kobject: introduce kobj_completion
[linux/fpc-iii.git] / mm / migrate.c
blob9c8d5f59d30bb87e63c9990c085eb646e69b4ed7
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
45 #include "internal.h"
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
60 lru_add_drain_all();
62 return 0;
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
68 lru_add_drain();
70 return 0;
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head *l)
79 struct page *page;
80 struct page *page2;
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head *l)
99 struct page *page;
100 struct page *page2;
102 list_for_each_entry_safe(page, page2, l, lru) {
103 if (unlikely(PageHuge(page))) {
104 putback_active_hugepage(page);
105 continue;
107 list_del(&page->lru);
108 dec_zone_page_state(page, NR_ISOLATED_ANON +
109 page_is_file_cache(page));
110 if (unlikely(balloon_page_movable(page)))
111 balloon_page_putback(page);
112 else
113 putback_lru_page(page);
118 * Restore a potential migration pte to a working pte entry
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 unsigned long addr, void *old)
123 struct mm_struct *mm = vma->vm_mm;
124 swp_entry_t entry;
125 pmd_t *pmd;
126 pte_t *ptep, pte;
127 spinlock_t *ptl;
129 if (unlikely(PageHuge(new))) {
130 ptep = huge_pte_offset(mm, addr);
131 if (!ptep)
132 goto out;
133 ptl = &mm->page_table_lock;
134 } else {
135 pmd = mm_find_pmd(mm, addr);
136 if (!pmd)
137 goto out;
138 if (pmd_trans_huge(*pmd))
139 goto out;
141 ptep = pte_offset_map(pmd, addr);
144 * Peek to check is_swap_pte() before taking ptlock? No, we
145 * can race mremap's move_ptes(), which skips anon_vma lock.
148 ptl = pte_lockptr(mm, pmd);
151 spin_lock(ptl);
152 pte = *ptep;
153 if (!is_swap_pte(pte))
154 goto unlock;
156 entry = pte_to_swp_entry(pte);
158 if (!is_migration_entry(entry) ||
159 migration_entry_to_page(entry) != old)
160 goto unlock;
162 get_page(new);
163 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 if (is_write_migration_entry(entry))
165 pte = pte_mkwrite(pte);
166 #ifdef CONFIG_HUGETLB_PAGE
167 if (PageHuge(new)) {
168 pte = pte_mkhuge(pte);
169 pte = arch_make_huge_pte(pte, vma, new, 0);
171 #endif
172 flush_dcache_page(new);
173 set_pte_at(mm, addr, ptep, pte);
175 if (PageHuge(new)) {
176 if (PageAnon(new))
177 hugepage_add_anon_rmap(new, vma, addr);
178 else
179 page_dup_rmap(new);
180 } else if (PageAnon(new))
181 page_add_anon_rmap(new, vma, addr);
182 else
183 page_add_file_rmap(new);
185 /* No need to invalidate - it was non-present before */
186 update_mmu_cache(vma, addr, ptep);
187 unlock:
188 pte_unmap_unlock(ptep, ptl);
189 out:
190 return SWAP_AGAIN;
194 * Get rid of all migration entries and replace them by
195 * references to the indicated page.
197 static void remove_migration_ptes(struct page *old, struct page *new)
199 rmap_walk(new, remove_migration_pte, old);
203 * Something used the pte of a page under migration. We need to
204 * get to the page and wait until migration is finished.
205 * When we return from this function the fault will be retried.
207 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
208 spinlock_t *ptl)
210 pte_t pte;
211 swp_entry_t entry;
212 struct page *page;
214 spin_lock(ptl);
215 pte = *ptep;
216 if (!is_swap_pte(pte))
217 goto out;
219 entry = pte_to_swp_entry(pte);
220 if (!is_migration_entry(entry))
221 goto out;
223 page = migration_entry_to_page(entry);
226 * Once radix-tree replacement of page migration started, page_count
227 * *must* be zero. And, we don't want to call wait_on_page_locked()
228 * against a page without get_page().
229 * So, we use get_page_unless_zero(), here. Even failed, page fault
230 * will occur again.
232 if (!get_page_unless_zero(page))
233 goto out;
234 pte_unmap_unlock(ptep, ptl);
235 wait_on_page_locked(page);
236 put_page(page);
237 return;
238 out:
239 pte_unmap_unlock(ptep, ptl);
242 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
243 unsigned long address)
245 spinlock_t *ptl = pte_lockptr(mm, pmd);
246 pte_t *ptep = pte_offset_map(pmd, address);
247 __migration_entry_wait(mm, ptep, ptl);
250 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
252 spinlock_t *ptl = &(mm)->page_table_lock;
253 __migration_entry_wait(mm, pte, ptl);
256 #ifdef CONFIG_BLOCK
257 /* Returns true if all buffers are successfully locked */
258 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
259 enum migrate_mode mode)
261 struct buffer_head *bh = head;
263 /* Simple case, sync compaction */
264 if (mode != MIGRATE_ASYNC) {
265 do {
266 get_bh(bh);
267 lock_buffer(bh);
268 bh = bh->b_this_page;
270 } while (bh != head);
272 return true;
275 /* async case, we cannot block on lock_buffer so use trylock_buffer */
276 do {
277 get_bh(bh);
278 if (!trylock_buffer(bh)) {
280 * We failed to lock the buffer and cannot stall in
281 * async migration. Release the taken locks
283 struct buffer_head *failed_bh = bh;
284 put_bh(failed_bh);
285 bh = head;
286 while (bh != failed_bh) {
287 unlock_buffer(bh);
288 put_bh(bh);
289 bh = bh->b_this_page;
291 return false;
294 bh = bh->b_this_page;
295 } while (bh != head);
296 return true;
298 #else
299 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
300 enum migrate_mode mode)
302 return true;
304 #endif /* CONFIG_BLOCK */
307 * Replace the page in the mapping.
