Linux 5.1.15
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blobf044e7d10d63711b69de27a0567285f354e32ab5
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255 void __user *arg);
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259 void __user *arg);
260 #endif
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266 struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269 int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277 unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287 struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289 struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292 int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298 u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300 unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302 bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304 unsigned char lunaddr[],
305 int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307 int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322 struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324 unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327 struct hpsa_scsi_dev_t *dev,
328 unsigned char *scsi3addr);
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 unsigned long *priv = shost_priv(sdev->host);
333 return (struct ctlr_info *) *priv;
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 unsigned long *priv = shost_priv(sh);
339 return (struct ctlr_info *) *priv;
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 return c->scsi_cmd == SCSI_CMD_IDLE;
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
349 return c->reset_pending;
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 u8 *sense_key, u8 *asc, u8 *ascq)
356 struct scsi_sense_hdr sshdr;
357 bool rc;
359 *sense_key = -1;
360 *asc = -1;
361 *ascq = -1;
363 if (sense_data_len < 1)
364 return;
366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 if (rc) {
368 *sense_key = sshdr.sense_key;
369 *asc = sshdr.asc;
370 *ascq = sshdr.ascq;
374 static int check_for_unit_attention(struct ctlr_info *h,
375 struct CommandList *c)
377 u8 sense_key, asc, ascq;
378 int sense_len;
380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 sense_len = sizeof(c->err_info->SenseInfo);
382 else
383 sense_len = c->err_info->SenseLen;
385 decode_sense_data(c->err_info->SenseInfo, sense_len,
386 &sense_key, &asc, &ascq);
387 if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 return 0;
390 switch (asc) {
391 case STATE_CHANGED:
392 dev_warn(&h->pdev->dev,
393 "%s: a state change detected, command retried\n",
394 h->devname);
395 break;
396 case LUN_FAILED:
397 dev_warn(&h->pdev->dev,
398 "%s: LUN failure detected\n", h->devname);
399 break;
400 case REPORT_LUNS_CHANGED:
401 dev_warn(&h->pdev->dev,
402 "%s: report LUN data changed\n", h->devname);
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
407 break;
408 case POWER_OR_RESET:
409 dev_warn(&h->pdev->dev,
410 "%s: a power on or device reset detected\n",
411 h->devname);
412 break;
413 case UNIT_ATTENTION_CLEARED:
414 dev_warn(&h->pdev->dev,
415 "%s: unit attention cleared by another initiator\n",
416 h->devname);
417 break;
418 default:
419 dev_warn(&h->pdev->dev,
420 "%s: unknown unit attention detected\n",
421 h->devname);
422 break;
424 return 1;
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 return 0;
433 dev_warn(&h->pdev->dev, HPSA "device busy");
434 return 1;
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 struct device_attribute *attr, char *buf)
441 int ld;
442 struct ctlr_info *h;
443 struct Scsi_Host *shost = class_to_shost(dev);
445 h = shost_to_hba(shost);
446 ld = lockup_detected(h);
448 return sprintf(buf, "ld=%d\n", ld);
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
455 int status, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &status) != 1)
466 return -EINVAL;
467 h = shost_to_hba(shost);
468 h->acciopath_status = !!status;
469 dev_warn(&h->pdev->dev,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h->acciopath_status ? "enabled" : "disabled");
472 return count;
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
479 int debug_level, len;
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 char tmpbuf[10];
484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 return -EACCES;
486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 strncpy(tmpbuf, buf, len);
488 tmpbuf[len] = '\0';
489 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 return -EINVAL;
491 if (debug_level < 0)
492 debug_level = 0;
493 h = shost_to_hba(shost);
494 h->raid_offload_debug = debug_level;
495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 h->raid_offload_debug);
497 return count;
500 static ssize_t host_store_rescan(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count)
504 struct ctlr_info *h;
505 struct Scsi_Host *shost = class_to_shost(dev);
506 h = shost_to_hba(shost);
507 hpsa_scan_start(h->scsi_host);
508 return count;
511 static ssize_t host_show_firmware_revision(struct device *dev,
512 struct device_attribute *attr, char *buf)
514 struct ctlr_info *h;
515 struct Scsi_Host *shost = class_to_shost(dev);
516 unsigned char *fwrev;
518 h = shost_to_hba(shost);
519 if (!h->hba_inquiry_data)
520 return 0;
521 fwrev = &h->hba_inquiry_data[32];
522 return snprintf(buf, 20, "%c%c%c%c\n",
523 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct Scsi_Host *shost = class_to_shost(dev);
530 struct ctlr_info *h = shost_to_hba(shost);
532 return snprintf(buf, 20, "%d\n",
533 atomic_read(&h->commands_outstanding));
536 static ssize_t host_show_transport_mode(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct ctlr_info *h;
540 struct Scsi_Host *shost = class_to_shost(dev);
542 h = shost_to_hba(shost);
543 return snprintf(buf, 20, "%s\n",
544 h->transMethod & CFGTBL_Trans_Performant ?
545 "performant" : "simple");
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549 struct device_attribute *attr, char *buf)
551 struct ctlr_info *h;
552 struct Scsi_Host *shost = class_to_shost(dev);
554 h = shost_to_hba(shost);
555 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556 (h->acciopath_status == 1) ? "enabled" : "disabled");
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561 0x324a103C, /* Smart Array P712m */
562 0x324b103C, /* Smart Array P711m */
563 0x3223103C, /* Smart Array P800 */
564 0x3234103C, /* Smart Array P400 */
565 0x3235103C, /* Smart Array P400i */
566 0x3211103C, /* Smart Array E200i */
567 0x3212103C, /* Smart Array E200 */
568 0x3213103C, /* Smart Array E200i */
569 0x3214103C, /* Smart Array E200i */
570 0x3215103C, /* Smart Array E200i */
571 0x3237103C, /* Smart Array E500 */
572 0x323D103C, /* Smart Array P700m */
573 0x40800E11, /* Smart Array 5i */
574 0x409C0E11, /* Smart Array 6400 */
575 0x409D0E11, /* Smart Array 6400 EM */
576 0x40700E11, /* Smart Array 5300 */
577 0x40820E11, /* Smart Array 532 */
578 0x40830E11, /* Smart Array 5312 */
579 0x409A0E11, /* Smart Array 641 */
580 0x409B0E11, /* Smart Array 642 */
581 0x40910E11, /* Smart Array 6i */
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586 0x40800E11, /* Smart Array 5i */
587 0x40700E11, /* Smart Array 5300 */
588 0x40820E11, /* Smart Array 532 */
589 0x40830E11, /* Smart Array 5312 */
590 0x409A0E11, /* Smart Array 641 */
591 0x409B0E11, /* Smart Array 642 */
592 0x40910E11, /* Smart Array 6i */
593 /* Exclude 640x boards. These are two pci devices in one slot
594 * which share a battery backed cache module. One controls the
595 * cache, the other accesses the cache through the one that controls
596 * it. If we reset the one controlling the cache, the other will
597 * likely not be happy. Just forbid resetting this conjoined mess.
598 * The 640x isn't really supported by hpsa anyway.
600 0x409C0E11, /* Smart Array 6400 */
601 0x409D0E11, /* Smart Array 6400 EM */
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
606 int i;
608 for (i = 0; i < nelems; i++)
609 if (a[i] == board_id)
610 return 1;
611 return 0;
614 static int ctlr_is_hard_resettable(u32 board_id)
616 return !board_id_in_array(unresettable_controller,
617 ARRAY_SIZE(unresettable_controller), board_id);
620 static int ctlr_is_soft_resettable(u32 board_id)
622 return !board_id_in_array(soft_unresettable_controller,
623 ARRAY_SIZE(soft_unresettable_controller), board_id);
626 static int ctlr_is_resettable(u32 board_id)
628 return ctlr_is_hard_resettable(board_id) ||
629 ctlr_is_soft_resettable(board_id);
632 static ssize_t host_show_resettable(struct device *dev,
633 struct device_attribute *attr, char *buf)
635 struct ctlr_info *h;
636 struct Scsi_Host *shost = class_to_shost(dev);
638 h = shost_to_hba(shost);
639 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
644 return (scsi3addr[3] & 0xC0) == 0x40;
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
650 #define HPSA_RAID_0 0
651 #define HPSA_RAID_4 1
652 #define HPSA_RAID_1 2 /* also used for RAID 10 */
653 #define HPSA_RAID_5 3 /* also used for RAID 50 */
654 #define HPSA_RAID_51 4
655 #define HPSA_RAID_6 5 /* also used for RAID 60 */
656 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
662 return !device->physical_device;
665 static ssize_t raid_level_show(struct device *dev,
666 struct device_attribute *attr, char *buf)
668 ssize_t l = 0;
669 unsigned char rlevel;
670 struct ctlr_info *h;
671 struct scsi_device *sdev;
672 struct hpsa_scsi_dev_t *hdev;
673 unsigned long flags;
675 sdev = to_scsi_device(dev);
676 h = sdev_to_hba(sdev);
677 spin_lock_irqsave(&h->lock, flags);
678 hdev = sdev->hostdata;
679 if (!hdev) {
680 spin_unlock_irqrestore(&h->lock, flags);
681 return -ENODEV;
684 /* Is this even a logical drive? */
685 if (!is_logical_device(hdev)) {
686 spin_unlock_irqrestore(&h->lock, flags);
687 l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 return l;
691 rlevel = hdev->raid_level;
692 spin_unlock_irqrestore(&h->lock, flags);
693 if (rlevel > RAID_UNKNOWN)
694 rlevel = RAID_UNKNOWN;
695 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 return l;
699 static ssize_t lunid_show(struct device *dev,
700 struct device_attribute *attr, char *buf)
702 struct ctlr_info *h;
703 struct scsi_device *sdev;
704 struct hpsa_scsi_dev_t *hdev;
705 unsigned long flags;
706 unsigned char lunid[8];
708 sdev = to_scsi_device(dev);
709 h = sdev_to_hba(sdev);
710 spin_lock_irqsave(&h->lock, flags);
711 hdev = sdev->hostdata;
712 if (!hdev) {
713 spin_unlock_irqrestore(&h->lock, flags);
714 return -ENODEV;
716 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717 spin_unlock_irqrestore(&h->lock, flags);
718 return snprintf(buf, 20, "0x%8phN\n", lunid);
721 static ssize_t unique_id_show(struct device *dev,
722 struct device_attribute *attr, char *buf)
724 struct ctlr_info *h;
725 struct scsi_device *sdev;
726 struct hpsa_scsi_dev_t *hdev;
727 unsigned long flags;
728 unsigned char sn[16];
730 sdev = to_scsi_device(dev);
731 h = sdev_to_hba(sdev);
732 spin_lock_irqsave(&h->lock, flags);
733 hdev = sdev->hostdata;
734 if (!hdev) {
735 spin_unlock_irqrestore(&h->lock, flags);
736 return -ENODEV;
738 memcpy(sn, hdev->device_id, sizeof(sn));
739 spin_unlock_irqrestore(&h->lock, flags);
740 return snprintf(buf, 16 * 2 + 2,
741 "%02X%02X%02X%02X%02X%02X%02X%02X"
742 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 sn[0], sn[1], sn[2], sn[3],
744 sn[4], sn[5], sn[6], sn[7],
745 sn[8], sn[9], sn[10], sn[11],
746 sn[12], sn[13], sn[14], sn[15]);
749 static ssize_t sas_address_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
752 struct ctlr_info *h;
753 struct scsi_device *sdev;
754 struct hpsa_scsi_dev_t *hdev;
755 unsigned long flags;
756 u64 sas_address;
758 sdev = to_scsi_device(dev);
759 h = sdev_to_hba(sdev);
760 spin_lock_irqsave(&h->lock, flags);
761 hdev = sdev->hostdata;
762 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763 spin_unlock_irqrestore(&h->lock, flags);
764 return -ENODEV;
766 sas_address = hdev->sas_address;
767 spin_unlock_irqrestore(&h->lock, flags);
769 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773 struct device_attribute *attr, char *buf)
775 struct ctlr_info *h;
776 struct scsi_device *sdev;
777 struct hpsa_scsi_dev_t *hdev;
778 unsigned long flags;
779 int offload_enabled;
781 sdev = to_scsi_device(dev);
782 h = sdev_to_hba(sdev);
783 spin_lock_irqsave(&h->lock, flags);
784 hdev = sdev->hostdata;
785 if (!hdev) {
786 spin_unlock_irqrestore(&h->lock, flags);
787 return -ENODEV;
789 offload_enabled = hdev->offload_enabled;
790 spin_unlock_irqrestore(&h->lock, flags);
792 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793 return snprintf(buf, 20, "%d\n", offload_enabled);
794 else
795 return snprintf(buf, 40, "%s\n",
796 "Not applicable for a controller");
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801 struct device_attribute *attr, char *buf)
803 struct ctlr_info *h;
804 struct scsi_device *sdev;
805 struct hpsa_scsi_dev_t *hdev;
806 unsigned long flags;
807 int i;
808 int output_len = 0;
809 u8 box;
810 u8 bay;
811 u8 path_map_index = 0;
812 char *active;
813 unsigned char phys_connector[2];
815 sdev = to_scsi_device(dev);
816 h = sdev_to_hba(sdev);
817 spin_lock_irqsave(&h->devlock, flags);
818 hdev = sdev->hostdata;
819 if (!hdev) {
820 spin_unlock_irqrestore(&h->devlock, flags);
821 return -ENODEV;
824 bay = hdev->bay;
825 for (i = 0; i < MAX_PATHS; i++) {
826 path_map_index = 1<<i;
827 if (i == hdev->active_path_index)
828 active = "Active";
829 else if (hdev->path_map & path_map_index)
830 active = "Inactive";
831 else
832 continue;
834 output_len += scnprintf(buf + output_len,
835 PAGE_SIZE - output_len,
836 "[%d:%d:%d:%d] %20.20s ",
837 h->scsi_host->host_no,
838 hdev->bus, hdev->target, hdev->lun,
839 scsi_device_type(hdev->devtype));
841 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842 output_len += scnprintf(buf + output_len,
843 PAGE_SIZE - output_len,
844 "%s\n", active);
845 continue;
848 box = hdev->box[i];
849 memcpy(&phys_connector, &hdev->phys_connector[i],
850 sizeof(phys_connector));
851 if (phys_connector[0] < '0')
852 phys_connector[0] = '0';
853 if (phys_connector[1] < '0')
854 phys_connector[1] = '0';
855 output_len += scnprintf(buf + output_len,
856 PAGE_SIZE - output_len,
857 "PORT: %.2s ",
858 phys_connector);
859 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860 hdev->expose_device) {
861 if (box == 0 || box == 0xFF) {
862 output_len += scnprintf(buf + output_len,
863 PAGE_SIZE - output_len,
864 "BAY: %hhu %s\n",
865 bay, active);
866 } else {
867 output_len += scnprintf(buf + output_len,
868 PAGE_SIZE - output_len,
869 "BOX: %hhu BAY: %hhu %s\n",
870 box, bay, active);
872 } else if (box != 0 && box != 0xFF) {
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875 box, active);
876 } else
877 output_len += scnprintf(buf + output_len,
878 PAGE_SIZE - output_len, "%s\n", active);
881 spin_unlock_irqrestore(&h->devlock, flags);
882 return output_len;
885 static ssize_t host_show_ctlr_num(struct device *dev,
886 struct device_attribute *attr, char *buf)
888 struct ctlr_info *h;
889 struct Scsi_Host *shost = class_to_shost(dev);
891 h = shost_to_hba(shost);
892 return snprintf(buf, 20, "%d\n", h->ctlr);
895 static ssize_t host_show_legacy_board(struct device *dev,
896 struct device_attribute *attr, char *buf)
898 struct ctlr_info *h;
899 struct Scsi_Host *shost = class_to_shost(dev);
901 h = shost_to_hba(shost);
902 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911 host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914 host_show_hp_ssd_smart_path_status,
915 host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917 host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919 host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921 host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923 host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925 host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927 host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929 host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931 host_show_legacy_board, NULL);
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934 &dev_attr_raid_level,
935 &dev_attr_lunid,
936 &dev_attr_unique_id,
937 &dev_attr_hp_ssd_smart_path_enabled,
938 &dev_attr_path_info,
939 &dev_attr_sas_address,
940 NULL,
943 static struct device_attribute *hpsa_shost_attrs[] = {
944 &dev_attr_rescan,
945 &dev_attr_firmware_revision,
946 &dev_attr_commands_outstanding,
947 &dev_attr_transport_mode,
948 &dev_attr_resettable,
949 &dev_attr_hp_ssd_smart_path_status,
950 &dev_attr_raid_offload_debug,
951 &dev_attr_lockup_detected,
952 &dev_attr_ctlr_num,
953 &dev_attr_legacy_board,
954 NULL,
957 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 HPSA_MAX_CONCURRENT_PASSTHRUS)
960 static struct scsi_host_template hpsa_driver_template = {
961 .module = THIS_MODULE,
962 .name = HPSA,
963 .proc_name = HPSA,
964 .queuecommand = hpsa_scsi_queue_command,
965 .scan_start = hpsa_scan_start,
966 .scan_finished = hpsa_scan_finished,
967 .change_queue_depth = hpsa_change_queue_depth,
968 .this_id = -1,
969 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 .ioctl = hpsa_ioctl,
971 .slave_alloc = hpsa_slave_alloc,
972 .slave_configure = hpsa_slave_configure,
973 .slave_destroy = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 .compat_ioctl = hpsa_compat_ioctl,
976 #endif
977 .sdev_attrs = hpsa_sdev_attrs,
978 .shost_attrs = hpsa_shost_attrs,
979 .max_sectors = 2048,
980 .no_write_same = 1,
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
985 u32 a;
986 struct reply_queue_buffer *rq = &h->reply_queue[q];
988 if (h->transMethod & CFGTBL_Trans_io_accel1)
989 return h->access.command_completed(h, q);
991 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 return h->access.command_completed(h, q);
994 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 a = rq->head[rq->current_entry];
996 rq->current_entry++;
997 atomic_dec(&h->commands_outstanding);
998 } else {
999 a = FIFO_EMPTY;
1001 /* Check for wraparound */
1002 if (rq->current_entry == h->max_commands) {
1003 rq->current_entry = 0;
1004 rq->wraparound ^= 1;
1006 return a;
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 int reply_queue)
1044 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 if (unlikely(!h->msix_vectors))
1047 return;
1048 c->Header.ReplyQueue = reply_queue;
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 struct CommandList *c,
1054 int reply_queue)
1056 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1059 * Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1062 cp->ReplyQueue = reply_queue;
1064 * Set the bits in the address sent down to include:
1065 * - performant mode bit (bit 0)
1066 * - pull count (bits 1-3)
1067 * - command type (bits 4-6)
1069 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 IOACCEL1_BUSADDR_CMDTYPE;
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 struct CommandList *c,
1075 int reply_queue)
1077 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 &h->ioaccel2_cmd_pool[c->cmdindex];
1080 /* Tell the controller to post the reply to the queue for this
1081 * processor. This seems to give the best I/O throughput.
1083 cp->reply_queue = reply_queue;
1084 /* Set the bits in the address sent down to include:
1085 * - performant mode bit not used in ioaccel mode 2
1086 * - pull count (bits 0-3)
1087 * - command type isn't needed for ioaccel2
1089 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 struct CommandList *c,
1094 int reply_queue)
1096 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1099 * Tell the controller to post the reply to the queue for this
1100 * processor. This seems to give the best I/O throughput.
1102 cp->reply_queue = reply_queue;
1104 * Set the bits in the address sent down to include:
1105 * - performant mode bit not used in ioaccel mode 2
1106 * - pull count (bits 0-3)
1107 * - command type isn't needed for ioaccel2
1109 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1112 static int is_firmware_flash_cmd(u8 *cdb)
1114 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should. So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 struct CommandList *c)
1128 if (!is_firmware_flash_cmd(c->Request.CDB))
1129 return;
1130 atomic_inc(&h->firmware_flash_in_progress);
1131 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 struct CommandList *c)
1137 if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 struct CommandList *c, int reply_queue)
1145 dial_down_lockup_detection_during_fw_flash(h, c);
1146 atomic_inc(&h->commands_outstanding);
1148 reply_queue = h->reply_map[raw_smp_processor_id()];
1149 switch (c->cmd_type) {
1150 case CMD_IOACCEL1:
1151 set_ioaccel1_performant_mode(h, c, reply_queue);
1152 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 break;
1154 case CMD_IOACCEL2:
1155 set_ioaccel2_performant_mode(h, c, reply_queue);
1156 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 break;
1158 case IOACCEL2_TMF:
1159 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 break;
1162 default:
1163 set_performant_mode(h, c, reply_queue);
1164 h->access.submit_command(h, c);
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1170 if (unlikely(hpsa_is_pending_event(c)))
1171 return finish_cmd(c);
1173 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1178 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1183 if (!h->hba_inquiry_data)
1184 return 0;
1185 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 return 1;
1187 return 0;
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 unsigned char scsi3addr[], int bus, int *target, int *lun)
1193 /* finds an unused bus, target, lun for a new physical device
1194 * assumes h->devlock is held
1196 int i, found = 0;
1197 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1199 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1201 for (i = 0; i < h->ndevices; i++) {
1202 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 __set_bit(h->dev[i]->target, lun_taken);
1206 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 if (i < HPSA_MAX_DEVICES) {
1208 /* *bus = 1; */
1209 *target = i;
1210 *lun = 0;
1211 found = 1;
1213 return !found;
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 struct hpsa_scsi_dev_t *dev, char *description)
1219 #define LABEL_SIZE 25
1220 char label[LABEL_SIZE];
1222 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 return;
1225 switch (dev->devtype) {
1226 case TYPE_RAID:
1227 snprintf(label, LABEL_SIZE, "controller");
1228 break;
1229 case TYPE_ENCLOSURE:
1230 snprintf(label, LABEL_SIZE, "enclosure");
1231 break;
1232 case TYPE_DISK:
1233 case TYPE_ZBC:
1234 if (dev->external)
1235 snprintf(label, LABEL_SIZE, "external");
1236 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 snprintf(label, LABEL_SIZE, "%s",
1238 raid_label[PHYSICAL_DRIVE]);
1239 else
1240 snprintf(label, LABEL_SIZE, "RAID-%s",
1241 dev->raid_level > RAID_UNKNOWN ? "?" :
1242 raid_label[dev->raid_level]);
1243 break;
1244 case TYPE_ROM:
1245 snprintf(label, LABEL_SIZE, "rom");
1246 break;
1247 case TYPE_TAPE:
1248 snprintf(label, LABEL_SIZE, "tape");
1249 break;
1250 case TYPE_MEDIUM_CHANGER:
1251 snprintf(label, LABEL_SIZE, "changer");
1252 break;
1253 default:
1254 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 break;
1258 dev_printk(level, &h->pdev->dev,
1259 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 description,
1262 scsi_device_type(dev->devtype),
1263 dev->vendor,
1264 dev->model,
1265 label,
1266 dev->offload_config ? '+' : '-',
1267 dev->offload_to_be_enabled ? '+' : '-',
1268 dev->expose_device);
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 struct hpsa_scsi_dev_t *device,
1274 struct hpsa_scsi_dev_t *added[], int *nadded)
1276 /* assumes h->devlock is held */
1277 int n = h->ndevices;
1278 int i;
1279 unsigned char addr1[8], addr2[8];
1280 struct hpsa_scsi_dev_t *sd;
1282 if (n >= HPSA_MAX_DEVICES) {
1283 dev_err(&h->pdev->dev, "too many devices, some will be "
1284 "inaccessible.\n");
1285 return -1;
1288 /* physical devices do not have lun or target assigned until now. */
1289 if (device->lun != -1)
1290 /* Logical device, lun is already assigned. */
1291 goto lun_assigned;
1293 /* If this device a non-zero lun of a multi-lun device
1294 * byte 4 of the 8-byte LUN addr will contain the logical
1295 * unit no, zero otherwise.
1297 if (device->scsi3addr[4] == 0) {
1298 /* This is not a non-zero lun of a multi-lun device */
1299 if (hpsa_find_target_lun(h, device->scsi3addr,
1300 device->bus, &device->target, &device->lun) != 0)
1301 return -1;
1302 goto lun_assigned;
1305 /* This is a non-zero lun of a multi-lun device.
1306 * Search through our list and find the device which
1307 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 * Assign the same bus and target for this new LUN.
1309 * Use the logical unit number from the firmware.
1311 memcpy(addr1, device->scsi3addr, 8);
1312 addr1[4] = 0;
1313 addr1[5] = 0;
1314 for (i = 0; i < n; i++) {
1315 sd = h->dev[i];
1316 memcpy(addr2, sd->scsi3addr, 8);
1317 addr2[4] = 0;
1318 addr2[5] = 0;
1319 /* differ only in byte 4 and 5? */
1320 if (memcmp(addr1, addr2, 8) == 0) {
1321 device->bus = sd->bus;
1322 device->target = sd->target;
1323 device->lun = device->scsi3addr[4];
1324 break;
1327 if (device->lun == -1) {
1328 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 " suspect firmware bug or unsupported hardware "
1330 "configuration.\n");
1331 return -1;
1334 lun_assigned:
1336 h->dev[n] = device;
1337 h->ndevices++;
1338 added[*nadded] = device;
1339 (*nadded)++;
1340 hpsa_show_dev_msg(KERN_INFO, h, device,
1341 device->expose_device ? "added" : "masked");
1342 return 0;
1346 * Called during a scan operation.
1348 * Update an entry in h->dev[] array.
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 int entry, struct hpsa_scsi_dev_t *new_entry)
1353 /* assumes h->devlock is held */
1354 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1356 /* Raid level changed. */
1357 h->dev[entry]->raid_level = new_entry->raid_level;
1360 * ioacccel_handle may have changed for a dual domain disk
1362 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. If raid map data has changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1374 h->dev[entry]->raid_map = new_entry->raid_map;
1375 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1377 if (new_entry->offload_to_be_enabled) {
1378 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 h->dev[entry]->offload_config = new_entry->offload_config;
1383 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 h->dev[entry]->queue_depth = new_entry->queue_depth;
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1391 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1394 * turn ioaccel off immediately if told to do so.
1396 if (!new_entry->offload_to_be_enabled)
1397 h->dev[entry]->offload_enabled = 0;
1399 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 int entry, struct hpsa_scsi_dev_t *new_entry,
1405 struct hpsa_scsi_dev_t *added[], int *nadded,
1406 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 /* assumes h->devlock is held */
1409 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 removed[*nremoved] = h->dev[entry];
1411 (*nremoved)++;
1414 * New physical devices won't have target/lun assigned yet
1415 * so we need to preserve the values in the slot we are replacing.
1417 if (new_entry->target == -1) {
1418 new_entry->target = h->dev[entry]->target;
1419 new_entry->lun = h->dev[entry]->lun;
1422 h->dev[entry] = new_entry;
1423 added[*nadded] = new_entry;
1424 (*nadded)++;
1426 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1433 /* assumes h->devlock is held */
1434 int i;
1435 struct hpsa_scsi_dev_t *sd;
1437 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1439 sd = h->dev[entry];
1440 removed[*nremoved] = h->dev[entry];
1441 (*nremoved)++;
1443 for (i = entry; i < h->ndevices-1; i++)
1444 h->dev[i] = h->dev[i+1];
1445 h->ndevices--;
1446 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1457 (a)[0] == (b)[0])
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 struct hpsa_scsi_dev_t *added)
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1465 unsigned long flags;
1466 int i, j;
1468 spin_lock_irqsave(&h->lock, flags);
1469 for (i = 0; i < h->ndevices; i++) {
1470 if (h->dev[i] == added) {
1471 for (j = i; j < h->ndevices-1; j++)
1472 h->dev[j] = h->dev[j+1];
1473 h->ndevices--;
1474 break;
1477 spin_unlock_irqrestore(&h->lock, flags);
1478 kfree(added);
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 struct hpsa_scsi_dev_t *dev2)
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1486 * to differ first
1488 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 sizeof(dev1->scsi3addr)) != 0)
1490 return 0;
1491 if (memcmp(dev1->device_id, dev2->device_id,
1492 sizeof(dev1->device_id)) != 0)
1493 return 0;
1494 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 return 0;
1496 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 return 0;
1498 if (dev1->devtype != dev2->devtype)
1499 return 0;
1500 if (dev1->bus != dev2->bus)
1501 return 0;
1502 return 1;
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 struct hpsa_scsi_dev_t *dev2)
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1512 if (dev1->raid_level != dev2->raid_level)
1513 return 1;
1514 if (dev1->offload_config != dev2->offload_config)
1515 return 1;
1516 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 return 1;
1518 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 if (dev1->queue_depth != dev2->queue_depth)
1520 return 1;
1522 * This can happen for dual domain devices. An active
1523 * path change causes the ioaccel handle to change
1525 * for example note the handle differences between p0 and p1
1526 * Device WWN ,WWN hash,Handle
1527 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1530 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 return 1;
1532 return 0;
1535 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index. If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 int *index)
1547 int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 if (needle == NULL)
1553 return DEVICE_NOT_FOUND;
1555 for (i = 0; i < haystack_size; i++) {
1556 if (haystack[i] == NULL) /* previously removed. */
1557 continue;
1558 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 *index = i;
1560 if (device_is_the_same(needle, haystack[i])) {
1561 if (device_updated(needle, haystack[i]))
1562 return DEVICE_UPDATED;
1563 return DEVICE_SAME;
1564 } else {
1565 /* Keep offline devices offline */
1566 if (needle->volume_offline)
1567 return DEVICE_NOT_FOUND;
1568 return DEVICE_CHANGED;
1572 *index = -1;
1573 return DEVICE_NOT_FOUND;
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 unsigned char scsi3addr[])
1579 struct offline_device_entry *device;
1580 unsigned long flags;
1582 /* Check to see if device is already on the list */
1583 spin_lock_irqsave(&h->offline_device_lock, flags);
1584 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 if (memcmp(device->scsi3addr, scsi3addr,
1586 sizeof(device->scsi3addr)) == 0) {
1587 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 return;
1591 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 /* Device is not on the list, add it. */
1594 device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 if (!device)
1596 return;
1598 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 spin_lock_irqsave(&h->offline_device_lock, flags);
1600 list_add_tail(&device->offline_list, &h->offline_device_list);
1601 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 struct hpsa_scsi_dev_t *sd)
1608 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 dev_info(&h->pdev->dev,
1610 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 h->scsi_host->host_no,
1612 sd->bus, sd->target, sd->lun);
1613 switch (sd->volume_offline) {
1614 case HPSA_LV_OK:
1615 break;
1616 case HPSA_LV_UNDERGOING_ERASE:
1617 dev_info(&h->pdev->dev,
1618 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 h->scsi_host->host_no,
1620 sd->bus, sd->target, sd->lun);
1621 break;
1622 case HPSA_LV_NOT_AVAILABLE:
1623 dev_info(&h->pdev->dev,
1624 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 h->scsi_host->host_no,
1626 sd->bus, sd->target, sd->lun);
1627 break;
1628 case HPSA_LV_UNDERGOING_RPI:
1629 dev_info(&h->pdev->dev,
1630 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 h->scsi_host->host_no,
1632 sd->bus, sd->target, sd->lun);
1633 break;
1634 case HPSA_LV_PENDING_RPI:
1635 dev_info(&h->pdev->dev,
1636 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 h->scsi_host->host_no,
1638 sd->bus, sd->target, sd->lun);
1639 break;
1640 case HPSA_LV_ENCRYPTED_NO_KEY:
1641 dev_info(&h->pdev->dev,
1642 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 h->scsi_host->host_no,
1644 sd->bus, sd->target, sd->lun);
1645 break;
1646 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 dev_info(&h->pdev->dev,
1648 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 h->scsi_host->host_no,
1650 sd->bus, sd->target, sd->lun);
1651 break;
1652 case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 dev_info(&h->pdev->dev,
1654 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 h->scsi_host->host_no,
1656 sd->bus, sd->target, sd->lun);
1657 break;
1658 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 dev_info(&h->pdev->dev,
1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 h->scsi_host->host_no,
1662 sd->bus, sd->target, sd->lun);
1663 break;
1664 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 dev_info(&h->pdev->dev,
1666 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 h->scsi_host->host_no,
1668 sd->bus, sd->target, sd->lun);
1669 break;
1670 case HPSA_LV_PENDING_ENCRYPTION:
1671 dev_info(&h->pdev->dev,
1672 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 h->scsi_host->host_no,
1674 sd->bus, sd->target, sd->lun);
1675 break;
1676 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 dev_info(&h->pdev->dev,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 h->scsi_host->host_no,
1680 sd->bus, sd->target, sd->lun);
1681 break;
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 struct hpsa_scsi_dev_t *logical_drive)
1693 struct raid_map_data *map = &logical_drive->raid_map;
1694 struct raid_map_disk_data *dd = &map->data[0];
1695 int i, j;
1696 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 le16_to_cpu(map->metadata_disks_per_row);
1698 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 le16_to_cpu(map->layout_map_count) *
1700 total_disks_per_row;
1701 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 total_disks_per_row;
1703 int qdepth;
1705 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1708 logical_drive->nphysical_disks = nraid_map_entries;
1710 qdepth = 0;
1711 for (i = 0; i < nraid_map_entries; i++) {
1712 logical_drive->phys_disk[i] = NULL;
1713 if (!logical_drive->offload_config)
1714 continue;
1715 for (j = 0; j < ndevices; j++) {
1716 if (dev[j] == NULL)
1717 continue;
1718 if (dev[j]->devtype != TYPE_DISK &&
1719 dev[j]->devtype != TYPE_ZBC)
1720 continue;
1721 if (is_logical_device(dev[j]))
1722 continue;
1723 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 continue;
1726 logical_drive->phys_disk[i] = dev[j];
1727 if (i < nphys_disk)
1728 qdepth = min(h->nr_cmds, qdepth +
1729 logical_drive->phys_disk[i]->queue_depth);
1730 break;
1734 * This can happen if a physical drive is removed and
1735 * the logical drive is degraded. In that case, the RAID
1736 * map data will refer to a physical disk which isn't actually
1737 * present. And in that case offload_enabled should already
1738 * be 0, but we'll turn it off here just in case
1740 if (!logical_drive->phys_disk[i]) {
1741 dev_warn(&h->pdev->dev,
1742 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 __func__,
1744 h->scsi_host->host_no, logical_drive->bus,
1745 logical_drive->target, logical_drive->lun);
1746 logical_drive->offload_enabled = 0;
1747 logical_drive->offload_to_be_enabled = 0;
1748 logical_drive->queue_depth = 8;
1751 if (nraid_map_entries)
1753 * This is correct for reads, too high for full stripe writes,
1754 * way too high for partial stripe writes
1756 logical_drive->queue_depth = qdepth;
1757 else {
1758 if (logical_drive->external)
1759 logical_drive->queue_depth = EXTERNAL_QD;
1760 else
1761 logical_drive->queue_depth = h->nr_cmds;
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 struct hpsa_scsi_dev_t *dev[], int ndevices)
1768 int i;
1770 for (i = 0; i < ndevices; i++) {
1771 if (dev[i] == NULL)
1772 continue;
1773 if (dev[i]->devtype != TYPE_DISK &&
1774 dev[i]->devtype != TYPE_ZBC)
1775 continue;
1776 if (!is_logical_device(dev[i]))
1777 continue;
1780 * If offload is currently enabled, the RAID map and
1781 * phys_disk[] assignment *better* not be changing
1782 * because we would be changing ioaccel phsy_disk[] pointers
1783 * on a ioaccel volume processing I/O requests.
