2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
30 /* SPI register offsets */
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_FMR 0x0040
44 #define SPI_FLR 0x0044
45 #define SPI_VERSION 0x00fc
46 #define SPI_RPR 0x0100
47 #define SPI_RCR 0x0104
48 #define SPI_TPR 0x0108
49 #define SPI_TCR 0x010c
50 #define SPI_RNPR 0x0110
51 #define SPI_RNCR 0x0114
52 #define SPI_TNPR 0x0118
53 #define SPI_TNCR 0x011c
54 #define SPI_PTCR 0x0120
55 #define SPI_PTSR 0x0124
58 #define SPI_SPIEN_OFFSET 0
59 #define SPI_SPIEN_SIZE 1
60 #define SPI_SPIDIS_OFFSET 1
61 #define SPI_SPIDIS_SIZE 1
62 #define SPI_SWRST_OFFSET 7
63 #define SPI_SWRST_SIZE 1
64 #define SPI_LASTXFER_OFFSET 24
65 #define SPI_LASTXFER_SIZE 1
66 #define SPI_TXFCLR_OFFSET 16
67 #define SPI_TXFCLR_SIZE 1
68 #define SPI_RXFCLR_OFFSET 17
69 #define SPI_RXFCLR_SIZE 1
70 #define SPI_FIFOEN_OFFSET 30
71 #define SPI_FIFOEN_SIZE 1
72 #define SPI_FIFODIS_OFFSET 31
73 #define SPI_FIFODIS_SIZE 1
76 #define SPI_MSTR_OFFSET 0
77 #define SPI_MSTR_SIZE 1
78 #define SPI_PS_OFFSET 1
80 #define SPI_PCSDEC_OFFSET 2
81 #define SPI_PCSDEC_SIZE 1
82 #define SPI_FDIV_OFFSET 3
83 #define SPI_FDIV_SIZE 1
84 #define SPI_MODFDIS_OFFSET 4
85 #define SPI_MODFDIS_SIZE 1
86 #define SPI_WDRBT_OFFSET 5
87 #define SPI_WDRBT_SIZE 1
88 #define SPI_LLB_OFFSET 7
89 #define SPI_LLB_SIZE 1
90 #define SPI_PCS_OFFSET 16
91 #define SPI_PCS_SIZE 4
92 #define SPI_DLYBCS_OFFSET 24
93 #define SPI_DLYBCS_SIZE 8
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET 0
97 #define SPI_RD_SIZE 16
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET 0
101 #define SPI_TD_SIZE 16
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET 0
105 #define SPI_RDRF_SIZE 1
106 #define SPI_TDRE_OFFSET 1
107 #define SPI_TDRE_SIZE 1
108 #define SPI_MODF_OFFSET 2
109 #define SPI_MODF_SIZE 1
110 #define SPI_OVRES_OFFSET 3
111 #define SPI_OVRES_SIZE 1
112 #define SPI_ENDRX_OFFSET 4
113 #define SPI_ENDRX_SIZE 1
114 #define SPI_ENDTX_OFFSET 5
115 #define SPI_ENDTX_SIZE 1
116 #define SPI_RXBUFF_OFFSET 6
117 #define SPI_RXBUFF_SIZE 1
118 #define SPI_TXBUFE_OFFSET 7
119 #define SPI_TXBUFE_SIZE 1
120 #define SPI_NSSR_OFFSET 8
121 #define SPI_NSSR_SIZE 1
122 #define SPI_TXEMPTY_OFFSET 9
123 #define SPI_TXEMPTY_SIZE 1
124 #define SPI_SPIENS_OFFSET 16
125 #define SPI_SPIENS_SIZE 1
126 #define SPI_TXFEF_OFFSET 24
127 #define SPI_TXFEF_SIZE 1
128 #define SPI_TXFFF_OFFSET 25
129 #define SPI_TXFFF_SIZE 1
130 #define SPI_TXFTHF_OFFSET 26
131 #define SPI_TXFTHF_SIZE 1
132 #define SPI_RXFEF_OFFSET 27
133 #define SPI_RXFEF_SIZE 1
134 #define SPI_RXFFF_OFFSET 28
135 #define SPI_RXFFF_SIZE 1
136 #define SPI_RXFTHF_OFFSET 29
137 #define SPI_RXFTHF_SIZE 1
138 #define SPI_TXFPTEF_OFFSET 30
139 #define SPI_TXFPTEF_SIZE 1
140 #define SPI_RXFPTEF_OFFSET 31
141 #define SPI_RXFPTEF_SIZE 1
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET 0
145 #define SPI_CPOL_SIZE 1
146 #define SPI_NCPHA_OFFSET 1
147 #define SPI_NCPHA_SIZE 1
148 #define SPI_CSAAT_OFFSET 3
149 #define SPI_CSAAT_SIZE 1
150 #define SPI_BITS_OFFSET 4
151 #define SPI_BITS_SIZE 4
152 #define SPI_SCBR_OFFSET 8
153 #define SPI_SCBR_SIZE 8
154 #define SPI_DLYBS_OFFSET 16
155 #define SPI_DLYBS_SIZE 8
156 #define SPI_DLYBCT_OFFSET 24
157 #define SPI_DLYBCT_SIZE 8
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET 0
161 #define SPI_RXCTR_SIZE 16
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET 0
165 #define SPI_TXCTR_SIZE 16
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET 0
169 #define SPI_RXNCR_SIZE 16
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET 0
173 #define SPI_TXNCR_SIZE 16
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET 0
177 #define SPI_RXTEN_SIZE 1
178 #define SPI_RXTDIS_OFFSET 1
179 #define SPI_RXTDIS_SIZE 1
180 #define SPI_TXTEN_OFFSET 8
181 #define SPI_TXTEN_SIZE 1
182 #define SPI_TXTDIS_OFFSET 9
183 #define SPI_TXTDIS_SIZE 1
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET 0
187 #define SPI_TXRDYM_SIZE 2
188 #define SPI_RXRDYM_OFFSET 4
189 #define SPI_RXRDYM_SIZE 2
190 #define SPI_TXFTHRES_OFFSET 16
191 #define SPI_TXFTHRES_SIZE 6
192 #define SPI_RXFTHRES_OFFSET 24
193 #define SPI_RXFTHRES_SIZE 6
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET 0
197 #define SPI_TXFL_SIZE 6
198 #define SPI_RXFL_OFFSET 16
199 #define SPI_RXFL_SIZE 6
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT 0
203 #define SPI_BITS_9_BPT 1
204 #define SPI_BITS_10_BPT 2
205 #define SPI_BITS_11_BPT 3
206 #define SPI_BITS_12_BPT 4
207 #define SPI_BITS_13_BPT 5
208 #define SPI_BITS_14_BPT 6
209 #define SPI_BITS_15_BPT 7
210 #define SPI_BITS_16_BPT 8
211 #define SPI_ONE_DATA 0
212 #define SPI_TWO_DATA 1
213 #define SPI_FOUR_DATA 2
