2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head
*l
)
82 list_for_each_entry_safe(page
, page2
, l
, lru
) {
84 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
85 page_is_file_cache(page
));
86 putback_lru_page(page
);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head
*l
)
102 list_for_each_entry_safe(page
, page2
, l
, lru
) {
103 if (unlikely(PageHuge(page
))) {
104 putback_active_hugepage(page
);
107 list_del(&page
->lru
);
108 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
109 page_is_file_cache(page
));
110 if (unlikely(balloon_page_movable(page
)))
111 balloon_page_putback(page
);
113 putback_lru_page(page
);
118 * Restore a potential migration pte to a working pte entry
120 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
121 unsigned long addr
, void *old
)
123 struct mm_struct
*mm
= vma
->vm_mm
;
129 if (unlikely(PageHuge(new))) {
130 ptep
= huge_pte_offset(mm
, addr
);
133 ptl
= &mm
->page_table_lock
;
135 pmd
= mm_find_pmd(mm
, addr
);
138 if (pmd_trans_huge(*pmd
))
141 ptep
= pte_offset_map(pmd
, addr
);
144 * Peek to check is_swap_pte() before taking ptlock? No, we
145 * can race mremap's move_ptes(), which skips anon_vma lock.
148 ptl
= pte_lockptr(mm
, pmd
);
153 if (!is_swap_pte(pte
))
156 entry
= pte_to_swp_entry(pte
);
158 if (!is_migration_entry(entry
) ||
159 migration_entry_to_page(entry
) != old
)
163 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
164 if (is_write_migration_entry(entry
))
165 pte
= pte_mkwrite(pte
);
166 #ifdef CONFIG_HUGETLB_PAGE
168 pte
= pte_mkhuge(pte
);
169 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
172 flush_dcache_page(new);
173 set_pte_at(mm
, addr
, ptep
, pte
);
177 hugepage_add_anon_rmap(new, vma
, addr
);
180 } else if (PageAnon(new))
181 page_add_anon_rmap(new, vma
, addr
);
183 page_add_file_rmap(new);
185 /* No need to invalidate - it was non-present before */
186 update_mmu_cache(vma
, addr
, ptep
);
188 pte_unmap_unlock(ptep
, ptl
);
194 * Get rid of all migration entries and replace them by
195 * references to the indicated page.
197 static void remove_migration_ptes(struct page
*old
, struct page
*new)
199 rmap_walk(new, remove_migration_pte
, old
);
203 * Something used the pte of a page under migration. We need to
204 * get to the page and wait until migration is finished.
205 * When we return from this function the fault will be retried.
207 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
216 if (!is_swap_pte(pte
))
219 entry
= pte_to_swp_entry(pte
);
220 if (!is_migration_entry(entry
))
223 page
= migration_entry_to_page(entry
);
226 * Once radix-tree replacement of page migration started, page_count
227 * *must* be zero. And, we don't want to call wait_on_page_locked()
228 * against a page without get_page().
229 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 if (!get_page_unless_zero(page
))
234 pte_unmap_unlock(ptep
, ptl
);
235 wait_on_page_locked(page
);
239 pte_unmap_unlock(ptep
, ptl
);
242 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
243 unsigned long address
)
245 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
246 pte_t
*ptep
= pte_offset_map(pmd
, address
);
247 __migration_entry_wait(mm
, ptep
, ptl
);
250 void migration_entry_wait_huge(struct mm_struct
*mm
, pte_t
*pte
)
252 spinlock_t
*ptl
= &(mm
)->page_table_lock
;
253 __migration_entry_wait(mm
, pte
, ptl
);
257 /* Returns true if all buffers are successfully locked */
258 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
259 enum migrate_mode mode
)
261 struct buffer_head
*bh
= head
;
263 /* Simple case, sync compaction */
264 if (mode
!= MIGRATE_ASYNC
) {
268 bh
= bh
->b_this_page
;
270 } while (bh
!= head
);
275 /* async case, we cannot block on lock_buffer so use trylock_buffer */
278 if (!trylock_buffer(bh
)) {
280 * We failed to lock the buffer and cannot stall in
281 * async migration. Release the taken locks
283 struct buffer_head
*failed_bh
= bh
;
286 while (bh
!= failed_bh
) {
289 bh
= bh
->b_this_page
;
294 bh
= bh
->b_this_page
;
295 } while (bh
!= head
);
299 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
300 enum migrate_mode mode
)
304 #endif /* CONFIG_BLOCK */
307 * Replace the page in the mapping.
