_ON_ONCE(ctrl
->ctrl
.state
== NVME_CTRL_NEW
||
961 ctrl
->ctrl
.state
== NVME_CTRL_LIVE
);
965 if (nvmf_should_reconnect(&ctrl
->ctrl
)) {
966 dev_info(ctrl
->ctrl
.device
, "Reconnecting in %d seconds...\n",
967 ctrl
->ctrl
.opts
->reconnect_delay
);
968 queue_delayed_work(nvme_wq
, &ctrl
->reconnect_work
,
969 ctrl
->ctrl
.opts
->reconnect_delay
* HZ
);
971 nvme_delete_ctrl(&ctrl
->ctrl
);
975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool new)
980 ret
= nvme_rdma_configure_admin_queue(ctrl
, new);
984 if (ctrl
->ctrl
.icdoff
) {
985 dev_err(ctrl
->ctrl
.device
, "icdoff is not supported!\n");
989 if (!(ctrl
->ctrl
.sgls
& (1 << 2))) {
990 dev_err(ctrl
->ctrl
.device
,
991 "Mandatory keyed sgls are not supported!\n");
995 if (ctrl
->ctrl
.opts
->queue_size
> ctrl
->ctrl
.sqsize
+ 1) {
996 dev_warn(ctrl
->ctrl
.device
,
997 "queue_size %zu > ctrl sqsize %u, clamping down\n",
998 ctrl
->ctrl
.opts
->queue_size
, ctrl
->ctrl
.sqsize
+ 1);
1001 if (ctrl
->ctrl
.sqsize
+ 1 > ctrl
->ctrl
.maxcmd
) {
1002 dev_warn(ctrl
->ctrl
.device
,
1003 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1004 ctrl
->ctrl
.sqsize
+ 1, ctrl
->ctrl
.maxcmd
);
1005 ctrl
->ctrl
.sqsize
= ctrl
->ctrl
.maxcmd
- 1;
1008 if (ctrl
->ctrl
.sgls
& (1 << 20))
1009 ctrl
->use_inline_data
= true;
1011 if (ctrl
->ctrl
.queue_count
> 1) {
1012 ret
= nvme_rdma_configure_io_queues(ctrl
, new);
1017 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1020 * state change failure is ok if we're in DELETING state,
1021 * unless we're during creation of a new controller to
1022 * avoid races with teardown flow.
1024 WARN_ON_ONCE(ctrl
->ctrl
.state
!= NVME_CTRL_DELETING
);
1030 nvme_start_ctrl(&ctrl
->ctrl
);
1034 if (ctrl
->ctrl
.queue_count
> 1)
1035 nvme_rdma_destroy_io_queues(ctrl
, new);
1037 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
1038 nvme_rdma_destroy_admin_queue(ctrl
, new);
1042 static void nvme_rdma_reconnect_ctrl_work(struct work_struct
*work
)
1044 struct nvme_rdma_ctrl
*ctrl
= container_of(to_delayed_work(work
),
1045 struct nvme_rdma_ctrl
, reconnect_work
);
1047 ++ctrl
->ctrl
.nr_reconnects
;
1049 if (nvme_rdma_setup_ctrl(ctrl
, false))
1052 dev_info(ctrl
->ctrl
.device
, "Successfully reconnected (%d attempts)\n",
1053 ctrl
->ctrl
.nr_reconnects
);
1055 ctrl
->ctrl
.nr_reconnects
= 0;
1060 dev_info(ctrl
->ctrl
.device
, "Failed reconnect attempt %d\n",
1061 ctrl
->ctrl
.nr_reconnects
);
1062 nvme_rdma_reconnect_or_remove(ctrl
);
1065 static void nvme_rdma_error_recovery_work(struct work_struct
*work
)
1067 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
1068 struct nvme_rdma_ctrl
, err_work
);
1070 nvme_stop_keep_alive(&ctrl
->ctrl
);
1071 nvme_rdma_teardown_io_queues(ctrl
, false);
1072 nvme_start_queues(&ctrl
->ctrl
);
1073 nvme_rdma_teardown_admin_queue(ctrl
, false);
1074 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
1076 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
1077 /* state change failure is ok if we're in DELETING state */
1078 WARN_ON_ONCE(ctrl
->ctrl
.state
!= NVME_CTRL_DELETING
);
1082 nvme_rdma_reconnect_or_remove(ctrl
);
1085 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl
*ctrl
)
1087 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RESETTING
))
1090 queue_work(nvme_reset_wq
, &ctrl
->err_work
);
1093 static void nvme_rdma_wr_error(struct ib_cq
*cq
, struct ib_wc
*wc
,
1096 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
1097 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1099 if (ctrl
->ctrl
.state
