2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
45 #define for_each_pipe(card_ctx, pipe) \
46 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
52 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
53 static bool single_port
;
55 module_param_named(index
, hdmi_card_index
, int, 0444);
56 MODULE_PARM_DESC(index
,
57 "Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id
, hdmi_card_id
, charp
, 0444);
60 "ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port
, bool, 0444);
62 MODULE_PARM_DESC(single_port
,
63 "Single-port mode (for compatibility)");
66 * ELD SA bits in the CEA Speaker Allocation data block
68 static const int eld_speaker_allocation_bits
[] = {
76 /* the following are not defined in ELD yet */
81 * This is an ordered list!
83 * The preceding ones have better chances to be selected by
84 * hdmi_channel_allocation().
86 static struct cea_channel_speaker_allocation channel_allocations
[] = {
87 /* channel: 7 6 5 4 3 2 1 0 */
88 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
90 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
92 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
94 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
96 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
98 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
100 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
102 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
104 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
106 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
107 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
108 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
109 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
110 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
111 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
112 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
113 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
114 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
115 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
116 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
117 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
118 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
119 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
120 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
121 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
122 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
123 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
124 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
125 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
126 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
127 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
128 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
131 static const struct channel_map_table map_tables
[] = {
132 { SNDRV_CHMAP_FL
, 0x00, FL
},
133 { SNDRV_CHMAP_FR
, 0x01, FR
},
134 { SNDRV_CHMAP_RL
, 0x04, RL
},
135 { SNDRV_CHMAP_RR
, 0x05, RR
},
136 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
137 { SNDRV_CHMAP_FC
, 0x03, FC
},
138 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
139 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware
= {
145 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
146 SNDRV_PCM_INFO_MMAP
|
147 SNDRV_PCM_INFO_MMAP_VALID
|
148 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
149 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
150 SNDRV_PCM_FMTBIT_S24_LE
|
151 SNDRV_PCM_FMTBIT_S32_LE
),
152 .rates
= SNDRV_PCM_RATE_32000
|
153 SNDRV_PCM_RATE_44100
|
154 SNDRV_PCM_RATE_48000
|
155 SNDRV_PCM_RATE_88200
|
156 SNDRV_PCM_RATE_96000
|
157 SNDRV_PCM_RATE_176400
|
158 SNDRV_PCM_RATE_192000
,
159 .rate_min
= HAD_MIN_RATE
,
160 .rate_max
= HAD_MAX_RATE
,
161 .channels_min
= HAD_MIN_CHANNEL
,
162 .channels_max
= HAD_MAX_CHANNEL
,
163 .buffer_bytes_max
= HAD_MAX_BUFFER
,
164 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
165 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
166 .periods_min
= HAD_MIN_PERIODS
,
167 .periods_max
= HAD_MAX_PERIODS
,
168 .fifo_size
= HAD_FIFO_SIZE
,
171 /* Get the active PCM substream;
172 * Call had_substream_put() for unreferecing.
173 * Don't call this inside had_spinlock, as it takes by itself
175 static struct snd_pcm_substream
*
176 had_substream_get(struct snd_intelhad
*intelhaddata
)
178 struct snd_pcm_substream
*substream
;
181 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
182 substream
= intelhaddata
->stream_info
.substream
;
184 intelhaddata
->stream_info
.substream_refcount
++;
185 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
189 /* Unref the active PCM substream;
190 * Don't call this inside had_spinlock, as it takes by itself
192 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
196 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
197 intelhaddata
->stream_info
.substream_refcount
--;
198 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
201 static u32
had_config_offset(int pipe
)
206 return AUDIO_HDMI_CONFIG_A
;
208 return AUDIO_HDMI_CONFIG_B
;
210 return AUDIO_HDMI_CONFIG_C
;
214 /* Register access functions */
215 static u32
had_read_register_raw(struct snd_intelhad_card
*card_ctx
,
218 return ioread32(card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
221 static void had_write_register_raw(struct snd_intelhad_card
*card_ctx
,
222 int pipe
, u32 reg
, u32 val
)
224 iowrite32(val
, card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
227 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
232 *val
= had_read_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
);
235 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
238 had_write_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
, val
);
242 * enable / disable audio configuration
244 * The normal read/modify should not directly be used on VLV2 for
245 * updating AUD_CONFIG register.
247 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250 * register. This field should be 1xy binary for configuration with 6 or
251 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252 * causes the "channels" field to be updated as 0xy binary resulting in
253 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254 * appropriate value when doing read-modify of AUD_CONFIG register.