309 * The number of remaining references must be:
310 * 1 for anonymous pages without a mapping
311 * 2 for pages with a mapping
312 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
314 int migrate_page_move_mapping(struct address_space *mapping,
315 struct page *newpage, struct page *page,
316 struct buffer_head *head, enum migrate_mode mode)
318 int expected_count = 0;
319 void **pslot;
321 if (!mapping) {
322 /* Anonymous page without mapping */
323 if (page_count(page) != 1)
324 return -EAGAIN;
325 return MIGRATEPAGE_SUCCESS;
328 spin_lock_irq(&mapping->tree_lock);
330 pslot = radix_tree_lookup_slot(&mapping->page_tree,
331 page_index(page));
333 expected_count = 2 + page_has_private(page);
334 if (page_count(page) != expected_count ||
335 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
336 spin_unlock_irq(&mapping->tree_lock);
337 return -EAGAIN;
340 if (!page_freeze_refs(page, expected_count)) {
341 spin_unlock_irq(&mapping->tree_lock);
342 return -EAGAIN;
346 * In the async migration case of moving a page with buffers, lock the
347 * buffers using trylock before the mapping is moved. If the mapping
348 * was moved, we later failed to lock the buffers and could not move
349 * the mapping back due to an elevated page count, we would have to
350 * block waiting on other references to be dropped.
352 if (mode == MIGRATE_ASYNC && head &&
353 !buffer_migrate_lock_buffers(head, mode)) {
354 page_unfreeze_refs(page, expected_count);
355 spin_unlock_irq(&mapping->tree_lock);
356 return -EAGAIN;
360 * Now we know that no one else is looking at the page.
362 get_page(newpage); /* add cache reference */
363 if (PageSwapCache(page)) {
364 SetPageSwapCache(newpage);
365 set_page_private(newpage, page_private(page));
368 radix_tree_replace_slot(pslot, newpage);
371 * Drop cache reference from old page by unfreezing
372 * to one less reference.
373 * We know this isn't the last reference.
375 page_unfreeze_refs(page, expected_count - 1);
378 * If moved to a different zone then also account
379 * the page for that zone. Other VM counters will be
380 * taken care of when we establish references to the
381 * new page and drop references to the old page.
383 * Note that anonymous pages are accounted for
384 * via NR_FILE_PAGES and NR_ANON_PAGES if they
385 * are mapped to swap space.
387 __dec_zone_page_state(page, NR_FILE_PAGES);
388 __inc_zone_page_state(newpage, NR_FILE_PAGES);
389 if (!PageSwapCache(page) && PageSwapBacked(page)) {
390 __dec_zone_page_state(page, NR_SHMEM);
391 __inc_zone_page_state(newpage, NR_SHMEM);
393 spin_unlock_irq(&mapping->tree_lock);
395 return MIGRATEPAGE_SUCCESS;
399 * The expected number of remaining references is the same as that
400 * of migrate_page_move_mapping().
402 int migrate_huge_page_move_mapping(struct address_space *mapping,
403 struct page *newpage, struct page *page)
405 int expected_count;
406 void **pslot;
408 if (!mapping) {
409 if (page_count(page) != 1)
410 return -EAGAIN;
411 return MIGRATEPAGE_SUCCESS;
414 spin_lock_irq(&mapping->tree_lock);
416 pslot = radix_tree_lookup_slot(&mapping->page_tree,
417 page_index(page));
419 expected_count = 2 + page_has_private(page);
420 if (page_count(page) != expected_count ||
421 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
422 spin_unlock_irq(&mapping->tree_lock);
423 return -EAGAIN;
426 if (!page_freeze_refs(page, expected_count)) {
427 spin_unlock_irq(&mapping->tree_lock);
428 return -EAGAIN;
431 get_page(newpage);
433 radix_tree_replace_slot(pslot, newpage);
435 page_unfreeze_refs(page, expected_count - 1);
437 spin_unlock_irq(&mapping->tree_lock);
438 return MIGRATEPAGE_SUCCESS;
442 * Copy the page to its new location
444 void migrate_page_copy(struct page *newpage, struct page *page)
446 if (PageHuge(page) || PageTransHuge(page))
447 copy_huge_page(newpage, page);
448 else
449 copy_highpage(newpage, page);
451 if (PageError(page))
452 SetPageError(newpage);
453 if (PageReferenced(page))
454 SetPageReferenced(newpage);
455 if (PageUptodate(page))
456 SetPageUptodate(newpage);
457 if (TestClearPageActive(page)) {
458 VM_BUG_ON(PageUnevictable(page));
459 SetPageActive(newpage);
460 } else if (TestClearPageUnevictable(page))
461 SetPageUnevictable(newpage);
462 if (PageChecked(page))
463 SetPageChecked(newpage);
464 if (PageMappedToDisk(page))
465 SetPageMappedToDisk(newpage);
467 if (PageDirty(page)) {
468 clear_page_dirty_for_io(page);
470 * Want to mark the page and the radix tree as dirty, and
471 * redo the accounting that clear_page_dirty_for_io undid,
472 * but we can't use set_page_dirty because that function
473 * is actually a signal that all of the page has become dirty.
474 * Whereas only part of our page may be dirty.
476 if (PageSwapBacked(page))
477 SetPageDirty(newpage);
478 else
479 __set_page_dirty_nobuffers(newpage);
482 mlock_migrate_page(newpage, page);
483 ksm_migrate_page(newpage, page);
485 * Please do not reorder this without considering how mm/ksm.c's
486 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
488 ClearPageSwapCache(page);
489 ClearPagePrivate(page);
490 set_page_private(page, 0);
493 * If any waiters have accumulated on the new page then
494 * wake them up.