== NVME_CTRL_LIVE
)
1100 dev_info(ctrl
->ctrl
.device
,
1101 "%s for CQE 0x%p failed with status %s (%d)\n",
1103 ib_wc_status_msg(wc
->status
), wc
->status
);
1104 nvme_rdma_error_recovery(ctrl
);
1107 static void nvme_rdma_memreg_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1109 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1110 nvme_rdma_wr_error(cq
, wc
, "MEMREG");
1113 static void nvme_rdma_inv_rkey_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1115 struct nvme_rdma_request
*req
=
1116 container_of(wc
->wr_cqe
, struct nvme_rdma_request
, reg_cqe
);
1117 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1119 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1120 nvme_rdma_wr_error(cq
, wc
, "LOCAL_INV");
1124 if (refcount_dec_and_test(&req
->ref
))
1125 nvme_end_request(rq
, req
->status
, req
->result
);
1129 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue
*queue
,
1130 struct nvme_rdma_request
*req
)
1132 struct ib_send_wr wr
= {
1133 .opcode
= IB_WR_LOCAL_INV
,
1136 .send_flags
= IB_SEND_SIGNALED
,
1137 .ex
.invalidate_rkey
= req
->mr
->rkey
,
1140 req
->reg_cqe
.done
= nvme_rdma_inv_rkey_done
;
1141 wr
.wr_cqe
= &req
->reg_cqe
;
1143 return ib_post_send(queue
->qp
, &wr
, NULL
);
1146 static void nvme_rdma_unmap_data(struct nvme_rdma_queue
*queue
,
1149 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1150 struct nvme_rdma_device
*dev
= queue
->device
;
1151 struct ib_device
*ibdev
= dev
->dev
;
1153 if (!blk_rq_nr_phys_segments(rq
))
1157 ib_mr_pool_put(queue
->qp
, &queue
->qp
->rdma_mrs
, req
->mr
);
1161 ib_dma_unmap_sg(ibdev
, req
->sg_table
.sgl
, req
->nents
, rq_dma_dir(rq
));
1162 sg_free_table_chained(&req
->sg_table
, NVME_INLINE_SG_CNT
);
1165 static int nvme_rdma_set_sg_null(struct nvme_command
*c
)
1167 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1170 put_unaligned_le24(0, sg
->length
);
1171 put_unaligned_le32(0, sg
->key
);
1172 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1176 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue
*queue
,
1177 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1180 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1181 struct scatterlist
*sgl
= req
->sg_table
.sgl
;
1182 struct ib_sge
*sge
= &req
->sge
[1];
1186 for (i
= 0; i
< count
; i
++, sgl
++, sge
++) {
1187 sge
->addr
= sg_dma_address(sgl
);
1188 sge
->length
= sg_dma_len(sgl
);
1189 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1193 sg
->addr
= cpu_to_le64(queue
->ctrl
->ctrl
.icdoff
);
1194 sg
->length
= cpu_to_le32(len
);
1195 sg
->type
= (NVME_SGL_FMT_DATA_DESC
<< 4) | NVME_SGL_FMT_OFFSET
;
1197 req
->num_sge
+= count
;
1201 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue
*queue
,
1202 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
1204 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1206 sg
->addr
= cpu_to_le64(sg_dma_address(req
->sg_table
.sgl
));
1207 put_unaligned_le24(sg_dma_len(req
->sg_table
.sgl
), sg
->length
);
1208 put_unaligned_le32(queue
->device
->pd
->unsafe_global_rkey
, sg
->key
);
1209 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1213 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue
*queue
,
1214 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1217 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1220 req
->mr
= ib_mr_pool_get(queue
->qp
, &queue
->qp
->rdma_mrs
);
1221 if (WARN_ON_ONCE(!req
->mr
))
1225 * Align the MR to a 4K page size to match the ctrl page size and
1226 * the block virtual boundary.
