Linux 5.1.15
[linux/fpc-iii.git] / drivers / spi / spi-atmel.c
blob4954f0ab1606a7df8cd99f21d67161873223c040
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
25 #include <linux/io.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
30 /* SPI register offsets */
31 #define SPI_CR 0x0000
32 #define SPI_MR 0x0004
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
35 #define SPI_SR 0x0010
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_FMR 0x0040
44 #define SPI_FLR 0x0044
45 #define SPI_VERSION 0x00fc
46 #define SPI_RPR 0x0100
47 #define SPI_RCR 0x0104
48 #define SPI_TPR 0x0108
49 #define SPI_TCR 0x010c
50 #define SPI_RNPR 0x0110
51 #define SPI_RNCR 0x0114
52 #define SPI_TNPR 0x0118
53 #define SPI_TNCR 0x011c
54 #define SPI_PTCR 0x0120
55 #define SPI_PTSR 0x0124
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET 0
59 #define SPI_SPIEN_SIZE 1
60 #define SPI_SPIDIS_OFFSET 1
61 #define SPI_SPIDIS_SIZE 1
62 #define SPI_SWRST_OFFSET 7
63 #define SPI_SWRST_SIZE 1
64 #define SPI_LASTXFER_OFFSET 24
65 #define SPI_LASTXFER_SIZE 1
66 #define SPI_TXFCLR_OFFSET 16
67 #define SPI_TXFCLR_SIZE 1
68 #define SPI_RXFCLR_OFFSET 17
69 #define SPI_RXFCLR_SIZE 1
70 #define SPI_FIFOEN_OFFSET 30
71 #define SPI_FIFOEN_SIZE 1
72 #define SPI_FIFODIS_OFFSET 31
73 #define SPI_FIFODIS_SIZE 1
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET 0
77 #define SPI_MSTR_SIZE 1
78 #define SPI_PS_OFFSET 1
79 #define SPI_PS_SIZE 1
80 #define SPI_PCSDEC_OFFSET 2
81 #define SPI_PCSDEC_SIZE 1
82 #define SPI_FDIV_OFFSET 3
83 #define SPI_FDIV_SIZE 1
84 #define SPI_MODFDIS_OFFSET 4
85 #define SPI_MODFDIS_SIZE 1
86 #define SPI_WDRBT_OFFSET 5
87 #define SPI_WDRBT_SIZE 1
88 #define SPI_LLB_OFFSET 7
89 #define SPI_LLB_SIZE 1
90 #define SPI_PCS_OFFSET 16
91 #define SPI_PCS_SIZE 4
92 #define SPI_DLYBCS_OFFSET 24
93 #define SPI_DLYBCS_SIZE 8
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET 0
97 #define SPI_RD_SIZE 16
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET 0
101 #define SPI_TD_SIZE 16
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET 0
105 #define SPI_RDRF_SIZE 1
106 #define SPI_TDRE_OFFSET 1
107 #define SPI_TDRE_SIZE 1
108 #define SPI_MODF_OFFSET 2
109 #define SPI_MODF_SIZE 1
110 #define SPI_OVRES_OFFSET 3
111 #define SPI_OVRES_SIZE 1
112 #define SPI_ENDRX_OFFSET 4
113 #define SPI_ENDRX_SIZE 1
114 #define SPI_ENDTX_OFFSET 5
115 #define SPI_ENDTX_SIZE 1
116 #define SPI_RXBUFF_OFFSET 6
117 #define SPI_RXBUFF_SIZE 1
118 #define SPI_TXBUFE_OFFSET 7
119 #define SPI_TXBUFE_SIZE 1
120 #define SPI_NSSR_OFFSET 8
121 #define SPI_NSSR_SIZE 1
122 #define SPI_TXEMPTY_OFFSET 9
123 #define SPI_TXEMPTY_SIZE 1
124 #define SPI_SPIENS_OFFSET 16
125 #define SPI_SPIENS_SIZE 1
126 #define SPI_TXFEF_OFFSET 24
127 #define SPI_TXFEF_SIZE 1
128 #define SPI_TXFFF_OFFSET 25
129 #define SPI_TXFFF_SIZE 1
130 #define SPI_TXFTHF_OFFSET 26
131 #define SPI_TXFTHF_SIZE 1
132 #define SPI_RXFEF_OFFSET 27
133 #define SPI_RXFEF_SIZE 1
134 #define SPI_RXFFF_OFFSET 28
135 #define SPI_RXFFF_SIZE 1
136 #define SPI_RXFTHF_OFFSET 29
137 #define SPI_RXFTHF_SIZE 1
138 #define SPI_TXFPTEF_OFFSET 30
139 #define SPI_TXFPTEF_SIZE 1
140 #define SPI_RXFPTEF_OFFSET 31
141 #define SPI_RXFPTEF_SIZE 1
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET 0
145 #define SPI_CPOL_SIZE 1
146 #define SPI_NCPHA_OFFSET 1
147 #define SPI_NCPHA_SIZE 1
148 #define SPI_CSAAT_OFFSET 3
149 #define SPI_CSAAT_SIZE 1
150 #define SPI_BITS_OFFSET 4
151 #define SPI_BITS_SIZE 4
152 #define SPI_SCBR_OFFSET 8
153 #define SPI_SCBR_SIZE 8
154 #define SPI_DLYBS_OFFSET 16
155 #define SPI_DLYBS_SIZE 8
156 #define SPI_DLYBCT_OFFSET 24
157 #define SPI_DLYBCT_SIZE 8
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET 0
161 #define SPI_RXCTR_SIZE 16
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET 0
165 #define SPI_TXCTR_SIZE 16
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET 0
169 #define SPI_RXNCR_SIZE 16
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET 0
173 #define SPI_TXNCR_SIZE 16
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET 0
177 #define SPI_RXTEN_SIZE 1
178 #define SPI_RXTDIS_OFFSET 1
179 #define SPI_RXTDIS_SIZE 1
180 #define SPI_TXTEN_OFFSET 8
181 #define SPI_TXTEN_SIZE 1
182 #define SPI_TXTDIS_OFFSET 9
183 #define SPI_TXTDIS_SIZE 1
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET 0
187 #define SPI_TXRDYM_SIZE 2
188 #define SPI_RXRDYM_OFFSET 4
189 #define SPI_RXRDYM_SIZE 2
190 #define SPI_TXFTHRES_OFFSET 16
191 #define SPI_TXFTHRES_SIZE 6
192 #define SPI_RXFTHRES_OFFSET 24
193 #define SPI_RXFTHRES_SIZE 6
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET 0
197 #define SPI_TXFL_SIZE 6
198 #define SPI_RXFL_OFFSET 16
199 #define SPI_RXFL_SIZE 6
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT 0
203 #define SPI_BITS_9_BPT 1
204 #define SPI_BITS_10_BPT 2
205 #define SPI_BITS_11_BPT 3
206 #define SPI_BITS_12_BPT 4
207 #define SPI_BITS_13_BPT 5
208 #define SPI_BITS_14_BPT 6
209 #define SPI_BITS_15_BPT 7
210 #define SPI_BITS_16_BPT 8
211 #define SPI_ONE_DATA 0
212 #define SPI_TWO_DATA 1
213 #define SPI_FOUR_DATA 2
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 (1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 | SPI_BF(name, value))
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229 __raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 __raw_writel((value), (port)->regs + SPI_##reg)
233 #define spi_readw(port, reg) \
234 __raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 __raw_writew((value), (port)->regs + SPI_##reg)
238 #define spi_readb(port, reg) \
239 __raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 __raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244 readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 writel_relaxed((value), (port)->regs + SPI_##reg)
248 #define spi_readw(port, reg) \
249 readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 writew_relaxed((value), (port)->regs + SPI_##reg)
253 #define spi_readb(port, reg) \
254 readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259 * cache operations; better heuristics consider wordsize and bitrate.