256 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
259 /* update the cached value */
260 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
261 had_write_register(intelhaddata
, AUD_CONFIG
,
262 intelhaddata
->aud_config
.regval
);
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad
*ctx
)
272 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
273 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
274 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
275 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
281 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
282 AUD_HDMI_STATUSG_MASK_FUNCRST
);
283 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
287 * initialize audio channel status registers
288 * This function is called in the prepare callback
290 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
291 struct snd_intelhad
*intelhaddata
)
293 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
294 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
296 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
297 IEC958_AES0_NONAUDIO
) >> 1;
298 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
299 IEC958_AES3_CON_CLOCK
) >> 4;
301 switch (substream
->runtime
->rate
) {
302 case AUD_SAMPLE_RATE_32
:
303 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
306 case AUD_SAMPLE_RATE_44_1
:
307 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
309 case AUD_SAMPLE_RATE_48
:
310 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
312 case AUD_SAMPLE_RATE_88_2
:
313 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
315 case AUD_SAMPLE_RATE_96
:
316 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
318 case AUD_SAMPLE_RATE_176_4
:
319 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
321 case AUD_SAMPLE_RATE_192
:
322 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
326 /* control should never come here */
330 had_write_register(intelhaddata
,
331 AUD_CH_STATUS_0
, ch_stat0
.regval
);
333 switch (substream
->runtime
->format
) {
334 case SNDRV_PCM_FORMAT_S16_LE
:
335 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
336 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
338 case SNDRV_PCM_FORMAT_S24_LE
:
339 case SNDRV_PCM_FORMAT_S32_LE
:
340 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
341 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
347 had_write_register(intelhaddata
,
348 AUD_CH_STATUS_1
, ch_stat1
.regval
);
353 * function to initialize audio
354 * registers and buffer confgiuration registers
355 * This function is called in the prepare callback
357 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
358 struct snd_intelhad
*intelhaddata
)
360 union aud_cfg cfg_val
= {.regval
= 0};
361 union aud_buf_config buf_cfg
= {.regval
= 0};
364 had_prog_status_reg(substream
, intelhaddata
);
366 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
367 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
368 buf_cfg
.regx
.aud_delay
= 0;
369 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
371 channels
= substream
->runtime
->channels
;
372 cfg_val
.regx
.num_ch
= channels
- 2;
374 cfg_val
.regx
.layout
= LAYOUT0
;
376 cfg_val
.regx
.layout
= LAYOUT1
;
378 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
379 cfg_val
.regx
.packet_mode
= 1;
381 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
382 cfg_val
.regx
.left_align
= 1;
384 cfg_val
.regx
.val_bit
= 1;
386 /* fix up the DP bits */
387 if (intelhaddata
->dp_output
) {
388 cfg_val
.regx
.dp_modei
= 1;
389 cfg_val
.regx
.set
= 1;
392 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
393 intelhaddata
->aud_config
= cfg_val
;
398 * Compute derived values in channel_allocations[].
400 static void init_channel_allocations(void)
403 struct cea_channel_speaker_allocation
*p
;
405 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
406 p
= channel_allocations
+ i
;
409 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
410 if (p
->speakers
[j
]) {
412 p
->spk_mask
|= p
->speakers
[j
];
418 * The transformation takes two steps:
420 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
421 * spk_mask => (channel_allocations[]) => ai->CA
423 * TODO: it could select the wrong CA from multiple candidates.
425 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
433 * CA defaults to 0 for basic stereo audio
439 * expand ELD's speaker allocation mask
441 * ELD tells the speaker mask in a compact(paired) form,
442 * expand ELD's notions to match the ones used by Audio InfoFrame.
445 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
446 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
447 spk_mask
|= eld_speaker_allocation_bits
[i
];
450 /* search for the first working match in the CA table */
451 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
452 if (channels
== channel_allocations
[i
].channels
&&
453 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
454 channel_allocations
[i
].spk_mask
) {
455 ca
= channel_allocations
[i
].ca_index
;
460 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
465 /* from speaker bit mask to ALSA API channel position */
466 static int spk_to_chmap(int spk
)
468 const struct channel_map_table
*t
= map_tables
;
470 for (; t
->map
; t
++) {
471 if (t
->spk_mask
== spk
)
477 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
481 struct snd_pcm_chmap_elem
*chmap
;
482 u8 eld_high
, eld_high_mask
= 0xF0;
485 kfree(intelhaddata
->chmap
->chmap
);
486 intelhaddata
->chmap
->chmap
= NULL
;
488 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
492 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
493 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
495 /* WA: Fix the max channel supported to 8 */
498 * Sink may support more than 8 channels, if eld_high has more than
499 * one bit set. SOC supports max 8 channels.