1228 nr
= ib_map_mr_sg(req
->mr
, req
->sg_table
.sgl
, count
, NULL
, SZ_4K
);
1229 if (unlikely(nr
< count
)) {
1230 ib_mr_pool_put(queue
->qp
, &queue
->qp
->rdma_mrs
, req
->mr
);
1237 ib_update_fast_reg_key(req
->mr
, ib_inc_rkey(req
->mr
->rkey
));
1239 req
->reg_cqe
.done
= nvme_rdma_memreg_done
;
1240 memset(&req
->reg_wr
, 0, sizeof(req
->reg_wr
));
1241 req
->reg_wr
.wr
.opcode
= IB_WR_REG_MR
;
1242 req
->reg_wr
.wr
.wr_cqe
= &req
->reg_cqe
;
1243 req
->reg_wr
.wr
.num_sge
= 0;
1244 req
->reg_wr
.mr
= req
->mr
;
1245 req
->reg_wr
.key
= req
->mr
->rkey
;
1246 req
->reg_wr
.access
= IB_ACCESS_LOCAL_WRITE
|
1247 IB_ACCESS_REMOTE_READ
|
1248 IB_ACCESS_REMOTE_WRITE
;
1250 sg
->addr
= cpu_to_le64(req
->mr
->iova
);
1251 put_unaligned_le24(req
->mr
->length
, sg
->length
);
1252 put_unaligned_le32(req
->mr
->rkey
, sg
->key
);
1253 sg
->type
= (NVME_KEY_SGL_FMT_DATA_DESC
<< 4) |
1254 NVME_SGL_FMT_INVALIDATE
;
1259 static int nvme_rdma_map_data(struct nvme_rdma_queue
*queue
,
1260 struct request
*rq
, struct nvme_command
*c
)
1262 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1263 struct nvme_rdma_device
*dev
= queue
->device
;
1264 struct ib_device
*ibdev
= dev
->dev
;
1268 refcount_set(&req
->ref
, 2); /* send and recv completions */
1270 c
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1272 if (!blk_rq_nr_phys_segments(rq
))
1273 return nvme_rdma_set_sg_null(c
);
1275 req
->sg_table
.sgl
= req
->first_sgl
;
1276 ret
= sg_alloc_table_chained(&req
->sg_table
,
1277 blk_rq_nr_phys_segments(rq
), req
->sg_table
.sgl
,
1278 NVME_INLINE_SG_CNT
);
1282 req
->nents
= blk_rq_map_sg(rq
->q
, rq
, req
->sg_table
.sgl
);
1284 count
= ib_dma_map_sg(ibdev
, req
->sg_table
.sgl
, req
->nents
,
1286 if (unlikely(count
<= 0)) {
1288 goto out_free_table
;
1291 if (count
<= dev
->num_inline_segments
) {
1292 if (rq_data_dir(rq
) == WRITE
&& nvme_rdma_queue_idx(queue
) &&
1293 queue
->ctrl
->use_inline_data
&&
1294 blk_rq_payload_bytes(rq
) <=
1295 nvme_rdma_inline_data_size(queue
)) {
1296 ret
= nvme_rdma_map_sg_inline(queue
, req
, c
, count
);
1300 if (count
== 1 && dev
->pd
->flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
1301 ret
= nvme_rdma_map_sg_single(queue
, req
, c
);
1306 ret
= nvme_rdma_map_sg_fr(queue
, req
, c
, count
);
1314 ib_dma_unmap_sg(ibdev
, req
->sg_table
.sgl
, req
->nents
, rq_dma_dir(rq
));
1316 sg_free_table_chained(&req
->sg_table
, NVME_INLINE_SG_CNT
);
1320 static void nvme_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1322 struct nvme_rdma_qe
*qe
=
1323 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1324 struct nvme_rdma_request
*req
=
1325 container_of(qe
, struct nvme_rdma_request
, sqe
);
1326 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1328 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1329 nvme_rdma_wr_error(cq
, wc
, "SEND");
1333 if (refcount_dec_and_test(&req
->ref
))
1334 nvme_end_request(rq
, req
->status
, req
->result
);
1337 static int nvme_rdma_post_send(struct nvme_rdma_queue
*queue
,
1338 struct nvme_rdma_qe
*qe
, struct ib_sge
*sge
, u32 num_sge
,
1339 struct ib_send_wr
*first
)
1341 struct ib_send_wr wr
;
1344 sge
->addr
= qe
->dma
;
1345 sge
->length
= sizeof(struct nvme_command
);
1346 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1349 wr
.wr_cqe
= &qe
->cqe
;
1351 wr
.num_sge
= num_sge
;
1352 wr
.opcode
= IB_WR_SEND
;
1353 wr
.send_flags
= IB_SEND_SIGNALED
;
1360 ret
= ib_post_send(queue
->qp
, first
, NULL
);
1361 if (unlikely(ret
)) {
1362 dev_err(queue
->ctrl
->ctrl
.device
,
1363 "%s failed with error code %d\n", __func__
, ret
);
1368 static int nvme_rdma_post_recv(struct nvme_rdma_queue
*queue
,
1369 struct nvme_rdma_qe
*qe
)
1371 struct ib_recv_wr wr
;
1375 list
.addr
= qe
->dma
;
1376 list
.length
= sizeof(struct nvme_completion
);
1377 list
.lkey
= queue
->device
->pd
->local_dma_lkey
;
1379 qe
->cqe
.done
= nvme_rdma_recv_done
;
1382 wr
.wr_cqe
= &qe
->cqe
;
1386 ret
= ib_post_recv(queue
->qp
, &wr
, NULL
);
1387 if (unlikely(ret
)) {
1388 dev_err(queue
->ctrl
->ctrl
.device
,
1389 "%s failed with error code %d\n", __func__
, ret
);
1394 static struct blk_mq_tags
*nvme_rdma_tagset(struct nvme_rdma_queue
*queue
)
1396 u32 queue_idx
= nvme_rdma_queue_idx(queue
);
1399 return queue
->ctrl
->admin_tag_set
.tags
[queue_idx
];
1400 return queue
->ctrl
->tag_set
.tags
[queue_idx
- 1];
1403 static void nvme_rdma_async_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1405 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1406 nvme_rdma_wr_error(cq
, wc
, "ASYNC");
1409 static void nvme_rdma_submit_async_event(struct nvme_ctrl
*arg
)
1411 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(arg
);
1412 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
1413 struct ib_device
*dev
= queue
->device
->dev
;
1414 struct nvme_rdma_qe
*sqe
= &ctrl
->async_event_sqe
;
1415 struct nvme_command
*cmd
= sqe
->data
;
1419 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
, sizeof(*cmd
), DMA_TO_DEVICE
);
