net: Clone skb before setting peeked flag
[linux/fpc-iii.git] / mm / page_alloc.c
blob18490f3bd7f1f0fcbfd0bf8fb5d90fd0597f11ca
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
92 * Array of node states.
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
108 EXPORT_SYMBOL(node_states);
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
122 unsigned long dirty_balance_reserve __read_mostly;
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 #ifdef CONFIG_PM_SLEEP
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
137 static gfp_t saved_gfp_mask;
139 void pm_restore_gfp_mask(void)
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
148 void pm_restrict_gfp_mask(void)
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
156 bool pm_suspended_storage(void)
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
162 #endif /* CONFIG_PM_SLEEP */
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
168 static void __free_pages_ok(struct page *page, unsigned int order);
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
190 #endif
194 EXPORT_SYMBOL(totalram_pages);
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
236 int page_group_by_mobility_disabled __read_mostly;
238 void set_pageblock_migratetype(struct page *page, int migratetype)
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
269 return ret;
272 static int page_is_consistent(struct zone *zone, struct page *page)
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
279 return 1;
282 * Temporary debugging check for pages not lying within a given zone.
284 static int bad_range(struct zone *zone, struct page *page)
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
291 return 0;
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
296 return 0;
298 #endif
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
328 nr_shown = 0;
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
346 * Higher-order pages are called "compound pages". They are structured thusly:
348 * The first PAGE_SIZE page is called the "head page".
350 * The remaining PAGE_SIZE pages are called "tail pages".
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
360 static void free_compound_page(struct page *page)
362 __free_pages_ok(page, compound_order(page));
365 void prep_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
386 int i;
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
402 static int __init early_debug_pagealloc(char *buf)
404 if (!buf)
405 return -EINVAL;
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
410 return 0;
412 early_param("debug_pagealloc", early_debug_pagealloc);
414 static bool need_debug_guardpage(void)
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
420 return true;
423 static void init_debug_guardpage(void)
425 if (!debug_pagealloc_enabled())
426 return;
428 _debug_guardpage_enabled = true;
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
436 static int __init debug_guardpage_minorder_setup(char *buf)
438 unsigned long res;
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
453 struct page_ext *page_ext;
455 if (!debug_guardpage_enabled())
456 return;
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
470 struct page_ext *page_ext;
472 if (!debug_guardpage_enabled())
473 return;
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
490 static inline void set_page_order(struct page *page, unsigned int order)
492 set_page_private(page, order);
493 __SetPageBuddy(page);
496 static inline void rmv_page_order(struct page *page)
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
515 * For recording page's order, we use page_private(page).
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
529 return 1;
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
543 return 1;
545 return 0;
549 * Freeing function for a buddy system allocator.
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
570 * -- nyc
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
600 page_idx = pfn & ((1 << max_order) - 1);
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
626 set_page_order(page, order);
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
654 static inline int free_pages_check(struct page *page)
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
729 do {
730 int mt; /* migratetype of the to-be-freed page */
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
744 spin_unlock(&zone->lock);
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
778 return 0;
781 static bool free_pages_prepare(struct page *page, unsigned int order)
783 bool compound = PageCompound(page);
784 int i, bad = 0;
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
801 if (bad)
802 return false;
804 reset_page_owner(page, order);
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
815 return true;
818 static void __free_pages_ok(struct page *page, unsigned int order)
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
824 if (!free_pages_prepare(page, order))
825 return;
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
867 set_pageblock_migratetype(page, MIGRATE_CMA);
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
882 adjust_managed_page_count(page, pageblock_nr_pages);
884 #endif
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
898 * -- nyc
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
904 unsigned long size = 1 << high;
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
931 * This page is about to be returned from the page allocator
933 static inline int check_new_page(struct page *page)
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
956 return 0;
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
962 int i;
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
970 set_page_private(page, 0);
971 set_page_refcounted(page);
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
983 set_page_owner(page, order, gfp_flags);
986 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
991 if (alloc_flags & ALLOC_NO_WATERMARKS)
992 set_page_pfmemalloc(page);
993 else
994 clear_page_pfmemalloc(page);
996 return 0;
1000 * Go through the free lists for the given migratetype and remove
1001 * the smallest available page from the freelists
1003 static inline
1004 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1005 int migratetype)
1007 unsigned int current_order;
1008 struct free_area *area;
1009 struct page *page;
1011 /* Find a page of the appropriate size in the preferred list */
1012 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1013 area = &(zone->free_area[current_order]);
1014 if (list_empty(&area->free_list[migratetype]))
1015 continue;
1017 page = list_entry(area->free_list[migratetype].next,
1018 struct page, lru);
1019 list_del(&page->lru);
1020 rmv_page_order(page);
1021 area->nr_free--;
1022 expand(zone, page, order, current_order, area, migratetype);
1023 set_freepage_migratetype(page, migratetype);
1024 return page;
1027 return NULL;
1032 * This array describes the order lists are fallen back to when
1033 * the free lists for the desirable migrate type are depleted
1035 static int fallbacks[MIGRATE_TYPES][4] = {
1036 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1038 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1039 #ifdef CONFIG_CMA
1040 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1041 #endif
1042 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1043 #ifdef CONFIG_MEMORY_ISOLATION
1044 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1045 #endif
1048 #ifdef CONFIG_CMA
1049 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1050 unsigned int order)
1052 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1054 #else
1055 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1056 unsigned int order) { return NULL; }
1057 #endif
1060 * Move the free pages in a range to the free lists of the requested type.
1061 * Note that start_page and end_pages are not aligned on a pageblock
1062 * boundary. If alignment is required, use move_freepages_block()
1064 int move_freepages(struct zone *zone,
1065 struct page *start_page, struct page *end_page,
1066 int migratetype)
1068 struct page *page;
1069 unsigned long order;
1070 int pages_moved = 0;
1072 #ifndef CONFIG_HOLES_IN_ZONE
1074 * page_zone is not safe to call in this context when
1075 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1076 * anyway as we check zone boundaries in move_freepages_block().
1077 * Remove at a later date when no bug reports exist related to
1078 * grouping pages by mobility
1080 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1081 #endif
1083 for (page = start_page; page <= end_page;) {
1084 /* Make sure we are not inadvertently changing nodes */
1085 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1087 if (!pfn_valid_within(page_to_pfn(page))) {
1088 page++;
1089 continue;
1092 if (!PageBuddy(page)) {
1093 page++;
1094 continue;
1097 order = page_order(page);
1098 list_move(&page->lru,
1099 &zone->free_area[order].free_list[migratetype]);
1100 set_freepage_migratetype(page, migratetype);
1101 page += 1 << order;
1102 pages_moved += 1 << order;
1105 return pages_moved;
1108 int move_freepages_block(struct zone *zone, struct page *page,
1109 int migratetype)
1111 unsigned long start_pfn, end_pfn;
1112 struct page *start_page, *end_page;
1114 start_pfn = page_to_pfn(page);
1115 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1116 start_page = pfn_to_page(start_pfn);
1117 end_page = start_page + pageblock_nr_pages - 1;
1118 end_pfn = start_pfn + pageblock_nr_pages - 1;
1120 /* Do not cross zone boundaries */
1121 if (!zone_spans_pfn(zone, start_pfn))
1122 start_page = page;
1123 if (!zone_spans_pfn(zone, end_pfn))
1124 return 0;
1126 return move_freepages(zone, start_page, end_page, migratetype);
1129 static void change_pageblock_range(struct page *pageblock_page,
1130 int start_order, int migratetype)
1132 int nr_pageblocks = 1 << (start_order - pageblock_order);
1134 while (nr_pageblocks--) {
1135 set_pageblock_migratetype(pageblock_page, migratetype);
1136 pageblock_page += pageblock_nr_pages;
1141 * When we are falling back to another migratetype during allocation, try to
1142 * steal extra free pages from the same pageblocks to satisfy further
1143 * allocations, instead of polluting multiple pageblocks.
1145 * If we are stealing a relatively large buddy page, it is likely there will
1146 * be more free pages in the pageblock, so try to steal them all. For
1147 * reclaimable and unmovable allocations, we steal regardless of page size,
1148 * as fragmentation caused by those allocations polluting movable pageblocks
1149 * is worse than movable allocations stealing from unmovable and reclaimable
1150 * pageblocks.
1152 static bool can_steal_fallback(unsigned int order, int start_mt)
1155 * Leaving this order check is intended, although there is
1156 * relaxed order check in next check. The reason is that
1157 * we can actually steal whole pageblock if this condition met,
1158 * but, below check doesn't guarantee it and that is just heuristic
1159 * so could be changed anytime.
1161 if (order >= pageblock_order)
1162 return true;
1164 if (order >= pageblock_order / 2 ||
1165 start_mt == MIGRATE_RECLAIMABLE ||
1166 start_mt == MIGRATE_UNMOVABLE ||
1167 page_group_by_mobility_disabled)
1168 return true;
1170 return false;
1174 * This function implements actual steal behaviour. If order is large enough,
1175 * we can steal whole pageblock. If not, we first move freepages in this
1176 * pageblock and check whether half of pages are moved or not. If half of
1177 * pages are moved, we can change migratetype of pageblock and permanently
1178 * use it's pages as requested migratetype in the future.
1180 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1181 int start_type)
1183 int current_order = page_order(page);
1184 int pages;
1186 /* Take ownership for orders >= pageblock_order */
1187 if (current_order >= pageblock_order) {
1188 change_pageblock_range(page, current_order, start_type);
1189 return;
1192 pages = move_freepages_block(zone, page, start_type);
1194 /* Claim the whole block if over half of it is free */
1195 if (pages >= (1 << (pageblock_order-1)) ||
1196 page_group_by_mobility_disabled)
1197 set_pageblock_migratetype(page, start_type);
1201 * Check whether there is a suitable fallback freepage with requested order.
1202 * If only_stealable is true, this function returns fallback_mt only if
1203 * we can steal other freepages all together. This would help to reduce
1204 * fragmentation due to mixed migratetype pages in one pageblock.
1206 int find_suitable_fallback(struct free_area *area, unsigned int order,
1207 int migratetype, bool only_stealable, bool *can_steal)
1209 int i;
1210 int fallback_mt;
1212 if (area->nr_free == 0)
1213 return -1;
1215 *can_steal = false;
1216 for (i = 0;; i++) {
1217 fallback_mt = fallbacks[migratetype][i];
1218 if (fallback_mt == MIGRATE_RESERVE)
1219 break;
1221 if (list_empty(&area->free_list[fallback_mt]))
1222 continue;
1224 if (can_steal_fallback(order, migratetype))
1225 *can_steal = true;
1227 if (!only_stealable)
1228 return fallback_mt;
1230 if (*can_steal)
1231 return fallback_mt;
1234 return -1;
1237 /* Remove an element from the buddy allocator from the fallback list */
1238 static inline struct page *
1239 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1241 struct free_area *area;
1242 unsigned int current_order;
1243 struct page *page;
1244 int fallback_mt;
1245 bool can_steal;
1247 /* Find the largest possible block of pages in the other list */
1248 for (current_order = MAX_ORDER-1;
1249 current_order >= order && current_order <= MAX_ORDER-1;
1250 --current_order) {
1251 area = &(zone->free_area[current_order]);
1252 fallback_mt = find_suitable_fallback(area, current_order,
1253 start_migratetype, false, &can_steal);
1254 if (fallback_mt == -1)
1255 continue;
1257 page = list_entry(area->free_list[fallback_mt].next,
1258 struct page, lru);
1259 if (can_steal)
1260 steal_suitable_fallback(zone, page, start_migratetype);
1262 /* Remove the page from the freelists */
1263 area->nr_free--;
1264 list_del(&page->lru);
1265 rmv_page_order(page);
1267 expand(zone, page, order, current_order, area,
1268 start_migratetype);
1270 * The freepage_migratetype may differ from pageblock's
1271 * migratetype depending on the decisions in
1272 * try_to_steal_freepages(). This is OK as long as it
1273 * does not differ for MIGRATE_CMA pageblocks. For CMA
1274 * we need to make sure unallocated pages flushed from
1275 * pcp lists are returned to the correct freelist.
1277 set_freepage_migratetype(page, start_migratetype);
1279 trace_mm_page_alloc_extfrag(page, order, current_order,
1280 start_migratetype, fallback_mt);
1282 return page;
1285 return NULL;
1289 * Do the hard work of removing an element from the buddy allocator.
1290 * Call me with the zone->lock already held.
1292 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1293 int migratetype)
1295 struct page *page;
1297 retry_reserve:
1298 page = __rmqueue_smallest(zone, order, migratetype);
1300 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1301 if (migratetype == MIGRATE_MOVABLE)
1302 page = __rmqueue_cma_fallback(zone, order);
1304 if (!page)
1305 page = __rmqueue_fallback(zone, order, migratetype);
1308 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1309 * is used because __rmqueue_smallest is an inline function
1310 * and we want just one call site
1312 if (!page) {
1313 migratetype = MIGRATE_RESERVE;
1314 goto retry_reserve;
1318 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1319 return page;
1323 * Obtain a specified number of elements from the buddy allocator, all under
1324 * a single hold of the lock, for efficiency. Add them to the supplied list.
1325 * Returns the number of new pages which were placed at *list.
1327 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1328 unsigned long count, struct list_head *list,
1329 int migratetype, bool cold)
1331 int i;
1333 spin_lock(&zone->lock);
1334 for (i = 0; i < count; ++i) {
1335 struct page *page = __rmqueue(zone, order, migratetype);
1336 if (unlikely(page == NULL))
1337 break;
1340 * Split buddy pages returned by expand() are received here
1341 * in physical page order. The page is added to the callers and
1342 * list and the list head then moves forward. From the callers
1343 * perspective, the linked list is ordered by page number in
1344 * some conditions. This is useful for IO devices that can
1345 * merge IO requests if the physical pages are ordered
1346 * properly.
1348 if (likely(!cold))
1349 list_add(&page->lru, list);
1350 else
1351 list_add_tail(&page->lru, list);
1352 list = &page->lru;
1353 if (is_migrate_cma(get_freepage_migratetype(page)))
1354 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1355 -(1 << order));
1357 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1358 spin_unlock(&zone->lock);
1359 return i;
1362 #ifdef CONFIG_NUMA
1364 * Called from the vmstat counter updater to drain pagesets of this
1365 * currently executing processor on remote nodes after they have
1366 * expired.
1368 * Note that this function must be called with the thread pinned to
1369 * a single processor.
1371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1373 unsigned long flags;
1374 int to_drain, batch;
1376 local_irq_save(flags);
1377 batch = READ_ONCE(pcp->batch);
1378 to_drain = min(pcp->count, batch);
1379 if (to_drain > 0) {
1380 free_pcppages_bulk(zone, to_drain, pcp);
1381 pcp->count -= to_drain;
1383 local_irq_restore(flags);
1385 #endif
1388 * Drain pcplists of the indicated processor and zone.
1390 * The processor must either be the current processor and the
1391 * thread pinned to the current processor or a processor that
1392 * is not online.
1394 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1396 unsigned long flags;
1397 struct per_cpu_pageset *pset;
1398 struct per_cpu_pages *pcp;
1400 local_irq_save(flags);
1401 pset = per_cpu_ptr(zone->pageset, cpu);
1403 pcp = &pset->pcp;
1404 if (pcp->count) {
1405 free_pcppages_bulk(zone, pcp->count, pcp);
1406 pcp->count = 0;
1408 local_irq_restore(flags);
1412 * Drain pcplists of all zones on the indicated processor.
1414 * The processor must either be the current processor and the
1415 * thread pinned to the current processor or a processor that
1416 * is not online.
1418 static void drain_pages(unsigned int cpu)
1420 struct zone *zone;
1422 for_each_populated_zone(zone) {
1423 drain_pages_zone(cpu, zone);
1428 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1430 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1431 * the single zone's pages.
1433 void drain_local_pages(struct zone *zone)
1435 int cpu = smp_processor_id();
1437 if (zone)
1438 drain_pages_zone(cpu, zone);
1439 else
1440 drain_pages(cpu);
1444 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1446 * When zone parameter is non-NULL, spill just the single zone's pages.
1448 * Note that this code is protected against sending an IPI to an offline
1449 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1450 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1451 * nothing keeps CPUs from showing up after we populated the cpumask and
1452 * before the call to on_each_cpu_mask().
1454 void drain_all_pages(struct zone *zone)
1456 int cpu;
1459 * Allocate in the BSS so we wont require allocation in
1460 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1462 static cpumask_t cpus_with_pcps;
1465 * We don't care about racing with CPU hotplug event
1466 * as offline notification will cause the notified
1467 * cpu to drain that CPU pcps and on_each_cpu_mask
1468 * disables preemption as part of its processing
1470 for_each_online_cpu(cpu) {
1471 struct per_cpu_pageset *pcp;
1472 struct zone *z;
1473 bool has_pcps = false;
1475 if (zone) {
1476 pcp = per_cpu_ptr(zone->pageset, cpu);
1477 if (pcp->pcp.count)
1478 has_pcps = true;
1479 } else {
1480 for_each_populated_zone(z) {
1481 pcp = per_cpu_ptr(z->pageset, cpu);
1482 if (pcp->pcp.count) {
1483 has_pcps = true;
1484 break;
1489 if (has_pcps)
1490 cpumask_set_cpu(cpu, &cpus_with_pcps);
1491 else
1492 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1494 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1495 zone, 1);
1498 #ifdef CONFIG_HIBERNATION
1500 void mark_free_pages(struct zone *zone)
1502 unsigned long pfn, max_zone_pfn;
1503 unsigned long flags;
1504 unsigned int order, t;
1505 struct list_head *curr;
1507 if (zone_is_empty(zone))
1508 return;
1510 spin_lock_irqsave(&zone->lock, flags);
1512 max_zone_pfn = zone_end_pfn(zone);
1513 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1514 if (pfn_valid(pfn)) {
1515 struct page *page = pfn_to_page(pfn);
1517 if (!swsusp_page_is_forbidden(page))
1518 swsusp_unset_page_free(page);
1521 for_each_migratetype_order(order, t) {
1522 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1523 unsigned long i;
1525 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1526 for (i = 0; i < (1UL << order); i++)
1527 swsusp_set_page_free(pfn_to_page(pfn + i));
1530 spin_unlock_irqrestore(&zone->lock, flags);
1532 #endif /* CONFIG_PM */
1535 * Free a 0-order page
1536 * cold == true ? free a cold page : free a hot page
1538 void free_hot_cold_page(struct page *page, bool cold)
1540 struct zone *zone = page_zone(page);
1541 struct per_cpu_pages *pcp;
1542 unsigned long flags;
1543 unsigned long pfn = page_to_pfn(page);
1544 int migratetype;
1546 if (!free_pages_prepare(page, 0))
1547 return;
1549 migratetype = get_pfnblock_migratetype(page, pfn);
1550 set_freepage_migratetype(page, migratetype);
1551 local_irq_save(flags);
1552 __count_vm_event(PGFREE);
1555 * We only track unmovable, reclaimable and movable on pcp lists.
1556 * Free ISOLATE pages back to the allocator because they are being
1557 * offlined but treat RESERVE as movable pages so we can get those
1558 * areas back if necessary. Otherwise, we may have to free
1559 * excessively into the page allocator
1561 if (migratetype >= MIGRATE_PCPTYPES) {
1562 if (unlikely(is_migrate_isolate(migratetype))) {
1563 free_one_page(zone, page, pfn, 0, migratetype);
1564 goto out;
1566 migratetype = MIGRATE_MOVABLE;
1569 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1570 if (!cold)
1571 list_add(&page->lru, &pcp->lists[migratetype]);
1572 else
1573 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1574 pcp->count++;
1575 if (pcp->count >= pcp->high) {
1576 unsigned long batch = READ_ONCE(pcp->batch);
1577 free_pcppages_bulk(zone, batch, pcp);
1578 pcp->count -= batch;
1581 out:
1582 local_irq_restore(flags);
1586 * Free a list of 0-order pages
1588 void free_hot_cold_page_list(struct list_head *list, bool cold)
1590 struct page *page, *next;
1592 list_for_each_entry_safe(page, next, list, lru) {
1593 trace_mm_page_free_batched(page, cold);
1594 free_hot_cold_page(page, cold);
1599 * split_page takes a non-compound higher-order page, and splits it into
1600 * n (1<<order) sub-pages: page[0..n]
1601 * Each sub-page must be freed individually.