500 * Refer eld_speaker_allocation_bits, for sink speaker allocation
503 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
504 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
505 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
506 /* eld_high & (eld_high-1): if more than 1 bit set */
507 /* 0x1F: 7 channels */
508 for (i
= 1; i
< 4; i
++) {
509 high_msb
= eld_high
& (0x80 >> i
);
511 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
518 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
519 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
520 spk_mask
|= eld_speaker_allocation_bits
[i
];
523 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
524 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
525 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
526 chmap
->map
[c
] = spk_to_chmap(
527 channel_allocations
[i
].speakers
[
528 (MAX_SPEAKERS
- 1) - c
]);
530 chmap
->channels
= channel_allocations
[i
].channels
;
531 intelhaddata
->chmap
->chmap
= chmap
;
535 if (i
>= ARRAY_SIZE(channel_allocations
))
540 * ALSA API channel-map control callbacks
542 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
543 struct snd_ctl_elem_info
*uinfo
)
545 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
546 uinfo
->count
= HAD_MAX_CHANNEL
;
547 uinfo
->value
.integer
.min
= 0;
548 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
552 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
553 struct snd_ctl_elem_value
*ucontrol
)
555 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
556 struct snd_intelhad
*intelhaddata
= info
->private_data
;
558 const struct snd_pcm_chmap_elem
*chmap
;
560 memset(ucontrol
->value
.integer
.value
, 0,
561 sizeof(long) * HAD_MAX_CHANNEL
);
562 mutex_lock(&intelhaddata
->mutex
);
563 if (!intelhaddata
->chmap
->chmap
) {
564 mutex_unlock(&intelhaddata
->mutex
);
568 chmap
= intelhaddata
->chmap
->chmap
;
569 for (i
= 0; i
< chmap
->channels
; i
++)
570 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
571 mutex_unlock(&intelhaddata
->mutex
);
576 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
581 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
582 NULL
, 0, (unsigned long)intelhaddata
,
583 &intelhaddata
->chmap
);
587 intelhaddata
->chmap
->private_data
= intelhaddata
;
588 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
589 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
590 intelhaddata
->chmap
->chmap
= NULL
;
595 * Initialize Data Island Packets registers
596 * This function is called in the prepare callback
598 static void had_prog_dip(struct snd_pcm_substream
*substream
,
599 struct snd_intelhad
*intelhaddata
)
602 union aud_ctrl_st ctrl_state
= {.regval
= 0};
603 union aud_info_frame2 frame2
= {.regval
= 0};
604 union aud_info_frame3 frame3
= {.regval
= 0};
610 channels
= substream
->runtime
->channels
;
612 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
614 ca
= had_channel_allocation(intelhaddata
, channels
);
615 if (intelhaddata
->dp_output
) {
616 info_frame
= DP_INFO_FRAME_WORD1
;
617 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
619 info_frame
= HDMI_INFO_FRAME_WORD1
;
620 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
621 frame3
.regx
.chnl_alloc
= ca
;
623 /* Calculte the byte wide checksum for all valid DIP words */
624 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
625 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
626 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
627 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
628 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
629 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
631 frame2
.regx
.chksum
= -(checksum
);
634 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
635 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
636 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
638 /* program remaining DIP words with zero */
639 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
640 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
642 ctrl_state
.regx
.dip_freq
= 1;
643 ctrl_state
.regx
.dip_en_sta
= 1;
644 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
647 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
651 /* Select maud according to DP 1.2 spec */
652 if (link_rate
== DP_2_7_GHZ
) {
653 switch (aud_samp_freq
) {
654 case AUD_SAMPLE_RATE_32
:
655 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
658 case AUD_SAMPLE_RATE_44_1
:
659 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
662 case AUD_SAMPLE_RATE_48
:
663 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
666 case AUD_SAMPLE_RATE_88_2
:
667 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
670 case AUD_SAMPLE_RATE_96
:
671 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
674 case AUD_SAMPLE_RATE_176_4
:
675 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
679 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
686 } else if (link_rate
== DP_1_62_GHZ
) {
687 switch (aud_samp_freq
) {
688 case AUD_SAMPLE_RATE_32
:
689 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
692 case AUD_SAMPLE_RATE_44_1
:
693 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
696 case AUD_SAMPLE_RATE_48
:
697 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
700 case AUD_SAMPLE_RATE_88_2
:
701 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
704 case AUD_SAMPLE_RATE_96
:
705 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
708 case AUD_SAMPLE_RATE_176_4
:
709 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
713 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
727 * Program HDMI audio CTS value
729 * @aud_samp_freq: sampling frequency of audio data
730 * @tmds: sampling frequency of the display data
731 * @link_rate: DP link rate
732 * @n_param: N value, depends on aud_samp_freq
733 * @intelhaddata: substream private data
735 * Program CTS register based on the audio and display sampling frequency
737 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
738 u32 n_param
, struct snd_intelhad
*intelhaddata
)
741 u64 dividend
, divisor
;
743 if (intelhaddata
->dp_output
) {
744 /* Substitute cts_val with Maud according to DP 1.2 spec*/
745 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
747 /* Calculate CTS according to HDMI 1.3a spec*/
748 dividend
= (u64
)tmds
* n_param
*1000;
749 divisor
= 128 * aud_samp_freq
;
750 cts_val
= div64_u64(dividend
, divisor
);
752 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
753 tmds
, n_param
, cts_val
);
754 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
757 static int had_calculate_n_value(u32 aud_samp_freq
)
761 /* Select N according to HDMI 1.3a spec*/
762 switch (aud_samp_freq
) {
763 case AUD_SAMPLE_RATE_32
:
767 case AUD_SAMPLE_RATE_44_1
:
771 case AUD_SAMPLE_RATE_48
:
775 case AUD_SAMPLE_RATE_88_2
:
779 case AUD_SAMPLE_RATE_96
:
783 case AUD_SAMPLE_RATE_176_4
:
799 * Program HDMI audio N value
801 * @aud_samp_freq: sampling frequency of audio data
802 * @n_param: N value, depends on aud_samp_freq
803 * @intelhaddata: substream private data
805 * This function is called in the prepare callback.
806 * It programs based on the audio and display sampling frequency
808 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
809 struct snd_intelhad
*intelhaddata
)
813 if (intelhaddata
->dp_output
) {
815 * According to DP specs, Maud and Naud values hold
816 * a relationship, which is stated as:
817 * Maud/Naud = 512 * fs / f_LS_Clk
818 * where, fs is the sampling frequency of the audio stream
819 * and Naud is 32768 for Async clock.