1785 * If an ioaccel volume status changed, initially because it was
1786 * re-configured and thus underwent a transformation, or
1787 * a drive failed, we would have received a state change
1788 * request and ioaccel should have been turned off. When the
1789 * transformation completes, we get another state change
1790 * request to turn ioaccel back on. In this case, we need
1791 * to update the ioaccel information.
1793 * Thus: If it is not currently enabled, but will be after
1794 * the scan completes, make sure the ioaccel pointers
1795 * are up to date.
1798 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1805 int rc = 0;
1807 if (!h->scsi_host)
1808 return 1;
1810 if (is_logical_device(device)) /* RAID */
1811 rc = scsi_add_device(h->scsi_host, device->bus,
1812 device->target, device->lun);
1813 else /* HBA */
1814 rc = hpsa_add_sas_device(h->sas_host, device);
1816 return rc;
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 struct hpsa_scsi_dev_t *dev)
1822 int i;
1823 int count = 0;
1825 for (i = 0; i < h->nr_cmds; i++) {
1826 struct CommandList *c = h->cmd_pool + i;
1827 int refcount = atomic_inc_return(&c->refcount);
1829 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 dev->scsi3addr)) {
1831 unsigned long flags;
1833 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1834 if (!hpsa_is_cmd_idle(c))
1835 ++count;
1836 spin_unlock_irqrestore(&h->lock, flags);
1839 cmd_free(h, c);
1842 return count;
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 struct hpsa_scsi_dev_t *device)
1848 int cmds = 0;
1849 int waits = 0;
1851 while (1) {
1852 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 if (cmds == 0)
1854 break;
1855 if (++waits > 20)
1856 break;
1857 msleep(1000);
1860 if (waits > 20)
1861 dev_warn(&h->pdev->dev,
1862 "%s: removing device with %d outstanding commands!\n",
1863 __func__, cmds);
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 struct hpsa_scsi_dev_t *device)
1869 struct scsi_device *sdev = NULL;
1871 if (!h->scsi_host)
1872 return;
1875 * Allow for commands to drain
1877 device->removed = 1;
1878 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1880 if (is_logical_device(device)) { /* RAID */
1881 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 device->target, device->lun);
1883 if (sdev) {
1884 scsi_remove_device(sdev);
1885 scsi_device_put(sdev);
1886 } else {
1888 * We don't expect to get here. Future commands
1889 * to this device will get a selection timeout as
1890 * if the device were gone.
1892 hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 "didn't find device for removal.");
1895 } else { /* HBA */
1897 hpsa_remove_sas_device(device);
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 struct hpsa_scsi_dev_t *sd[], int nsds)
1904 /* sd contains scsi3 addresses and devtypes, and inquiry
1905 * data. This function takes what's in sd to be the current
1906 * reality and updates h->dev[] to reflect that reality.
1908 int i, entry, device_change, changes = 0;
1909 struct hpsa_scsi_dev_t *csd;
1910 unsigned long flags;
1911 struct hpsa_scsi_dev_t **added, **removed;
1912 int nadded, nremoved;
1915 * A reset can cause a device status to change
1916 * re-schedule the scan to see what happened.
1918 spin_lock_irqsave(&h->reset_lock, flags);
1919 if (h->reset_in_progress) {
1920 h->drv_req_rescan = 1;
1921 spin_unlock_irqrestore(&h->reset_lock, flags);
1922 return;
1924 spin_unlock_irqrestore(&h->reset_lock, flags);
1926 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1929 if (!added || !removed) {
1930 dev_warn(&h->pdev->dev, "out of memory in "
1931 "adjust_hpsa_scsi_table\n");
1932 goto free_and_out;
1935 spin_lock_irqsave(&h->devlock, flags);
1937 /* find any devices in h->dev[] that are not in
1938 * sd[] and remove them from h->dev[], and for any
1939 * devices which have changed, remove the old device
1940 * info and add the new device info.
1941 * If minor device attributes change, just update
1942 * the existing device structure.
1944 i = 0;
1945 nremoved = 0;
1946 nadded = 0;
1947 while (i < h->ndevices) {
1948 csd = h->dev[i];
1949 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 if (device_change == DEVICE_NOT_FOUND) {
1951 changes++;
1952 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 continue; /* remove ^^^, hence i not incremented */
1954 } else if (device_change == DEVICE_CHANGED) {
1955 changes++;
1956 hpsa_scsi_replace_entry(h, i, sd[entry],
1957 added, &nadded, removed, &nremoved);
1958 /* Set it to NULL to prevent it from being freed
1959 * at the bottom of hpsa_update_scsi_devices()
1961 sd[entry] = NULL;
1962 } else if (device_change == DEVICE_UPDATED) {
1963 hpsa_scsi_update_entry(h, i, sd[entry]);
1965 i++;
1968 /* Now, make sure every device listed in sd[] is also
1969 * listed in h->dev[], adding them if they aren't found
1972 for (i = 0; i < nsds; i++) {
1973 if (!sd[i]) /* if already added above. */
1974 continue;
1976 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 * as the SCSI mid-layer does not handle such devices well.
1978 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 * at 160Hz, and prevents the system from coming up.
1981 if (sd[i]->volume_offline) {
1982 hpsa_show_volume_status(h, sd[i]);
1983 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 continue;
1987 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 h->ndevices, &entry);
1989 if (device_change == DEVICE_NOT_FOUND) {
1990 changes++;
1991 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 break;
1993 sd[i] = NULL; /* prevent from being freed later. */
1994 } else if (device_change == DEVICE_CHANGED) {
1995 /* should never happen... */
1996 changes++;
1997 dev_warn(&h->pdev->dev,
1998 "device unexpectedly changed.\n");
1999 /* but if it does happen, we just ignore that device */
2002 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2005 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 * any logical drives that need it enabled.
2008 * The raid map should be current by now.
2010 * We are updating the device list used for I/O requests.
2012 for (i = 0; i < h->ndevices; i++) {
2013 if (h->dev[i] == NULL)
2014 continue;
2015 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2018 spin_unlock_irqrestore(&h->devlock, flags);
2020 /* Monitor devices which are in one of several NOT READY states to be
2021 * brought online later. This must be done without holding h->devlock,
2022 * so don't touch h->dev[]
2024 for (i = 0; i < nsds; i++) {
2025 if (!sd[i]) /* if already added above. */
2026 continue;
2027 if (sd[i]->volume_offline)
2028 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2031 /* Don't notify scsi mid layer of any changes the first time through
2032 * (or if there are no changes) scsi_scan_host will do it later the
2033 * first time through.
2035 if (!changes)
2036 goto free_and_out;
2038 /* Notify scsi mid layer of any removed devices */
2039 for (i = 0; i < nremoved; i++) {
2040 if (removed[i] == NULL)
2041 continue;
2042 if (removed[i]->expose_device)
2043 hpsa_remove_device(h, removed[i]);
2044 kfree(removed[i]);
2045 removed[i] = NULL;
2048 /* Notify scsi mid layer of any added devices */
2049 for (i = 0; i < nadded; i++) {
2050 int rc = 0;
2052 if (added[i] == NULL)
2053 continue;
2054 if (!(added[i]->expose_device))
2055 continue;
2056 rc = hpsa_add_device(h, added[i]);
2057 if (!rc)
2058 continue;
2059 dev_warn(&h->pdev->dev,
2060 "addition failed %d, device not added.", rc);
2061 /* now we have to remove it from h->dev,
2062 * since it didn't get added to scsi mid layer
2064 fixup_botched_add(h, added[i]);
2065 h->drv_req_rescan = 1;
2068 free_and_out:
2069 kfree(added);
2070 kfree(removed);
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 int bus, int target, int lun)
2080 int i;
2081 struct hpsa_scsi_dev_t *sd;
2083 for (i = 0; i < h->ndevices; i++) {
2084 sd = h->dev[i];
2085 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 return sd;
2088 return NULL;
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2093 struct hpsa_scsi_dev_t *sd = NULL;
2094 unsigned long flags;
2095 struct ctlr_info *h;
2097 h = sdev_to_hba(sdev);
2098 spin_lock_irqsave(&h->devlock, flags);
2099 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 struct scsi_target *starget;
2101 struct sas_rphy *rphy;
2103 starget = scsi_target(sdev);
2104 rphy = target_to_rphy(starget);
2105 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 if (sd) {
2107 sd->target = sdev_id(sdev);
2108 sd->lun = sdev->lun;
2111 if (!sd)
2112 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 sdev_id(sdev), sdev->lun);
2115 if (sd && sd->expose_device) {
2116 atomic_set(&sd->ioaccel_cmds_out, 0);
2117 sdev->hostdata = sd;
2118 } else
2119 sdev->hostdata = NULL;
2120 spin_unlock_irqrestore(&h->devlock, flags);
2121 return 0;
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2127 struct hpsa_scsi_dev_t *sd;
2128 int queue_depth;
2130 sd = sdev->hostdata;
2131 sdev->no_uld_attach = !sd || !sd->expose_device;
2133 if (sd) {
2134 if (sd->external)
2135 queue_depth = EXTERNAL_QD;
2136 else
2137 queue_depth = sd->queue_depth != 0 ?
2138 sd->queue_depth : sdev->host->can_queue;
2139 } else
2140 queue_depth = sdev->host->can_queue;
2142 scsi_change_queue_depth(sdev, queue_depth);
2144 return 0;
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2149 /* nothing to do. */
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2154 int i;
2156 if (!h->ioaccel2_cmd_sg_list)
2157 return;
2158 for (i = 0; i < h->nr_cmds; i++) {
2159 kfree(h->ioaccel2_cmd_sg_list[i]);
2160 h->ioaccel2_cmd_sg_list[i] = NULL;
2162 kfree(h->ioaccel2_cmd_sg_list);
2163 h->ioaccel2_cmd_sg_list = NULL;
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2168 int i;
2170 if (h->chainsize <= 0)
2171 return 0;
2173 h->ioaccel2_cmd_sg_list =
2174 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 GFP_KERNEL);
2176 if (!h->ioaccel2_cmd_sg_list)
2177 return -ENOMEM;
2178 for (i = 0; i < h->nr_cmds; i++) {
2179 h->ioaccel2_cmd_sg_list[i] =
2180 kmalloc_array(h->maxsgentries,
2181 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 GFP_KERNEL);
2183 if (!h->ioaccel2_cmd_sg_list[i])
2184 goto clean;
2186 return 0;
2188 clean:
2189 hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 return -ENOMEM;
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2195 int i;
2197 if (!h->cmd_sg_list)
2198 return;
2199 for (i = 0; i < h->nr_cmds; i++) {
2200 kfree(h->cmd_sg_list[i]);
2201 h->cmd_sg_list[i] = NULL;
2203 kfree(h->cmd_sg_list);
2204 h->cmd_sg_list = NULL;
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2209 int i;
2211 if (h->chainsize <= 0)
2212 return 0;
2214 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 GFP_KERNEL);
2216 if (!h->cmd_sg_list)
2217 return -ENOMEM;
2219 for (i = 0; i < h->nr_cmds; i++) {
2220 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 sizeof(*h->cmd_sg_list[i]),
2222 GFP_KERNEL);
2223 if (!h->cmd_sg_list[i])
2224 goto clean;
2227 return 0;
2229 clean:
2230 hpsa_free_sg_chain_blocks(h);
2231 return -ENOMEM;
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 struct io_accel2_cmd *cp, struct CommandList *c)
2237 struct ioaccel2_sg_element *chain_block;
2238 u64 temp64;
2239 u32 chain_size;
2241 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 chain_size = le32_to_cpu(cp->sg[0].length);
2243 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 DMA_TO_DEVICE);
2245 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 /* prevent subsequent unmapping */
2247 cp->sg->address = 0;
2248 return -1;
2250 cp->sg->address = cpu_to_le64(temp64);
2251 return 0;
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 struct io_accel2_cmd *cp)
2257 struct ioaccel2_sg_element *chain_sg;
2258 u64 temp64;
2259 u32 chain_size;
2261 chain_sg = cp->sg;
2262 temp64 = le64_to_cpu(chain_sg->address);
2263 chain_size = le32_to_cpu(cp->sg[0].length);
2264 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 struct CommandList *c)
2270 struct SGDescriptor *chain_sg, *chain_block;
2271 u64 temp64;
2272 u32 chain_len;
2274 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 chain_block = h->cmd_sg_list[c->cmdindex];
2276 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 chain_len = sizeof(*chain_sg) *
2278 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 chain_sg->Len = cpu_to_le32(chain_len);
2280 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 DMA_TO_DEVICE);
2282 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 /* prevent subsequent unmapping */
2284 chain_sg->Addr = cpu_to_le64(0);
2285 return -1;
2287 chain_sg->Addr = cpu_to_le64(temp64);
2288 return 0;
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 struct CommandList *c)
2294 struct SGDescriptor *chain_sg;
2296 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 return;
2299 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2305 /* Decode the various types of errors on ioaccel2 path.
2306 * Return 1 for any error that should generate a RAID path retry.
2307 * Return 0 for errors that don't require a RAID path retry.
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 struct CommandList *c,
2311 struct scsi_cmnd *cmd,
2312 struct io_accel2_cmd *c2,
2313 struct hpsa_scsi_dev_t *dev)
2315 int data_len;
2316 int retry = 0;
2317 u32 ioaccel2_resid = 0;
2319 switch (c2->error_data.serv_response) {
2320 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 switch (c2->error_data.status) {
2322 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 break;
2324 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 if (c2->error_data.data_present !=
2327 IOACCEL2_SENSE_DATA_PRESENT) {
2328 memset(cmd->sense_buffer, 0,
2329 SCSI_SENSE_BUFFERSIZE);
2330 break;
2332 /* copy the sense data */
2333 data_len = c2->error_data.sense_data_len;
2334 if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 data_len = SCSI_SENSE_BUFFERSIZE;
2336 if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 data_len =
2338 sizeof(c2->error_data.sense_data_buff);
2339 memcpy(cmd->sense_buffer,
2340 c2->error_data.sense_data_buff, data_len);
2341 retry = 1;
2342 break;
2343 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 retry = 1;
2345 break;
2346 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 retry = 1;
2348 break;
2349 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 retry = 1;
2351 break;
2352 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 retry = 1;
2354 break;
2355 default:
2356 retry = 1;
2357 break;
2359 break;
2360 case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 switch (c2->error_data.status) {
2362 case IOACCEL2_STATUS_SR_IO_ERROR:
2363 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 case IOACCEL2_STATUS_SR_OVERRUN:
2365 retry = 1;
2366 break;
2367 case IOACCEL2_STATUS_SR_UNDERRUN:
2368 cmd->result = (DID_OK << 16); /* host byte */
2369 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370 ioaccel2_resid = get_unaligned_le32(
2371 &c2->error_data.resid_cnt[0]);
2372 scsi_set_resid(cmd, ioaccel2_resid);
2373 break;
2374 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2378 * Did an HBA disk disappear? We will eventually
2379 * get a state change event from the controller but
2380 * in the meantime, we need to tell the OS that the
2381 * HBA disk is no longer there and stop I/O
2382 * from going down. This allows the potential re-insert
2383 * of the disk to get the same device node.
2385 if (dev->physical_device && dev->expose_device) {
2386 cmd->result = DID_NO_CONNECT << 16;
2387 dev->removed = 1;
2388 h->drv_req_rescan = 1;
2389 dev_warn(&h->pdev->dev,
2390 "%s: device is gone!\n", __func__);
2391 } else
2393 * Retry by sending down the RAID path.
2394 * We will get an event from ctlr to
2395 * trigger rescan regardless.
2397 retry = 1;
2398 break;
2399 default:
2400 retry = 1;
2402 break;
2403 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 break;
2405 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 break;
2407 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 retry = 1;
2409 break;
2410 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 break;
2412 default:
2413 retry = 1;
2414 break;
2417 return retry; /* retry on raid path? */
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 struct CommandList *c)
2423 bool do_wake = false;
2426 * Reset c->scsi_cmd here so that the reset handler will know
2427 * this command has completed. Then, check to see if the handler is
2428 * waiting for this command, and, if so, wake it.
2430 c->scsi_cmd = SCSI_CMD_IDLE;
2431 mb(); /* Declare command idle before checking for pending events. */
2432 if (c->reset_pending) {
2433 unsigned long flags;
2434 struct hpsa_scsi_dev_t *dev;
2437 * There appears to be a reset pending; lock the lock and
2438 * reconfirm. If so, then decrement the count of outstanding
2439 * commands and wake the reset command if this is the last one.
2441 spin_lock_irqsave(&h->lock, flags);
2442 dev = c->reset_pending; /* Re-fetch under the lock. */
2443 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 do_wake = true;
2445 c->reset_pending = NULL;
2446 spin_unlock_irqrestore(&h->lock, flags);
2449 if (do_wake)
2450 wake_up_all(&h->event_sync_wait_queue);
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 struct CommandList *c)
2456 hpsa_cmd_resolve_events(h, c);
2457 cmd_tagged_free(h, c);
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 struct CommandList *c, struct scsi_cmnd *cmd)
2463 hpsa_cmd_resolve_and_free(h, c);
2464 if (cmd && cmd->scsi_done)
2465 cmd->scsi_done(cmd);
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2470 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 struct CommandList *c, struct scsi_cmnd *cmd,
2476 struct hpsa_scsi_dev_t *dev)
2478 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2480 /* check for good status */
2481 if (likely(c2->error_data.serv_response == 0 &&
2482 c2->error_data.status == 0))
2483 return hpsa_cmd_free_and_done(h, c, cmd);
2486 * Any RAID offload error results in retry which will use
2487 * the normal I/O path so the controller can handle whatever is
2488 * wrong.
2490 if (is_logical_device(dev) &&
2491 c2->error_data.serv_response ==
2492 IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 if (c2->error_data.status ==
2494 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 dev->offload_enabled = 0;
2496 dev->offload_to_be_enabled = 0;
2499 return hpsa_retry_cmd(h, c);
2502 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 return hpsa_retry_cmd(h, c);
2505 return hpsa_cmd_free_and_done(h, c, cmd);
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 struct CommandList *cp)
2512 u8 tmf_status = cp->err_info->ScsiStatus;
2514 switch (tmf_status) {
2515 case CISS_TMF_COMPLETE:
2517 * CISS_TMF_COMPLETE never happens, instead,
2518 * ei->CommandStatus == 0 for this case.
2520 case CISS_TMF_SUCCESS:
2521 return 0;
2522 case CISS_TMF_INVALID_FRAME:
2523 case CISS_TMF_NOT_SUPPORTED:
2524 case CISS_TMF_FAILED:
2525 case CISS_TMF_WRONG_LUN:
2526 case CISS_TMF_OVERLAPPED_TAG:
2527 break;
2528 default:
2529 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 tmf_status);
2531 break;
2533 return -tmf_status;
2536 static void complete_scsi_command(struct CommandList *cp)
2538 struct scsi_cmnd *cmd;
2539 struct ctlr_info *h;
2540 struct ErrorInfo *ei;
2541 struct hpsa_scsi_dev_t *dev;
2542 struct io_accel2_cmd *c2;
2544 u8 sense_key;
2545 u8 asc; /* additional sense code */
2546 u8 ascq; /* additional sense code qualifier */
2547 unsigned long sense_data_size;
2549 ei = cp->err_info;
2550 cmd = cp->scsi_cmd;
2551 h = cp->h;
2553 if (!cmd->device) {
2554 cmd->result = DID_NO_CONNECT << 16;
2555 return hpsa_cmd_free_and_done(h, cp, cmd);
2558 dev = cmd->device->hostdata;
2559 if (!dev) {
2560 cmd->result = DID_NO_CONNECT << 16;
2561 return hpsa_cmd_free_and_done(h, cp, cmd);
2563 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2565 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 if ((cp->cmd_type == CMD_SCSI) &&
2567 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 hpsa_unmap_sg_chain_block(h, cp);
2570 if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2574 cmd->result = (DID_OK << 16); /* host byte */
2575 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2577 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 if (dev->physical_device && dev->expose_device &&
2579 dev->removed) {
2580 cmd->result = DID_NO_CONNECT << 16;
2581 return hpsa_cmd_free_and_done(h, cp, cmd);
2583 if (likely(cp->phys_disk != NULL))
2584 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2588 * We check for lockup status here as it may be set for
2589 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 * fail_all_oustanding_cmds()
2592 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 /* DID_NO_CONNECT will prevent a retry */
2594 cmd->result = DID_NO_CONNECT << 16;
2595 return hpsa_cmd_free_and_done(h, cp, cmd);
2598 if ((unlikely(hpsa_is_pending_event(cp))))
2599 if (cp->reset_pending)
2600 return hpsa_cmd_free_and_done(h, cp, cmd);
2602 if (cp->cmd_type == CMD_IOACCEL2)
2603 return process_ioaccel2_completion(h, cp, cmd, dev);
2605 scsi_set_resid(cmd, ei->ResidualCnt);
2606 if (ei->CommandStatus == 0)
2607 return hpsa_cmd_free_and_done(h, cp, cmd);
2609 /* For I/O accelerator commands, copy over some fields to the normal
2610 * CISS header used below for error handling.
2612 if (cp->cmd_type == CMD_IOACCEL1) {
2613 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 cp->Header.SGList = scsi_sg_count(cmd);
2615 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 cp->Header.tag = c->tag;
2619 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2622 /* Any RAID offload error results in retry which will use
2623 * the normal I/O path so the controller can handle whatever's
2624 * wrong.
2626 if (is_logical_device(dev)) {
2627 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 dev->offload_enabled = 0;
2629 return hpsa_retry_cmd(h, cp);
2633 /* an error has occurred */
2634 switch (ei->CommandStatus) {
2636 case CMD_TARGET_STATUS:
2637 cmd->result |= ei->ScsiStatus;
2638 /* copy the sense data */
2639 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 else
2642 sense_data_size = sizeof(ei->SenseInfo);
2643 if (ei->SenseLen < sense_data_size)
2644 sense_data_size = ei->SenseLen;
2645 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 if (ei->ScsiStatus)
2647 decode_sense_data(ei->SenseInfo, sense_data_size,
2648 &sense_key, &asc, &ascq);
2649 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 if (sense_key == ABORTED_COMMAND) {
2651 cmd->result |= DID_SOFT_ERROR << 16;
2652 break;
2654 break;
2656 /* Problem was not a check condition
2657 * Pass it up to the upper layers...
2659 if (ei->ScsiStatus) {
2660 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662 "Returning result: 0x%x\n",
2663 cp, ei->ScsiStatus,
2664 sense_key, asc, ascq,
2665 cmd->result);
2666 } else { /* scsi status is zero??? How??? */
2667 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668 "Returning no connection.\n", cp),
2670 /* Ordinarily, this case should never happen,
2671 * but there is a bug in some released firmware
2672 * revisions that allows it to happen if, for
2673 * example, a 4100 backplane loses power and
2674 * the tape drive is in it. We assume that
2675 * it's a fatal error of some kind because we
2676 * can't show that it wasn't. We will make it
2677 * look like selection timeout since that is
2678 * the most common reason for this to occur,
2679 * and it's severe enough.
2682 cmd->result = DID_NO_CONNECT << 16;
2684 break;
2686 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687 break;
2688 case CMD_DATA_OVERRUN:
2689 dev_warn(&h->pdev->dev,
2690 "CDB %16phN data overrun\n", cp->Request.CDB);
2691 break;
2692 case CMD_INVALID: {
2693 /* print_bytes(cp, sizeof(*cp), 1, 0);
2694 print_cmd(cp); */
2695 /* We get CMD_INVALID if you address a non-existent device
2696 * instead of a selection timeout (no response). You will
2697 * see this if you yank out a drive, then try to access it.
2698 * This is kind of a shame because it means that any other
2699 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700 * missing target. */
2701 cmd->result = DID_NO_CONNECT << 16;
2703 break;
2704 case CMD_PROTOCOL_ERR:
2705 cmd->result = DID_ERROR << 16;
2706 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707 cp->Request.CDB);
2708 break;
2709 case CMD_HARDWARE_ERR:
2710 cmd->result = DID_ERROR << 16;
2711 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712 cp->Request.CDB);
2713 break;
2714 case CMD_CONNECTION_LOST:
2715 cmd->result = DID_ERROR << 16;
2716 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717 cp->Request.CDB);
2718 break;
2719 case CMD_ABORTED:
2720 cmd->result = DID_ABORT << 16;
2721 break;
2722 case CMD_ABORT_FAILED:
2723 cmd->result = DID_ERROR << 16;
2724 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725 cp->Request.CDB);
2726 break;
2727 case CMD_UNSOLICITED_ABORT:
2728 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730 cp->Request.CDB);
2731 break;
2732 case CMD_TIMEOUT:
2733 cmd->result = DID_TIME_OUT << 16;
2734 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735 cp->Request.CDB);
2736 break;
2737 case CMD_UNABORTABLE:
2738 cmd->result = DID_ERROR << 16;
2739 dev_warn(&h->pdev->dev, "Command unabortable\n");
2740 break;
2741 case CMD_TMF_STATUS:
2742 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743 cmd->result = DID_ERROR << 16;
2744 break;
2745 case CMD_IOACCEL_DISABLED:
2746 /* This only handles the direct pass-through case since RAID
2747 * offload is handled above. Just attempt a retry.
2749 cmd->result = DID_SOFT_ERROR << 16;
2750 dev_warn(&h->pdev->dev,
2751 "cp %p had HP SSD Smart Path error\n", cp);
2752 break;
2753 default:
2754 cmd->result = DID_ERROR << 16;
2755 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756 cp, ei->CommandStatus);
2759 return hpsa_cmd_free_and_done(h, cp, cmd);
2762 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2763 int sg_used, enum dma_data_direction data_direction)
2765 int i;
2767 for (i = 0; i < sg_used; i++)
2768 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2769 le32_to_cpu(c->SG[i].Len),
2770 data_direction);
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774 struct CommandList *cp,
2775 unsigned char *buf,
2776 size_t buflen,
2777 enum dma_data_direction data_direction)
2779 u64 addr64;
2781 if (buflen == 0 || data_direction == DMA_NONE) {
2782 cp->Header.SGList = 0;
2783 cp->Header.SGTotal = cpu_to_le16(0);
2784 return 0;
2787 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2788 if (dma_mapping_error(&pdev->dev, addr64)) {
2789 /* Prevent subsequent unmap of something never mapped */
2790 cp->Header.SGList = 0;
2791 cp->Header.SGTotal = cpu_to_le16(0);
2792 return -1;
2794 cp->SG[0].Addr = cpu_to_le64(addr64);
2795 cp->SG[0].Len = cpu_to_le32(buflen);
2796 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2798 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799 return 0;
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2807 DECLARE_COMPLETION_ONSTACK(wait);
2809 c->waiting = &wait;
2810 __enqueue_cmd_and_start_io(h, c, reply_queue);
2811 if (timeout_msecs == NO_TIMEOUT) {
2812 /* TODO: get rid of this no-timeout thing */
2813 wait_for_completion_io(&wait);
2814 return IO_OK;
2816 if (!wait_for_completion_io_timeout(&wait,
2817 msecs_to_jiffies(timeout_msecs))) {
2818 dev_warn(&h->pdev->dev, "Command timed out.\n");
2819 return -ETIMEDOUT;
2821 return IO_OK;
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825 int reply_queue, unsigned long timeout_msecs)
2827 if (unlikely(lockup_detected(h))) {
2828 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829 return IO_OK;
2831 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2834 static u32 lockup_detected(struct ctlr_info *h)
2836 int cpu;
2837 u32 rc, *lockup_detected;
2839 cpu = get_cpu();
2840 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841 rc = *lockup_detected;
2842 put_cpu();
2843 return rc;
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848 struct CommandList *c, enum dma_data_direction data_direction,
2849 unsigned long timeout_msecs)
2851 int backoff_time = 10, retry_count = 0;
2852 int rc;
2854 do {
2855 memset(c->err_info, 0, sizeof(*c->err_info));
2856 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2857 timeout_msecs);
2858 if (rc)
2859 break;
2860 retry_count++;
2861 if (retry_count > 3) {
2862 msleep(backoff_time);
2863 if (backoff_time < 1000)
2864 backoff_time *= 2;
2866 } while ((check_for_unit_attention(h, c) ||
2867 check_for_busy(h, c)) &&
2868 retry_count <= MAX_DRIVER_CMD_RETRIES);
2869 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2870 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2871 rc = -EIO;
2872 return rc;
2875 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2876 struct CommandList *c)
2878 const u8 *cdb = c->Request.CDB;
2879 const u8 *lun = c->Header.LUN.LunAddrBytes;
2881 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2882 txt, lun, cdb);
2885 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2886 struct CommandList *cp)
2888 const struct ErrorInfo *ei = cp->err_info;
2889 struct device *d = &cp->h->pdev->dev;
2890 u8 sense_key, asc, ascq;
2891 int sense_len;
2893 switch (ei->CommandStatus) {
2894 case CMD_TARGET_STATUS:
2895 if (ei->SenseLen > sizeof(ei->SenseInfo))
2896 sense_len = sizeof(ei->SenseInfo);
2897 else
2898 sense_len = ei->SenseLen;
2899 decode_sense_data(ei->SenseInfo, sense_len,
2900 &sense_key, &asc, &ascq);
2901 hpsa_print_cmd(h, "SCSI status", cp);
2902 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2903 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2904 sense_key, asc, ascq);
2905 else
2906 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2907 if (ei->ScsiStatus == 0)
2908 dev_warn(d, "SCSI status is abnormally zero. "
2909 "(probably indicates selection timeout "
2910 "reported incorrectly due to a known "
2911 "firmware bug, circa July, 2001.)\n");
2912 break;
2913 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2914 break;
2915 case CMD_DATA_OVERRUN:
2916 hpsa_print_cmd(h, "overrun condition", cp);
2917 break;
2918 case CMD_INVALID: {
2919 /* controller unfortunately reports SCSI passthru's
2920 * to non-existent targets as invalid commands.