1603 * Note: this is probably too low level an operation for use in drivers.
1604 * Please consult with lkml before using this in your driver.
1606 void split_page(struct page *page, unsigned int order)
1608 int i;
1610 VM_BUG_ON_PAGE(PageCompound(page), page);
1611 VM_BUG_ON_PAGE(!page_count(page), page);
1613 #ifdef CONFIG_KMEMCHECK
1615 * Split shadow pages too, because free(page[0]) would
1616 * otherwise free the whole shadow.
1618 if (kmemcheck_page_is_tracked(page))
1619 split_page(virt_to_page(page[0].shadow), order);
1620 #endif
1622 set_page_owner(page, 0, 0);
1623 for (i = 1; i < (1 << order); i++) {
1624 set_page_refcounted(page + i);
1625 set_page_owner(page + i, 0, 0);
1628 EXPORT_SYMBOL_GPL(split_page);
1630 int __isolate_free_page(struct page *page, unsigned int order)
1632 unsigned long watermark;
1633 struct zone *zone;
1634 int mt;
1636 BUG_ON(!PageBuddy(page));
1638 zone = page_zone(page);
1639 mt = get_pageblock_migratetype(page);
1641 if (!is_migrate_isolate(mt)) {
1642 /* Obey watermarks as if the page was being allocated */
1643 watermark = low_wmark_pages(zone) + (1 << order);
1644 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1645 return 0;
1647 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1650 /* Remove page from free list */
1651 list_del(&page->lru);
1652 zone->free_area[order].nr_free--;
1653 rmv_page_order(page);
1655 /* Set the pageblock if the isolated page is at least a pageblock */
1656 if (order >= pageblock_order - 1) {
1657 struct page *endpage = page + (1 << order) - 1;
1658 for (; page < endpage; page += pageblock_nr_pages) {
1659 int mt = get_pageblock_migratetype(page);
1660 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1661 set_pageblock_migratetype(page,
1662 MIGRATE_MOVABLE);
1666 set_page_owner(page, order, 0);
1667 return 1UL << order;
1671 * Similar to split_page except the page is already free. As this is only
1672 * being used for migration, the migratetype of the block also changes.
1673 * As this is called with interrupts disabled, the caller is responsible
1674 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1675 * are enabled.
1677 * Note: this is probably too low level an operation for use in drivers.
1678 * Please consult with lkml before using this in your driver.
1680 int split_free_page(struct page *page)
1682 unsigned int order;
1683 int nr_pages;
1685 order = page_order(page);
1687 nr_pages = __isolate_free_page(page, order);
1688 if (!nr_pages)
1689 return 0;
1691 /* Split into individual pages */
1692 set_page_refcounted(page);
1693 split_page(page, order);
1694 return nr_pages;
1698 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1700 static inline
1701 struct page *buffered_rmqueue(struct zone *preferred_zone,
1702 struct zone *zone, unsigned int order,
1703 gfp_t gfp_flags, int migratetype)
1705 unsigned long flags;
1706 struct page *page;
1707 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1709 if (likely(order == 0)) {
1710 struct per_cpu_pages *pcp;
1711 struct list_head *list;
1713 local_irq_save(flags);
1714 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1715 list = &pcp->lists[migratetype];
1716 if (list_empty(list)) {
1717 pcp->count += rmqueue_bulk(zone, 0,
1718 pcp->batch, list,
1719 migratetype, cold);
1720 if (unlikely(list_empty(list)))
1721 goto failed;
1724 if (cold)
1725 page = list_entry(list->prev, struct page, lru);
1726 else
1727 page = list_entry(list->next, struct page, lru);
1729 list_del(&page->lru);
1730 pcp->count--;
1731 } else {
1732 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1734 * __GFP_NOFAIL is not to be used in new code.
1736 * All __GFP_NOFAIL callers should be fixed so that they
1737 * properly detect and handle allocation failures.
1739 * We most definitely don't want callers attempting to
1740 * allocate greater than order-1 page units with
1741 * __GFP_NOFAIL.
1743 WARN_ON_ONCE(order > 1);
1745 spin_lock_irqsave(&zone->lock, flags);
1746 page = __rmqueue(zone, order, migratetype);
1747 spin_unlock(&zone->lock);
1748 if (!page)
1749 goto failed;
1750 __mod_zone_freepage_state(zone, -(1 << order),
1751 get_freepage_migratetype(page));
1754 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1755 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1756 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1757 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1759 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1760 zone_statistics(preferred_zone, zone, gfp_flags);
1761 local_irq_restore(flags);
1763 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1764 return page;
1766 failed:
1767 local_irq_restore(flags);
1768 return NULL;
1771 #ifdef CONFIG_FAIL_PAGE_ALLOC
1773 static struct {
1774 struct fault_attr attr;
1776 u32 ignore_gfp_highmem;
1777 u32 ignore_gfp_wait;
1778 u32 min_order;
1779 } fail_page_alloc = {
1780 .attr = FAULT_ATTR_INITIALIZER,
1781 .ignore_gfp_wait = 1,
1782 .ignore_gfp_highmem = 1,
1783 .min_order = 1,
1786 static int __init setup_fail_page_alloc(char *str)
1788 return setup_fault_attr(&fail_page_alloc.attr, str);
1790 __setup("fail_page_alloc=", setup_fail_page_alloc);
1792 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1794 if (order < fail_page_alloc.min_order)
1795 return false;
1796 if (gfp_mask & __GFP_NOFAIL)
1797 return false;
1798 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1799 return false;
1800 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1801 return false;
1803 return should_fail(&fail_page_alloc.attr, 1 << order);
1806 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1808 static int __init fail_page_alloc_debugfs(void)
1810 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1811 struct dentry *dir;
1813 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1814 &fail_page_alloc.attr);
1815 if (IS_ERR(dir))
1816 return PTR_ERR(dir);
1818 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1819 &fail_page_alloc.ignore_gfp_wait))
1820 goto fail;
1821 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1822 &fail_page_alloc.ignore_gfp_highmem))
1823 goto fail;
1824 if (!debugfs_create_u32("min-order", mode, dir,
1825 &fail_page_alloc.min_order))
1826 goto fail;
1828 return 0;
1829 fail:
1830 debugfs_remove_recursive(dir);
1832 return -ENOMEM;
1835 late_initcall(fail_page_alloc_debugfs);
1837 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1839 #else /* CONFIG_FAIL_PAGE_ALLOC */
1841 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1843 return false;
1846 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1849 * Return true if free pages are above 'mark'. This takes into account the order
1850 * of the allocation.
1852 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1853 unsigned long mark, int classzone_idx, int alloc_flags,
1854 long free_pages)
1856 /* free_pages may go negative - that's OK */
1857 long min = mark;
1858 int o;
1859 long free_cma = 0;
1861 free_pages -= (1 << order) - 1;
1862 if (alloc_flags & ALLOC_HIGH)
1863 min -= min / 2;
1864 if (alloc_flags & ALLOC_HARDER)
1865 min -= min / 4;
1866 #ifdef CONFIG_CMA
1867 /* If allocation can't use CMA areas don't use free CMA pages */
1868 if (!(alloc_flags & ALLOC_CMA))
1869 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1870 #endif
1872 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1873 return false;
1874 for (o = 0; o < order; o++) {
1875 /* At the next order, this order's pages become unavailable */
1876 free_pages -= z->free_area[o].nr_free << o;
1878 /* Require fewer higher order pages to be free */
1879 min >>= 1;
1881 if (free_pages <= min)
1882 return false;
1884 return true;
1887 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1888 int classzone_idx, int alloc_flags)
1890 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1891 zone_page_state(z, NR_FREE_PAGES));
1894 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1895 unsigned long mark, int classzone_idx, int alloc_flags)
1897 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1899 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1900 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1902 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1903 free_pages);
1906 #ifdef CONFIG_NUMA
1908 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1909 * skip over zones that are not allowed by the cpuset, or that have
1910 * been recently (in last second) found to be nearly full. See further
1911 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1912 * that have to skip over a lot of full or unallowed zones.
1914 * If the zonelist cache is present in the passed zonelist, then
1915 * returns a pointer to the allowed node mask (either the current
1916 * tasks mems_allowed, or node_states[N_MEMORY].)
1918 * If the zonelist cache is not available for this zonelist, does
1919 * nothing and returns NULL.
1921 * If the fullzones BITMAP in the zonelist cache is stale (more than
1922 * a second since last zap'd) then we zap it out (clear its bits.)
1924 * We hold off even calling zlc_setup, until after we've checked the
1925 * first zone in the zonelist, on the theory that most allocations will
1926 * be satisfied from that first zone, so best to examine that zone as
1927 * quickly as we can.
1929 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1931 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1932 nodemask_t *allowednodes; /* zonelist_cache approximation */
1934 zlc = zonelist->zlcache_ptr;
1935 if (!zlc)
1936 return NULL;
1938 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1939 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1940 zlc->last_full_zap = jiffies;
1943 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1944 &cpuset_current_mems_allowed :
1945 &node_states[N_MEMORY];
1946 return allowednodes;
1950 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1951 * if it is worth looking at further for free memory:
1952 * 1) Check that the zone isn't thought to be full (doesn't have its
1953 * bit set in the zonelist_cache fullzones BITMAP).
1954 * 2) Check that the zones node (obtained from the zonelist_cache
1955 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1956 * Return true (non-zero) if zone is worth looking at further, or
1957 * else return false (zero) if it is not.
1959 * This check -ignores- the distinction between various watermarks,
1960 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1961 * found to be full for any variation of these watermarks, it will
1962 * be considered full for up to one second by all requests, unless
1963 * we are so low on memory on all allowed nodes that we are forced
1964 * into the second scan of the zonelist.
1966 * In the second scan we ignore this zonelist cache and exactly
1967 * apply the watermarks to all zones, even it is slower to do so.
1968 * We are low on memory in the second scan, and should leave no stone
1969 * unturned looking for a free page.
1971 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1972 nodemask_t *allowednodes)
1974 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1975 int i; /* index of *z in zonelist zones */
1976 int n; /* node that zone *z is on */
1978 zlc = zonelist->zlcache_ptr;
1979 if (!zlc)
1980 return 1;
1982 i = z - zonelist->_zonerefs;
1983 n = zlc->z_to_n[i];
1985 /* This zone is worth trying if it is allowed but not full */
1986 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1990 * Given 'z' scanning a zonelist, set the corresponding bit in
1991 * zlc->fullzones, so that subsequent attempts to allocate a page
1992 * from that zone don't waste time re-examining it.
1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1996 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1997 int i; /* index of *z in zonelist zones */
1999 zlc = zonelist->zlcache_ptr;
2000 if (!zlc)
2001 return;
2003 i = z - zonelist->_zonerefs;
2005 set_bit(i, zlc->fullzones);
2009 * clear all zones full, called after direct reclaim makes progress so that
2010 * a zone that was recently full is not skipped over for up to a second
2012 static void zlc_clear_zones_full(struct zonelist *zonelist)
2014 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2016 zlc = zonelist->zlcache_ptr;
2017 if (!zlc)
2018 return;
2020 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2023 static bool zone_local(struct zone *local_zone, struct zone *zone)
2025 return local_zone->node == zone->node;
2028 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2030 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2031 RECLAIM_DISTANCE;
2034 #else /* CONFIG_NUMA */
2036 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2038 return NULL;
2041 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2042 nodemask_t *allowednodes)
2044 return 1;
2047 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2051 static void zlc_clear_zones_full(struct zonelist *zonelist)
2055 static bool zone_local(struct zone *local_zone, struct zone *zone)
2057 return true;
2060 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2062 return true;
2065 #endif /* CONFIG_NUMA */
2067 static void reset_alloc_batches(struct zone *preferred_zone)
2069 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2071 do {
2072 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2073 high_wmark_pages(zone) - low_wmark_pages(zone) -
2074 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2075 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2076 } while (zone++ != preferred_zone);
2080 * get_page_from_freelist goes through the zonelist trying to allocate
2081 * a page.
2083 static struct page *
2084 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2085 const struct alloc_context *ac)
2087 struct zonelist *zonelist = ac->zonelist;
2088 struct zoneref *z;
2089 struct page *page = NULL;
2090 struct zone *zone;
2091 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2092 int zlc_active = 0; /* set if using zonelist_cache */
2093 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2094 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2095 (gfp_mask & __GFP_WRITE);
2096 int nr_fair_skipped = 0;
2097 bool zonelist_rescan;
2099 zonelist_scan:
2100 zonelist_rescan = false;
2103 * Scan zonelist, looking for a zone with enough free.
2104 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2106 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2107 ac->nodemask) {
2108 unsigned long mark;
2110 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2111 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2112 continue;
2113 if (cpusets_enabled() &&
2114 (alloc_flags & ALLOC_CPUSET) &&
2115 !cpuset_zone_allowed(zone, gfp_mask))
2116 continue;
2118 * Distribute pages in proportion to the individual
2119 * zone size to ensure fair page aging. The zone a
2120 * page was allocated in should have no effect on the
2121 * time the page has in memory before being reclaimed.
2123 if (alloc_flags & ALLOC_FAIR) {
2124 if (!zone_local(ac->preferred_zone, zone))
2125 break;
2126 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2127 nr_fair_skipped++;
2128 continue;
2132 * When allocating a page cache page for writing, we
2133 * want to get it from a zone that is within its dirty
2134 * limit, such that no single zone holds more than its
2135 * proportional share of globally allowed dirty pages.
2136 * The dirty limits take into account the zone's
2137 * lowmem reserves and high watermark so that kswapd
2138 * should be able to balance it without having to
2139 * write pages from its LRU list.
2141 * This may look like it could increase pressure on
2142 * lower zones by failing allocations in higher zones
2143 * before they are full. But the pages that do spill
2144 * over are limited as the lower zones are protected
2145 * by this very same mechanism. It should not become
2146 * a practical burden to them.
2148 * XXX: For now, allow allocations to potentially
2149 * exceed the per-zone dirty limit in the slowpath
2150 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2151 * which is important when on a NUMA setup the allowed
2152 * zones are together not big enough to reach the
2153 * global limit. The proper fix for these situations
2154 * will require awareness of zones in the
2155 * dirty-throttling and the flusher threads.
2157 if (consider_zone_dirty && !zone_dirty_ok(zone))
2158 continue;
2160 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2161 if (!zone_watermark_ok(zone, order, mark,
2162 ac->classzone_idx, alloc_flags)) {
2163 int ret;
2165 /* Checked here to keep the fast path fast */
2166 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2167 if (alloc_flags & ALLOC_NO_WATERMARKS)
2168 goto try_this_zone;
2170 if (IS_ENABLED(CONFIG_NUMA) &&
2171 !did_zlc_setup && nr_online_nodes > 1) {
2173 * we do zlc_setup if there are multiple nodes
2174 * and before considering the first zone allowed
2175 * by the cpuset.
2177 allowednodes = zlc_setup(zonelist, alloc_flags);
2178 zlc_active = 1;
2179 did_zlc_setup = 1;
2182 if (zone_reclaim_mode == 0 ||
2183 !zone_allows_reclaim(ac->preferred_zone, zone))
2184 goto this_zone_full;
2187 * As we may have just activated ZLC, check if the first
2188 * eligible zone has failed zone_reclaim recently.
2190 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2191 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2192 continue;
2194 ret = zone_reclaim(zone, gfp_mask, order);
2195 switch (ret) {
2196 case ZONE_RECLAIM_NOSCAN:
2197 /* did not scan */
2198 continue;
2199 case ZONE_RECLAIM_FULL:
2200 /* scanned but unreclaimable */
2201 continue;
2202 default:
2203 /* did we reclaim enough */
2204 if (zone_watermark_ok(zone, order, mark,
2205 ac->classzone_idx, alloc_flags))
2206 goto try_this_zone;
2209 * Failed to reclaim enough to meet watermark.
2210 * Only mark the zone full if checking the min
2211 * watermark or if we failed to reclaim just
2212 * 1<<order pages or else the page allocator
2213 * fastpath will prematurely mark zones full
2214 * when the watermark is between the low and
2215 * min watermarks.
2217 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2218 ret == ZONE_RECLAIM_SOME)
2219 goto this_zone_full;
2221 continue;
2225 try_this_zone:
2226 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2227 gfp_mask, ac->migratetype);
2228 if (page) {
2229 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2230 goto try_this_zone;
2231 return page;
2233 this_zone_full:
2234 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2235 zlc_mark_zone_full(zonelist, z);
2239 * The first pass makes sure allocations are spread fairly within the
2240 * local node. However, the local node might have free pages left
2241 * after the fairness batches are exhausted, and remote zones haven't
2242 * even been considered yet. Try once more without fairness, and
2243 * include remote zones now, before entering the slowpath and waking
2244 * kswapd: prefer spilling to a remote zone over swapping locally.
2246 if (alloc_flags & ALLOC_FAIR) {
2247 alloc_flags &= ~ALLOC_FAIR;
2248 if (nr_fair_skipped) {
2249 zonelist_rescan = true;
2250 reset_alloc_batches(ac->preferred_zone);
2252 if (nr_online_nodes > 1)
2253 zonelist_rescan = true;
2256 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2257 /* Disable zlc cache for second zonelist scan */
2258 zlc_active = 0;
2259 zonelist_rescan = true;
2262 if (zonelist_rescan)
2263 goto zonelist_scan;
2265 return NULL;
2269 * Large machines with many possible nodes should not always dump per-node
2270 * meminfo in irq context.
2272 static inline bool should_suppress_show_mem(void)
2274 bool ret = false;
2276 #if NODES_SHIFT > 8
2277 ret = in_interrupt();
2278 #endif
2279 return ret;
2282 static DEFINE_RATELIMIT_STATE(nopage_rs,
2283 DEFAULT_RATELIMIT_INTERVAL,
2284 DEFAULT_RATELIMIT_BURST);
2286 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2288 unsigned int filter = SHOW_MEM_FILTER_NODES;
2290 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2291 debug_guardpage_minorder() > 0)
2292 return;
2295 * This documents exceptions given to allocations in certain
2296 * contexts that are allowed to allocate outside current's set
2297 * of allowed nodes.
2299 if (!(gfp_mask & __GFP_NOMEMALLOC))
2300 if (test_thread_flag(TIF_MEMDIE) ||
2301 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2302 filter &= ~SHOW_MEM_FILTER_NODES;
2303 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2304 filter &= ~SHOW_MEM_FILTER_NODES;
2306 if (fmt) {
2307 struct va_format vaf;
2308 va_list args;
2310 va_start(args, fmt);
2312 vaf.fmt = fmt;
2313 vaf.va = &args;
2315 pr_warn("%pV", &vaf);
2317 va_end(args);
2320 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2321 current->comm, order, gfp_mask);
2323 dump_stack();
2324 if (!should_suppress_show_mem())
2325 show_mem(filter);
2328 static inline int
2329 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2330 unsigned long did_some_progress,
2331 unsigned long pages_reclaimed)
2333 /* Do not loop if specifically requested */
2334 if (gfp_mask & __GFP_NORETRY)
2335 return 0;
2337 /* Always retry if specifically requested */
2338 if (gfp_mask & __GFP_NOFAIL)
2339 return 1;
2342 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2343 * making forward progress without invoking OOM. Suspend also disables
2344 * storage devices so kswapd will not help. Bail if we are suspending.