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 (1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 | SPI_BF(name, value))
226 /* Register access macros */
228 #define spi_readl(port, reg) \
229 __raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 __raw_writel((value), (port)->regs + SPI_##reg)
233 #define spi_readw(port, reg) \
234 __raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 __raw_writew((value), (port)->regs + SPI_##reg)
238 #define spi_readb(port, reg) \
239 __raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 __raw_writeb((value), (port)->regs + SPI_##reg)
243 #define spi_readl(port, reg) \
244 readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 writel_relaxed((value), (port)->regs + SPI_##reg)
248 #define spi_readw(port, reg) \
249 readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 writew_relaxed((value), (port)->regs + SPI_##reg)
253 #define spi_readb(port, reg) \
254 readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 writeb_relaxed((value), (port)->regs + SPI_##reg)
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259 * cache operations; better heuristics consider wordsize and bitrate.
261 #define DMA_MIN_BYTES 16
263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265 #define AUTOSUSPEND_TIMEOUT 2000
267 struct atmel_spi_caps
{
270 bool has_dma_support
;
271 bool has_pdc_support
;
275 * The core SPI transfer engine just talks to a register bank to set up
276 * DMA transfers; transfer queue progress is driven by IRQs. The clock
277 * framework provides the base clock, subdivided for each spi_device.
287 struct platform_device
*pdev
;
288 unsigned long spi_clk
;
290 struct spi_transfer
*current_transfer
;
291 int current_remaining_bytes
;
293 dma_addr_t dma_addr_rx_bbuf
;
294 dma_addr_t dma_addr_tx_bbuf
;
298 struct completion xfer_completion
;
300 struct atmel_spi_caps caps
;
312 /* Controller-specific per-slave state */
313 struct atmel_spi_device
{
314 struct gpio_desc
*npcs_pin
;
318 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
319 #define INVALID_DMA_ADDRESS 0xffffffff
322 * Version 2 of the SPI controller has
324 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
325 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
327 * - SPI_CSRx.SBCR allows faster clocking
329 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
331 return as
->caps
.is_spi2
;
335 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
336 * they assume that spi slave device state will not change on deselect, so
337 * that automagic deselection is OK. ("NPCSx rises if no data is to be
338 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
339 * controllers have CSAAT and friends.
341 * Since the CSAAT functionality is a bit weird on newer controllers as
342 * well, we use GPIO to control nCSx pins on all controllers, updating
343 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
344 * support active-high chipselects despite the controller's belief that
345 * only active-low devices/systems exists.
347 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
348 * right when driven with GPIO. ("Mode Fault does not allow more than one
349 * Master on Chip Select 0.") No workaround exists for that ... so for
350 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
351 * and (c) will trigger that first erratum in some cases.
354 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
356 struct atmel_spi_device
*asd
= spi
->controller_state
;
359 if (atmel_spi_is_v2(as
)) {
360 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
361 /* For the low SPI version, there is a issue that PDC transfer
362 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
364 spi_writel(as
, CSR0
, asd
->csr
);
365 if (as
->caps
.has_wdrbt
) {
367 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
373 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
378 mr
= spi_readl(as
, MR
);
379 if (as
->use_cs_gpios
)
380 gpiod_set_value(asd
->npcs_pin
, 1);
382 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
386 /* Make sure clock polarity is correct */
387 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
388 csr
= spi_readl(as
, CSR0
+ 4 * i
);
389 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
390 spi_writel(as
, CSR0
+ 4 * i
,
391 csr
^ SPI_BIT(CPOL
));
394 mr
= spi_readl(as
, MR
);
395 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
396 if (as
->use_cs_gpios
&& spi
->chip_select
!= 0)
397 gpiod_set_value(asd
->npcs_pin
, 1);
398 spi_writel(as
, MR
, mr
);
401 dev_dbg(&spi
->dev
, "activate NPCS, mr %08x\n", mr
);
404 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
406 struct atmel_spi_device
*asd
= spi
->controller_state
;
409 /* only deactivate *this* device; sometimes transfers to
410 * another device may be active when this routine is called.