2922 hpsa_print_cmd(h, "invalid command", cp);
2923 dev_warn(d, "probably means device no longer present\n");
2925 break;
2926 case CMD_PROTOCOL_ERR:
2927 hpsa_print_cmd(h, "protocol error", cp);
2928 break;
2929 case CMD_HARDWARE_ERR:
2930 hpsa_print_cmd(h, "hardware error", cp);
2931 break;
2932 case CMD_CONNECTION_LOST:
2933 hpsa_print_cmd(h, "connection lost", cp);
2934 break;
2935 case CMD_ABORTED:
2936 hpsa_print_cmd(h, "aborted", cp);
2937 break;
2938 case CMD_ABORT_FAILED:
2939 hpsa_print_cmd(h, "abort failed", cp);
2940 break;
2941 case CMD_UNSOLICITED_ABORT:
2942 hpsa_print_cmd(h, "unsolicited abort", cp);
2943 break;
2944 case CMD_TIMEOUT:
2945 hpsa_print_cmd(h, "timed out", cp);
2946 break;
2947 case CMD_UNABORTABLE:
2948 hpsa_print_cmd(h, "unabortable", cp);
2949 break;
2950 case CMD_CTLR_LOCKUP:
2951 hpsa_print_cmd(h, "controller lockup detected", cp);
2952 break;
2953 default:
2954 hpsa_print_cmd(h, "unknown status", cp);
2955 dev_warn(d, "Unknown command status %x\n",
2956 ei->CommandStatus);
2960 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2961 u8 page, u8 *buf, size_t bufsize)
2963 int rc = IO_OK;
2964 struct CommandList *c;
2965 struct ErrorInfo *ei;
2967 c = cmd_alloc(h);
2968 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2969 page, scsi3addr, TYPE_CMD)) {
2970 rc = -1;
2971 goto out;
2973 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2974 NO_TIMEOUT);
2975 if (rc)
2976 goto out;
2977 ei = c->err_info;
2978 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2979 hpsa_scsi_interpret_error(h, c);
2980 rc = -1;
2982 out:
2983 cmd_free(h, c);
2984 return rc;
2987 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2988 u8 *scsi3addr)
2990 u8 *buf;
2991 u64 sa = 0;
2992 int rc = 0;
2994 buf = kzalloc(1024, GFP_KERNEL);
2995 if (!buf)
2996 return 0;
2998 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2999 buf, 1024);
3001 if (rc)
3002 goto out;
3004 sa = get_unaligned_be64(buf+12);
3006 out:
3007 kfree(buf);
3008 return sa;
3011 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3012 u16 page, unsigned char *buf,
3013 unsigned char bufsize)
3015 int rc = IO_OK;
3016 struct CommandList *c;
3017 struct ErrorInfo *ei;
3019 c = cmd_alloc(h);
3021 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3022 page, scsi3addr, TYPE_CMD)) {
3023 rc = -1;
3024 goto out;
3026 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3027 NO_TIMEOUT);
3028 if (rc)
3029 goto out;
3030 ei = c->err_info;
3031 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3032 hpsa_scsi_interpret_error(h, c);
3033 rc = -1;
3035 out:
3036 cmd_free(h, c);
3037 return rc;
3040 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3041 u8 reset_type, int reply_queue)
3043 int rc = IO_OK;
3044 struct CommandList *c;
3045 struct ErrorInfo *ei;
3047 c = cmd_alloc(h);
3050 /* fill_cmd can't fail here, no data buffer to map. */
3051 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3052 scsi3addr, TYPE_MSG);
3053 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3054 if (rc) {
3055 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3056 goto out;
3058 /* no unmap needed here because no data xfer. */
3060 ei = c->err_info;
3061 if (ei->CommandStatus != 0) {
3062 hpsa_scsi_interpret_error(h, c);
3063 rc = -1;
3065 out:
3066 cmd_free(h, c);
3067 return rc;
3070 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3071 struct hpsa_scsi_dev_t *dev,
3072 unsigned char *scsi3addr)
3074 int i;
3075 bool match = false;
3076 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3077 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3079 if (hpsa_is_cmd_idle(c))
3080 return false;
3082 switch (c->cmd_type) {
3083 case CMD_SCSI:
3084 case CMD_IOCTL_PEND:
3085 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3086 sizeof(c->Header.LUN.LunAddrBytes));
3087 break;
3089 case CMD_IOACCEL1:
3090 case CMD_IOACCEL2:
3091 if (c->phys_disk == dev) {
3092 /* HBA mode match */
3093 match = true;
3094 } else {
3095 /* Possible RAID mode -- check each phys dev. */
3096 /* FIXME: Do we need to take out a lock here? If
3097 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3098 * instead. */
3099 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3100 /* FIXME: an alternate test might be
3102 * match = dev->phys_disk[i]->ioaccel_handle
3103 * == c2->scsi_nexus; */
3104 match = dev->phys_disk[i] == c->phys_disk;
3107 break;
3109 case IOACCEL2_TMF:
3110 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 match = dev->phys_disk[i]->ioaccel_handle ==
3112 le32_to_cpu(ac->it_nexus);
3114 break;
3116 case 0: /* The command is in the middle of being initialized. */
3117 match = false;
3118 break;
3120 default:
3121 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3122 c->cmd_type);
3123 BUG();
3126 return match;
3129 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3130 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3132 int i;
3133 int rc = 0;
3135 /* We can really only handle one reset at a time */
3136 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3137 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3138 return -EINTR;
3141 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3143 for (i = 0; i < h->nr_cmds; i++) {
3144 struct CommandList *c = h->cmd_pool + i;
3145 int refcount = atomic_inc_return(&c->refcount);
3147 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3148 unsigned long flags;
3151 * Mark the target command as having a reset pending,
3152 * then lock a lock so that the command cannot complete
3153 * while we're considering it. If the command is not
3154 * idle then count it; otherwise revoke the event.
3156 c->reset_pending = dev;
3157 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3158 if (!hpsa_is_cmd_idle(c))
3159 atomic_inc(&dev->reset_cmds_out);
3160 else
3161 c->reset_pending = NULL;
3162 spin_unlock_irqrestore(&h->lock, flags);
3165 cmd_free(h, c);
3168 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3169 if (!rc)
3170 wait_event(h->event_sync_wait_queue,
3171 atomic_read(&dev->reset_cmds_out) == 0 ||
3172 lockup_detected(h));
3174 if (unlikely(lockup_detected(h))) {
3175 dev_warn(&h->pdev->dev,
3176 "Controller lockup detected during reset wait\n");
3177 rc = -ENODEV;
3180 if (unlikely(rc))
3181 atomic_set(&dev->reset_cmds_out, 0);
3182 else
3183 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3185 mutex_unlock(&h->reset_mutex);
3186 return rc;
3189 static void hpsa_get_raid_level(struct ctlr_info *h,
3190 unsigned char *scsi3addr, unsigned char *raid_level)
3192 int rc;
3193 unsigned char *buf;
3195 *raid_level = RAID_UNKNOWN;
3196 buf = kzalloc(64, GFP_KERNEL);
3197 if (!buf)
3198 return;
3200 if (!hpsa_vpd_page_supported(h, scsi3addr,
3201 HPSA_VPD_LV_DEVICE_GEOMETRY))
3202 goto exit;
3204 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3205 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3207 if (rc == 0)
3208 *raid_level = buf[8];
3209 if (*raid_level > RAID_UNKNOWN)
3210 *raid_level = RAID_UNKNOWN;
3211 exit:
3212 kfree(buf);
3213 return;
3216 #define HPSA_MAP_DEBUG
3217 #ifdef HPSA_MAP_DEBUG
3218 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3219 struct raid_map_data *map_buff)
3221 struct raid_map_disk_data *dd = &map_buff->data[0];
3222 int map, row, col;
3223 u16 map_cnt, row_cnt, disks_per_row;
3225 if (rc != 0)
3226 return;
3228 /* Show details only if debugging has been activated. */
3229 if (h->raid_offload_debug < 2)
3230 return;
3232 dev_info(&h->pdev->dev, "structure_size = %u\n",
3233 le32_to_cpu(map_buff->structure_size));
3234 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3235 le32_to_cpu(map_buff->volume_blk_size));
3236 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3237 le64_to_cpu(map_buff->volume_blk_cnt));
3238 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3239 map_buff->phys_blk_shift);
3240 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3241 map_buff->parity_rotation_shift);
3242 dev_info(&h->pdev->dev, "strip_size = %u\n",
3243 le16_to_cpu(map_buff->strip_size));
3244 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3245 le64_to_cpu(map_buff->disk_starting_blk));
3246 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3247 le64_to_cpu(map_buff->disk_blk_cnt));
3248 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3249 le16_to_cpu(map_buff->data_disks_per_row));
3250 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3251 le16_to_cpu(map_buff->metadata_disks_per_row));
3252 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3253 le16_to_cpu(map_buff->row_cnt));
3254 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3255 le16_to_cpu(map_buff->layout_map_count));
3256 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3257 le16_to_cpu(map_buff->flags));
3258 dev_info(&h->pdev->dev, "encryption = %s\n",
3259 le16_to_cpu(map_buff->flags) &
3260 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3261 dev_info(&h->pdev->dev, "dekindex = %u\n",
3262 le16_to_cpu(map_buff->dekindex));
3263 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3264 for (map = 0; map < map_cnt; map++) {
3265 dev_info(&h->pdev->dev, "Map%u:\n", map);
3266 row_cnt = le16_to_cpu(map_buff->row_cnt);
3267 for (row = 0; row < row_cnt; row++) {
3268 dev_info(&h->pdev->dev, " Row%u:\n", row);
3269 disks_per_row =
3270 le16_to_cpu(map_buff->data_disks_per_row);
3271 for (col = 0; col < disks_per_row; col++, dd++)
3272 dev_info(&h->pdev->dev,
3273 " D%02u: h=0x%04x xor=%u,%u\n",
3274 col, dd->ioaccel_handle,
3275 dd->xor_mult[0], dd->xor_mult[1]);
3276 disks_per_row =
3277 le16_to_cpu(map_buff->metadata_disks_per_row);
3278 for (col = 0; col < disks_per_row; col++, dd++)
3279 dev_info(&h->pdev->dev,
3280 " M%02u: h=0x%04x xor=%u,%u\n",
3281 col, dd->ioaccel_handle,
3282 dd->xor_mult[0], dd->xor_mult[1]);
3286 #else
3287 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3288 __attribute__((unused)) int rc,
3289 __attribute__((unused)) struct raid_map_data *map_buff)
3292 #endif
3294 static int hpsa_get_raid_map(struct ctlr_info *h,
3295 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3297 int rc = 0;
3298 struct CommandList *c;
3299 struct ErrorInfo *ei;
3301 c = cmd_alloc(h);
3303 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3304 sizeof(this_device->raid_map), 0,
3305 scsi3addr, TYPE_CMD)) {
3306 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3307 cmd_free(h, c);
3308 return -1;
3310 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3311 NO_TIMEOUT);
3312 if (rc)
3313 goto out;
3314 ei = c->err_info;
3315 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3316 hpsa_scsi_interpret_error(h, c);
3317 rc = -1;
3318 goto out;
3320 cmd_free(h, c);
3322 /* @todo in the future, dynamically allocate RAID map memory */
3323 if (le32_to_cpu(this_device->raid_map.structure_size) >
3324 sizeof(this_device->raid_map)) {
3325 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3326 rc = -1;
3328 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329 return rc;
3330 out:
3331 cmd_free(h, c);
3332 return rc;
3335 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3336 unsigned char scsi3addr[], u16 bmic_device_index,
3337 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3339 int rc = IO_OK;
3340 struct CommandList *c;
3341 struct ErrorInfo *ei;
3343 c = cmd_alloc(h);
3345 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3346 0, RAID_CTLR_LUNID, TYPE_CMD);
3347 if (rc)
3348 goto out;
3350 c->Request.CDB[2] = bmic_device_index & 0xff;
3351 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3353 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3354 NO_TIMEOUT);
3355 if (rc)
3356 goto out;
3357 ei = c->err_info;
3358 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3359 hpsa_scsi_interpret_error(h, c);
3360 rc = -1;
3362 out:
3363 cmd_free(h, c);
3364 return rc;
3367 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3368 struct bmic_identify_controller *buf, size_t bufsize)
3370 int rc = IO_OK;
3371 struct CommandList *c;
3372 struct ErrorInfo *ei;
3374 c = cmd_alloc(h);
3376 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3377 0, RAID_CTLR_LUNID, TYPE_CMD);
3378 if (rc)
3379 goto out;
3381 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3382 NO_TIMEOUT);
3383 if (rc)
3384 goto out;
3385 ei = c->err_info;
3386 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3387 hpsa_scsi_interpret_error(h, c);
3388 rc = -1;
3390 out:
3391 cmd_free(h, c);
3392 return rc;
3395 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3396 unsigned char scsi3addr[], u16 bmic_device_index,
3397 struct bmic_identify_physical_device *buf, size_t bufsize)
3399 int rc = IO_OK;
3400 struct CommandList *c;
3401 struct ErrorInfo *ei;
3403 c = cmd_alloc(h);
3404 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3405 0, RAID_CTLR_LUNID, TYPE_CMD);
3406 if (rc)
3407 goto out;
3409 c->Request.CDB[2] = bmic_device_index & 0xff;
3410 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3412 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3413 NO_TIMEOUT);
3414 ei = c->err_info;
3415 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3416 hpsa_scsi_interpret_error(h, c);
3417 rc = -1;
3419 out:
3420 cmd_free(h, c);
3422 return rc;
3426 * get enclosure information
3427 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3428 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3429 * Uses id_physical_device to determine the box_index.
3431 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3432 unsigned char *scsi3addr,
3433 struct ReportExtendedLUNdata *rlep, int rle_index,
3434 struct hpsa_scsi_dev_t *encl_dev)
3436 int rc = -1;
3437 struct CommandList *c = NULL;
3438 struct ErrorInfo *ei = NULL;
3439 struct bmic_sense_storage_box_params *bssbp = NULL;
3440 struct bmic_identify_physical_device *id_phys = NULL;
3441 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3442 u16 bmic_device_index = 0;
3444 encl_dev->eli =
3445 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3447 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3449 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3450 rc = IO_OK;
3451 goto out;
3454 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3455 rc = IO_OK;
3456 goto out;
3459 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3460 if (!bssbp)
3461 goto out;
3463 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3464 if (!id_phys)
3465 goto out;
3467 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3468 id_phys, sizeof(*id_phys));
3469 if (rc) {
3470 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3471 __func__, encl_dev->external, bmic_device_index);
3472 goto out;
3475 c = cmd_alloc(h);
3477 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3478 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3480 if (rc)
3481 goto out;
3483 if (id_phys->phys_connector[1] == 'E')
3484 c->Request.CDB[5] = id_phys->box_index;
3485 else
3486 c->Request.CDB[5] = 0;
3488 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3489 NO_TIMEOUT);
3490 if (rc)
3491 goto out;
3493 ei = c->err_info;
3494 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3495 rc = -1;
3496 goto out;
3499 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3500 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3501 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3503 rc = IO_OK;
3504 out:
3505 kfree(bssbp);
3506 kfree(id_phys);
3508 if (c)
3509 cmd_free(h, c);
3511 if (rc != IO_OK)
3512 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3513 "Error, could not get enclosure information");
3516 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3517 unsigned char *scsi3addr)
3519 struct ReportExtendedLUNdata *physdev;
3520 u32 nphysicals;
3521 u64 sa = 0;
3522 int i;
3524 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3525 if (!physdev)
3526 return 0;
3528 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3529 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3530 kfree(physdev);
3531 return 0;
3533 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3535 for (i = 0; i < nphysicals; i++)
3536 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3537 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3538 break;
3541 kfree(physdev);
3543 return sa;
3546 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3547 struct hpsa_scsi_dev_t *dev)
3549 int rc;
3550 u64 sa = 0;
3552 if (is_hba_lunid(scsi3addr)) {
3553 struct bmic_sense_subsystem_info *ssi;
3555 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3556 if (!ssi)
3557 return;
3559 rc = hpsa_bmic_sense_subsystem_information(h,
3560 scsi3addr, 0, ssi, sizeof(*ssi));
3561 if (rc == 0) {
3562 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3563 h->sas_address = sa;
3566 kfree(ssi);
3567 } else
3568 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3570 dev->sas_address = sa;
3573 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3574 struct ReportExtendedLUNdata *physdev)
3576 u32 nphysicals;
3577 int i;
3579 if (h->discovery_polling)
3580 return;
3582 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3584 for (i = 0; i < nphysicals; i++) {
3585 if (physdev->LUN[i].device_type ==
3586 BMIC_DEVICE_TYPE_CONTROLLER
3587 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3588 dev_info(&h->pdev->dev,
3589 "External controller present, activate discovery polling and disable rld caching\n");
3590 hpsa_disable_rld_caching(h);
3591 h->discovery_polling = 1;
3592 break;
3597 /* Get a device id from inquiry page 0x83 */
3598 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3599 unsigned char scsi3addr[], u8 page)
3601 int rc;
3602 int i;
3603 int pages;
3604 unsigned char *buf, bufsize;
3606 buf = kzalloc(256, GFP_KERNEL);
3607 if (!buf)
3608 return false;
3610 /* Get the size of the page list first */
3611 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3612 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3613 buf, HPSA_VPD_HEADER_SZ);
3614 if (rc != 0)
3615 goto exit_unsupported;
3616 pages = buf[3];
3617 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3618 bufsize = pages + HPSA_VPD_HEADER_SZ;
3619 else
3620 bufsize = 255;
3622 /* Get the whole VPD page list */
3623 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625 buf, bufsize);
3626 if (rc != 0)
3627 goto exit_unsupported;
3629 pages = buf[3];
3630 for (i = 1; i <= pages; i++)
3631 if (buf[3 + i] == page)
3632 goto exit_supported;
3633 exit_unsupported:
3634 kfree(buf);
3635 return false;
3636 exit_supported:
3637 kfree(buf);
3638 return true;
3642 * Called during a scan operation.
3643 * Sets ioaccel status on the new device list, not the existing device list
3645 * The device list used during I/O will be updated later in
3646 * adjust_hpsa_scsi_table.
3648 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3649 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3651 int rc;
3652 unsigned char *buf;
3653 u8 ioaccel_status;
3655 this_device->offload_config = 0;
3656 this_device->offload_enabled = 0;
3657 this_device->offload_to_be_enabled = 0;
3659 buf = kzalloc(64, GFP_KERNEL);
3660 if (!buf)
3661 return;
3662 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3663 goto out;
3664 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3665 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3666 if (rc != 0)
3667 goto out;
3669 #define IOACCEL_STATUS_BYTE 4
3670 #define OFFLOAD_CONFIGURED_BIT 0x01
3671 #define OFFLOAD_ENABLED_BIT 0x02
3672 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3673 this_device->offload_config =
3674 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3675 if (this_device->offload_config) {
3676 this_device->offload_to_be_enabled =
3677 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3678 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3679 this_device->offload_to_be_enabled = 0;
3682 out:
3683 kfree(buf);
3684 return;
3687 /* Get the device id from inquiry page 0x83 */
3688 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3689 unsigned char *device_id, int index, int buflen)
3691 int rc;
3692 unsigned char *buf;
3694 /* Does controller have VPD for device id? */
3695 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3696 return 1; /* not supported */
3698 buf = kzalloc(64, GFP_KERNEL);
3699 if (!buf)
3700 return -ENOMEM;
3702 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3703 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3704 if (rc == 0) {
3705 if (buflen > 16)
3706 buflen = 16;
3707 memcpy(device_id, &buf[8], buflen);
3710 kfree(buf);
3712 return rc; /*0 - got id, otherwise, didn't */
3715 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3716 void *buf, int bufsize,
3717 int extended_response)
3719 int rc = IO_OK;
3720 struct CommandList *c;
3721 unsigned char scsi3addr[8];
3722 struct ErrorInfo *ei;
3724 c = cmd_alloc(h);
3726 /* address the controller */
3727 memset(scsi3addr, 0, sizeof(scsi3addr));
3728 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3729 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3730 rc = -EAGAIN;
3731 goto out;
3733 if (extended_response)
3734 c->Request.CDB[1] = extended_response;
3735 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3736 NO_TIMEOUT);
3737 if (rc)
3738 goto out;
3739 ei = c->err_info;
3740 if (ei->CommandStatus != 0 &&
3741 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3742 hpsa_scsi_interpret_error(h, c);
3743 rc = -EIO;
3744 } else {
3745 struct ReportLUNdata *rld = buf;
3747 if (rld->extended_response_flag != extended_response) {
3748 if (!h->legacy_board) {
3749 dev_err(&h->pdev->dev,
3750 "report luns requested format %u, got %u\n",
3751 extended_response,
3752 rld->extended_response_flag);
3753 rc = -EINVAL;
3754 } else
3755 rc = -EOPNOTSUPP;
3758 out:
3759 cmd_free(h, c);
3760 return rc;
3763 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3764 struct ReportExtendedLUNdata *buf, int bufsize)
3766 int rc;
3767 struct ReportLUNdata *lbuf;
3769 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3770 HPSA_REPORT_PHYS_EXTENDED);
3771 if (!rc || rc != -EOPNOTSUPP)
3772 return rc;
3774 /* REPORT PHYS EXTENDED is not supported */
3775 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3776 if (!lbuf)
3777 return -ENOMEM;
3779 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3780 if (!rc) {
3781 int i;
3782 u32 nphys;
3784 /* Copy ReportLUNdata header */
3785 memcpy(buf, lbuf, 8);
3786 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3787 for (i = 0; i < nphys; i++)
3788 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3790 kfree(lbuf);
3791 return rc;
3794 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3795 struct ReportLUNdata *buf, int bufsize)
3797 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3800 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3801 int bus, int target, int lun)
3803 device->bus = bus;
3804 device->target = target;
3805 device->lun = lun;
3808 /* Use VPD inquiry to get details of volume status */
3809 static int hpsa_get_volume_status(struct ctlr_info *h,
3810 unsigned char scsi3addr[])
3812 int rc;
3813 int status;
3814 int size;
3815 unsigned char *buf;
3817 buf = kzalloc(64, GFP_KERNEL);
3818 if (!buf)
3819 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3821 /* Does controller have VPD for logical volume status? */
3822 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3823 goto exit_failed;
3825 /* Get the size of the VPD return buffer */
3826 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827 buf, HPSA_VPD_HEADER_SZ);
3828 if (rc != 0)
3829 goto exit_failed;
3830 size = buf[3];
3832 /* Now get the whole VPD buffer */
3833 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3834 buf, size + HPSA_VPD_HEADER_SZ);
3835 if (rc != 0)
3836 goto exit_failed;
3837 status = buf[4]; /* status byte */
3839 kfree(buf);
3840 return status;
3841 exit_failed:
3842 kfree(buf);
3843 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3846 /* Determine offline status of a volume.
3847 * Return either:
3848 * 0 (not offline)
3849 * 0xff (offline for unknown reasons)
3850 * # (integer code indicating one of several NOT READY states
3851 * describing why a volume is to be kept offline)
3853 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3854 unsigned char scsi3addr[])
3856 struct CommandList *c;
3857 unsigned char *sense;
3858 u8 sense_key, asc, ascq;
3859 int sense_len;
3860 int rc, ldstat = 0;
3861 u16 cmd_status;
3862 u8 scsi_status;
3863 #define ASC_LUN_NOT_READY 0x04
3864 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3865 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3867 c = cmd_alloc(h);
3869 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3870 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3871 NO_TIMEOUT);
3872 if (rc) {
3873 cmd_free(h, c);
3874 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3876 sense = c->err_info->SenseInfo;
3877 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3878 sense_len = sizeof(c->err_info->SenseInfo);
3879 else
3880 sense_len = c->err_info->SenseLen;
3881 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3882 cmd_status = c->err_info->CommandStatus;
3883 scsi_status = c->err_info->ScsiStatus;
3884 cmd_free(h, c);
3886 /* Determine the reason for not ready state */
3887 ldstat = hpsa_get_volume_status(h, scsi3addr);
3889 /* Keep volume offline in certain cases: */
3890 switch (ldstat) {
3891 case HPSA_LV_FAILED:
3892 case HPSA_LV_UNDERGOING_ERASE:
3893 case HPSA_LV_NOT_AVAILABLE:
3894 case HPSA_LV_UNDERGOING_RPI:
3895 case HPSA_LV_PENDING_RPI:
3896 case HPSA_LV_ENCRYPTED_NO_KEY:
3897 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3898 case HPSA_LV_UNDERGOING_ENCRYPTION:
3899 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3900 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3901 return ldstat;
3902 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3903 /* If VPD status page isn't available,
3904 * use ASC/ASCQ to determine state
3906 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3907 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3908 return ldstat;
3909 break;
3910 default:
3911 break;
3913 return HPSA_LV_OK;
3916 static int hpsa_update_device_info(struct ctlr_info *h,
3917 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3918 unsigned char *is_OBDR_device)
3921 #define OBDR_SIG_OFFSET 43
3922 #define OBDR_TAPE_SIG "$DR-10"
3923 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3924 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3926 unsigned char *inq_buff;
3927 unsigned char *obdr_sig;
3928 int rc = 0;
3930 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3931 if (!inq_buff) {
3932 rc = -ENOMEM;
3933 goto bail_out;
3936 /* Do an inquiry to the device to see what it is. */
3937 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3938 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3939 dev_err(&h->pdev->dev,
3940 "%s: inquiry failed, device will be skipped.\n",
3941 __func__);
3942 rc = HPSA_INQUIRY_FAILED;
3943 goto bail_out;
3946 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3947 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3949 this_device->devtype = (inq_buff[0] & 0x1f);
3950 memcpy(this_device->scsi3addr, scsi3addr, 8);
3951 memcpy(this_device->vendor, &inq_buff[8],
3952 sizeof(this_device->vendor));
3953 memcpy(this_device->model, &inq_buff[16],
3954 sizeof(this_device->model));
3955 this_device->rev = inq_buff[2];
3956 memset(this_device->device_id, 0,
3957 sizeof(this_device->device_id));
3958 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3959 sizeof(this_device->device_id)) < 0)
3960 dev_err(&h->pdev->dev,
3961 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3962 h->ctlr, __func__,
3963 h->scsi_host->host_no,
3964 this_device->target, this_device->lun,
3965 scsi_device_type(this_device->devtype),
3966 this_device->model);
3968 if ((this_device->devtype == TYPE_DISK ||
3969 this_device->devtype == TYPE_ZBC) &&
3970 is_logical_dev_addr_mode(scsi3addr)) {
3971 unsigned char volume_offline;
3973 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3974 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3975 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3976 volume_offline = hpsa_volume_offline(h, scsi3addr);
3977 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978 h->legacy_board) {
3980 * Legacy boards might not support volume status
3982 dev_info(&h->pdev->dev,
3983 "C0:T%d:L%d Volume status not available, assuming online.\n",
3984 this_device->target, this_device->lun);
3985 volume_offline = 0;
3987 this_device->volume_offline = volume_offline;
3988 if (volume_offline == HPSA_LV_FAILED) {
3989 rc = HPSA_LV_FAILED;
3990 dev_err(&h->pdev->dev,
3991 "%s: LV failed, device will be skipped.\n",
3992 __func__);
3993 goto bail_out;
3995 } else {
3996 this_device->raid_level = RAID_UNKNOWN;
3997 this_device->offload_config = 0;
3998 this_device->offload_enabled = 0;
3999 this_device->offload_to_be_enabled = 0;
4000 this_device->hba_ioaccel_enabled = 0;
4001 this_device->volume_offline = 0;
4002 this_device->queue_depth = h->nr_cmds;
4005 if (this_device->external)
4006 this_device->queue_depth = EXTERNAL_QD;
4008 if (is_OBDR_device) {
4009 /* See if this is a One-Button-Disaster-Recovery device
4010 * by looking for "$DR-10" at offset 43 in inquiry data.
4012 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4013 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4014 strncmp(obdr_sig, OBDR_TAPE_SIG,
4015 OBDR_SIG_LEN) == 0);
4017 kfree(inq_buff);
4018 return 0;
4020 bail_out:
4021 kfree(inq_buff);
4022 return rc;
4026 * Helper function to assign bus, target, lun mapping of devices.
4027 * Logical drive target and lun are assigned at this time, but
4028 * physical device lun and target assignment are deferred (assigned
4029 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4031 static void figure_bus_target_lun(struct ctlr_info *h,
4032 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4034 u32 lunid = get_unaligned_le32(lunaddrbytes);
4036 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4037 /* physical device, target and lun filled in later */
4038 if (is_hba_lunid(lunaddrbytes)) {
4039 int bus = HPSA_HBA_BUS;
4041 if (!device->rev)
4042 bus = HPSA_LEGACY_HBA_BUS;
4043 hpsa_set_bus_target_lun(device,
4044 bus, 0, lunid & 0x3fff);
4045 } else
4046 /* defer target, lun assignment for physical devices */
4047 hpsa_set_bus_target_lun(device,
4048 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049 return;
4051 /* It's a logical device */
4052 if (device->external) {
4053 hpsa_set_bus_target_lun(device,
4054 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4055 lunid & 0x00ff);
4056 return;
4058 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4059 0, lunid & 0x3fff);
4062 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4063 int i, int nphysicals, int nlocal_logicals)
4065 /* In report logicals, local logicals are listed first,
4066 * then any externals.
4068 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4070 if (i == raid_ctlr_position)
4071 return 0;
4073 if (i < logicals_start)
4074 return 0;
4076 /* i is in logicals range, but still within local logicals */
4077 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078 return 0;
4080 return 1; /* it's an external lun */
4084 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4085 * logdev. The number of luns in physdev and logdev are returned in
4086 * *nphysicals and *nlogicals, respectively.
4087 * Returns 0 on success, -1 otherwise.
4089 static int hpsa_gather_lun_info(struct ctlr_info *h,
4090 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4091 struct ReportLUNdata *logdev, u32 *nlogicals)
4093 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4094 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095 return -1;
4097 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4098 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4099 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4100 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4101 *nphysicals = HPSA_MAX_PHYS_LUN;
4103 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4104 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105 return -1;
4107 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4108 /* Reject Logicals in excess of our max capability. */
4109 if (*nlogicals > HPSA_MAX_LUN) {
4110 dev_warn(&h->pdev->dev,
4111 "maximum logical LUNs (%d) exceeded. "
4112 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4113 *nlogicals - HPSA_MAX_LUN);
4114 *nlogicals = HPSA_MAX_LUN;
4116 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4117 dev_warn(&h->pdev->dev,
4118 "maximum logical + physical LUNs (%d) exceeded. "
4119 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4120 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4121 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4123 return 0;
4126 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4127 int i, int nphysicals, int nlogicals,
4128 struct ReportExtendedLUNdata *physdev_list,
4129 struct ReportLUNdata *logdev_list)
4131 /* Helper function, figure out where the LUN ID info is coming from
4132 * given index i, lists of physical and logical devices, where in
4133 * the list the raid controller is supposed to appear (first or last)
4136 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4137 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4139 if (i == raid_ctlr_position)
4140 return RAID_CTLR_LUNID;
4142 if (i < logicals_start)
4143 return &physdev_list->LUN[i -
4144 (raid_ctlr_position == 0)].lunid[0];
4146 if (i < last_device)
4147 return &logdev_list->LUN[i - nphysicals -
4148 (raid_ctlr_position == 0)][0];
4149 BUG();
4150 return NULL;
4153 /* get physical drive ioaccel handle and queue depth */
4154 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4155 struct hpsa_scsi_dev_t *dev,
4156 struct ReportExtendedLUNdata *rlep, int rle_index,
4157 struct bmic_identify_physical_device *id_phys)
4159 int rc;
4160 struct ext_report_lun_entry *rle;
4162 rle = &rlep->LUN[rle_index];
4164 dev->ioaccel_handle = rle->ioaccel_handle;
4165 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4166 dev->hba_ioaccel_enabled = 1;
4167 memset(id_phys, 0, sizeof(*id_phys));
4168 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4169 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170 sizeof(*id_phys));
4171 if (!rc)
4172 /* Reserve space for FW operations */
4173 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4174 #define DRIVE_QUEUE_DEPTH 7
4175 dev->queue_depth =
4176 le16_to_cpu(id_phys->current_queue_depth_limit) -
4177 DRIVE_CMDS_RESERVED_FOR_FW;
4178 else
4179 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4182 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4183 struct ReportExtendedLUNdata *rlep, int rle_index,
4184 struct bmic_identify_physical_device *id_phys)
4186 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4188 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4189 this_device->hba_ioaccel_enabled = 1;
4191 memcpy(&this_device->active_path_index,
4192 &id_phys->active_path_number,
4193 sizeof(this_device->active_path_index));
4194 memcpy(&this_device->path_map,
4195 &id_phys->redundant_path_present_map,
4196 sizeof(this_device->path_map));
4197 memcpy(&this_device->box,
4198 &id_phys->alternate_paths_phys_box_on_port,
4199 sizeof(this_device->box));
4200 memcpy(&this_device->phys_connector,
4201 &id_phys->alternate_paths_phys_connector,
4202 sizeof(this_device->phys_connector));
4203 memcpy(&this_device->bay,
4204 &id_phys->phys_bay_in_box,
4205 sizeof(this_device->bay));
4208 /* get number of local logical disks. */
4209 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4210 struct bmic_identify_controller *id_ctlr,
4211 u32 *nlocals)
4213 int rc;
4215 if (!id_ctlr) {
4216 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4217 __func__);
4218 return -ENOMEM;
4220 memset(id_ctlr, 0, sizeof(*id_ctlr));
4221 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4222 if (!rc)
4223 if (id_ctlr->configured_logical_drive_count < 255)
4224 *nlocals = id_ctlr->configured_logical_drive_count;
4225 else
4226 *nlocals = le16_to_cpu(
4227 id_ctlr->extended_logical_unit_count);
4228 else
4229 *nlocals = -1;
4230 return rc;
4233 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4235 struct bmic_identify_physical_device *id_phys;
4236 bool is_spare = false;
4237 int rc;
4239 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4240 if (!id_phys)
4241 return false;
4243 rc = hpsa_bmic_id_physical_device(h,
4244 lunaddrbytes,
4245 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4246 id_phys, sizeof(*id_phys));
4247 if (rc == 0)
4248 is_spare = (id_phys->more_flags >> 6) & 0x01;
4250 kfree(id_phys);
4251 return is_spare;
4254 #define RPL_DEV_FLAG_NON_DISK 0x1
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4258 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4260 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4261 struct ext_report_lun_entry *rle)
4263 u8 device_flags;
4264 u8 device_type;
4266 if (!MASKED_DEVICE(lunaddrbytes))
4267 return false;
4269 device_flags = rle->device_flags;
4270 device_type = rle->device_type;
4272 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4273 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4274 return false;
4275 return true;
4278 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279 return false;
4281 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4282 return false;
4285 * Spares may be spun down, we do not want to
4286 * do an Inquiry to a RAID set spare drive as
4287 * that would have them spun up, that is a
4288 * performance hit because I/O to the RAID device
4289 * stops while the spin up occurs which can take
4290 * over 50 seconds.