2346 if (!did_some_progress && pm_suspended_storage())
2347 return 0;
2350 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2351 * means __GFP_NOFAIL, but that may not be true in other
2352 * implementations.
2354 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2355 return 1;
2358 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2359 * specified, then we retry until we no longer reclaim any pages
2360 * (above), or we've reclaimed an order of pages at least as
2361 * large as the allocation's order. In both cases, if the
2362 * allocation still fails, we stop retrying.
2364 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2365 return 1;
2367 return 0;
2370 static inline struct page *
2371 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2372 const struct alloc_context *ac, unsigned long *did_some_progress)
2374 struct page *page;
2376 *did_some_progress = 0;
2379 * Acquire the per-zone oom lock for each zone. If that
2380 * fails, somebody else is making progress for us.
2382 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2383 *did_some_progress = 1;
2384 schedule_timeout_uninterruptible(1);
2385 return NULL;
2389 * Go through the zonelist yet one more time, keep very high watermark
2390 * here, this is only to catch a parallel oom killing, we must fail if
2391 * we're still under heavy pressure.
2393 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2394 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2395 if (page)
2396 goto out;
2398 if (!(gfp_mask & __GFP_NOFAIL)) {
2399 /* Coredumps can quickly deplete all memory reserves */
2400 if (current->flags & PF_DUMPCORE)
2401 goto out;
2402 /* The OOM killer will not help higher order allocs */
2403 if (order > PAGE_ALLOC_COSTLY_ORDER)
2404 goto out;
2405 /* The OOM killer does not needlessly kill tasks for lowmem */
2406 if (ac->high_zoneidx < ZONE_NORMAL)
2407 goto out;
2408 /* The OOM killer does not compensate for light reclaim */
2409 if (!(gfp_mask & __GFP_FS)) {
2411 * XXX: Page reclaim didn't yield anything,
2412 * and the OOM killer can't be invoked, but
2413 * keep looping as per should_alloc_retry().
2415 *did_some_progress = 1;
2416 goto out;
2418 /* The OOM killer may not free memory on a specific node */
2419 if (gfp_mask & __GFP_THISNODE)
2420 goto out;
2422 /* Exhausted what can be done so it's blamo time */
2423 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2424 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2425 *did_some_progress = 1;
2426 out:
2427 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2428 return page;
2431 #ifdef CONFIG_COMPACTION
2432 /* Try memory compaction for high-order allocations before reclaim */
2433 static struct page *
2434 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2435 int alloc_flags, const struct alloc_context *ac,
2436 enum migrate_mode mode, int *contended_compaction,
2437 bool *deferred_compaction)
2439 unsigned long compact_result;
2440 struct page *page;
2442 if (!order)
2443 return NULL;
2445 current->flags |= PF_MEMALLOC;
2446 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2447 mode, contended_compaction);
2448 current->flags &= ~PF_MEMALLOC;
2450 switch (compact_result) {
2451 case COMPACT_DEFERRED:
2452 *deferred_compaction = true;
2453 /* fall-through */
2454 case COMPACT_SKIPPED:
2455 return NULL;
2456 default:
2457 break;
2461 * At least in one zone compaction wasn't deferred or skipped, so let's
2462 * count a compaction stall
2464 count_vm_event(COMPACTSTALL);
2466 page = get_page_from_freelist(gfp_mask, order,
2467 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2469 if (page) {
2470 struct zone *zone = page_zone(page);
2472 zone->compact_blockskip_flush = false;
2473 compaction_defer_reset(zone, order, true);
2474 count_vm_event(COMPACTSUCCESS);
2475 return page;
2479 * It's bad if compaction run occurs and fails. The most likely reason
2480 * is that pages exist, but not enough to satisfy watermarks.
2482 count_vm_event(COMPACTFAIL);
2484 cond_resched();
2486 return NULL;
2488 #else
2489 static inline struct page *
2490 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2491 int alloc_flags, const struct alloc_context *ac,
2492 enum migrate_mode mode, int *contended_compaction,
2493 bool *deferred_compaction)
2495 return NULL;
2497 #endif /* CONFIG_COMPACTION */
2499 /* Perform direct synchronous page reclaim */
2500 static int
2501 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2502 const struct alloc_context *ac)
2504 struct reclaim_state reclaim_state;
2505 int progress;
2507 cond_resched();
2509 /* We now go into synchronous reclaim */
2510 cpuset_memory_pressure_bump();
2511 current->flags |= PF_MEMALLOC;
2512 lockdep_set_current_reclaim_state(gfp_mask);
2513 reclaim_state.reclaimed_slab = 0;
2514 current->reclaim_state = &reclaim_state;
2516 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2517 ac->nodemask);
2519 current->reclaim_state = NULL;
2520 lockdep_clear_current_reclaim_state();
2521 current->flags &= ~PF_MEMALLOC;
2523 cond_resched();
2525 return progress;
2528 /* The really slow allocator path where we enter direct reclaim */
2529 static inline struct page *
2530 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2531 int alloc_flags, const struct alloc_context *ac,
2532 unsigned long *did_some_progress)
2534 struct page *page = NULL;
2535 bool drained = false;
2537 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2538 if (unlikely(!(*did_some_progress)))
2539 return NULL;
2541 /* After successful reclaim, reconsider all zones for allocation */
2542 if (IS_ENABLED(CONFIG_NUMA))
2543 zlc_clear_zones_full(ac->zonelist);
2545 retry:
2546 page = get_page_from_freelist(gfp_mask, order,
2547 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2550 * If an allocation failed after direct reclaim, it could be because
2551 * pages are pinned on the per-cpu lists. Drain them and try again
2553 if (!page && !drained) {
2554 drain_all_pages(NULL);
2555 drained = true;
2556 goto retry;
2559 return page;
2563 * This is called in the allocator slow-path if the allocation request is of
2564 * sufficient urgency to ignore watermarks and take other desperate measures
2566 static inline struct page *
2567 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2568 const struct alloc_context *ac)
2570 struct page *page;
2572 do {
2573 page = get_page_from_freelist(gfp_mask, order,
2574 ALLOC_NO_WATERMARKS, ac);
2576 if (!page && gfp_mask & __GFP_NOFAIL)
2577 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2578 HZ/50);
2579 } while (!page && (gfp_mask & __GFP_NOFAIL));
2581 return page;
2584 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2586 struct zoneref *z;
2587 struct zone *zone;
2589 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2590 ac->high_zoneidx, ac->nodemask)
2591 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2594 static inline int
2595 gfp_to_alloc_flags(gfp_t gfp_mask)
2597 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2598 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2600 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2601 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2604 * The caller may dip into page reserves a bit more if the caller
2605 * cannot run direct reclaim, or if the caller has realtime scheduling
2606 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2607 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2609 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2611 if (atomic) {
2613 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2614 * if it can't schedule.
2616 if (!(gfp_mask & __GFP_NOMEMALLOC))
2617 alloc_flags |= ALLOC_HARDER;
2619 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2620 * comment for __cpuset_node_allowed().
2622 alloc_flags &= ~ALLOC_CPUSET;
2623 } else if (unlikely(rt_task(current)) && !in_interrupt())
2624 alloc_flags |= ALLOC_HARDER;
2626 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2627 if (gfp_mask & __GFP_MEMALLOC)
2628 alloc_flags |= ALLOC_NO_WATERMARKS;
2629 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2630 alloc_flags |= ALLOC_NO_WATERMARKS;
2631 else if (!in_interrupt() &&
2632 ((current->flags & PF_MEMALLOC) ||
2633 unlikely(test_thread_flag(TIF_MEMDIE))))
2634 alloc_flags |= ALLOC_NO_WATERMARKS;
2636 #ifdef CONFIG_CMA
2637 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2638 alloc_flags |= ALLOC_CMA;
2639 #endif
2640 return alloc_flags;
2643 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2645 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2648 static inline struct page *
2649 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2650 struct alloc_context *ac)
2652 const gfp_t wait = gfp_mask & __GFP_WAIT;
2653 struct page *page = NULL;
2654 int alloc_flags;
2655 unsigned long pages_reclaimed = 0;
2656 unsigned long did_some_progress;
2657 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2658 bool deferred_compaction = false;
2659 int contended_compaction = COMPACT_CONTENDED_NONE;
2662 * In the slowpath, we sanity check order to avoid ever trying to
2663 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2664 * be using allocators in order of preference for an area that is
2665 * too large.
2667 if (order >= MAX_ORDER) {
2668 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2669 return NULL;
2673 * If this allocation cannot block and it is for a specific node, then
2674 * fail early. There's no need to wakeup kswapd or retry for a
2675 * speculative node-specific allocation.
2677 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2678 goto nopage;
2680 retry:
2681 if (!(gfp_mask & __GFP_NO_KSWAPD))
2682 wake_all_kswapds(order, ac);
2685 * OK, we're below the kswapd watermark and have kicked background
2686 * reclaim. Now things get more complex, so set up alloc_flags according
2687 * to how we want to proceed.
2689 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2692 * Find the true preferred zone if the allocation is unconstrained by
2693 * cpusets.
2695 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2696 struct zoneref *preferred_zoneref;
2697 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2698 ac->high_zoneidx, NULL, &ac->preferred_zone);
2699 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2702 /* This is the last chance, in general, before the goto nopage. */
2703 page = get_page_from_freelist(gfp_mask, order,
2704 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2705 if (page)
2706 goto got_pg;
2708 /* Allocate without watermarks if the context allows */
2709 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2711 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2712 * the allocation is high priority and these type of
2713 * allocations are system rather than user orientated
2715 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2717 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2719 if (page) {
2720 goto got_pg;
2724 /* Atomic allocations - we can't balance anything */
2725 if (!wait) {
2727 * All existing users of the deprecated __GFP_NOFAIL are
2728 * blockable, so warn of any new users that actually allow this
2729 * type of allocation to fail.
2731 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2732 goto nopage;
2735 /* Avoid recursion of direct reclaim */
2736 if (current->flags & PF_MEMALLOC)
2737 goto nopage;
2739 /* Avoid allocations with no watermarks from looping endlessly */
2740 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2741 goto nopage;
2744 * Try direct compaction. The first pass is asynchronous. Subsequent
2745 * attempts after direct reclaim are synchronous
2747 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2748 migration_mode,
2749 &contended_compaction,
2750 &deferred_compaction);
2751 if (page)
2752 goto got_pg;
2754 /* Checks for THP-specific high-order allocations */
2755 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2757 * If compaction is deferred for high-order allocations, it is
2758 * because sync compaction recently failed. If this is the case
2759 * and the caller requested a THP allocation, we do not want
2760 * to heavily disrupt the system, so we fail the allocation
2761 * instead of entering direct reclaim.
2763 if (deferred_compaction)
2764 goto nopage;
2767 * In all zones where compaction was attempted (and not
2768 * deferred or skipped), lock contention has been detected.
2769 * For THP allocation we do not want to disrupt the others
2770 * so we fallback to base pages instead.
2772 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2773 goto nopage;
2776 * If compaction was aborted due to need_resched(), we do not
2777 * want to further increase allocation latency, unless it is
2778 * khugepaged trying to collapse.
2780 if (contended_compaction == COMPACT_CONTENDED_SCHED
2781 && !(current->flags & PF_KTHREAD))
2782 goto nopage;
2786 * It can become very expensive to allocate transparent hugepages at
2787 * fault, so use asynchronous memory compaction for THP unless it is
2788 * khugepaged trying to collapse.
2790 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2791 (current->flags & PF_KTHREAD))
2792 migration_mode = MIGRATE_SYNC_LIGHT;
2794 /* Try direct reclaim and then allocating */
2795 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2796 &did_some_progress);
2797 if (page)
2798 goto got_pg;
2800 /* Check if we should retry the allocation */
2801 pages_reclaimed += did_some_progress;
2802 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2803 pages_reclaimed)) {
2805 * If we fail to make progress by freeing individual
2806 * pages, but the allocation wants us to keep going,
2807 * start OOM killing tasks.
2809 if (!did_some_progress) {
2810 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2811 &did_some_progress);
2812 if (page)
2813 goto got_pg;
2814 if (!did_some_progress)
2815 goto nopage;
2817 /* Wait for some write requests to complete then retry */
2818 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2819 goto retry;
2820 } else {
2822 * High-order allocations do not necessarily loop after
2823 * direct reclaim and reclaim/compaction depends on compaction
2824 * being called after reclaim so call directly if necessary
2826 page = __alloc_pages_direct_compact(gfp_mask, order,
2827 alloc_flags, ac, migration_mode,
2828 &contended_compaction,
2829 &deferred_compaction);
2830 if (page)
2831 goto got_pg;
2834 nopage:
2835 warn_alloc_failed(gfp_mask, order, NULL);
2836 got_pg:
2837 return page;
2841 * This is the 'heart' of the zoned buddy allocator.
2843 struct page *
2844 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2845 struct zonelist *zonelist, nodemask_t *nodemask)
2847 struct zoneref *preferred_zoneref;
2848 struct page *page = NULL;
2849 unsigned int cpuset_mems_cookie;
2850 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2851 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2852 struct alloc_context ac = {
2853 .high_zoneidx = gfp_zone(gfp_mask),
2854 .nodemask = nodemask,
2855 .migratetype = gfpflags_to_migratetype(gfp_mask),
2858 gfp_mask &= gfp_allowed_mask;
2860 lockdep_trace_alloc(gfp_mask);
2862 might_sleep_if(gfp_mask & __GFP_WAIT);
2864 if (should_fail_alloc_page(gfp_mask, order))
2865 return NULL;
2868 * Check the zones suitable for the gfp_mask contain at least one
2869 * valid zone. It's possible to have an empty zonelist as a result
2870 * of __GFP_THISNODE and a memoryless node
2872 if (unlikely(!zonelist->_zonerefs->zone))
2873 return NULL;
2875 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2876 alloc_flags |= ALLOC_CMA;
2878 retry_cpuset:
2879 cpuset_mems_cookie = read_mems_allowed_begin();
2881 /* We set it here, as __alloc_pages_slowpath might have changed it */
2882 ac.zonelist = zonelist;
2883 /* The preferred zone is used for statistics later */
2884 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2885 ac.nodemask ? : &cpuset_current_mems_allowed,
2886 &ac.preferred_zone);
2887 if (!ac.preferred_zone)
2888 goto out;
2889 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2891 /* First allocation attempt */
2892 alloc_mask = gfp_mask|__GFP_HARDWALL;
2893 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2894 if (unlikely(!page)) {
2896 * Runtime PM, block IO and its error handling path
2897 * can deadlock because I/O on the device might not
2898 * complete.
2900 alloc_mask = memalloc_noio_flags(gfp_mask);
2902 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2905 if (kmemcheck_enabled && page)
2906 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2908 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2910 out:
2912 * When updating a task's mems_allowed, it is possible to race with
2913 * parallel threads in such a way that an allocation can fail while
2914 * the mask is being updated. If a page allocation is about to fail,
2915 * check if the cpuset changed during allocation and if so, retry.
2917 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2918 goto retry_cpuset;
2920 return page;
2922 EXPORT_SYMBOL(__alloc_pages_nodemask);
2925 * Common helper functions.
2927 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2929 struct page *page;
2932 * __get_free_pages() returns a 32-bit address, which cannot represent
2933 * a highmem page
2935 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2937 page = alloc_pages(gfp_mask, order);
2938 if (!page)
2939 return 0;
2940 return (unsigned long) page_address(page);
2942 EXPORT_SYMBOL(__get_free_pages);
2944 unsigned long get_zeroed_page(gfp_t gfp_mask)
2946 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2948 EXPORT_SYMBOL(get_zeroed_page);
2950 void __free_pages(struct page *page, unsigned int order)
2952 if (put_page_testzero(page)) {
2953 if (order == 0)
2954 free_hot_cold_page(page, false);
2955 else
2956 __free_pages_ok(page, order);
2960 EXPORT_SYMBOL(__free_pages);
2962 void free_pages(unsigned long addr, unsigned int order)
2964 if (addr != 0) {
2965 VM_BUG_ON(!virt_addr_valid((void *)addr));
2966 __free_pages(virt_to_page((void *)addr), order);
2970 EXPORT_SYMBOL(free_pages);
2973 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2974 * of the current memory cgroup.
2976 * It should be used when the caller would like to use kmalloc, but since the
2977 * allocation is large, it has to fall back to the page allocator.
2979 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2981 struct page *page;
2982 struct mem_cgroup *memcg = NULL;
2984 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2985 return NULL;
2986 page = alloc_pages(gfp_mask, order);
2987 memcg_kmem_commit_charge(page, memcg, order);
2988 return page;
2991 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2993 struct page *page;
2994 struct mem_cgroup *memcg = NULL;
2996 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2997 return NULL;
2998 page = alloc_pages_node(nid, gfp_mask, order);
2999 memcg_kmem_commit_charge(page, memcg, order);
3000 return page;
3004 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3005 * alloc_kmem_pages.
3007 void __free_kmem_pages(struct page *page, unsigned int order)
3009 memcg_kmem_uncharge_pages(page, order);
3010 __free_pages(page, order);
3013 void free_kmem_pages(unsigned long addr, unsigned int order)
3015 if (addr != 0) {
3016 VM_BUG_ON(!virt_addr_valid((void *)addr));
3017 __free_kmem_pages(virt_to_page((void *)addr), order);
3021 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3023 if (addr) {
3024 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3025 unsigned long used = addr + PAGE_ALIGN(size);
3027 split_page(virt_to_page((void *)addr), order);
3028 while (used < alloc_end) {
3029 free_page(used);
3030 used += PAGE_SIZE;
3033 return (void *)addr;
3037 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3038 * @size: the number of bytes to allocate
3039 * @gfp_mask: GFP flags for the allocation
3041 * This function is similar to alloc_pages(), except that it allocates the
3042 * minimum number of pages to satisfy the request. alloc_pages() can only
3043 * allocate memory in power-of-two pages.
3045 * This function is also limited by MAX_ORDER.
3047 * Memory allocated by this function must be released by free_pages_exact().
3049 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3051 unsigned int order = get_order(size);
3052 unsigned long addr;
3054 addr = __get_free_pages(gfp_mask, order);
3055 return make_alloc_exact(addr, order, size);
3057 EXPORT_SYMBOL(alloc_pages_exact);
3060 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3061 * pages on a node.
3062 * @nid: the preferred node ID where memory should be allocated
3063 * @size: the number of bytes to allocate
3064 * @gfp_mask: GFP flags for the allocation
3066 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3067 * back.
3068 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3069 * but is not exact.
3071 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3073 unsigned order = get_order(size);
3074 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3075 if (!p)
3076 return NULL;
3077 return make_alloc_exact((unsigned long)page_address(p), order, size);
3081 * free_pages_exact - release memory allocated via alloc_pages_exact()
3082 * @virt: the value returned by alloc_pages_exact.
3083 * @size: size of allocation, same value as passed to alloc_pages_exact().
3085 * Release the memory allocated by a previous call to alloc_pages_exact.
3087 void free_pages_exact(void *virt, size_t size)
3089 unsigned long addr = (unsigned long)virt;
3090 unsigned long end = addr + PAGE_ALIGN(size);
3092 while (addr < end) {
3093 free_page(addr);
3094 addr += PAGE_SIZE;
3097 EXPORT_SYMBOL(free_pages_exact);
3100 * nr_free_zone_pages - count number of pages beyond high watermark
3101 * @offset: The zone index of the highest zone
3103 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3104 * high watermark within all zones at or below a given zone index. For each
3105 * zone, the number of pages is calculated as:
3106 * managed_pages - high_pages
3108 static unsigned long nr_free_zone_pages(int offset)
3110 struct zoneref *z;
3111 struct zone *zone;
3113 /* Just pick one node, since fallback list is circular */
3114 unsigned long sum = 0;
3116 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3118 for_each_zone_zonelist(zone, z, zonelist, offset) {
3119 unsigned long size = zone->managed_pages;
3120 unsigned long high = high_wmark_pages(zone);
3121 if (size > high)
3122 sum += size - high;
3125 return sum;
3129 * nr_free_buffer_pages - count number of pages beyond high watermark
3131 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3132 * watermark within ZONE_DMA and ZONE_NORMAL.