261 #define DMA_MIN_BYTES 16
263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265 #define AUTOSUSPEND_TIMEOUT 2000
267 struct atmel_spi_caps {
268 bool is_spi2;
269 bool has_wdrbt;
270 bool has_dma_support;
271 bool has_pdc_support;
275 * The core SPI transfer engine just talks to a register bank to set up
276 * DMA transfers; transfer queue progress is driven by IRQs. The clock
277 * framework provides the base clock, subdivided for each spi_device.
279 struct atmel_spi {
280 spinlock_t lock;
281 unsigned long flags;
283 phys_addr_t phybase;
284 void __iomem *regs;
285 int irq;
286 struct clk *clk;
287 struct platform_device *pdev;
288 unsigned long spi_clk;
290 struct spi_transfer *current_transfer;
291 int current_remaining_bytes;
292 int done_status;
293 dma_addr_t dma_addr_rx_bbuf;
294 dma_addr_t dma_addr_tx_bbuf;
295 void *addr_rx_bbuf;
296 void *addr_tx_bbuf;
298 struct completion xfer_completion;
300 struct atmel_spi_caps caps;
302 bool use_dma;
303 bool use_pdc;
304 bool use_cs_gpios;
306 bool keep_cs;
307 bool cs_active;
309 u32 fifo_size;
312 /* Controller-specific per-slave state */
313 struct atmel_spi_device {
314 struct gpio_desc *npcs_pin;
315 u32 csr;
318 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
319 #define INVALID_DMA_ADDRESS 0xffffffff
322 * Version 2 of the SPI controller has
323 * - CR.LASTXFER
324 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
325 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
326 * - SPI_CSRx.CSAAT
327 * - SPI_CSRx.SBCR allows faster clocking
329 static bool atmel_spi_is_v2(struct atmel_spi *as)
331 return as->caps.is_spi2;
335 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
336 * they assume that spi slave device state will not change on deselect, so
337 * that automagic deselection is OK. ("NPCSx rises if no data is to be
338 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
339 * controllers have CSAAT and friends.
341 * Since the CSAAT functionality is a bit weird on newer controllers as
342 * well, we use GPIO to control nCSx pins on all controllers, updating
343 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
344 * support active-high chipselects despite the controller's belief that
345 * only active-low devices/systems exists.
347 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
348 * right when driven with GPIO. ("Mode Fault does not allow more than one
349 * Master on Chip Select 0.") No workaround exists for that ... so for
350 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
351 * and (c) will trigger that first erratum in some cases.
354 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356 struct atmel_spi_device *asd = spi->controller_state;
357 u32 mr;
359 if (atmel_spi_is_v2(as)) {
360 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
361 /* For the low SPI version, there is a issue that PDC transfer
362 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
364 spi_writel(as, CSR0, asd->csr);
365 if (as->caps.has_wdrbt) {
366 spi_writel(as, MR,
367 SPI_BF(PCS, ~(0x01 << spi->chip_select))
368 | SPI_BIT(WDRBT)
369 | SPI_BIT(MODFDIS)
370 | SPI_BIT(MSTR));
371 } else {
372 spi_writel(as, MR,
373 SPI_BF(PCS, ~(0x01 << spi->chip_select))
374 | SPI_BIT(MODFDIS)
375 | SPI_BIT(MSTR));
378 mr = spi_readl(as, MR);
379 if (as->use_cs_gpios)
380 gpiod_set_value(asd->npcs_pin, 1);
381 } else {
382 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
383 int i;
384 u32 csr;
386 /* Make sure clock polarity is correct */
387 for (i = 0; i < spi->master->num_chipselect; i++) {
388 csr = spi_readl(as, CSR0 + 4 * i);
389 if ((csr ^ cpol) & SPI_BIT(CPOL))
390 spi_writel(as, CSR0 + 4 * i,
391 csr ^ SPI_BIT(CPOL));
394 mr = spi_readl(as, MR);
395 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
396 if (as->use_cs_gpios && spi->chip_select != 0)
397 gpiod_set_value(asd->npcs_pin, 1);
398 spi_writel(as, MR, mr);
401 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
404 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
406 struct atmel_spi_device *asd = spi->controller_state;
407 u32 mr;
409 /* only deactivate *this* device; sometimes transfers to
410 * another device may be active when this routine is called.