496 if (PageWriteback(newpage))
497 end_page_writeback(newpage);
500 /************************************************************
501 * Migration functions
502 ***********************************************************/
504 /* Always fail migration. Used for mappings that are not movable */
505 int fail_migrate_page(struct address_space *mapping,
506 struct page *newpage, struct page *page)
508 return -EIO;
510 EXPORT_SYMBOL(fail_migrate_page);
513 * Common logic to directly migrate a single page suitable for
514 * pages that do not use PagePrivate/PagePrivate2.
516 * Pages are locked upon entry and exit.
518 int migrate_page(struct address_space *mapping,
519 struct page *newpage, struct page *page,
520 enum migrate_mode mode)
522 int rc;
524 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
526 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
528 if (rc != MIGRATEPAGE_SUCCESS)
529 return rc;
531 migrate_page_copy(newpage, page);
532 return MIGRATEPAGE_SUCCESS;
534 EXPORT_SYMBOL(migrate_page);
536 #ifdef CONFIG_BLOCK
538 * Migration function for pages with buffers. This function can only be used
539 * if the underlying filesystem guarantees that no other references to "page"
540 * exist.
542 int buffer_migrate_page(struct address_space *mapping,
543 struct page *newpage, struct page *page, enum migrate_mode mode)
545 struct buffer_head *bh, *head;
546 int rc;
548 if (!page_has_buffers(page))
549 return migrate_page(mapping, newpage, page, mode);
551 head = page_buffers(page);
553 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
555 if (rc != MIGRATEPAGE_SUCCESS)
556 return rc;
559 * In the async case, migrate_page_move_mapping locked the buffers
560 * with an IRQ-safe spinlock held. In the sync case, the buffers
561 * need to be locked now
563 if (mode != MIGRATE_ASYNC)
564 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
566 ClearPagePrivate(page);
567 set_page_private(newpage, page_private(page));
568 set_page_private(page, 0);
569 put_page(page);
570 get_page(newpage);
572 bh = head;
573 do {
574 set_bh_page(bh, newpage, bh_offset(bh));
575 bh = bh->b_this_page;
577 } while (bh != head);
579 SetPagePrivate(newpage);
581 migrate_page_copy(newpage, page);
583 bh = head;
584 do {
585 unlock_buffer(bh);
586 put_bh(bh);
587 bh = bh->b_this_page;
589 } while (bh != head);
591 return MIGRATEPAGE_SUCCESS;
593 EXPORT_SYMBOL(buffer_migrate_page);
594 #endif
597 * Writeback a page to clean the dirty state
599 static int writeout(struct address_space *mapping, struct page *page)
601 struct writeback_control wbc = {
602 .sync_mode = WB_SYNC_NONE,
603 .nr_to_write = 1,
604 .range_start = 0,
605 .range_end = LLONG_MAX,
606 .for_reclaim = 1
608 int rc;
610 if (!mapping->a_ops->writepage)
611 /* No write method for the address space */
612 return -EINVAL;
614 if (!clear_page_dirty_for_io(page))
615 /* Someone else already triggered a write */
616 return -EAGAIN;
619 * A dirty page may imply that the underlying filesystem has
620 * the page on some queue. So the page must be clean for
621 * migration. Writeout may mean we loose the lock and the
622 * page state is no longer what we checked for earlier.
623 * At this point we know that the migration attempt cannot
624 * be successful.
626 remove_migration_ptes(page, page);
628 rc = mapping->a_ops->writepage(page, &wbc);
630 if (rc != AOP_WRITEPAGE_ACTIVATE)
631 /* unlocked. Relock */
632 lock_page(page);
634 return (rc < 0) ? -EIO : -EAGAIN;
638 * Default handling if a filesystem does not provide a migration function.
640 static int fallback_migrate_page(struct address_space *mapping,
641 struct page *newpage, struct page *page, enum migrate_mode mode)
643 if (PageDirty(page)) {
644 /* Only writeback pages in full synchronous migration */
645 if (mode != MIGRATE_SYNC)
646 return -EBUSY;
647 return writeout(mapping, page);
651 * Buffers may be managed in a filesystem specific way.
652 * We must have no buffers or drop them.
654 if (page_has_private(page) &&
655 !try_to_release_page(page, GFP_KERNEL))
656 return -EAGAIN;
658 return migrate_page(mapping, newpage, page, mode);
662 * Move a page to a newly allocated page
663 * The page is locked and all ptes have been successfully removed.
665 * The new page will have replaced the old page if this function
666 * is successful.
668 * Return value:
669 * < 0 - error code
670 * MIGRATEPAGE_SUCCESS - success
672 static int move_to_new_page(struct page *newpage, struct page *page,
673 int remap_swapcache, enum migrate_mode mode)
675 struct address_space *mapping;
676 int rc;
679 * Block others from accessing the page when we get around to
680 * establishing additional references. We are the only one
681 * holding a reference to the new page at this point.
683 if (!trylock_page(newpage))
684 BUG();
686 /* Prepare mapping for the new page.*/
687 newpage->index = page->index;
688 newpage->mapping = page->mapping;
689 if (PageSwapBacked(page))
690 SetPageSwapBacked(newpage);
692 mapping = page_mapping(page);
693 if (!mapping)
694 rc = migrate_page(mapping, newpage, page, mode);
695 else if (mapping->a_ops->migratepage)
697 * Most pages have a mapping and most filesystems provide a
698 * migratepage callback. Anonymous pages are part of swap
699 * space which also has its own migratepage callback. This
700 * is the most common path for page migration.