3134 unsigned long nr_free_buffer_pages(void)
3136 return nr_free_zone_pages(gfp_zone(GFP_USER));
3138 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3141 * nr_free_pagecache_pages - count number of pages beyond high watermark
3143 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3144 * high watermark within all zones.
3146 unsigned long nr_free_pagecache_pages(void)
3148 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3151 static inline void show_node(struct zone *zone)
3153 if (IS_ENABLED(CONFIG_NUMA))
3154 printk("Node %d ", zone_to_nid(zone));
3157 void si_meminfo(struct sysinfo *val)
3159 val->totalram = totalram_pages;
3160 val->sharedram = global_page_state(NR_SHMEM);
3161 val->freeram = global_page_state(NR_FREE_PAGES);
3162 val->bufferram = nr_blockdev_pages();
3163 val->totalhigh = totalhigh_pages;
3164 val->freehigh = nr_free_highpages();
3165 val->mem_unit = PAGE_SIZE;
3168 EXPORT_SYMBOL(si_meminfo);
3170 #ifdef CONFIG_NUMA
3171 void si_meminfo_node(struct sysinfo *val, int nid)
3173 int zone_type; /* needs to be signed */
3174 unsigned long managed_pages = 0;
3175 pg_data_t *pgdat = NODE_DATA(nid);
3177 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3178 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3179 val->totalram = managed_pages;
3180 val->sharedram = node_page_state(nid, NR_SHMEM);
3181 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3182 #ifdef CONFIG_HIGHMEM
3183 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3184 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3185 NR_FREE_PAGES);
3186 #else
3187 val->totalhigh = 0;
3188 val->freehigh = 0;
3189 #endif
3190 val->mem_unit = PAGE_SIZE;
3192 #endif
3195 * Determine whether the node should be displayed or not, depending on whether
3196 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3198 bool skip_free_areas_node(unsigned int flags, int nid)
3200 bool ret = false;
3201 unsigned int cpuset_mems_cookie;
3203 if (!(flags & SHOW_MEM_FILTER_NODES))
3204 goto out;
3206 do {
3207 cpuset_mems_cookie = read_mems_allowed_begin();
3208 ret = !node_isset(nid, cpuset_current_mems_allowed);
3209 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3210 out:
3211 return ret;
3214 #define K(x) ((x) << (PAGE_SHIFT-10))
3216 static void show_migration_types(unsigned char type)
3218 static const char types[MIGRATE_TYPES] = {
3219 [MIGRATE_UNMOVABLE] = 'U',
3220 [MIGRATE_RECLAIMABLE] = 'E',
3221 [MIGRATE_MOVABLE] = 'M',
3222 [MIGRATE_RESERVE] = 'R',
3223 #ifdef CONFIG_CMA
3224 [MIGRATE_CMA] = 'C',
3225 #endif
3226 #ifdef CONFIG_MEMORY_ISOLATION
3227 [MIGRATE_ISOLATE] = 'I',
3228 #endif
3230 char tmp[MIGRATE_TYPES + 1];
3231 char *p = tmp;
3232 int i;
3234 for (i = 0; i < MIGRATE_TYPES; i++) {
3235 if (type & (1 << i))
3236 *p++ = types[i];
3239 *p = '\0';
3240 printk("(%s) ", tmp);
3244 * Show free area list (used inside shift_scroll-lock stuff)
3245 * We also calculate the percentage fragmentation. We do this by counting the
3246 * memory on each free list with the exception of the first item on the list.
3248 * Bits in @filter:
3249 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3250 * cpuset.
3252 void show_free_areas(unsigned int filter)
3254 unsigned long free_pcp = 0;
3255 int cpu;
3256 struct zone *zone;
3258 for_each_populated_zone(zone) {
3259 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3260 continue;
3262 for_each_online_cpu(cpu)
3263 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3266 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3267 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3268 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3269 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3270 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3271 " free:%lu free_pcp:%lu free_cma:%lu\n",
3272 global_page_state(NR_ACTIVE_ANON),
3273 global_page_state(NR_INACTIVE_ANON),
3274 global_page_state(NR_ISOLATED_ANON),
3275 global_page_state(NR_ACTIVE_FILE),
3276 global_page_state(NR_INACTIVE_FILE),
3277 global_page_state(NR_ISOLATED_FILE),
3278 global_page_state(NR_UNEVICTABLE),
3279 global_page_state(NR_FILE_DIRTY),
3280 global_page_state(NR_WRITEBACK),
3281 global_page_state(NR_UNSTABLE_NFS),
3282 global_page_state(NR_SLAB_RECLAIMABLE),
3283 global_page_state(NR_SLAB_UNRECLAIMABLE),
3284 global_page_state(NR_FILE_MAPPED),
3285 global_page_state(NR_SHMEM),
3286 global_page_state(NR_PAGETABLE),
3287 global_page_state(NR_BOUNCE),
3288 global_page_state(NR_FREE_PAGES),
3289 free_pcp,
3290 global_page_state(NR_FREE_CMA_PAGES));
3292 for_each_populated_zone(zone) {
3293 int i;
3295 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3296 continue;
3298 free_pcp = 0;
3299 for_each_online_cpu(cpu)
3300 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3302 show_node(zone);
3303 printk("%s"
3304 " free:%lukB"
3305 " min:%lukB"
3306 " low:%lukB"
3307 " high:%lukB"
3308 " active_anon:%lukB"
3309 " inactive_anon:%lukB"
3310 " active_file:%lukB"
3311 " inactive_file:%lukB"
3312 " unevictable:%lukB"
3313 " isolated(anon):%lukB"
3314 " isolated(file):%lukB"
3315 " present:%lukB"
3316 " managed:%lukB"
3317 " mlocked:%lukB"
3318 " dirty:%lukB"
3319 " writeback:%lukB"
3320 " mapped:%lukB"
3321 " shmem:%lukB"
3322 " slab_reclaimable:%lukB"
3323 " slab_unreclaimable:%lukB"
3324 " kernel_stack:%lukB"
3325 " pagetables:%lukB"
3326 " unstable:%lukB"
3327 " bounce:%lukB"
3328 " free_pcp:%lukB"
3329 " local_pcp:%ukB"
3330 " free_cma:%lukB"
3331 " writeback_tmp:%lukB"
3332 " pages_scanned:%lu"
3333 " all_unreclaimable? %s"
3334 "\n",
3335 zone->name,
3336 K(zone_page_state(zone, NR_FREE_PAGES)),
3337 K(min_wmark_pages(zone)),
3338 K(low_wmark_pages(zone)),
3339 K(high_wmark_pages(zone)),
3340 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3341 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3342 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3343 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3344 K(zone_page_state(zone, NR_UNEVICTABLE)),
3345 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3346 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3347 K(zone->present_pages),
3348 K(zone->managed_pages),
3349 K(zone_page_state(zone, NR_MLOCK)),
3350 K(zone_page_state(zone, NR_FILE_DIRTY)),
3351 K(zone_page_state(zone, NR_WRITEBACK)),
3352 K(zone_page_state(zone, NR_FILE_MAPPED)),
3353 K(zone_page_state(zone, NR_SHMEM)),
3354 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3355 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3356 zone_page_state(zone, NR_KERNEL_STACK) *
3357 THREAD_SIZE / 1024,
3358 K(zone_page_state(zone, NR_PAGETABLE)),
3359 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3360 K(zone_page_state(zone, NR_BOUNCE)),
3361 K(free_pcp),
3362 K(this_cpu_read(zone->pageset->pcp.count)),
3363 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3364 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3365 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3366 (!zone_reclaimable(zone) ? "yes" : "no")
3368 printk("lowmem_reserve[]:");
3369 for (i = 0; i < MAX_NR_ZONES; i++)
3370 printk(" %ld", zone->lowmem_reserve[i]);
3371 printk("\n");
3374 for_each_populated_zone(zone) {
3375 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3376 unsigned char types[MAX_ORDER];
3378 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3379 continue;
3380 show_node(zone);
3381 printk("%s: ", zone->name);
3383 spin_lock_irqsave(&zone->lock, flags);
3384 for (order = 0; order < MAX_ORDER; order++) {
3385 struct free_area *area = &zone->free_area[order];
3386 int type;
3388 nr[order] = area->nr_free;
3389 total += nr[order] << order;
3391 types[order] = 0;
3392 for (type = 0; type < MIGRATE_TYPES; type++) {
3393 if (!list_empty(&area->free_list[type]))
3394 types[order] |= 1 << type;
3397 spin_unlock_irqrestore(&zone->lock, flags);
3398 for (order = 0; order < MAX_ORDER; order++) {
3399 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3400 if (nr[order])
3401 show_migration_types(types[order]);
3403 printk("= %lukB\n", K(total));
3406 hugetlb_show_meminfo();
3408 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3410 show_swap_cache_info();
3413 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3415 zoneref->zone = zone;
3416 zoneref->zone_idx = zone_idx(zone);
3420 * Builds allocation fallback zone lists.
3422 * Add all populated zones of a node to the zonelist.
3424 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3425 int nr_zones)
3427 struct zone *zone;
3428 enum zone_type zone_type = MAX_NR_ZONES;
3430 do {
3431 zone_type--;
3432 zone = pgdat->node_zones + zone_type;
3433 if (populated_zone(zone)) {
3434 zoneref_set_zone(zone,
3435 &zonelist->_zonerefs[nr_zones++]);
3436 check_highest_zone(zone_type);
3438 } while (zone_type);
3440 return nr_zones;
3445 * zonelist_order:
3446 * 0 = automatic detection of better ordering.
3447 * 1 = order by ([node] distance, -zonetype)
3448 * 2 = order by (-zonetype, [node] distance)
3450 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3451 * the same zonelist. So only NUMA can configure this param.
3453 #define ZONELIST_ORDER_DEFAULT 0
3454 #define ZONELIST_ORDER_NODE 1
3455 #define ZONELIST_ORDER_ZONE 2
3457 /* zonelist order in the kernel.
3458 * set_zonelist_order() will set this to NODE or ZONE.
3460 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3461 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3464 #ifdef CONFIG_NUMA
3465 /* The value user specified ....changed by config */
3466 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3467 /* string for sysctl */
3468 #define NUMA_ZONELIST_ORDER_LEN 16
3469 char numa_zonelist_order[16] = "default";
3472 * interface for configure zonelist ordering.
3473 * command line option "numa_zonelist_order"
3474 * = "[dD]efault - default, automatic configuration.
3475 * = "[nN]ode - order by node locality, then by zone within node
3476 * = "[zZ]one - order by zone, then by locality within zone
3479 static int __parse_numa_zonelist_order(char *s)
3481 if (*s == 'd' || *s == 'D') {
3482 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3483 } else if (*s == 'n' || *s == 'N') {
3484 user_zonelist_order = ZONELIST_ORDER_NODE;
3485 } else if (*s == 'z' || *s == 'Z') {
3486 user_zonelist_order = ZONELIST_ORDER_ZONE;
3487 } else {
3488 printk(KERN_WARNING
3489 "Ignoring invalid numa_zonelist_order value: "
3490 "%s\n", s);
3491 return -EINVAL;
3493 return 0;
3496 static __init int setup_numa_zonelist_order(char *s)
3498 int ret;
3500 if (!s)
3501 return 0;
3503 ret = __parse_numa_zonelist_order(s);
3504 if (ret == 0)
3505 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3507 return ret;
3509 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3512 * sysctl handler for numa_zonelist_order
3514 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3515 void __user *buffer, size_t *length,
3516 loff_t *ppos)
3518 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3519 int ret;
3520 static DEFINE_MUTEX(zl_order_mutex);
3522 mutex_lock(&zl_order_mutex);
3523 if (write) {
3524 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3525 ret = -EINVAL;
3526 goto out;
3528 strcpy(saved_string, (char *)table->data);
3530 ret = proc_dostring(table, write, buffer, length, ppos);
3531 if (ret)
3532 goto out;
3533 if (write) {
3534 int oldval = user_zonelist_order;
3536 ret = __parse_numa_zonelist_order((char *)table->data);
3537 if (ret) {
3539 * bogus value. restore saved string
3541 strncpy((char *)table->data, saved_string,
3542 NUMA_ZONELIST_ORDER_LEN);
3543 user_zonelist_order = oldval;
3544 } else if (oldval != user_zonelist_order) {
3545 mutex_lock(&zonelists_mutex);
3546 build_all_zonelists(NULL, NULL);
3547 mutex_unlock(&zonelists_mutex);
3550 out:
3551 mutex_unlock(&zl_order_mutex);
3552 return ret;
3556 #define MAX_NODE_LOAD (nr_online_nodes)
3557 static int node_load[MAX_NUMNODES];
3560 * find_next_best_node - find the next node that should appear in a given node's fallback list
3561 * @node: node whose fallback list we're appending
3562 * @used_node_mask: nodemask_t of already used nodes
3564 * We use a number of factors to determine which is the next node that should
3565 * appear on a given node's fallback list. The node should not have appeared
3566 * already in @node's fallback list, and it should be the next closest node
3567 * according to the distance array (which contains arbitrary distance values
3568 * from each node to each node in the system), and should also prefer nodes
3569 * with no CPUs, since presumably they'll have very little allocation pressure
3570 * on them otherwise.
3571 * It returns -1 if no node is found.
3573 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3575 int n, val;
3576 int min_val = INT_MAX;
3577 int best_node = NUMA_NO_NODE;
3578 const struct cpumask *tmp = cpumask_of_node(0);
3580 /* Use the local node if we haven't already */
3581 if (!node_isset(node, *used_node_mask)) {
3582 node_set(node, *used_node_mask);
3583 return node;
3586 for_each_node_state(n, N_MEMORY) {
3588 /* Don't want a node to appear more than once */
3589 if (node_isset(n, *used_node_mask))
3590 continue;
3592 /* Use the distance array to find the distance */
3593 val = node_distance(node, n);
3595 /* Penalize nodes under us ("prefer the next node") */
3596 val += (n < node);
3598 /* Give preference to headless and unused nodes */
3599 tmp = cpumask_of_node(n);
3600 if (!cpumask_empty(tmp))
3601 val += PENALTY_FOR_NODE_WITH_CPUS;
3603 /* Slight preference for less loaded node */
3604 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3605 val += node_load[n];
3607 if (val < min_val) {
3608 min_val = val;
3609 best_node = n;
3613 if (best_node >= 0)
3614 node_set(best_node, *used_node_mask);
3616 return best_node;
3621 * Build zonelists ordered by node and zones within node.
3622 * This results in maximum locality--normal zone overflows into local
3623 * DMA zone, if any--but risks exhausting DMA zone.
3625 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3627 int j;
3628 struct zonelist *zonelist;
3630 zonelist = &pgdat->node_zonelists[0];
3631 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3633 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3634 zonelist->_zonerefs[j].zone = NULL;
3635 zonelist->_zonerefs[j].zone_idx = 0;
3639 * Build gfp_thisnode zonelists
3641 static void build_thisnode_zonelists(pg_data_t *pgdat)
3643 int j;
3644 struct zonelist *zonelist;
3646 zonelist = &pgdat->node_zonelists[1];
3647 j = build_zonelists_node(pgdat, zonelist, 0);
3648 zonelist->_zonerefs[j].zone = NULL;
3649 zonelist->_zonerefs[j].zone_idx = 0;
3653 * Build zonelists ordered by zone and nodes within zones.
3654 * This results in conserving DMA zone[s] until all Normal memory is
3655 * exhausted, but results in overflowing to remote node while memory
3656 * may still exist in local DMA zone.
3658 static int node_order[MAX_NUMNODES];
3660 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3662 int pos, j, node;
3663 int zone_type; /* needs to be signed */
3664 struct zone *z;
3665 struct zonelist *zonelist;
3667 zonelist = &pgdat->node_zonelists[0];
3668 pos = 0;
3669 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3670 for (j = 0; j < nr_nodes; j++) {
3671 node = node_order[j];
3672 z = &NODE_DATA(node)->node_zones[zone_type];
3673 if (populated_zone(z)) {
3674 zoneref_set_zone(z,
3675 &zonelist->_zonerefs[pos++]);
3676 check_highest_zone(zone_type);
3680 zonelist->_zonerefs[pos].zone = NULL;
3681 zonelist->_zonerefs[pos].zone_idx = 0;
3684 #if defined(CONFIG_64BIT)
3686 * Devices that require DMA32/DMA are relatively rare and do not justify a
3687 * penalty to every machine in case the specialised case applies. Default
3688 * to Node-ordering on 64-bit NUMA machines
3690 static int default_zonelist_order(void)
3692 return ZONELIST_ORDER_NODE;
3694 #else
3696 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3697 * by the kernel. If processes running on node 0 deplete the low memory zone
3698 * then reclaim will occur more frequency increasing stalls and potentially
3699 * be easier to OOM if a large percentage of the zone is under writeback or
3700 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3701 * Hence, default to zone ordering on 32-bit.
3703 static int default_zonelist_order(void)
3705 return ZONELIST_ORDER_ZONE;
3707 #endif /* CONFIG_64BIT */
3709 static void set_zonelist_order(void)
3711 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3712 current_zonelist_order = default_zonelist_order();
3713 else
3714 current_zonelist_order = user_zonelist_order;
3717 static void build_zonelists(pg_data_t *pgdat)
3719 int j, node, load;
3720 enum zone_type i;
3721 nodemask_t used_mask;
3722 int local_node, prev_node;
3723 struct zonelist *zonelist;
3724 int order = current_zonelist_order;
3726 /* initialize zonelists */
3727 for (i = 0; i < MAX_ZONELISTS; i++) {
3728 zonelist = pgdat->node_zonelists + i;
3729 zonelist->_zonerefs[0].zone = NULL;
3730 zonelist->_zonerefs[0].zone_idx = 0;
3733 /* NUMA-aware ordering of nodes */
3734 local_node = pgdat->node_id;
3735 load = nr_online_nodes;
3736 prev_node = local_node;
3737 nodes_clear(used_mask);
3739 memset(node_order, 0, sizeof(node_order));
3740 j = 0;
3742 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3744 * We don't want to pressure a particular node.
3745 * So adding penalty to the first node in same
3746 * distance group to make it round-robin.
3748 if (node_distance(local_node, node) !=
3749 node_distance(local_node, prev_node))
3750 node_load[node] = load;
3752 prev_node = node;
3753 load--;
3754 if (order == ZONELIST_ORDER_NODE)
3755 build_zonelists_in_node_order(pgdat, node);
3756 else
3757 node_order[j++] = node; /* remember order */
3760 if (order == ZONELIST_ORDER_ZONE) {
3761 /* calculate node order -- i.e., DMA last! */
3762 build_zonelists_in_zone_order(pgdat, j);
3765 build_thisnode_zonelists(pgdat);
3768 /* Construct the zonelist performance cache - see further mmzone.h */
3769 static void build_zonelist_cache(pg_data_t *pgdat)
3771 struct zonelist *zonelist;
3772 struct zonelist_cache *zlc;
3773 struct zoneref *z;
3775 zonelist = &pgdat->node_zonelists[0];
3776 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3777 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3778 for (z = zonelist->_zonerefs; z->zone; z++)
3779 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3782 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3784 * Return node id of node used for "local" allocations.
3785 * I.e., first node id of first zone in arg node's generic zonelist.