309 * The number of remaining references must be:
310 * 1 for anonymous pages without a mapping
311 * 2 for pages with a mapping
312 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
314 int migrate_page_move_mapping(struct address_space
*mapping
,
315 struct page
*newpage
, struct page
*page
,
316 struct buffer_head
*head
, enum migrate_mode mode
)
318 int expected_count
= 0;
322 /* Anonymous page without mapping */
323 if (page_count(page
) != 1)
325 return MIGRATEPAGE_SUCCESS
;
328 spin_lock_irq(&mapping
->tree_lock
);
330 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
333 expected_count
= 2 + page_has_private(page
);
334 if (page_count(page
) != expected_count
||
335 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
336 spin_unlock_irq(&mapping
->tree_lock
);
340 if (!page_freeze_refs(page
, expected_count
)) {
341 spin_unlock_irq(&mapping
->tree_lock
);
346 * In the async migration case of moving a page with buffers, lock the
347 * buffers using trylock before the mapping is moved. If the mapping
348 * was moved, we later failed to lock the buffers and could not move
349 * the mapping back due to an elevated page count, we would have to
350 * block waiting on other references to be dropped.
352 if (mode
== MIGRATE_ASYNC
&& head
&&
353 !buffer_migrate_lock_buffers(head
, mode
)) {
354 page_unfreeze_refs(page
, expected_count
);
355 spin_unlock_irq(&mapping
->tree_lock
);
360 * Now we know that no one else is looking at the page.
362 get_page(newpage
); /* add cache reference */
363 if (PageSwapCache(page
)) {
364 SetPageSwapCache(newpage
);
365 set_page_private(newpage
, page_private(page
));
368 radix_tree_replace_slot(pslot
, newpage
);
371 * Drop cache reference from old page by unfreezing
372 * to one less reference.
373 * We know this isn't the last reference.
375 page_unfreeze_refs(page
, expected_count
- 1);
378 * If moved to a different zone then also account
379 * the page for that zone. Other VM counters will be
380 * taken care of when we establish references to the
381 * new page and drop references to the old page.
383 * Note that anonymous pages are accounted for
384 * via NR_FILE_PAGES and NR_ANON_PAGES if they
385 * are mapped to swap space.
387 __dec_zone_page_state(page
, NR_FILE_PAGES
);
388 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
389 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
390 __dec_zone_page_state(page
, NR_SHMEM
);
391 __inc_zone_page_state(newpage
, NR_SHMEM
);
393 spin_unlock_irq(&mapping
->tree_lock
);
395 return MIGRATEPAGE_SUCCESS
;
399 * The expected number of remaining references is the same as that
400 * of migrate_page_move_mapping().
402 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
403 struct page
*newpage
, struct page
*page
)
409 if (page_count(page
) != 1)
411 return MIGRATEPAGE_SUCCESS
;
414 spin_lock_irq(&mapping
->tree_lock
);
416 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
419 expected_count
= 2 + page_has_private(page
);
420 if (page_count(page
) != expected_count
||
421 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
422 spin_unlock_irq(&mapping
->tree_lock
);
426 if (!page_freeze_refs(page
, expected_count
)) {
427 spin_unlock_irq(&mapping
->tree_lock
);
433 radix_tree_replace_slot(pslot
, newpage
);
435 page_unfreeze_refs(page
, expected_count
- 1);
437 spin_unlock_irq(&mapping
->tree_lock
);
438 return MIGRATEPAGE_SUCCESS
;
442 * Copy the page to its new location
444 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
446 if (PageHuge(page
) || PageTransHuge(page
))
447 copy_huge_page(newpage
, page
);
449 copy_highpage(newpage
, page
);
452 SetPageError(newpage
);
453 if (PageReferenced(page
))
454 SetPageReferenced(newpage
);
455 if (PageUptodate(page
))
456 SetPageUptodate(newpage
);
457 if (TestClearPageActive(page
)) {
458 VM_BUG_ON(PageUnevictable(page
));
459 SetPageActive(newpage
);
460 } else if (TestClearPageUnevictable(page
))
461 SetPageUnevictable(newpage
);
462 if (PageChecked(page
))
463 SetPageChecked(newpage
);
464 if (PageMappedToDisk(page
))
465 SetPageMappedToDisk(newpage
);
467 if (PageDirty(page
)) {
468 clear_page_dirty_for_io(page
);
470 * Want to mark the page and the radix tree as dirty, and
471 * redo the accounting that clear_page_dirty_for_io undid,
472 * but we can't use set_page_dirty because that function
473 * is actually a signal that all of the page has become dirty.
474 * Whereas only part of our page may be dirty.