824 n_val
= had_calculate_n_value(aud_samp_freq
);
829 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
835 * PCM ring buffer handling
837 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
838 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
839 * moves at each period elapsed. The below illustrates how it works:
842 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
843 * BD | 0 | 1 | 2 | 3 |
845 * At time=1 (period elapsed)
846 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
847 * BD | 1 | 2 | 3 | 0 |
849 * At time=2 (second period elapsed)
850 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
851 * BD | 2 | 3 | 0 | 1 |
853 * The bd_head field points to the index of the BD to be read. It's also the
854 * position to be filled at next. The pcm_head and the pcm_filled fields
855 * point to the indices of the current position and of the next position to
856 * be filled, respectively. For PCM buffer there are both _head and _filled
857 * because they may be difference when nperiods > 4. For example, in the
858 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
860 * pcm_head (=1) --v v-- pcm_filled (=5)
861 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
862 * BD | 1 | 2 | 3 | 0 |
863 * bd_head (=1) --^ ^-- next to fill (= bd_head)
865 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
866 * the hardware skips those BDs in the loop.
868 * An exceptional setup is the case with nperiods=1. Since we have to update
869 * BDs after finishing one BD processing, we'd need at least two BDs, where
870 * both BDs point to the same content, the same address, the same size of the
874 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
875 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
877 /* Set up a buffer descriptor at the "filled" position */
878 static void had_prog_bd(struct snd_pcm_substream
*substream
,
879 struct snd_intelhad
*intelhaddata
)
881 int idx
= intelhaddata
->bd_head
;
882 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
883 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
885 addr
|= AUD_BUF_VALID
;
886 if (!substream
->runtime
->no_period_wakeup
)
887 addr
|= AUD_BUF_INTR_EN
;
888 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
889 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
890 intelhaddata
->period_bytes
);
892 /* advance the indices to the next */
893 intelhaddata
->bd_head
++;
894 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
895 intelhaddata
->pcmbuf_filled
++;
896 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
899 /* invalidate a buffer descriptor with the given index */
900 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
903 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
904 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
907 /* Initial programming of ring buffer */
908 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
909 struct snd_intelhad
*intelhaddata
)
911 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
914 num_periods
= runtime
->periods
;
915 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
916 /* set the minimum 2 BDs for num_periods=1 */
917 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
918 intelhaddata
->period_bytes
=
919 frames_to_bytes(runtime
, runtime
->period_size
);
920 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
922 intelhaddata
->bd_head
= 0;
923 intelhaddata
->pcmbuf_head
= 0;
924 intelhaddata
->pcmbuf_filled
= 0;
926 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
927 if (i
< intelhaddata
->num_bds
)
928 had_prog_bd(substream
, intelhaddata
);
929 else /* invalidate the rest */
930 had_invalidate_bd(intelhaddata
, i
);
933 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
936 /* process a bd, advance to the next */
937 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
938 struct snd_intelhad
*intelhaddata
)
940 int num_periods
= substream
->runtime
->periods
;
942 /* reprogram the next buffer */
943 had_prog_bd(substream
, intelhaddata
);
945 /* proceed to next */
946 intelhaddata
->pcmbuf_head
++;
947 intelhaddata
->pcmbuf_head
%= num_periods
;
950 /* process the current BD(s);
951 * returns the current PCM buffer byte position, or -EPIPE for underrun.
953 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
954 struct snd_intelhad
*intelhaddata
)
960 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
962 /* get the remaining bytes on the buffer */
963 had_read_register(intelhaddata
,
964 AUD_BUF_LEN(intelhaddata
->bd_head
),
966 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
967 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
973 if (len
> 0) /* OK, this is the current buffer */
976 /* len=0 => already empty, check the next buffer */
977 if (++processed
>= intelhaddata
->num_bds
) {
978 len
= -EPIPE
; /* all empty? - report underrun */
981 had_advance_ringbuf(substream
, intelhaddata
);
984 len
= intelhaddata
->period_bytes
- len
;
985 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
987 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
991 /* called from irq handler */
992 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
994 struct snd_pcm_substream
*substream
;
996 substream
= had_substream_get(intelhaddata
);
998 return; /* no stream? - bail out */
1000 if (!intelhaddata
->connected
) {
1001 snd_pcm_stop_xrun(substream
);
1002 goto out
; /* disconnected? - bail out */
1005 /* process or stop the stream */
1006 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
1007 snd_pcm_stop_xrun(substream
);
1009 snd_pcm_period_elapsed(substream
);
1012 had_substream_put(intelhaddata
);
1016 * The interrupt status 'sticky' bits might not be cleared by
1017 * setting '1' to that bit once...
1019 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1024 for (i
= 0; i
< 100; i
++) {
1025 /* clear bit30, 31 AUD_HDMI_STATUS */
1026 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1027 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1031 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1033 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1036 /* Perform some reset procedure but only when need_reset is set;
1037 * this is called from prepare or hw_free callbacks once after trigger STOP
1038 * or underrun has been processed in order to settle down the h/w state.
