[SCSI] fcoe: precedence bug in fcoe_filter_frames()
[linux/fpc-iii.git] / mm / page_alloc.c
blob90c1439549fdf221ab1813b14ae0d5dc74adce45
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
132 static void __free_pages_ok(struct page *page, unsigned int order);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
154 #endif
158 EXPORT_SYMBOL(totalram_pages);
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
174 int min_free_kbytes = 1024;
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
221 int page_group_by_mobility_disabled __read_mostly;
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
233 bool oom_killer_disabled __read_mostly;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
250 return ret;
253 static int page_is_consistent(struct zone *zone, struct page *page)
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
260 return 1;
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone *zone, struct page *page)
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
272 return 0;
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
277 return 0;
279 #endif
281 static void bad_page(struct page *page)
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
308 nr_shown = 0;
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
355 __SetPageTail(p);
356 p->first_page = page;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
373 __ClearPageHead(page);
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
382 __ClearPageTail(p);
385 return bad;
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 int i;
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
401 static inline void set_page_order(struct page *page, int order)
403 set_page_private(page, order);
404 __SetPageBuddy(page);
407 static inline void rmv_page_order(struct page *page)
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
433 return page_idx ^ (1 << order);
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
447 * For recording page's order, we use page_private(page).
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
452 if (!pfn_valid_within(page_to_pfn(buddy)))
453 return 0;
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
459 VM_BUG_ON(page_count(buddy) != 0);
460 return 1;
462 return 0;
466 * Freeing function for a buddy system allocator.
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
486 * -- wli
489 static inline void __free_one_page(struct page *page,
490 struct zone *zone, unsigned int order,
491 int migratetype)
493 unsigned long page_idx;
494 unsigned long combined_idx;
495 unsigned long uninitialized_var(buddy_idx);
496 struct page *buddy;
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
502 VM_BUG_ON(migratetype == -1);
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
509 while (order < MAX_ORDER-1) {
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
512 if (!page_is_buddy(page, buddy, order))
513 break;
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = buddy_idx & page_idx;
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
524 set_page_order(page, order);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 zone->free_area[order].nr_free++;
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
557 static inline void free_page_mlock(struct page *page)
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
563 static inline int free_pages_check(struct page *page)
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
567 (atomic_read(&page->_count) != 0) |
568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 bad_page(page);
570 return 1;
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
591 int migratetype = 0;
592 int batch_free = 0;
593 int to_free = count;
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
599 while (to_free) {
600 struct page *page;
601 struct list_head *list;
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
610 do {
611 batch_free++;
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
617 do {
618 page = list_entry(list->prev, struct page, lru);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page->lru);
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page, zone, 0, page_private(page));
623 trace_mm_page_pcpu_drain(page, 0, page_private(page));
624 } while (--to_free && --batch_free && !list_empty(list));
626 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
627 spin_unlock(&zone->lock);
630 static void free_one_page(struct zone *zone, struct page *page, int order,
631 int migratetype)
633 spin_lock(&zone->lock);
634 zone->all_unreclaimable = 0;
635 zone->pages_scanned = 0;
637 __free_one_page(page, zone, order, migratetype);
638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
639 spin_unlock(&zone->lock);
642 static bool free_pages_prepare(struct page *page, unsigned int order)
644 int i;
645 int bad = 0;
647 trace_mm_page_free_direct(page, order);
648 kmemcheck_free_shadow(page, order);
650 if (PageAnon(page))
651 page->mapping = NULL;
652 for (i = 0; i < (1 << order); i++)
653 bad += free_pages_check(page + i);
654 if (bad)
655 return false;
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
665 return true;
668 static void __free_pages_ok(struct page *page, unsigned int order)
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
673 if (!free_pages_prepare(page, order))
674 return;
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
708 set_page_refcounted(page);
709 __free_pages(page, order);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
726 * -- wli
728 static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
732 unsigned long size = 1 << high;
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page *page)
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
757 return 0;
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762 int i;
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
770 set_page_private(page, 0);
771 set_page_refcounted(page);
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
782 return 0;
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
812 return NULL;
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
873 return pages_moved;
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
894 return move_freepages(zone, start_page, end_page, migratetype);
897 static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
954 migratetype = start_migratetype;
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