476 if (PageSwapBacked(page
))
477 SetPageDirty(newpage
);
479 __set_page_dirty_nobuffers(newpage
);
482 mlock_migrate_page(newpage
, page
);
483 ksm_migrate_page(newpage
, page
);
485 * Please do not reorder this without considering how mm/ksm.c's
486 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
488 ClearPageSwapCache(page
);
489 ClearPagePrivate(page
);
490 set_page_private(page
, 0);
493 * If any waiters have accumulated on the new page then
496 if (PageWriteback(newpage
))
497 end_page_writeback(newpage
);
500 /************************************************************
501 * Migration functions
502 ***********************************************************/
504 /* Always fail migration. Used for mappings that are not movable */
505 int fail_migrate_page(struct address_space
*mapping
,
506 struct page
*newpage
, struct page
*page
)
510 EXPORT_SYMBOL(fail_migrate_page
);
513 * Common logic to directly migrate a single page suitable for
514 * pages that do not use PagePrivate/PagePrivate2.
516 * Pages are locked upon entry and exit.
518 int migrate_page(struct address_space
*mapping
,
519 struct page
*newpage
, struct page
*page
,
520 enum migrate_mode mode
)
524 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
526 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
528 if (rc
!= MIGRATEPAGE_SUCCESS
)
531 migrate_page_copy(newpage
, page
);
532 return MIGRATEPAGE_SUCCESS
;
534 EXPORT_SYMBOL(migrate_page
);
538 * Migration function for pages with buffers. This function can only be used
539 * if the underlying filesystem guarantees that no other references to "page"
542 int buffer_migrate_page(struct address_space
*mapping
,
543 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
545 struct buffer_head
*bh
, *head
;
548 if (!page_has_buffers(page
))
549 return migrate_page(mapping
, newpage
, page
, mode
);
551 head
= page_buffers(page
);
553 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
555 if (rc
!= MIGRATEPAGE_SUCCESS
)
559 * In the async case, migrate_page_move_mapping locked the buffers
560 * with an IRQ-safe spinlock held. In the sync case, the buffers
561 * need to be locked now
563 if (mode
!= MIGRATE_ASYNC
)
564 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
566 ClearPagePrivate(page
);
567 set_page_private(newpage
, page_private(page
));
568 set_page_private(page
, 0);
574 set_bh_page(bh
, newpage
, bh_offset(bh
));
575 bh
= bh
->b_this_page
;
577 } while (bh
!= head
);
579 SetPagePrivate(newpage
);
581 migrate_page_copy(newpage
, page
);
587 bh
= bh
->b_this_page
;
589 } while (bh
!= head
);
591 return MIGRATEPAGE_SUCCESS
;
593 EXPORT_SYMBOL(buffer_migrate_page
);
597 * Writeback a page to clean the dirty state
599 static int writeout(struct address_space
*mapping
, struct page
*page
)
601 struct writeback_control wbc
= {
602 .sync_mode
= WB_SYNC_NONE
,
605 .range_end
= LLONG_MAX
,
610 if (!mapping
->a_ops
->writepage
)
611 /* No write method for the address space */
614 if (!clear_page_dirty_for_io(page
))
615 /* Someone else already triggered a write */
619 * A dirty page may imply that the underlying filesystem has
620 * the page on some queue. So the page must be clean for
621 * migration. Writeout may mean we loose the lock and the
622 * page state is no longer what we checked for earlier.
623 * At this point we know that the migration attempt cannot
626 remove_migration_ptes(page
, page
);
628 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
630 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
631 /* unlocked. Relock */
634 return (rc
< 0) ? -EIO
: -EAGAIN
;
638 * Default handling if a filesystem does not provide a migration function.
640 static int fallback_migrate_page(struct address_space
*mapping
,
641 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
643 if (PageDirty(page
)) {
644 /* Only writeback pages in full synchronous migration */
645 if (mode
!= MIGRATE_SYNC
)
647 return writeout(mapping
, page
);
651 * Buffers may be managed in a filesystem specific way.
652 * We must have no buffers or drop them.
654 if (page_has_private(page
) &&
655 !try_to_release_page(page
, GFP_KERNEL
))
658 return migrate_page(mapping
, newpage
, page
, mode
);
662 * Move a page to a newly allocated page
663 * The page is locked and all ptes have been successfully removed.
665 * The new page will have replaced the old page if this function
670 * MIGRATEPAGE_SUCCESS - success
672 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
673 int remap_swapcache
, enum migrate_mode mode
)
675 struct address_space
*mapping
;
679 * Block others from accessing the page when we get around to
680 * establishing additional references. We are the only one
681 * holding a reference to the new page at this point.