3786 * Used for initializing percpu 'numa_mem', which is used primarily
3787 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3789 int local_memory_node(int node)
3791 struct zone *zone;
3793 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3794 gfp_zone(GFP_KERNEL),
3795 NULL,
3796 &zone);
3797 return zone->node;
3799 #endif
3801 #else /* CONFIG_NUMA */
3803 static void set_zonelist_order(void)
3805 current_zonelist_order = ZONELIST_ORDER_ZONE;
3808 static void build_zonelists(pg_data_t *pgdat)
3810 int node, local_node;
3811 enum zone_type j;
3812 struct zonelist *zonelist;
3814 local_node = pgdat->node_id;
3816 zonelist = &pgdat->node_zonelists[0];
3817 j = build_zonelists_node(pgdat, zonelist, 0);
3820 * Now we build the zonelist so that it contains the zones
3821 * of all the other nodes.
3822 * We don't want to pressure a particular node, so when
3823 * building the zones for node N, we make sure that the
3824 * zones coming right after the local ones are those from
3825 * node N+1 (modulo N)
3827 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3828 if (!node_online(node))
3829 continue;
3830 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3832 for (node = 0; node < local_node; node++) {
3833 if (!node_online(node))
3834 continue;
3835 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3838 zonelist->_zonerefs[j].zone = NULL;
3839 zonelist->_zonerefs[j].zone_idx = 0;
3842 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3843 static void build_zonelist_cache(pg_data_t *pgdat)
3845 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3848 #endif /* CONFIG_NUMA */
3851 * Boot pageset table. One per cpu which is going to be used for all
3852 * zones and all nodes. The parameters will be set in such a way
3853 * that an item put on a list will immediately be handed over to
3854 * the buddy list. This is safe since pageset manipulation is done
3855 * with interrupts disabled.
3857 * The boot_pagesets must be kept even after bootup is complete for
3858 * unused processors and/or zones. They do play a role for bootstrapping
3859 * hotplugged processors.
3861 * zoneinfo_show() and maybe other functions do
3862 * not check if the processor is online before following the pageset pointer.
3863 * Other parts of the kernel may not check if the zone is available.
3865 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3866 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3867 static void setup_zone_pageset(struct zone *zone);
3870 * Global mutex to protect against size modification of zonelists
3871 * as well as to serialize pageset setup for the new populated zone.
3873 DEFINE_MUTEX(zonelists_mutex);
3875 /* return values int ....just for stop_machine() */
3876 static int __build_all_zonelists(void *data)
3878 int nid;
3879 int cpu;
3880 pg_data_t *self = data;
3882 #ifdef CONFIG_NUMA
3883 memset(node_load, 0, sizeof(node_load));
3884 #endif
3886 if (self && !node_online(self->node_id)) {
3887 build_zonelists(self);
3888 build_zonelist_cache(self);
3891 for_each_online_node(nid) {
3892 pg_data_t *pgdat = NODE_DATA(nid);
3894 build_zonelists(pgdat);
3895 build_zonelist_cache(pgdat);
3899 * Initialize the boot_pagesets that are going to be used
3900 * for bootstrapping processors. The real pagesets for
3901 * each zone will be allocated later when the per cpu
3902 * allocator is available.
3904 * boot_pagesets are used also for bootstrapping offline
3905 * cpus if the system is already booted because the pagesets
3906 * are needed to initialize allocators on a specific cpu too.
3907 * F.e. the percpu allocator needs the page allocator which
3908 * needs the percpu allocator in order to allocate its pagesets
3909 * (a chicken-egg dilemma).
3911 for_each_possible_cpu(cpu) {
3912 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3914 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3916 * We now know the "local memory node" for each node--
3917 * i.e., the node of the first zone in the generic zonelist.
3918 * Set up numa_mem percpu variable for on-line cpus. During
3919 * boot, only the boot cpu should be on-line; we'll init the
3920 * secondary cpus' numa_mem as they come on-line. During
3921 * node/memory hotplug, we'll fixup all on-line cpus.
3923 if (cpu_online(cpu))
3924 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3925 #endif
3928 return 0;
3931 static noinline void __init
3932 build_all_zonelists_init(void)
3934 __build_all_zonelists(NULL);
3935 mminit_verify_zonelist();
3936 cpuset_init_current_mems_allowed();
3940 * Called with zonelists_mutex held always
3941 * unless system_state == SYSTEM_BOOTING.
3943 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3944 * [we're only called with non-NULL zone through __meminit paths] and
3945 * (2) call of __init annotated helper build_all_zonelists_init
3946 * [protected by SYSTEM_BOOTING].
3948 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3950 set_zonelist_order();
3952 if (system_state == SYSTEM_BOOTING) {
3953 build_all_zonelists_init();
3954 } else {
3955 #ifdef CONFIG_MEMORY_HOTPLUG
3956 if (zone)
3957 setup_zone_pageset(zone);
3958 #endif
3959 /* we have to stop all cpus to guarantee there is no user
3960 of zonelist */
3961 stop_machine(__build_all_zonelists, pgdat, NULL);
3962 /* cpuset refresh routine should be here */
3964 vm_total_pages = nr_free_pagecache_pages();
3966 * Disable grouping by mobility if the number of pages in the
3967 * system is too low to allow the mechanism to work. It would be
3968 * more accurate, but expensive to check per-zone. This check is
3969 * made on memory-hotadd so a system can start with mobility
3970 * disabled and enable it later
3972 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3973 page_group_by_mobility_disabled = 1;
3974 else
3975 page_group_by_mobility_disabled = 0;
3977 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3978 "Total pages: %ld\n",
3979 nr_online_nodes,
3980 zonelist_order_name[current_zonelist_order],
3981 page_group_by_mobility_disabled ? "off" : "on",
3982 vm_total_pages);
3983 #ifdef CONFIG_NUMA
3984 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3985 #endif
3989 * Helper functions to size the waitqueue hash table.
3990 * Essentially these want to choose hash table sizes sufficiently
3991 * large so that collisions trying to wait on pages are rare.
3992 * But in fact, the number of active page waitqueues on typical
3993 * systems is ridiculously low, less than 200. So this is even
3994 * conservative, even though it seems large.
3996 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3997 * waitqueues, i.e. the size of the waitq table given the number of pages.
3999 #define PAGES_PER_WAITQUEUE 256
4001 #ifndef CONFIG_MEMORY_HOTPLUG
4002 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4004 unsigned long size = 1;
4006 pages /= PAGES_PER_WAITQUEUE;
4008 while (size < pages)
4009 size <<= 1;
4012 * Once we have dozens or even hundreds of threads sleeping
4013 * on IO we've got bigger problems than wait queue collision.
4014 * Limit the size of the wait table to a reasonable size.
4016 size = min(size, 4096UL);
4018 return max(size, 4UL);
4020 #else
4022 * A zone's size might be changed by hot-add, so it is not possible to determine
4023 * a suitable size for its wait_table. So we use the maximum size now.
4025 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4027 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4028 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4029 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4031 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4032 * or more by the traditional way. (See above). It equals:
4034 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4035 * ia64(16K page size) : = ( 8G + 4M)byte.
4036 * powerpc (64K page size) : = (32G +16M)byte.
4038 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4040 return 4096UL;
4042 #endif
4045 * This is an integer logarithm so that shifts can be used later
4046 * to extract the more random high bits from the multiplicative
4047 * hash function before the remainder is taken.
4049 static inline unsigned long wait_table_bits(unsigned long size)
4051 return ffz(~size);
4055 * Check if a pageblock contains reserved pages
4057 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4059 unsigned long pfn;
4061 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4062 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4063 return 1;
4065 return 0;
4069 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4070 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4071 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4072 * higher will lead to a bigger reserve which will get freed as contiguous
4073 * blocks as reclaim kicks in
4075 static void setup_zone_migrate_reserve(struct zone *zone)
4077 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4078 struct page *page;
4079 unsigned long block_migratetype;
4080 int reserve;
4081 int old_reserve;
4084 * Get the start pfn, end pfn and the number of blocks to reserve
4085 * We have to be careful to be aligned to pageblock_nr_pages to
4086 * make sure that we always check pfn_valid for the first page in
4087 * the block.
4089 start_pfn = zone->zone_start_pfn;
4090 end_pfn = zone_end_pfn(zone);
4091 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4092 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4093 pageblock_order;
4096 * Reserve blocks are generally in place to help high-order atomic
4097 * allocations that are short-lived. A min_free_kbytes value that
4098 * would result in more than 2 reserve blocks for atomic allocations
4099 * is assumed to be in place to help anti-fragmentation for the
4100 * future allocation of hugepages at runtime.
4102 reserve = min(2, reserve);
4103 old_reserve = zone->nr_migrate_reserve_block;
4105 /* When memory hot-add, we almost always need to do nothing */
4106 if (reserve == old_reserve)
4107 return;
4108 zone->nr_migrate_reserve_block = reserve;
4110 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4111 if (!pfn_valid(pfn))
4112 continue;
4113 page = pfn_to_page(pfn);
4115 /* Watch out for overlapping nodes */
4116 if (page_to_nid(page) != zone_to_nid(zone))
4117 continue;
4119 block_migratetype = get_pageblock_migratetype(page);
4121 /* Only test what is necessary when the reserves are not met */
4122 if (reserve > 0) {
4124 * Blocks with reserved pages will never free, skip
4125 * them.
4127 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4128 if (pageblock_is_reserved(pfn, block_end_pfn))
4129 continue;
4131 /* If this block is reserved, account for it */
4132 if (block_migratetype == MIGRATE_RESERVE) {
4133 reserve--;
4134 continue;
4137 /* Suitable for reserving if this block is movable */
4138 if (block_migratetype == MIGRATE_MOVABLE) {
4139 set_pageblock_migratetype(page,
4140 MIGRATE_RESERVE);
4141 move_freepages_block(zone, page,
4142 MIGRATE_RESERVE);
4143 reserve--;
4144 continue;
4146 } else if (!old_reserve) {
4148 * At boot time we don't need to scan the whole zone
4149 * for turning off MIGRATE_RESERVE.
4151 break;
4155 * If the reserve is met and this is a previous reserved block,
4156 * take it back
4158 if (block_migratetype == MIGRATE_RESERVE) {
4159 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4160 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4166 * Initially all pages are reserved - free ones are freed
4167 * up by free_all_bootmem() once the early boot process is
4168 * done. Non-atomic initialization, single-pass.
4170 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4171 unsigned long start_pfn, enum memmap_context context)
4173 struct page *page;
4174 unsigned long end_pfn = start_pfn + size;
4175 unsigned long pfn;
4176 struct zone *z;
4178 if (highest_memmap_pfn < end_pfn - 1)
4179 highest_memmap_pfn = end_pfn - 1;
4181 z = &NODE_DATA(nid)->node_zones[zone];
4182 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4184 * There can be holes in boot-time mem_map[]s
4185 * handed to this function. They do not
4186 * exist on hotplugged memory.
4188 if (context == MEMMAP_EARLY) {
4189 if (!early_pfn_valid(pfn))
4190 continue;
4191 if (!early_pfn_in_nid(pfn, nid))
4192 continue;
4194 page = pfn_to_page(pfn);
4195 set_page_links(page, zone, nid, pfn);
4196 mminit_verify_page_links(page, zone, nid, pfn);
4197 init_page_count(page);
4198 page_mapcount_reset(page);
4199 page_cpupid_reset_last(page);
4200 SetPageReserved(page);
4202 * Mark the block movable so that blocks are reserved for
4203 * movable at startup. This will force kernel allocations
4204 * to reserve their blocks rather than leaking throughout
4205 * the address space during boot when many long-lived
4206 * kernel allocations are made. Later some blocks near
4207 * the start are marked MIGRATE_RESERVE by
4208 * setup_zone_migrate_reserve()
4210 * bitmap is created for zone's valid pfn range. but memmap
4211 * can be created for invalid pages (for alignment)
4212 * check here not to call set_pageblock_migratetype() against
4213 * pfn out of zone.
4215 if ((z->zone_start_pfn <= pfn)
4216 && (pfn < zone_end_pfn(z))
4217 && !(pfn & (pageblock_nr_pages - 1)))
4218 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4220 INIT_LIST_HEAD(&page->lru);
4221 #ifdef WANT_PAGE_VIRTUAL
4222 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4223 if (!is_highmem_idx(zone))
4224 set_page_address(page, __va(pfn << PAGE_SHIFT));
4225 #endif
4229 static void __meminit zone_init_free_lists(struct zone *zone)
4231 unsigned int order, t;
4232 for_each_migratetype_order(order, t) {
4233 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4234 zone->free_area[order].nr_free = 0;
4238 #ifndef __HAVE_ARCH_MEMMAP_INIT
4239 #define memmap_init(size, nid, zone, start_pfn) \
4240 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4241 #endif
4243 static int zone_batchsize(struct zone *zone)
4245 #ifdef CONFIG_MMU
4246 int batch;
4249 * The per-cpu-pages pools are set to around 1000th of the
4250 * size of the zone. But no more than 1/2 of a meg.
4252 * OK, so we don't know how big the cache is. So guess.
4254 batch = zone->managed_pages / 1024;
4255 if (batch * PAGE_SIZE > 512 * 1024)
4256 batch = (512 * 1024) / PAGE_SIZE;
4257 batch /= 4; /* We effectively *= 4 below */
4258 if (batch < 1)
4259 batch = 1;
4262 * Clamp the batch to a 2^n - 1 value. Having a power
4263 * of 2 value was found to be more likely to have
4264 * suboptimal cache aliasing properties in some cases.
4266 * For example if 2 tasks are alternately allocating
4267 * batches of pages, one task can end up with a lot
4268 * of pages of one half of the possible page colors
4269 * and the other with pages of the other colors.
4271 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4273 return batch;
4275 #else
4276 /* The deferral and batching of frees should be suppressed under NOMMU
4277 * conditions.
4279 * The problem is that NOMMU needs to be able to allocate large chunks
4280 * of contiguous memory as there's no hardware page translation to
4281 * assemble apparent contiguous memory from discontiguous pages.
4283 * Queueing large contiguous runs of pages for batching, however,
4284 * causes the pages to actually be freed in smaller chunks. As there
4285 * can be a significant delay between the individual batches being
4286 * recycled, this leads to the once large chunks of space being
4287 * fragmented and becoming unavailable for high-order allocations.
4289 return 0;
4290 #endif
4294 * pcp->high and pcp->batch values are related and dependent on one another:
4295 * ->batch must never be higher then ->high.
4296 * The following function updates them in a safe manner without read side
4297 * locking.
4299 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4300 * those fields changing asynchronously (acording the the above rule).
4302 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4303 * outside of boot time (or some other assurance that no concurrent updaters
4304 * exist).
4306 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4307 unsigned long batch)
4309 /* start with a fail safe value for batch */
4310 pcp->batch = 1;
4311 smp_wmb();
4313 /* Update high, then batch, in order */
4314 pcp->high = high;
4315 smp_wmb();
4317 pcp->batch = batch;
4320 /* a companion to pageset_set_high() */
4321 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4323 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4326 static void pageset_init(struct per_cpu_pageset *p)
4328 struct per_cpu_pages *pcp;
4329 int migratetype;
4331 memset(p, 0, sizeof(*p));
4333 pcp = &p->pcp;
4334 pcp->count = 0;
4335 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4336 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4339 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4341 pageset_init(p);
4342 pageset_set_batch(p, batch);
4346 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4347 * to the value high for the pageset p.
4349 static void pageset_set_high(struct per_cpu_pageset *p,
4350 unsigned long high)
4352 unsigned long batch = max(1UL, high / 4);
4353 if ((high / 4) > (PAGE_SHIFT * 8))
4354 batch = PAGE_SHIFT * 8;
4356 pageset_update(&p->pcp, high, batch);
4359 static void pageset_set_high_and_batch(struct zone *zone,
4360 struct per_cpu_pageset *pcp)
4362 if (percpu_pagelist_fraction)
4363 pageset_set_high(pcp,
4364 (zone->managed_pages /
4365 percpu_pagelist_fraction));
4366 else
4367 pageset_set_batch(pcp, zone_batchsize(zone));
4370 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4374 pageset_init(pcp);
4375 pageset_set_high_and_batch(zone, pcp);
4378 static void __meminit setup_zone_pageset(struct zone *zone)
4380 int cpu;
4381 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4382 for_each_possible_cpu(cpu)
4383 zone_pageset_init(zone, cpu);
4387 * Allocate per cpu pagesets and initialize them.
4388 * Before this call only boot pagesets were available.
4390 void __init setup_per_cpu_pageset(void)
4392 struct zone *zone;
4394 for_each_populated_zone(zone)
4395 setup_zone_pageset(zone);
4398 static noinline __init_refok
4399 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4401 int i;
4402 size_t alloc_size;
4405 * The per-page waitqueue mechanism uses hashed waitqueues
4406 * per zone.
4408 zone->wait_table_hash_nr_entries =
4409 wait_table_hash_nr_entries(zone_size_pages);
4410 zone->wait_table_bits =
4411 wait_table_bits(zone->wait_table_hash_nr_entries);
4412 alloc_size = zone->wait_table_hash_nr_entries
4413 * sizeof(wait_queue_head_t);
4415 if (!slab_is_available()) {
4416 zone->wait_table = (wait_queue_head_t *)
4417 memblock_virt_alloc_node_nopanic(
4418 alloc_size, zone->zone_pgdat->node_id);
4419 } else {
4421 * This case means that a zone whose size was 0 gets new memory
4422 * via memory hot-add.
4423 * But it may be the case that a new node was hot-added. In
4424 * this case vmalloc() will not be able to use this new node's
4425 * memory - this wait_table must be initialized to use this new
4426 * node itself as well.
4427 * To use this new node's memory, further consideration will be
4428 * necessary.
4430 zone->wait_table = vmalloc(alloc_size);
4432 if (!zone->wait_table)
4433 return -ENOMEM;
4435 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4436 init_waitqueue_head(zone->wait_table + i);
4438 return 0;
4441 static __meminit void zone_pcp_init(struct zone *zone)
4444 * per cpu subsystem is not up at this point. The following code
4445 * relies on the ability of the linker to provide the
4446 * offset of a (static) per cpu variable into the per cpu area.
4448 zone->pageset = &boot_pageset;
4450 if (populated_zone(zone))
4451 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4452 zone->name, zone->present_pages,
4453 zone_batchsize(zone));
4456 int __meminit init_currently_empty_zone(struct zone *zone,
4457 unsigned long zone_start_pfn,
4458 unsigned long size,
4459 enum memmap_context context)
4461 struct pglist_data *pgdat = zone->zone_pgdat;
4462 int ret;
4463 ret = zone_wait_table_init(zone, size);
4464 if (ret)
4465 return ret;
4466 pgdat->nr_zones = zone_idx(zone) + 1;
4468 zone->zone_start_pfn = zone_start_pfn;
4470 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4471 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4472 pgdat->node_id,
4473 (unsigned long)zone_idx(zone),
4474 zone_start_pfn, (zone_start_pfn + size));
4476 zone_init_free_lists(zone);
4478 return 0;
4481 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4482 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4484 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4486 int __meminit __early_pfn_to_nid(unsigned long pfn)
4488 unsigned long start_pfn, end_pfn;
4489 int nid;
4491 * NOTE: The following SMP-unsafe globals are only used early in boot
4492 * when the kernel is running single-threaded.
4494 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4495 static int __meminitdata last_nid;
4497 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4498 return last_nid;
4500 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4501 if (nid != -1) {
4502 last_start_pfn = start_pfn;
4503 last_end_pfn = end_pfn;
4504 last_nid = nid;
4507 return nid;
4509 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4511 int __meminit early_pfn_to_nid(unsigned long pfn)
4513 int nid;
4515 nid = __early_pfn_to_nid(pfn);
4516 if (nid >= 0)
4517 return nid;
4518 /* just returns 0 */
4519 return 0;
4522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4523 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4525 int nid;
4527 nid = __early_pfn_to_nid(pfn);
4528 if (nid >= 0 && nid != node)
4529 return false;
4530 return true;
4532 #endif
4535 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4536 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4537 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4539 * If an architecture guarantees that all ranges registered contain no holes
4540 * and may be freed, this this function may be used instead of calling
4541 * memblock_free_early_nid() manually.