412 mr = spi_readl(as, MR);
413 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
414 mr = SPI_BFINS(PCS, 0xf, mr);
415 spi_writel(as, MR, mr);
418 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
420 if (!as->use_cs_gpios)
421 spi_writel(as, CR, SPI_BIT(LASTXFER));
422 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
423 gpiod_set_value(asd->npcs_pin, 0);
426 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
428 spin_lock_irqsave(&as->lock, as->flags);
431 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
433 spin_unlock_irqrestore(&as->lock, as->flags);
436 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
438 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
441 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
442 struct spi_transfer *xfer)
444 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
447 static bool atmel_spi_can_dma(struct spi_master *master,
448 struct spi_device *spi,
449 struct spi_transfer *xfer)
451 struct atmel_spi *as = spi_master_get_devdata(master);
453 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
454 return atmel_spi_use_dma(as, xfer) &&
455 !atmel_spi_is_vmalloc_xfer(xfer);
456 else
457 return atmel_spi_use_dma(as, xfer);
461 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
462 struct dma_slave_config *slave_config,
463 u8 bits_per_word)
465 struct spi_master *master = platform_get_drvdata(as->pdev);
466 int err = 0;
468 if (bits_per_word > 8) {
469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
471 } else {
472 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
473 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
476 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
477 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
478 slave_config->src_maxburst = 1;
479 slave_config->dst_maxburst = 1;
480 slave_config->device_fc = false;
483 * This driver uses fixed peripheral select mode (PS bit set to '0' in
484 * the Mode Register).
485 * So according to the datasheet, when FIFOs are available (and
486 * enabled), the Transmit FIFO operates in Multiple Data Mode.
487 * In this mode, up to 2 data, not 4, can be written into the Transmit
488 * Data Register in a single access.
489 * However, the first data has to be written into the lowest 16 bits and
490 * the second data into the highest 16 bits of the Transmit
491 * Data Register. For 8bit data (the most frequent case), it would
492 * require to rework tx_buf so each data would actualy fit 16 bits.
493 * So we'd rather write only one data at the time. Hence the transmit
494 * path works the same whether FIFOs are available (and enabled) or not.
496 slave_config->direction = DMA_MEM_TO_DEV;
497 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
498 dev_err(&as->pdev->dev,
499 "failed to configure tx dma channel\n");
500 err = -EINVAL;
504 * This driver configures the spi controller for master mode (MSTR bit
505 * set to '1' in the Mode Register).
506 * So according to the datasheet, when FIFOs are available (and
507 * enabled), the Receive FIFO operates in Single Data Mode.
508 * So the receive path works the same whether FIFOs are available (and
509 * enabled) or not.
511 slave_config->direction = DMA_DEV_TO_MEM;
512 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
513 dev_err(&as->pdev->dev,
514 "failed to configure rx dma channel\n");
515 err = -EINVAL;
518 return err;
521 static int atmel_spi_configure_dma(struct spi_master *master,
522 struct atmel_spi *as)
524 struct dma_slave_config slave_config;
525 struct device *dev = &as->pdev->dev;
526 int err;
528 dma_cap_mask_t mask;
529 dma_cap_zero(mask);
530 dma_cap_set(DMA_SLAVE, mask);
532 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
533 if (IS_ERR(master->dma_tx)) {
534 err = PTR_ERR(master->dma_tx);
535 if (err == -EPROBE_DEFER) {
536 dev_warn(dev, "no DMA channel available at the moment\n");
537 goto error_clear;
539 dev_err(dev,
540 "DMA TX channel not available, SPI unable to use DMA\n");
541 err = -EBUSY;
542 goto error_clear;
546 * No reason to check EPROBE_DEFER here since we have already requested
547 * tx channel. If it fails here, it's for another reason.
549 master->dma_rx = dma_request_slave_channel(dev, "rx");
551 if (!master->dma_rx) {
552 dev_err(dev,
553 "DMA RX channel not available, SPI unable to use DMA\n");
554 err = -EBUSY;
555 goto error;
558 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
559 if (err)
560 goto error;
562 dev_info(&as->pdev->dev,
563 "Using %s (tx) and %s (rx) for DMA transfers\n",
564 dma_chan_name(master->dma_tx),
565 dma_chan_name(master->dma_rx));
567 return 0;
568 error:
569 if (master->dma_rx)
570 dma_release_channel(master->dma_rx);
571 if (!IS_ERR(master->dma_tx))
572 dma_release_channel(master->dma_tx);
573 error_clear:
574 master->dma_tx = master->dma_rx = NULL;
575 return err;
578 static void atmel_spi_stop_dma(struct spi_master *master)
580 if (master->dma_rx)
581 dmaengine_terminate_all(master->dma_rx);
582 if (master->dma_tx)
583 dmaengine_terminate_all(master->dma_tx);
586 static void atmel_spi_release_dma(struct spi_master *master)
588 if (master->dma_rx) {
589 dma_release_channel(master->dma_rx);
590 master->dma_rx = NULL;
592 if (master->dma_tx) {
593 dma_release_channel(master->dma_tx);
594 master->dma_tx = NULL;
598 /* This function is called by the DMA driver from tasklet context */
599 static void dma_callback(void *data)
601 struct spi_master *master = data;
602 struct atmel_spi *as = spi_master_get_devdata(master);
604 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
605 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
606 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
607 as->current_transfer->len);
609 complete(&as->xfer_completion);
613 * Next transfer using PIO without FIFO.
615 static void atmel_spi_next_xfer_single(struct spi_master *master,
616 struct spi_transfer *xfer)
618 struct atmel_spi *as = spi_master_get_devdata(master);
619 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
621 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
623 /* Make sure data is not remaining in RDR */
624 spi_readl(as, RDR);
625 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
626 spi_readl(as, RDR);
627 cpu_relax();
630 if (xfer->bits_per_word > 8)
631 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
632 else
633 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
635 dev_dbg(master->dev.parent,
636 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
637 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
638 xfer->bits_per_word);
640 /* Enable relevant interrupts */
641 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
645 * Next transfer using PIO with FIFO.
647 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
648 struct spi_transfer *xfer)
650 struct atmel_spi *as = spi_master_get_devdata(master);
651 u32 current_remaining_data, num_data;
652 u32 offset = xfer->len - as->current_remaining_bytes;
653 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
654 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
655 u16 td0, td1;
656 u32 fifomr;
658 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
660 /* Compute the number of data to transfer in the current iteration */
661 current_remaining_data = ((xfer->bits_per_word > 8) ?