1421 memset(cmd
, 0, sizeof(*cmd
));
1422 cmd
->common
.opcode
= nvme_admin_async_event
;
1423 cmd
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1424 cmd
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1425 nvme_rdma_set_sg_null(cmd
);
1427 sqe
->cqe
.done
= nvme_rdma_async_done
;
1429 ib_dma_sync_single_for_device(dev
, sqe
->dma
, sizeof(*cmd
),
1432 ret
= nvme_rdma_post_send(queue
, sqe
, &sge
, 1, NULL
);
1436 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue
*queue
,
1437 struct nvme_completion
*cqe
, struct ib_wc
*wc
)
1440 struct nvme_rdma_request
*req
;
1442 rq
= blk_mq_tag_to_rq(nvme_rdma_tagset(queue
), cqe
->command_id
);
1444 dev_err(queue
->ctrl
->ctrl
.device
,
1445 "tag 0x%x on QP %#x not found\n",
1446 cqe
->command_id
, queue
->qp
->qp_num
);
1447 nvme_rdma_error_recovery(queue
->ctrl
);
1450 req
= blk_mq_rq_to_pdu(rq
);
1452 req
->status
= cqe
->status
;
1453 req
->result
= cqe
->result
;
1455 if (wc
->wc_flags
& IB_WC_WITH_INVALIDATE
) {
1456 if (unlikely(wc
->ex
.invalidate_rkey
!= req
->mr
->rkey
)) {
1457 dev_err(queue
->ctrl
->ctrl
.device
,
1458 "Bogus remote invalidation for rkey %#x\n",
1460 nvme_rdma_error_recovery(queue
->ctrl
);
1462 } else if (req
->mr
) {
1465 ret
= nvme_rdma_inv_rkey(queue
, req
);
1466 if (unlikely(ret
< 0)) {
1467 dev_err(queue
->ctrl
->ctrl
.device
,
1468 "Queueing INV WR for rkey %#x failed (%d)\n",
1469 req
->mr
->rkey
, ret
);
1470 nvme_rdma_error_recovery(queue
->ctrl
);
1472 /* the local invalidation completion will end the request */
1476 if (refcount_dec_and_test(&req
->ref
))
1477 nvme_end_request(rq
, req
->status
, req
->result
);
1480 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1482 struct nvme_rdma_qe
*qe
=
1483 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1484 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
1485 struct ib_device
*ibdev
= queue
->device
->dev
;
1486 struct nvme_completion
*cqe
= qe
->data
;
1487 const size_t len
= sizeof(struct nvme_completion
);
1489 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1490 nvme_rdma_wr_error(cq
, wc
, "RECV");
1494 ib_dma_sync_single_for_cpu(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1496 * AEN requests are special as they don't time out and can
1497 * survive any kind of queue freeze and often don't respond to
1498 * aborts. We don't even bother to allocate a struct request
1499 * for them but rather special case them here.
1501 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue
),
1503 nvme_complete_async_event(&queue
->ctrl
->ctrl
, cqe
->status
,
1506 nvme_rdma_process_nvme_rsp(queue
, cqe
, wc
);
1507 ib_dma_sync_single_for_device(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1509 nvme_rdma_post_recv(queue
, qe
);
1512 static int nvme_rdma_conn_established(struct nvme_rdma_queue
*queue
)
1516 for (i
= 0; i
< queue
->queue_size
; i
++) {
1517 ret
= nvme_rdma_post_recv(queue
, &queue
->rsp_ring
[i
]);
1519 goto out_destroy_queue_ib
;
1524 out_destroy_queue_ib
:
1525 nvme_rdma_destroy_queue_ib(queue
);
1529 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue
*queue
,
1530 struct rdma_cm_event
*ev
)
1532 struct rdma_cm_id
*cm_id
= queue
->cm_id
;
1533 int status
= ev
->status
;
1534 const char *rej_msg
;
1535 const struct nvme_rdma_cm_rej
*rej_data
;
1538 rej_msg
= rdma_reject_msg(cm_id
, status
);
1539 rej_data
= rdma_consumer_reject_data(cm_id
, ev
, &rej_data_len
);
1541 if (rej_data
&& rej_data_len
>= sizeof(u16
)) {
1542 u16 sts
= le16_to_cpu(rej_data
->sts
);
1544 dev_err(queue
->ctrl
->ctrl
.device
,
1545 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1546 status
, rej_msg
, sts
, nvme_rdma_cm_msg(sts
));
1548 dev_err(queue
->ctrl
->ctrl
.device
,
1549 "Connect rejected: status %d (%s).\n", status
, rej_msg
);
1555 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue
*queue
)
1557 struct nvme_ctrl
*ctrl
= &queue
->ctrl
->ctrl
;
1560 ret
= nvme_rdma_create_queue_ib(queue
);
1564 if (ctrl
->opts
->tos
>= 0)
1565 rdma_set_service_type(queue
->cm_id
, ctrl
->opts
->tos
);
1566 ret
= rdma_resolve_route(queue
->cm_id
, NVME_RDMA_CONNECT_TIMEOUT_MS
);
1568 dev_err(ctrl
->device
, "rdma_resolve_route failed (%d).\n",
1570 goto out_destroy_queue
;
1576 nvme_rdma_destroy_queue_ib(queue
);
1580 static int nvme_rdma_route_resolved(struct nvme_rdma_queue
*queue
)
1582 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1583 struct rdma_conn_param param
= { };
1584 struct nvme_rdma_cm_req priv
= { };
1587 param
.qp_num
= queue
->qp
->qp_num
;
1588 param
.flow_control
= 1;
1590 param
.responder_resources
= queue
->device
->dev
->attrs
.max_qp_rd_atom
;
1591 /* maximum retry count */
1592 param
.retry_count
= 7;
1593 param
.rnr_retry_count
= 7;
1594 param
.private_data
= &priv
;
1595 param
.private_data_len
= sizeof(priv
);
1597 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1598 priv
.qid
= cpu_to_le16(nvme_rdma_queue_idx(queue
));
1600 * set the admin queue depth to the minimum size
1601 * specified by the Fabrics standard.