683 if (!trylock_page(newpage
))
686 /* Prepare mapping for the new page.*/
687 newpage
->index
= page
->index
;
688 newpage
->mapping
= page
->mapping
;
689 if (PageSwapBacked(page
))
690 SetPageSwapBacked(newpage
);
692 mapping
= page_mapping(page
);
694 rc
= migrate_page(mapping
, newpage
, page
, mode
);
695 else if (mapping
->a_ops
->migratepage
)
697 * Most pages have a mapping and most filesystems provide a
698 * migratepage callback. Anonymous pages are part of swap
699 * space which also has its own migratepage callback. This
700 * is the most common path for page migration.
702 rc
= mapping
->a_ops
->migratepage(mapping
,
703 newpage
, page
, mode
);
705 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
707 if (rc
!= MIGRATEPAGE_SUCCESS
) {
708 newpage
->mapping
= NULL
;
711 remove_migration_ptes(page
, newpage
);
712 page
->mapping
= NULL
;
715 unlock_page(newpage
);
720 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
721 int force
, enum migrate_mode mode
)
724 int remap_swapcache
= 1;
725 struct mem_cgroup
*mem
;
726 struct anon_vma
*anon_vma
= NULL
;
728 if (!trylock_page(page
)) {
729 if (!force
|| mode
== MIGRATE_ASYNC
)
733 * It's not safe for direct compaction to call lock_page.
734 * For example, during page readahead pages are added locked
735 * to the LRU. Later, when the IO completes the pages are
736 * marked uptodate and unlocked. However, the queueing
737 * could be merging multiple pages for one bio (e.g.
738 * mpage_readpages). If an allocation happens for the
739 * second or third page, the process can end up locking
740 * the same page twice and deadlocking. Rather than
741 * trying to be clever about what pages can be locked,
742 * avoid the use of lock_page for direct compaction
745 if (current
->flags
& PF_MEMALLOC
)
751 /* charge against new page */
752 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
754 if (PageWriteback(page
)) {
756 * Only in the case of a full synchronous migration is it
757 * necessary to wait for PageWriteback. In the async case,
758 * the retry loop is too short and in the sync-light case,
759 * the overhead of stalling is too much
761 if (mode
!= MIGRATE_SYNC
) {
767 wait_on_page_writeback(page
);
770 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
771 * we cannot notice that anon_vma is freed while we migrates a page.
772 * This get_anon_vma() delays freeing anon_vma pointer until the end
773 * of migration. File cache pages are no problem because of page_lock()
774 * File Caches may use write_page() or lock_page() in migration, then,
775 * just care Anon page here.
777 if (PageAnon(page
) && !PageKsm(page
)) {
779 * Only page_lock_anon_vma_read() understands the subtleties of
780 * getting a hold on an anon_vma from outside one of its mms.
782 anon_vma
= page_get_anon_vma(page
);
787 } else if (PageSwapCache(page
)) {
789 * We cannot be sure that the anon_vma of an unmapped
790 * swapcache page is safe to use because we don't
791 * know in advance if the VMA that this page belonged
792 * to still exists. If the VMA and others sharing the
793 * data have been freed, then the anon_vma could
794 * already be invalid.
796 * To avoid this possibility, swapcache pages get
797 * migrated but are not remapped when migration
806 if (unlikely(balloon_page_movable(page
))) {
808 * A ballooned page does not need any special attention from
809 * physical to virtual reverse mapping procedures.
810 * Skip any attempt to unmap PTEs or to remap swap cache,
811 * in order to avoid burning cycles at rmap level, and perform
812 * the page migration right away (proteced by page lock).
814 rc
= balloon_page_migrate(newpage
, page
, mode
);
819 * Corner case handling:
820 * 1. When a new swap-cache page is read into, it is added to the LRU
821 * and treated as swapcache but it has no rmap yet.
822 * Calling try_to_unmap() against a page->mapping==NULL page will
823 * trigger a BUG. So handle it here.
824 * 2. An orphaned page (see truncate_complete_page) might have
825 * fs-private metadata. The page can be picked up due to memory
826 * offlining. Everywhere else except page reclaim, the page is
827 * invisible to the vm, so the page can not be migrated. So try to
828 * free the metadata, so the page can be freed.
830 if (!page
->mapping
) {
831 VM_BUG_ON(PageAnon(page
));
832 if (page_has_private(page
)) {
833 try_to_free_buffers(page
);
839 /* Establish migration ptes or remove ptes */
840 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
843 if (!page_mapped(page
))
844 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
846 if (rc
&& remap_swapcache
)
847 remove_migration_ptes(page
, page
);
849 /* Drop an anon_vma reference if we took one */
851 put_anon_vma(anon_vma
);
854 mem_cgroup_end_migration(mem
, page
, newpage
,
855 (rc
== MIGRATEPAGE_SUCCESS
||
856 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
863 * Obtain the lock on page, remove all ptes and migrate the page
864 * to the newly allocated page in newpage.