412 mr
= spi_readl(as
, MR
);
413 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
414 mr
= SPI_BFINS(PCS
, 0xf, mr
);
415 spi_writel(as
, MR
, mr
);
418 dev_dbg(&spi
->dev
, "DEactivate NPCS, mr %08x\n", mr
);
420 if (!as
->use_cs_gpios
)
421 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
422 else if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
423 gpiod_set_value(asd
->npcs_pin
, 0);
426 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
428 spin_lock_irqsave(&as
->lock
, as
->flags
);
431 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
433 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
436 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer
*xfer
)
438 return is_vmalloc_addr(xfer
->tx_buf
) || is_vmalloc_addr(xfer
->rx_buf
);
441 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
442 struct spi_transfer
*xfer
)
444 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
447 static bool atmel_spi_can_dma(struct spi_master
*master
,
448 struct spi_device
*spi
,
449 struct spi_transfer
*xfer
)
451 struct atmel_spi
*as
= spi_master_get_devdata(master
);
453 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
))
454 return atmel_spi_use_dma(as
, xfer
) &&
455 !atmel_spi_is_vmalloc_xfer(xfer
);
457 return atmel_spi_use_dma(as
, xfer
);
461 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
462 struct dma_slave_config
*slave_config
,
465 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
468 if (bits_per_word
> 8) {
469 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
470 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
472 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
473 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
476 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
477 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
478 slave_config
->src_maxburst
= 1;
479 slave_config
->dst_maxburst
= 1;
480 slave_config
->device_fc
= false;
483 * This driver uses fixed peripheral select mode (PS bit set to '0' in
484 * the Mode Register).
485 * So according to the datasheet, when FIFOs are available (and
486 * enabled), the Transmit FIFO operates in Multiple Data Mode.
487 * In this mode, up to 2 data, not 4, can be written into the Transmit
488 * Data Register in a single access.
489 * However, the first data has to be written into the lowest 16 bits and
490 * the second data into the highest 16 bits of the Transmit
491 * Data Register. For 8bit data (the most frequent case), it would
492 * require to rework tx_buf so each data would actualy fit 16 bits.
493 * So we'd rather write only one data at the time. Hence the transmit
494 * path works the same whether FIFOs are available (and enabled) or not.
496 slave_config
->direction
= DMA_MEM_TO_DEV
;
497 if (dmaengine_slave_config(master
->dma_tx
, slave_config
)) {
498 dev_err(&as
->pdev
->dev
,
499 "failed to configure tx dma channel\n");
504 * This driver configures the spi controller for master mode (MSTR bit
505 * set to '1' in the Mode Register).
506 * So according to the datasheet, when FIFOs are available (and
507 * enabled), the Receive FIFO operates in Single Data Mode.
508 * So the receive path works the same whether FIFOs are available (and
511 slave_config
->direction
= DMA_DEV_TO_MEM
;
512 if (dmaengine_slave_config(master
->dma_rx
, slave_config
)) {
513 dev_err(&as
->pdev
->dev
,
514 "failed to configure rx dma channel\n");
521 static int atmel_spi_configure_dma(struct spi_master
*master
,
522 struct atmel_spi
*as
)
524 struct dma_slave_config slave_config
;
525 struct device
*dev
= &as
->pdev
->dev
;
530 dma_cap_set(DMA_SLAVE
, mask
);
532 master
->dma_tx
= dma_request_slave_channel_reason(dev
, "tx");
533 if (IS_ERR(master
->dma_tx
)) {
534 err
= PTR_ERR(master
->dma_tx
);
535 if (err
== -EPROBE_DEFER
) {
536 dev_warn(dev
, "no DMA channel available at the moment\n");
540 "DMA TX channel not available, SPI unable to use DMA\n");
546 * No reason to check EPROBE_DEFER here since we have already requested
547 * tx channel. If it fails here, it's for another reason.
549 master
->dma_rx
= dma_request_slave_channel(dev
, "rx");
551 if (!master
->dma_rx
) {
553 "DMA RX channel not available, SPI unable to use DMA\n");
558 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
562 dev_info(&as
->pdev
->dev
,
563 "Using %s (tx) and %s (rx) for DMA transfers\n",
564 dma_chan_name(master
->dma_tx
),
565 dma_chan_name(master
->dma_rx
));
570 dma_release_channel(master
->dma_rx
);
571 if (!IS_ERR(master
->dma_tx
))
572 dma_release_channel(master
->dma_tx
);
574 master
->dma_tx
= master
->dma_rx
= NULL
;
578 static void atmel_spi_stop_dma(struct spi_master
*master
)
581 dmaengine_terminate_all(master
->dma_rx
);
583 dmaengine_terminate_all(master
->dma_tx
);
586 static void atmel_spi_release_dma(struct spi_master
*master
)
588 if (master
->dma_rx
) {
589 dma_release_channel(master
->dma_rx
);
590 master
->dma_rx
= NULL
;
592 if (master
->dma_tx
) {
593 dma_release_channel(master
->dma_tx
);
594 master
->dma_tx
= NULL
;
598 /* This function is called by the DMA driver from tasklet context */
599 static void dma_callback(void *data
)
601 struct spi_master
*master
= data
;
602 struct atmel_spi
*as
= spi_master_get_devdata(master
);
604 if (is_vmalloc_addr(as
->current_transfer
->rx_buf
) &&
605 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
606 memcpy(as
->current_transfer
->rx_buf
, as
->addr_rx_bbuf
,
607 as
->current_transfer
->len
);
609 complete(&as
->xfer_completion
);
613 * Next transfer using PIO without FIFO.