4292 if (hpsa_is_disk_spare(h, lunaddrbytes))
4293 return true;
4295 return false;
4298 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4300 /* the idea here is we could get notified
4301 * that some devices have changed, so we do a report
4302 * physical luns and report logical luns cmd, and adjust
4303 * our list of devices accordingly.
4305 * The scsi3addr's of devices won't change so long as the
4306 * adapter is not reset. That means we can rescan and
4307 * tell which devices we already know about, vs. new
4308 * devices, vs. disappearing devices.
4310 struct ReportExtendedLUNdata *physdev_list = NULL;
4311 struct ReportLUNdata *logdev_list = NULL;
4312 struct bmic_identify_physical_device *id_phys = NULL;
4313 struct bmic_identify_controller *id_ctlr = NULL;
4314 u32 nphysicals = 0;
4315 u32 nlogicals = 0;
4316 u32 nlocal_logicals = 0;
4317 u32 ndev_allocated = 0;
4318 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4319 int ncurrent = 0;
4320 int i, n_ext_target_devs, ndevs_to_allocate;
4321 int raid_ctlr_position;
4322 bool physical_device;
4323 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4325 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4326 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4327 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4328 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4329 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4330 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4332 if (!currentsd || !physdev_list || !logdev_list ||
4333 !tmpdevice || !id_phys || !id_ctlr) {
4334 dev_err(&h->pdev->dev, "out of memory\n");
4335 goto out;
4337 memset(lunzerobits, 0, sizeof(lunzerobits));
4339 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4341 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4342 logdev_list, &nlogicals)) {
4343 h->drv_req_rescan = 1;
4344 goto out;
4347 /* Set number of local logicals (non PTRAID) */
4348 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4349 dev_warn(&h->pdev->dev,
4350 "%s: Can't determine number of local logical devices.\n",
4351 __func__);
4354 /* We might see up to the maximum number of logical and physical disks
4355 * plus external target devices, and a device for the local RAID
4356 * controller.
4358 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4360 hpsa_ext_ctrl_present(h, physdev_list);
4362 /* Allocate the per device structures */
4363 for (i = 0; i < ndevs_to_allocate; i++) {
4364 if (i >= HPSA_MAX_DEVICES) {
4365 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4366 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4367 ndevs_to_allocate - HPSA_MAX_DEVICES);
4368 break;
4371 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4372 if (!currentsd[i]) {
4373 h->drv_req_rescan = 1;
4374 goto out;
4376 ndev_allocated++;
4379 if (is_scsi_rev_5(h))
4380 raid_ctlr_position = 0;
4381 else
4382 raid_ctlr_position = nphysicals + nlogicals;
4384 /* adjust our table of devices */
4385 n_ext_target_devs = 0;
4386 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4387 u8 *lunaddrbytes, is_OBDR = 0;
4388 int rc = 0;
4389 int phys_dev_index = i - (raid_ctlr_position == 0);
4390 bool skip_device = false;
4392 memset(tmpdevice, 0, sizeof(*tmpdevice));
4394 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4396 /* Figure out where the LUN ID info is coming from */
4397 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4398 i, nphysicals, nlogicals, physdev_list, logdev_list);
4400 /* Determine if this is a lun from an external target array */
4401 tmpdevice->external =
4402 figure_external_status(h, raid_ctlr_position, i,
4403 nphysicals, nlocal_logicals);
4406 * Skip over some devices such as a spare.
4408 if (!tmpdevice->external && physical_device) {
4409 skip_device = hpsa_skip_device(h, lunaddrbytes,
4410 &physdev_list->LUN[phys_dev_index]);
4411 if (skip_device)
4412 continue;
4415 /* Get device type, vendor, model, device id, raid_map */
4416 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4417 &is_OBDR);
4418 if (rc == -ENOMEM) {
4419 dev_warn(&h->pdev->dev,
4420 "Out of memory, rescan deferred.\n");
4421 h->drv_req_rescan = 1;
4422 goto out;
4424 if (rc) {
4425 h->drv_req_rescan = 1;
4426 continue;
4429 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4430 this_device = currentsd[ncurrent];
4432 *this_device = *tmpdevice;
4433 this_device->physical_device = physical_device;
4436 * Expose all devices except for physical devices that
4437 * are masked.
4439 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4440 this_device->expose_device = 0;
4441 else
4442 this_device->expose_device = 1;
4446 * Get the SAS address for physical devices that are exposed.
4448 if (this_device->physical_device && this_device->expose_device)
4449 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4451 switch (this_device->devtype) {
4452 case TYPE_ROM:
4453 /* We don't *really* support actual CD-ROM devices,
4454 * just "One Button Disaster Recovery" tape drive
4455 * which temporarily pretends to be a CD-ROM drive.
4456 * So we check that the device is really an OBDR tape
4457 * device by checking for "$DR-10" in bytes 43-48 of
4458 * the inquiry data.
4460 if (is_OBDR)
4461 ncurrent++;
4462 break;
4463 case TYPE_DISK:
4464 case TYPE_ZBC:
4465 if (this_device->physical_device) {
4466 /* The disk is in HBA mode. */
4467 /* Never use RAID mapper in HBA mode. */
4468 this_device->offload_enabled = 0;
4469 hpsa_get_ioaccel_drive_info(h, this_device,
4470 physdev_list, phys_dev_index, id_phys);
4471 hpsa_get_path_info(this_device,
4472 physdev_list, phys_dev_index, id_phys);
4474 ncurrent++;
4475 break;
4476 case TYPE_TAPE:
4477 case TYPE_MEDIUM_CHANGER:
4478 ncurrent++;
4479 break;
4480 case TYPE_ENCLOSURE:
4481 if (!this_device->external)
4482 hpsa_get_enclosure_info(h, lunaddrbytes,
4483 physdev_list, phys_dev_index,
4484 this_device);
4485 ncurrent++;
4486 break;
4487 case TYPE_RAID:
4488 /* Only present the Smartarray HBA as a RAID controller.
4489 * If it's a RAID controller other than the HBA itself
4490 * (an external RAID controller, MSA500 or similar)
4491 * don't present it.
4493 if (!is_hba_lunid(lunaddrbytes))
4494 break;
4495 ncurrent++;
4496 break;
4497 default:
4498 break;
4500 if (ncurrent >= HPSA_MAX_DEVICES)
4501 break;
4504 if (h->sas_host == NULL) {
4505 int rc = 0;
4507 rc = hpsa_add_sas_host(h);
4508 if (rc) {
4509 dev_warn(&h->pdev->dev,
4510 "Could not add sas host %d\n", rc);
4511 goto out;
4515 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 out:
4517 kfree(tmpdevice);
4518 for (i = 0; i < ndev_allocated; i++)
4519 kfree(currentsd[i]);
4520 kfree(currentsd);
4521 kfree(physdev_list);
4522 kfree(logdev_list);
4523 kfree(id_ctlr);
4524 kfree(id_phys);
4527 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4528 struct scatterlist *sg)
4530 u64 addr64 = (u64) sg_dma_address(sg);
4531 unsigned int len = sg_dma_len(sg);
4533 desc->Addr = cpu_to_le64(addr64);
4534 desc->Len = cpu_to_le32(len);
4535 desc->Ext = 0;
4539 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4540 * dma mapping and fills in the scatter gather entries of the
4541 * hpsa command, cp.
4543 static int hpsa_scatter_gather(struct ctlr_info *h,
4544 struct CommandList *cp,
4545 struct scsi_cmnd *cmd)
4547 struct scatterlist *sg;
4548 int use_sg, i, sg_limit, chained, last_sg;
4549 struct SGDescriptor *curr_sg;
4551 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4553 use_sg = scsi_dma_map(cmd);
4554 if (use_sg < 0)
4555 return use_sg;
4557 if (!use_sg)
4558 goto sglist_finished;
4561 * If the number of entries is greater than the max for a single list,
4562 * then we have a chained list; we will set up all but one entry in the
4563 * first list (the last entry is saved for link information);
4564 * otherwise, we don't have a chained list and we'll set up at each of
4565 * the entries in the one list.
4567 curr_sg = cp->SG;
4568 chained = use_sg > h->max_cmd_sg_entries;
4569 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4570 last_sg = scsi_sg_count(cmd) - 1;
4571 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4572 hpsa_set_sg_descriptor(curr_sg, sg);
4573 curr_sg++;
4576 if (chained) {
4578 * Continue with the chained list. Set curr_sg to the chained
4579 * list. Modify the limit to the total count less the entries
4580 * we've already set up. Resume the scan at the list entry
4581 * where the previous loop left off.
4583 curr_sg = h->cmd_sg_list[cp->cmdindex];
4584 sg_limit = use_sg - sg_limit;
4585 for_each_sg(sg, sg, sg_limit, i) {
4586 hpsa_set_sg_descriptor(curr_sg, sg);
4587 curr_sg++;
4591 /* Back the pointer up to the last entry and mark it as "last". */
4592 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4594 if (use_sg + chained > h->maxSG)
4595 h->maxSG = use_sg + chained;
4597 if (chained) {
4598 cp->Header.SGList = h->max_cmd_sg_entries;
4599 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4600 if (hpsa_map_sg_chain_block(h, cp)) {
4601 scsi_dma_unmap(cmd);
4602 return -1;
4604 return 0;
4607 sglist_finished:
4609 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4610 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4611 return 0;
4614 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4615 u8 *cdb, int cdb_len,
4616 const char *func)
4618 dev_warn(&h->pdev->dev,
4619 "%s: Blocking zero-length request: CDB:%*phN\n",
4620 func, cdb_len, cdb);
4623 #define IO_ACCEL_INELIGIBLE 1
4624 /* zero-length transfers trigger hardware errors. */
4625 static bool is_zero_length_transfer(u8 *cdb)
4627 u32 block_cnt;
4629 /* Block zero-length transfer sizes on certain commands. */
4630 switch (cdb[0]) {
4631 case READ_10:
4632 case WRITE_10:
4633 case VERIFY: /* 0x2F */
4634 case WRITE_VERIFY: /* 0x2E */
4635 block_cnt = get_unaligned_be16(&cdb[7]);
4636 break;
4637 case READ_12:
4638 case WRITE_12:
4639 case VERIFY_12: /* 0xAF */
4640 case WRITE_VERIFY_12: /* 0xAE */
4641 block_cnt = get_unaligned_be32(&cdb[6]);
4642 break;
4643 case READ_16:
4644 case WRITE_16:
4645 case VERIFY_16: /* 0x8F */
4646 block_cnt = get_unaligned_be32(&cdb[10]);
4647 break;
4648 default:
4649 return false;
4652 return block_cnt == 0;
4655 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4657 int is_write = 0;
4658 u32 block;
4659 u32 block_cnt;
4661 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4662 switch (cdb[0]) {
4663 case WRITE_6:
4664 case WRITE_12:
4665 is_write = 1;
4666 /* fall through */
4667 case READ_6:
4668 case READ_12:
4669 if (*cdb_len == 6) {
4670 block = (((cdb[1] & 0x1F) << 16) |
4671 (cdb[2] << 8) |
4672 cdb[3]);
4673 block_cnt = cdb[4];
4674 if (block_cnt == 0)
4675 block_cnt = 256;
4676 } else {
4677 BUG_ON(*cdb_len != 12);
4678 block = get_unaligned_be32(&cdb[2]);
4679 block_cnt = get_unaligned_be32(&cdb[6]);
4681 if (block_cnt > 0xffff)
4682 return IO_ACCEL_INELIGIBLE;
4684 cdb[0] = is_write ? WRITE_10 : READ_10;
4685 cdb[1] = 0;
4686 cdb[2] = (u8) (block >> 24);
4687 cdb[3] = (u8) (block >> 16);
4688 cdb[4] = (u8) (block >> 8);
4689 cdb[5] = (u8) (block);
4690 cdb[6] = 0;
4691 cdb[7] = (u8) (block_cnt >> 8);
4692 cdb[8] = (u8) (block_cnt);
4693 cdb[9] = 0;
4694 *cdb_len = 10;
4695 break;
4697 return 0;
4700 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4701 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4702 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4704 struct scsi_cmnd *cmd = c->scsi_cmd;
4705 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4706 unsigned int len;
4707 unsigned int total_len = 0;
4708 struct scatterlist *sg;
4709 u64 addr64;
4710 int use_sg, i;
4711 struct SGDescriptor *curr_sg;
4712 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4714 /* TODO: implement chaining support */
4715 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4716 atomic_dec(&phys_disk->ioaccel_cmds_out);
4717 return IO_ACCEL_INELIGIBLE;
4720 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4722 if (is_zero_length_transfer(cdb)) {
4723 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4724 atomic_dec(&phys_disk->ioaccel_cmds_out);
4725 return IO_ACCEL_INELIGIBLE;
4728 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4729 atomic_dec(&phys_disk->ioaccel_cmds_out);
4730 return IO_ACCEL_INELIGIBLE;
4733 c->cmd_type = CMD_IOACCEL1;
4735 /* Adjust the DMA address to point to the accelerated command buffer */
4736 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4737 (c->cmdindex * sizeof(*cp));
4738 BUG_ON(c->busaddr & 0x0000007F);
4740 use_sg = scsi_dma_map(cmd);
4741 if (use_sg < 0) {
4742 atomic_dec(&phys_disk->ioaccel_cmds_out);
4743 return use_sg;
4746 if (use_sg) {
4747 curr_sg = cp->SG;
4748 scsi_for_each_sg(cmd, sg, use_sg, i) {
4749 addr64 = (u64) sg_dma_address(sg);
4750 len = sg_dma_len(sg);
4751 total_len += len;
4752 curr_sg->Addr = cpu_to_le64(addr64);
4753 curr_sg->Len = cpu_to_le32(len);
4754 curr_sg->Ext = cpu_to_le32(0);
4755 curr_sg++;
4757 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4759 switch (cmd->sc_data_direction) {
4760 case DMA_TO_DEVICE:
4761 control |= IOACCEL1_CONTROL_DATA_OUT;
4762 break;
4763 case DMA_FROM_DEVICE:
4764 control |= IOACCEL1_CONTROL_DATA_IN;
4765 break;
4766 case DMA_NONE:
4767 control |= IOACCEL1_CONTROL_NODATAXFER;
4768 break;
4769 default:
4770 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4771 cmd->sc_data_direction);
4772 BUG();
4773 break;
4775 } else {
4776 control |= IOACCEL1_CONTROL_NODATAXFER;
4779 c->Header.SGList = use_sg;
4780 /* Fill out the command structure to submit */
4781 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4782 cp->transfer_len = cpu_to_le32(total_len);
4783 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4784 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4785 cp->control = cpu_to_le32(control);
4786 memcpy(cp->CDB, cdb, cdb_len);
4787 memcpy(cp->CISS_LUN, scsi3addr, 8);
4788 /* Tag was already set at init time. */
4789 enqueue_cmd_and_start_io(h, c);
4790 return 0;
4794 * Queue a command directly to a device behind the controller using the
4795 * I/O accelerator path.
4797 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4798 struct CommandList *c)
4800 struct scsi_cmnd *cmd = c->scsi_cmd;
4801 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4803 if (!dev)
4804 return -1;
4806 c->phys_disk = dev;
4808 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4809 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4813 * Set encryption parameters for the ioaccel2 request
4815 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4816 struct CommandList *c, struct io_accel2_cmd *cp)
4818 struct scsi_cmnd *cmd = c->scsi_cmd;
4819 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4820 struct raid_map_data *map = &dev->raid_map;
4821 u64 first_block;
4823 /* Are we doing encryption on this device */
4824 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4825 return;
4826 /* Set the data encryption key index. */
4827 cp->dekindex = map->dekindex;
4829 /* Set the encryption enable flag, encoded into direction field. */
4830 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4832 /* Set encryption tweak values based on logical block address
4833 * If block size is 512, tweak value is LBA.
4834 * For other block sizes, tweak is (LBA * block size)/ 512)
4836 switch (cmd->cmnd[0]) {
4837 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4838 case READ_6:
4839 case WRITE_6:
4840 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4841 (cmd->cmnd[2] << 8) |
4842 cmd->cmnd[3]);
4843 break;
4844 case WRITE_10:
4845 case READ_10:
4846 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4847 case WRITE_12:
4848 case READ_12:
4849 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4850 break;
4851 case WRITE_16:
4852 case READ_16:
4853 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4854 break;
4855 default:
4856 dev_err(&h->pdev->dev,
4857 "ERROR: %s: size (0x%x) not supported for encryption\n",
4858 __func__, cmd->cmnd[0]);
4859 BUG();
4860 break;
4863 if (le32_to_cpu(map->volume_blk_size) != 512)
4864 first_block = first_block *
4865 le32_to_cpu(map->volume_blk_size)/512;
4867 cp->tweak_lower = cpu_to_le32(first_block);
4868 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4871 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4872 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4873 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4875 struct scsi_cmnd *cmd = c->scsi_cmd;
4876 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4877 struct ioaccel2_sg_element *curr_sg;
4878 int use_sg, i;
4879 struct scatterlist *sg;
4880 u64 addr64;
4881 u32 len;
4882 u32 total_len = 0;
4884 if (!cmd->device)
4885 return -1;
4887 if (!cmd->device->hostdata)
4888 return -1;
4890 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4892 if (is_zero_length_transfer(cdb)) {
4893 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4894 atomic_dec(&phys_disk->ioaccel_cmds_out);
4895 return IO_ACCEL_INELIGIBLE;
4898 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4899 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 return IO_ACCEL_INELIGIBLE;
4903 c->cmd_type = CMD_IOACCEL2;
4904 /* Adjust the DMA address to point to the accelerated command buffer */
4905 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4906 (c->cmdindex * sizeof(*cp));
4907 BUG_ON(c->busaddr & 0x0000007F);
4909 memset(cp, 0, sizeof(*cp));
4910 cp->IU_type = IOACCEL2_IU_TYPE;
4912 use_sg = scsi_dma_map(cmd);
4913 if (use_sg < 0) {
4914 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 return use_sg;
4918 if (use_sg) {
4919 curr_sg = cp->sg;
4920 if (use_sg > h->ioaccel_maxsg) {
4921 addr64 = le64_to_cpu(
4922 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4923 curr_sg->address = cpu_to_le64(addr64);
4924 curr_sg->length = 0;
4925 curr_sg->reserved[0] = 0;
4926 curr_sg->reserved[1] = 0;
4927 curr_sg->reserved[2] = 0;
4928 curr_sg->chain_indicator = 0x80;
4930 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4932 scsi_for_each_sg(cmd, sg, use_sg, i) {
4933 addr64 = (u64) sg_dma_address(sg);
4934 len = sg_dma_len(sg);
4935 total_len += len;
4936 curr_sg->address = cpu_to_le64(addr64);
4937 curr_sg->length = cpu_to_le32(len);
4938 curr_sg->reserved[0] = 0;
4939 curr_sg->reserved[1] = 0;
4940 curr_sg->reserved[2] = 0;
4941 curr_sg->chain_indicator = 0;
4942 curr_sg++;
4945 switch (cmd->sc_data_direction) {
4946 case DMA_TO_DEVICE:
4947 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4949 break;
4950 case DMA_FROM_DEVICE:
4951 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952 cp->direction |= IOACCEL2_DIR_DATA_IN;
4953 break;
4954 case DMA_NONE:
4955 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4956 cp->direction |= IOACCEL2_DIR_NO_DATA;
4957 break;
4958 default:
4959 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4960 cmd->sc_data_direction);
4961 BUG();
4962 break;
4964 } else {
4965 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966 cp->direction |= IOACCEL2_DIR_NO_DATA;
4969 /* Set encryption parameters, if necessary */
4970 set_encrypt_ioaccel2(h, c, cp);
4972 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4973 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4974 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4976 cp->data_len = cpu_to_le32(total_len);
4977 cp->err_ptr = cpu_to_le64(c->busaddr +
4978 offsetof(struct io_accel2_cmd, error_data));
4979 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4981 /* fill in sg elements */
4982 if (use_sg > h->ioaccel_maxsg) {
4983 cp->sg_count = 1;
4984 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4985 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4986 atomic_dec(&phys_disk->ioaccel_cmds_out);
4987 scsi_dma_unmap(cmd);
4988 return -1;
4990 } else
4991 cp->sg_count = (u8) use_sg;
4993 enqueue_cmd_and_start_io(h, c);
4994 return 0;
4998 * Queue a command to the correct I/O accelerator path.
5000 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5001 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5002 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5004 if (!c->scsi_cmd->device)
5005 return -1;
5007 if (!c->scsi_cmd->device->hostdata)
5008 return -1;
5010 /* Try to honor the device's queue depth */
5011 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5012 phys_disk->queue_depth) {
5013 atomic_dec(&phys_disk->ioaccel_cmds_out);
5014 return IO_ACCEL_INELIGIBLE;
5016 if (h->transMethod & CFGTBL_Trans_io_accel1)
5017 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5018 cdb, cdb_len, scsi3addr,
5019 phys_disk);
5020 else
5021 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5022 cdb, cdb_len, scsi3addr,
5023 phys_disk);
5026 static void raid_map_helper(struct raid_map_data *map,
5027 int offload_to_mirror, u32 *map_index, u32 *current_group)
5029 if (offload_to_mirror == 0) {
5030 /* use physical disk in the first mirrored group. */
5031 *map_index %= le16_to_cpu(map->data_disks_per_row);
5032 return;
5034 do {
5035 /* determine mirror group that *map_index indicates */
5036 *current_group = *map_index /
5037 le16_to_cpu(map->data_disks_per_row);
5038 if (offload_to_mirror == *current_group)
5039 continue;
5040 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5041 /* select map index from next group */
5042 *map_index += le16_to_cpu(map->data_disks_per_row);
5043 (*current_group)++;
5044 } else {
5045 /* select map index from first group */
5046 *map_index %= le16_to_cpu(map->data_disks_per_row);
5047 *current_group = 0;
5049 } while (offload_to_mirror != *current_group);
5053 * Attempt to perform offload RAID mapping for a logical volume I/O.
5055 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5056 struct CommandList *c)
5058 struct scsi_cmnd *cmd = c->scsi_cmd;
5059 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5060 struct raid_map_data *map = &dev->raid_map;
5061 struct raid_map_disk_data *dd = &map->data[0];
5062 int is_write = 0;
5063 u32 map_index;
5064 u64 first_block, last_block;
5065 u32 block_cnt;
5066 u32 blocks_per_row;
5067 u64 first_row, last_row;
5068 u32 first_row_offset, last_row_offset;
5069 u32 first_column, last_column;
5070 u64 r0_first_row, r0_last_row;
5071 u32 r5or6_blocks_per_row;
5072 u64 r5or6_first_row, r5or6_last_row;
5073 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5074 u32 r5or6_first_column, r5or6_last_column;
5075 u32 total_disks_per_row;
5076 u32 stripesize;
5077 u32 first_group, last_group, current_group;
5078 u32 map_row;
5079 u32 disk_handle;
5080 u64 disk_block;
5081 u32 disk_block_cnt;
5082 u8 cdb[16];
5083 u8 cdb_len;
5084 u16 strip_size;
5085 #if BITS_PER_LONG == 32
5086 u64 tmpdiv;
5087 #endif
5088 int offload_to_mirror;
5090 if (!dev)
5091 return -1;
5093 /* check for valid opcode, get LBA and block count */
5094 switch (cmd->cmnd[0]) {
5095 case WRITE_6:
5096 is_write = 1;
5097 /* fall through */
5098 case READ_6:
5099 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5100 (cmd->cmnd[2] << 8) |
5101 cmd->cmnd[3]);
5102 block_cnt = cmd->cmnd[4];
5103 if (block_cnt == 0)
5104 block_cnt = 256;
5105 break;
5106 case WRITE_10:
5107 is_write = 1;
5108 /* fall through */
5109 case READ_10:
5110 first_block =
5111 (((u64) cmd->cmnd[2]) << 24) |
5112 (((u64) cmd->cmnd[3]) << 16) |
5113 (((u64) cmd->cmnd[4]) << 8) |
5114 cmd->cmnd[5];
5115 block_cnt =
5116 (((u32) cmd->cmnd[7]) << 8) |
5117 cmd->cmnd[8];
5118 break;
5119 case WRITE_12:
5120 is_write = 1;
5121 /* fall through */
5122 case READ_12:
5123 first_block =
5124 (((u64) cmd->cmnd[2]) << 24) |
5125 (((u64) cmd->cmnd[3]) << 16) |
5126 (((u64) cmd->cmnd[4]) << 8) |
5127 cmd->cmnd[5];
5128 block_cnt =
5129 (((u32) cmd->cmnd[6]) << 24) |
5130 (((u32) cmd->cmnd[7]) << 16) |
5131 (((u32) cmd->cmnd[8]) << 8) |
5132 cmd->cmnd[9];
5133 break;
5134 case WRITE_16:
5135 is_write = 1;
5136 /* fall through */
5137 case READ_16:
5138 first_block =
5139 (((u64) cmd->cmnd[2]) << 56) |
5140 (((u64) cmd->cmnd[3]) << 48) |
5141 (((u64) cmd->cmnd[4]) << 40) |
5142 (((u64) cmd->cmnd[5]) << 32) |
5143 (((u64) cmd->cmnd[6]) << 24) |
5144 (((u64) cmd->cmnd[7]) << 16) |
5145 (((u64) cmd->cmnd[8]) << 8) |
5146 cmd->cmnd[9];
5147 block_cnt =
5148 (((u32) cmd->cmnd[10]) << 24) |
5149 (((u32) cmd->cmnd[11]) << 16) |
5150 (((u32) cmd->cmnd[12]) << 8) |
5151 cmd->cmnd[13];
5152 break;
5153 default:
5154 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5156 last_block = first_block + block_cnt - 1;
5158 /* check for write to non-RAID-0 */
5159 if (is_write && dev->raid_level != 0)
5160 return IO_ACCEL_INELIGIBLE;
5162 /* check for invalid block or wraparound */
5163 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5164 last_block < first_block)
5165 return IO_ACCEL_INELIGIBLE;
5167 /* calculate stripe information for the request */
5168 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5169 le16_to_cpu(map->strip_size);
5170 strip_size = le16_to_cpu(map->strip_size);
5171 #if BITS_PER_LONG == 32
5172 tmpdiv = first_block;
5173 (void) do_div(tmpdiv, blocks_per_row);
5174 first_row = tmpdiv;
5175 tmpdiv = last_block;
5176 (void) do_div(tmpdiv, blocks_per_row);
5177 last_row = tmpdiv;
5178 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5179 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5180 tmpdiv = first_row_offset;
5181 (void) do_div(tmpdiv, strip_size);
5182 first_column = tmpdiv;
5183 tmpdiv = last_row_offset;
5184 (void) do_div(tmpdiv, strip_size);
5185 last_column = tmpdiv;
5186 #else
5187 first_row = first_block / blocks_per_row;
5188 last_row = last_block / blocks_per_row;
5189 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191 first_column = first_row_offset / strip_size;
5192 last_column = last_row_offset / strip_size;
5193 #endif
5195 /* if this isn't a single row/column then give to the controller */
5196 if ((first_row != last_row) || (first_column != last_column))
5197 return IO_ACCEL_INELIGIBLE;
5199 /* proceeding with driver mapping */
5200 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5201 le16_to_cpu(map->metadata_disks_per_row);
5202 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5203 le16_to_cpu(map->row_cnt);
5204 map_index = (map_row * total_disks_per_row) + first_column;
5206 switch (dev->raid_level) {
5207 case HPSA_RAID_0:
5208 break; /* nothing special to do */
5209 case HPSA_RAID_1:
5210 /* Handles load balance across RAID 1 members.
5211 * (2-drive R1 and R10 with even # of drives.)
5212 * Appropriate for SSDs, not optimal for HDDs
5214 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5215 if (dev->offload_to_mirror)
5216 map_index += le16_to_cpu(map->data_disks_per_row);
5217 dev->offload_to_mirror = !dev->offload_to_mirror;
5218 break;
5219 case HPSA_RAID_ADM:
5220 /* Handles N-way mirrors (R1-ADM)
5221 * and R10 with # of drives divisible by 3.)
5223 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5225 offload_to_mirror = dev->offload_to_mirror;
5226 raid_map_helper(map, offload_to_mirror,
5227 &map_index, &current_group);
5228 /* set mirror group to use next time */
5229 offload_to_mirror =
5230 (offload_to_mirror >=
5231 le16_to_cpu(map->layout_map_count) - 1)
5232 ? 0 : offload_to_mirror + 1;
5233 dev->offload_to_mirror = offload_to_mirror;
5234 /* Avoid direct use of dev->offload_to_mirror within this
5235 * function since multiple threads might simultaneously
5236 * increment it beyond the range of dev->layout_map_count -1.