866 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
867 struct page
*page
, int force
, enum migrate_mode mode
)
871 struct page
*newpage
= get_new_page(page
, private, &result
);
876 if (page_count(page
) == 1) {
877 /* page was freed from under us. So we are done. */
881 if (unlikely(PageTransHuge(page
)))
882 if (unlikely(split_huge_page(page
)))
885 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
887 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
889 * A ballooned page has been migrated already.
890 * Now, it's the time to wrap-up counters,
891 * handle the page back to Buddy and return.
893 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
894 page_is_file_cache(page
));
895 balloon_page_free(page
);
896 return MIGRATEPAGE_SUCCESS
;
901 * A page that has been migrated has all references
902 * removed and will be freed. A page that has not been
903 * migrated will have kepts its references and be
906 list_del(&page
->lru
);
907 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
908 page_is_file_cache(page
));
909 putback_lru_page(page
);
912 * Move the new page to the LRU. If migration was not successful
913 * then this will free the page.
915 putback_lru_page(newpage
);
920 *result
= page_to_nid(newpage
);
926 * Counterpart of unmap_and_move_page() for hugepage migration.
928 * This function doesn't wait the completion of hugepage I/O
929 * because there is no race between I/O and migration for hugepage.
930 * Note that currently hugepage I/O occurs only in direct I/O
931 * where no lock is held and PG_writeback is irrelevant,
932 * and writeback status of all subpages are counted in the reference
933 * count of the head page (i.e. if all subpages of a 2MB hugepage are
934 * under direct I/O, the reference of the head page is 512 and a bit more.)
935 * This means that when we try to migrate hugepage whose subpages are
936 * doing direct I/O, some references remain after try_to_unmap() and
937 * hugepage migration fails without data corruption.
939 * There is also no race when direct I/O is issued on the page under migration,
940 * because then pte is replaced with migration swap entry and direct I/O code
941 * will wait in the page fault for migration to complete.
943 static int unmap_and_move_huge_page(new_page_t get_new_page
,
944 unsigned long private, struct page
*hpage
,
945 int force
, enum migrate_mode mode
)
949 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
950 struct anon_vma
*anon_vma
= NULL
;
953 * Movability of hugepages depends on architectures and hugepage size.
954 * This check is necessary because some callers of hugepage migration
955 * like soft offline and memory hotremove don't walk through page
956 * tables or check whether the hugepage is pmd-based or not before
959 if (!hugepage_migration_support(page_hstate(hpage
)))
967 if (!trylock_page(hpage
)) {
968 if (!force
|| mode
!= MIGRATE_SYNC
)
974 anon_vma
= page_get_anon_vma(hpage
);
976 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
978 if (!page_mapped(hpage
))
979 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
982 remove_migration_ptes(hpage
, hpage
);
985 put_anon_vma(anon_vma
);
988 hugetlb_cgroup_migrate(hpage
, new_hpage
);
993 putback_active_hugepage(hpage
);
999 *result
= page_to_nid(new_hpage
);
1005 * migrate_pages - migrate the pages specified in a list, to the free pages
1006 * supplied as the target for the page migration
1008 * @from: The list of pages to be migrated.
1009 * @get_new_page: The function used to allocate free pages to be used
1010 * as the target of the page migration.
1011 * @private: Private data to be passed on to get_new_page()
1012 * @mode: The migration mode that specifies the constraints for
1013 * page migration, if any.
1014 * @reason: The reason for page migration.
1016 * The function returns after 10 attempts or if no pages are movable any more
1017 * because the list has become empty or no retryable pages exist any more.
1018 * The caller should call putback_lru_pages() to return pages to the LRU
1019 * or free list only if ret != 0.
1021 * Returns the number of pages that were not migrated, or an error code.
1023 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1024 unsigned long private, enum migrate_mode mode
, int reason
)
1028 int nr_succeeded
= 0;
1032 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1036 current
->flags
|= PF_SWAPWRITE
;
1038 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1041 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1045 rc
= unmap_and_move_huge_page(get_new_page
,
1046 private, page
, pass
> 2, mode
);
1048 rc
= unmap_and_move(get_new_page
, private,
1049 page
, pass
> 2, mode
);
1057 case MIGRATEPAGE_SUCCESS
:
1061 /* Permanent failure */
1067 rc
= nr_failed
+ retry
;
1070 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1072 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1073 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1076 current
->flags
&= ~PF_SWAPWRITE
;
1083 * Move a list of individual pages
1085 struct page_to_node
{
1092 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1095 struct page_to_node
*pm
= (struct page_to_node
*)private;
1097 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1100 if (pm
->node
== MAX_NUMNODES
)
1103 *result
= &pm
->status
;
1106 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1109 return alloc_pages_exact_node(pm
->node
,
1110 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1114 * Move a set of pages as indicated in the pm array. The addr
1115 * field must be set to the virtual address of the page to be moved
1116 * and the node number must contain a valid target node.