1603 if (priv
.qid
== 0) {
1604 priv
.hrqsize
= cpu_to_le16(NVME_AQ_DEPTH
);
1605 priv
.hsqsize
= cpu_to_le16(NVME_AQ_DEPTH
- 1);
1608 * current interpretation of the fabrics spec
1609 * is at minimum you make hrqsize sqsize+1, or a
1610 * 1's based representation of sqsize.
1612 priv
.hrqsize
= cpu_to_le16(queue
->queue_size
);
1613 priv
.hsqsize
= cpu_to_le16(queue
->ctrl
->ctrl
.sqsize
);
1616 ret
= rdma_connect(queue
->cm_id
, ¶m
);
1618 dev_err(ctrl
->ctrl
.device
,
1619 "rdma_connect failed (%d).\n", ret
);
1620 goto out_destroy_queue_ib
;
1625 out_destroy_queue_ib
:
1626 nvme_rdma_destroy_queue_ib(queue
);
1630 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1631 struct rdma_cm_event
*ev
)
1633 struct nvme_rdma_queue
*queue
= cm_id
->context
;
1636 dev_dbg(queue
->ctrl
->ctrl
.device
, "%s (%d): status %d id %p\n",
1637 rdma_event_msg(ev
->event
), ev
->event
,
1640 switch (ev
->event
) {
1641 case RDMA_CM_EVENT_ADDR_RESOLVED
:
1642 cm_error
= nvme_rdma_addr_resolved(queue
);
1644 case RDMA_CM_EVENT_ROUTE_RESOLVED
:
1645 cm_error
= nvme_rdma_route_resolved(queue
);
1647 case RDMA_CM_EVENT_ESTABLISHED
:
1648 queue
->cm_error
= nvme_rdma_conn_established(queue
);
1649 /* complete cm_done regardless of success/failure */
1650 complete(&queue
->cm_done
);
1652 case RDMA_CM_EVENT_REJECTED
:
1653 nvme_rdma_destroy_queue_ib(queue
);
1654 cm_error
= nvme_rdma_conn_rejected(queue
, ev
);
1656 case RDMA_CM_EVENT_ROUTE_ERROR
:
1657 case RDMA_CM_EVENT_CONNECT_ERROR
:
1658 case RDMA_CM_EVENT_UNREACHABLE
:
1659 nvme_rdma_destroy_queue_ib(queue
);
1661 case RDMA_CM_EVENT_ADDR_ERROR
:
1662 dev_dbg(queue
->ctrl
->ctrl
.device
,
1663 "CM error event %d\n", ev
->event
);
1664 cm_error
= -ECONNRESET
;
1666 case RDMA_CM_EVENT_DISCONNECTED
:
1667 case RDMA_CM_EVENT_ADDR_CHANGE
:
1668 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1669 dev_dbg(queue
->ctrl
->ctrl
.device
,
1670 "disconnect received - connection closed\n");
1671 nvme_rdma_error_recovery(queue
->ctrl
);
1673 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1674 /* device removal is handled via the ib_client API */
1677 dev_err(queue
->ctrl
->ctrl
.device
,
1678 "Unexpected RDMA CM event (%d)\n", ev
->event
);
1679 nvme_rdma_error_recovery(queue
->ctrl
);
1684 queue
->cm_error
= cm_error
;
1685 complete(&queue
->cm_done
);
1691 static enum blk_eh_timer_return
1692 nvme_rdma_timeout(struct request
*rq
, bool reserved
)
1694 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1695 struct nvme_rdma_queue
*queue
= req
->queue
;
1696 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1698 dev_warn(ctrl
->ctrl
.device
, "I/O %d QID %d timeout\n",
1699 rq
->tag
, nvme_rdma_queue_idx(queue
));
1702 * Restart the timer if a controller reset is already scheduled. Any
1703 * timed out commands would be handled before entering the connecting
1706 if (ctrl
->ctrl
.state
== NVME_CTRL_RESETTING
)
1707 return BLK_EH_RESET_TIMER
;
1709 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
) {
1711 * Teardown immediately if controller times out while starting
1712 * or we are already started error recovery. all outstanding
1713 * requests are completed on shutdown, so we return BLK_EH_DONE.