1040 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1042 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1045 /* Reset buffer pointers */
1046 had_reset_audio(intelhaddata
);
1047 wait_clear_underrun_bit(intelhaddata
);
1048 intelhaddata
->need_reset
= false;
1051 /* called from irq handler */
1052 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1054 struct snd_pcm_substream
*substream
;
1056 /* Report UNDERRUN error to above layers */
1057 substream
= had_substream_get(intelhaddata
);
1059 snd_pcm_stop_xrun(substream
);
1060 had_substream_put(intelhaddata
);
1062 intelhaddata
->need_reset
= true;
1066 * ALSA PCM open callback
1068 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1070 struct snd_intelhad
*intelhaddata
;
1071 struct snd_pcm_runtime
*runtime
;
1074 intelhaddata
= snd_pcm_substream_chip(substream
);
1075 runtime
= substream
->runtime
;
1077 pm_runtime_get_sync(intelhaddata
->dev
);
1079 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1080 runtime
->hw
= had_pcm_hardware
;
1082 retval
= snd_pcm_hw_constraint_integer(runtime
,
1083 SNDRV_PCM_HW_PARAM_PERIODS
);
1087 /* Make sure, that the period size is always aligned
1090 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1091 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1095 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1099 /* expose PCM substream */
1100 spin_lock_irq(&intelhaddata
->had_spinlock
);
1101 intelhaddata
->stream_info
.substream
= substream
;
1102 intelhaddata
->stream_info
.substream_refcount
++;
1103 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1107 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1108 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1113 * ALSA PCM close callback
1115 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1117 struct snd_intelhad
*intelhaddata
;
1119 intelhaddata
= snd_pcm_substream_chip(substream
);
1121 /* unreference and sync with the pending PCM accesses */
1122 spin_lock_irq(&intelhaddata
->had_spinlock
);
1123 intelhaddata
->stream_info
.substream
= NULL
;
1124 intelhaddata
->stream_info
.substream_refcount
--;
1125 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1126 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1128 spin_lock_irq(&intelhaddata
->had_spinlock
);
1130 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1132 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1133 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1138 * ALSA PCM hw_params callback
1140 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1141 struct snd_pcm_hw_params
*hw_params
)
1143 struct snd_intelhad
*intelhaddata
;
1145 int pages
, buf_size
, retval
;
1147 intelhaddata
= snd_pcm_substream_chip(substream
);
1148 buf_size
= params_buffer_bytes(hw_params
);
1149 retval
= snd_pcm_lib_malloc_pages(substream
, buf_size
);
1152 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1153 __func__
, buf_size
);
1154 /* mark the pages as uncached region */
1155 addr
= (unsigned long) substream
->runtime
->dma_area
;
1156 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1157 retval
= set_memory_uc(addr
, pages
);
1159 dev_err(intelhaddata
->dev
, "set_memory_uc failed.Error:%d\n",
1163 memset(substream
->runtime
->dma_area
, 0, buf_size
);
1169 * ALSA PCM hw_free callback
1171 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1173 struct snd_intelhad
*intelhaddata
;
1177 intelhaddata
= snd_pcm_substream_chip(substream
);
1178 had_do_reset(intelhaddata
);
1180 /* mark back the pages as cached/writeback region before the free */
1181 if (substream
->runtime
->dma_area
!= NULL
) {
1182 addr
= (unsigned long) substream
->runtime
->dma_area
;
1183 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) /
1185 set_memory_wb(addr
, pages
);
1186 return snd_pcm_lib_free_pages(substream
);
1192 * ALSA PCM trigger callback
1194 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1197 struct snd_intelhad
*intelhaddata
;
1199 intelhaddata
= snd_pcm_substream_chip(substream
);
1201 spin_lock(&intelhaddata
->had_spinlock
);
1203 case SNDRV_PCM_TRIGGER_START
:
1204 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1205 case SNDRV_PCM_TRIGGER_RESUME
:
1207 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1208 had_enable_audio(intelhaddata
, true);
1211 case SNDRV_PCM_TRIGGER_STOP
:
1212 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1214 had_enable_audio(intelhaddata
, false);
1215 intelhaddata
->need_reset
= true;
1221 spin_unlock(&intelhaddata
->had_spinlock
);
1226 * ALSA PCM prepare callback
1228 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1231 u32 disp_samp_freq
, n_param
;
1233 struct snd_intelhad
*intelhaddata
;
1234 struct snd_pcm_runtime
*runtime
;
1236 intelhaddata
= snd_pcm_substream_chip(substream
);
1237 runtime
= substream
->runtime
;
1239 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1240 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1241 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1242 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1243 (int)snd_pcm_lib_buffer_bytes(substream
));
1244 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1245 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1247 had_do_reset(intelhaddata
);
1249 /* Get N value in KHz */
1250 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1252 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1254 dev_err(intelhaddata
->dev
,
1255 "programming N value failed %#x\n", retval
);
1259 if (intelhaddata
->dp_output
)
1260 link_rate
= intelhaddata
->link_rate
;
1262 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1263 n_param
, intelhaddata
);
1265 had_prog_dip(substream
, intelhaddata
);
1267 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1269 /* Prog buffer address */