662 ((u32)as->current_remaining_bytes >> 1) :
663 (u32)as->current_remaining_bytes);
664 num_data = min(current_remaining_data, as->fifo_size);
666 /* Flush RX and TX FIFOs */
667 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
668 while (spi_readl(as, FLR))
669 cpu_relax();
671 /* Set RX FIFO Threshold to the number of data to transfer */
672 fifomr = spi_readl(as, FMR);
673 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
675 /* Clear FIFO flags in the Status Register, especially RXFTHF */
676 (void)spi_readl(as, SR);
678 /* Fill TX FIFO */
679 while (num_data >= 2) {
680 if (xfer->bits_per_word > 8) {
681 td0 = *words++;
682 td1 = *words++;
683 } else {
684 td0 = *bytes++;
685 td1 = *bytes++;
688 spi_writel(as, TDR, (td1 << 16) | td0);
689 num_data -= 2;
692 if (num_data) {
693 if (xfer->bits_per_word > 8)
694 td0 = *words++;
695 else
696 td0 = *bytes++;
698 spi_writew(as, TDR, td0);
699 num_data--;
702 dev_dbg(master->dev.parent,
703 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
704 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
705 xfer->bits_per_word);
708 * Enable RX FIFO Threshold Flag interrupt to be notified about
709 * transfer completion.
711 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
715 * Next transfer using PIO.
717 static void atmel_spi_next_xfer_pio(struct spi_master *master,
718 struct spi_transfer *xfer)
720 struct atmel_spi *as = spi_master_get_devdata(master);
722 if (as->fifo_size)
723 atmel_spi_next_xfer_fifo(master, xfer);
724 else
725 atmel_spi_next_xfer_single(master, xfer);
729 * Submit next transfer for DMA.
731 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
732 struct spi_transfer *xfer,
733 u32 *plen)
735 struct atmel_spi *as = spi_master_get_devdata(master);
736 struct dma_chan *rxchan = master->dma_rx;
737 struct dma_chan *txchan = master->dma_tx;
738 struct dma_async_tx_descriptor *rxdesc;
739 struct dma_async_tx_descriptor *txdesc;
740 struct dma_slave_config slave_config;
741 dma_cookie_t cookie;
743 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
745 /* Check that the channels are available */
746 if (!rxchan || !txchan)
747 return -ENODEV;
749 /* release lock for DMA operations */
750 atmel_spi_unlock(as);
752 *plen = xfer->len;
754 if (atmel_spi_dma_slave_config(as, &slave_config,
755 xfer->bits_per_word))
756 goto err_exit;
758 /* Send both scatterlists */
759 if (atmel_spi_is_vmalloc_xfer(xfer) &&
760 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
761 rxdesc = dmaengine_prep_slave_single(rxchan,
762 as->dma_addr_rx_bbuf,
763 xfer->len,
764 DMA_DEV_TO_MEM,
765 DMA_PREP_INTERRUPT |
766 DMA_CTRL_ACK);
767 } else {
768 rxdesc = dmaengine_prep_slave_sg(rxchan,
769 xfer->rx_sg.sgl,
770 xfer->rx_sg.nents,
771 DMA_DEV_TO_MEM,
772 DMA_PREP_INTERRUPT |
773 DMA_CTRL_ACK);
775 if (!rxdesc)
776 goto err_dma;
778 if (atmel_spi_is_vmalloc_xfer(xfer) &&
779 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
780 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
781 txdesc = dmaengine_prep_slave_single(txchan,
782 as->dma_addr_tx_bbuf,
783 xfer->len, DMA_MEM_TO_DEV,
784 DMA_PREP_INTERRUPT |
785 DMA_CTRL_ACK);
786 } else {
787 txdesc = dmaengine_prep_slave_sg(txchan,
788 xfer->tx_sg.sgl,
789 xfer->tx_sg.nents,
790 DMA_MEM_TO_DEV,
791 DMA_PREP_INTERRUPT |
792 DMA_CTRL_ACK);
794 if (!txdesc)
795 goto err_dma;
797 dev_dbg(master->dev.parent,
798 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
799 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
800 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
802 /* Enable relevant interrupts */
803 spi_writel(as, IER, SPI_BIT(OVRES));
805 /* Put the callback on the RX transfer only, that should finish last */
806 rxdesc->callback = dma_callback;
807 rxdesc->callback_param = master;
809 /* Submit and fire RX and TX with TX last so we're ready to read! */
810 cookie = rxdesc->tx_submit(rxdesc);
811 if (dma_submit_error(cookie))
812 goto err_dma;
813 cookie = txdesc->tx_submit(txdesc);
814 if (dma_submit_error(cookie))
815 goto err_dma;
816 rxchan->device->device_issue_pending(rxchan);
817 txchan->device->device_issue_pending(txchan);
819 /* take back lock */
820 atmel_spi_lock(as);
821 return 0;
823 err_dma:
824 spi_writel(as, IDR, SPI_BIT(OVRES));
825 atmel_spi_stop_dma(master);
826 err_exit:
827 atmel_spi_lock(as);
828 return -ENOMEM;
831 static void atmel_spi_next_xfer_data(struct spi_master *master,
832 struct spi_transfer *xfer,
833 dma_addr_t *tx_dma,
834 dma_addr_t *rx_dma,
835 u32 *plen)
837 *rx_dma = xfer->rx_dma + xfer->len - *plen;
838 *tx_dma = xfer->tx_dma + xfer->len - *plen;
839 if (*plen > master->max_dma_len)
840 *plen = master->max_dma_len;
843 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
844 struct spi_device *spi,
845 struct spi_transfer *xfer)
847 u32 scbr, csr;
848 unsigned long bus_hz;
850 /* v1 chips start out at half the peripheral bus speed. */
851 bus_hz = as->spi_clk;
852 if (!atmel_spi_is_v2(as))
853 bus_hz /= 2;
856 * Calculate the lowest divider that satisfies the
857 * constraint, assuming div32/fdiv/mbz == 0.
859 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
862 * If the resulting divider doesn't fit into the
863 * register bitfield, we can't satisfy the constraint.
865 if (scbr >= (1 << SPI_SCBR_SIZE)) {
866 dev_err(&spi->dev,
867 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
868 xfer->speed_hz, scbr, bus_hz/255);
869 return -EINVAL;
871 if (scbr == 0) {
872 dev_err(&spi->dev,
873 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
874 xfer->speed_hz, scbr, bus_hz);
875 return -EINVAL;
877 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
878 csr = SPI_BFINS(SCBR, scbr, csr);
879 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
881 return 0;
885 * Submit next transfer for PDC.
