Linux 5.1.15
[linux/fpc-iii.git] / drivers / clocksource / sh_tmu.c
blob49f1c805fc9598edf5d7021b435419b40e24b64f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - TMU
5 * Copyright (C) 2009 Magnus Damm
6 */
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 enum sh_tmu_model {
28 SH_TMU,
29 SH_TMU_SH3,
32 struct sh_tmu_device;
34 struct sh_tmu_channel {
35 struct sh_tmu_device *tmu;
36 unsigned int index;
38 void __iomem *base;
39 int irq;
41 unsigned long periodic;
42 struct clock_event_device ced;
43 struct clocksource cs;
44 bool cs_enabled;
45 unsigned int enable_count;
48 struct sh_tmu_device {
49 struct platform_device *pdev;
51 void __iomem *mapbase;
52 struct clk *clk;
53 unsigned long rate;
55 enum sh_tmu_model model;
57 raw_spinlock_t lock; /* Protect the shared start/stop register */
59 struct sh_tmu_channel *channels;
60 unsigned int num_channels;
62 bool has_clockevent;
63 bool has_clocksource;
66 #define TSTR -1 /* shared register */
67 #define TCOR 0 /* channel register */
68 #define TCNT 1 /* channel register */
69 #define TCR 2 /* channel register */
71 #define TCR_UNF (1 << 8)
72 #define TCR_UNIE (1 << 5)
73 #define TCR_TPSC_CLK4 (0 << 0)
74 #define TCR_TPSC_CLK16 (1 << 0)
75 #define TCR_TPSC_CLK64 (2 << 0)
76 #define TCR_TPSC_CLK256 (3 << 0)
77 #define TCR_TPSC_CLK1024 (4 << 0)
78 #define TCR_TPSC_MASK (7 << 0)
80 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
82 unsigned long offs;
84 if (reg_nr == TSTR) {
85 switch (ch->tmu->model) {
86 case SH_TMU_SH3:
87 return ioread8(ch->tmu->mapbase + 2);
88 case SH_TMU:
89 return ioread8(ch->tmu->mapbase + 4);
93 offs = reg_nr << 2;
95 if (reg_nr == TCR)
96 return ioread16(ch->base + offs);
97 else
98 return ioread32(ch->base + offs);
101 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
102 unsigned long value)
104 unsigned long offs;
106 if (reg_nr == TSTR) {
107 switch (ch->tmu->model) {
108 case SH_TMU_SH3:
109 return iowrite8(value, ch->tmu->mapbase + 2);
110 case SH_TMU:
111 return iowrite8(value, ch->tmu->mapbase + 4);
115 offs = reg_nr << 2;
117 if (reg_nr == TCR)
118 iowrite16(value, ch->base + offs);
119 else
120 iowrite32(value, ch->base + offs);
123 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
125 unsigned long flags, value;
127 /* start stop register shared by multiple timer channels */
128 raw_spin_lock_irqsave(&ch->tmu->lock, flags);
129 value = sh_tmu_read(ch, TSTR);
131 if (start)
132 value |= 1 << ch->index;
133 else
134 value &= ~(1 << ch->index);
136 sh_tmu_write(ch, TSTR, value);
137 raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
140 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
142 int ret;
144 /* enable clock */
145 ret = clk_enable(ch->tmu->clk);
146 if (ret) {
147 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
148 ch->index);
149 return ret;
152 /* make sure channel is disabled */
153 sh_tmu_start_stop_ch(ch, 0);
155 /* maximum timeout */
156 sh_tmu_write(ch, TCOR, 0xffffffff);
157 sh_tmu_write(ch, TCNT, 0xffffffff);
159 /* configure channel to parent clock / 4, irq off */
160 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
162 /* enable channel */
163 sh_tmu_start_stop_ch(ch, 1);
165 return 0;
168 static int sh_tmu_enable(struct sh_tmu_channel *ch)
170 if (ch->enable_count++ > 0)
171 return 0;
173 pm_runtime_get_sync(&ch->tmu->pdev->dev);
174 dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
176 return __sh_tmu_enable(ch);
179 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
181 /* disable channel */
182 sh_tmu_start_stop_ch(ch, 0);
184 /* disable interrupts in TMU block */
185 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
187 /* stop clock */
188 clk_disable(ch->tmu->clk);
191 static void sh_tmu_disable(struct sh_tmu_channel *ch)
193 if (WARN_ON(ch->enable_count == 0))
194 return;
196 if (--ch->enable_count > 0)
197 return;
199 __sh_tmu_disable(ch);
201 dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
202 pm_runtime_put(&ch->tmu->pdev->dev);
205 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
206 int periodic)
208 /* stop timer */
209 sh_tmu_start_stop_ch(ch, 0);
211 /* acknowledge interrupt */
212 sh_tmu_read(ch, TCR);
214 /* enable interrupt */
215 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
217 /* reload delta value in case of periodic timer */
218 if (periodic)
219 sh_tmu_write(ch, TCOR, delta);
220 else
221 sh_tmu_write(ch, TCOR, 0xffffffff);
223 sh_tmu_write(ch, TCNT, delta);
225 /* start timer */
226 sh_tmu_start_stop_ch(ch, 1);
229 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
231 struct sh_tmu_channel *ch = dev_id;
233 /* disable or acknowledge interrupt */
234 if (clockevent_state_oneshot(&ch->ced))
235 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
236 else
237 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
239 /* notify clockevent layer */
240 ch->ced.event_handler(&ch->ced);
241 return IRQ_HANDLED;
244 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
246 return container_of(cs, struct sh_tmu_channel, cs);
249 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