702 rc = mapping->a_ops->migratepage(mapping,
703 newpage, page, mode);
704 else
705 rc = fallback_migrate_page(mapping, newpage, page, mode);
707 if (rc != MIGRATEPAGE_SUCCESS) {
708 newpage->mapping = NULL;
709 } else {
710 if (remap_swapcache)
711 remove_migration_ptes(page, newpage);
712 page->mapping = NULL;
715 unlock_page(newpage);
717 return rc;
720 static int __unmap_and_move(struct page *page, struct page *newpage,
721 int force, enum migrate_mode mode)
723 int rc = -EAGAIN;
724 int remap_swapcache = 1;
725 struct mem_cgroup *mem;
726 struct anon_vma *anon_vma = NULL;
728 if (!trylock_page(page)) {
729 if (!force || mode == MIGRATE_ASYNC)
730 goto out;
733 * It's not safe for direct compaction to call lock_page.
734 * For example, during page readahead pages are added locked
735 * to the LRU. Later, when the IO completes the pages are
736 * marked uptodate and unlocked. However, the queueing
737 * could be merging multiple pages for one bio (e.g.
738 * mpage_readpages). If an allocation happens for the
739 * second or third page, the process can end up locking
740 * the same page twice and deadlocking. Rather than
741 * trying to be clever about what pages can be locked,
742 * avoid the use of lock_page for direct compaction
743 * altogether.
745 if (current->flags & PF_MEMALLOC)
746 goto out;
748 lock_page(page);
751 /* charge against new page */
752 mem_cgroup_prepare_migration(page, newpage, &mem);
754 if (PageWriteback(page)) {
756 * Only in the case of a full synchronous migration is it
757 * necessary to wait for PageWriteback. In the async case,
758 * the retry loop is too short and in the sync-light case,
759 * the overhead of stalling is too much
761 if (mode != MIGRATE_SYNC) {
762 rc = -EBUSY;
763 goto uncharge;
765 if (!force)
766 goto uncharge;
767 wait_on_page_writeback(page);
770 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
771 * we cannot notice that anon_vma is freed while we migrates a page.
772 * This get_anon_vma() delays freeing anon_vma pointer until the end
773 * of migration. File cache pages are no problem because of page_lock()
774 * File Caches may use write_page() or lock_page() in migration, then,
775 * just care Anon page here.
777 if (PageAnon(page) && !PageKsm(page)) {
779 * Only page_lock_anon_vma_read() understands the subtleties of
780 * getting a hold on an anon_vma from outside one of its mms.
782 anon_vma = page_get_anon_vma(page);
783 if (anon_vma) {
785 * Anon page
787 } else if (PageSwapCache(page)) {
789 * We cannot be sure that the anon_vma of an unmapped
790 * swapcache page is safe to use because we don't
791 * know in advance if the VMA that this page belonged
792 * to still exists. If the VMA and others sharing the
793 * data have been freed, then the anon_vma could
794 * already be invalid.
796 * To avoid this possibility, swapcache pages get
797 * migrated but are not remapped when migration
798 * completes
800 remap_swapcache = 0;
801 } else {
802 goto uncharge;
806 if (unlikely(balloon_page_movable(page))) {
808 * A ballooned page does not need any special attention from
809 * physical to virtual reverse mapping procedures.
810 * Skip any attempt to unmap PTEs or to remap swap cache,
811 * in order to avoid burning cycles at rmap level, and perform
812 * the page migration right away (proteced by page lock).
814 rc = balloon_page_migrate(newpage, page, mode);
815 goto uncharge;
819 * Corner case handling:
820 * 1. When a new swap-cache page is read into, it is added to the LRU
821 * and treated as swapcache but it has no rmap yet.
822 * Calling try_to_unmap() against a page->mapping==NULL page will
823 * trigger a BUG. So handle it here.
824 * 2. An orphaned page (see truncate_complete_page) might have
825 * fs-private metadata. The page can be picked up due to memory
826 * offlining. Everywhere else except page reclaim, the page is
827 * invisible to the vm, so the page can not be migrated. So try to
828 * free the metadata, so the page can be freed.
830 if (!page->mapping) {
831 VM_BUG_ON(PageAnon(page));
832 if (page_has_private(page)) {
833 try_to_free_buffers(page);
834 goto uncharge;
836 goto skip_unmap;
839 /* Establish migration ptes or remove ptes */
840 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
842 skip_unmap:
843 if (!page_mapped(page))
844 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
846 if (rc && remap_swapcache)
847 remove_migration_ptes(page, page);
849 /* Drop an anon_vma reference if we took one */
850 if (anon_vma)
851 put_anon_vma(anon_vma);
853 uncharge:
854 mem_cgroup_end_migration(mem, page, newpage,
855 (rc == MIGRATEPAGE_SUCCESS ||
856 rc == MIGRATEPAGE_BALLOON_SUCCESS));
857 unlock_page(page);
858 out:
859 return rc;
863 * Obtain the lock on page, remove all ptes and migrate the page
864 * to the newly allocated page in newpage.
866 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
867 struct page *page, int force, enum migrate_mode mode)
869 int rc = 0;
870 int *result = NULL;
871 struct page *newpage = get_new_page(page, private, &result);
873 if (!newpage)
874 return -ENOMEM;
876 if (page_count(page) == 1) {
877 /* page was freed from under us. So we are done. */
878 goto out;
881 if (unlikely(PageTransHuge(page)))
882 if (unlikely(split_huge_page(page)))
883 goto out;
885 rc = __unmap_and_move(page, newpage, force, mode);
887 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
889 * A ballooned page has been migrated already.
890 * Now, it's the time to wrap-up counters,
891 * handle the page back to Buddy and return.
893 dec_zone_page_state(page, NR_ISOLATED_ANON +
894 page_is_file_cache(page));
895 balloon_page_free(page);
896 return MIGRATEPAGE_SUCCESS;
898 out:
899 if (rc != -EAGAIN) {
901 * A page that has been migrated has all references
902 * removed and will be freed. A page that has not been
903 * migrated will have kepts its references and be
904 * restored.