1117 * The pm array ends with node = MAX_NUMNODES.
1119 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1120 struct page_to_node
*pm
,
1124 struct page_to_node
*pp
;
1125 LIST_HEAD(pagelist
);
1127 down_read(&mm
->mmap_sem
);
1130 * Build a list of pages to migrate
1132 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1133 struct vm_area_struct
*vma
;
1137 vma
= find_vma(mm
, pp
->addr
);
1138 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1141 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1143 err
= PTR_ERR(page
);
1151 /* Use PageReserved to check for zero page */
1152 if (PageReserved(page
))
1156 err
= page_to_nid(page
);
1158 if (err
== pp
->node
)
1160 * Node already in the right place
1165 if (page_mapcount(page
) > 1 &&
1169 if (PageHuge(page
)) {
1170 isolate_huge_page(page
, &pagelist
);
1174 err
= isolate_lru_page(page
);
1176 list_add_tail(&page
->lru
, &pagelist
);
1177 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1178 page_is_file_cache(page
));
1182 * Either remove the duplicate refcount from
1183 * isolate_lru_page() or drop the page ref if it was
1192 if (!list_empty(&pagelist
)) {
1193 err
= migrate_pages(&pagelist
, new_page_node
,
1194 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1196 putback_movable_pages(&pagelist
);
1199 up_read(&mm
->mmap_sem
);
1204 * Migrate an array of page address onto an array of nodes and fill
1205 * the corresponding array of status.
1207 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1208 unsigned long nr_pages
,
1209 const void __user
* __user
*pages
,
1210 const int __user
*nodes
,
1211 int __user
*status
, int flags
)
1213 struct page_to_node
*pm
;
1214 unsigned long chunk_nr_pages
;
1215 unsigned long chunk_start
;
1219 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1226 * Store a chunk of page_to_node array in a page,
1227 * but keep the last one as a marker
1229 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1231 for (chunk_start
= 0;
1232 chunk_start
< nr_pages
;
1233 chunk_start
+= chunk_nr_pages
) {
1236 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1237 chunk_nr_pages
= nr_pages
- chunk_start
;
1239 /* fill the chunk pm with addrs and nodes from user-space */
1240 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1241 const void __user
*p
;
1245 if (get_user(p
, pages
+ j
+ chunk_start
))
1247 pm
[j
].addr
= (unsigned long) p
;
1249 if (get_user(node
, nodes
+ j
+ chunk_start
))
1253 if (node
< 0 || node
>= MAX_NUMNODES
)
1256 if (!node_state(node
, N_MEMORY
))
1260 if (!node_isset(node
, task_nodes
))
1266 /* End marker for this chunk */
1267 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1269 /* Migrate this chunk */
1270 err
= do_move_page_to_node_array(mm
, pm
,
1271 flags
& MPOL_MF_MOVE_ALL
);
1275 /* Return status information */
1276 for (j
= 0; j
< chunk_nr_pages
; j
++)
1277 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1285 free_page((unsigned long)pm
);
1291 * Determine the nodes of an array of pages and store it in an array of status.
1293 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1294 const void __user
**pages
, int *status
)
1298 down_read(&mm
->mmap_sem
);
1300 for (i
= 0; i
< nr_pages
; i
++) {
1301 unsigned long addr
= (unsigned long)(*pages
);
1302 struct vm_area_struct
*vma
;
1306 vma
= find_vma(mm
, addr
);
1307 if (!vma
|| addr
< vma
->vm_start
)
1310 page
= follow_page(vma
, addr
, 0);
1312 err
= PTR_ERR(page
);
1317 /* Use PageReserved to check for zero page */
1318 if (!page
|| PageReserved(page
))
1321 err
= page_to_nid(page
);
1329 up_read(&mm
->mmap_sem
);
1333 * Determine the nodes of a user array of pages and store it in
1334 * a user array of status.