251 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
253 return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
256 static int sh_tmu_clocksource_enable(struct clocksource *cs)
258 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
259 int ret;
261 if (WARN_ON(ch->cs_enabled))
262 return 0;
264 ret = sh_tmu_enable(ch);
265 if (!ret)
266 ch->cs_enabled = true;
268 return ret;
271 static void sh_tmu_clocksource_disable(struct clocksource *cs)
273 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
275 if (WARN_ON(!ch->cs_enabled))
276 return;
278 sh_tmu_disable(ch);
279 ch->cs_enabled = false;
282 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
284 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
286 if (!ch->cs_enabled)
287 return;
289 if (--ch->enable_count == 0) {
290 __sh_tmu_disable(ch);
291 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
295 static void sh_tmu_clocksource_resume(struct clocksource *cs)
297 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
299 if (!ch->cs_enabled)
300 return;
302 if (ch->enable_count++ == 0) {
303 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
304 __sh_tmu_enable(ch);
308 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
309 const char *name)
311 struct clocksource *cs = &ch->cs;
313 cs->name = name;
314 cs->rating = 200;
315 cs->read = sh_tmu_clocksource_read;
316 cs->enable = sh_tmu_clocksource_enable;
317 cs->disable = sh_tmu_clocksource_disable;
318 cs->suspend = sh_tmu_clocksource_suspend;
319 cs->resume = sh_tmu_clocksource_resume;
320 cs->mask = CLOCKSOURCE_MASK(32);
321 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
323 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
324 ch->index);
326 clocksource_register_hz(cs, ch->tmu->rate);
327 return 0;
330 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
332 return container_of(ced, struct sh_tmu_channel, ced);
335 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
337 sh_tmu_enable(ch);
339 if (periodic) {
340 ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
341 sh_tmu_set_next(ch, ch->periodic, 1);
345 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
347 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
349 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
350 sh_tmu_disable(ch);
351 return 0;
354 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
355 int periodic)
357 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
359 /* deal with old setting first */
360 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
361 sh_tmu_disable(ch);
363 dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
364 ch->index, periodic ? "periodic" : "oneshot");
365 sh_tmu_clock_event_start(ch, periodic);
366 return 0;
369 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
371 return sh_tmu_clock_event_set_state(ced, 0);
374 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
376 return sh_tmu_clock_event_set_state(ced, 1);
379 static int sh_tmu_clock_event_next(unsigned long delta,
380 struct clock_event_device *ced)
382 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
384 BUG_ON(!clockevent_state_oneshot(ced));
386 /* program new delta value */
387 sh_tmu_set_next(ch, delta, 0);
388 return 0;
391 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
393 pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
396 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
398 pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
401 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
402 const char *name)
404 struct clock_event_device *ced = &ch->ced;
405 int ret;
407 ced->name = name;
408 ced->features = CLOCK_EVT_FEAT_PERIODIC;
409 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
410 ced->rating = 200;
411 ced->cpumask = cpu_possible_mask;
412 ced->set_next_event = sh_tmu_clock_event_next;
413 ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
414 ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
415 ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
416 ced->suspend = sh_tmu_clock_event_suspend;
417 ced->resume = sh_tmu_clock_event_resume;
419 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
420 ch->index);
422 clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
424 ret = request_irq(ch->irq, sh_tmu_interrupt,
425 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
426 dev_name(&ch->tmu->pdev->dev), ch);
427 if (ret) {
428 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
429 ch->index, ch->irq);
430 return;
434 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
435 bool clockevent, bool clocksource)
437 if (clockevent) {
438 ch->tmu->has_clockevent = true;
439 sh_tmu_register_clockevent(ch, name);
440 } else if (clocksource) {
441 ch->tmu->has_clocksource = true;
442 sh_tmu_register_clocksource(ch, name);
445 return 0;
448 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
449 bool clockevent, bool clocksource,
450 struct sh_tmu_device *tmu)
452 /* Skip unused channels. */
453 if (!clockevent && !clocksource)
454 return 0;