615 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
616 struct spi_transfer
*xfer
)
618 struct atmel_spi
*as
= spi_master_get_devdata(master
);
619 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
621 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
623 /* Make sure data is not remaining in RDR */
625 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
630 if (xfer
->bits_per_word
> 8)
631 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
633 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
635 dev_dbg(master
->dev
.parent
,
636 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
637 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
638 xfer
->bits_per_word
);
640 /* Enable relevant interrupts */
641 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
645 * Next transfer using PIO with FIFO.
647 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
648 struct spi_transfer
*xfer
)
650 struct atmel_spi
*as
= spi_master_get_devdata(master
);
651 u32 current_remaining_data
, num_data
;
652 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
653 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
654 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
658 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
660 /* Compute the number of data to transfer in the current iteration */
661 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
662 ((u32
)as
->current_remaining_bytes
>> 1) :
663 (u32
)as
->current_remaining_bytes
);
664 num_data
= min(current_remaining_data
, as
->fifo_size
);
666 /* Flush RX and TX FIFOs */
667 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
668 while (spi_readl(as
, FLR
))
671 /* Set RX FIFO Threshold to the number of data to transfer */
672 fifomr
= spi_readl(as
, FMR
);
673 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
675 /* Clear FIFO flags in the Status Register, especially RXFTHF */
676 (void)spi_readl(as
, SR
);
679 while (num_data
>= 2) {
680 if (xfer
->bits_per_word
> 8) {
688 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
693 if (xfer
->bits_per_word
> 8)
698 spi_writew(as
, TDR
, td0
);
702 dev_dbg(master
->dev
.parent
,
703 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
704 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
705 xfer
->bits_per_word
);
708 * Enable RX FIFO Threshold Flag interrupt to be notified about
709 * transfer completion.
711 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
715 * Next transfer using PIO.
717 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
718 struct spi_transfer
*xfer
)
720 struct atmel_spi
*as
= spi_master_get_devdata(master
);
723 atmel_spi_next_xfer_fifo(master
, xfer
);
725 atmel_spi_next_xfer_single(master
, xfer
);
729 * Submit next transfer for DMA.
731 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
732 struct spi_transfer
*xfer
,
735 struct atmel_spi
*as
= spi_master_get_devdata(master
);
736 struct dma_chan
*rxchan
= master
->dma_rx
;
737 struct dma_chan
*txchan
= master
->dma_tx
;
738 struct dma_async_tx_descriptor
*rxdesc
;
739 struct dma_async_tx_descriptor
*txdesc
;
740 struct dma_slave_config slave_config
;
743 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
745 /* Check that the channels are available */
746 if (!rxchan
|| !txchan
)
749 /* release lock for DMA operations */
750 atmel_spi_unlock(as
);
754 if (atmel_spi_dma_slave_config(as
, &slave_config
,
755 xfer
->bits_per_word
))
758 /* Send both scatterlists */
759 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
760 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
761 rxdesc
= dmaengine_prep_slave_single(rxchan
,
762 as
->dma_addr_rx_bbuf
,
768 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
778 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
779 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
780 memcpy(as
->addr_tx_bbuf
, xfer
->tx_buf
, xfer
->len
);
781 txdesc
= dmaengine_prep_slave_single(txchan
,
782 as
->dma_addr_tx_bbuf
,
783 xfer
->len
, DMA_MEM_TO_DEV
,
787 txdesc
= dmaengine_prep_slave_sg(txchan
,
797 dev_dbg(master
->dev
.parent
,
798 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
799 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
800 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
802 /* Enable relevant interrupts */
803 spi_writel(as
, IER
, SPI_BIT(OVRES
));
805 /* Put the callback on the RX transfer only, that should finish last */
806 rxdesc
->callback
= dma_callback
;
807 rxdesc
->callback_param
= master
;
809 /* Submit and fire RX and TX with TX last so we're ready to read! */
810 cookie
= rxdesc
->tx_submit(rxdesc
);
811 if (dma_submit_error(cookie
))
813 cookie
= txdesc
->tx_submit(txdesc
);
814 if (dma_submit_error(cookie
))
816 rxchan
->device
->device_issue_pending(rxchan
);
817 txchan
->device
->device_issue_pending(txchan
);
824 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
825 atmel_spi_stop_dma(master
);
831 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
832 struct spi_transfer
*xfer
,
837 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
838 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
839 if (*plen
> master
->max_dma_len
)
840 *plen
= master
->max_dma_len
;
843 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
844 struct spi_device
*spi
,
845 struct spi_transfer
*xfer
)
848 unsigned long bus_hz
;
850 /* v1 chips start out at half the peripheral bus speed. */
851 bus_hz
= as
->spi_clk
;
852 if (!atmel_spi_is_v2(as
))
856 * Calculate the lowest divider that satisfies the
857 * constraint, assuming div32/fdiv/mbz == 0.