1336 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1337 const void __user
* __user
*pages
,
1340 #define DO_PAGES_STAT_CHUNK_NR 16
1341 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1342 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1345 unsigned long chunk_nr
;
1347 chunk_nr
= nr_pages
;
1348 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1349 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1351 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1354 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1356 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1361 nr_pages
-= chunk_nr
;
1363 return nr_pages
? -EFAULT
: 0;
1367 * Move a list of pages in the address space of the currently executing
1370 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1371 const void __user
* __user
*, pages
,
1372 const int __user
*, nodes
,
1373 int __user
*, status
, int, flags
)
1375 const struct cred
*cred
= current_cred(), *tcred
;
1376 struct task_struct
*task
;
1377 struct mm_struct
*mm
;
1379 nodemask_t task_nodes
;
1382 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1385 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1388 /* Find the mm_struct */
1390 task
= pid
? find_task_by_vpid(pid
) : current
;
1395 get_task_struct(task
);
1398 * Check if this process has the right to modify the specified
1399 * process. The right exists if the process has administrative
1400 * capabilities, superuser privileges or the same
1401 * userid as the target process.
1403 tcred
= __task_cred(task
);
1404 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1405 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1406 !capable(CAP_SYS_NICE
)) {
1413 err
= security_task_movememory(task
);
1417 task_nodes
= cpuset_mems_allowed(task
);
1418 mm
= get_task_mm(task
);
1419 put_task_struct(task
);
1425 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1426 nodes
, status
, flags
);
1428 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1434 put_task_struct(task
);
1439 * Call migration functions in the vma_ops that may prepare
1440 * memory in a vm for migration. migration functions may perform
1441 * the migration for vmas that do not have an underlying page struct.
1443 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1444 const nodemask_t
*from
, unsigned long flags
)
1446 struct vm_area_struct
*vma
;
1449 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1450 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1451 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1459 #ifdef CONFIG_NUMA_BALANCING
1461 * Returns true if this is a safe migration target node for misplaced NUMA
1462 * pages. Currently it only checks the watermarks which crude
1464 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1465 unsigned long nr_migrate_pages
)
1468 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1469 struct zone
*zone
= pgdat
->node_zones
+ z
;
1471 if (!populated_zone(zone
))
1474 if (!zone_reclaimable(zone
))
1477 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1478 if (!zone_watermark_ok(zone
, 0,
1479 high_wmark_pages(zone
) +
1488 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1492 int nid
= (int) data
;
1493 struct page
*newpage
;
1495 newpage
= alloc_pages_exact_node(nid
,
1496 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1497 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1501 page_nid_xchg_last(newpage
, page_nid_last(page
));
1507 * page migration rate limiting control.
1508 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1509 * window of time. Default here says do not migrate more than 1280M per second.
1510 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1511 * as it is faults that reset the window, pte updates will happen unconditionally
1512 * if there has not been a fault since @pteupdate_interval_millisecs after the
1513 * throttle window closed.
1515 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1516 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1517 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1519 /* Returns true if NUMA migration is currently rate limited */
1520 bool migrate_ratelimited(int node
)
1522 pg_data_t
*pgdat
= NODE_DATA(node
);
1524 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1525 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1528 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1534 /* Returns true if the node is migrate rate-limited after the update */
1535 bool numamigrate_update_ratelimit(pg_data_t
*pgdat
, unsigned long nr_pages
)
1537 bool rate_limited
= false;
1540 * Rate-limit the amount of data that is being migrated to a node.
1541 * Optimal placement is no good if the memory bus is saturated and
1542 * all the time is being spent migrating!
1544 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1545 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1546 pgdat
->numabalancing_migrate_nr_pages
= 0;
1547 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1548 msecs_to_jiffies(migrate_interval_millisecs
);
1550 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
)
1551 rate_limited
= true;
1553 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1554 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1556 return rate_limited
;
1559 int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1563 VM_BUG_ON(compound_order(page
) && !PageTransHuge(page
));
1565 /* Avoid migrating to a node that is nearly full */
1566 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1569 if (isolate_lru_page(page
))
1573 * migrate_misplaced_transhuge_page() skips page migration's usual
1574 * check on page_count(), so we must do it here, now that the page
1575 * has been isolated: a GUP pin, or any other pin, prevents migration.
1576 * The expected page count is 3: 1 for page's mapcount and 1 for the
1577 * caller's pin and 1 for the reference taken by isolate_lru_page().
1579 if (PageTransHuge(page
) && page_count(page
) != 3) {
1580 putback_lru_page(page
);
1584 page_lru
= page_is_file_cache(page
);
1585 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1586 hpage_nr_pages(page
));
1589 * Isolating the page has taken another reference, so the
1590 * caller's reference can be safely dropped without the page
1591 * disappearing underneath us during migration.