4543 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4545 unsigned long start_pfn, end_pfn;
4546 int i, this_nid;
4548 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4549 start_pfn = min(start_pfn, max_low_pfn);
4550 end_pfn = min(end_pfn, max_low_pfn);
4552 if (start_pfn < end_pfn)
4553 memblock_free_early_nid(PFN_PHYS(start_pfn),
4554 (end_pfn - start_pfn) << PAGE_SHIFT,
4555 this_nid);
4560 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4561 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4563 * If an architecture guarantees that all ranges registered contain no holes and may
4564 * be freed, this function may be used instead of calling memory_present() manually.
4566 void __init sparse_memory_present_with_active_regions(int nid)
4568 unsigned long start_pfn, end_pfn;
4569 int i, this_nid;
4571 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4572 memory_present(this_nid, start_pfn, end_pfn);
4576 * get_pfn_range_for_nid - Return the start and end page frames for a node
4577 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4578 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4579 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4581 * It returns the start and end page frame of a node based on information
4582 * provided by memblock_set_node(). If called for a node
4583 * with no available memory, a warning is printed and the start and end
4584 * PFNs will be 0.
4586 void __meminit get_pfn_range_for_nid(unsigned int nid,
4587 unsigned long *start_pfn, unsigned long *end_pfn)
4589 unsigned long this_start_pfn, this_end_pfn;
4590 int i;
4592 *start_pfn = -1UL;
4593 *end_pfn = 0;
4595 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4596 *start_pfn = min(*start_pfn, this_start_pfn);
4597 *end_pfn = max(*end_pfn, this_end_pfn);
4600 if (*start_pfn == -1UL)
4601 *start_pfn = 0;
4605 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4606 * assumption is made that zones within a node are ordered in monotonic
4607 * increasing memory addresses so that the "highest" populated zone is used
4609 static void __init find_usable_zone_for_movable(void)
4611 int zone_index;
4612 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4613 if (zone_index == ZONE_MOVABLE)
4614 continue;
4616 if (arch_zone_highest_possible_pfn[zone_index] >
4617 arch_zone_lowest_possible_pfn[zone_index])
4618 break;
4621 VM_BUG_ON(zone_index == -1);
4622 movable_zone = zone_index;
4626 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4627 * because it is sized independent of architecture. Unlike the other zones,
4628 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4629 * in each node depending on the size of each node and how evenly kernelcore
4630 * is distributed. This helper function adjusts the zone ranges
4631 * provided by the architecture for a given node by using the end of the
4632 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4633 * zones within a node are in order of monotonic increases memory addresses
4635 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4636 unsigned long zone_type,
4637 unsigned long node_start_pfn,
4638 unsigned long node_end_pfn,
4639 unsigned long *zone_start_pfn,
4640 unsigned long *zone_end_pfn)
4642 /* Only adjust if ZONE_MOVABLE is on this node */
4643 if (zone_movable_pfn[nid]) {
4644 /* Size ZONE_MOVABLE */
4645 if (zone_type == ZONE_MOVABLE) {
4646 *zone_start_pfn = zone_movable_pfn[nid];
4647 *zone_end_pfn = min(node_end_pfn,
4648 arch_zone_highest_possible_pfn[movable_zone]);
4650 /* Adjust for ZONE_MOVABLE starting within this range */
4651 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4652 *zone_end_pfn > zone_movable_pfn[nid]) {
4653 *zone_end_pfn = zone_movable_pfn[nid];
4655 /* Check if this whole range is within ZONE_MOVABLE */
4656 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4657 *zone_start_pfn = *zone_end_pfn;
4662 * Return the number of pages a zone spans in a node, including holes
4663 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4665 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4666 unsigned long zone_type,
4667 unsigned long node_start_pfn,
4668 unsigned long node_end_pfn,
4669 unsigned long *ignored)
4671 unsigned long zone_start_pfn, zone_end_pfn;
4673 /* Get the start and end of the zone */
4674 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4675 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4676 adjust_zone_range_for_zone_movable(nid, zone_type,
4677 node_start_pfn, node_end_pfn,
4678 &zone_start_pfn, &zone_end_pfn);
4680 /* Check that this node has pages within the zone's required range */
4681 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4682 return 0;
4684 /* Move the zone boundaries inside the node if necessary */
4685 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4686 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4688 /* Return the spanned pages */
4689 return zone_end_pfn - zone_start_pfn;
4693 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4694 * then all holes in the requested range will be accounted for.
4696 unsigned long __meminit __absent_pages_in_range(int nid,
4697 unsigned long range_start_pfn,
4698 unsigned long range_end_pfn)
4700 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4701 unsigned long start_pfn, end_pfn;
4702 int i;
4704 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4705 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4706 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4707 nr_absent -= end_pfn - start_pfn;
4709 return nr_absent;
4713 * absent_pages_in_range - Return number of page frames in holes within a range
4714 * @start_pfn: The start PFN to start searching for holes
4715 * @end_pfn: The end PFN to stop searching for holes
4717 * It returns the number of pages frames in memory holes within a range.
4719 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4720 unsigned long end_pfn)
4722 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4725 /* Return the number of page frames in holes in a zone on a node */
4726 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4727 unsigned long zone_type,
4728 unsigned long node_start_pfn,
4729 unsigned long node_end_pfn,
4730 unsigned long *ignored)
4732 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4733 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4734 unsigned long zone_start_pfn, zone_end_pfn;
4736 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4737 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4739 adjust_zone_range_for_zone_movable(nid, zone_type,
4740 node_start_pfn, node_end_pfn,
4741 &zone_start_pfn, &zone_end_pfn);
4742 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4745 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4746 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4747 unsigned long zone_type,
4748 unsigned long node_start_pfn,
4749 unsigned long node_end_pfn,
4750 unsigned long *zones_size)
4752 return zones_size[zone_type];
4755 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4756 unsigned long zone_type,
4757 unsigned long node_start_pfn,
4758 unsigned long node_end_pfn,
4759 unsigned long *zholes_size)
4761 if (!zholes_size)
4762 return 0;
4764 return zholes_size[zone_type];
4767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4769 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4770 unsigned long node_start_pfn,
4771 unsigned long node_end_pfn,
4772 unsigned long *zones_size,
4773 unsigned long *zholes_size)
4775 unsigned long realtotalpages, totalpages = 0;
4776 enum zone_type i;
4778 for (i = 0; i < MAX_NR_ZONES; i++)
4779 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4780 node_start_pfn,
4781 node_end_pfn,
4782 zones_size);
4783 pgdat->node_spanned_pages = totalpages;
4785 realtotalpages = totalpages;
4786 for (i = 0; i < MAX_NR_ZONES; i++)
4787 realtotalpages -=
4788 zone_absent_pages_in_node(pgdat->node_id, i,
4789 node_start_pfn, node_end_pfn,
4790 zholes_size);
4791 pgdat->node_present_pages = realtotalpages;
4792 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4793 realtotalpages);
4796 #ifndef CONFIG_SPARSEMEM
4798 * Calculate the size of the zone->blockflags rounded to an unsigned long
4799 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4800 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4801 * round what is now in bits to nearest long in bits, then return it in
4802 * bytes.
4804 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4806 unsigned long usemapsize;
4808 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4809 usemapsize = roundup(zonesize, pageblock_nr_pages);
4810 usemapsize = usemapsize >> pageblock_order;
4811 usemapsize *= NR_PAGEBLOCK_BITS;
4812 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4814 return usemapsize / 8;
4817 static void __init setup_usemap(struct pglist_data *pgdat,
4818 struct zone *zone,
4819 unsigned long zone_start_pfn,
4820 unsigned long zonesize)
4822 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4823 zone->pageblock_flags = NULL;
4824 if (usemapsize)
4825 zone->pageblock_flags =
4826 memblock_virt_alloc_node_nopanic(usemapsize,
4827 pgdat->node_id);
4829 #else
4830 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4831 unsigned long zone_start_pfn, unsigned long zonesize) {}
4832 #endif /* CONFIG_SPARSEMEM */
4834 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4836 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4837 void __paginginit set_pageblock_order(void)
4839 unsigned int order;
4841 /* Check that pageblock_nr_pages has not already been setup */
4842 if (pageblock_order)
4843 return;
4845 if (HPAGE_SHIFT > PAGE_SHIFT)
4846 order = HUGETLB_PAGE_ORDER;
4847 else
4848 order = MAX_ORDER - 1;
4851 * Assume the largest contiguous order of interest is a huge page.
4852 * This value may be variable depending on boot parameters on IA64 and
4853 * powerpc.
4855 pageblock_order = order;
4857 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4860 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4861 * is unused as pageblock_order is set at compile-time. See
4862 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4863 * the kernel config
4865 void __paginginit set_pageblock_order(void)
4869 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4871 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4872 unsigned long present_pages)
4874 unsigned long pages = spanned_pages;
4877 * Provide a more accurate estimation if there are holes within
4878 * the zone and SPARSEMEM is in use. If there are holes within the
4879 * zone, each populated memory region may cost us one or two extra
4880 * memmap pages due to alignment because memmap pages for each
4881 * populated regions may not naturally algined on page boundary.
4882 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4884 if (spanned_pages > present_pages + (present_pages >> 4) &&
4885 IS_ENABLED(CONFIG_SPARSEMEM))
4886 pages = present_pages;
4888 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4892 * Set up the zone data structures:
4893 * - mark all pages reserved
4894 * - mark all memory queues empty
4895 * - clear the memory bitmaps
4897 * NOTE: pgdat should get zeroed by caller.
4899 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4900 unsigned long node_start_pfn, unsigned long node_end_pfn,
4901 unsigned long *zones_size, unsigned long *zholes_size)
4903 enum zone_type j;
4904 int nid = pgdat->node_id;
4905 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4906 int ret;
4908 pgdat_resize_init(pgdat);
4909 #ifdef CONFIG_NUMA_BALANCING
4910 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4911 pgdat->numabalancing_migrate_nr_pages = 0;
4912 pgdat->numabalancing_migrate_next_window = jiffies;
4913 #endif
4914 init_waitqueue_head(&pgdat->kswapd_wait);
4915 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4916 pgdat_page_ext_init(pgdat);
4918 for (j = 0; j < MAX_NR_ZONES; j++) {
4919 struct zone *zone = pgdat->node_zones + j;
4920 unsigned long size, realsize, freesize, memmap_pages;
4922 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4923 node_end_pfn, zones_size);
4924 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4925 node_start_pfn,
4926 node_end_pfn,
4927 zholes_size);
4930 * Adjust freesize so that it accounts for how much memory
4931 * is used by this zone for memmap. This affects the watermark
4932 * and per-cpu initialisations
4934 memmap_pages = calc_memmap_size(size, realsize);
4935 if (!is_highmem_idx(j)) {
4936 if (freesize >= memmap_pages) {
4937 freesize -= memmap_pages;
4938 if (memmap_pages)
4939 printk(KERN_DEBUG
4940 " %s zone: %lu pages used for memmap\n",
4941 zone_names[j], memmap_pages);
4942 } else
4943 printk(KERN_WARNING
4944 " %s zone: %lu pages exceeds freesize %lu\n",
4945 zone_names[j], memmap_pages, freesize);
4948 /* Account for reserved pages */
4949 if (j == 0 && freesize > dma_reserve) {
4950 freesize -= dma_reserve;
4951 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4952 zone_names[0], dma_reserve);
4955 if (!is_highmem_idx(j))
4956 nr_kernel_pages += freesize;
4957 /* Charge for highmem memmap if there are enough kernel pages */
4958 else if (nr_kernel_pages > memmap_pages * 2)
4959 nr_kernel_pages -= memmap_pages;
4960 nr_all_pages += freesize;
4962 zone->spanned_pages = size;
4963 zone->present_pages = realsize;
4965 * Set an approximate value for lowmem here, it will be adjusted
4966 * when the bootmem allocator frees pages into the buddy system.
4967 * And all highmem pages will be managed by the buddy system.
4969 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4970 #ifdef CONFIG_NUMA
4971 zone->node = nid;
4972 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4973 / 100;
4974 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4975 #endif
4976 zone->name = zone_names[j];
4977 spin_lock_init(&zone->lock);
4978 spin_lock_init(&zone->lru_lock);
4979 zone_seqlock_init(zone);
4980 zone->zone_pgdat = pgdat;
4981 zone_pcp_init(zone);
4983 /* For bootup, initialized properly in watermark setup */
4984 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4986 lruvec_init(&zone->lruvec);
4987 if (!size)
4988 continue;
4990 set_pageblock_order();
4991 setup_usemap(pgdat, zone, zone_start_pfn, size);
4992 ret = init_currently_empty_zone(zone, zone_start_pfn,
4993 size, MEMMAP_EARLY);
4994 BUG_ON(ret);
4995 memmap_init(size, nid, j, zone_start_pfn);
4996 zone_start_pfn += size;
5000 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5002 /* Skip empty nodes */
5003 if (!pgdat->node_spanned_pages)
5004 return;
5006 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5007 /* ia64 gets its own node_mem_map, before this, without bootmem */
5008 if (!pgdat->node_mem_map) {
5009 unsigned long size, start, end;
5010 struct page *map;
5013 * The zone's endpoints aren't required to be MAX_ORDER
5014 * aligned but the node_mem_map endpoints must be in order
5015 * for the buddy allocator to function correctly.
5017 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5018 end = pgdat_end_pfn(pgdat);
5019 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5020 size = (end - start) * sizeof(struct page);
5021 map = alloc_remap(pgdat->node_id, size);
5022 if (!map)
5023 map = memblock_virt_alloc_node_nopanic(size,
5024 pgdat->node_id);
5025 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5027 #ifndef CONFIG_NEED_MULTIPLE_NODES
5029 * With no DISCONTIG, the global mem_map is just set as node 0's
5031 if (pgdat == NODE_DATA(0)) {
5032 mem_map = NODE_DATA(0)->node_mem_map;
5033 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5034 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5035 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5036 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5038 #endif
5039 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5042 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5043 unsigned long node_start_pfn, unsigned long *zholes_size)
5045 pg_data_t *pgdat = NODE_DATA(nid);
5046 unsigned long start_pfn = 0;
5047 unsigned long end_pfn = 0;
5049 /* pg_data_t should be reset to zero when it's allocated */
5050 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5052 pgdat->node_id = nid;
5053 pgdat->node_start_pfn = node_start_pfn;
5054 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5055 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5056 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5057 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5058 #endif
5059 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5060 zones_size, zholes_size);
5062 alloc_node_mem_map(pgdat);
5063 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5064 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5065 nid, (unsigned long)pgdat,
5066 (unsigned long)pgdat->node_mem_map);
5067 #endif
5069 free_area_init_core(pgdat, start_pfn, end_pfn,
5070 zones_size, zholes_size);
5073 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5075 #if MAX_NUMNODES > 1
5077 * Figure out the number of possible node ids.
5079 void __init setup_nr_node_ids(void)
5081 unsigned int node;
5082 unsigned int highest = 0;
5084 for_each_node_mask(node, node_possible_map)
5085 highest = node;
5086 nr_node_ids = highest + 1;
5088 #endif
5091 * node_map_pfn_alignment - determine the maximum internode alignment
5093 * This function should be called after node map is populated and sorted.
5094 * It calculates the maximum power of two alignment which can distinguish
5095 * all the nodes.
5097 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5098 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5099 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5100 * shifted, 1GiB is enough and this function will indicate so.
5102 * This is used to test whether pfn -> nid mapping of the chosen memory
5103 * model has fine enough granularity to avoid incorrect mapping for the
5104 * populated node map.
5106 * Returns the determined alignment in pfn's. 0 if there is no alignment
5107 * requirement (single node).
5109 unsigned long __init node_map_pfn_alignment(void)
5111 unsigned long accl_mask = 0, last_end = 0;
5112 unsigned long start, end, mask;
5113 int last_nid = -1;
5114 int i, nid;
5116 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5117 if (!start || last_nid < 0 || last_nid == nid) {
5118 last_nid = nid;
5119 last_end = end;
5120 continue;
5124 * Start with a mask granular enough to pin-point to the
5125 * start pfn and tick off bits one-by-one until it becomes
5126 * too coarse to separate the current node from the last.
5128 mask = ~((1 << __ffs(start)) - 1);
5129 while (mask && last_end <= (start & (mask << 1)))
5130 mask <<= 1;
5132 /* accumulate all internode masks */
5133 accl_mask |= mask;
5136 /* convert mask to number of pages */
5137 return ~accl_mask + 1;
5140 /* Find the lowest pfn for a node */
5141 static unsigned long __init find_min_pfn_for_node(int nid)
5143 unsigned long min_pfn = ULONG_MAX;
5144 unsigned long start_pfn;
5145 int i;
5147 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5148 min_pfn = min(min_pfn, start_pfn);
5150 if (min_pfn == ULONG_MAX) {
5151 printk(KERN_WARNING
5152 "Could not find start_pfn for node %d\n", nid);
5153 return 0;
5156 return min_pfn;
5160 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5162 * It returns the minimum PFN based on information provided via
5163 * memblock_set_node().
5165 unsigned long __init find_min_pfn_with_active_regions(void)
5167 return find_min_pfn_for_node(MAX_NUMNODES);
5171 * early_calculate_totalpages()
5172 * Sum pages in active regions for movable zone.
5173 * Populate N_MEMORY for calculating usable_nodes.
5175 static unsigned long __init early_calculate_totalpages(void)
5177 unsigned long totalpages = 0;
5178 unsigned long start_pfn, end_pfn;
5179 int i, nid;
5181 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5182 unsigned long pages = end_pfn - start_pfn;
5184 totalpages += pages;
5185 if (pages)
5186 node_set_state(nid, N_MEMORY);
5188 return totalpages;
5192 * Find the PFN the Movable zone begins in each node. Kernel memory
5193 * is spread evenly between nodes as long as the nodes have enough
5194 * memory. When they don't, some nodes will have more kernelcore than
5195 * others
5197 static void __init find_zone_movable_pfns_for_nodes(void)
5199 int i, nid;
5200 unsigned long usable_startpfn;
5201 unsigned long kernelcore_node, kernelcore_remaining;
5202 /* save the state before borrow the nodemask */
5203 nodemask_t saved_node_state = node_states[N_MEMORY];
5204 unsigned long totalpages = early_calculate_totalpages();
5205 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5206 struct memblock_region *r;
5208 /* Need to find movable_zone earlier when movable_node is specified. */
5209 find_usable_zone_for_movable();
5212 * If movable_node is specified, ignore kernelcore and movablecore
5213 * options.
5215 if (movable_node_is_enabled()) {
5216 for_each_memblock(memory, r) {
5217 if (!memblock_is_hotpluggable(r))
5218 continue;
5220 nid = r->nid;
5222 usable_startpfn = PFN_DOWN(r->base);
5223 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5224 min(usable_startpfn, zone_movable_pfn[nid]) :
5225 usable_startpfn;
5228 goto out2;
5232 * If movablecore=nn[KMG] was specified, calculate what size of
5233 * kernelcore that corresponds so that memory usable for
5234 * any allocation type is evenly spread. If both kernelcore
5235 * and movablecore are specified, then the value of kernelcore
5236 * will be used for required_kernelcore if it's greater than
5237 * what movablecore would have allowed.