886 * lock is held, spi irq is blocked
888 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
889 struct spi_message *msg,
890 struct spi_transfer *xfer)
892 struct atmel_spi *as = spi_master_get_devdata(master);
893 u32 len;
894 dma_addr_t tx_dma, rx_dma;
896 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
898 len = as->current_remaining_bytes;
899 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900 as->current_remaining_bytes -= len;
902 spi_writel(as, RPR, rx_dma);
903 spi_writel(as, TPR, tx_dma);
905 if (msg->spi->bits_per_word > 8)
906 len >>= 1;
907 spi_writel(as, RCR, len);
908 spi_writel(as, TCR, len);
910 dev_dbg(&msg->spi->dev,
911 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 xfer, xfer->len, xfer->tx_buf,
913 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
914 (unsigned long long)xfer->rx_dma);
916 if (as->current_remaining_bytes) {
917 len = as->current_remaining_bytes;
918 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
919 as->current_remaining_bytes -= len;
921 spi_writel(as, RNPR, rx_dma);
922 spi_writel(as, TNPR, tx_dma);
924 if (msg->spi->bits_per_word > 8)
925 len >>= 1;
926 spi_writel(as, RNCR, len);
927 spi_writel(as, TNCR, len);
929 dev_dbg(&msg->spi->dev,
930 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
931 xfer, xfer->len, xfer->tx_buf,
932 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
933 (unsigned long long)xfer->rx_dma);
936 /* REVISIT: We're waiting for RXBUFF before we start the next
937 * transfer because we need to handle some difficult timing
938 * issues otherwise. If we wait for TXBUFE in one transfer and
939 * then starts waiting for RXBUFF in the next, it's difficult
940 * to tell the difference between the RXBUFF interrupt we're
941 * actually waiting for and the RXBUFF interrupt of the
942 * previous transfer.
944 * It should be doable, though. Just not now...
946 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
947 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
951 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
952 * - The buffer is either valid for CPU access, else NULL
953 * - If the buffer is valid, so is its DMA address
955 * This driver manages the dma address unless message->is_dma_mapped.
957 static int
958 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
960 struct device *dev = &as->pdev->dev;
962 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
963 if (xfer->tx_buf) {
964 /* tx_buf is a const void* where we need a void * for the dma
965 * mapping */
966 void *nonconst_tx = (void *)xfer->tx_buf;
968 xfer->tx_dma = dma_map_single(dev,
969 nonconst_tx, xfer->len,
970 DMA_TO_DEVICE);
971 if (dma_mapping_error(dev, xfer->tx_dma))
972 return -ENOMEM;
974 if (xfer->rx_buf) {
975 xfer->rx_dma = dma_map_single(dev,
976 xfer->rx_buf, xfer->len,
977 DMA_FROM_DEVICE);
978 if (dma_mapping_error(dev, xfer->rx_dma)) {
979 if (xfer->tx_buf)
980 dma_unmap_single(dev,
981 xfer->tx_dma, xfer->len,
982 DMA_TO_DEVICE);
983 return -ENOMEM;
986 return 0;
989 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
990 struct spi_transfer *xfer)
992 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
993 dma_unmap_single(master->dev.parent, xfer->tx_dma,
994 xfer->len, DMA_TO_DEVICE);
995 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
996 dma_unmap_single(master->dev.parent, xfer->rx_dma,
997 xfer->len, DMA_FROM_DEVICE);
1000 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1002 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1005 static void
1006 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1008 u8 *rxp;
1009 u16 *rxp16;
1010 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1012 if (xfer->bits_per_word > 8) {
1013 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1014 *rxp16 = spi_readl(as, RDR);
1015 } else {
1016 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1017 *rxp = spi_readl(as, RDR);
1019 if (xfer->bits_per_word > 8) {
1020 if (as->current_remaining_bytes > 2)
1021 as->current_remaining_bytes -= 2;
1022 else
1023 as->current_remaining_bytes = 0;
1024 } else {
1025 as->current_remaining_bytes--;
1029 static void
1030 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1032 u32 fifolr = spi_readl(as, FLR);
1033 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1034 u32 offset = xfer->len - as->current_remaining_bytes;
1035 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1036 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1037 u16 rd; /* RD field is the lowest 16 bits of RDR */
1039 /* Update the number of remaining bytes to transfer */
1040 num_bytes = ((xfer->bits_per_word > 8) ?
1041 (num_data << 1) :
1042 num_data);
1044 if (as->current_remaining_bytes > num_bytes)
1045 as->current_remaining_bytes -= num_bytes;
1046 else
1047 as->current_remaining_bytes = 0;
1049 /* Handle odd number of bytes when data are more than 8bit width */
1050 if (xfer->bits_per_word > 8)
1051 as->current_remaining_bytes &= ~0x1;
1053 /* Read data */
1054 while (num_data) {
1055 rd = spi_readl(as, RDR);
1056 if (xfer->bits_per_word > 8)
1057 *words++ = rd;
1058 else
1059 *bytes++ = rd;
1060 num_data--;
1064 /* Called from IRQ
1066 * Must update "current_remaining_bytes" to keep track of data
1067 * to transfer.
1069 static void
1070 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1072 if (as->fifo_size)
1073 atmel_spi_pump_fifo_data(as, xfer);
1074 else
1075 atmel_spi_pump_single_data(as, xfer);
1078 /* Interrupt
1080 * No need for locking in this Interrupt handler: done_status is the
1081 * only information modified.
1083 static irqreturn_t
1084 atmel_spi_pio_interrupt(int irq, void *dev_id)
1086 struct spi_master *master = dev_id;
1087 struct atmel_spi *as = spi_master_get_devdata(master);
1088 u32 status, pending, imr;
1089 struct spi_transfer *xfer;
1090 int ret = IRQ_NONE;
1092 imr = spi_readl(as, IMR);
1093 status = spi_readl(as, SR);
1094 pending = status & imr;
1096 if (pending & SPI_BIT(OVRES)) {
1097 ret = IRQ_HANDLED;
1098 spi_writel(as, IDR, SPI_BIT(OVRES));
1099 dev_warn(master->dev.parent, "overrun\n");
1102 * When we get an overrun, we disregard the current
1103 * transfer. Data will not be copied back from any
1104 * bounce buffer and msg->actual_len will not be
1105 * updated with the last xfer.
1107 * We will also not process any remaning transfers in
1108 * the message.