1598 * Attempt to migrate a misplaced page to the specified destination
1599 * node. Caller is expected to have an elevated reference count on
1600 * the page that will be dropped by this function before returning.
1602 int migrate_misplaced_page(struct page
*page
, int node
)
1604 pg_data_t
*pgdat
= NODE_DATA(node
);
1607 LIST_HEAD(migratepages
);
1610 * Don't migrate pages that are mapped in multiple processes.
1611 * TODO: Handle false sharing detection instead of this hammer
1613 if (page_mapcount(page
) != 1)
1617 * Rate-limit the amount of data that is being migrated to a node.
1618 * Optimal placement is no good if the memory bus is saturated and
1619 * all the time is being spent migrating!
1621 if (numamigrate_update_ratelimit(pgdat
, 1))
1624 isolated
= numamigrate_isolate_page(pgdat
, page
);
1628 list_add(&page
->lru
, &migratepages
);
1629 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1630 node
, MIGRATE_ASYNC
, MR_NUMA_MISPLACED
);
1632 putback_lru_pages(&migratepages
);
1635 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1636 BUG_ON(!list_empty(&migratepages
));
1643 #endif /* CONFIG_NUMA_BALANCING */
1645 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1647 * Migrates a THP to a given target node. page must be locked and is unlocked
1650 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1651 struct vm_area_struct
*vma
,
1652 pmd_t
*pmd
, pmd_t entry
,
1653 unsigned long address
,
1654 struct page
*page
, int node
)
1656 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1657 pg_data_t
*pgdat
= NODE_DATA(node
);
1659 struct page
*new_page
= NULL
;
1660 struct mem_cgroup
*memcg
= NULL
;
1661 int page_lru
= page_is_file_cache(page
);
1664 * Don't migrate pages that are mapped in multiple processes.
1665 * TODO: Handle false sharing detection instead of this hammer
1667 if (page_mapcount(page
) != 1)
1671 * Rate-limit the amount of data that is being migrated to a node.
1672 * Optimal placement is no good if the memory bus is saturated and
1673 * all the time is being spent migrating!
1675 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1678 new_page
= alloc_pages_node(node
,
1679 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1683 page_nid_xchg_last(new_page
, page_nid_last(page
));
1685 isolated
= numamigrate_isolate_page(pgdat
, page
);
1691 /* Prepare a page as a migration target */
1692 __set_page_locked(new_page
);
1693 SetPageSwapBacked(new_page
);
1695 /* anon mapping, we can simply copy page->mapping to the new page: */
1696 new_page
->mapping
= page
->mapping
;
1697 new_page
->index
= page
->index
;
1698 migrate_page_copy(new_page
, page
);
1699 WARN_ON(PageLRU(new_page
));
1701 /* Recheck the target PMD */
1702 spin_lock(&mm
->page_table_lock
);
1703 if (unlikely(!pmd_same(*pmd
, entry
))) {
1704 spin_unlock(&mm
->page_table_lock
);
1706 /* Reverse changes made by migrate_page_copy() */
1707 if (TestClearPageActive(new_page
))
1708 SetPageActive(page
);
1709 if (TestClearPageUnevictable(new_page
))
1710 SetPageUnevictable(page
);
1711 mlock_migrate_page(page
, new_page
);
1713 unlock_page(new_page
);
1714 put_page(new_page
); /* Free it */
1717 putback_lru_page(page
);
1719 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1725 * Traditional migration needs to prepare the memcg charge
1726 * transaction early to prevent the old page from being
1727 * uncharged when installing migration entries. Here we can
1728 * save the potential rollback and start the charge transfer
1729 * only when migration is already known to end successfully.
1731 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1733 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1734 entry
= pmd_mknonnuma(entry
);
1735 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1736 entry
= pmd_mkhuge(entry
);
1738 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1740 set_pmd_at(mm
, haddr
, pmd
, entry
);
1741 update_mmu_cache_pmd(vma
, address
, &entry
);
1742 page_remove_rmap(page
);
1744 * Finish the charge transaction under the page table lock to
1745 * prevent split_huge_page() from dividing up the charge
1746 * before it's fully transferred to the new page.
1748 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1749 spin_unlock(&mm
->page_table_lock
);
1751 unlock_page(new_page
);
1753 put_page(page
); /* Drop the rmap reference */
1754 put_page(page
); /* Drop the LRU isolation reference */
1756 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1757 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1760 mod_zone_page_state(page_zone(page
),
1761 NR_ISOLATED_ANON
+ page_lru
,
1766 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1772 #endif /* CONFIG_NUMA_BALANCING */
1774 #endif /* CONFIG_NUMA */