859 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
862 * If the resulting divider doesn't fit into the
863 * register bitfield, we can't satisfy the constraint.
865 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
867 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
868 xfer
->speed_hz
, scbr
, bus_hz
/255);
873 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
874 xfer
->speed_hz
, scbr
, bus_hz
);
877 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
878 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
879 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
885 * Submit next transfer for PDC.
886 * lock is held, spi irq is blocked
888 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
889 struct spi_message
*msg
,
890 struct spi_transfer
*xfer
)
892 struct atmel_spi
*as
= spi_master_get_devdata(master
);
894 dma_addr_t tx_dma
, rx_dma
;
896 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
898 len
= as
->current_remaining_bytes
;
899 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
900 as
->current_remaining_bytes
-= len
;
902 spi_writel(as
, RPR
, rx_dma
);
903 spi_writel(as
, TPR
, tx_dma
);
905 if (msg
->spi
->bits_per_word
> 8)
907 spi_writel(as
, RCR
, len
);
908 spi_writel(as
, TCR
, len
);
910 dev_dbg(&msg
->spi
->dev
,
911 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 xfer
, xfer
->len
, xfer
->tx_buf
,
913 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
914 (unsigned long long)xfer
->rx_dma
);
916 if (as
->current_remaining_bytes
) {
917 len
= as
->current_remaining_bytes
;
918 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
919 as
->current_remaining_bytes
-= len
;
921 spi_writel(as
, RNPR
, rx_dma
);
922 spi_writel(as
, TNPR
, tx_dma
);
924 if (msg
->spi
->bits_per_word
> 8)
926 spi_writel(as
, RNCR
, len
);
927 spi_writel(as
, TNCR
, len
);
929 dev_dbg(&msg
->spi
->dev
,
930 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
931 xfer
, xfer
->len
, xfer
->tx_buf
,
932 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
933 (unsigned long long)xfer
->rx_dma
);
936 /* REVISIT: We're waiting for RXBUFF before we start the next
937 * transfer because we need to handle some difficult timing
938 * issues otherwise. If we wait for TXBUFE in one transfer and
939 * then starts waiting for RXBUFF in the next, it's difficult
940 * to tell the difference between the RXBUFF interrupt we're
941 * actually waiting for and the RXBUFF interrupt of the
944 * It should be doable, though. Just not now...
946 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
947 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
951 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
952 * - The buffer is either valid for CPU access, else NULL
953 * - If the buffer is valid, so is its DMA address
955 * This driver manages the dma address unless message->is_dma_mapped.
958 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
960 struct device
*dev
= &as
->pdev
->dev
;
962 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
964 /* tx_buf is a const void* where we need a void * for the dma
966 void *nonconst_tx
= (void *)xfer
->tx_buf
;
968 xfer
->tx_dma
= dma_map_single(dev
,
969 nonconst_tx
, xfer
->len
,
971 if (dma_mapping_error(dev
, xfer
->tx_dma
))
975 xfer
->rx_dma
= dma_map_single(dev
,
976 xfer
->rx_buf
, xfer
->len
,
978 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
980 dma_unmap_single(dev
,
981 xfer
->tx_dma
, xfer
->len
,
989 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
990 struct spi_transfer
*xfer
)
992 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
993 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
994 xfer
->len
, DMA_TO_DEVICE
);
995 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
996 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
997 xfer
->len
, DMA_FROM_DEVICE
);
1000 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
1002 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1006 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1010 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
1012 if (xfer
->bits_per_word
> 8) {
1013 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
1014 *rxp16
= spi_readl(as
, RDR
);
1016 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
1017 *rxp
= spi_readl(as
, RDR
);
1019 if (xfer
->bits_per_word
> 8) {
1020 if (as
->current_remaining_bytes
> 2)
1021 as
->current_remaining_bytes
-= 2;
1023 as
->current_remaining_bytes
= 0;
1025 as
->current_remaining_bytes
--;
1030 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1032 u32 fifolr
= spi_readl(as
, FLR
);
1033 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1034 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1035 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1036 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1037 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1039 /* Update the number of remaining bytes to transfer */
1040 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1044 if (as
->current_remaining_bytes
> num_bytes
)
1045 as
->current_remaining_bytes
-= num_bytes
;
1047 as
->current_remaining_bytes
= 0;
1049 /* Handle odd number of bytes when data are more than 8bit width */
1050 if (xfer
->bits_per_word
> 8)
1051 as
->current_remaining_bytes
&= ~0x1;
1055 rd
= spi_readl(as
, RDR
);
1056 if (xfer
->bits_per_word
> 8)
1066 * Must update "current_remaining_bytes" to keep track of data
1070 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1073 atmel_spi_pump_fifo_data(as
, xfer
);
1075 atmel_spi_pump_single_data(as
, xfer
);
1080 * No need for locking in this Interrupt handler: done_status is the
1081 * only information modified.
1084 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1086 struct spi_master
*master
= dev_id
;
1087 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1088 u32 status
, pending
, imr
;
1089 struct spi_transfer
*xfer
;
1092 imr
= spi_readl(as
, IMR
);
1093 status
= spi_readl(as
, SR
);
1094 pending
= status
& imr
;
1096 if (pending
& SPI_BIT(OVRES
)) {
1098 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1099 dev_warn(master
->dev
.parent
, "overrun\n");
1102 * When we get an overrun, we disregard the current
1103 * transfer. Data will not be copied back from any
1104 * bounce buffer and msg->actual_len will not be
1105 * updated with the last xfer.