1110 as->done_status = -EIO;
1111 smp_wmb();
1113 /* Clear any overrun happening while cleaning up */
1114 spi_readl(as, SR);
1116 complete(&as->xfer_completion);
1118 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1119 atmel_spi_lock(as);
1121 if (as->current_remaining_bytes) {
1122 ret = IRQ_HANDLED;
1123 xfer = as->current_transfer;
1124 atmel_spi_pump_pio_data(as, xfer);
1125 if (!as->current_remaining_bytes)
1126 spi_writel(as, IDR, pending);
1128 complete(&as->xfer_completion);
1131 atmel_spi_unlock(as);
1132 } else {
1133 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1134 ret = IRQ_HANDLED;
1135 spi_writel(as, IDR, pending);
1138 return ret;
1141 static irqreturn_t
1142 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1144 struct spi_master *master = dev_id;
1145 struct atmel_spi *as = spi_master_get_devdata(master);
1146 u32 status, pending, imr;
1147 int ret = IRQ_NONE;
1149 imr = spi_readl(as, IMR);
1150 status = spi_readl(as, SR);
1151 pending = status & imr;
1153 if (pending & SPI_BIT(OVRES)) {
1155 ret = IRQ_HANDLED;
1157 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1158 | SPI_BIT(OVRES)));
1160 /* Clear any overrun happening while cleaning up */
1161 spi_readl(as, SR);
1163 as->done_status = -EIO;
1165 complete(&as->xfer_completion);
1167 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1168 ret = IRQ_HANDLED;
1170 spi_writel(as, IDR, pending);
1172 complete(&as->xfer_completion);
1175 return ret;
1178 static int atmel_spi_setup(struct spi_device *spi)
1180 struct atmel_spi *as;
1181 struct atmel_spi_device *asd;
1182 u32 csr;
1183 unsigned int bits = spi->bits_per_word;
1185 as = spi_master_get_devdata(spi->master);
1187 /* see notes above re chipselect */
1188 if (!atmel_spi_is_v2(as)
1189 && spi->chip_select == 0
1190 && (spi->mode & SPI_CS_HIGH)) {
1191 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1192 return -EINVAL;
1195 csr = SPI_BF(BITS, bits - 8);
1196 if (spi->mode & SPI_CPOL)
1197 csr |= SPI_BIT(CPOL);
1198 if (!(spi->mode & SPI_CPHA))
1199 csr |= SPI_BIT(NCPHA);
1200 if (!as->use_cs_gpios)
1201 csr |= SPI_BIT(CSAAT);
1203 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1205 csr |= SPI_BF(DLYBS, 0);
1207 /* DLYBCT adds delays between words. This is useful for slow devices
1208 * that need a bit of time to setup the next transfer.
1210 csr |= SPI_BF(DLYBCT,
1211 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1213 asd = spi->controller_state;
1214 if (!asd) {
1215 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1216 if (!asd)
1217 return -ENOMEM;
1220 * If use_cs_gpios is true this means that we have "cs-gpios"
1221 * defined in the device tree node so we should have
1222 * gotten the GPIO lines from the device tree inside the
1223 * SPI core. Warn if this is not the case but continue since
1224 * CS GPIOs are after all optional.
1226 if (as->use_cs_gpios) {
1227 if (!spi->cs_gpiod) {
1228 dev_err(&spi->dev,
1229 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1231 asd->npcs_pin = spi->cs_gpiod;
1234 spi->controller_state = asd;
1237 asd->csr = csr;
1239 dev_dbg(&spi->dev,
1240 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1241 bits, spi->mode, spi->chip_select, csr);
1243 if (!atmel_spi_is_v2(as))
1244 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1246 return 0;
1249 static int atmel_spi_one_transfer(struct spi_master *master,
1250 struct spi_message *msg,
1251 struct spi_transfer *xfer)
1253 struct atmel_spi *as;
1254 struct spi_device *spi = msg->spi;
1255 u8 bits;
1256 u32 len;
1257 struct atmel_spi_device *asd;
1258 int timeout;
1259 int ret;
1260 unsigned long dma_timeout;
1262 as = spi_master_get_devdata(master);
1264 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1265 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1266 return -EINVAL;
1269 asd = spi->controller_state;
1270 bits = (asd->csr >> 4) & 0xf;
1271 if (bits != xfer->bits_per_word - 8) {
1272 dev_dbg(&spi->dev,
1273 "you can't yet change bits_per_word in transfers\n");
1274 return -ENOPROTOOPT;
1278 * DMA map early, for performance (empties dcache ASAP) and
1279 * better fault reporting.
1281 if ((!msg->is_dma_mapped)
1282 && as->use_pdc) {
1283 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1284 return -ENOMEM;
1287 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1289 as->done_status = 0;
1290 as->current_transfer = xfer;
1291 as->current_remaining_bytes = xfer->len;
1292 while (as->current_remaining_bytes) {
1293 reinit_completion(&as->xfer_completion);
1295 if (as->use_pdc) {
1296 atmel_spi_pdc_next_xfer(master, msg, xfer);
1297 } else if (atmel_spi_use_dma(as, xfer)) {
1298 len = as->current_remaining_bytes;
1299 ret = atmel_spi_next_xfer_dma_submit(master,
1300 xfer, &len);
1301 if (ret) {
1302 dev_err(&spi->dev,
1303 "unable to use DMA, fallback to PIO\n");
1304 atmel_spi_next_xfer_pio(master, xfer);
1305 } else {
1306 as->current_remaining_bytes -= len;
1307 if (as->current_remaining_bytes < 0)
1308 as->current_remaining_bytes = 0;
1310 } else {
1311 atmel_spi_next_xfer_pio(master, xfer);
1314 /* interrupts are disabled, so free the lock for schedule */
1315 atmel_spi_unlock(as);
1316 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1317 SPI_DMA_TIMEOUT);
1318 atmel_spi_lock(as);
1319 if (WARN_ON(dma_timeout == 0)) {
1320 dev_err(&spi->dev, "spi transfer timeout\n");
1321 as->done_status = -EIO;
1324 if (as->done_status)
1325 break;
1328 if (as->done_status) {
1329 if (as->use_pdc) {
1330 dev_warn(master->dev.parent,
1331 "overrun (%u/%u remaining)\n",
1332 spi_readl(as, TCR), spi_readl(as, RCR));
1335 * Clean up DMA registers and make sure the data
1336 * registers are empty.