1715 flush_work(&ctrl
->err_work
);
1716 nvme_rdma_teardown_io_queues(ctrl
, false);
1717 nvme_rdma_teardown_admin_queue(ctrl
, false);
1721 dev_warn(ctrl
->ctrl
.device
, "starting error recovery\n");
1722 nvme_rdma_error_recovery(ctrl
);
1724 return BLK_EH_RESET_TIMER
;
1727 static blk_status_t
nvme_rdma_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1728 const struct blk_mq_queue_data
*bd
)
1730 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
1731 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1732 struct request
*rq
= bd
->rq
;
1733 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1734 struct nvme_rdma_qe
*sqe
= &req
->sqe
;
1735 struct nvme_command
*c
= sqe
->data
;
1736 struct ib_device
*dev
;
1737 bool queue_ready
= test_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
);
1741 WARN_ON_ONCE(rq
->tag
< 0);
1743 if (!nvmf_check_ready(&queue
->ctrl
->ctrl
, rq
, queue_ready
))
1744 return nvmf_fail_nonready_command(&queue
->ctrl
->ctrl
, rq
);
1746 dev
= queue
->device
->dev
;
1748 req
->sqe
.dma
= ib_dma_map_single(dev
, req
->sqe
.data
,
1749 sizeof(struct nvme_command
),
1751 err
= ib_dma_mapping_error(dev
, req
->sqe
.dma
);
1753 return BLK_STS_RESOURCE
;
1755 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
,
1756 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1758 ret
= nvme_setup_cmd(ns
, rq
, c
);
1762 blk_mq_start_request(rq
);
1764 err
= nvme_rdma_map_data(queue
, rq
, c
);
1765 if (unlikely(err
< 0)) {
1766 dev_err(queue
->ctrl
->ctrl
.device
,
1767 "Failed to map data (%d)\n", err
);
1771 sqe
->cqe
.done
= nvme_rdma_send_done
;
1773 ib_dma_sync_single_for_device(dev
, sqe
->dma
,
1774 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1776 err
= nvme_rdma_post_send(queue
, sqe
, req
->sge
, req
->num_sge
,
1777 req
->mr
? &req
->reg_wr
.wr
: NULL
);
1784 nvme_rdma_unmap_data(queue
, rq
);
1786 if (err
== -ENOMEM
|| err
== -EAGAIN
)
1787 ret
= BLK_STS_RESOURCE
;
1789 ret
= BLK_STS_IOERR
;
1790 nvme_cleanup_cmd(rq
);
1792 ib_dma_unmap_single(dev
, req
->sqe
.dma
, sizeof(struct nvme_command
),
1797 static int nvme_rdma_poll(struct blk_mq_hw_ctx
*hctx
)
1799 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1801 return ib_process_cq_direct(queue
->ib_cq
, -1);
1804 static void nvme_rdma_complete_rq(struct request
*rq
)
1806 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1807 struct nvme_rdma_queue
*queue
= req
->queue
;
1808 struct ib_device
*ibdev
= queue
->device
->dev
;
1810 nvme_rdma_unmap_data(queue
, rq
);
1811 ib_dma_unmap_single(ibdev
, req
->sqe
.dma
, sizeof(struct nvme_command
),
1813 nvme_complete_rq(rq
);
1816 static int nvme_rdma_map_queues(struct blk_mq_tag_set
*set
)
1818 struct nvme_rdma_ctrl
*ctrl
= set
->driver_data
;
1819 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
1821 if (opts
->nr_write_queues
&& ctrl
->io_queues
[HCTX_TYPE_READ
]) {
1822 /* separate read/write queues */
1823 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
=
1824 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1825 set
->map
[HCTX_TYPE_DEFAULT
].queue_offset
= 0;
1826 set
->map
[HCTX_TYPE_READ
].nr_queues
=
1827 ctrl
->io_queues
[HCTX_TYPE_READ
];
1828 set
->map
[HCTX_TYPE_READ
].queue_offset
=
1829 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1831 /* shared read/write queues */
1832 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
=
1833 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1834 set
->map
[HCTX_TYPE_DEFAULT
].queue_offset
= 0;
1835 set
->map
[HCTX_TYPE_READ
].nr_queues
=