906 list_del(&page->lru);
907 dec_zone_page_state(page, NR_ISOLATED_ANON +
908 page_is_file_cache(page));
909 putback_lru_page(page);
912 * Move the new page to the LRU. If migration was not successful
913 * then this will free the page.
915 putback_lru_page(newpage);
916 if (result) {
917 if (rc)
918 *result = rc;
919 else
920 *result = page_to_nid(newpage);
922 return rc;
926 * Counterpart of unmap_and_move_page() for hugepage migration.
928 * This function doesn't wait the completion of hugepage I/O
929 * because there is no race between I/O and migration for hugepage.
930 * Note that currently hugepage I/O occurs only in direct I/O
931 * where no lock is held and PG_writeback is irrelevant,
932 * and writeback status of all subpages are counted in the reference
933 * count of the head page (i.e. if all subpages of a 2MB hugepage are
934 * under direct I/O, the reference of the head page is 512 and a bit more.)
935 * This means that when we try to migrate hugepage whose subpages are
936 * doing direct I/O, some references remain after try_to_unmap() and
937 * hugepage migration fails without data corruption.
939 * There is also no race when direct I/O is issued on the page under migration,
940 * because then pte is replaced with migration swap entry and direct I/O code
941 * will wait in the page fault for migration to complete.
943 static int unmap_and_move_huge_page(new_page_t get_new_page,
944 unsigned long private, struct page *hpage,
945 int force, enum migrate_mode mode)
947 int rc = 0;
948 int *result = NULL;
949 struct page *new_hpage = get_new_page(hpage, private, &result);
950 struct anon_vma *anon_vma = NULL;
953 * Movability of hugepages depends on architectures and hugepage size.
954 * This check is necessary because some callers of hugepage migration
955 * like soft offline and memory hotremove don't walk through page
956 * tables or check whether the hugepage is pmd-based or not before
957 * kicking migration.
959 if (!hugepage_migration_support(page_hstate(hpage)))
960 return -ENOSYS;
962 if (!new_hpage)
963 return -ENOMEM;
965 rc = -EAGAIN;
967 if (!trylock_page(hpage)) {
968 if (!force || mode != MIGRATE_SYNC)
969 goto out;
970 lock_page(hpage);
973 if (PageAnon(hpage))
974 anon_vma = page_get_anon_vma(hpage);
976 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
978 if (!page_mapped(hpage))
979 rc = move_to_new_page(new_hpage, hpage, 1, mode);
981 if (rc)
982 remove_migration_ptes(hpage, hpage);
984 if (anon_vma)
985 put_anon_vma(anon_vma);
987 if (!rc)
988 hugetlb_cgroup_migrate(hpage, new_hpage);
990 unlock_page(hpage);
991 out:
992 if (rc != -EAGAIN)
993 putback_active_hugepage(hpage);
994 put_page(new_hpage);
995 if (result) {
996 if (rc)
997 *result = rc;
998 else
999 *result = page_to_nid(new_hpage);
1001 return rc;
1005 * migrate_pages - migrate the pages specified in a list, to the free pages
1006 * supplied as the target for the page migration
1008 * @from: The list of pages to be migrated.
1009 * @get_new_page: The function used to allocate free pages to be used
1010 * as the target of the page migration.
1011 * @private: Private data to be passed on to get_new_page()
1012 * @mode: The migration mode that specifies the constraints for
1013 * page migration, if any.
1014 * @reason: The reason for page migration.
1016 * The function returns after 10 attempts or if no pages are movable any more
1017 * because the list has become empty or no retryable pages exist any more.
1018 * The caller should call putback_lru_pages() to return pages to the LRU
1019 * or free list only if ret != 0.
1021 * Returns the number of pages that were not migrated, or an error code.
1023 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1024 unsigned long private, enum migrate_mode mode, int reason)
1026 int retry = 1;
1027 int nr_failed = 0;
1028 int nr_succeeded = 0;
1029 int pass = 0;
1030 struct page *page;
1031 struct page *page2;
1032 int swapwrite = current->flags & PF_SWAPWRITE;
1033 int rc;
1035 if (!swapwrite)
1036 current->flags |= PF_SWAPWRITE;
1038 for(pass = 0; pass < 10 && retry; pass++) {
1039 retry = 0;
1041 list_for_each_entry_safe(page, page2, from, lru) {
1042 cond_resched();
1044 if (PageHuge(page))
1045 rc = unmap_and_move_huge_page(get_new_page,
1046 private, page, pass > 2, mode);
1047 else
1048 rc = unmap_and_move(get_new_page, private,
1049 page, pass > 2, mode);
1051 switch(rc) {
1052 case -ENOMEM:
1053 goto out;
1054 case -EAGAIN:
1055 retry++;
1056 break;
1057 case MIGRATEPAGE_SUCCESS:
1058 nr_succeeded++;
1059 break;
1060 default:
1061 /* Permanent failure */
1062 nr_failed++;
1063 break;
1067 rc = nr_failed + retry;
1068 out:
1069 if (nr_succeeded)
1070 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1071 if (nr_failed)
1072 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1073 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1075 if (!swapwrite)
1076 current->flags &= ~PF_SWAPWRITE;
1078 return rc;
1081 #ifdef CONFIG_NUMA
1083 * Move a list of individual pages
1085 struct page_to_node {
1086 unsigned long addr;
1087 struct page *page;
1088 int node;
1089 int status;
1092 static struct page *new_page_node(struct page *p, unsigned long private,
1093 int **result)
1095 struct page_to_node *pm = (struct page_to_node *)private;
1097 while (pm->node != MAX_NUMNODES && pm->page != p)
1098 pm++;
1100 if (pm->node == MAX_NUMNODES)
1101 return NULL;
1103 *result = &pm->status;
1105 if (PageHuge(p))
1106 return alloc_huge_page_node(page_hstate(compound_head(p)),
1107 pm->node);
1108 else
1109 return alloc_pages_exact_node(pm->node,
1110 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1114 * Move a set of pages as indicated in the pm array. The addr
1115 * field must be set to the virtual address of the page to be moved
1116 * and the node number must contain a valid target node.