1107 * We will also not process any remaning transfers in
1110 as
->done_status
= -EIO
;
1113 /* Clear any overrun happening while cleaning up */
1116 complete(&as
->xfer_completion
);
1118 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1121 if (as
->current_remaining_bytes
) {
1123 xfer
= as
->current_transfer
;
1124 atmel_spi_pump_pio_data(as
, xfer
);
1125 if (!as
->current_remaining_bytes
)
1126 spi_writel(as
, IDR
, pending
);
1128 complete(&as
->xfer_completion
);
1131 atmel_spi_unlock(as
);
1133 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1135 spi_writel(as
, IDR
, pending
);
1142 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1144 struct spi_master
*master
= dev_id
;
1145 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1146 u32 status
, pending
, imr
;
1149 imr
= spi_readl(as
, IMR
);
1150 status
= spi_readl(as
, SR
);
1151 pending
= status
& imr
;
1153 if (pending
& SPI_BIT(OVRES
)) {
1157 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1160 /* Clear any overrun happening while cleaning up */
1163 as
->done_status
= -EIO
;
1165 complete(&as
->xfer_completion
);
1167 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1170 spi_writel(as
, IDR
, pending
);
1172 complete(&as
->xfer_completion
);
1178 static int atmel_spi_setup(struct spi_device
*spi
)
1180 struct atmel_spi
*as
;
1181 struct atmel_spi_device
*asd
;
1183 unsigned int bits
= spi
->bits_per_word
;
1185 as
= spi_master_get_devdata(spi
->master
);
1187 /* see notes above re chipselect */
1188 if (!atmel_spi_is_v2(as
)
1189 && spi
->chip_select
== 0
1190 && (spi
->mode
& SPI_CS_HIGH
)) {
1191 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
1195 csr
= SPI_BF(BITS
, bits
- 8);
1196 if (spi
->mode
& SPI_CPOL
)
1197 csr
|= SPI_BIT(CPOL
);
1198 if (!(spi
->mode
& SPI_CPHA
))
1199 csr
|= SPI_BIT(NCPHA
);
1200 if (!as
->use_cs_gpios
)
1201 csr
|= SPI_BIT(CSAAT
);
1203 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1205 csr
|= SPI_BF(DLYBS
, 0);
1207 /* DLYBCT adds delays between words. This is useful for slow devices
1208 * that need a bit of time to setup the next transfer.
1210 csr
|= SPI_BF(DLYBCT
,
1211 (as
->spi_clk
/ 1000000 * spi
->word_delay_usecs
) >> 5);
1213 asd
= spi
->controller_state
;
1215 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1220 * If use_cs_gpios is true this means that we have "cs-gpios"
1221 * defined in the device tree node so we should have
1222 * gotten the GPIO lines from the device tree inside the
1223 * SPI core. Warn if this is not the case but continue since
1224 * CS GPIOs are after all optional.
1226 if (as
->use_cs_gpios
) {
1227 if (!spi
->cs_gpiod
) {
1229 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1231 asd
->npcs_pin
= spi
->cs_gpiod
;
1234 spi
->controller_state
= asd
;
1240 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1241 bits
, spi
->mode
, spi
->chip_select
, csr
);
1243 if (!atmel_spi_is_v2(as
))
1244 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1249 static int atmel_spi_one_transfer(struct spi_master
*master
,
1250 struct spi_message
*msg
,
1251 struct spi_transfer
*xfer
)
1253 struct atmel_spi
*as
;
1254 struct spi_device
*spi
= msg
->spi
;
1257 struct atmel_spi_device
*asd
;
1260 unsigned long dma_timeout
;
1262 as
= spi_master_get_devdata(master
);
1264 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1265 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1269 asd
= spi
->controller_state
;
1270 bits
= (asd
->csr
>> 4) & 0xf;
1271 if (bits
!= xfer
->bits_per_word
- 8) {
1273 "you can't yet change bits_per_word in transfers\n");
1274 return -ENOPROTOOPT
;
1278 * DMA map early, for performance (empties dcache ASAP) and
1279 * better fault reporting.
1281 if ((!msg
->is_dma_mapped
)
1283 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1287 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1289 as
->done_status
= 0;
1290 as
->current_transfer
= xfer
;
1291 as
->current_remaining_bytes
= xfer
->len
;
1292 while (as
->current_remaining_bytes
) {
1293 reinit_completion(&as
->xfer_completion
);
1296 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1297 } else if (atmel_spi_use_dma(as
, xfer
)) {
1298 len
= as
->current_remaining_bytes
;
1299 ret
= atmel_spi_next_xfer_dma_submit(master
,
1303 "unable to use DMA, fallback to PIO\n");
1304 atmel_spi_next_xfer_pio(master
, xfer
);
1306 as
->current_remaining_bytes
-= len
;
1307 if (as
->current_remaining_bytes
< 0)
1308 as
->current_remaining_bytes
= 0;
1311 atmel_spi_next_xfer_pio(master
, xfer
);
1314 /* interrupts are disabled, so free the lock for schedule */
1315 atmel_spi_unlock(as
);
1316 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1319 if (WARN_ON(dma_timeout
== 0)) {
1320 dev_err(&spi
->dev
, "spi transfer timeout\n");
1321 as
->done_status
= -EIO
;
1324 if (as
->done_status
)
1328 if (as
->done_status
) {
1330 dev_warn(master
->dev
.parent
,
1331 "overrun (%u/%u remaining)\n",
1332 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1335 * Clean up DMA registers and make sure the data
1336 * registers are empty.