1338 spi_writel(as, RNCR, 0);
1339 spi_writel(as, TNCR, 0);
1340 spi_writel(as, RCR, 0);
1341 spi_writel(as, TCR, 0);
1342 for (timeout = 1000; timeout; timeout--)
1343 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1344 break;
1345 if (!timeout)
1346 dev_warn(master->dev.parent,
1347 "timeout waiting for TXEMPTY");
1348 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1349 spi_readl(as, RDR);
1351 /* Clear any overrun happening while cleaning up */
1352 spi_readl(as, SR);
1354 } else if (atmel_spi_use_dma(as, xfer)) {
1355 atmel_spi_stop_dma(master);
1358 if (!msg->is_dma_mapped
1359 && as->use_pdc)
1360 atmel_spi_dma_unmap_xfer(master, xfer);
1362 return 0;
1364 } else {
1365 /* only update length if no error */
1366 msg->actual_length += xfer->len;
1369 if (!msg->is_dma_mapped
1370 && as->use_pdc)
1371 atmel_spi_dma_unmap_xfer(master, xfer);
1373 if (xfer->delay_usecs)
1374 udelay(xfer->delay_usecs);
1376 if (xfer->cs_change) {
1377 if (list_is_last(&xfer->transfer_list,
1378 &msg->transfers)) {
1379 as->keep_cs = true;
1380 } else {
1381 as->cs_active = !as->cs_active;
1382 if (as->cs_active)
1383 cs_activate(as, msg->spi);
1384 else
1385 cs_deactivate(as, msg->spi);
1389 return 0;
1392 static int atmel_spi_transfer_one_message(struct spi_master *master,
1393 struct spi_message *msg)
1395 struct atmel_spi *as;
1396 struct spi_transfer *xfer;
1397 struct spi_device *spi = msg->spi;
1398 int ret = 0;
1400 as = spi_master_get_devdata(master);
1402 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1403 msg, dev_name(&spi->dev));
1405 atmel_spi_lock(as);
1406 cs_activate(as, spi);
1408 as->cs_active = true;
1409 as->keep_cs = false;
1411 msg->status = 0;
1412 msg->actual_length = 0;
1414 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1415 ret = atmel_spi_one_transfer(master, msg, xfer);
1416 if (ret)
1417 goto msg_done;
1420 if (as->use_pdc)
1421 atmel_spi_disable_pdc_transfer(as);
1423 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1424 dev_dbg(&spi->dev,
1425 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1426 xfer, xfer->len,
1427 xfer->tx_buf, &xfer->tx_dma,
1428 xfer->rx_buf, &xfer->rx_dma);
1431 msg_done:
1432 if (!as->keep_cs)
1433 cs_deactivate(as, msg->spi);
1435 atmel_spi_unlock(as);
1437 msg->status = as->done_status;
1438 spi_finalize_current_message(spi->master);
1440 return ret;
1443 static void atmel_spi_cleanup(struct spi_device *spi)
1445 struct atmel_spi_device *asd = spi->controller_state;
1447 if (!asd)
1448 return;
1450 spi->controller_state = NULL;
1451 kfree(asd);
1454 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1456 return spi_readl(as, VERSION) & 0x00000fff;
1459 static void atmel_get_caps(struct atmel_spi *as)
1461 unsigned int version;
1463 version = atmel_get_version(as);
1465 as->caps.is_spi2 = version > 0x121;
1466 as->caps.has_wdrbt = version >= 0x210;
1467 as->caps.has_dma_support = version >= 0x212;
1468 as->caps.has_pdc_support = version < 0x212;
1471 static void atmel_spi_init(struct atmel_spi *as)
1473 spi_writel(as, CR, SPI_BIT(SWRST));
1474 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1476 /* It is recommended to enable FIFOs first thing after reset */
1477 if (as->fifo_size)
1478 spi_writel(as, CR, SPI_BIT(FIFOEN));
1480 if (as->caps.has_wdrbt) {
1481 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1482 | SPI_BIT(MSTR));
1483 } else {
1484 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487 if (as->use_pdc)
1488 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1489 spi_writel(as, CR, SPI_BIT(SPIEN));
1492 static int atmel_spi_probe(struct platform_device *pdev)
1494 struct resource *regs;
1495 int irq;
1496 struct clk *clk;
1497 int ret;
1498 struct spi_master *master;
1499 struct atmel_spi *as;
1501 /* Select default pin state */
1502 pinctrl_pm_select_default_state(&pdev->dev);
1504 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 if (!regs)
1506 return -ENXIO;
1508 irq = platform_get_irq(pdev, 0);
1509 if (irq < 0)
1510 return irq;
1512 clk = devm_clk_get(&pdev->dev, "spi_clk");
1513 if (IS_ERR(clk))
1514 return PTR_ERR(clk);
1516 /* setup spi core then atmel-specific driver state */
1517 ret = -ENOMEM;
1518 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1519 if (!master)
1520 goto out_free;
1522 /* the spi->mode bits understood by this driver: */
1523 master->use_gpio_descriptors = true;
1524 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1525 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1526 master->dev.of_node = pdev->dev.of_node;
1527 master->bus_num = pdev->id;
1528 master->num_chipselect = master->dev.of_node ? 0 : 4;
1529 master->setup = atmel_spi_setup;
1530 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1531 master->transfer_one_message = atmel_spi_transfer_one_message;
1532 master->cleanup = atmel_spi_cleanup;
1533 master->auto_runtime_pm = true;
1534 master->max_dma_len = SPI_MAX_DMA_XFER;
1535 master->can_dma = atmel_spi_can_dma;
1536 platform_set_drvdata(pdev, master);
1538 as = spi_master_get_devdata(master);
1540 spin_lock_init(&as->lock);
1542 as->pdev = pdev;
1543 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1544 if (IS_ERR(as->regs)) {
1545 ret = PTR_ERR(as->regs);
1546 goto out_unmap_regs;
1548 as->phybase = regs->start;
1549 as->irq = irq;
1550 as->clk = clk;
1552 init_completion(&as->xfer_completion);
1554 atmel_get_caps(as);
1557 * If there are chip selects in the device tree, those will be
1558 * discovered by the SPI core when registering the SPI master
1559 * and assigned to each SPI device.