1117 * The pm array ends with node = MAX_NUMNODES.
1119 static int do_move_page_to_node_array(struct mm_struct *mm,
1120 struct page_to_node *pm,
1121 int migrate_all)
1123 int err;
1124 struct page_to_node *pp;
1125 LIST_HEAD(pagelist);
1127 down_read(&mm->mmap_sem);
1130 * Build a list of pages to migrate
1132 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1133 struct vm_area_struct *vma;
1134 struct page *page;
1136 err = -EFAULT;
1137 vma = find_vma(mm, pp->addr);
1138 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1139 goto set_status;
1141 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1143 err = PTR_ERR(page);
1144 if (IS_ERR(page))
1145 goto set_status;
1147 err = -ENOENT;
1148 if (!page)
1149 goto set_status;
1151 /* Use PageReserved to check for zero page */
1152 if (PageReserved(page))
1153 goto put_and_set;
1155 pp->page = page;
1156 err = page_to_nid(page);
1158 if (err == pp->node)
1160 * Node already in the right place
1162 goto put_and_set;
1164 err = -EACCES;
1165 if (page_mapcount(page) > 1 &&
1166 !migrate_all)
1167 goto put_and_set;
1169 if (PageHuge(page)) {
1170 isolate_huge_page(page, &pagelist);
1171 goto put_and_set;
1174 err = isolate_lru_page(page);
1175 if (!err) {
1176 list_add_tail(&page->lru, &pagelist);
1177 inc_zone_page_state(page, NR_ISOLATED_ANON +
1178 page_is_file_cache(page));
1180 put_and_set:
1182 * Either remove the duplicate refcount from
1183 * isolate_lru_page() or drop the page ref if it was
1184 * not isolated.
1186 put_page(page);
1187 set_status:
1188 pp->status = err;
1191 err = 0;
1192 if (!list_empty(&pagelist)) {
1193 err = migrate_pages(&pagelist, new_page_node,
1194 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1195 if (err)
1196 putback_movable_pages(&pagelist);
1199 up_read(&mm->mmap_sem);
1200 return err;
1204 * Migrate an array of page address onto an array of nodes and fill
1205 * the corresponding array of status.
1207 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1208 unsigned long nr_pages,
1209 const void __user * __user *pages,
1210 const int __user *nodes,
1211 int __user *status, int flags)
1213 struct page_to_node *pm;
1214 unsigned long chunk_nr_pages;
1215 unsigned long chunk_start;
1216 int err;
1218 err = -ENOMEM;
1219 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1220 if (!pm)
1221 goto out;
1223 migrate_prep();
1226 * Store a chunk of page_to_node array in a page,
1227 * but keep the last one as a marker
1229 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1231 for (chunk_start = 0;
1232 chunk_start < nr_pages;
1233 chunk_start += chunk_nr_pages) {
1234 int j;
1236 if (chunk_start + chunk_nr_pages > nr_pages)
1237 chunk_nr_pages = nr_pages - chunk_start;
1239 /* fill the chunk pm with addrs and nodes from user-space */
1240 for (j = 0; j < chunk_nr_pages; j++) {
1241 const void __user *p;
1242 int node;
1244 err = -EFAULT;
1245 if (get_user(p, pages + j + chunk_start))
1246 goto out_pm;
1247 pm[j].addr = (unsigned long) p;
1249 if (get_user(node, nodes + j + chunk_start))
1250 goto out_pm;
1252 err = -ENODEV;
1253 if (node < 0 || node >= MAX_NUMNODES)
1254 goto out_pm;
1256 if (!node_state(node, N_MEMORY))
1257 goto out_pm;
1259 err = -EACCES;
1260 if (!node_isset(node, task_nodes))
1261 goto out_pm;
1263 pm[j].node = node;
1266 /* End marker for this chunk */
1267 pm[chunk_nr_pages].node = MAX_NUMNODES;
1269 /* Migrate this chunk */
1270 err = do_move_page_to_node_array(mm, pm,
1271 flags & MPOL_MF_MOVE_ALL);
1272 if (err < 0)
1273 goto out_pm;
1275 /* Return status information */
1276 for (j = 0; j < chunk_nr_pages; j++)
1277 if (put_user(pm[j].status, status + j + chunk_start)) {
1278 err = -EFAULT;
1279 goto out_pm;
1282 err = 0;
1284 out_pm:
1285 free_page((unsigned long)pm);
1286 out:
1287 return err;
1291 * Determine the nodes of an array of pages and store it in an array of status.
1293 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1294 const void __user **pages, int *status)
1296 unsigned long i;
1298 down_read(&mm->mmap_sem);
1300 for (i = 0; i < nr_pages; i++) {
1301 unsigned long addr = (unsigned long)(*pages);
1302 struct vm_area_struct *vma;
1303 struct page *page;
1304 int err = -EFAULT;
1306 vma = find_vma(mm, addr);
1307 if (!vma || addr < vma->vm_start)
1308 goto set_status;
1310 page = follow_page(vma, addr, 0);
1312 err = PTR_ERR(page);
1313 if (IS_ERR(page))
1314 goto set_status;
1316 err = -ENOENT;
1317 /* Use PageReserved to check for zero page */
1318 if (!page || PageReserved(page))
1319 goto set_status;
1321 err = page_to_nid(page);
1322 set_status:
1323 *status = err;
1325 pages++;
1326 status++;
1329 up_read(&mm->mmap_sem);
1333 * Determine the nodes of a user array of pages and store it in
1334 * a user array of status.