5238 break;
5239 case HPSA_RAID_5:
5240 case HPSA_RAID_6:
5241 if (le16_to_cpu(map->layout_map_count) <= 1)
5242 break;
5244 /* Verify first and last block are in same RAID group */
5245 r5or6_blocks_per_row =
5246 le16_to_cpu(map->strip_size) *
5247 le16_to_cpu(map->data_disks_per_row);
5248 BUG_ON(r5or6_blocks_per_row == 0);
5249 stripesize = r5or6_blocks_per_row *
5250 le16_to_cpu(map->layout_map_count);
5251 #if BITS_PER_LONG == 32
5252 tmpdiv = first_block;
5253 first_group = do_div(tmpdiv, stripesize);
5254 tmpdiv = first_group;
5255 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5256 first_group = tmpdiv;
5257 tmpdiv = last_block;
5258 last_group = do_div(tmpdiv, stripesize);
5259 tmpdiv = last_group;
5260 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5261 last_group = tmpdiv;
5262 #else
5263 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5264 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5265 #endif
5266 if (first_group != last_group)
5267 return IO_ACCEL_INELIGIBLE;
5269 /* Verify request is in a single row of RAID 5/6 */
5270 #if BITS_PER_LONG == 32
5271 tmpdiv = first_block;
5272 (void) do_div(tmpdiv, stripesize);
5273 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5274 tmpdiv = last_block;
5275 (void) do_div(tmpdiv, stripesize);
5276 r5or6_last_row = r0_last_row = tmpdiv;
5277 #else
5278 first_row = r5or6_first_row = r0_first_row =
5279 first_block / stripesize;
5280 r5or6_last_row = r0_last_row = last_block / stripesize;
5281 #endif
5282 if (r5or6_first_row != r5or6_last_row)
5283 return IO_ACCEL_INELIGIBLE;
5286 /* Verify request is in a single column */
5287 #if BITS_PER_LONG == 32
5288 tmpdiv = first_block;
5289 first_row_offset = do_div(tmpdiv, stripesize);
5290 tmpdiv = first_row_offset;
5291 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5292 r5or6_first_row_offset = first_row_offset;
5293 tmpdiv = last_block;
5294 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5295 tmpdiv = r5or6_last_row_offset;
5296 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5297 tmpdiv = r5or6_first_row_offset;
5298 (void) do_div(tmpdiv, map->strip_size);
5299 first_column = r5or6_first_column = tmpdiv;
5300 tmpdiv = r5or6_last_row_offset;
5301 (void) do_div(tmpdiv, map->strip_size);
5302 r5or6_last_column = tmpdiv;
5303 #else
5304 first_row_offset = r5or6_first_row_offset =
5305 (u32)((first_block % stripesize) %
5306 r5or6_blocks_per_row);
5308 r5or6_last_row_offset =
5309 (u32)((last_block % stripesize) %
5310 r5or6_blocks_per_row);
5312 first_column = r5or6_first_column =
5313 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5314 r5or6_last_column =
5315 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5316 #endif
5317 if (r5or6_first_column != r5or6_last_column)
5318 return IO_ACCEL_INELIGIBLE;
5320 /* Request is eligible */
5321 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5322 le16_to_cpu(map->row_cnt);
5324 map_index = (first_group *
5325 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5326 (map_row * total_disks_per_row) + first_column;
5327 break;
5328 default:
5329 return IO_ACCEL_INELIGIBLE;
5332 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5333 return IO_ACCEL_INELIGIBLE;
5335 c->phys_disk = dev->phys_disk[map_index];
5336 if (!c->phys_disk)
5337 return IO_ACCEL_INELIGIBLE;
5339 disk_handle = dd[map_index].ioaccel_handle;
5340 disk_block = le64_to_cpu(map->disk_starting_blk) +
5341 first_row * le16_to_cpu(map->strip_size) +
5342 (first_row_offset - first_column *
5343 le16_to_cpu(map->strip_size));
5344 disk_block_cnt = block_cnt;
5346 /* handle differing logical/physical block sizes */
5347 if (map->phys_blk_shift) {
5348 disk_block <<= map->phys_blk_shift;
5349 disk_block_cnt <<= map->phys_blk_shift;
5351 BUG_ON(disk_block_cnt > 0xffff);
5353 /* build the new CDB for the physical disk I/O */
5354 if (disk_block > 0xffffffff) {
5355 cdb[0] = is_write ? WRITE_16 : READ_16;
5356 cdb[1] = 0;
5357 cdb[2] = (u8) (disk_block >> 56);
5358 cdb[3] = (u8) (disk_block >> 48);
5359 cdb[4] = (u8) (disk_block >> 40);
5360 cdb[5] = (u8) (disk_block >> 32);
5361 cdb[6] = (u8) (disk_block >> 24);
5362 cdb[7] = (u8) (disk_block >> 16);
5363 cdb[8] = (u8) (disk_block >> 8);
5364 cdb[9] = (u8) (disk_block);
5365 cdb[10] = (u8) (disk_block_cnt >> 24);
5366 cdb[11] = (u8) (disk_block_cnt >> 16);
5367 cdb[12] = (u8) (disk_block_cnt >> 8);
5368 cdb[13] = (u8) (disk_block_cnt);
5369 cdb[14] = 0;
5370 cdb[15] = 0;
5371 cdb_len = 16;
5372 } else {
5373 cdb[0] = is_write ? WRITE_10 : READ_10;
5374 cdb[1] = 0;
5375 cdb[2] = (u8) (disk_block >> 24);
5376 cdb[3] = (u8) (disk_block >> 16);
5377 cdb[4] = (u8) (disk_block >> 8);
5378 cdb[5] = (u8) (disk_block);
5379 cdb[6] = 0;
5380 cdb[7] = (u8) (disk_block_cnt >> 8);
5381 cdb[8] = (u8) (disk_block_cnt);
5382 cdb[9] = 0;
5383 cdb_len = 10;
5385 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5386 dev->scsi3addr,
5387 dev->phys_disk[map_index]);
5391 * Submit commands down the "normal" RAID stack path
5392 * All callers to hpsa_ciss_submit must check lockup_detected
5393 * beforehand, before (opt.) and after calling cmd_alloc
5395 static int hpsa_ciss_submit(struct ctlr_info *h,
5396 struct CommandList *c, struct scsi_cmnd *cmd,
5397 unsigned char scsi3addr[])
5399 cmd->host_scribble = (unsigned char *) c;
5400 c->cmd_type = CMD_SCSI;
5401 c->scsi_cmd = cmd;
5402 c->Header.ReplyQueue = 0; /* unused in simple mode */
5403 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5404 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5406 /* Fill in the request block... */
5408 c->Request.Timeout = 0;
5409 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5410 c->Request.CDBLen = cmd->cmd_len;
5411 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5412 switch (cmd->sc_data_direction) {
5413 case DMA_TO_DEVICE:
5414 c->Request.type_attr_dir =
5415 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5416 break;
5417 case DMA_FROM_DEVICE:
5418 c->Request.type_attr_dir =
5419 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5420 break;
5421 case DMA_NONE:
5422 c->Request.type_attr_dir =
5423 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5424 break;
5425 case DMA_BIDIRECTIONAL:
5426 /* This can happen if a buggy application does a scsi passthru
5427 * and sets both inlen and outlen to non-zero. ( see
5428 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5431 c->Request.type_attr_dir =
5432 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5433 /* This is technically wrong, and hpsa controllers should
5434 * reject it with CMD_INVALID, which is the most correct
5435 * response, but non-fibre backends appear to let it
5436 * slide by, and give the same results as if this field
5437 * were set correctly. Either way is acceptable for
5438 * our purposes here.
5441 break;
5443 default:
5444 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5445 cmd->sc_data_direction);
5446 BUG();
5447 break;
5450 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5451 hpsa_cmd_resolve_and_free(h, c);
5452 return SCSI_MLQUEUE_HOST_BUSY;
5454 enqueue_cmd_and_start_io(h, c);
5455 /* the cmd'll come back via intr handler in complete_scsi_command() */
5456 return 0;
5459 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5460 struct CommandList *c)
5462 dma_addr_t cmd_dma_handle, err_dma_handle;
5464 /* Zero out all of commandlist except the last field, refcount */
5465 memset(c, 0, offsetof(struct CommandList, refcount));
5466 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5467 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5468 c->err_info = h->errinfo_pool + index;
5469 memset(c->err_info, 0, sizeof(*c->err_info));
5470 err_dma_handle = h->errinfo_pool_dhandle
5471 + index * sizeof(*c->err_info);
5472 c->cmdindex = index;
5473 c->busaddr = (u32) cmd_dma_handle;
5474 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5475 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5476 c->h = h;
5477 c->scsi_cmd = SCSI_CMD_IDLE;
5480 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5482 int i;
5484 for (i = 0; i < h->nr_cmds; i++) {
5485 struct CommandList *c = h->cmd_pool + i;
5487 hpsa_cmd_init(h, i, c);
5488 atomic_set(&c->refcount, 0);
5492 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5493 struct CommandList *c)
5495 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5497 BUG_ON(c->cmdindex != index);
5499 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5500 memset(c->err_info, 0, sizeof(*c->err_info));
5501 c->busaddr = (u32) cmd_dma_handle;
5504 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5505 struct CommandList *c, struct scsi_cmnd *cmd,
5506 unsigned char *scsi3addr)
5508 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5509 int rc = IO_ACCEL_INELIGIBLE;
5511 if (!dev)
5512 return SCSI_MLQUEUE_HOST_BUSY;
5514 cmd->host_scribble = (unsigned char *) c;
5516 if (dev->offload_enabled) {
5517 hpsa_cmd_init(h, c->cmdindex, c);
5518 c->cmd_type = CMD_SCSI;
5519 c->scsi_cmd = cmd;
5520 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5521 if (rc < 0) /* scsi_dma_map failed. */
5522 rc = SCSI_MLQUEUE_HOST_BUSY;
5523 } else if (dev->hba_ioaccel_enabled) {
5524 hpsa_cmd_init(h, c->cmdindex, c);
5525 c->cmd_type = CMD_SCSI;
5526 c->scsi_cmd = cmd;
5527 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5528 if (rc < 0) /* scsi_dma_map failed. */
5529 rc = SCSI_MLQUEUE_HOST_BUSY;
5531 return rc;
5534 static void hpsa_command_resubmit_worker(struct work_struct *work)
5536 struct scsi_cmnd *cmd;
5537 struct hpsa_scsi_dev_t *dev;
5538 struct CommandList *c = container_of(work, struct CommandList, work);
5540 cmd = c->scsi_cmd;
5541 dev = cmd->device->hostdata;
5542 if (!dev) {
5543 cmd->result = DID_NO_CONNECT << 16;
5544 return hpsa_cmd_free_and_done(c->h, c, cmd);
5546 if (c->reset_pending)
5547 return hpsa_cmd_free_and_done(c->h, c, cmd);
5548 if (c->cmd_type == CMD_IOACCEL2) {
5549 struct ctlr_info *h = c->h;
5550 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5551 int rc;
5553 if (c2->error_data.serv_response ==
5554 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5555 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5556 if (rc == 0)
5557 return;
5558 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5560 * If we get here, it means dma mapping failed.
5561 * Try again via scsi mid layer, which will
5562 * then get SCSI_MLQUEUE_HOST_BUSY.
5564 cmd->result = DID_IMM_RETRY << 16;
5565 return hpsa_cmd_free_and_done(h, c, cmd);
5567 /* else, fall thru and resubmit down CISS path */
5570 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5571 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5573 * If we get here, it means dma mapping failed. Try
5574 * again via scsi mid layer, which will then get
5575 * SCSI_MLQUEUE_HOST_BUSY.
5577 * hpsa_ciss_submit will have already freed c
5578 * if it encountered a dma mapping failure.
5580 cmd->result = DID_IMM_RETRY << 16;
5581 cmd->scsi_done(cmd);
5585 /* Running in struct Scsi_Host->host_lock less mode */
5586 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5588 struct ctlr_info *h;
5589 struct hpsa_scsi_dev_t *dev;
5590 unsigned char scsi3addr[8];
5591 struct CommandList *c;
5592 int rc = 0;
5594 /* Get the ptr to our adapter structure out of cmd->host. */
5595 h = sdev_to_hba(cmd->device);
5597 BUG_ON(cmd->request->tag < 0);
5599 dev = cmd->device->hostdata;
5600 if (!dev) {
5601 cmd->result = DID_NO_CONNECT << 16;
5602 cmd->scsi_done(cmd);
5603 return 0;
5606 if (dev->removed) {
5607 cmd->result = DID_NO_CONNECT << 16;
5608 cmd->scsi_done(cmd);
5609 return 0;
5612 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5614 if (unlikely(lockup_detected(h))) {
5615 cmd->result = DID_NO_CONNECT << 16;
5616 cmd->scsi_done(cmd);
5617 return 0;
5619 c = cmd_tagged_alloc(h, cmd);
5622 * Call alternate submit routine for I/O accelerated commands.
5623 * Retries always go down the normal I/O path.
5625 if (likely(cmd->retries == 0 &&
5626 !blk_rq_is_passthrough(cmd->request) &&
5627 h->acciopath_status)) {
5628 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5629 if (rc == 0)
5630 return 0;
5631 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5632 hpsa_cmd_resolve_and_free(h, c);
5633 return SCSI_MLQUEUE_HOST_BUSY;
5636 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5639 static void hpsa_scan_complete(struct ctlr_info *h)
5641 unsigned long flags;
5643 spin_lock_irqsave(&h->scan_lock, flags);
5644 h->scan_finished = 1;
5645 wake_up(&h->scan_wait_queue);
5646 spin_unlock_irqrestore(&h->scan_lock, flags);
5649 static void hpsa_scan_start(struct Scsi_Host *sh)
5651 struct ctlr_info *h = shost_to_hba(sh);
5652 unsigned long flags;
5655 * Don't let rescans be initiated on a controller known to be locked
5656 * up. If the controller locks up *during* a rescan, that thread is
5657 * probably hosed, but at least we can prevent new rescan threads from
5658 * piling up on a locked up controller.
5660 if (unlikely(lockup_detected(h)))
5661 return hpsa_scan_complete(h);
5664 * If a scan is already waiting to run, no need to add another
5666 spin_lock_irqsave(&h->scan_lock, flags);
5667 if (h->scan_waiting) {
5668 spin_unlock_irqrestore(&h->scan_lock, flags);
5669 return;
5672 spin_unlock_irqrestore(&h->scan_lock, flags);
5674 /* wait until any scan already in progress is finished. */
5675 while (1) {
5676 spin_lock_irqsave(&h->scan_lock, flags);
5677 if (h->scan_finished)
5678 break;
5679 h->scan_waiting = 1;
5680 spin_unlock_irqrestore(&h->scan_lock, flags);
5681 wait_event(h->scan_wait_queue, h->scan_finished);
5682 /* Note: We don't need to worry about a race between this
5683 * thread and driver unload because the midlayer will
5684 * have incremented the reference count, so unload won't
5685 * happen if we're in here.
5688 h->scan_finished = 0; /* mark scan as in progress */
5689 h->scan_waiting = 0;
5690 spin_unlock_irqrestore(&h->scan_lock, flags);
5692 if (unlikely(lockup_detected(h)))
5693 return hpsa_scan_complete(h);
5696 * Do the scan after a reset completion
5698 spin_lock_irqsave(&h->reset_lock, flags);
5699 if (h->reset_in_progress) {
5700 h->drv_req_rescan = 1;
5701 spin_unlock_irqrestore(&h->reset_lock, flags);
5702 hpsa_scan_complete(h);
5703 return;
5705 spin_unlock_irqrestore(&h->reset_lock, flags);
5707 hpsa_update_scsi_devices(h);
5709 hpsa_scan_complete(h);
5712 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5714 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5716 if (!logical_drive)
5717 return -ENODEV;
5719 if (qdepth < 1)
5720 qdepth = 1;
5721 else if (qdepth > logical_drive->queue_depth)
5722 qdepth = logical_drive->queue_depth;
5724 return scsi_change_queue_depth(sdev, qdepth);
5727 static int hpsa_scan_finished(struct Scsi_Host *sh,
5728 unsigned long elapsed_time)
5730 struct ctlr_info *h = shost_to_hba(sh);
5731 unsigned long flags;
5732 int finished;
5734 spin_lock_irqsave(&h->scan_lock, flags);
5735 finished = h->scan_finished;
5736 spin_unlock_irqrestore(&h->scan_lock, flags);
5737 return finished;
5740 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5742 struct Scsi_Host *sh;
5744 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5745 if (sh == NULL) {
5746 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5747 return -ENOMEM;
5750 sh->io_port = 0;
5751 sh->n_io_port = 0;
5752 sh->this_id = -1;
5753 sh->max_channel = 3;
5754 sh->max_cmd_len = MAX_COMMAND_SIZE;
5755 sh->max_lun = HPSA_MAX_LUN;
5756 sh->max_id = HPSA_MAX_LUN;
5757 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5758 sh->cmd_per_lun = sh->can_queue;
5759 sh->sg_tablesize = h->maxsgentries;
5760 sh->transportt = hpsa_sas_transport_template;
5761 sh->hostdata[0] = (unsigned long) h;
5762 sh->irq = pci_irq_vector(h->pdev, 0);
5763 sh->unique_id = sh->irq;
5765 h->scsi_host = sh;
5766 return 0;
5769 static int hpsa_scsi_add_host(struct ctlr_info *h)
5771 int rv;
5773 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5774 if (rv) {
5775 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5776 return rv;
5778 scsi_scan_host(h->scsi_host);
5779 return 0;
5783 * The block layer has already gone to the trouble of picking out a unique,
5784 * small-integer tag for this request. We use an offset from that value as
5785 * an index to select our command block. (The offset allows us to reserve the
5786 * low-numbered entries for our own uses.)
5788 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5790 int idx = scmd->request->tag;
5792 if (idx < 0)
5793 return idx;
5795 /* Offset to leave space for internal cmds. */
5796 return idx += HPSA_NRESERVED_CMDS;
5800 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5801 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5803 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5804 struct CommandList *c, unsigned char lunaddr[],
5805 int reply_queue)
5807 int rc;
5809 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5810 (void) fill_cmd(c, TEST_UNIT_READY, h,
5811 NULL, 0, 0, lunaddr, TYPE_CMD);
5812 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5813 if (rc)
5814 return rc;
5815 /* no unmap needed here because no data xfer. */
5817 /* Check if the unit is already ready. */
5818 if (c->err_info->CommandStatus == CMD_SUCCESS)
5819 return 0;
5822 * The first command sent after reset will receive "unit attention" to
5823 * indicate that the LUN has been reset...this is actually what we're
5824 * looking for (but, success is good too).
5826 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5827 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5828 (c->err_info->SenseInfo[2] == NO_SENSE ||
5829 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5830 return 0;
5832 return 1;
5836 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5837 * returns zero when the unit is ready, and non-zero when giving up.
5839 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5840 struct CommandList *c,
5841 unsigned char lunaddr[], int reply_queue)
5843 int rc;
5844 int count = 0;
5845 int waittime = 1; /* seconds */
5847 /* Send test unit ready until device ready, or give up. */
5848 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5851 * Wait for a bit. do this first, because if we send
5852 * the TUR right away, the reset will just abort it.
5854 msleep(1000 * waittime);
5856 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5857 if (!rc)
5858 break;
5860 /* Increase wait time with each try, up to a point. */
5861 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5862 waittime *= 2;
5864 dev_warn(&h->pdev->dev,
5865 "waiting %d secs for device to become ready.\n",
5866 waittime);
5869 return rc;
5872 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5873 unsigned char lunaddr[],
5874 int reply_queue)
5876 int first_queue;
5877 int last_queue;
5878 int rq;
5879 int rc = 0;
5880 struct CommandList *c;
5882 c = cmd_alloc(h);
5885 * If no specific reply queue was requested, then send the TUR
5886 * repeatedly, requesting a reply on each reply queue; otherwise execute
5887 * the loop exactly once using only the specified queue.
5889 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5890 first_queue = 0;
5891 last_queue = h->nreply_queues - 1;
5892 } else {
5893 first_queue = reply_queue;
5894 last_queue = reply_queue;
5897 for (rq = first_queue; rq <= last_queue; rq++) {
5898 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5899 if (rc)
5900 break;
5903 if (rc)
5904 dev_warn(&h->pdev->dev, "giving up on device.\n");
5905 else
5906 dev_warn(&h->pdev->dev, "device is ready.\n");
5908 cmd_free(h, c);
5909 return rc;
5912 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5913 * complaining. Doing a host- or bus-reset can't do anything good here.
5915 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5917 int rc = SUCCESS;
5918 struct ctlr_info *h;
5919 struct hpsa_scsi_dev_t *dev;
5920 u8 reset_type;
5921 char msg[48];
5922 unsigned long flags;
5924 /* find the controller to which the command to be aborted was sent */
5925 h = sdev_to_hba(scsicmd->device);
5926 if (h == NULL) /* paranoia */
5927 return FAILED;
5929 spin_lock_irqsave(&h->reset_lock, flags);
5930 h->reset_in_progress = 1;
5931 spin_unlock_irqrestore(&h->reset_lock, flags);
5933 if (lockup_detected(h)) {
5934 rc = FAILED;
5935 goto return_reset_status;
5938 dev = scsicmd->device->hostdata;
5939 if (!dev) {
5940 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5941 rc = FAILED;
5942 goto return_reset_status;
5945 if (dev->devtype == TYPE_ENCLOSURE) {
5946 rc = SUCCESS;
5947 goto return_reset_status;
5950 /* if controller locked up, we can guarantee command won't complete */
5951 if (lockup_detected(h)) {
5952 snprintf(msg, sizeof(msg),
5953 "cmd %d RESET FAILED, lockup detected",
5954 hpsa_get_cmd_index(scsicmd));
5955 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5956 rc = FAILED;
5957 goto return_reset_status;
5960 /* this reset request might be the result of a lockup; check */
5961 if (detect_controller_lockup(h)) {
5962 snprintf(msg, sizeof(msg),
5963 "cmd %d RESET FAILED, new lockup detected",
5964 hpsa_get_cmd_index(scsicmd));
5965 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5966 rc = FAILED;
5967 goto return_reset_status;
5970 /* Do not attempt on controller */
5971 if (is_hba_lunid(dev->scsi3addr)) {
5972 rc = SUCCESS;
5973 goto return_reset_status;
5976 if (is_logical_dev_addr_mode(dev->scsi3addr))
5977 reset_type = HPSA_DEVICE_RESET_MSG;
5978 else
5979 reset_type = HPSA_PHYS_TARGET_RESET;
5981 sprintf(msg, "resetting %s",
5982 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5983 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5985 /* send a reset to the SCSI LUN which the command was sent to */
5986 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5987 DEFAULT_REPLY_QUEUE);
5988 if (rc == 0)
5989 rc = SUCCESS;
5990 else
5991 rc = FAILED;
5993 sprintf(msg, "reset %s %s",
5994 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5995 rc == SUCCESS ? "completed successfully" : "failed");
5996 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5998 return_reset_status:
5999 spin_lock_irqsave(&h->reset_lock, flags);
6000 h->reset_in_progress = 0;
6001 spin_unlock_irqrestore(&h->reset_lock, flags);
6002 return rc;
6006 * For operations with an associated SCSI command, a command block is allocated
6007 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6008 * block request tag as an index into a table of entries. cmd_tagged_free() is
6009 * the complement, although cmd_free() may be called instead.
6011 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6012 struct scsi_cmnd *scmd)
6014 int idx = hpsa_get_cmd_index(scmd);
6015 struct CommandList *c = h->cmd_pool + idx;
6017 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6018 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6019 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6020 /* The index value comes from the block layer, so if it's out of
6021 * bounds, it's probably not our bug.
6023 BUG();
6026 atomic_inc(&c->refcount);
6027 if (unlikely(!hpsa_is_cmd_idle(c))) {
6029 * We expect that the SCSI layer will hand us a unique tag
6030 * value. Thus, there should never be a collision here between
6031 * two requests...because if the selected command isn't idle
6032 * then someone is going to be very disappointed.
6034 dev_err(&h->pdev->dev,
6035 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6036 idx);
6037 if (c->scsi_cmd != NULL)
6038 scsi_print_command(c->scsi_cmd);
6039 scsi_print_command(scmd);
6042 hpsa_cmd_partial_init(h, idx, c);
6043 return c;
6046 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6049 * Release our reference to the block. We don't need to do anything
6050 * else to free it, because it is accessed by index.
6052 (void)atomic_dec(&c->refcount);
6056 * For operations that cannot sleep, a command block is allocated at init,
6057 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6058 * which ones are free or in use. Lock must be held when calling this.
6059 * cmd_free() is the complement.
6060 * This function never gives up and returns NULL. If it hangs,
6061 * another thread must call cmd_free() to free some tags.
6064 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6066 struct CommandList *c;
6067 int refcount, i;
6068 int offset = 0;
6071 * There is some *extremely* small but non-zero chance that that
6072 * multiple threads could get in here, and one thread could
6073 * be scanning through the list of bits looking for a free
6074 * one, but the free ones are always behind him, and other
6075 * threads sneak in behind him and eat them before he can
6076 * get to them, so that while there is always a free one, a
6077 * very unlucky thread might be starved anyway, never able to
6078 * beat the other threads. In reality, this happens so
6079 * infrequently as to be indistinguishable from never.
6081 * Note that we start allocating commands before the SCSI host structure
6082 * is initialized. Since the search starts at bit zero, this
6083 * all works, since we have at least one command structure available;
6084 * however, it means that the structures with the low indexes have to be
6085 * reserved for driver-initiated requests, while requests from the block
6086 * layer will use the higher indexes.
6089 for (;;) {
6090 i = find_next_zero_bit(h->cmd_pool_bits,
6091 HPSA_NRESERVED_CMDS,
6092 offset);
6093 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6094 offset = 0;
6095 continue;
6097 c = h->cmd_pool + i;
6098 refcount = atomic_inc_return(&c->refcount);
6099 if (unlikely(refcount > 1)) {
6100 cmd_free(h, c); /* already in use */
6101 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6102 continue;
6104 set_bit(i & (BITS_PER_LONG - 1),
6105 h->cmd_pool_bits + (i / BITS_PER_LONG));
6106 break; /* it's ours now. */
6108 hpsa_cmd_partial_init(h, i, c);
6109 return c;
6113 * This is the complementary operation to cmd_alloc(). Note, however, in some
6114 * corner cases it may also be used to free blocks allocated by
6115 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6116 * the clear-bit is harmless.
6118 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6120 if (atomic_dec_and_test(&c->refcount)) {
6121 int i;
6123 i = c - h->cmd_pool;
6124 clear_bit(i & (BITS_PER_LONG - 1),
6125 h->cmd_pool_bits + (i / BITS_PER_LONG));
6129 #ifdef CONFIG_COMPAT
6131 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6132 void __user *arg)
6134 IOCTL32_Command_struct __user *arg32 =
6135 (IOCTL32_Command_struct __user *) arg;
6136 IOCTL_Command_struct arg64;
6137 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6138 int err;
6139 u32 cp;
6141 memset(&arg64, 0, sizeof(arg64));
6142 err = 0;
6143 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6144 sizeof(arg64.LUN_info));
6145 err |= copy_from_user(&arg64.Request, &arg32->Request,
6146 sizeof(arg64.Request));
6147 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6148 sizeof(arg64.error_info));
6149 err |= get_user(arg64.buf_size, &arg32->buf_size);
6150 err |= get_user(cp, &arg32->buf);
6151 arg64.buf = compat_ptr(cp);
6152 err |= copy_to_user(p, &arg64, sizeof(arg64));
6154 if (err)
6155 return -EFAULT;
6157 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6158 if (err)
6159 return err;
6160 err |= copy_in_user(&arg32->error_info, &p->error_info,
6161 sizeof(arg32->error_info));
6162 if (err)
6163 return -EFAULT;
6164 return err;
6167 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6168 unsigned int cmd, void __user *arg)
6170 BIG_IOCTL32_Command_struct __user *arg32 =
6171 (BIG_IOCTL32_Command_struct __user *) arg;
6172 BIG_IOCTL_Command_struct arg64;
6173 BIG_IOCTL_Command_struct __user *p =
6174 compat_alloc_user_space(sizeof(arg64));
6175 int err;
6176 u32 cp;
6178 memset(&arg64, 0, sizeof(arg64));
6179 err = 0;
6180 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6181 sizeof(arg64.LUN_info));
6182 err |= copy_from_user(&arg64.Request, &arg32->Request,
6183 sizeof(arg64.Request));
6184 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6185 sizeof(arg64.error_info));
6186 err |= get_user(arg64.buf_size, &arg32->buf_size);
6187 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6188 err |= get_user(cp, &arg32->buf);
6189 arg64.buf = compat_ptr(cp);
6190 err |= copy_to_user(p, &arg64, sizeof(arg64));
6192 if (err)
6193 return -EFAULT;
6195 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6196 if (err)
6197 return err;
6198 err |= copy_in_user(&arg32->error_info, &p->error_info,
6199 sizeof(arg32->error_info));
6200 if (err)
6201 return -EFAULT;
6202 return err;
6205 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6206 void __user *arg)
6208 switch (cmd) {
6209 case CCISS_GETPCIINFO:
6210 case CCISS_GETINTINFO:
6211 case CCISS_SETINTINFO:
6212 case CCISS_GETNODENAME:
6213 case CCISS_SETNODENAME:
6214 case CCISS_GETHEARTBEAT:
6215 case CCISS_GETBUSTYPES:
6216 case CCISS_GETFIRMVER:
6217 case CCISS_GETDRIVVER:
6218 case CCISS_REVALIDVOLS:
6219 case CCISS_DEREGDISK:
6220 case CCISS_REGNEWDISK:
6221 case CCISS_REGNEWD:
6222 case CCISS_RESCANDISK:
6223 case CCISS_GETLUNINFO:
6224 return hpsa_ioctl(dev, cmd, arg);
6226 case CCISS_PASSTHRU32:
6227 return hpsa_ioctl32_passthru(dev, cmd, arg);
6228 case CCISS_BIG_PASSTHRU32:
6229 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6231 default:
6232 return -ENOIOCTLCMD;
6235 #endif
6237 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6239 struct hpsa_pci_info pciinfo;
6241 if (!argp)
6242 return -EINVAL;
6243 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6244 pciinfo.bus = h->pdev->bus->number;
6245 pciinfo.dev_fn = h->pdev->devfn;
6246 pciinfo.board_id = h->board_id;
6247 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6248 return -EFAULT;
6249 return 0;
6252 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6254 DriverVer_type DriverVer;
6255 unsigned char vmaj, vmin, vsubmin;
6256 int rc;
6258 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6259 &vmaj, &vmin, &vsubmin);
6260 if (rc != 3) {
6261 dev_info(&h->pdev->dev, "driver version string '%s' "
6262 "unrecognized.", HPSA_DRIVER_VERSION);
6263 vmaj = 0;
6264 vmin = 0;
6265 vsubmin = 0;
6267 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6268 if (!argp)
6269 return -EINVAL;
6270 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6271 return -EFAULT;
6272 return 0;
6275 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6277 IOCTL_Command_struct iocommand;
6278 struct CommandList *c;
6279 char *buff = NULL;
6280 u64 temp64;
6281 int rc = 0;
6283 if (!argp)
6284 return -EINVAL;
6285 if (!capable(CAP_SYS_RAWIO))
6286 return -EPERM;
6287 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6288 return -EFAULT;
6289 if ((iocommand.buf_size < 1) &&
6290 (iocommand.Request.Type.Direction != XFER_NONE)) {
6291 return -EINVAL;
6293 if (iocommand.buf_size > 0) {
6294 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6295 if (buff == NULL)
6296 return -ENOMEM;
6297 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6298 /* Copy the data into the buffer we created */
6299 if (copy_from_user(buff, iocommand.buf,
6300 iocommand.buf_size)) {
6301 rc = -EFAULT;
6302 goto out_kfree;
6304 } else {
6305 memset(buff, 0, iocommand.buf_size);
6308 c = cmd_alloc(h);
6310 /* Fill in the command type */
6311 c->cmd_type = CMD_IOCTL_PEND;
6312 c->scsi_cmd = SCSI_CMD_BUSY;
6313 /* Fill in Command Header */
6314 c->Header.ReplyQueue = 0; /* unused in simple mode */
6315 if (iocommand.buf_size > 0) { /* buffer to fill */
6316 c->Header.SGList = 1;
6317 c->Header.SGTotal = cpu_to_le16(1);
6318 } else { /* no buffers to fill */
6319 c->Header.SGList = 0;
6320 c->Header.SGTotal = cpu_to_le16(0);
6322 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6324 /* Fill in Request block */
6325 memcpy(&c->Request, &iocommand.Request,
6326 sizeof(c->Request));
6328 /* Fill in the scatter gather information */
6329 if (iocommand.buf_size > 0) {
6330 temp64 = dma_map_single(&h->pdev->dev, buff,
6331 iocommand.buf_size, DMA_BIDIRECTIONAL);
6332 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6333 c->SG[0].Addr = cpu_to_le64(0);
6334 c->SG[0].Len = cpu_to_le32(0);
6335 rc = -ENOMEM;
6336 goto out;
6338 c->SG[0].Addr = cpu_to_le64(temp64);
6339 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6340 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6342 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6343 NO_TIMEOUT);
6344 if (iocommand.buf_size > 0)
6345 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6346 check_ioctl_unit_attention(h, c);
6347 if (rc) {
6348 rc = -EIO;
6349 goto out;
6352 /* Copy the error information out */
6353 memcpy(&iocommand.error_info, c->err_info,
6354 sizeof(iocommand.error_info));
6355 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6356 rc = -EFAULT;
6357 goto out;
6359 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6360 iocommand.buf_size > 0) {
6361 /* Copy the data out of the buffer we created */
6362 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6363 rc = -EFAULT;
6364 goto out;
6367 out:
6368 cmd_free(h, c);
6369 out_kfree:
6370 kfree(buff);
6371 return rc;
6374 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6376 BIG_IOCTL_Command_struct *ioc;
6377 struct CommandList *c;
6378 unsigned char **buff = NULL;
6379 int *buff_size = NULL;
6380 u64 temp64;
6381 BYTE sg_used = 0;
6382 int status = 0;
6383 u32 left;
6384 u32 sz;
6385 BYTE __user *data_ptr;
6387 if (!argp)
6388 return -EINVAL;
6389 if (!capable(CAP_SYS_RAWIO))
6390 return -EPERM;
6391 ioc = vmemdup_user(argp, sizeof(*ioc));
6392 if (IS_ERR(ioc)) {
6393 status = PTR_ERR(ioc);
6394 goto cleanup1;
6396 if ((ioc->buf_size < 1) &&
6397 (ioc->Request.Type.Direction != XFER_NONE)) {
6398 status = -EINVAL;
6399 goto cleanup1;
6401 /* Check kmalloc limits using all SGs */
6402 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6403 status = -EINVAL;
6404 goto cleanup1;
6406 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6407 status = -EINVAL;
6408 goto cleanup1;
6410 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6411 if (!buff) {
6412 status = -ENOMEM;
6413 goto cleanup1;
6415 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6416 if (!buff_size) {
6417 status = -ENOMEM;
6418 goto cleanup1;
6420 left = ioc->buf_size;
6421 data_ptr = ioc->buf;
6422 while (left) {
6423 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6424 buff_size[sg_used] = sz;
6425 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6426 if (buff[sg_used] == NULL) {
6427 status = -ENOMEM;
6428 goto cleanup1;
6430 if (ioc->Request.Type.Direction & XFER_WRITE) {
6431 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6432 status = -EFAULT;
6433 goto cleanup1;
6435 } else
6436 memset(buff[sg_used], 0, sz);
6437 left -= sz;
6438 data_ptr += sz;
6439 sg_used++;
6441 c = cmd_alloc(h);
6443 c->cmd_type = CMD_IOCTL_PEND;
6444 c->scsi_cmd = SCSI_CMD_BUSY;
6445 c->Header.ReplyQueue = 0;
6446 c->Header.SGList = (u8) sg_used;
6447 c->Header.SGTotal = cpu_to_le16(sg_used);
6448 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6449 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6450 if (ioc->buf_size > 0) {
6451 int i;
6452 for (i = 0; i < sg_used; i++) {
6453 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6454 buff_size[i], DMA_BIDIRECTIONAL);
6455 if (dma_mapping_error(&h->pdev->dev,
6456 (dma_addr_t) temp64)) {
6457 c->SG[i].Addr = cpu_to_le64(0);
6458 c->SG[i].Len = cpu_to_le32(0);
6459 hpsa_pci_unmap(h->pdev, c, i,
6460 DMA_BIDIRECTIONAL);
6461 status = -ENOMEM;
6462 goto cleanup0;
6464 c->SG[i].Addr = cpu_to_le64(temp64);
6465 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6466 c->SG[i].Ext = cpu_to_le32(0);
6468 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6470 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6471 NO_TIMEOUT);
6472 if (sg_used)
6473 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6474 check_ioctl_unit_attention(h, c);
6475 if (status) {
6476 status = -EIO;
6477 goto cleanup0;
6480 /* Copy the error information out */
6481 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6482 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6483 status = -EFAULT;
6484 goto cleanup0;
6486 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6487 int i;
6489 /* Copy the data out of the buffer we created */
6490 BYTE __user *ptr = ioc->buf;
6491 for (i = 0; i < sg_used; i++) {
6492 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6493 status = -EFAULT;
6494 goto cleanup0;
6496 ptr += buff_size[i];
6499 status = 0;
6500 cleanup0:
6501 cmd_free(h, c);
6502 cleanup1:
6503 if (buff) {
6504 int i;
6506 for (i = 0; i < sg_used; i++)
6507 kfree(buff[i]);
6508 kfree(buff);
6510 kfree(buff_size);
6511 kvfree(ioc);
6512 return status;
6515 static void check_ioctl_unit_attention(struct ctlr_info *h,
6516 struct CommandList *c)
6518 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6519 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6520 (void) check_for_unit_attention(h, c);
6524 * ioctl
6526 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6527 void __user *arg)
6529 struct ctlr_info *h;
6530 void __user *argp = (void __user *)arg;
6531 int rc;
6533 h = sdev_to_hba(dev);
6535 switch (cmd) {
6536 case CCISS_DEREGDISK:
6537 case CCISS_REGNEWDISK:
6538 case CCISS_REGNEWD:
6539 hpsa_scan_start(h->scsi_host);
6540 return 0;
6541 case CCISS_GETPCIINFO:
6542 return hpsa_getpciinfo_ioctl(h, argp);
6543 case CCISS_GETDRIVVER:
6544 return hpsa_getdrivver_ioctl(h, argp);
6545 case CCISS_PASSTHRU:
6546 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547 return -EAGAIN;
6548 rc = hpsa_passthru_ioctl(h, argp);
6549 atomic_inc(&h->passthru_cmds_avail);
6550 return rc;
6551 case CCISS_BIG_PASSTHRU:
6552 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6553 return -EAGAIN;
6554 rc = hpsa_big_passthru_ioctl(h, argp);
6555 atomic_inc(&h->passthru_cmds_avail);
6556 return rc;
6557 default:
6558 return -ENOTTY;
6562 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6563 u8 reset_type)
6565 struct CommandList *c;
6567 c = cmd_alloc(h);
6569 /* fill_cmd can't fail here, no data buffer to map */
6570 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6571 RAID_CTLR_LUNID, TYPE_MSG);
6572 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6573 c->waiting = NULL;
6574 enqueue_cmd_and_start_io(h, c);
6575 /* Don't wait for completion, the reset won't complete. Don't free
6576 * the command either. This is the last command we will send before
6577 * re-initializing everything, so it doesn't matter and won't leak.