1338 spi_writel(as
, RNCR
, 0);
1339 spi_writel(as
, TNCR
, 0);
1340 spi_writel(as
, RCR
, 0);
1341 spi_writel(as
, TCR
, 0);
1342 for (timeout
= 1000; timeout
; timeout
--)
1343 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1346 dev_warn(master
->dev
.parent
,
1347 "timeout waiting for TXEMPTY");
1348 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1351 /* Clear any overrun happening while cleaning up */
1354 } else if (atmel_spi_use_dma(as
, xfer
)) {
1355 atmel_spi_stop_dma(master
);
1358 if (!msg
->is_dma_mapped
1360 atmel_spi_dma_unmap_xfer(master
, xfer
);
1365 /* only update length if no error */
1366 msg
->actual_length
+= xfer
->len
;
1369 if (!msg
->is_dma_mapped
1371 atmel_spi_dma_unmap_xfer(master
, xfer
);
1373 if (xfer
->delay_usecs
)
1374 udelay(xfer
->delay_usecs
);
1376 if (xfer
->cs_change
) {
1377 if (list_is_last(&xfer
->transfer_list
,
1381 as
->cs_active
= !as
->cs_active
;
1383 cs_activate(as
, msg
->spi
);
1385 cs_deactivate(as
, msg
->spi
);
1392 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1393 struct spi_message
*msg
)
1395 struct atmel_spi
*as
;
1396 struct spi_transfer
*xfer
;
1397 struct spi_device
*spi
= msg
->spi
;
1400 as
= spi_master_get_devdata(master
);
1402 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1403 msg
, dev_name(&spi
->dev
));
1406 cs_activate(as
, spi
);
1408 as
->cs_active
= true;
1409 as
->keep_cs
= false;
1412 msg
->actual_length
= 0;
1414 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1415 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1421 atmel_spi_disable_pdc_transfer(as
);
1423 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1425 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1427 xfer
->tx_buf
, &xfer
->tx_dma
,
1428 xfer
->rx_buf
, &xfer
->rx_dma
);
1433 cs_deactivate(as
, msg
->spi
);
1435 atmel_spi_unlock(as
);
1437 msg
->status
= as
->done_status
;
1438 spi_finalize_current_message(spi
->master
);
1443 static void atmel_spi_cleanup(struct spi_device
*spi
)
1445 struct atmel_spi_device
*asd
= spi
->controller_state
;
1450 spi
->controller_state
= NULL
;
1454 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1456 return spi_readl(as
, VERSION
) & 0x00000fff;
1459 static void atmel_get_caps(struct atmel_spi
*as
)
1461 unsigned int version
;
1463 version
= atmel_get_version(as
);
1465 as
->caps
.is_spi2
= version
> 0x121;
1466 as
->caps
.has_wdrbt
= version
>= 0x210;
1467 as
->caps
.has_dma_support
= version
>= 0x212;
1468 as
->caps
.has_pdc_support
= version
< 0x212;
1471 static void atmel_spi_init(struct atmel_spi
*as
)
1473 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1474 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1476 /* It is recommended to enable FIFOs first thing after reset */
1478 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1480 if (as
->caps
.has_wdrbt
) {
1481 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1484 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1488 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1489 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1492 static int atmel_spi_probe(struct platform_device
*pdev
)
1494 struct resource
*regs
;
1498 struct spi_master
*master
;
1499 struct atmel_spi
*as
;
1501 /* Select default pin state */
1502 pinctrl_pm_select_default_state(&pdev
->dev
);
1504 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1508 irq
= platform_get_irq(pdev
, 0);
1512 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1514 return PTR_ERR(clk
);
1516 /* setup spi core then atmel-specific driver state */
1518 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1522 /* the spi->mode bits understood by this driver: */
1523 master
->use_gpio_descriptors
= true;
1524 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1525 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1526 master
->dev
.of_node
= pdev
->dev
.of_node
;
1527 master
->bus_num
= pdev
->id
;
1528 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1529 master
->setup
= atmel_spi_setup
;
1530 master
->flags
= (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
);
1531 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1532 master
->cleanup
= atmel_spi_cleanup
;
1533 master
->auto_runtime_pm
= true;
1534 master
->max_dma_len
= SPI_MAX_DMA_XFER
;
1535 master
->can_dma
= atmel_spi_can_dma
;
1536 platform_set_drvdata(pdev
, master
);
1538 as
= spi_master_get_devdata(master
);
1540 spin_lock_init(&as
->lock
);
1543 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1544 if (IS_ERR(as
->regs
)) {
1545 ret
= PTR_ERR(as
->regs
);
1546 goto out_unmap_regs
;
1548 as
->phybase
= regs
->start
;
1552 init_completion(&as
->xfer_completion
);
1557 * If there are chip selects in the device tree, those will be
1558 * discovered by the SPI core when registering the SPI master
1559 * and assigned to each SPI device.