1336 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1337 const void __user * __user *pages,
1338 int __user *status)
1340 #define DO_PAGES_STAT_CHUNK_NR 16
1341 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1342 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1344 while (nr_pages) {
1345 unsigned long chunk_nr;
1347 chunk_nr = nr_pages;
1348 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1349 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1351 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1352 break;
1354 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1356 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1357 break;
1359 pages += chunk_nr;
1360 status += chunk_nr;
1361 nr_pages -= chunk_nr;
1363 return nr_pages ? -EFAULT : 0;
1367 * Move a list of pages in the address space of the currently executing
1368 * process.
1370 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1371 const void __user * __user *, pages,
1372 const int __user *, nodes,
1373 int __user *, status, int, flags)
1375 const struct cred *cred = current_cred(), *tcred;
1376 struct task_struct *task;
1377 struct mm_struct *mm;
1378 int err;
1379 nodemask_t task_nodes;
1381 /* Check flags */
1382 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1383 return -EINVAL;
1385 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1386 return -EPERM;
1388 /* Find the mm_struct */
1389 rcu_read_lock();
1390 task = pid ? find_task_by_vpid(pid) : current;
1391 if (!task) {
1392 rcu_read_unlock();
1393 return -ESRCH;
1395 get_task_struct(task);
1398 * Check if this process has the right to modify the specified
1399 * process. The right exists if the process has administrative
1400 * capabilities, superuser privileges or the same
1401 * userid as the target process.
1403 tcred = __task_cred(task);
1404 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1405 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1406 !capable(CAP_SYS_NICE)) {
1407 rcu_read_unlock();
1408 err = -EPERM;
1409 goto out;
1411 rcu_read_unlock();
1413 err = security_task_movememory(task);
1414 if (err)
1415 goto out;
1417 task_nodes = cpuset_mems_allowed(task);
1418 mm = get_task_mm(task);
1419 put_task_struct(task);
1421 if (!mm)
1422 return -EINVAL;
1424 if (nodes)
1425 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1426 nodes, status, flags);
1427 else
1428 err = do_pages_stat(mm, nr_pages, pages, status);
1430 mmput(mm);
1431 return err;
1433 out:
1434 put_task_struct(task);
1435 return err;
1439 * Call migration functions in the vma_ops that may prepare
1440 * memory in a vm for migration. migration functions may perform
1441 * the migration for vmas that do not have an underlying page struct.
1443 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1444 const nodemask_t *from, unsigned long flags)
1446 struct vm_area_struct *vma;
1447 int err = 0;
1449 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1450 if (vma->vm_ops && vma->vm_ops->migrate) {
1451 err = vma->vm_ops->migrate(vma, to, from, flags);
1452 if (err)
1453 break;
1456 return err;
1459 #ifdef CONFIG_NUMA_BALANCING
1461 * Returns true if this is a safe migration target node for misplaced NUMA
1462 * pages. Currently it only checks the watermarks which crude
1464 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1465 unsigned long nr_migrate_pages)
1467 int z;
1468 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1469 struct zone *zone = pgdat->node_zones + z;
1471 if (!populated_zone(zone))
1472 continue;
1474 if (!zone_reclaimable(zone))
1475 continue;
1477 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1478 if (!zone_watermark_ok(zone, 0,
1479 high_wmark_pages(zone) +
1480 nr_migrate_pages,
1481 0, 0))
1482 continue;
1483 return true;
1485 return false;
1488 static struct page *alloc_misplaced_dst_page(struct page *page,
1489 unsigned long data,
1490 int **result)
1492 int nid = (int) data;
1493 struct page *newpage;
1495 newpage = alloc_pages_exact_node(nid,
1496 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1497 __GFP_NOMEMALLOC | __GFP_NORETRY |
1498 __GFP_NOWARN) &
1499 ~GFP_IOFS, 0);
1500 if (newpage)
1501 page_nid_xchg_last(newpage, page_nid_last(page));
1503 return newpage;
1507 * page migration rate limiting control.
1508 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1509 * window of time. Default here says do not migrate more than 1280M per second.
1510 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1511 * as it is faults that reset the window, pte updates will happen unconditionally
1512 * if there has not been a fault since @pteupdate_interval_millisecs after the
1513 * throttle window closed.
1515 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1516 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1517 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1519 /* Returns true if NUMA migration is currently rate limited */
1520 bool migrate_ratelimited(int node)
1522 pg_data_t *pgdat = NODE_DATA(node);
1524 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1525 msecs_to_jiffies(pteupdate_interval_millisecs)))
1526 return false;
1528 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1529 return false;
1531 return true;
1534 /* Returns true if the node is migrate rate-limited after the update */
1535 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1537 bool rate_limited = false;
1540 * Rate-limit the amount of data that is being migrated to a node.
1541 * Optimal placement is no good if the memory bus is saturated and
1542 * all the time is being spent migrating!
1544 spin_lock(&pgdat->numabalancing_migrate_lock);
1545 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1546 pgdat->numabalancing_migrate_nr_pages = 0;
1547 pgdat->numabalancing_migrate_next_window = jiffies +
1548 msecs_to_jiffies(migrate_interval_millisecs);
1550 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1551 rate_limited = true;
1552 else
1553 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1554 spin_unlock(&pgdat->numabalancing_migrate_lock);
1556 return rate_limited;
1559 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1561 int page_lru;
1563 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1565 /* Avoid migrating to a node that is nearly full */
1566 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1567 return 0;
1569 if (isolate_lru_page(page))
1570 return 0;
1573 * migrate_misplaced_transhuge_page() skips page migration's usual
1574 * check on page_count(), so we must do it here, now that the page
1575 * has been isolated: a GUP pin, or any other pin, prevents migration.
1576 * The expected page count is 3: 1 for page's mapcount and 1 for the
1577 * caller's pin and 1 for the reference taken by isolate_lru_page().