5239 if (required_movablecore) {
5240 unsigned long corepages;
5243 * Round-up so that ZONE_MOVABLE is at least as large as what
5244 * was requested by the user
5246 required_movablecore =
5247 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5248 corepages = totalpages - required_movablecore;
5250 required_kernelcore = max(required_kernelcore, corepages);
5253 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5254 if (!required_kernelcore)
5255 goto out;
5257 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5258 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5260 restart:
5261 /* Spread kernelcore memory as evenly as possible throughout nodes */
5262 kernelcore_node = required_kernelcore / usable_nodes;
5263 for_each_node_state(nid, N_MEMORY) {
5264 unsigned long start_pfn, end_pfn;
5267 * Recalculate kernelcore_node if the division per node
5268 * now exceeds what is necessary to satisfy the requested
5269 * amount of memory for the kernel
5271 if (required_kernelcore < kernelcore_node)
5272 kernelcore_node = required_kernelcore / usable_nodes;
5275 * As the map is walked, we track how much memory is usable
5276 * by the kernel using kernelcore_remaining. When it is
5277 * 0, the rest of the node is usable by ZONE_MOVABLE
5279 kernelcore_remaining = kernelcore_node;
5281 /* Go through each range of PFNs within this node */
5282 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5283 unsigned long size_pages;
5285 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5286 if (start_pfn >= end_pfn)
5287 continue;
5289 /* Account for what is only usable for kernelcore */
5290 if (start_pfn < usable_startpfn) {
5291 unsigned long kernel_pages;
5292 kernel_pages = min(end_pfn, usable_startpfn)
5293 - start_pfn;
5295 kernelcore_remaining -= min(kernel_pages,
5296 kernelcore_remaining);
5297 required_kernelcore -= min(kernel_pages,
5298 required_kernelcore);
5300 /* Continue if range is now fully accounted */
5301 if (end_pfn <= usable_startpfn) {
5304 * Push zone_movable_pfn to the end so
5305 * that if we have to rebalance
5306 * kernelcore across nodes, we will
5307 * not double account here
5309 zone_movable_pfn[nid] = end_pfn;
5310 continue;
5312 start_pfn = usable_startpfn;
5316 * The usable PFN range for ZONE_MOVABLE is from
5317 * start_pfn->end_pfn. Calculate size_pages as the
5318 * number of pages used as kernelcore
5320 size_pages = end_pfn - start_pfn;
5321 if (size_pages > kernelcore_remaining)
5322 size_pages = kernelcore_remaining;
5323 zone_movable_pfn[nid] = start_pfn + size_pages;
5326 * Some kernelcore has been met, update counts and
5327 * break if the kernelcore for this node has been
5328 * satisfied
5330 required_kernelcore -= min(required_kernelcore,
5331 size_pages);
5332 kernelcore_remaining -= size_pages;
5333 if (!kernelcore_remaining)
5334 break;
5339 * If there is still required_kernelcore, we do another pass with one
5340 * less node in the count. This will push zone_movable_pfn[nid] further
5341 * along on the nodes that still have memory until kernelcore is
5342 * satisfied
5344 usable_nodes--;
5345 if (usable_nodes && required_kernelcore > usable_nodes)
5346 goto restart;
5348 out2:
5349 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5350 for (nid = 0; nid < MAX_NUMNODES; nid++)
5351 zone_movable_pfn[nid] =
5352 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5354 out:
5355 /* restore the node_state */
5356 node_states[N_MEMORY] = saved_node_state;
5359 /* Any regular or high memory on that node ? */
5360 static void check_for_memory(pg_data_t *pgdat, int nid)
5362 enum zone_type zone_type;
5364 if (N_MEMORY == N_NORMAL_MEMORY)
5365 return;
5367 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5368 struct zone *zone = &pgdat->node_zones[zone_type];
5369 if (populated_zone(zone)) {
5370 node_set_state(nid, N_HIGH_MEMORY);
5371 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5372 zone_type <= ZONE_NORMAL)
5373 node_set_state(nid, N_NORMAL_MEMORY);
5374 break;
5380 * free_area_init_nodes - Initialise all pg_data_t and zone data
5381 * @max_zone_pfn: an array of max PFNs for each zone
5383 * This will call free_area_init_node() for each active node in the system.
5384 * Using the page ranges provided by memblock_set_node(), the size of each
5385 * zone in each node and their holes is calculated. If the maximum PFN
5386 * between two adjacent zones match, it is assumed that the zone is empty.
5387 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5388 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5389 * starts where the previous one ended. For example, ZONE_DMA32 starts
5390 * at arch_max_dma_pfn.
5392 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5394 unsigned long start_pfn, end_pfn;
5395 int i, nid;
5397 /* Record where the zone boundaries are */
5398 memset(arch_zone_lowest_possible_pfn, 0,
5399 sizeof(arch_zone_lowest_possible_pfn));
5400 memset(arch_zone_highest_possible_pfn, 0,
5401 sizeof(arch_zone_highest_possible_pfn));
5402 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5403 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5404 for (i = 1; i < MAX_NR_ZONES; i++) {
5405 if (i == ZONE_MOVABLE)
5406 continue;
5407 arch_zone_lowest_possible_pfn[i] =
5408 arch_zone_highest_possible_pfn[i-1];
5409 arch_zone_highest_possible_pfn[i] =
5410 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5412 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5413 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5415 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5416 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5417 find_zone_movable_pfns_for_nodes();
5419 /* Print out the zone ranges */
5420 pr_info("Zone ranges:\n");
5421 for (i = 0; i < MAX_NR_ZONES; i++) {
5422 if (i == ZONE_MOVABLE)
5423 continue;
5424 pr_info(" %-8s ", zone_names[i]);
5425 if (arch_zone_lowest_possible_pfn[i] ==
5426 arch_zone_highest_possible_pfn[i])
5427 pr_cont("empty\n");
5428 else
5429 pr_cont("[mem %#018Lx-%#018Lx]\n",
5430 (u64)arch_zone_lowest_possible_pfn[i]
5431 << PAGE_SHIFT,
5432 ((u64)arch_zone_highest_possible_pfn[i]
5433 << PAGE_SHIFT) - 1);
5436 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5437 pr_info("Movable zone start for each node\n");
5438 for (i = 0; i < MAX_NUMNODES; i++) {
5439 if (zone_movable_pfn[i])
5440 pr_info(" Node %d: %#018Lx\n", i,
5441 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5444 /* Print out the early node map */
5445 pr_info("Early memory node ranges\n");
5446 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5447 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5448 (u64)start_pfn << PAGE_SHIFT,
5449 ((u64)end_pfn << PAGE_SHIFT) - 1);
5451 /* Initialise every node */
5452 mminit_verify_pageflags_layout();
5453 setup_nr_node_ids();
5454 for_each_online_node(nid) {
5455 pg_data_t *pgdat = NODE_DATA(nid);
5456 free_area_init_node(nid, NULL,
5457 find_min_pfn_for_node(nid), NULL);
5459 /* Any memory on that node */
5460 if (pgdat->node_present_pages)
5461 node_set_state(nid, N_MEMORY);
5462 check_for_memory(pgdat, nid);
5466 static int __init cmdline_parse_core(char *p, unsigned long *core)
5468 unsigned long long coremem;
5469 if (!p)
5470 return -EINVAL;
5472 coremem = memparse(p, &p);
5473 *core = coremem >> PAGE_SHIFT;
5475 /* Paranoid check that UL is enough for the coremem value */
5476 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5478 return 0;
5482 * kernelcore=size sets the amount of memory for use for allocations that
5483 * cannot be reclaimed or migrated.
5485 static int __init cmdline_parse_kernelcore(char *p)
5487 return cmdline_parse_core(p, &required_kernelcore);
5491 * movablecore=size sets the amount of memory for use for allocations that
5492 * can be reclaimed or migrated.
5494 static int __init cmdline_parse_movablecore(char *p)
5496 return cmdline_parse_core(p, &required_movablecore);
5499 early_param("kernelcore", cmdline_parse_kernelcore);
5500 early_param("movablecore", cmdline_parse_movablecore);
5502 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5504 void adjust_managed_page_count(struct page *page, long count)
5506 spin_lock(&managed_page_count_lock);
5507 page_zone(page)->managed_pages += count;
5508 totalram_pages += count;
5509 #ifdef CONFIG_HIGHMEM
5510 if (PageHighMem(page))
5511 totalhigh_pages += count;
5512 #endif
5513 spin_unlock(&managed_page_count_lock);
5515 EXPORT_SYMBOL(adjust_managed_page_count);
5517 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5519 void *pos;
5520 unsigned long pages = 0;
5522 start = (void *)PAGE_ALIGN((unsigned long)start);
5523 end = (void *)((unsigned long)end & PAGE_MASK);
5524 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5525 if ((unsigned int)poison <= 0xFF)
5526 memset(pos, poison, PAGE_SIZE);
5527 free_reserved_page(virt_to_page(pos));
5530 if (pages && s)
5531 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5532 s, pages << (PAGE_SHIFT - 10), start, end);
5534 return pages;
5536 EXPORT_SYMBOL(free_reserved_area);
5538 #ifdef CONFIG_HIGHMEM
5539 void free_highmem_page(struct page *page)
5541 __free_reserved_page(page);
5542 totalram_pages++;
5543 page_zone(page)->managed_pages++;
5544 totalhigh_pages++;
5546 #endif
5549 void __init mem_init_print_info(const char *str)
5551 unsigned long physpages, codesize, datasize, rosize, bss_size;
5552 unsigned long init_code_size, init_data_size;
5554 physpages = get_num_physpages();
5555 codesize = _etext - _stext;
5556 datasize = _edata - _sdata;
5557 rosize = __end_rodata - __start_rodata;
5558 bss_size = __bss_stop - __bss_start;
5559 init_data_size = __init_end - __init_begin;
5560 init_code_size = _einittext - _sinittext;
5563 * Detect special cases and adjust section sizes accordingly:
5564 * 1) .init.* may be embedded into .data sections
5565 * 2) .init.text.* may be out of [__init_begin, __init_end],
5566 * please refer to arch/tile/kernel/vmlinux.lds.S.
5567 * 3) .rodata.* may be embedded into .text or .data sections.
5569 #define adj_init_size(start, end, size, pos, adj) \
5570 do { \
5571 if (start <= pos && pos < end && size > adj) \
5572 size -= adj; \
5573 } while (0)
5575 adj_init_size(__init_begin, __init_end, init_data_size,
5576 _sinittext, init_code_size);
5577 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5578 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5579 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5580 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5582 #undef adj_init_size
5584 pr_info("Memory: %luK/%luK available "
5585 "(%luK kernel code, %luK rwdata, %luK rodata, "
5586 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5587 #ifdef CONFIG_HIGHMEM
5588 ", %luK highmem"
5589 #endif
5590 "%s%s)\n",
5591 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5592 codesize >> 10, datasize >> 10, rosize >> 10,
5593 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5594 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5595 totalcma_pages << (PAGE_SHIFT-10),
5596 #ifdef CONFIG_HIGHMEM
5597 totalhigh_pages << (PAGE_SHIFT-10),
5598 #endif
5599 str ? ", " : "", str ? str : "");
5603 * set_dma_reserve - set the specified number of pages reserved in the first zone
5604 * @new_dma_reserve: The number of pages to mark reserved
5606 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5607 * In the DMA zone, a significant percentage may be consumed by kernel image
5608 * and other unfreeable allocations which can skew the watermarks badly. This
5609 * function may optionally be used to account for unfreeable pages in the
5610 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5611 * smaller per-cpu batchsize.
5613 void __init set_dma_reserve(unsigned long new_dma_reserve)
5615 dma_reserve = new_dma_reserve;
5618 void __init free_area_init(unsigned long *zones_size)
5620 free_area_init_node(0, zones_size,
5621 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5624 static int page_alloc_cpu_notify(struct notifier_block *self,
5625 unsigned long action, void *hcpu)
5627 int cpu = (unsigned long)hcpu;
5629 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5630 lru_add_drain_cpu(cpu);
5631 drain_pages(cpu);
5634 * Spill the event counters of the dead processor
5635 * into the current processors event counters.
5636 * This artificially elevates the count of the current
5637 * processor.
5639 vm_events_fold_cpu(cpu);
5642 * Zero the differential counters of the dead processor
5643 * so that the vm statistics are consistent.
5645 * This is only okay since the processor is dead and cannot
5646 * race with what we are doing.
5648 cpu_vm_stats_fold(cpu);
5650 return NOTIFY_OK;
5653 void __init page_alloc_init(void)
5655 hotcpu_notifier(page_alloc_cpu_notify, 0);
5659 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5660 * or min_free_kbytes changes.
5662 static void calculate_totalreserve_pages(void)
5664 struct pglist_data *pgdat;
5665 unsigned long reserve_pages = 0;
5666 enum zone_type i, j;
5668 for_each_online_pgdat(pgdat) {
5669 for (i = 0; i < MAX_NR_ZONES; i++) {
5670 struct zone *zone = pgdat->node_zones + i;
5671 long max = 0;
5673 /* Find valid and maximum lowmem_reserve in the zone */
5674 for (j = i; j < MAX_NR_ZONES; j++) {
5675 if (zone->lowmem_reserve[j] > max)
5676 max = zone->lowmem_reserve[j];
5679 /* we treat the high watermark as reserved pages. */
5680 max += high_wmark_pages(zone);
5682 if (max > zone->managed_pages)
5683 max = zone->managed_pages;
5684 reserve_pages += max;
5686 * Lowmem reserves are not available to
5687 * GFP_HIGHUSER page cache allocations and
5688 * kswapd tries to balance zones to their high
5689 * watermark. As a result, neither should be
5690 * regarded as dirtyable memory, to prevent a
5691 * situation where reclaim has to clean pages
5692 * in order to balance the zones.
5694 zone->dirty_balance_reserve = max;
5697 dirty_balance_reserve = reserve_pages;
5698 totalreserve_pages = reserve_pages;
5702 * setup_per_zone_lowmem_reserve - called whenever
5703 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5704 * has a correct pages reserved value, so an adequate number of
5705 * pages are left in the zone after a successful __alloc_pages().
5707 static void setup_per_zone_lowmem_reserve(void)
5709 struct pglist_data *pgdat;
5710 enum zone_type j, idx;
5712 for_each_online_pgdat(pgdat) {
5713 for (j = 0; j < MAX_NR_ZONES; j++) {
5714 struct zone *zone = pgdat->node_zones + j;
5715 unsigned long managed_pages = zone->managed_pages;
5717 zone->lowmem_reserve[j] = 0;
5719 idx = j;
5720 while (idx) {
5721 struct zone *lower_zone;
5723 idx--;
5725 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5726 sysctl_lowmem_reserve_ratio[idx] = 1;
5728 lower_zone = pgdat->node_zones + idx;
5729 lower_zone->lowmem_reserve[j] = managed_pages /
5730 sysctl_lowmem_reserve_ratio[idx];
5731 managed_pages += lower_zone->managed_pages;
5736 /* update totalreserve_pages */
5737 calculate_totalreserve_pages();
5740 static void __setup_per_zone_wmarks(void)
5742 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5743 unsigned long lowmem_pages = 0;
5744 struct zone *zone;
5745 unsigned long flags;
5747 /* Calculate total number of !ZONE_HIGHMEM pages */
5748 for_each_zone(zone) {
5749 if (!is_highmem(zone))
5750 lowmem_pages += zone->managed_pages;
5753 for_each_zone(zone) {
5754 u64 tmp;
5756 spin_lock_irqsave(&zone->lock, flags);
5757 tmp = (u64)pages_min * zone->managed_pages;
5758 do_div(tmp, lowmem_pages);
5759 if (is_highmem(zone)) {
5761 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5762 * need highmem pages, so cap pages_min to a small
5763 * value here.
5765 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5766 * deltas control asynch page reclaim, and so should
5767 * not be capped for highmem.
5769 unsigned long min_pages;
5771 min_pages = zone->managed_pages / 1024;
5772 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5773 zone->watermark[WMARK_MIN] = min_pages;
5774 } else {
5776 * If it's a lowmem zone, reserve a number of pages
5777 * proportionate to the zone's size.
5779 zone->watermark[WMARK_MIN] = tmp;
5782 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5783 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5785 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5786 high_wmark_pages(zone) - low_wmark_pages(zone) -
5787 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5789 setup_zone_migrate_reserve(zone);
5790 spin_unlock_irqrestore(&zone->lock, flags);
5793 /* update totalreserve_pages */
5794 calculate_totalreserve_pages();
5798 * setup_per_zone_wmarks - called when min_free_kbytes changes
5799 * or when memory is hot-{added|removed}
5801 * Ensures that the watermark[min,low,high] values for each zone are set
5802 * correctly with respect to min_free_kbytes.
5804 void setup_per_zone_wmarks(void)
5806 mutex_lock(&zonelists_mutex);
5807 __setup_per_zone_wmarks();
5808 mutex_unlock(&zonelists_mutex);
5812 * The inactive anon list should be small enough that the VM never has to
5813 * do too much work, but large enough that each inactive page has a chance
5814 * to be referenced again before it is swapped out.
5816 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5817 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5818 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5819 * the anonymous pages are kept on the inactive list.
5821 * total target max
5822 * memory ratio inactive anon
5823 * -------------------------------------
5824 * 10MB 1 5MB
5825 * 100MB 1 50MB
5826 * 1GB 3 250MB
5827 * 10GB 10 0.9GB
5828 * 100GB 31 3GB
5829 * 1TB 101 10GB
5830 * 10TB 320 32GB
5832 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5834 unsigned int gb, ratio;
5836 /* Zone size in gigabytes */
5837 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5838 if (gb)
5839 ratio = int_sqrt(10 * gb);
5840 else
5841 ratio = 1;
5843 zone->inactive_ratio = ratio;
5846 static void __meminit setup_per_zone_inactive_ratio(void)
5848 struct zone *zone;
5850 for_each_zone(zone)
5851 calculate_zone_inactive_ratio(zone);
5855 * Initialise min_free_kbytes.
5857 * For small machines we want it small (128k min). For large machines
5858 * we want it large (64MB max). But it is not linear, because network
5859 * bandwidth does not increase linearly with machine size. We use
5861 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5862 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5864 * which yields
5866 * 16MB: 512k
5867 * 32MB: 724k
5868 * 64MB: 1024k
5869 * 128MB: 1448k
5870 * 256MB: 2048k
5871 * 512MB: 2896k
5872 * 1024MB: 4096k
5873 * 2048MB: 5792k
5874 * 4096MB: 8192k
5875 * 8192MB: 11584k
5876 * 16384MB: 16384k
5878 int __meminit init_per_zone_wmark_min(void)
5880 unsigned long lowmem_kbytes;
5881 int new_min_free_kbytes;
5883 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5884 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5886 if (new_min_free_kbytes > user_min_free_kbytes) {
5887 min_free_kbytes = new_min_free_kbytes;
5888 if (min_free_kbytes < 128)
5889 min_free_kbytes = 128;
5890 if (min_free_kbytes > 65536)
5891 min_free_kbytes = 65536;
5892 } else {
5893 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5894 new_min_free_kbytes, user_min_free_kbytes);
5896 setup_per_zone_wmarks();
5897 refresh_zone_stat_thresholds();
5898 setup_per_zone_lowmem_reserve();
5899 setup_per_zone_inactive_ratio();
5900 return 0;
5902 module_init(init_per_zone_wmark_min)
5905 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5906 * that we can call two helper functions whenever min_free_kbytes
5907 * changes.