1561 as
->use_cs_gpios
= true;
1562 if (atmel_spi_is_v2(as
) &&
1563 pdev
->dev
.of_node
&&
1564 !of_get_property(pdev
->dev
.of_node
, "cs-gpios", NULL
)) {
1565 as
->use_cs_gpios
= false;
1566 master
->num_chipselect
= 4;
1569 as
->use_dma
= false;
1570 as
->use_pdc
= false;
1571 if (as
->caps
.has_dma_support
) {
1572 ret
= atmel_spi_configure_dma(master
, as
);
1575 } else if (ret
== -EPROBE_DEFER
) {
1578 } else if (as
->caps
.has_pdc_support
) {
1582 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1583 as
->addr_rx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1585 &as
->dma_addr_rx_bbuf
,
1586 GFP_KERNEL
| GFP_DMA
);
1587 if (!as
->addr_rx_bbuf
) {
1588 as
->use_dma
= false;
1590 as
->addr_tx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1592 &as
->dma_addr_tx_bbuf
,
1593 GFP_KERNEL
| GFP_DMA
);
1594 if (!as
->addr_tx_bbuf
) {
1595 as
->use_dma
= false;
1596 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1598 as
->dma_addr_rx_bbuf
);
1602 dev_info(master
->dev
.parent
,
1603 " can not allocate dma coherent memory\n");
1606 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1607 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1610 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1611 0, dev_name(&pdev
->dev
), master
);
1613 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1614 0, dev_name(&pdev
->dev
), master
);
1617 goto out_unmap_regs
;
1619 /* Initialize the hardware */
1620 ret
= clk_prepare_enable(clk
);
1624 as
->spi_clk
= clk_get_rate(clk
);
1627 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1629 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1634 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1635 pm_runtime_use_autosuspend(&pdev
->dev
);
1636 pm_runtime_set_active(&pdev
->dev
);
1637 pm_runtime_enable(&pdev
->dev
);
1639 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1644 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1645 atmel_get_version(as
), (unsigned long)regs
->start
,
1651 pm_runtime_disable(&pdev
->dev
);
1652 pm_runtime_set_suspended(&pdev
->dev
);
1655 atmel_spi_release_dma(master
);
1657 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1658 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1659 clk_disable_unprepare(clk
);
1663 spi_master_put(master
);
1667 static int atmel_spi_remove(struct platform_device
*pdev
)
1669 struct spi_master
*master
= platform_get_drvdata(pdev
);
1670 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1672 pm_runtime_get_sync(&pdev
->dev
);
1674 /* reset the hardware and block queue progress */
1676 atmel_spi_stop_dma(master
);
1677 atmel_spi_release_dma(master
);
1678 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1679 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1681 as
->dma_addr_tx_bbuf
);
1682 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1684 as
->dma_addr_rx_bbuf
);
1688 spin_lock_irq(&as
->lock
);
1689 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1690 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1692 spin_unlock_irq(&as
->lock
);
1694 clk_disable_unprepare(as
->clk
);
1696 pm_runtime_put_noidle(&pdev
->dev
);
1697 pm_runtime_disable(&pdev
->dev
);
1703 static int atmel_spi_runtime_suspend(struct device
*dev
)
1705 struct spi_master
*master
= dev_get_drvdata(dev
);
1706 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1708 clk_disable_unprepare(as
->clk
);
1709 pinctrl_pm_select_sleep_state(dev
);
1714 static int atmel_spi_runtime_resume(struct device
*dev
)
1716 struct spi_master
*master
= dev_get_drvdata(dev
);
1717 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1719 pinctrl_pm_select_default_state(dev
);
1721 return clk_prepare_enable(as
->clk
);
1724 #ifdef CONFIG_PM_SLEEP
1725 static int atmel_spi_suspend(struct device
*dev
)
1727 struct spi_master
*master
= dev_get_drvdata(dev
);
1730 /* Stop the queue running */
1731 ret
= spi_master_suspend(master
);
1735 if (!pm_runtime_suspended(dev
))
1736 atmel_spi_runtime_suspend(dev
);
1741 static int atmel_spi_resume(struct device
*dev
)
1743 struct spi_master
*master
= dev_get_drvdata(dev
);
1744 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1747 ret
= clk_prepare_enable(as
->clk
);
1753 clk_disable_unprepare(as
->clk
);
1755 if (!pm_runtime_suspended(dev
)) {
1756 ret
= atmel_spi_runtime_resume(dev
);
1761 /* Start the queue running */
1762 return spi_master_resume(master
);
1766 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1767 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1768 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1769 atmel_spi_runtime_resume
, NULL
)
1771 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1773 #define ATMEL_SPI_PM_OPS NULL
1776 #if defined(CONFIG_OF)
1777 static const struct of_device_id atmel_spi_dt_ids
[] = {
1778 { .compatible
= "atmel,at91rm9200-spi" },
1782 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1785 static struct platform_driver atmel_spi_driver
= {
1787 .name
= "atmel_spi",
1788 .pm
= ATMEL_SPI_PM_OPS
,
1789 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1791 .probe
= atmel_spi_probe
,
1792 .remove
= atmel_spi_remove
,
1794 module_platform_driver(atmel_spi_driver
);
1796 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1797 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1798 MODULE_LICENSE("GPL");
1799 MODULE_ALIAS("platform:atmel_spi");