1579 if (PageTransHuge(page) && page_count(page) != 3) {
1580 putback_lru_page(page);
1581 return 0;
1584 page_lru = page_is_file_cache(page);
1585 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1586 hpage_nr_pages(page));
1589 * Isolating the page has taken another reference, so the
1590 * caller's reference can be safely dropped without the page
1591 * disappearing underneath us during migration.
1593 put_page(page);
1594 return 1;
1598 * Attempt to migrate a misplaced page to the specified destination
1599 * node. Caller is expected to have an elevated reference count on
1600 * the page that will be dropped by this function before returning.
1602 int migrate_misplaced_page(struct page *page, int node)
1604 pg_data_t *pgdat = NODE_DATA(node);
1605 int isolated;
1606 int nr_remaining;
1607 LIST_HEAD(migratepages);
1610 * Don't migrate pages that are mapped in multiple processes.
1611 * TODO: Handle false sharing detection instead of this hammer
1613 if (page_mapcount(page) != 1)
1614 goto out;
1617 * Rate-limit the amount of data that is being migrated to a node.
1618 * Optimal placement is no good if the memory bus is saturated and
1619 * all the time is being spent migrating!
1621 if (numamigrate_update_ratelimit(pgdat, 1))
1622 goto out;
1624 isolated = numamigrate_isolate_page(pgdat, page);
1625 if (!isolated)
1626 goto out;
1628 list_add(&page->lru, &migratepages);
1629 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1630 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1631 if (nr_remaining) {
1632 putback_lru_pages(&migratepages);
1633 isolated = 0;
1634 } else
1635 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1636 BUG_ON(!list_empty(&migratepages));
1637 return isolated;
1639 out:
1640 put_page(page);
1641 return 0;
1643 #endif /* CONFIG_NUMA_BALANCING */
1645 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1647 * Migrates a THP to a given target node. page must be locked and is unlocked
1648 * before returning.
1650 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1651 struct vm_area_struct *vma,
1652 pmd_t *pmd, pmd_t entry,
1653 unsigned long address,
1654 struct page *page, int node)
1656 unsigned long haddr = address & HPAGE_PMD_MASK;
1657 pg_data_t *pgdat = NODE_DATA(node);
1658 int isolated = 0;
1659 struct page *new_page = NULL;
1660 struct mem_cgroup *memcg = NULL;
1661 int page_lru = page_is_file_cache(page);
1664 * Don't migrate pages that are mapped in multiple processes.
1665 * TODO: Handle false sharing detection instead of this hammer
1667 if (page_mapcount(page) != 1)
1668 goto out_dropref;
1671 * Rate-limit the amount of data that is being migrated to a node.
1672 * Optimal placement is no good if the memory bus is saturated and
1673 * all the time is being spent migrating!
1675 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1676 goto out_dropref;
1678 new_page = alloc_pages_node(node,
1679 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1680 if (!new_page)
1681 goto out_fail;
1683 page_nid_xchg_last(new_page, page_nid_last(page));
1685 isolated = numamigrate_isolate_page(pgdat, page);
1686 if (!isolated) {
1687 put_page(new_page);
1688 goto out_fail;
1691 /* Prepare a page as a migration target */
1692 __set_page_locked(new_page);
1693 SetPageSwapBacked(new_page);
1695 /* anon mapping, we can simply copy page->mapping to the new page: */
1696 new_page->mapping = page->mapping;
1697 new_page->index = page->index;
1698 migrate_page_copy(new_page, page);
1699 WARN_ON(PageLRU(new_page));
1701 /* Recheck the target PMD */
1702 spin_lock(&mm->page_table_lock);
1703 if (unlikely(!pmd_same(*pmd, entry))) {
1704 spin_unlock(&mm->page_table_lock);
1706 /* Reverse changes made by migrate_page_copy() */
1707 if (TestClearPageActive(new_page))
1708 SetPageActive(page);
1709 if (TestClearPageUnevictable(new_page))
1710 SetPageUnevictable(page);
1711 mlock_migrate_page(page, new_page);
1713 unlock_page(new_page);
1714 put_page(new_page); /* Free it */
1716 unlock_page(page);
1717 putback_lru_page(page);
1719 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1720 isolated = 0;
1721 goto out;
1725 * Traditional migration needs to prepare the memcg charge
1726 * transaction early to prevent the old page from being
1727 * uncharged when installing migration entries. Here we can
1728 * save the potential rollback and start the charge transfer
1729 * only when migration is already known to end successfully.
1731 mem_cgroup_prepare_migration(page, new_page, &memcg);
1733 entry = mk_pmd(new_page, vma->vm_page_prot);
1734 entry = pmd_mknonnuma(entry);
1735 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1736 entry = pmd_mkhuge(entry);
1738 page_add_new_anon_rmap(new_page, vma, haddr);
1740 set_pmd_at(mm, haddr, pmd, entry);
1741 update_mmu_cache_pmd(vma, address, &entry);
1742 page_remove_rmap(page);
1744 * Finish the charge transaction under the page table lock to
1745 * prevent split_huge_page() from dividing up the charge
1746 * before it's fully transferred to the new page.
1748 mem_cgroup_end_migration(memcg, page, new_page, true);
1749 spin_unlock(&mm->page_table_lock);
1751 unlock_page(new_page);
1752 unlock_page(page);
1753 put_page(page); /* Drop the rmap reference */
1754 put_page(page); /* Drop the LRU isolation reference */
1756 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1757 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1759 out:
1760 mod_zone_page_state(page_zone(page),
1761 NR_ISOLATED_ANON + page_lru,
1762 -HPAGE_PMD_NR);
1763 return isolated;
1765 out_fail:
1766 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1767 out_dropref:
1768 unlock_page(page);
1769 put_page(page);
1770 return 0;
1772 #endif /* CONFIG_NUMA_BALANCING */
1774 #endif /* CONFIG_NUMA */