1836 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1837 set
->map
[HCTX_TYPE_READ
].queue_offset
= 0;
1839 blk_mq_rdma_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
],
1840 ctrl
->device
->dev
, 0);
1841 blk_mq_rdma_map_queues(&set
->map
[HCTX_TYPE_READ
],
1842 ctrl
->device
->dev
, 0);
1844 if (opts
->nr_poll_queues
&& ctrl
->io_queues
[HCTX_TYPE_POLL
]) {
1845 /* map dedicated poll queues only if we have queues left */
1846 set
->map
[HCTX_TYPE_POLL
].nr_queues
=
1847 ctrl
->io_queues
[HCTX_TYPE_POLL
];
1848 set
->map
[HCTX_TYPE_POLL
].queue_offset
=
1849 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] +
1850 ctrl
->io_queues
[HCTX_TYPE_READ
];
1851 blk_mq_map_queues(&set
->map
[HCTX_TYPE_POLL
]);
1854 dev_info(ctrl
->ctrl
.device
,
1855 "mapped %d/%d/%d default/read/poll queues.\n",
1856 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
],
1857 ctrl
->io_queues
[HCTX_TYPE_READ
],
1858 ctrl
->io_queues
[HCTX_TYPE_POLL
]);
1863 static const struct blk_mq_ops nvme_rdma_mq_ops
= {
1864 .queue_rq
= nvme_rdma_queue_rq
,
1865 .complete
= nvme_rdma_complete_rq
,
1866 .init_request
= nvme_rdma_init_request
,
1867 .exit_request
= nvme_rdma_exit_request
,
1868 .init_hctx
= nvme_rdma_init_hctx
,
1869 .timeout
= nvme_rdma_timeout
,
1870 .map_queues
= nvme_rdma_map_queues
,
1871 .poll
= nvme_rdma_poll
,
1874 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
= {
1875 .queue_rq
= nvme_rdma_queue_rq
,
1876 .complete
= nvme_rdma_complete_rq
,
1877 .init_request
= nvme_rdma_init_request
,
1878 .exit_request
= nvme_rdma_exit_request
,
1879 .init_hctx
= nvme_rdma_init_admin_hctx
,
1880 .timeout
= nvme_rdma_timeout
,
1883 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool shutdown
)
1885 cancel_work_sync(&ctrl
->err_work
);
1886 cancel_delayed_work_sync(&ctrl
->reconnect_work
);
1888 nvme_rdma_teardown_io_queues(ctrl
, shutdown
);
1889 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
1891 nvme_shutdown_ctrl(&ctrl
->ctrl
);
1893 nvme_disable_ctrl(&ctrl
->ctrl
);
1894 nvme_rdma_teardown_admin_queue(ctrl
, shutdown
);
1897 static void nvme_rdma_delete_ctrl(struct nvme_ctrl
*ctrl
)
1899 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl
), true);
1902 static void nvme_rdma_reset_ctrl_work(struct work_struct
*work
)
1904 struct nvme_rdma_ctrl
*ctrl
=
1905 container_of(work
, struct nvme_rdma_ctrl
, ctrl
.reset_work
);
1907 nvme_stop_ctrl(&ctrl
->ctrl
);
1908 nvme_rdma_shutdown_ctrl(ctrl
, false);
1910 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
1911 /* state change failure should never happen */
1916 if (nvme_rdma_setup_ctrl(ctrl
, false))
1922 ++ctrl
->ctrl
.nr_reconnects
;
1923 nvme_rdma_reconnect_or_remove(ctrl
);
1926 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops
= {
1928 .module
= THIS_MODULE
,
1929 .flags
= NVME_F_FABRICS
,
1930 .reg_read32
= nvmf_reg_read32
,
1931 .reg_read64
= nvmf_reg_read64
,
1932 .reg_write32
= nvmf_reg_write32
,
1933 .free_ctrl
= nvme_rdma_free_ctrl
,
1934 .submit_async_event
= nvme_rdma_submit_async_event
,
1935 .delete_ctrl
= nvme_rdma_delete_ctrl
,
1936 .get_address
= nvmf_get_address
,
1940 * Fails a connection request if it matches an existing controller
1941 * (association) with the same tuple:
1942 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1944 * if local address is not specified in the request, it will match an
1945 * existing controller with all the other parameters the same and no
1946 * local port address specified as well.
1948 * The ports don't need to be compared as they are intrinsically
1949 * already matched by the port pointers supplied.