1270 had_init_ringbuf(substream
, intelhaddata
);
1273 * Program channel mapping in following order:
1274 * FL, FR, C, LFE, RL, RR
1277 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1284 * ALSA PCM pointer callback
1286 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1288 struct snd_intelhad
*intelhaddata
;
1291 intelhaddata
= snd_pcm_substream_chip(substream
);
1293 if (!intelhaddata
->connected
)
1294 return SNDRV_PCM_POS_XRUN
;
1296 len
= had_process_ringbuf(substream
, intelhaddata
);
1298 return SNDRV_PCM_POS_XRUN
;
1299 len
= bytes_to_frames(substream
->runtime
, len
);
1300 /* wrapping may happen when periods=1 */
1301 len
%= substream
->runtime
->buffer_size
;
1306 * ALSA PCM mmap callback
1308 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1309 struct vm_area_struct
*vma
)
1311 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1312 return remap_pfn_range(vma
, vma
->vm_start
,
1313 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1314 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1320 static const struct snd_pcm_ops had_pcm_ops
= {
1321 .open
= had_pcm_open
,
1322 .close
= had_pcm_close
,
1323 .ioctl
= snd_pcm_lib_ioctl
,
1324 .hw_params
= had_pcm_hw_params
,
1325 .hw_free
= had_pcm_hw_free
,
1326 .prepare
= had_pcm_prepare
,
1327 .trigger
= had_pcm_trigger
,
1328 .pointer
= had_pcm_pointer
,
1329 .mmap
= had_pcm_mmap
,
1332 /* process mode change of the running stream; called in mutex */
1333 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1335 struct snd_pcm_substream
*substream
;
1337 u32 disp_samp_freq
, n_param
;
1340 substream
= had_substream_get(intelhaddata
);
1345 had_enable_audio(intelhaddata
, false);
1347 /* Update CTS value */
1348 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1350 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1352 dev_err(intelhaddata
->dev
,
1353 "programming N value failed %#x\n", retval
);
1357 if (intelhaddata
->dp_output
)
1358 link_rate
= intelhaddata
->link_rate
;
1360 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1361 n_param
, intelhaddata
);
1364 had_enable_audio(intelhaddata
, true);
1367 had_substream_put(intelhaddata
);
1371 /* process hot plug, called from wq with mutex locked */
1372 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1374 struct snd_pcm_substream
*substream
;
1376 spin_lock_irq(&intelhaddata
->had_spinlock
);
1377 if (intelhaddata
->connected
) {
1378 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1379 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1384 had_enable_audio(intelhaddata
, false);
1386 intelhaddata
->connected
= true;
1387 dev_dbg(intelhaddata
->dev
,
1388 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1389 __func__
, __LINE__
);
1390 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1392 had_build_channel_allocation_map(intelhaddata
);
1394 /* Report to above ALSA layer */
1395 substream
= had_substream_get(intelhaddata
);
1397 snd_pcm_stop_xrun(substream
);
1398 had_substream_put(intelhaddata
);
1401 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1404 /* process hot unplug, called from wq with mutex locked */
1405 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1407 struct snd_pcm_substream
*substream
;
1409 spin_lock_irq(&intelhaddata
->had_spinlock
);
1410 if (!intelhaddata
->connected
) {
1411 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1412 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1418 had_enable_audio(intelhaddata
, false);
1420 intelhaddata
->connected
= false;
1421 dev_dbg(intelhaddata
->dev
,
1422 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1423 __func__
, __LINE__
);
1424 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1426 kfree(intelhaddata
->chmap
->chmap
);
1427 intelhaddata
->chmap
->chmap
= NULL
;
1429 /* Report to above ALSA layer */
1430 substream
= had_substream_get(intelhaddata
);
1432 snd_pcm_stop_xrun(substream
);
1433 had_substream_put(intelhaddata
);
1436 snd_jack_report(intelhaddata
->jack
, 0);
1440 * ALSA iec958 and ELD controls
1443 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1444 struct snd_ctl_elem_info
*uinfo
)
1446 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1451 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1452 struct snd_ctl_elem_value
*ucontrol
)
1454 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1456 mutex_lock(&intelhaddata
->mutex
);
1457 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1458 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1459 ucontrol
->value
.iec958
.status
[2] =
1460 (intelhaddata
->aes_bits
>> 16) & 0xff;
1461 ucontrol
->value
.iec958
.status
[3] =
1462 (intelhaddata
->aes_bits
>> 24) & 0xff;
1463 mutex_unlock(&intelhaddata
->mutex
);
1467 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1468 struct snd_ctl_elem_value
*ucontrol
)
1470 ucontrol
->value
.iec958
.status
[0] = 0xff;
1471 ucontrol
->value
.iec958
.status
[1] = 0xff;
1472 ucontrol
->value
.iec958
.status
[2] = 0xff;
1473 ucontrol
->value
.iec958
.status
[3] = 0xff;
1477 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1478 struct snd_ctl_elem_value
*ucontrol
)
1481 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1484 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1485 (ucontrol
->value
.iec958
.status
[1] << 8) |
1486 (ucontrol
->value
.iec958
.status
[2] << 16) |
1487 (ucontrol
->value
.iec958
.status
[3] << 24);
1488 mutex_lock(&intelhaddata
->mutex
);
1489 if (intelhaddata
->aes_bits
!= val
) {
1490 intelhaddata
->aes_bits
= val
;
1493 mutex_unlock(&intelhaddata
->mutex
);
1497 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1498 struct snd_ctl_elem_info
*uinfo
)