6579 return;
6582 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6583 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6584 int cmd_type)
6586 enum dma_data_direction dir = DMA_NONE;
6588 c->cmd_type = CMD_IOCTL_PEND;
6589 c->scsi_cmd = SCSI_CMD_BUSY;
6590 c->Header.ReplyQueue = 0;
6591 if (buff != NULL && size > 0) {
6592 c->Header.SGList = 1;
6593 c->Header.SGTotal = cpu_to_le16(1);
6594 } else {
6595 c->Header.SGList = 0;
6596 c->Header.SGTotal = cpu_to_le16(0);
6598 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6600 if (cmd_type == TYPE_CMD) {
6601 switch (cmd) {
6602 case HPSA_INQUIRY:
6603 /* are we trying to read a vital product page */
6604 if (page_code & VPD_PAGE) {
6605 c->Request.CDB[1] = 0x01;
6606 c->Request.CDB[2] = (page_code & 0xff);
6608 c->Request.CDBLen = 6;
6609 c->Request.type_attr_dir =
6610 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6611 c->Request.Timeout = 0;
6612 c->Request.CDB[0] = HPSA_INQUIRY;
6613 c->Request.CDB[4] = size & 0xFF;
6614 break;
6615 case RECEIVE_DIAGNOSTIC:
6616 c->Request.CDBLen = 6;
6617 c->Request.type_attr_dir =
6618 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619 c->Request.Timeout = 0;
6620 c->Request.CDB[0] = cmd;
6621 c->Request.CDB[1] = 1;
6622 c->Request.CDB[2] = 1;
6623 c->Request.CDB[3] = (size >> 8) & 0xFF;
6624 c->Request.CDB[4] = size & 0xFF;
6625 break;
6626 case HPSA_REPORT_LOG:
6627 case HPSA_REPORT_PHYS:
6628 /* Talking to controller so It's a physical command
6629 mode = 00 target = 0. Nothing to write.
6631 c->Request.CDBLen = 12;
6632 c->Request.type_attr_dir =
6633 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6634 c->Request.Timeout = 0;
6635 c->Request.CDB[0] = cmd;
6636 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6637 c->Request.CDB[7] = (size >> 16) & 0xFF;
6638 c->Request.CDB[8] = (size >> 8) & 0xFF;
6639 c->Request.CDB[9] = size & 0xFF;
6640 break;
6641 case BMIC_SENSE_DIAG_OPTIONS:
6642 c->Request.CDBLen = 16;
6643 c->Request.type_attr_dir =
6644 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6645 c->Request.Timeout = 0;
6646 /* Spec says this should be BMIC_WRITE */
6647 c->Request.CDB[0] = BMIC_READ;
6648 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6649 break;
6650 case BMIC_SET_DIAG_OPTIONS:
6651 c->Request.CDBLen = 16;
6652 c->Request.type_attr_dir =
6653 TYPE_ATTR_DIR(cmd_type,
6654 ATTR_SIMPLE, XFER_WRITE);
6655 c->Request.Timeout = 0;
6656 c->Request.CDB[0] = BMIC_WRITE;
6657 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6658 break;
6659 case HPSA_CACHE_FLUSH:
6660 c->Request.CDBLen = 12;
6661 c->Request.type_attr_dir =
6662 TYPE_ATTR_DIR(cmd_type,
6663 ATTR_SIMPLE, XFER_WRITE);
6664 c->Request.Timeout = 0;
6665 c->Request.CDB[0] = BMIC_WRITE;
6666 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6667 c->Request.CDB[7] = (size >> 8) & 0xFF;
6668 c->Request.CDB[8] = size & 0xFF;
6669 break;
6670 case TEST_UNIT_READY:
6671 c->Request.CDBLen = 6;
6672 c->Request.type_attr_dir =
6673 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674 c->Request.Timeout = 0;
6675 break;
6676 case HPSA_GET_RAID_MAP:
6677 c->Request.CDBLen = 12;
6678 c->Request.type_attr_dir =
6679 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680 c->Request.Timeout = 0;
6681 c->Request.CDB[0] = HPSA_CISS_READ;
6682 c->Request.CDB[1] = cmd;
6683 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6684 c->Request.CDB[7] = (size >> 16) & 0xFF;
6685 c->Request.CDB[8] = (size >> 8) & 0xFF;
6686 c->Request.CDB[9] = size & 0xFF;
6687 break;
6688 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6689 c->Request.CDBLen = 10;
6690 c->Request.type_attr_dir =
6691 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6692 c->Request.Timeout = 0;
6693 c->Request.CDB[0] = BMIC_READ;
6694 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6695 c->Request.CDB[7] = (size >> 16) & 0xFF;
6696 c->Request.CDB[8] = (size >> 8) & 0xFF;
6697 break;
6698 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6699 c->Request.CDBLen = 10;
6700 c->Request.type_attr_dir =
6701 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6702 c->Request.Timeout = 0;
6703 c->Request.CDB[0] = BMIC_READ;
6704 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6705 c->Request.CDB[7] = (size >> 16) & 0xFF;
6706 c->Request.CDB[8] = (size >> 8) & 0XFF;
6707 break;
6708 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6709 c->Request.CDBLen = 10;
6710 c->Request.type_attr_dir =
6711 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 c->Request.Timeout = 0;
6713 c->Request.CDB[0] = BMIC_READ;
6714 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6715 c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 c->Request.CDB[8] = (size >> 8) & 0XFF;
6717 break;
6718 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6719 c->Request.CDBLen = 10;
6720 c->Request.type_attr_dir =
6721 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722 c->Request.Timeout = 0;
6723 c->Request.CDB[0] = BMIC_READ;
6724 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6725 c->Request.CDB[7] = (size >> 16) & 0xFF;
6726 c->Request.CDB[8] = (size >> 8) & 0XFF;
6727 break;
6728 case BMIC_IDENTIFY_CONTROLLER:
6729 c->Request.CDBLen = 10;
6730 c->Request.type_attr_dir =
6731 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732 c->Request.Timeout = 0;
6733 c->Request.CDB[0] = BMIC_READ;
6734 c->Request.CDB[1] = 0;
6735 c->Request.CDB[2] = 0;
6736 c->Request.CDB[3] = 0;
6737 c->Request.CDB[4] = 0;
6738 c->Request.CDB[5] = 0;
6739 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6740 c->Request.CDB[7] = (size >> 16) & 0xFF;
6741 c->Request.CDB[8] = (size >> 8) & 0XFF;
6742 c->Request.CDB[9] = 0;
6743 break;
6744 default:
6745 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6746 BUG();
6748 } else if (cmd_type == TYPE_MSG) {
6749 switch (cmd) {
6751 case HPSA_PHYS_TARGET_RESET:
6752 c->Request.CDBLen = 16;
6753 c->Request.type_attr_dir =
6754 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6755 c->Request.Timeout = 0; /* Don't time out */
6756 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6757 c->Request.CDB[0] = HPSA_RESET;
6758 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6759 /* Physical target reset needs no control bytes 4-7*/
6760 c->Request.CDB[4] = 0x00;
6761 c->Request.CDB[5] = 0x00;
6762 c->Request.CDB[6] = 0x00;
6763 c->Request.CDB[7] = 0x00;
6764 break;
6765 case HPSA_DEVICE_RESET_MSG:
6766 c->Request.CDBLen = 16;
6767 c->Request.type_attr_dir =
6768 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6769 c->Request.Timeout = 0; /* Don't time out */
6770 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6771 c->Request.CDB[0] = cmd;
6772 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6773 /* If bytes 4-7 are zero, it means reset the */
6774 /* LunID device */
6775 c->Request.CDB[4] = 0x00;
6776 c->Request.CDB[5] = 0x00;
6777 c->Request.CDB[6] = 0x00;
6778 c->Request.CDB[7] = 0x00;
6779 break;
6780 default:
6781 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6782 cmd);
6783 BUG();
6785 } else {
6786 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6787 BUG();
6790 switch (GET_DIR(c->Request.type_attr_dir)) {
6791 case XFER_READ:
6792 dir = DMA_FROM_DEVICE;
6793 break;
6794 case XFER_WRITE:
6795 dir = DMA_TO_DEVICE;
6796 break;
6797 case XFER_NONE:
6798 dir = DMA_NONE;
6799 break;
6800 default:
6801 dir = DMA_BIDIRECTIONAL;
6803 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6804 return -1;
6805 return 0;
6809 * Map (physical) PCI mem into (virtual) kernel space
6811 static void __iomem *remap_pci_mem(ulong base, ulong size)
6813 ulong page_base = ((ulong) base) & PAGE_MASK;
6814 ulong page_offs = ((ulong) base) - page_base;
6815 void __iomem *page_remapped = ioremap_nocache(page_base,
6816 page_offs + size);
6818 return page_remapped ? (page_remapped + page_offs) : NULL;
6821 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6823 return h->access.command_completed(h, q);
6826 static inline bool interrupt_pending(struct ctlr_info *h)
6828 return h->access.intr_pending(h);
6831 static inline long interrupt_not_for_us(struct ctlr_info *h)
6833 return (h->access.intr_pending(h) == 0) ||
6834 (h->interrupts_enabled == 0);
6837 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6838 u32 raw_tag)
6840 if (unlikely(tag_index >= h->nr_cmds)) {
6841 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6842 return 1;
6844 return 0;
6847 static inline void finish_cmd(struct CommandList *c)
6849 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6850 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6851 || c->cmd_type == CMD_IOACCEL2))
6852 complete_scsi_command(c);
6853 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6854 complete(c->waiting);
6857 /* process completion of an indexed ("direct lookup") command */
6858 static inline void process_indexed_cmd(struct ctlr_info *h,
6859 u32 raw_tag)
6861 u32 tag_index;
6862 struct CommandList *c;
6864 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6865 if (!bad_tag(h, tag_index, raw_tag)) {
6866 c = h->cmd_pool + tag_index;
6867 finish_cmd(c);
6871 /* Some controllers, like p400, will give us one interrupt
6872 * after a soft reset, even if we turned interrupts off.
6873 * Only need to check for this in the hpsa_xxx_discard_completions
6874 * functions.
6876 static int ignore_bogus_interrupt(struct ctlr_info *h)
6878 if (likely(!reset_devices))
6879 return 0;
6881 if (likely(h->interrupts_enabled))
6882 return 0;
6884 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6885 "(known firmware bug.) Ignoring.\n");
6887 return 1;
6891 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6892 * Relies on (h-q[x] == x) being true for x such that
6893 * 0 <= x < MAX_REPLY_QUEUES.
6895 static struct ctlr_info *queue_to_hba(u8 *queue)
6897 return container_of((queue - *queue), struct ctlr_info, q[0]);
6900 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6902 struct ctlr_info *h = queue_to_hba(queue);
6903 u8 q = *(u8 *) queue;
6904 u32 raw_tag;
6906 if (ignore_bogus_interrupt(h))
6907 return IRQ_NONE;
6909 if (interrupt_not_for_us(h))
6910 return IRQ_NONE;
6911 h->last_intr_timestamp = get_jiffies_64();
6912 while (interrupt_pending(h)) {
6913 raw_tag = get_next_completion(h, q);
6914 while (raw_tag != FIFO_EMPTY)
6915 raw_tag = next_command(h, q);
6917 return IRQ_HANDLED;
6920 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6922 struct ctlr_info *h = queue_to_hba(queue);
6923 u32 raw_tag;
6924 u8 q = *(u8 *) queue;
6926 if (ignore_bogus_interrupt(h))
6927 return IRQ_NONE;
6929 h->last_intr_timestamp = get_jiffies_64();
6930 raw_tag = get_next_completion(h, q);
6931 while (raw_tag != FIFO_EMPTY)
6932 raw_tag = next_command(h, q);
6933 return IRQ_HANDLED;
6936 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6938 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6939 u32 raw_tag;
6940 u8 q = *(u8 *) queue;
6942 if (interrupt_not_for_us(h))
6943 return IRQ_NONE;
6944 h->last_intr_timestamp = get_jiffies_64();
6945 while (interrupt_pending(h)) {
6946 raw_tag = get_next_completion(h, q);
6947 while (raw_tag != FIFO_EMPTY) {
6948 process_indexed_cmd(h, raw_tag);
6949 raw_tag = next_command(h, q);
6952 return IRQ_HANDLED;
6955 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6957 struct ctlr_info *h = queue_to_hba(queue);
6958 u32 raw_tag;
6959 u8 q = *(u8 *) queue;
6961 h->last_intr_timestamp = get_jiffies_64();
6962 raw_tag = get_next_completion(h, q);
6963 while (raw_tag != FIFO_EMPTY) {
6964 process_indexed_cmd(h, raw_tag);
6965 raw_tag = next_command(h, q);
6967 return IRQ_HANDLED;
6970 /* Send a message CDB to the firmware. Careful, this only works
6971 * in simple mode, not performant mode due to the tag lookup.
6972 * We only ever use this immediately after a controller reset.
6974 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6975 unsigned char type)
6977 struct Command {
6978 struct CommandListHeader CommandHeader;
6979 struct RequestBlock Request;
6980 struct ErrDescriptor ErrorDescriptor;
6982 struct Command *cmd;
6983 static const size_t cmd_sz = sizeof(*cmd) +
6984 sizeof(cmd->ErrorDescriptor);
6985 dma_addr_t paddr64;
6986 __le32 paddr32;
6987 u32 tag;
6988 void __iomem *vaddr;
6989 int i, err;
6991 vaddr = pci_ioremap_bar(pdev, 0);
6992 if (vaddr == NULL)
6993 return -ENOMEM;
6995 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6996 * CCISS commands, so they must be allocated from the lower 4GiB of
6997 * memory.
6999 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7000 if (err) {
7001 iounmap(vaddr);
7002 return err;
7005 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7006 if (cmd == NULL) {
7007 iounmap(vaddr);
7008 return -ENOMEM;
7011 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7012 * although there's no guarantee, we assume that the address is at
7013 * least 4-byte aligned (most likely, it's page-aligned).
7015 paddr32 = cpu_to_le32(paddr64);
7017 cmd->CommandHeader.ReplyQueue = 0;
7018 cmd->CommandHeader.SGList = 0;
7019 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7020 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7021 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7023 cmd->Request.CDBLen = 16;
7024 cmd->Request.type_attr_dir =
7025 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7026 cmd->Request.Timeout = 0; /* Don't time out */
7027 cmd->Request.CDB[0] = opcode;
7028 cmd->Request.CDB[1] = type;
7029 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7030 cmd->ErrorDescriptor.Addr =
7031 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7032 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7034 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7036 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7037 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7038 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7039 break;
7040 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7043 iounmap(vaddr);
7045 /* we leak the DMA buffer here ... no choice since the controller could
7046 * still complete the command.
7048 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7049 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7050 opcode, type);
7051 return -ETIMEDOUT;
7054 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7056 if (tag & HPSA_ERROR_BIT) {
7057 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7058 opcode, type);
7059 return -EIO;
7062 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7063 opcode, type);
7064 return 0;
7067 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7069 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7070 void __iomem *vaddr, u32 use_doorbell)
7073 if (use_doorbell) {
7074 /* For everything after the P600, the PCI power state method
7075 * of resetting the controller doesn't work, so we have this
7076 * other way using the doorbell register.
7078 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7079 writel(use_doorbell, vaddr + SA5_DOORBELL);
7081 /* PMC hardware guys tell us we need a 10 second delay after
7082 * doorbell reset and before any attempt to talk to the board
7083 * at all to ensure that this actually works and doesn't fall
7084 * over in some weird corner cases.
7086 msleep(10000);
7087 } else { /* Try to do it the PCI power state way */
7089 /* Quoting from the Open CISS Specification: "The Power
7090 * Management Control/Status Register (CSR) controls the power
7091 * state of the device. The normal operating state is D0,
7092 * CSR=00h. The software off state is D3, CSR=03h. To reset
7093 * the controller, place the interface device in D3 then to D0,
7094 * this causes a secondary PCI reset which will reset the
7095 * controller." */
7097 int rc = 0;
7099 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7101 /* enter the D3hot power management state */
7102 rc = pci_set_power_state(pdev, PCI_D3hot);
7103 if (rc)
7104 return rc;
7106 msleep(500);
7108 /* enter the D0 power management state */
7109 rc = pci_set_power_state(pdev, PCI_D0);
7110 if (rc)
7111 return rc;
7114 * The P600 requires a small delay when changing states.
7115 * Otherwise we may think the board did not reset and we bail.
7116 * This for kdump only and is particular to the P600.
7118 msleep(500);
7120 return 0;
7123 static void init_driver_version(char *driver_version, int len)
7125 memset(driver_version, 0, len);
7126 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7129 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7131 char *driver_version;
7132 int i, size = sizeof(cfgtable->driver_version);
7134 driver_version = kmalloc(size, GFP_KERNEL);
7135 if (!driver_version)
7136 return -ENOMEM;
7138 init_driver_version(driver_version, size);
7139 for (i = 0; i < size; i++)
7140 writeb(driver_version[i], &cfgtable->driver_version[i]);
7141 kfree(driver_version);
7142 return 0;
7145 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7146 unsigned char *driver_ver)
7148 int i;
7150 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7151 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7154 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7157 char *driver_ver, *old_driver_ver;
7158 int rc, size = sizeof(cfgtable->driver_version);
7160 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7161 if (!old_driver_ver)
7162 return -ENOMEM;
7163 driver_ver = old_driver_ver + size;
7165 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7166 * should have been changed, otherwise we know the reset failed.
7168 init_driver_version(old_driver_ver, size);
7169 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7170 rc = !memcmp(driver_ver, old_driver_ver, size);
7171 kfree(old_driver_ver);
7172 return rc;
7174 /* This does a hard reset of the controller using PCI power management
7175 * states or the using the doorbell register.
7177 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7179 u64 cfg_offset;
7180 u32 cfg_base_addr;
7181 u64 cfg_base_addr_index;
7182 void __iomem *vaddr;
7183 unsigned long paddr;
7184 u32 misc_fw_support;
7185 int rc;
7186 struct CfgTable __iomem *cfgtable;
7187 u32 use_doorbell;
7188 u16 command_register;
7190 /* For controllers as old as the P600, this is very nearly
7191 * the same thing as
7193 * pci_save_state(pci_dev);
7194 * pci_set_power_state(pci_dev, PCI_D3hot);
7195 * pci_set_power_state(pci_dev, PCI_D0);
7196 * pci_restore_state(pci_dev);
7198 * For controllers newer than the P600, the pci power state
7199 * method of resetting doesn't work so we have another way
7200 * using the doorbell register.
7203 if (!ctlr_is_resettable(board_id)) {
7204 dev_warn(&pdev->dev, "Controller not resettable\n");
7205 return -ENODEV;
7208 /* if controller is soft- but not hard resettable... */
7209 if (!ctlr_is_hard_resettable(board_id))
7210 return -ENOTSUPP; /* try soft reset later. */
7212 /* Save the PCI command register */
7213 pci_read_config_word(pdev, 4, &command_register);
7214 pci_save_state(pdev);
7216 /* find the first memory BAR, so we can find the cfg table */
7217 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7218 if (rc)
7219 return rc;
7220 vaddr = remap_pci_mem(paddr, 0x250);
7221 if (!vaddr)
7222 return -ENOMEM;
7224 /* find cfgtable in order to check if reset via doorbell is supported */
7225 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7226 &cfg_base_addr_index, &cfg_offset);
7227 if (rc)
7228 goto unmap_vaddr;
7229 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7230 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7231 if (!cfgtable) {
7232 rc = -ENOMEM;
7233 goto unmap_vaddr;
7235 rc = write_driver_ver_to_cfgtable(cfgtable);
7236 if (rc)
7237 goto unmap_cfgtable;
7239 /* If reset via doorbell register is supported, use that.
7240 * There are two such methods. Favor the newest method.
7242 misc_fw_support = readl(&cfgtable->misc_fw_support);
7243 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7244 if (use_doorbell) {
7245 use_doorbell = DOORBELL_CTLR_RESET2;
7246 } else {
7247 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7248 if (use_doorbell) {
7249 dev_warn(&pdev->dev,
7250 "Soft reset not supported. Firmware update is required.\n");
7251 rc = -ENOTSUPP; /* try soft reset */
7252 goto unmap_cfgtable;
7256 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7257 if (rc)
7258 goto unmap_cfgtable;
7260 pci_restore_state(pdev);
7261 pci_write_config_word(pdev, 4, command_register);
7263 /* Some devices (notably the HP Smart Array 5i Controller)
7264 need a little pause here */
7265 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7267 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7268 if (rc) {
7269 dev_warn(&pdev->dev,
7270 "Failed waiting for board to become ready after hard reset\n");
7271 goto unmap_cfgtable;
7274 rc = controller_reset_failed(vaddr);
7275 if (rc < 0)
7276 goto unmap_cfgtable;
7277 if (rc) {
7278 dev_warn(&pdev->dev, "Unable to successfully reset "
7279 "controller. Will try soft reset.\n");
7280 rc = -ENOTSUPP;
7281 } else {
7282 dev_info(&pdev->dev, "board ready after hard reset.\n");
7285 unmap_cfgtable:
7286 iounmap(cfgtable);
7288 unmap_vaddr:
7289 iounmap(vaddr);
7290 return rc;
7294 * We cannot read the structure directly, for portability we must use
7295 * the io functions.
7296 * This is for debug only.
7298 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7300 #ifdef HPSA_DEBUG
7301 int i;
7302 char temp_name[17];
7304 dev_info(dev, "Controller Configuration information\n");
7305 dev_info(dev, "------------------------------------\n");
7306 for (i = 0; i < 4; i++)
7307 temp_name[i] = readb(&(tb->Signature[i]));
7308 temp_name[4] = '\0';
7309 dev_info(dev, " Signature = %s\n", temp_name);
7310 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7311 dev_info(dev, " Transport methods supported = 0x%x\n",
7312 readl(&(tb->TransportSupport)));
7313 dev_info(dev, " Transport methods active = 0x%x\n",
7314 readl(&(tb->TransportActive)));
7315 dev_info(dev, " Requested transport Method = 0x%x\n",
7316 readl(&(tb->HostWrite.TransportRequest)));
7317 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7318 readl(&(tb->HostWrite.CoalIntDelay)));
7319 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7320 readl(&(tb->HostWrite.CoalIntCount)));
7321 dev_info(dev, " Max outstanding commands = %d\n",
7322 readl(&(tb->CmdsOutMax)));
7323 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7324 for (i = 0; i < 16; i++)
7325 temp_name[i] = readb(&(tb->ServerName[i]));
7326 temp_name[16] = '\0';
7327 dev_info(dev, " Server Name = %s\n", temp_name);
7328 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7329 readl(&(tb->HeartBeat)));
7330 #endif /* HPSA_DEBUG */
7333 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7335 int i, offset, mem_type, bar_type;
7337 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7338 return 0;
7339 offset = 0;
7340 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7341 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7342 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7343 offset += 4;
7344 else {
7345 mem_type = pci_resource_flags(pdev, i) &
7346 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7347 switch (mem_type) {
7348 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7349 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7350 offset += 4; /* 32 bit */
7351 break;
7352 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7353 offset += 8;
7354 break;
7355 default: /* reserved in PCI 2.2 */
7356 dev_warn(&pdev->dev,
7357 "base address is invalid\n");
7358 return -1;
7359 break;
7362 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7363 return i + 1;
7365 return -1;
7368 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7370 pci_free_irq_vectors(h->pdev);
7371 h->msix_vectors = 0;
7374 static void hpsa_setup_reply_map(struct ctlr_info *h)
7376 const struct cpumask *mask;
7377 unsigned int queue, cpu;
7379 for (queue = 0; queue < h->msix_vectors; queue++) {
7380 mask = pci_irq_get_affinity(h->pdev, queue);
7381 if (!mask)
7382 goto fallback;
7384 for_each_cpu(cpu, mask)
7385 h->reply_map[cpu] = queue;
7387 return;
7389 fallback:
7390 for_each_possible_cpu(cpu)
7391 h->reply_map[cpu] = 0;
7394 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7395 * controllers that are capable. If not, we use legacy INTx mode.
7397 static int hpsa_interrupt_mode(struct ctlr_info *h)
7399 unsigned int flags = PCI_IRQ_LEGACY;
7400 int ret;
7402 /* Some boards advertise MSI but don't really support it */
7403 switch (h->board_id) {
7404 case 0x40700E11:
7405 case 0x40800E11:
7406 case 0x40820E11:
7407 case 0x40830E11:
7408 break;
7409 default:
7410 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7411 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7412 if (ret > 0) {
7413 h->msix_vectors = ret;
7414 return 0;
7417 flags |= PCI_IRQ_MSI;
7418 break;
7421 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7422 if (ret < 0)
7423 return ret;
7424 return 0;
7427 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7428 bool *legacy_board)
7430 int i;
7431 u32 subsystem_vendor_id, subsystem_device_id;
7433 subsystem_vendor_id = pdev->subsystem_vendor;
7434 subsystem_device_id = pdev->subsystem_device;
7435 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7436 subsystem_vendor_id;
7438 if (legacy_board)
7439 *legacy_board = false;
7440 for (i = 0; i < ARRAY_SIZE(products); i++)
7441 if (*board_id == products[i].board_id) {
7442 if (products[i].access != &SA5A_access &&
7443 products[i].access != &SA5B_access)
7444 return i;
7445 dev_warn(&pdev->dev,
7446 "legacy board ID: 0x%08x\n",
7447 *board_id);
7448 if (legacy_board)
7449 *legacy_board = true;
7450 return i;
7453 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7454 if (legacy_board)
7455 *legacy_board = true;
7456 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7459 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7460 unsigned long *memory_bar)
7462 int i;
7464 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7465 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7466 /* addressing mode bits already removed */
7467 *memory_bar = pci_resource_start(pdev, i);
7468 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7469 *memory_bar);
7470 return 0;
7472 dev_warn(&pdev->dev, "no memory BAR found\n");
7473 return -ENODEV;
7476 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7477 int wait_for_ready)
7479 int i, iterations;
7480 u32 scratchpad;
7481 if (wait_for_ready)
7482 iterations = HPSA_BOARD_READY_ITERATIONS;
7483 else
7484 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7486 for (i = 0; i < iterations; i++) {
7487 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7488 if (wait_for_ready) {
7489 if (scratchpad == HPSA_FIRMWARE_READY)
7490 return 0;
7491 } else {
7492 if (scratchpad != HPSA_FIRMWARE_READY)
7493 return 0;
7495 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7497 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7498 return -ENODEV;
7501 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7502 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7503 u64 *cfg_offset)
7505 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7506 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7507 *cfg_base_addr &= (u32) 0x0000ffff;
7508 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7509 if (*cfg_base_addr_index == -1) {
7510 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7511 return -ENODEV;
7513 return 0;
7516 static void hpsa_free_cfgtables(struct ctlr_info *h)
7518 if (h->transtable) {
7519 iounmap(h->transtable);
7520 h->transtable = NULL;
7522 if (h->cfgtable) {
7523 iounmap(h->cfgtable);
7524 h->cfgtable = NULL;
7528 /* Find and map CISS config table and transfer table
7529 + * several items must be unmapped (freed) later
7530 + * */
7531 static int hpsa_find_cfgtables(struct ctlr_info *h)
7533 u64 cfg_offset;
7534 u32 cfg_base_addr;
7535 u64 cfg_base_addr_index;
7536 u32 trans_offset;
7537 int rc;
7539 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7540 &cfg_base_addr_index, &cfg_offset);
7541 if (rc)
7542 return rc;
7543 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7544 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7545 if (!h->cfgtable) {
7546 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7547 return -ENOMEM;
7549 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7550 if (rc)
7551 return rc;
7552 /* Find performant mode table. */
7553 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7554 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7555 cfg_base_addr_index)+cfg_offset+trans_offset,
7556 sizeof(*h->transtable));
7557 if (!h->transtable) {
7558 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7559 hpsa_free_cfgtables(h);
7560 return -ENOMEM;
7562 return 0;
7565 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7567 #define MIN_MAX_COMMANDS 16
7568 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7570 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7572 /* Limit commands in memory limited kdump scenario. */
7573 if (reset_devices && h->max_commands > 32)
7574 h->max_commands = 32;
7576 if (h->max_commands < MIN_MAX_COMMANDS) {
7577 dev_warn(&h->pdev->dev,
7578 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7579 h->max_commands,
7580 MIN_MAX_COMMANDS);
7581 h->max_commands = MIN_MAX_COMMANDS;
7585 /* If the controller reports that the total max sg entries is greater than 512,
7586 * then we know that chained SG blocks work. (Original smart arrays did not
7587 * support chained SG blocks and would return zero for max sg entries.)