1561 as->use_cs_gpios = true;
1562 if (atmel_spi_is_v2(as) &&
1563 pdev->dev.of_node &&
1564 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1565 as->use_cs_gpios = false;
1566 master->num_chipselect = 4;
1569 as->use_dma = false;
1570 as->use_pdc = false;
1571 if (as->caps.has_dma_support) {
1572 ret = atmel_spi_configure_dma(master, as);
1573 if (ret == 0) {
1574 as->use_dma = true;
1575 } else if (ret == -EPROBE_DEFER) {
1576 return ret;
1578 } else if (as->caps.has_pdc_support) {
1579 as->use_pdc = true;
1582 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1583 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1584 SPI_MAX_DMA_XFER,
1585 &as->dma_addr_rx_bbuf,
1586 GFP_KERNEL | GFP_DMA);
1587 if (!as->addr_rx_bbuf) {
1588 as->use_dma = false;
1589 } else {
1590 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1591 SPI_MAX_DMA_XFER,
1592 &as->dma_addr_tx_bbuf,
1593 GFP_KERNEL | GFP_DMA);
1594 if (!as->addr_tx_bbuf) {
1595 as->use_dma = false;
1596 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1597 as->addr_rx_bbuf,
1598 as->dma_addr_rx_bbuf);
1601 if (!as->use_dma)
1602 dev_info(master->dev.parent,
1603 " can not allocate dma coherent memory\n");
1606 if (as->caps.has_dma_support && !as->use_dma)
1607 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1609 if (as->use_pdc) {
1610 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1611 0, dev_name(&pdev->dev), master);
1612 } else {
1613 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1614 0, dev_name(&pdev->dev), master);
1616 if (ret)
1617 goto out_unmap_regs;
1619 /* Initialize the hardware */
1620 ret = clk_prepare_enable(clk);
1621 if (ret)
1622 goto out_free_irq;
1624 as->spi_clk = clk_get_rate(clk);
1626 as->fifo_size = 0;
1627 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1628 &as->fifo_size)) {
1629 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632 atmel_spi_init(as);
1634 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1635 pm_runtime_use_autosuspend(&pdev->dev);
1636 pm_runtime_set_active(&pdev->dev);
1637 pm_runtime_enable(&pdev->dev);
1639 ret = devm_spi_register_master(&pdev->dev, master);
1640 if (ret)
1641 goto out_free_dma;
1643 /* go! */
1644 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1645 atmel_get_version(as), (unsigned long)regs->start,
1646 irq);
1648 return 0;
1650 out_free_dma:
1651 pm_runtime_disable(&pdev->dev);
1652 pm_runtime_set_suspended(&pdev->dev);
1654 if (as->use_dma)
1655 atmel_spi_release_dma(master);
1657 spi_writel(as, CR, SPI_BIT(SWRST));
1658 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1659 clk_disable_unprepare(clk);
1660 out_free_irq:
1661 out_unmap_regs:
1662 out_free:
1663 spi_master_put(master);
1664 return ret;
1667 static int atmel_spi_remove(struct platform_device *pdev)
1669 struct spi_master *master = platform_get_drvdata(pdev);
1670 struct atmel_spi *as = spi_master_get_devdata(master);
1672 pm_runtime_get_sync(&pdev->dev);
1674 /* reset the hardware and block queue progress */
1675 if (as->use_dma) {
1676 atmel_spi_stop_dma(master);
1677 atmel_spi_release_dma(master);
1678 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1679 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1680 as->addr_tx_bbuf,
1681 as->dma_addr_tx_bbuf);
1682 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683 as->addr_rx_bbuf,
1684 as->dma_addr_rx_bbuf);
1688 spin_lock_irq(&as->lock);
1689 spi_writel(as, CR, SPI_BIT(SWRST));
1690 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1691 spi_readl(as, SR);
1692 spin_unlock_irq(&as->lock);
1694 clk_disable_unprepare(as->clk);
1696 pm_runtime_put_noidle(&pdev->dev);
1697 pm_runtime_disable(&pdev->dev);
1699 return 0;
1702 #ifdef CONFIG_PM
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1705 struct spi_master *master = dev_get_drvdata(dev);
1706 struct atmel_spi *as = spi_master_get_devdata(master);
1708 clk_disable_unprepare(as->clk);
1709 pinctrl_pm_select_sleep_state(dev);
1711 return 0;
1714 static int atmel_spi_runtime_resume(struct device *dev)
1716 struct spi_master *master = dev_get_drvdata(dev);
1717 struct atmel_spi *as = spi_master_get_devdata(master);
1719 pinctrl_pm_select_default_state(dev);
1721 return clk_prepare_enable(as->clk);
1724 #ifdef CONFIG_PM_SLEEP
1725 static int atmel_spi_suspend(struct device *dev)
1727 struct spi_master *master = dev_get_drvdata(dev);
1728 int ret;
1730 /* Stop the queue running */
1731 ret = spi_master_suspend(master);
1732 if (ret)
1733 return ret;
1735 if (!pm_runtime_suspended(dev))
1736 atmel_spi_runtime_suspend(dev);
1738 return 0;
1741 static int atmel_spi_resume(struct device *dev)
1743 struct spi_master *master = dev_get_drvdata(dev);
1744 struct atmel_spi *as = spi_master_get_devdata(master);
1745 int ret;
1747 ret = clk_prepare_enable(as->clk);
1748 if (ret)
1749 return ret;
1751 atmel_spi_init(as);
1753 clk_disable_unprepare(as->clk);
1755 if (!pm_runtime_suspended(dev)) {
1756 ret = atmel_spi_runtime_resume(dev);
1757 if (ret)
1758 return ret;
1761 /* Start the queue running */
1762 return spi_master_resume(master);
1764 #endif
1766 static const struct dev_pm_ops atmel_spi_pm_ops = {
1767 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1768 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1769 atmel_spi_runtime_resume, NULL)
1771 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1772 #else
1773 #define ATMEL_SPI_PM_OPS NULL
1774 #endif
1776 #if defined(CONFIG_OF)
1777 static const struct of_device_id atmel_spi_dt_ids[] = {
1778 { .compatible = "atmel,at91rm9200-spi" },
1779 { /* sentinel */ }
1782 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1783 #endif
1785 static struct platform_driver atmel_spi_driver = {
1786 .driver = {
1787 .name = "atmel_spi",
1788 .pm = ATMEL_SPI_PM_OPS,
1789 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1791 .probe = atmel_spi_probe,
1792 .remove = atmel_spi_remove,
1794 module_platform_driver(atmel_spi_driver);
1796 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1797 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1798 MODULE_LICENSE("GPL");
1799 MODULE_ALIAS("platform:atmel_spi");