1500 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1501 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1505 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1506 struct snd_ctl_elem_value
*ucontrol
)
1508 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1510 mutex_lock(&intelhaddata
->mutex
);
1511 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1512 HDMI_MAX_ELD_BYTES
);
1513 mutex_unlock(&intelhaddata
->mutex
);
1517 static const struct snd_kcontrol_new had_controls
[] = {
1519 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1520 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1521 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1522 .info
= had_iec958_info
, /* shared */
1523 .get
= had_iec958_mask_get
,
1526 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1527 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1528 .info
= had_iec958_info
,
1529 .get
= had_iec958_get
,
1530 .put
= had_iec958_put
,
1533 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1534 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1535 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1537 .info
= had_ctl_eld_info
,
1538 .get
= had_ctl_eld_get
,
1543 * audio interrupt handler
1545 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1547 struct snd_intelhad_card
*card_ctx
= dev_id
;
1548 u32 audio_stat
[3] = {};
1551 for_each_pipe(card_ctx
, pipe
) {
1552 /* use raw register access to ack IRQs even while disconnected */
1553 audio_stat
[pipe
] = had_read_register_raw(card_ctx
, pipe
,
1555 (HDMI_AUDIO_UNDERRUN
| HDMI_AUDIO_BUFFER_DONE
);
1557 if (audio_stat
[pipe
])
1558 had_write_register_raw(card_ctx
, pipe
,
1559 AUD_HDMI_STATUS
, audio_stat
[pipe
]);
1562 for_each_port(card_ctx
, port
) {
1563 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1564 int pipe
= ctx
->pipe
;
1569 if (audio_stat
[pipe
] & HDMI_AUDIO_BUFFER_DONE
)
1570 had_process_buffer_done(ctx
);
1571 if (audio_stat
[pipe
] & HDMI_AUDIO_UNDERRUN
)
1572 had_process_buffer_underrun(ctx
);
1579 * monitor plug/unplug notification from i915; just kick off the work
1581 static void notify_audio_lpe(struct platform_device
*pdev
, int port
)
1583 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1584 struct snd_intelhad
*ctx
;
1586 ctx
= &card_ctx
->pcm_ctx
[single_port
? 0 : port
];
1590 schedule_work(&ctx
->hdmi_audio_wq
);
1593 /* the work to handle monitor hot plug/unplug */
1594 static void had_audio_wq(struct work_struct
*work
)
1596 struct snd_intelhad
*ctx
=
1597 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1598 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1599 struct intel_hdmi_lpe_audio_port_pdata
*ppdata
= &pdata
->port
[ctx
->port
];
1601 pm_runtime_get_sync(ctx
->dev
);
1602 mutex_lock(&ctx
->mutex
);
1603 if (ppdata
->pipe
< 0) {
1604 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1605 __func__
, ctx
->port
);
1607 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1609 ctx
->dp_output
= false;
1610 ctx
->tmds_clock_speed
= 0;
1613 /* Shut down the stream */
1614 had_process_hot_unplug(ctx
);
1618 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1619 __func__
, ctx
->port
, ppdata
->ls_clock
);
1621 memcpy(ctx
->eld
, ppdata
->eld
, sizeof(ctx
->eld
));
1623 ctx
->dp_output
= ppdata
->dp_output
;
1624 if (ctx
->dp_output
) {
1625 ctx
->tmds_clock_speed
= 0;
1626 ctx
->link_rate
= ppdata
->ls_clock
;
1628 ctx
->tmds_clock_speed
= ppdata
->ls_clock
;
1633 * Shut down the stream before we change
1634 * the pipe assignment for this pcm device
1636 had_process_hot_plug(ctx
);
1638 ctx
->pipe
= ppdata
->pipe
;
1640 /* Restart the stream if necessary */
1641 had_process_mode_change(ctx
);
1644 mutex_unlock(&ctx
->mutex
);
1645 pm_runtime_mark_last_busy(ctx
->dev
);
1646 pm_runtime_put_autosuspend(ctx
->dev
);
1652 static int had_create_jack(struct snd_intelhad
*ctx
,
1653 struct snd_pcm
*pcm
)
1658 snprintf(hdmi_str
, sizeof(hdmi_str
),
1659 "HDMI/DP,pcm=%d", pcm
->device
);
1661 err
= snd_jack_new(ctx
->card_ctx
->card
, hdmi_str
,
1662 SND_JACK_AVOUT
, &ctx
->jack
,
1666 ctx
->jack
->private_data
= ctx
;
1674 static int hdmi_lpe_audio_runtime_suspend(struct device
*dev
)
1676 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1679 for_each_port(card_ctx
, port
) {
1680 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1681 struct snd_pcm_substream
*substream
;
1683 substream
= had_substream_get(ctx
);
1685 snd_pcm_suspend(substream
);
1686 had_substream_put(ctx
);
1693 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1695 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1698 err
= hdmi_lpe_audio_runtime_suspend(dev
);
1700 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1704 static int hdmi_lpe_audio_runtime_resume(struct device
*dev
)
1706 pm_runtime_mark_last_busy(dev
);
1710 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1712 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1714 hdmi_lpe_audio_runtime_resume(dev
);
1715 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D0
);
1719 /* release resources */
1720 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1722 struct snd_intelhad_card
*card_ctx
= card
->private_data
;
1723 struct intel_hdmi_lpe_audio_pdata
*pdata
= card_ctx
->dev
->platform_data
;
1726 spin_lock_irq(&pdata
->lpe_audio_slock
);
1727 pdata
->notify_audio_lpe
= NULL
;
1728 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1730 for_each_port(card_ctx
, port
) {
1731 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1733 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1736 if (card_ctx
->mmio_start
)
1737 iounmap(card_ctx
->mmio_start
);
1738 if (card_ctx
->irq
>= 0)
1739 free_irq(card_ctx
->irq
, card_ctx
);
1743 * hdmi_lpe_audio_probe - start bridge with i915
1745 * This function is called when the i915 driver creates the
1746 * hdmi-lpe-audio platform device.