7589 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7591 return h->maxsgentries > 512;
7594 /* Interrogate the hardware for some limits:
7595 * max commands, max SG elements without chaining, and with chaining,
7596 * SG chain block size, etc.
7598 static void hpsa_find_board_params(struct ctlr_info *h)
7600 hpsa_get_max_perf_mode_cmds(h);
7601 h->nr_cmds = h->max_commands;
7602 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7603 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7604 if (hpsa_supports_chained_sg_blocks(h)) {
7605 /* Limit in-command s/g elements to 32 save dma'able memory. */
7606 h->max_cmd_sg_entries = 32;
7607 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7608 h->maxsgentries--; /* save one for chain pointer */
7609 } else {
7611 * Original smart arrays supported at most 31 s/g entries
7612 * embedded inline in the command (trying to use more
7613 * would lock up the controller)
7615 h->max_cmd_sg_entries = 31;
7616 h->maxsgentries = 31; /* default to traditional values */
7617 h->chainsize = 0;
7620 /* Find out what task management functions are supported and cache */
7621 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7622 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7623 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7624 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7625 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7626 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7627 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7630 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7632 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7633 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7634 return false;
7636 return true;
7639 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7641 u32 driver_support;
7643 driver_support = readl(&(h->cfgtable->driver_support));
7644 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7645 #ifdef CONFIG_X86
7646 driver_support |= ENABLE_SCSI_PREFETCH;
7647 #endif
7648 driver_support |= ENABLE_UNIT_ATTN;
7649 writel(driver_support, &(h->cfgtable->driver_support));
7652 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7653 * in a prefetch beyond physical memory.
7655 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7657 u32 dma_prefetch;
7659 if (h->board_id != 0x3225103C)
7660 return;
7661 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7662 dma_prefetch |= 0x8000;
7663 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7666 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7668 int i;
7669 u32 doorbell_value;
7670 unsigned long flags;
7671 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7672 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7673 spin_lock_irqsave(&h->lock, flags);
7674 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7675 spin_unlock_irqrestore(&h->lock, flags);
7676 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7677 goto done;
7678 /* delay and try again */
7679 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7681 return -ENODEV;
7682 done:
7683 return 0;
7686 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7688 int i;
7689 u32 doorbell_value;
7690 unsigned long flags;
7692 /* under certain very rare conditions, this can take awhile.
7693 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7694 * as we enter this code.)
7696 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7697 if (h->remove_in_progress)
7698 goto done;
7699 spin_lock_irqsave(&h->lock, flags);
7700 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7701 spin_unlock_irqrestore(&h->lock, flags);
7702 if (!(doorbell_value & CFGTBL_ChangeReq))
7703 goto done;
7704 /* delay and try again */
7705 msleep(MODE_CHANGE_WAIT_INTERVAL);
7707 return -ENODEV;
7708 done:
7709 return 0;
7712 /* return -ENODEV or other reason on error, 0 on success */
7713 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7715 u32 trans_support;
7717 trans_support = readl(&(h->cfgtable->TransportSupport));
7718 if (!(trans_support & SIMPLE_MODE))
7719 return -ENOTSUPP;
7721 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7723 /* Update the field, and then ring the doorbell */
7724 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7725 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7726 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7727 if (hpsa_wait_for_mode_change_ack(h))
7728 goto error;
7729 print_cfg_table(&h->pdev->dev, h->cfgtable);
7730 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7731 goto error;
7732 h->transMethod = CFGTBL_Trans_Simple;
7733 return 0;
7734 error:
7735 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7736 return -ENODEV;
7739 /* free items allocated or mapped by hpsa_pci_init */
7740 static void hpsa_free_pci_init(struct ctlr_info *h)
7742 hpsa_free_cfgtables(h); /* pci_init 4 */
7743 iounmap(h->vaddr); /* pci_init 3 */
7744 h->vaddr = NULL;
7745 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7747 * call pci_disable_device before pci_release_regions per
7748 * Documentation/PCI/pci.txt
7750 pci_disable_device(h->pdev); /* pci_init 1 */
7751 pci_release_regions(h->pdev); /* pci_init 2 */
7754 /* several items must be freed later */
7755 static int hpsa_pci_init(struct ctlr_info *h)
7757 int prod_index, err;
7758 bool legacy_board;
7760 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7761 if (prod_index < 0)
7762 return prod_index;
7763 h->product_name = products[prod_index].product_name;
7764 h->access = *(products[prod_index].access);
7765 h->legacy_board = legacy_board;
7766 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7767 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7769 err = pci_enable_device(h->pdev);
7770 if (err) {
7771 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7772 pci_disable_device(h->pdev);
7773 return err;
7776 err = pci_request_regions(h->pdev, HPSA);
7777 if (err) {
7778 dev_err(&h->pdev->dev,
7779 "failed to obtain PCI resources\n");
7780 pci_disable_device(h->pdev);
7781 return err;
7784 pci_set_master(h->pdev);
7786 err = hpsa_interrupt_mode(h);
7787 if (err)
7788 goto clean1;
7790 /* setup mapping between CPU and reply queue */
7791 hpsa_setup_reply_map(h);
7793 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7794 if (err)
7795 goto clean2; /* intmode+region, pci */
7796 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7797 if (!h->vaddr) {
7798 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7799 err = -ENOMEM;
7800 goto clean2; /* intmode+region, pci */
7802 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7803 if (err)
7804 goto clean3; /* vaddr, intmode+region, pci */
7805 err = hpsa_find_cfgtables(h);
7806 if (err)
7807 goto clean3; /* vaddr, intmode+region, pci */
7808 hpsa_find_board_params(h);
7810 if (!hpsa_CISS_signature_present(h)) {
7811 err = -ENODEV;
7812 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7814 hpsa_set_driver_support_bits(h);
7815 hpsa_p600_dma_prefetch_quirk(h);
7816 err = hpsa_enter_simple_mode(h);
7817 if (err)
7818 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7819 return 0;
7821 clean4: /* cfgtables, vaddr, intmode+region, pci */
7822 hpsa_free_cfgtables(h);
7823 clean3: /* vaddr, intmode+region, pci */
7824 iounmap(h->vaddr);
7825 h->vaddr = NULL;
7826 clean2: /* intmode+region, pci */
7827 hpsa_disable_interrupt_mode(h);
7828 clean1:
7830 * call pci_disable_device before pci_release_regions per
7831 * Documentation/PCI/pci.txt
7833 pci_disable_device(h->pdev);
7834 pci_release_regions(h->pdev);
7835 return err;
7838 static void hpsa_hba_inquiry(struct ctlr_info *h)
7840 int rc;
7842 #define HBA_INQUIRY_BYTE_COUNT 64
7843 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7844 if (!h->hba_inquiry_data)
7845 return;
7846 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7847 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7848 if (rc != 0) {
7849 kfree(h->hba_inquiry_data);
7850 h->hba_inquiry_data = NULL;
7854 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7856 int rc, i;
7857 void __iomem *vaddr;
7859 if (!reset_devices)
7860 return 0;
7862 /* kdump kernel is loading, we don't know in which state is
7863 * the pci interface. The dev->enable_cnt is equal zero
7864 * so we call enable+disable, wait a while and switch it on.
7866 rc = pci_enable_device(pdev);
7867 if (rc) {
7868 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7869 return -ENODEV;
7871 pci_disable_device(pdev);
7872 msleep(260); /* a randomly chosen number */
7873 rc = pci_enable_device(pdev);
7874 if (rc) {
7875 dev_warn(&pdev->dev, "failed to enable device.\n");
7876 return -ENODEV;
7879 pci_set_master(pdev);
7881 vaddr = pci_ioremap_bar(pdev, 0);
7882 if (vaddr == NULL) {
7883 rc = -ENOMEM;
7884 goto out_disable;
7886 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7887 iounmap(vaddr);
7889 /* Reset the controller with a PCI power-cycle or via doorbell */
7890 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7892 /* -ENOTSUPP here means we cannot reset the controller
7893 * but it's already (and still) up and running in
7894 * "performant mode". Or, it might be 640x, which can't reset
7895 * due to concerns about shared bbwc between 6402/6404 pair.
7897 if (rc)
7898 goto out_disable;
7900 /* Now try to get the controller to respond to a no-op */
7901 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7902 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7903 if (hpsa_noop(pdev) == 0)
7904 break;
7905 else
7906 dev_warn(&pdev->dev, "no-op failed%s\n",
7907 (i < 11 ? "; re-trying" : ""));
7910 out_disable:
7912 pci_disable_device(pdev);
7913 return rc;
7916 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7918 kfree(h->cmd_pool_bits);
7919 h->cmd_pool_bits = NULL;
7920 if (h->cmd_pool) {
7921 dma_free_coherent(&h->pdev->dev,
7922 h->nr_cmds * sizeof(struct CommandList),
7923 h->cmd_pool,
7924 h->cmd_pool_dhandle);
7925 h->cmd_pool = NULL;
7926 h->cmd_pool_dhandle = 0;
7928 if (h->errinfo_pool) {
7929 dma_free_coherent(&h->pdev->dev,
7930 h->nr_cmds * sizeof(struct ErrorInfo),
7931 h->errinfo_pool,
7932 h->errinfo_pool_dhandle);
7933 h->errinfo_pool = NULL;
7934 h->errinfo_pool_dhandle = 0;
7938 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7940 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7941 sizeof(unsigned long),
7942 GFP_KERNEL);
7943 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7944 h->nr_cmds * sizeof(*h->cmd_pool),
7945 &h->cmd_pool_dhandle, GFP_KERNEL);
7946 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7947 h->nr_cmds * sizeof(*h->errinfo_pool),
7948 &h->errinfo_pool_dhandle, GFP_KERNEL);
7949 if ((h->cmd_pool_bits == NULL)
7950 || (h->cmd_pool == NULL)
7951 || (h->errinfo_pool == NULL)) {
7952 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7953 goto clean_up;
7955 hpsa_preinitialize_commands(h);
7956 return 0;
7957 clean_up:
7958 hpsa_free_cmd_pool(h);
7959 return -ENOMEM;
7962 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7963 static void hpsa_free_irqs(struct ctlr_info *h)
7965 int i;
7967 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7968 /* Single reply queue, only one irq to free */
7969 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7970 h->q[h->intr_mode] = 0;
7971 return;
7974 for (i = 0; i < h->msix_vectors; i++) {
7975 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7976 h->q[i] = 0;
7978 for (; i < MAX_REPLY_QUEUES; i++)
7979 h->q[i] = 0;
7982 /* returns 0 on success; cleans up and returns -Enn on error */
7983 static int hpsa_request_irqs(struct ctlr_info *h,
7984 irqreturn_t (*msixhandler)(int, void *),
7985 irqreturn_t (*intxhandler)(int, void *))
7987 int rc, i;
7990 * initialize h->q[x] = x so that interrupt handlers know which
7991 * queue to process.
7993 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7994 h->q[i] = (u8) i;
7996 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7997 /* If performant mode and MSI-X, use multiple reply queues */
7998 for (i = 0; i < h->msix_vectors; i++) {
7999 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8000 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8001 0, h->intrname[i],
8002 &h->q[i]);
8003 if (rc) {
8004 int j;
8006 dev_err(&h->pdev->dev,
8007 "failed to get irq %d for %s\n",
8008 pci_irq_vector(h->pdev, i), h->devname);
8009 for (j = 0; j < i; j++) {
8010 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8011 h->q[j] = 0;
8013 for (; j < MAX_REPLY_QUEUES; j++)
8014 h->q[j] = 0;
8015 return rc;
8018 } else {
8019 /* Use single reply pool */
8020 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8021 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8022 h->msix_vectors ? "x" : "");
8023 rc = request_irq(pci_irq_vector(h->pdev, 0),
8024 msixhandler, 0,
8025 h->intrname[0],
8026 &h->q[h->intr_mode]);
8027 } else {
8028 sprintf(h->intrname[h->intr_mode],
8029 "%s-intx", h->devname);
8030 rc = request_irq(pci_irq_vector(h->pdev, 0),
8031 intxhandler, IRQF_SHARED,
8032 h->intrname[0],
8033 &h->q[h->intr_mode]);
8036 if (rc) {
8037 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8038 pci_irq_vector(h->pdev, 0), h->devname);
8039 hpsa_free_irqs(h);
8040 return -ENODEV;
8042 return 0;
8045 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8047 int rc;
8048 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8050 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8051 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8052 if (rc) {
8053 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8054 return rc;
8057 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8058 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8059 if (rc) {
8060 dev_warn(&h->pdev->dev, "Board failed to become ready "
8061 "after soft reset.\n");
8062 return rc;
8065 return 0;
8068 static void hpsa_free_reply_queues(struct ctlr_info *h)
8070 int i;
8072 for (i = 0; i < h->nreply_queues; i++) {
8073 if (!h->reply_queue[i].head)
8074 continue;
8075 dma_free_coherent(&h->pdev->dev,
8076 h->reply_queue_size,
8077 h->reply_queue[i].head,
8078 h->reply_queue[i].busaddr);
8079 h->reply_queue[i].head = NULL;
8080 h->reply_queue[i].busaddr = 0;
8082 h->reply_queue_size = 0;
8085 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8087 hpsa_free_performant_mode(h); /* init_one 7 */
8088 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8089 hpsa_free_cmd_pool(h); /* init_one 5 */
8090 hpsa_free_irqs(h); /* init_one 4 */
8091 scsi_host_put(h->scsi_host); /* init_one 3 */
8092 h->scsi_host = NULL; /* init_one 3 */
8093 hpsa_free_pci_init(h); /* init_one 2_5 */
8094 free_percpu(h->lockup_detected); /* init_one 2 */
8095 h->lockup_detected = NULL; /* init_one 2 */
8096 if (h->resubmit_wq) {
8097 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8098 h->resubmit_wq = NULL;
8100 if (h->rescan_ctlr_wq) {
8101 destroy_workqueue(h->rescan_ctlr_wq);
8102 h->rescan_ctlr_wq = NULL;
8104 kfree(h); /* init_one 1 */
8107 /* Called when controller lockup detected. */
8108 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8110 int i, refcount;
8111 struct CommandList *c;
8112 int failcount = 0;
8114 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8115 for (i = 0; i < h->nr_cmds; i++) {
8116 c = h->cmd_pool + i;
8117 refcount = atomic_inc_return(&c->refcount);
8118 if (refcount > 1) {
8119 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8120 finish_cmd(c);
8121 atomic_dec(&h->commands_outstanding);
8122 failcount++;
8124 cmd_free(h, c);
8126 dev_warn(&h->pdev->dev,
8127 "failed %d commands in fail_all\n", failcount);
8130 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8132 int cpu;
8134 for_each_online_cpu(cpu) {
8135 u32 *lockup_detected;
8136 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8137 *lockup_detected = value;
8139 wmb(); /* be sure the per-cpu variables are out to memory */
8142 static void controller_lockup_detected(struct ctlr_info *h)
8144 unsigned long flags;
8145 u32 lockup_detected;
8147 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8148 spin_lock_irqsave(&h->lock, flags);
8149 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8150 if (!lockup_detected) {
8151 /* no heartbeat, but controller gave us a zero. */
8152 dev_warn(&h->pdev->dev,
8153 "lockup detected after %d but scratchpad register is zero\n",
8154 h->heartbeat_sample_interval / HZ);
8155 lockup_detected = 0xffffffff;
8157 set_lockup_detected_for_all_cpus(h, lockup_detected);
8158 spin_unlock_irqrestore(&h->lock, flags);
8159 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8160 lockup_detected, h->heartbeat_sample_interval / HZ);
8161 if (lockup_detected == 0xffff0000) {
8162 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8163 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8165 pci_disable_device(h->pdev);
8166 fail_all_outstanding_cmds(h);
8169 static int detect_controller_lockup(struct ctlr_info *h)
8171 u64 now;
8172 u32 heartbeat;
8173 unsigned long flags;
8175 now = get_jiffies_64();
8176 /* If we've received an interrupt recently, we're ok. */
8177 if (time_after64(h->last_intr_timestamp +
8178 (h->heartbeat_sample_interval), now))
8179 return false;
8182 * If we've already checked the heartbeat recently, we're ok.
8183 * This could happen if someone sends us a signal. We
8184 * otherwise don't care about signals in this thread.
8186 if (time_after64(h->last_heartbeat_timestamp +
8187 (h->heartbeat_sample_interval), now))
8188 return false;
8190 /* If heartbeat has not changed since we last looked, we're not ok. */
8191 spin_lock_irqsave(&h->lock, flags);
8192 heartbeat = readl(&h->cfgtable->HeartBeat);
8193 spin_unlock_irqrestore(&h->lock, flags);
8194 if (h->last_heartbeat == heartbeat) {
8195 controller_lockup_detected(h);
8196 return true;
8199 /* We're ok. */
8200 h->last_heartbeat = heartbeat;
8201 h->last_heartbeat_timestamp = now;
8202 return false;
8206 * Set ioaccel status for all ioaccel volumes.
8208 * Called from monitor controller worker (hpsa_event_monitor_worker)
8210 * A Volume (or Volumes that comprise an Array set may be undergoing a
8211 * transformation, so we will be turning off ioaccel for all volumes that
8212 * make up the Array.
8214 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8216 int rc;
8217 int i;
8218 u8 ioaccel_status;
8219 unsigned char *buf;
8220 struct hpsa_scsi_dev_t *device;
8222 if (!h)
8223 return;
8225 buf = kmalloc(64, GFP_KERNEL);
8226 if (!buf)
8227 return;
8230 * Run through current device list used during I/O requests.
8232 for (i = 0; i < h->ndevices; i++) {
8233 device = h->dev[i];
8235 if (!device)
8236 continue;
8237 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8238 HPSA_VPD_LV_IOACCEL_STATUS))
8239 continue;
8241 memset(buf, 0, 64);
8243 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8244 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8245 buf, 64);
8246 if (rc != 0)
8247 continue;
8249 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8250 device->offload_config =
8251 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8252 if (device->offload_config)
8253 device->offload_to_be_enabled =
8254 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8257 * Immediately turn off ioaccel for any volume the
8258 * controller tells us to. Some of the reasons could be:
8259 * transformation - change to the LVs of an Array.
8260 * degraded volume - component failure
8262 * If ioaccel is to be re-enabled, re-enable later during the
8263 * scan operation so the driver can get a fresh raidmap
8264 * before turning ioaccel back on.
8267 if (!device->offload_to_be_enabled)
8268 device->offload_enabled = 0;
8271 kfree(buf);
8274 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8276 char *event_type;
8278 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8279 return;
8281 /* Ask the controller to clear the events we're handling. */
8282 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8283 | CFGTBL_Trans_io_accel2)) &&
8284 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8285 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8287 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8288 event_type = "state change";
8289 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8290 event_type = "configuration change";
8291 /* Stop sending new RAID offload reqs via the IO accelerator */
8292 scsi_block_requests(h->scsi_host);
8293 hpsa_set_ioaccel_status(h);
8294 hpsa_drain_accel_commands(h);
8295 /* Set 'accelerator path config change' bit */
8296 dev_warn(&h->pdev->dev,
8297 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8298 h->events, event_type);
8299 writel(h->events, &(h->cfgtable->clear_event_notify));
8300 /* Set the "clear event notify field update" bit 6 */
8301 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8302 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8303 hpsa_wait_for_clear_event_notify_ack(h);
8304 scsi_unblock_requests(h->scsi_host);
8305 } else {
8306 /* Acknowledge controller notification events. */
8307 writel(h->events, &(h->cfgtable->clear_event_notify));
8308 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8309 hpsa_wait_for_clear_event_notify_ack(h);
8311 return;
8314 /* Check a register on the controller to see if there are configuration
8315 * changes (added/changed/removed logical drives, etc.) which mean that
8316 * we should rescan the controller for devices.
8317 * Also check flag for driver-initiated rescan.
8319 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8321 if (h->drv_req_rescan) {
8322 h->drv_req_rescan = 0;
8323 return 1;
8326 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8327 return 0;
8329 h->events = readl(&(h->cfgtable->event_notify));
8330 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8334 * Check if any of the offline devices have become ready
8336 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8338 unsigned long flags;
8339 struct offline_device_entry *d;
8340 struct list_head *this, *tmp;
8342 spin_lock_irqsave(&h->offline_device_lock, flags);
8343 list_for_each_safe(this, tmp, &h->offline_device_list) {
8344 d = list_entry(this, struct offline_device_entry,
8345 offline_list);
8346 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8348 spin_lock_irqsave(&h->offline_device_lock, flags);
8349 list_del(&d->offline_list);
8350 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8351 return 1;
8353 spin_lock_irqsave(&h->offline_device_lock, flags);
8355 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8356 return 0;
8359 static int hpsa_luns_changed(struct ctlr_info *h)
8361 int rc = 1; /* assume there are changes */
8362 struct ReportLUNdata *logdev = NULL;
8364 /* if we can't find out if lun data has changed,
8365 * assume that it has.
8368 if (!h->lastlogicals)
8369 return rc;
8371 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8372 if (!logdev)
8373 return rc;
8375 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8376 dev_warn(&h->pdev->dev,
8377 "report luns failed, can't track lun changes.\n");
8378 goto out;
8380 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8381 dev_info(&h->pdev->dev,
8382 "Lun changes detected.\n");
8383 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8384 goto out;
8385 } else
8386 rc = 0; /* no changes detected. */
8387 out:
8388 kfree(logdev);
8389 return rc;
8392 static void hpsa_perform_rescan(struct ctlr_info *h)
8394 struct Scsi_Host *sh = NULL;
8395 unsigned long flags;
8398 * Do the scan after the reset
8400 spin_lock_irqsave(&h->reset_lock, flags);
8401 if (h->reset_in_progress) {
8402 h->drv_req_rescan = 1;
8403 spin_unlock_irqrestore(&h->reset_lock, flags);
8404 return;
8406 spin_unlock_irqrestore(&h->reset_lock, flags);
8408 sh = scsi_host_get(h->scsi_host);
8409 if (sh != NULL) {
8410 hpsa_scan_start(sh);
8411 scsi_host_put(sh);
8412 h->drv_req_rescan = 0;
8417 * watch for controller events
8419 static void hpsa_event_monitor_worker(struct work_struct *work)
8421 struct ctlr_info *h = container_of(to_delayed_work(work),
8422 struct ctlr_info, event_monitor_work);
8423 unsigned long flags;
8425 spin_lock_irqsave(&h->lock, flags);
8426 if (h->remove_in_progress) {
8427 spin_unlock_irqrestore(&h->lock, flags);
8428 return;
8430 spin_unlock_irqrestore(&h->lock, flags);
8432 if (hpsa_ctlr_needs_rescan(h)) {
8433 hpsa_ack_ctlr_events(h);
8434 hpsa_perform_rescan(h);
8437 spin_lock_irqsave(&h->lock, flags);
8438 if (!h->remove_in_progress)
8439 schedule_delayed_work(&h->event_monitor_work,
8440 HPSA_EVENT_MONITOR_INTERVAL);
8441 spin_unlock_irqrestore(&h->lock, flags);
8444 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8446 unsigned long flags;
8447 struct ctlr_info *h = container_of(to_delayed_work(work),
8448 struct ctlr_info, rescan_ctlr_work);
8450 spin_lock_irqsave(&h->lock, flags);
8451 if (h->remove_in_progress) {
8452 spin_unlock_irqrestore(&h->lock, flags);
8453 return;
8455 spin_unlock_irqrestore(&h->lock, flags);
8457 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8458 hpsa_perform_rescan(h);
8459 } else if (h->discovery_polling) {
8460 if (hpsa_luns_changed(h)) {
8461 dev_info(&h->pdev->dev,
8462 "driver discovery polling rescan.\n");
8463 hpsa_perform_rescan(h);
8466 spin_lock_irqsave(&h->lock, flags);
8467 if (!h->remove_in_progress)
8468 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8469 h->heartbeat_sample_interval);
8470 spin_unlock_irqrestore(&h->lock, flags);
8473 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8475 unsigned long flags;
8476 struct ctlr_info *h = container_of(to_delayed_work(work),
8477 struct ctlr_info, monitor_ctlr_work);
8479 detect_controller_lockup(h);
8480 if (lockup_detected(h))
8481 return;
8483 spin_lock_irqsave(&h->lock, flags);
8484 if (!h->remove_in_progress)
8485 schedule_delayed_work(&h->monitor_ctlr_work,
8486 h->heartbeat_sample_interval);
8487 spin_unlock_irqrestore(&h->lock, flags);
8490 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8491 char *name)
8493 struct workqueue_struct *wq = NULL;
8495 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8496 if (!wq)
8497 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8499 return wq;
8502 static void hpda_free_ctlr_info(struct ctlr_info *h)
8504 kfree(h->reply_map);
8505 kfree(h);
8508 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8510 struct ctlr_info *h;
8512 h = kzalloc(sizeof(*h), GFP_KERNEL);
8513 if (!h)
8514 return NULL;
8516 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8517 if (!h->reply_map) {
8518 kfree(h);
8519 return NULL;
8521 return h;
8524 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8526 int dac, rc;
8527 struct ctlr_info *h;
8528 int try_soft_reset = 0;
8529 unsigned long flags;
8530 u32 board_id;
8532 if (number_of_controllers == 0)
8533 printk(KERN_INFO DRIVER_NAME "\n");
8535 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8536 if (rc < 0) {
8537 dev_warn(&pdev->dev, "Board ID not found\n");
8538 return rc;
8541 rc = hpsa_init_reset_devices(pdev, board_id);
8542 if (rc) {
8543 if (rc != -ENOTSUPP)
8544 return rc;
8545 /* If the reset fails in a particular way (it has no way to do
8546 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8547 * a soft reset once we get the controller configured up to the
8548 * point that it can accept a command.
8550 try_soft_reset = 1;
8551 rc = 0;
8554 reinit_after_soft_reset:
8556 /* Command structures must be aligned on a 32-byte boundary because
8557 * the 5 lower bits of the address are used by the hardware. and by
8558 * the driver. See comments in hpsa.h for more info.
8560 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8561 h = hpda_alloc_ctlr_info();
8562 if (!h) {
8563 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8564 return -ENOMEM;
8567 h->pdev = pdev;
8569 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8570 INIT_LIST_HEAD(&h->offline_device_list);
8571 spin_lock_init(&h->lock);
8572 spin_lock_init(&h->offline_device_lock);
8573 spin_lock_init(&h->scan_lock);
8574 spin_lock_init(&h->reset_lock);
8575 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8577 /* Allocate and clear per-cpu variable lockup_detected */
8578 h->lockup_detected = alloc_percpu(u32);
8579 if (!h->lockup_detected) {
8580 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8581 rc = -ENOMEM;
8582 goto clean1; /* aer/h */
8584 set_lockup_detected_for_all_cpus(h, 0);
8586 rc = hpsa_pci_init(h);
8587 if (rc)
8588 goto clean2; /* lu, aer/h */
8590 /* relies on h-> settings made by hpsa_pci_init, including
8591 * interrupt_mode h->intr */
8592 rc = hpsa_scsi_host_alloc(h);
8593 if (rc)
8594 goto clean2_5; /* pci, lu, aer/h */
8596 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8597 h->ctlr = number_of_controllers;
8598 number_of_controllers++;
8600 /* configure PCI DMA stuff */
8601 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8602 if (rc == 0) {
8603 dac = 1;
8604 } else {
8605 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8606 if (rc == 0) {
8607 dac = 0;
8608 } else {
8609 dev_err(&pdev->dev, "no suitable DMA available\n");
8610 goto clean3; /* shost, pci, lu, aer/h */
8614 /* make sure the board interrupts are off */
8615 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8617 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8618 if (rc)
8619 goto clean3; /* shost, pci, lu, aer/h */
8620 rc = hpsa_alloc_cmd_pool(h);
8621 if (rc)
8622 goto clean4; /* irq, shost, pci, lu, aer/h */
8623 rc = hpsa_alloc_sg_chain_blocks(h);
8624 if (rc)
8625 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8626 init_waitqueue_head(&h->scan_wait_queue);
8627 init_waitqueue_head(&h->event_sync_wait_queue);
8628 mutex_init(&h->reset_mutex);
8629 h->scan_finished = 1; /* no scan currently in progress */
8630 h->scan_waiting = 0;
8632 pci_set_drvdata(pdev, h);
8633 h->ndevices = 0;
8635 spin_lock_init(&h->devlock);
8636 rc = hpsa_put_ctlr_into_performant_mode(h);
8637 if (rc)
8638 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8640 /* create the resubmit workqueue */
8641 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8642 if (!h->rescan_ctlr_wq) {
8643 rc = -ENOMEM;
8644 goto clean7;
8647 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8648 if (!h->resubmit_wq) {
8649 rc = -ENOMEM;
8650 goto clean7; /* aer/h */
8654 * At this point, the controller is ready to take commands.
8655 * Now, if reset_devices and the hard reset didn't work, try
8656 * the soft reset and see if that works.
8658 if (try_soft_reset) {
8660 /* This is kind of gross. We may or may not get a completion
8661 * from the soft reset command, and if we do, then the value
8662 * from the fifo may or may not be valid. So, we wait 10 secs
8663 * after the reset throwing away any completions we get during
8664 * that time. Unregister the interrupt handler and register
8665 * fake ones to scoop up any residual completions.
8667 spin_lock_irqsave(&h->lock, flags);
8668 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8669 spin_unlock_irqrestore(&h->lock, flags);
8670 hpsa_free_irqs(h);
8671 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8672 hpsa_intx_discard_completions);
8673 if (rc) {
8674 dev_warn(&h->pdev->dev,
8675 "Failed to request_irq after soft reset.\n");
8677 * cannot goto clean7 or free_irqs will be called
8678 * again. Instead, do its work
8680 hpsa_free_performant_mode(h); /* clean7 */
8681 hpsa_free_sg_chain_blocks(h); /* clean6 */
8682 hpsa_free_cmd_pool(h); /* clean5 */
8684 * skip hpsa_free_irqs(h) clean4 since that
8685 * was just called before request_irqs failed
8687 goto clean3;
8690 rc = hpsa_kdump_soft_reset(h);
8691 if (rc)
8692 /* Neither hard nor soft reset worked, we're hosed. */
8693 goto clean7;
8695 dev_info(&h->pdev->dev, "Board READY.\n");
8696 dev_info(&h->pdev->dev,
8697 "Waiting for stale completions to drain.\n");
8698 h->access.set_intr_mask(h, HPSA_INTR_ON);
8699 msleep(10000);
8700 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8702 rc = controller_reset_failed(h->cfgtable);
8703 if (rc)
8704 dev_info(&h->pdev->dev,
8705 "Soft reset appears to have failed.\n");
8707 /* since the controller's reset, we have to go back and re-init
8708 * everything. Easiest to just forget what we've done and do it
8709 * all over again.