5909 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5910 void __user *buffer, size_t *length, loff_t *ppos)
5912 int rc;
5914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5915 if (rc)
5916 return rc;
5918 if (write) {
5919 user_min_free_kbytes = min_free_kbytes;
5920 setup_per_zone_wmarks();
5922 return 0;
5925 #ifdef CONFIG_NUMA
5926 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5927 void __user *buffer, size_t *length, loff_t *ppos)
5929 struct zone *zone;
5930 int rc;
5932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5933 if (rc)
5934 return rc;
5936 for_each_zone(zone)
5937 zone->min_unmapped_pages = (zone->managed_pages *
5938 sysctl_min_unmapped_ratio) / 100;
5939 return 0;
5942 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5943 void __user *buffer, size_t *length, loff_t *ppos)
5945 struct zone *zone;
5946 int rc;
5948 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5949 if (rc)
5950 return rc;
5952 for_each_zone(zone)
5953 zone->min_slab_pages = (zone->managed_pages *
5954 sysctl_min_slab_ratio) / 100;
5955 return 0;
5957 #endif
5960 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5961 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5962 * whenever sysctl_lowmem_reserve_ratio changes.
5964 * The reserve ratio obviously has absolutely no relation with the
5965 * minimum watermarks. The lowmem reserve ratio can only make sense
5966 * if in function of the boot time zone sizes.
5968 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5969 void __user *buffer, size_t *length, loff_t *ppos)
5971 proc_dointvec_minmax(table, write, buffer, length, ppos);
5972 setup_per_zone_lowmem_reserve();
5973 return 0;
5977 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5978 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5979 * pagelist can have before it gets flushed back to buddy allocator.
5981 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5982 void __user *buffer, size_t *length, loff_t *ppos)
5984 struct zone *zone;
5985 int old_percpu_pagelist_fraction;
5986 int ret;
5988 mutex_lock(&pcp_batch_high_lock);
5989 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5991 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5992 if (!write || ret < 0)
5993 goto out;
5995 /* Sanity checking to avoid pcp imbalance */
5996 if (percpu_pagelist_fraction &&
5997 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5998 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5999 ret = -EINVAL;
6000 goto out;
6003 /* No change? */
6004 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6005 goto out;
6007 for_each_populated_zone(zone) {
6008 unsigned int cpu;
6010 for_each_possible_cpu(cpu)
6011 pageset_set_high_and_batch(zone,
6012 per_cpu_ptr(zone->pageset, cpu));
6014 out:
6015 mutex_unlock(&pcp_batch_high_lock);
6016 return ret;
6019 int hashdist = HASHDIST_DEFAULT;
6021 #ifdef CONFIG_NUMA
6022 static int __init set_hashdist(char *str)
6024 if (!str)
6025 return 0;
6026 hashdist = simple_strtoul(str, &str, 0);
6027 return 1;
6029 __setup("hashdist=", set_hashdist);
6030 #endif
6033 * allocate a large system hash table from bootmem
6034 * - it is assumed that the hash table must contain an exact power-of-2
6035 * quantity of entries
6036 * - limit is the number of hash buckets, not the total allocation size
6038 void *__init alloc_large_system_hash(const char *tablename,
6039 unsigned long bucketsize,
6040 unsigned long numentries,
6041 int scale,
6042 int flags,
6043 unsigned int *_hash_shift,
6044 unsigned int *_hash_mask,
6045 unsigned long low_limit,
6046 unsigned long high_limit)
6048 unsigned long long max = high_limit;
6049 unsigned long log2qty, size;
6050 void *table = NULL;
6052 /* allow the kernel cmdline to have a say */
6053 if (!numentries) {
6054 /* round applicable memory size up to nearest megabyte */
6055 numentries = nr_kernel_pages;
6057 /* It isn't necessary when PAGE_SIZE >= 1MB */
6058 if (PAGE_SHIFT < 20)
6059 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6061 /* limit to 1 bucket per 2^scale bytes of low memory */
6062 if (scale > PAGE_SHIFT)
6063 numentries >>= (scale - PAGE_SHIFT);
6064 else
6065 numentries <<= (PAGE_SHIFT - scale);
6067 /* Make sure we've got at least a 0-order allocation.. */
6068 if (unlikely(flags & HASH_SMALL)) {
6069 /* Makes no sense without HASH_EARLY */
6070 WARN_ON(!(flags & HASH_EARLY));
6071 if (!(numentries >> *_hash_shift)) {
6072 numentries = 1UL << *_hash_shift;
6073 BUG_ON(!numentries);
6075 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6076 numentries = PAGE_SIZE / bucketsize;
6078 numentries = roundup_pow_of_two(numentries);
6080 /* limit allocation size to 1/16 total memory by default */
6081 if (max == 0) {
6082 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6083 do_div(max, bucketsize);
6085 max = min(max, 0x80000000ULL);
6087 if (numentries < low_limit)
6088 numentries = low_limit;
6089 if (numentries > max)
6090 numentries = max;
6092 log2qty = ilog2(numentries);
6094 do {
6095 size = bucketsize << log2qty;
6096 if (flags & HASH_EARLY)
6097 table = memblock_virt_alloc_nopanic(size, 0);
6098 else if (hashdist)
6099 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6100 else {
6102 * If bucketsize is not a power-of-two, we may free
6103 * some pages at the end of hash table which
6104 * alloc_pages_exact() automatically does
6106 if (get_order(size) < MAX_ORDER) {
6107 table = alloc_pages_exact(size, GFP_ATOMIC);
6108 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6111 } while (!table && size > PAGE_SIZE && --log2qty);
6113 if (!table)
6114 panic("Failed to allocate %s hash table\n", tablename);
6116 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6117 tablename,
6118 (1UL << log2qty),
6119 ilog2(size) - PAGE_SHIFT,
6120 size);
6122 if (_hash_shift)
6123 *_hash_shift = log2qty;
6124 if (_hash_mask)
6125 *_hash_mask = (1 << log2qty) - 1;
6127 return table;
6130 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6131 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6132 unsigned long pfn)
6134 #ifdef CONFIG_SPARSEMEM
6135 return __pfn_to_section(pfn)->pageblock_flags;
6136 #else
6137 return zone->pageblock_flags;
6138 #endif /* CONFIG_SPARSEMEM */
6141 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6143 #ifdef CONFIG_SPARSEMEM
6144 pfn &= (PAGES_PER_SECTION-1);
6145 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6146 #else
6147 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6148 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6149 #endif /* CONFIG_SPARSEMEM */
6153 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6154 * @page: The page within the block of interest
6155 * @pfn: The target page frame number
6156 * @end_bitidx: The last bit of interest to retrieve
6157 * @mask: mask of bits that the caller is interested in
6159 * Return: pageblock_bits flags
6161 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6162 unsigned long end_bitidx,
6163 unsigned long mask)
6165 struct zone *zone;
6166 unsigned long *bitmap;
6167 unsigned long bitidx, word_bitidx;
6168 unsigned long word;
6170 zone = page_zone(page);
6171 bitmap = get_pageblock_bitmap(zone, pfn);
6172 bitidx = pfn_to_bitidx(zone, pfn);
6173 word_bitidx = bitidx / BITS_PER_LONG;
6174 bitidx &= (BITS_PER_LONG-1);
6176 word = bitmap[word_bitidx];
6177 bitidx += end_bitidx;
6178 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6182 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6183 * @page: The page within the block of interest
6184 * @flags: The flags to set
6185 * @pfn: The target page frame number
6186 * @end_bitidx: The last bit of interest
6187 * @mask: mask of bits that the caller is interested in
6189 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6190 unsigned long pfn,
6191 unsigned long end_bitidx,
6192 unsigned long mask)
6194 struct zone *zone;
6195 unsigned long *bitmap;
6196 unsigned long bitidx, word_bitidx;
6197 unsigned long old_word, word;
6199 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6201 zone = page_zone(page);
6202 bitmap = get_pageblock_bitmap(zone, pfn);
6203 bitidx = pfn_to_bitidx(zone, pfn);
6204 word_bitidx = bitidx / BITS_PER_LONG;
6205 bitidx &= (BITS_PER_LONG-1);
6207 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6209 bitidx += end_bitidx;
6210 mask <<= (BITS_PER_LONG - bitidx - 1);
6211 flags <<= (BITS_PER_LONG - bitidx - 1);
6213 word = READ_ONCE(bitmap[word_bitidx]);
6214 for (;;) {
6215 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6216 if (word == old_word)
6217 break;
6218 word = old_word;
6223 * This function checks whether pageblock includes unmovable pages or not.
6224 * If @count is not zero, it is okay to include less @count unmovable pages
6226 * PageLRU check without isolation or lru_lock could race so that
6227 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6228 * expect this function should be exact.
6230 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6231 bool skip_hwpoisoned_pages)
6233 unsigned long pfn, iter, found;
6234 int mt;
6237 * For avoiding noise data, lru_add_drain_all() should be called
6238 * If ZONE_MOVABLE, the zone never contains unmovable pages
6240 if (zone_idx(zone) == ZONE_MOVABLE)
6241 return false;
6242 mt = get_pageblock_migratetype(page);
6243 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6244 return false;
6246 pfn = page_to_pfn(page);
6247 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6248 unsigned long check = pfn + iter;
6250 if (!pfn_valid_within(check))
6251 continue;
6253 page = pfn_to_page(check);
6256 * Hugepages are not in LRU lists, but they're movable.
6257 * We need not scan over tail pages bacause we don't
6258 * handle each tail page individually in migration.
6260 if (PageHuge(page)) {
6261 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6262 continue;
6266 * We can't use page_count without pin a page
6267 * because another CPU can free compound page.
6268 * This check already skips compound tails of THP
6269 * because their page->_count is zero at all time.
6271 if (!atomic_read(&page->_count)) {
6272 if (PageBuddy(page))
6273 iter += (1 << page_order(page)) - 1;
6274 continue;
6278 * The HWPoisoned page may be not in buddy system, and
6279 * page_count() is not 0.
6281 if (skip_hwpoisoned_pages && PageHWPoison(page))
6282 continue;
6284 if (!PageLRU(page))
6285 found++;
6287 * If there are RECLAIMABLE pages, we need to check
6288 * it. But now, memory offline itself doesn't call
6289 * shrink_node_slabs() and it still to be fixed.
6292 * If the page is not RAM, page_count()should be 0.
6293 * we don't need more check. This is an _used_ not-movable page.
6295 * The problematic thing here is PG_reserved pages. PG_reserved
6296 * is set to both of a memory hole page and a _used_ kernel
6297 * page at boot.
6299 if (found > count)
6300 return true;
6302 return false;
6305 bool is_pageblock_removable_nolock(struct page *page)
6307 struct zone *zone;
6308 unsigned long pfn;
6311 * We have to be careful here because we are iterating over memory
6312 * sections which are not zone aware so we might end up outside of
6313 * the zone but still within the section.
6314 * We have to take care about the node as well. If the node is offline
6315 * its NODE_DATA will be NULL - see page_zone.
6317 if (!node_online(page_to_nid(page)))
6318 return false;
6320 zone = page_zone(page);
6321 pfn = page_to_pfn(page);
6322 if (!zone_spans_pfn(zone, pfn))
6323 return false;
6325 return !has_unmovable_pages(zone, page, 0, true);
6328 #ifdef CONFIG_CMA
6330 static unsigned long pfn_max_align_down(unsigned long pfn)
6332 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6333 pageblock_nr_pages) - 1);
6336 static unsigned long pfn_max_align_up(unsigned long pfn)
6338 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6339 pageblock_nr_pages));
6342 /* [start, end) must belong to a single zone. */
6343 static int __alloc_contig_migrate_range(struct compact_control *cc,
6344 unsigned long start, unsigned long end)
6346 /* This function is based on compact_zone() from compaction.c. */
6347 unsigned long nr_reclaimed;
6348 unsigned long pfn = start;
6349 unsigned int tries = 0;
6350 int ret = 0;
6352 migrate_prep();
6354 while (pfn < end || !list_empty(&cc->migratepages)) {
6355 if (fatal_signal_pending(current)) {
6356 ret = -EINTR;
6357 break;
6360 if (list_empty(&cc->migratepages)) {
6361 cc->nr_migratepages = 0;
6362 pfn = isolate_migratepages_range(cc, pfn, end);
6363 if (!pfn) {
6364 ret = -EINTR;
6365 break;
6367 tries = 0;
6368 } else if (++tries == 5) {
6369 ret = ret < 0 ? ret : -EBUSY;
6370 break;
6373 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6374 &cc->migratepages);
6375 cc->nr_migratepages -= nr_reclaimed;
6377 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6378 NULL, 0, cc->mode, MR_CMA);
6380 if (ret < 0) {
6381 putback_movable_pages(&cc->migratepages);
6382 return ret;
6384 return 0;
6388 * alloc_contig_range() -- tries to allocate given range of pages
6389 * @start: start PFN to allocate
6390 * @end: one-past-the-last PFN to allocate
6391 * @migratetype: migratetype of the underlaying pageblocks (either
6392 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6393 * in range must have the same migratetype and it must
6394 * be either of the two.
6396 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6397 * aligned, however it's the caller's responsibility to guarantee that
6398 * we are the only thread that changes migrate type of pageblocks the
6399 * pages fall in.
6401 * The PFN range must belong to a single zone.
6403 * Returns zero on success or negative error code. On success all
6404 * pages which PFN is in [start, end) are allocated for the caller and
6405 * need to be freed with free_contig_range().
6407 int alloc_contig_range(unsigned long start, unsigned long end,
6408 unsigned migratetype)
6410 unsigned long outer_start, outer_end;
6411 int ret = 0, order;
6413 struct compact_control cc = {
6414 .nr_migratepages = 0,
6415 .order = -1,
6416 .zone = page_zone(pfn_to_page(start)),
6417 .mode = MIGRATE_SYNC,
6418 .ignore_skip_hint = true,
6420 INIT_LIST_HEAD(&cc.migratepages);
6423 * What we do here is we mark all pageblocks in range as
6424 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6425 * have different sizes, and due to the way page allocator
6426 * work, we align the range to biggest of the two pages so
6427 * that page allocator won't try to merge buddies from
6428 * different pageblocks and change MIGRATE_ISOLATE to some
6429 * other migration type.
6431 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6432 * migrate the pages from an unaligned range (ie. pages that
6433 * we are interested in). This will put all the pages in
6434 * range back to page allocator as MIGRATE_ISOLATE.
6436 * When this is done, we take the pages in range from page
6437 * allocator removing them from the buddy system. This way
6438 * page allocator will never consider using them.
6440 * This lets us mark the pageblocks back as
6441 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6442 * aligned range but not in the unaligned, original range are
6443 * put back to page allocator so that buddy can use them.
6446 ret = start_isolate_page_range(pfn_max_align_down(start),
6447 pfn_max_align_up(end), migratetype,
6448 false);
6449 if (ret)
6450 return ret;
6452 ret = __alloc_contig_migrate_range(&cc, start, end);
6453 if (ret)
6454 goto done;
6457 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6458 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6459 * more, all pages in [start, end) are free in page allocator.
6460 * What we are going to do is to allocate all pages from
6461 * [start, end) (that is remove them from page allocator).
6463 * The only problem is that pages at the beginning and at the
6464 * end of interesting range may be not aligned with pages that
6465 * page allocator holds, ie. they can be part of higher order
6466 * pages. Because of this, we reserve the bigger range and
6467 * once this is done free the pages we are not interested in.
6469 * We don't have to hold zone->lock here because the pages are
6470 * isolated thus they won't get removed from buddy.
6473 lru_add_drain_all();
6474 drain_all_pages(cc.zone);
6476 order = 0;
6477 outer_start = start;
6478 while (!PageBuddy(pfn_to_page(outer_start))) {
6479 if (++order >= MAX_ORDER) {
6480 ret = -EBUSY;
6481 goto done;
6483 outer_start &= ~0UL << order;
6486 /* Make sure the range is really isolated. */
6487 if (test_pages_isolated(outer_start, end, false)) {
6488 pr_info("%s: [%lx, %lx) PFNs busy\n",
6489 __func__, outer_start, end);
6490 ret = -EBUSY;
6491 goto done;
6494 /* Grab isolated pages from freelists. */
6495 outer_end = isolate_freepages_range(&cc, outer_start, end);
6496 if (!outer_end) {
6497 ret = -EBUSY;
6498 goto done;
6501 /* Free head and tail (if any) */
6502 if (start != outer_start)
6503 free_contig_range(outer_start, start - outer_start);
6504 if (end != outer_end)
6505 free_contig_range(end, outer_end - end);
6507 done:
6508 undo_isolate_page_range(pfn_max_align_down(start),
6509 pfn_max_align_up(end), migratetype);
6510 return ret;
6513 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6515 unsigned int count = 0;
6517 for (; nr_pages--; pfn++) {
6518 struct page *page = pfn_to_page(pfn);
6520 count += page_count(page) != 1;
6521 __free_page(page);
6523 WARN(count != 0, "%d pages are still in use!\n", count);
6525 #endif
6527 #ifdef CONFIG_MEMORY_HOTPLUG
6529 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6530 * page high values need to be recalulated.
6532 void __meminit zone_pcp_update(struct zone *zone)
6534 unsigned cpu;
6535 mutex_lock(&pcp_batch_high_lock);
6536 for_each_possible_cpu(cpu)
6537 pageset_set_high_and_batch(zone,
6538 per_cpu_ptr(zone->pageset, cpu));
6539 mutex_unlock(&pcp_batch_high_lock);
6541 #endif
6543 void zone_pcp_reset(struct zone *zone)
6545 unsigned long flags;
6546 int cpu;
6547 struct per_cpu_pageset *pset;
6549 /* avoid races with drain_pages() */
6550 local_irq_save(flags);
6551 if (zone->pageset != &boot_pageset) {
6552 for_each_online_cpu(cpu) {
6553 pset = per_cpu_ptr(zone->pageset, cpu);
6554 drain_zonestat(zone, pset);
6556 free_percpu(zone->pageset);
6557 zone->pageset = &boot_pageset;
6559 local_irq_restore(flags);
6562 #ifdef CONFIG_MEMORY_HOTREMOVE
6564 * All pages in the range must be isolated before calling this.
6566 void
6567 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6569 struct page *page;
6570 struct zone *zone;
6571 unsigned int order, i;
6572 unsigned long pfn;
6573 unsigned long flags;
6574 /* find the first valid pfn */
6575 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6576 if (pfn_valid(pfn))
6577 break;
6578 if (pfn == end_pfn)
6579 return;
6580 zone = page_zone(pfn_to_page(pfn));
6581 spin_lock_irqsave(&zone->lock, flags);
6582 pfn = start_pfn;
6583 while (pfn < end_pfn) {
6584 if (!pfn_valid(pfn)) {
6585 pfn++;
6586 continue;
6588 page = pfn_to_page(pfn);
6590 * The HWPoisoned page may be not in buddy system, and
6591 * page_count() is not 0.
6593 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6594 pfn++;
6595 SetPageReserved(page);
6596 continue;
6599 BUG_ON(page_count(page));
6600 BUG_ON(!PageBuddy(page));
6601 order = page_order(page);
6602 #ifdef CONFIG_DEBUG_VM
6603 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6604 pfn, 1 << order, end_pfn);
6605 #endif
6606 list_del(&page->lru);
6607 rmv_page_order(page);
6608 zone->free_area[order].nr_free--;
6609 for (i = 0; i < (1 << order); i++)
6610 SetPageReserved((page+i));
6611 pfn += (1 << order);
6613 spin_unlock_irqrestore(&zone->lock, flags);
6615 #endif
6617 #ifdef CONFIG_MEMORY_FAILURE
6618 bool is_free_buddy_page(struct page *page)
6620 struct zone *zone = page_zone(page);
6621 unsigned long pfn = page_to_pfn(page);
6622 unsigned long flags;
6623 unsigned int order;
6625 spin_lock_irqsave(&zone->lock, flags);
6626 for (order = 0; order < MAX_ORDER; order++) {
6627 struct page *page_head = page - (pfn & ((1 << order) - 1));
6629 if (PageBuddy(page_head) && page_order(page_head) >= order)
6630 break;
6632 spin_unlock_irqrestore(&zone->lock, flags);
6634 return order < MAX_ORDER;
6636 #endif