1748 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1750 struct snd_card
*card
;
1751 struct snd_intelhad_card
*card_ctx
;
1752 struct snd_intelhad
*ctx
;
1753 struct snd_pcm
*pcm
;
1754 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1756 struct resource
*res_mmio
;
1759 pdata
= pdev
->dev
.platform_data
;
1761 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1766 irq
= platform_get_irq(pdev
, 0);
1768 dev_err(&pdev
->dev
, "Could not get irq resource: %d\n", irq
);
1772 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1774 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1778 /* create a card instance with ALSA framework */
1779 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1780 THIS_MODULE
, sizeof(*card_ctx
), &card
);
1784 card_ctx
= card
->private_data
;
1785 card_ctx
->dev
= &pdev
->dev
;
1786 card_ctx
->card
= card
;
1787 strcpy(card
->driver
, INTEL_HAD
);
1788 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1789 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1793 card
->private_free
= hdmi_lpe_audio_free
;
1795 platform_set_drvdata(pdev
, card_ctx
);
1797 card_ctx
->num_pipes
= pdata
->num_pipes
;
1798 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1800 for_each_port(card_ctx
, port
) {
1801 ctx
= &card_ctx
->pcm_ctx
[port
];
1802 ctx
->card_ctx
= card_ctx
;
1803 ctx
->dev
= card_ctx
->dev
;
1804 ctx
->port
= single_port
? -1 : port
;
1807 spin_lock_init(&ctx
->had_spinlock
);
1808 mutex_init(&ctx
->mutex
);
1809 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1812 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1813 __func__
, (unsigned int)res_mmio
->start
,
1814 (unsigned int)res_mmio
->end
);
1816 card_ctx
->mmio_start
= ioremap_nocache(res_mmio
->start
,
1817 (size_t)(resource_size(res_mmio
)));
1818 if (!card_ctx
->mmio_start
) {
1819 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1824 /* setup interrupt handler */
1825 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1826 pdev
->name
, card_ctx
);
1828 dev_err(&pdev
->dev
, "request_irq failed\n");
1832 card_ctx
->irq
= irq
;
1834 /* only 32bit addressable */
1835 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1836 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1838 init_channel_allocations();
1840 card_ctx
->num_pipes
= pdata
->num_pipes
;
1841 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1843 for_each_port(card_ctx
, port
) {
1846 ctx
= &card_ctx
->pcm_ctx
[port
];
1847 ret
= snd_pcm_new(card
, INTEL_HAD
, port
, MAX_PB_STREAMS
,
1848 MAX_CAP_STREAMS
, &pcm
);
1852 /* setup private data which can be retrieved when required */
1853 pcm
->private_data
= ctx
;
1854 pcm
->info_flags
= 0;
1855 strlcpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1856 /* setup the ops for playabck */
1857 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1859 /* allocate dma pages;
1860 * try to allocate 600k buffer as default which is large enough
1862 snd_pcm_lib_preallocate_pages_for_all(pcm
,
1863 SNDRV_DMA_TYPE_DEV
, NULL
,
1864 HAD_DEFAULT_BUFFER
, HAD_MAX_BUFFER
);
1866 /* create controls */
1867 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1868 struct snd_kcontrol
*kctl
;
1870 kctl
= snd_ctl_new1(&had_controls
[i
], ctx
);
1876 kctl
->id
.device
= pcm
->device
;
1878 ret
= snd_ctl_add(card
, kctl
);
1883 /* Register channel map controls */
1884 ret
= had_register_chmap_ctls(ctx
, pcm
);
1888 ret
= had_create_jack(ctx
, pcm
);
1893 ret
= snd_card_register(card
);
1897 spin_lock_irq(&pdata
->lpe_audio_slock
);
1898 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1899 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1901 pm_runtime_use_autosuspend(&pdev
->dev
);
1902 pm_runtime_mark_last_busy(&pdev
->dev
);
1904 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1905 for_each_port(card_ctx
, port
) {
1906 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1908 schedule_work(&ctx
->hdmi_audio_wq
);
1914 snd_card_free(card
);
1919 * hdmi_lpe_audio_remove - stop bridge with i915
1921 * This function is called when the platform device is destroyed.
1923 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1925 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1927 snd_card_free(card_ctx
->card
);
1931 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1932 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1933 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend
,
1934 hdmi_lpe_audio_runtime_resume
, NULL
)
1937 static struct platform_driver hdmi_lpe_audio_driver
= {
1939 .name
= "hdmi-lpe-audio",
1940 .pm
= &hdmi_lpe_audio_pm
,
1942 .probe
= hdmi_lpe_audio_probe
,
1943 .remove
= hdmi_lpe_audio_remove
,
1946 module_platform_driver(hdmi_lpe_audio_driver
);
1947 MODULE_ALIAS("platform:hdmi_lpe_audio");
1949 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1950 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1951 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1952 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1953 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1954 MODULE_LICENSE("GPL v2");
1955 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");