8711 hpsa_undo_allocations_after_kdump_soft_reset(h);
8712 try_soft_reset = 0;
8713 if (rc)
8714 /* don't goto clean, we already unallocated */
8715 return -ENODEV;
8717 goto reinit_after_soft_reset;
8720 /* Enable Accelerated IO path at driver layer */
8721 h->acciopath_status = 1;
8722 /* Disable discovery polling.*/
8723 h->discovery_polling = 0;
8726 /* Turn the interrupts on so we can service requests */
8727 h->access.set_intr_mask(h, HPSA_INTR_ON);
8729 hpsa_hba_inquiry(h);
8731 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8732 if (!h->lastlogicals)
8733 dev_info(&h->pdev->dev,
8734 "Can't track change to report lun data\n");
8736 /* hook into SCSI subsystem */
8737 rc = hpsa_scsi_add_host(h);
8738 if (rc)
8739 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8741 /* Monitor the controller for firmware lockups */
8742 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8743 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8744 schedule_delayed_work(&h->monitor_ctlr_work,
8745 h->heartbeat_sample_interval);
8746 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8747 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8748 h->heartbeat_sample_interval);
8749 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8750 schedule_delayed_work(&h->event_monitor_work,
8751 HPSA_EVENT_MONITOR_INTERVAL);
8752 return 0;
8754 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755 hpsa_free_performant_mode(h);
8756 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8757 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8758 hpsa_free_sg_chain_blocks(h);
8759 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8760 hpsa_free_cmd_pool(h);
8761 clean4: /* irq, shost, pci, lu, aer/h */
8762 hpsa_free_irqs(h);
8763 clean3: /* shost, pci, lu, aer/h */
8764 scsi_host_put(h->scsi_host);
8765 h->scsi_host = NULL;
8766 clean2_5: /* pci, lu, aer/h */
8767 hpsa_free_pci_init(h);
8768 clean2: /* lu, aer/h */
8769 if (h->lockup_detected) {
8770 free_percpu(h->lockup_detected);
8771 h->lockup_detected = NULL;
8773 clean1: /* wq/aer/h */
8774 if (h->resubmit_wq) {
8775 destroy_workqueue(h->resubmit_wq);
8776 h->resubmit_wq = NULL;
8778 if (h->rescan_ctlr_wq) {
8779 destroy_workqueue(h->rescan_ctlr_wq);
8780 h->rescan_ctlr_wq = NULL;
8782 kfree(h);
8783 return rc;
8786 static void hpsa_flush_cache(struct ctlr_info *h)
8788 char *flush_buf;
8789 struct CommandList *c;
8790 int rc;
8792 if (unlikely(lockup_detected(h)))
8793 return;
8794 flush_buf = kzalloc(4, GFP_KERNEL);
8795 if (!flush_buf)
8796 return;
8798 c = cmd_alloc(h);
8800 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8801 RAID_CTLR_LUNID, TYPE_CMD)) {
8802 goto out;
8804 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8805 DEFAULT_TIMEOUT);
8806 if (rc)
8807 goto out;
8808 if (c->err_info->CommandStatus != 0)
8809 out:
8810 dev_warn(&h->pdev->dev,
8811 "error flushing cache on controller\n");
8812 cmd_free(h, c);
8813 kfree(flush_buf);
8816 /* Make controller gather fresh report lun data each time we
8817 * send down a report luns request
8819 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8821 u32 *options;
8822 struct CommandList *c;
8823 int rc;
8825 /* Don't bother trying to set diag options if locked up */
8826 if (unlikely(h->lockup_detected))
8827 return;
8829 options = kzalloc(sizeof(*options), GFP_KERNEL);
8830 if (!options)
8831 return;
8833 c = cmd_alloc(h);
8835 /* first, get the current diag options settings */
8836 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8837 RAID_CTLR_LUNID, TYPE_CMD))
8838 goto errout;
8840 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8841 NO_TIMEOUT);
8842 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8843 goto errout;
8845 /* Now, set the bit for disabling the RLD caching */
8846 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8848 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8849 RAID_CTLR_LUNID, TYPE_CMD))
8850 goto errout;
8852 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8853 NO_TIMEOUT);
8854 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8855 goto errout;
8857 /* Now verify that it got set: */
8858 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8859 RAID_CTLR_LUNID, TYPE_CMD))
8860 goto errout;
8862 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8863 NO_TIMEOUT);
8864 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8865 goto errout;
8867 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8868 goto out;
8870 errout:
8871 dev_err(&h->pdev->dev,
8872 "Error: failed to disable report lun data caching.\n");
8873 out:
8874 cmd_free(h, c);
8875 kfree(options);
8878 static void __hpsa_shutdown(struct pci_dev *pdev)
8880 struct ctlr_info *h;
8882 h = pci_get_drvdata(pdev);
8883 /* Turn board interrupts off and send the flush cache command
8884 * sendcmd will turn off interrupt, and send the flush...
8885 * To write all data in the battery backed cache to disks
8887 hpsa_flush_cache(h);
8888 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8889 hpsa_free_irqs(h); /* init_one 4 */
8890 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8893 static void hpsa_shutdown(struct pci_dev *pdev)
8895 __hpsa_shutdown(pdev);
8896 pci_disable_device(pdev);
8899 static void hpsa_free_device_info(struct ctlr_info *h)
8901 int i;
8903 for (i = 0; i < h->ndevices; i++) {
8904 kfree(h->dev[i]);
8905 h->dev[i] = NULL;
8909 static void hpsa_remove_one(struct pci_dev *pdev)
8911 struct ctlr_info *h;
8912 unsigned long flags;
8914 if (pci_get_drvdata(pdev) == NULL) {
8915 dev_err(&pdev->dev, "unable to remove device\n");
8916 return;
8918 h = pci_get_drvdata(pdev);
8920 /* Get rid of any controller monitoring work items */
8921 spin_lock_irqsave(&h->lock, flags);
8922 h->remove_in_progress = 1;
8923 spin_unlock_irqrestore(&h->lock, flags);
8924 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8925 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8926 cancel_delayed_work_sync(&h->event_monitor_work);
8927 destroy_workqueue(h->rescan_ctlr_wq);
8928 destroy_workqueue(h->resubmit_wq);
8930 hpsa_delete_sas_host(h);
8933 * Call before disabling interrupts.
8934 * scsi_remove_host can trigger I/O operations especially
8935 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8936 * operations which cannot complete and will hang the system.
8938 if (h->scsi_host)
8939 scsi_remove_host(h->scsi_host); /* init_one 8 */
8940 /* includes hpsa_free_irqs - init_one 4 */
8941 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8942 __hpsa_shutdown(pdev);
8944 hpsa_free_device_info(h); /* scan */
8946 kfree(h->hba_inquiry_data); /* init_one 10 */
8947 h->hba_inquiry_data = NULL; /* init_one 10 */
8948 hpsa_free_ioaccel2_sg_chain_blocks(h);
8949 hpsa_free_performant_mode(h); /* init_one 7 */
8950 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8951 hpsa_free_cmd_pool(h); /* init_one 5 */
8952 kfree(h->lastlogicals);
8954 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8956 scsi_host_put(h->scsi_host); /* init_one 3 */
8957 h->scsi_host = NULL; /* init_one 3 */
8959 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8960 hpsa_free_pci_init(h); /* init_one 2.5 */
8962 free_percpu(h->lockup_detected); /* init_one 2 */
8963 h->lockup_detected = NULL; /* init_one 2 */
8964 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8966 hpda_free_ctlr_info(h); /* init_one 1 */
8969 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8970 __attribute__((unused)) pm_message_t state)
8972 return -ENOSYS;
8975 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8977 return -ENOSYS;
8980 static struct pci_driver hpsa_pci_driver = {
8981 .name = HPSA,
8982 .probe = hpsa_init_one,
8983 .remove = hpsa_remove_one,
8984 .id_table = hpsa_pci_device_id, /* id_table */
8985 .shutdown = hpsa_shutdown,
8986 .suspend = hpsa_suspend,
8987 .resume = hpsa_resume,
8990 /* Fill in bucket_map[], given nsgs (the max number of
8991 * scatter gather elements supported) and bucket[],
8992 * which is an array of 8 integers. The bucket[] array
8993 * contains 8 different DMA transfer sizes (in 16
8994 * byte increments) which the controller uses to fetch
8995 * commands. This function fills in bucket_map[], which
8996 * maps a given number of scatter gather elements to one of
8997 * the 8 DMA transfer sizes. The point of it is to allow the
8998 * controller to only do as much DMA as needed to fetch the
8999 * command, with the DMA transfer size encoded in the lower
9000 * bits of the command address.
9002 static void calc_bucket_map(int bucket[], int num_buckets,
9003 int nsgs, int min_blocks, u32 *bucket_map)
9005 int i, j, b, size;
9007 /* Note, bucket_map must have nsgs+1 entries. */
9008 for (i = 0; i <= nsgs; i++) {
9009 /* Compute size of a command with i SG entries */
9010 size = i + min_blocks;
9011 b = num_buckets; /* Assume the biggest bucket */
9012 /* Find the bucket that is just big enough */
9013 for (j = 0; j < num_buckets; j++) {
9014 if (bucket[j] >= size) {
9015 b = j;
9016 break;
9019 /* for a command with i SG entries, use bucket b. */
9020 bucket_map[i] = b;
9025 * return -ENODEV on err, 0 on success (or no action)
9026 * allocates numerous items that must be freed later
9028 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9030 int i;
9031 unsigned long register_value;
9032 unsigned long transMethod = CFGTBL_Trans_Performant |
9033 (trans_support & CFGTBL_Trans_use_short_tags) |
9034 CFGTBL_Trans_enable_directed_msix |
9035 (trans_support & (CFGTBL_Trans_io_accel1 |
9036 CFGTBL_Trans_io_accel2));
9037 struct access_method access = SA5_performant_access;
9039 /* This is a bit complicated. There are 8 registers on
9040 * the controller which we write to to tell it 8 different
9041 * sizes of commands which there may be. It's a way of
9042 * reducing the DMA done to fetch each command. Encoded into
9043 * each command's tag are 3 bits which communicate to the controller
9044 * which of the eight sizes that command fits within. The size of
9045 * each command depends on how many scatter gather entries there are.
9046 * Each SG entry requires 16 bytes. The eight registers are programmed
9047 * with the number of 16-byte blocks a command of that size requires.
9048 * The smallest command possible requires 5 such 16 byte blocks.
9049 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9050 * blocks. Note, this only extends to the SG entries contained
9051 * within the command block, and does not extend to chained blocks
9052 * of SG elements. bft[] contains the eight values we write to
9053 * the registers. They are not evenly distributed, but have more
9054 * sizes for small commands, and fewer sizes for larger commands.
9056 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9057 #define MIN_IOACCEL2_BFT_ENTRY 5
9058 #define HPSA_IOACCEL2_HEADER_SZ 4
9059 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9060 13, 14, 15, 16, 17, 18, 19,
9061 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9062 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9063 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9064 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9065 16 * MIN_IOACCEL2_BFT_ENTRY);
9066 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9067 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9068 /* 5 = 1 s/g entry or 4k
9069 * 6 = 2 s/g entry or 8k
9070 * 8 = 4 s/g entry or 16k
9071 * 10 = 6 s/g entry or 24k
9074 /* If the controller supports either ioaccel method then
9075 * we can also use the RAID stack submit path that does not
9076 * perform the superfluous readl() after each command submission.
9078 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9079 access = SA5_performant_access_no_read;
9081 /* Controller spec: zero out this buffer. */
9082 for (i = 0; i < h->nreply_queues; i++)
9083 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9085 bft[7] = SG_ENTRIES_IN_CMD + 4;
9086 calc_bucket_map(bft, ARRAY_SIZE(bft),
9087 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9088 for (i = 0; i < 8; i++)
9089 writel(bft[i], &h->transtable->BlockFetch[i]);
9091 /* size of controller ring buffer */
9092 writel(h->max_commands, &h->transtable->RepQSize);
9093 writel(h->nreply_queues, &h->transtable->RepQCount);
9094 writel(0, &h->transtable->RepQCtrAddrLow32);
9095 writel(0, &h->transtable->RepQCtrAddrHigh32);
9097 for (i = 0; i < h->nreply_queues; i++) {
9098 writel(0, &h->transtable->RepQAddr[i].upper);
9099 writel(h->reply_queue[i].busaddr,
9100 &h->transtable->RepQAddr[i].lower);
9103 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9104 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9106 * enable outbound interrupt coalescing in accelerator mode;
9108 if (trans_support & CFGTBL_Trans_io_accel1) {
9109 access = SA5_ioaccel_mode1_access;
9110 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9111 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9112 } else
9113 if (trans_support & CFGTBL_Trans_io_accel2)
9114 access = SA5_ioaccel_mode2_access;
9115 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9116 if (hpsa_wait_for_mode_change_ack(h)) {
9117 dev_err(&h->pdev->dev,
9118 "performant mode problem - doorbell timeout\n");
9119 return -ENODEV;
9121 register_value = readl(&(h->cfgtable->TransportActive));
9122 if (!(register_value & CFGTBL_Trans_Performant)) {
9123 dev_err(&h->pdev->dev,
9124 "performant mode problem - transport not active\n");
9125 return -ENODEV;
9127 /* Change the access methods to the performant access methods */
9128 h->access = access;
9129 h->transMethod = transMethod;
9131 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9132 (trans_support & CFGTBL_Trans_io_accel2)))
9133 return 0;
9135 if (trans_support & CFGTBL_Trans_io_accel1) {
9136 /* Set up I/O accelerator mode */
9137 for (i = 0; i < h->nreply_queues; i++) {
9138 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9139 h->reply_queue[i].current_entry =
9140 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9142 bft[7] = h->ioaccel_maxsg + 8;
9143 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9144 h->ioaccel1_blockFetchTable);
9146 /* initialize all reply queue entries to unused */
9147 for (i = 0; i < h->nreply_queues; i++)
9148 memset(h->reply_queue[i].head,
9149 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9150 h->reply_queue_size);
9152 /* set all the constant fields in the accelerator command
9153 * frames once at init time to save CPU cycles later.
9155 for (i = 0; i < h->nr_cmds; i++) {
9156 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9158 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9159 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9160 (i * sizeof(struct ErrorInfo)));
9161 cp->err_info_len = sizeof(struct ErrorInfo);
9162 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9163 cp->host_context_flags =
9164 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9165 cp->timeout_sec = 0;
9166 cp->ReplyQueue = 0;
9167 cp->tag =
9168 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9169 cp->host_addr =
9170 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9171 (i * sizeof(struct io_accel1_cmd)));
9173 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9174 u64 cfg_offset, cfg_base_addr_index;
9175 u32 bft2_offset, cfg_base_addr;
9176 int rc;
9178 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9179 &cfg_base_addr_index, &cfg_offset);
9180 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9181 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9182 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9183 4, h->ioaccel2_blockFetchTable);
9184 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9185 BUILD_BUG_ON(offsetof(struct CfgTable,
9186 io_accel_request_size_offset) != 0xb8);
9187 h->ioaccel2_bft2_regs =
9188 remap_pci_mem(pci_resource_start(h->pdev,
9189 cfg_base_addr_index) +
9190 cfg_offset + bft2_offset,
9191 ARRAY_SIZE(bft2) *
9192 sizeof(*h->ioaccel2_bft2_regs));
9193 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9194 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9196 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9197 if (hpsa_wait_for_mode_change_ack(h)) {
9198 dev_err(&h->pdev->dev,
9199 "performant mode problem - enabling ioaccel mode\n");
9200 return -ENODEV;
9202 return 0;
9205 /* Free ioaccel1 mode command blocks and block fetch table */
9206 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9208 if (h->ioaccel_cmd_pool) {
9209 pci_free_consistent(h->pdev,
9210 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9211 h->ioaccel_cmd_pool,
9212 h->ioaccel_cmd_pool_dhandle);
9213 h->ioaccel_cmd_pool = NULL;
9214 h->ioaccel_cmd_pool_dhandle = 0;
9216 kfree(h->ioaccel1_blockFetchTable);
9217 h->ioaccel1_blockFetchTable = NULL;
9220 /* Allocate ioaccel1 mode command blocks and block fetch table */
9221 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9223 h->ioaccel_maxsg =
9224 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9225 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9226 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9228 /* Command structures must be aligned on a 128-byte boundary
9229 * because the 7 lower bits of the address are used by the
9230 * hardware.
9232 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9233 IOACCEL1_COMMANDLIST_ALIGNMENT);
9234 h->ioaccel_cmd_pool =
9235 dma_alloc_coherent(&h->pdev->dev,
9236 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9237 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9239 h->ioaccel1_blockFetchTable =
9240 kmalloc(((h->ioaccel_maxsg + 1) *
9241 sizeof(u32)), GFP_KERNEL);
9243 if ((h->ioaccel_cmd_pool == NULL) ||
9244 (h->ioaccel1_blockFetchTable == NULL))
9245 goto clean_up;
9247 memset(h->ioaccel_cmd_pool, 0,
9248 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9249 return 0;
9251 clean_up:
9252 hpsa_free_ioaccel1_cmd_and_bft(h);
9253 return -ENOMEM;
9256 /* Free ioaccel2 mode command blocks and block fetch table */
9257 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9259 hpsa_free_ioaccel2_sg_chain_blocks(h);
9261 if (h->ioaccel2_cmd_pool) {
9262 pci_free_consistent(h->pdev,
9263 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9264 h->ioaccel2_cmd_pool,
9265 h->ioaccel2_cmd_pool_dhandle);
9266 h->ioaccel2_cmd_pool = NULL;
9267 h->ioaccel2_cmd_pool_dhandle = 0;
9269 kfree(h->ioaccel2_blockFetchTable);
9270 h->ioaccel2_blockFetchTable = NULL;
9273 /* Allocate ioaccel2 mode command blocks and block fetch table */
9274 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9276 int rc;
9278 /* Allocate ioaccel2 mode command blocks and block fetch table */
9280 h->ioaccel_maxsg =
9281 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9282 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9283 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9285 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9286 IOACCEL2_COMMANDLIST_ALIGNMENT);
9287 h->ioaccel2_cmd_pool =
9288 dma_alloc_coherent(&h->pdev->dev,
9289 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9290 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9292 h->ioaccel2_blockFetchTable =
9293 kmalloc(((h->ioaccel_maxsg + 1) *
9294 sizeof(u32)), GFP_KERNEL);
9296 if ((h->ioaccel2_cmd_pool == NULL) ||
9297 (h->ioaccel2_blockFetchTable == NULL)) {
9298 rc = -ENOMEM;
9299 goto clean_up;
9302 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9303 if (rc)
9304 goto clean_up;
9306 memset(h->ioaccel2_cmd_pool, 0,
9307 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9308 return 0;
9310 clean_up:
9311 hpsa_free_ioaccel2_cmd_and_bft(h);
9312 return rc;
9315 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9316 static void hpsa_free_performant_mode(struct ctlr_info *h)
9318 kfree(h->blockFetchTable);
9319 h->blockFetchTable = NULL;
9320 hpsa_free_reply_queues(h);
9321 hpsa_free_ioaccel1_cmd_and_bft(h);
9322 hpsa_free_ioaccel2_cmd_and_bft(h);
9325 /* return -ENODEV on error, 0 on success (or no action)
9326 * allocates numerous items that must be freed later
9328 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9330 u32 trans_support;
9331 unsigned long transMethod = CFGTBL_Trans_Performant |
9332 CFGTBL_Trans_use_short_tags;
9333 int i, rc;
9335 if (hpsa_simple_mode)
9336 return 0;
9338 trans_support = readl(&(h->cfgtable->TransportSupport));
9339 if (!(trans_support & PERFORMANT_MODE))
9340 return 0;
9342 /* Check for I/O accelerator mode support */
9343 if (trans_support & CFGTBL_Trans_io_accel1) {
9344 transMethod |= CFGTBL_Trans_io_accel1 |
9345 CFGTBL_Trans_enable_directed_msix;
9346 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9347 if (rc)
9348 return rc;
9349 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9350 transMethod |= CFGTBL_Trans_io_accel2 |
9351 CFGTBL_Trans_enable_directed_msix;
9352 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9353 if (rc)
9354 return rc;
9357 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9358 hpsa_get_max_perf_mode_cmds(h);
9359 /* Performant mode ring buffer and supporting data structures */
9360 h->reply_queue_size = h->max_commands * sizeof(u64);
9362 for (i = 0; i < h->nreply_queues; i++) {
9363 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9364 h->reply_queue_size,
9365 &h->reply_queue[i].busaddr,
9366 GFP_KERNEL);
9367 if (!h->reply_queue[i].head) {
9368 rc = -ENOMEM;
9369 goto clean1; /* rq, ioaccel */
9371 h->reply_queue[i].size = h->max_commands;
9372 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9373 h->reply_queue[i].current_entry = 0;
9376 /* Need a block fetch table for performant mode */
9377 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9378 sizeof(u32)), GFP_KERNEL);
9379 if (!h->blockFetchTable) {
9380 rc = -ENOMEM;
9381 goto clean1; /* rq, ioaccel */
9384 rc = hpsa_enter_performant_mode(h, trans_support);
9385 if (rc)
9386 goto clean2; /* bft, rq, ioaccel */
9387 return 0;
9389 clean2: /* bft, rq, ioaccel */
9390 kfree(h->blockFetchTable);
9391 h->blockFetchTable = NULL;
9392 clean1: /* rq, ioaccel */
9393 hpsa_free_reply_queues(h);
9394 hpsa_free_ioaccel1_cmd_and_bft(h);
9395 hpsa_free_ioaccel2_cmd_and_bft(h);
9396 return rc;
9399 static int is_accelerated_cmd(struct CommandList *c)
9401 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9404 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9406 struct CommandList *c = NULL;
9407 int i, accel_cmds_out;
9408 int refcount;
9410 do { /* wait for all outstanding ioaccel commands to drain out */
9411 accel_cmds_out = 0;
9412 for (i = 0; i < h->nr_cmds; i++) {
9413 c = h->cmd_pool + i;
9414 refcount = atomic_inc_return(&c->refcount);
9415 if (refcount > 1) /* Command is allocated */
9416 accel_cmds_out += is_accelerated_cmd(c);
9417 cmd_free(h, c);
9419 if (accel_cmds_out <= 0)
9420 break;
9421 msleep(100);
9422 } while (1);
9425 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9426 struct hpsa_sas_port *hpsa_sas_port)
9428 struct hpsa_sas_phy *hpsa_sas_phy;
9429 struct sas_phy *phy;
9431 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9432 if (!hpsa_sas_phy)
9433 return NULL;
9435 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9436 hpsa_sas_port->next_phy_index);
9437 if (!phy) {
9438 kfree(hpsa_sas_phy);
9439 return NULL;
9442 hpsa_sas_port->next_phy_index++;
9443 hpsa_sas_phy->phy = phy;
9444 hpsa_sas_phy->parent_port = hpsa_sas_port;
9446 return hpsa_sas_phy;
9449 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9451 struct sas_phy *phy = hpsa_sas_phy->phy;
9453 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9454 if (hpsa_sas_phy->added_to_port)
9455 list_del(&hpsa_sas_phy->phy_list_entry);
9456 sas_phy_delete(phy);
9457 kfree(hpsa_sas_phy);
9460 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9462 int rc;
9463 struct hpsa_sas_port *hpsa_sas_port;
9464 struct sas_phy *phy;
9465 struct sas_identify *identify;
9467 hpsa_sas_port = hpsa_sas_phy->parent_port;
9468 phy = hpsa_sas_phy->phy;
9470 identify = &phy->identify;
9471 memset(identify, 0, sizeof(*identify));
9472 identify->sas_address = hpsa_sas_port->sas_address;
9473 identify->device_type = SAS_END_DEVICE;
9474 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9475 identify->target_port_protocols = SAS_PROTOCOL_STP;
9476 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9477 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9478 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9479 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9480 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9482 rc = sas_phy_add(hpsa_sas_phy->phy);
9483 if (rc)
9484 return rc;
9486 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9487 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9488 &hpsa_sas_port->phy_list_head);
9489 hpsa_sas_phy->added_to_port = true;
9491 return 0;
9494 static int
9495 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9496 struct sas_rphy *rphy)
9498 struct sas_identify *identify;
9500 identify = &rphy->identify;
9501 identify->sas_address = hpsa_sas_port->sas_address;
9502 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9503 identify->target_port_protocols = SAS_PROTOCOL_STP;
9505 return sas_rphy_add(rphy);
9508 static struct hpsa_sas_port
9509 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9510 u64 sas_address)
9512 int rc;
9513 struct hpsa_sas_port *hpsa_sas_port;
9514 struct sas_port *port;
9516 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9517 if (!hpsa_sas_port)
9518 return NULL;
9520 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9521 hpsa_sas_port->parent_node = hpsa_sas_node;
9523 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9524 if (!port)
9525 goto free_hpsa_port;
9527 rc = sas_port_add(port);
9528 if (rc)
9529 goto free_sas_port;
9531 hpsa_sas_port->port = port;
9532 hpsa_sas_port->sas_address = sas_address;
9533 list_add_tail(&hpsa_sas_port->port_list_entry,
9534 &hpsa_sas_node->port_list_head);
9536 return hpsa_sas_port;
9538 free_sas_port:
9539 sas_port_free(port);
9540 free_hpsa_port:
9541 kfree(hpsa_sas_port);
9543 return NULL;
9546 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9548 struct hpsa_sas_phy *hpsa_sas_phy;
9549 struct hpsa_sas_phy *next;
9551 list_for_each_entry_safe(hpsa_sas_phy, next,
9552 &hpsa_sas_port->phy_list_head, phy_list_entry)
9553 hpsa_free_sas_phy(hpsa_sas_phy);
9555 sas_port_delete(hpsa_sas_port->port);
9556 list_del(&hpsa_sas_port->port_list_entry);
9557 kfree(hpsa_sas_port);
9560 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9562 struct hpsa_sas_node *hpsa_sas_node;
9564 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9565 if (hpsa_sas_node) {
9566 hpsa_sas_node->parent_dev = parent_dev;
9567 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9570 return hpsa_sas_node;
9573 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9575 struct hpsa_sas_port *hpsa_sas_port;
9576 struct hpsa_sas_port *next;
9578 if (!hpsa_sas_node)
9579 return;
9581 list_for_each_entry_safe(hpsa_sas_port, next,
9582 &hpsa_sas_node->port_list_head, port_list_entry)
9583 hpsa_free_sas_port(hpsa_sas_port);
9585 kfree(hpsa_sas_node);
9588 static struct hpsa_scsi_dev_t
9589 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9590 struct sas_rphy *rphy)
9592 int i;
9593 struct hpsa_scsi_dev_t *device;
9595 for (i = 0; i < h->ndevices; i++) {
9596 device = h->dev[i];
9597 if (!device->sas_port)
9598 continue;
9599 if (device->sas_port->rphy == rphy)
9600 return device;
9603 return NULL;
9606 static int hpsa_add_sas_host(struct ctlr_info *h)
9608 int rc;
9609 struct device *parent_dev;
9610 struct hpsa_sas_node *hpsa_sas_node;
9611 struct hpsa_sas_port *hpsa_sas_port;
9612 struct hpsa_sas_phy *hpsa_sas_phy;
9614 parent_dev = &h->scsi_host->shost_dev;
9616 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9617 if (!hpsa_sas_node)
9618 return -ENOMEM;
9620 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9621 if (!hpsa_sas_port) {
9622 rc = -ENODEV;
9623 goto free_sas_node;
9626 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9627 if (!hpsa_sas_phy) {
9628 rc = -ENODEV;
9629 goto free_sas_port;
9632 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9633 if (rc)
9634 goto free_sas_phy;
9636 h->sas_host = hpsa_sas_node;
9638 return 0;
9640 free_sas_phy:
9641 hpsa_free_sas_phy(hpsa_sas_phy);
9642 free_sas_port:
9643 hpsa_free_sas_port(hpsa_sas_port);
9644 free_sas_node:
9645 hpsa_free_sas_node(hpsa_sas_node);
9647 return rc;
9650 static void hpsa_delete_sas_host(struct ctlr_info *h)
9652 hpsa_free_sas_node(h->sas_host);
9655 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9656 struct hpsa_scsi_dev_t *device)
9658 int rc;
9659 struct hpsa_sas_port *hpsa_sas_port;
9660 struct sas_rphy *rphy;
9662 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9663 if (!hpsa_sas_port)
9664 return -ENOMEM;
9666 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9667 if (!rphy) {
9668 rc = -ENODEV;
9669 goto free_sas_port;
9672 hpsa_sas_port->rphy = rphy;
9673 device->sas_port = hpsa_sas_port;
9675 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9676 if (rc)
9677 goto free_sas_port;
9679 return 0;
9681 free_sas_port:
9682 hpsa_free_sas_port(hpsa_sas_port);
9683 device->sas_port = NULL;
9685 return rc;
9688 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9690 if (device->sas_port) {
9691 hpsa_free_sas_port(device->sas_port);
9692 device->sas_port = NULL;
9696 static int
9697 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9699 return 0;
9702 static int
9703 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9705 struct Scsi_Host *shost = phy_to_shost(rphy);
9706 struct ctlr_info *h;
9707 struct hpsa_scsi_dev_t *sd;
9709 if (!shost)
9710 return -ENXIO;
9712 h = shost_to_hba(shost);
9714 if (!h)
9715 return -ENXIO;
9717 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9718 if (!sd)
9719 return -ENXIO;
9721 *identifier = sd->eli;
9723 return 0;
9726 static int
9727 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9729 return -ENXIO;
9732 static int
9733 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9735 return 0;
9738 static int
9739 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9741 return 0;
9744 static int
9745 hpsa_sas_phy_setup(struct sas_phy *phy)
9747 return 0;
9750 static void
9751 hpsa_sas_phy_release(struct sas_phy *phy)
9755 static int
9756 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9758 return -EINVAL;
9761 static struct sas_function_template hpsa_sas_transport_functions = {
9762 .get_linkerrors = hpsa_sas_get_linkerrors,
9763 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9764 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9765 .phy_reset = hpsa_sas_phy_reset,
9766 .phy_enable = hpsa_sas_phy_enable,
9767 .phy_setup = hpsa_sas_phy_setup,
9768 .phy_release = hpsa_sas_phy_release,
9769 .set_phy_speed = hpsa_sas_phy_speed,
9773 * This is it. Register the PCI driver information for the cards we control
9774 * the OS will call our registered routines when it finds one of our cards.
9776 static int __init hpsa_init(void)
9778 int rc;
9780 hpsa_sas_transport_template =
9781 sas_attach_transport(&hpsa_sas_transport_functions);
9782 if (!hpsa_sas_transport_template)
9783 return -ENODEV;
9785 rc = pci_register_driver(&hpsa_pci_driver);
9787 if (rc)
9788 sas_release_transport(hpsa_sas_transport_template);
9790 return rc;
9793 static void __exit hpsa_cleanup(void)
9795 pci_unregister_driver(&hpsa_pci_driver);
9796 sas_release_transport(hpsa_sas_transport_template);
9799 static void __attribute__((unused)) verify_offsets(void)
9801 #define VERIFY_OFFSET(member, offset) \
9802 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9804 VERIFY_OFFSET(structure_size, 0);
9805 VERIFY_OFFSET(volume_blk_size, 4);
9806 VERIFY_OFFSET(volume_blk_cnt, 8);
9807 VERIFY_OFFSET(phys_blk_shift, 16);
9808 VERIFY_OFFSET(parity_rotation_shift, 17);
9809 VERIFY_OFFSET(strip_size, 18);
9810 VERIFY_OFFSET(disk_starting_blk, 20);
9811 VERIFY_OFFSET(disk_blk_cnt, 28);
9812 VERIFY_OFFSET(data_disks_per_row, 36);
9813 VERIFY_OFFSET(metadata_disks_per_row, 38);
9814 VERIFY_OFFSET(row_cnt, 40);
9815 VERIFY_OFFSET(layout_map_count, 42);
9816 VERIFY_OFFSET(flags, 44);
9817 VERIFY_OFFSET(dekindex, 46);
9818 /* VERIFY_OFFSET(reserved, 48 */
9819 VERIFY_OFFSET(data, 64);
9821 #undef VERIFY_OFFSET
9823 #define VERIFY_OFFSET(member, offset) \
9824 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9826 VERIFY_OFFSET(IU_type, 0);
9827 VERIFY_OFFSET(direction, 1);
9828 VERIFY_OFFSET(reply_queue, 2);
9829 /* VERIFY_OFFSET(reserved1, 3); */
9830 VERIFY_OFFSET(scsi_nexus, 4);
9831 VERIFY_OFFSET(Tag, 8);
9832 VERIFY_OFFSET(cdb, 16);
9833 VERIFY_OFFSET(cciss_lun, 32);
9834 VERIFY_OFFSET(data_len, 40);
9835 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9836 VERIFY_OFFSET(sg_count, 45);
9837 /* VERIFY_OFFSET(reserved3 */
9838 VERIFY_OFFSET(err_ptr, 48);
9839 VERIFY_OFFSET(err_len, 56);
9840 /* VERIFY_OFFSET(reserved4 */
9841 VERIFY_OFFSET(sg, 64);
9843 #undef VERIFY_OFFSET
9845 #define VERIFY_OFFSET(member, offset) \
9846 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9848 VERIFY_OFFSET(dev_handle, 0x00);
9849 VERIFY_OFFSET(reserved1, 0x02);
9850 VERIFY_OFFSET(function, 0x03);
9851 VERIFY_OFFSET(reserved2, 0x04);
9852 VERIFY_OFFSET(err_info, 0x0C);
9853 VERIFY_OFFSET(reserved3, 0x10);
9854 VERIFY_OFFSET(err_info_len, 0x12);
9855 VERIFY_OFFSET(reserved4, 0x13);
9856 VERIFY_OFFSET(sgl_offset, 0x14);
9857 VERIFY_OFFSET(reserved5, 0x15);
9858 VERIFY_OFFSET(transfer_len, 0x1C);
9859 VERIFY_OFFSET(reserved6, 0x20);
9860 VERIFY_OFFSET(io_flags, 0x24);
9861 VERIFY_OFFSET(reserved7, 0x26);
9862 VERIFY_OFFSET(LUN, 0x34);
9863 VERIFY_OFFSET(control, 0x3C);
9864 VERIFY_OFFSET(CDB, 0x40);
9865 VERIFY_OFFSET(reserved8, 0x50);
9866 VERIFY_OFFSET(host_context_flags, 0x60);
9867 VERIFY_OFFSET(timeout_sec, 0x62);
9868 VERIFY_OFFSET(ReplyQueue, 0x64);
9869 VERIFY_OFFSET(reserved9, 0x65);
9870 VERIFY_OFFSET(tag, 0x68);
9871 VERIFY_OFFSET(host_addr, 0x70);
9872 VERIFY_OFFSET(CISS_LUN, 0x78);
9873 VERIFY_OFFSET(SG, 0x78 + 8);
9874 #undef VERIFY_OFFSET
9877 module_init(hpsa_init);
9878 module_exit(hpsa_cleanup);