456 ch->tmu = tmu;
457 ch->index = index;
459 if (tmu->model == SH_TMU_SH3)
460 ch->base = tmu->mapbase + 4 + ch->index * 12;
461 else
462 ch->base = tmu->mapbase + 8 + ch->index * 12;
464 ch->irq = platform_get_irq(tmu->pdev, index);
465 if (ch->irq < 0) {
466 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
467 ch->index);
468 return ch->irq;
471 ch->cs_enabled = false;
472 ch->enable_count = 0;
474 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
475 clockevent, clocksource);
478 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
480 struct resource *res;
482 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
483 if (!res) {
484 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
485 return -ENXIO;
488 tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
489 if (tmu->mapbase == NULL)
490 return -ENXIO;
492 return 0;
495 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
497 struct device_node *np = tmu->pdev->dev.of_node;
499 tmu->model = SH_TMU;
500 tmu->num_channels = 3;
502 of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
504 if (tmu->num_channels != 2 && tmu->num_channels != 3) {
505 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
506 tmu->num_channels);
507 return -EINVAL;
510 return 0;
513 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
515 unsigned int i;
516 int ret;
518 tmu->pdev = pdev;
520 raw_spin_lock_init(&tmu->lock);
522 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
523 ret = sh_tmu_parse_dt(tmu);
524 if (ret < 0)
525 return ret;
526 } else if (pdev->dev.platform_data) {
527 const struct platform_device_id *id = pdev->id_entry;
528 struct sh_timer_config *cfg = pdev->dev.platform_data;
530 tmu->model = id->driver_data;
531 tmu->num_channels = hweight8(cfg->channels_mask);
532 } else {
533 dev_err(&tmu->pdev->dev, "missing platform data\n");
534 return -ENXIO;
537 /* Get hold of clock. */
538 tmu->clk = clk_get(&tmu->pdev->dev, "fck");
539 if (IS_ERR(tmu->clk)) {
540 dev_err(&tmu->pdev->dev, "cannot get clock\n");
541 return PTR_ERR(tmu->clk);
544 ret = clk_prepare(tmu->clk);
545 if (ret < 0)
546 goto err_clk_put;
548 /* Determine clock rate. */
549 ret = clk_enable(tmu->clk);
550 if (ret < 0)
551 goto err_clk_unprepare;
553 tmu->rate = clk_get_rate(tmu->clk) / 4;
554 clk_disable(tmu->clk);
556 /* Map the memory resource. */
557 ret = sh_tmu_map_memory(tmu);
558 if (ret < 0) {
559 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
560 goto err_clk_unprepare;
563 /* Allocate and setup the channels. */
564 tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
565 GFP_KERNEL);
566 if (tmu->channels == NULL) {
567 ret = -ENOMEM;
568 goto err_unmap;
572 * Use the first channel as a clock event device and the second channel
573 * as a clock source.
575 for (i = 0; i < tmu->num_channels; ++i) {
576 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
577 i == 0, i == 1, tmu);
578 if (ret < 0)
579 goto err_unmap;
582 platform_set_drvdata(pdev, tmu);
584 return 0;
586 err_unmap:
587 kfree(tmu->channels);
588 iounmap(tmu->mapbase);
589 err_clk_unprepare:
590 clk_unprepare(tmu->clk);
591 err_clk_put:
592 clk_put(tmu->clk);
593 return ret;
596 static int sh_tmu_probe(struct platform_device *pdev)
598 struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
599 int ret;
601 if (!is_early_platform_device(pdev)) {
602 pm_runtime_set_active(&pdev->dev);
603 pm_runtime_enable(&pdev->dev);
606 if (tmu) {
607 dev_info(&pdev->dev, "kept as earlytimer\n");
608 goto out;
611 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
612 if (tmu == NULL)
613 return -ENOMEM;
615 ret = sh_tmu_setup(tmu, pdev);
616 if (ret) {
617 kfree(tmu);
618 pm_runtime_idle(&pdev->dev);
619 return ret;
621 if (is_early_platform_device(pdev))
622 return 0;
624 out:
625 if (tmu->has_clockevent || tmu->has_clocksource)
626 pm_runtime_irq_safe(&pdev->dev);
627 else
628 pm_runtime_idle(&pdev->dev);
630 return 0;
633 static int sh_tmu_remove(struct platform_device *pdev)
635 return -EBUSY; /* cannot unregister clockevent and clocksource */
638 static const struct platform_device_id sh_tmu_id_table[] = {
639 { "sh-tmu", SH_TMU },
640 { "sh-tmu-sh3", SH_TMU_SH3 },
643 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
645 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
646 { .compatible = "renesas,tmu" },
649 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
651 static struct platform_driver sh_tmu_device_driver = {
652 .probe = sh_tmu_probe,
653 .remove = sh_tmu_remove,
654 .driver = {
655 .name = "sh_tmu",
656 .of_match_table = of_match_ptr(sh_tmu_of_table),
658 .id_table = sh_tmu_id_table,
661 static int __init sh_tmu_init(void)
663 return platform_driver_register(&sh_tmu_device_driver);
666 static void __exit sh_tmu_exit(void)
668 platform_driver_unregister(&sh_tmu_device_driver);
671 early_platform_init("earlytimer", &sh_tmu_device_driver);
672 subsys_initcall(sh_tmu_init);
673 module_exit(sh_tmu_exit);
675 MODULE_AUTHOR("Magnus Damm");
676 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
677 MODULE_LICENSE("GPL v2");