1952 nvme_rdma_existing_controller(struct nvmf_ctrl_options
*opts
)
1954 struct nvme_rdma_ctrl
*ctrl
;
1957 mutex_lock(&nvme_rdma_ctrl_mutex
);
1958 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
1959 found
= nvmf_ip_options_match(&ctrl
->ctrl
, opts
);
1963 mutex_unlock(&nvme_rdma_ctrl_mutex
);
1968 static struct nvme_ctrl
*nvme_rdma_create_ctrl(struct device
*dev
,
1969 struct nvmf_ctrl_options
*opts
)
1971 struct nvme_rdma_ctrl
*ctrl
;
1975 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
1977 return ERR_PTR(-ENOMEM
);
1978 ctrl
->ctrl
.opts
= opts
;
1979 INIT_LIST_HEAD(&ctrl
->list
);
1981 if (!(opts
->mask
& NVMF_OPT_TRSVCID
)) {
1983 kstrdup(__stringify(NVME_RDMA_IP_PORT
), GFP_KERNEL
);
1984 if (!opts
->trsvcid
) {
1988 opts
->mask
|= NVMF_OPT_TRSVCID
;
1991 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
1992 opts
->traddr
, opts
->trsvcid
, &ctrl
->addr
);
1994 pr_err("malformed address passed: %s:%s\n",
1995 opts
->traddr
, opts
->trsvcid
);
1999 if (opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
2000 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
2001 opts
->host_traddr
, NULL
, &ctrl
->src_addr
);
2003 pr_err("malformed src address passed: %s\n",
2009 if (!opts
->duplicate_connect
&& nvme_rdma_existing_controller(opts
)) {
2014 INIT_DELAYED_WORK(&ctrl
->reconnect_work
,
2015 nvme_rdma_reconnect_ctrl_work
);
2016 INIT_WORK(&ctrl
->err_work
, nvme_rdma_error_recovery_work
);
2017 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_rdma_reset_ctrl_work
);
2019 ctrl
->ctrl
.queue_count
= opts
->nr_io_queues
+ opts
->nr_write_queues
+
2020 opts
->nr_poll_queues
+ 1;
2021 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
2022 ctrl
->ctrl
.kato
= opts
->kato
;
2025 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
, sizeof(*ctrl
->queues
),
2030 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_rdma_ctrl_ops
,
2031 0 /* no quirks, we're perfect! */);
2033 goto out_kfree_queues
;
2035 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
);
2036 WARN_ON_ONCE(!changed
);
2038 ret
= nvme_rdma_setup_ctrl(ctrl
, true);
2040 goto out_uninit_ctrl
;
2042 dev_info(ctrl
->ctrl
.device
, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2043 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
2045 mutex_lock(&nvme_rdma_ctrl_mutex
);
2046 list_add_tail(&ctrl
->list
, &nvme_rdma_ctrl_list
);
2047 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2052 nvme_uninit_ctrl(&ctrl
->ctrl
);
2053 nvme_put_ctrl(&ctrl
->ctrl
);
2056 return ERR_PTR(ret
);
2058 kfree(ctrl
->queues
);
2061 return ERR_PTR(ret
);
2064 static struct nvmf_transport_ops nvme_rdma_transport
= {
2066 .module
= THIS_MODULE
,
2067 .required_opts
= NVMF_OPT_TRADDR
,
2068 .allowed_opts
= NVMF_OPT_TRSVCID
| NVMF_OPT_RECONNECT_DELAY
|
2069 NVMF_OPT_HOST_TRADDR
| NVMF_OPT_CTRL_LOSS_TMO
|
2070 NVMF_OPT_NR_WRITE_QUEUES
| NVMF_OPT_NR_POLL_QUEUES
|
2072 .create_ctrl
= nvme_rdma_create_ctrl
,
2075 static void nvme_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
2077 struct nvme_rdma_ctrl
*ctrl
;
2078 struct nvme_rdma_device
*ndev
;
2081 mutex_lock(&device_list_mutex
);
2082 list_for_each_entry(ndev
, &device_list
, entry
) {
2083 if (ndev
->dev
== ib_device
) {
2088 mutex_unlock(&device_list_mutex
);
2093 /* Delete all controllers using this device */
2094 mutex_lock(&nvme_rdma_ctrl_mutex
);
2095 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
2096 if (ctrl
->device
->dev
!= ib_device
)
2098 nvme_delete_ctrl(&ctrl
->ctrl
);
2100 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2102 flush_workqueue(nvme_delete_wq
);
2105 static struct ib_client nvme_rdma_ib_client
= {
2106 .name
= "nvme_rdma",
2107 .remove
= nvme_rdma_remove_one
2110 static int __init
nvme_rdma_init_module(void)
2114 ret
= ib_register_client(&nvme_rdma_ib_client
);
2118 ret
= nvmf_register_transport(&nvme_rdma_transport
);
2120 goto err_unreg_client
;
2125 ib_unregister_client(&nvme_rdma_ib_client
);
2129 static void __exit
nvme_rdma_cleanup_module(void)
2131 struct nvme_rdma_ctrl
*ctrl
;
2133 nvmf_unregister_transport(&nvme_rdma_transport
);
2134 ib_unregister_client(&nvme_rdma_ib_client
);
2136 mutex_lock(&nvme_rdma_ctrl_mutex
);
2137 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
)
2138 nvme_delete_ctrl(&ctrl
->ctrl
);
2139 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2140 flush_workqueue(nvme_delete_wq
);
2143 module_init(nvme_rdma_init_module
);
2144 module_exit(nvme_rdma_cleanup_module
);
2146 MODULE_LICENSE("GPL v2");