966 expand(zone, page, order, current_order, area, migratetype);
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
971 return page;
975 return NULL;
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
985 struct page *page;
987 retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1017 int i;
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1046 #ifdef CONFIG_NUMA
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1057 unsigned long flags;
1058 int to_drain;
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1069 #endif
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1078 static void drain_pages(unsigned int cpu)
1080 unsigned long flags;
1081 struct zone *zone;
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1090 pcp = &pset->pcp;
1091 free_pcppages_bulk(zone, pcp->count, pcp);
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 void drain_local_pages(void *arg)
1102 drain_pages(smp_processor_id());
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 void drain_all_pages(void)
1110 on_each_cpu(drain_local_pages, NULL, 1);
1113 #ifdef CONFIG_HIBERNATION
1115 void mark_free_pages(struct zone *zone)
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
1119 int order, t;
1120 struct list_head *curr;
1122 if (!zone->spanned_pages)
1123 return;
1125 spin_lock_irqsave(&zone->lock, flags);
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 unsigned long i;
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
1142 swsusp_set_page_free(pfn_to_page(pfn + i));
1145 spin_unlock_irqrestore(&zone->lock, flags);
1147 #endif /* CONFIG_PM */
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1153 void free_hot_cold_page(struct page *page, int cold)
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
1158 int migratetype;
1159 int wasMlocked = __TestClearPageMlocked(page);
1161 if (!free_pages_prepare(page, 0))
1162 return;
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1166 local_irq_save(flags);
1167 if (unlikely(wasMlocked))
1168 free_page_mlock(page);
1169 __count_vm_event(PGFREE);
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1183 migratetype = MIGRATE_MOVABLE;
1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 if (cold)
1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 else
1190 list_add(&page->lru, &pcp->lists[migratetype]);
1191 pcp->count++;
1192 if (pcp->count >= pcp->high) {
1193 free_pcppages_bulk(zone, pcp->batch, pcp);
1194 pcp->count -= pcp->batch;
1197 out:
1198 local_irq_restore(flags);
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1209 void split_page(struct page *page, unsigned int order)
1211 int i;
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
1216 #ifdef CONFIG_KMEMCHECK
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1239 int split_free_page(struct page *page)
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1245 BUG_ON(!PageBuddy(page));
1247 zone = page_zone(page);
1248 order = page_order(page);
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 return 1 << order;
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1284 unsigned long flags;
1285 struct page *page;
1286 int cold = !!(gfp_flags & __GFP_COLD);
1288 again:
1289 if (likely(order == 0)) {
1290 struct per_cpu_pages *pcp;
1291 struct list_head *list;
1293 local_irq_save(flags);
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
1296 if (list_empty(list)) {
1297 pcp->count += rmqueue_bulk(zone, 0,
1298 pcp->batch, list,
1299 migratetype, cold);
1300 if (unlikely(list_empty(list)))
1301 goto failed;
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1309 list_del(&page->lru);
1310 pcp->count--;
1311 } else {
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 * __GFP_NOFAIL is not to be used in new code.
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1321 * __GFP_NOFAIL.
1323 WARN_ON_ONCE(order > 1);
1325 spin_lock_irqsave(&zone->lock, flags);
1326 page = __rmqueue(zone, order, migratetype);
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 zone_statistics(preferred_zone, zone);
1335 local_irq_restore(flags);
1337 VM_BUG_ON(bad_range(zone, page));
1338 if (prep_new_page(page, order, gfp_flags))
1339 goto again;
1340 return page;
1342 failed:
1343 local_irq_restore(flags);
1344 return NULL;
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
1367 u32 min_order;
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
1373 struct dentry *min_order_file;
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 } fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
1381 .min_order = 1,
1384 static int __init setup_fail_page_alloc(char *str)
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 static int __init fail_page_alloc_debugfs(void)
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 debugfs_remove(fail_page_alloc.min_order_file);
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 return err;
1442 late_initcall(fail_page_alloc_debugfs);
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450 return 0;
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 * Return true if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1459 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags, long free_pages)
1462 /* free_pages my go negative - that's OK */
1463 long min = mark;
1464 int o;
1466 free_pages -= (1 << order) + 1;
1467 if (alloc_flags & ALLOC_HIGH)
1468 min -= min / 2;
1469 if (alloc_flags & ALLOC_HARDER)
1470 min -= min / 4;
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return false;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1481 if (free_pages <= min)
1482 return false;
1484 return true;
1487 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1488 int classzone_idx, int alloc_flags)
1490 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1491 zone_page_state(z, NR_FREE_PAGES));
1494 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1497 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1499 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1500 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1502 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1503 free_pages);
1506 #ifdef CONFIG_NUMA
1508 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1509 * skip over zones that are not allowed by the cpuset, or that have
1510 * been recently (in last second) found to be nearly full. See further
1511 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1512 * that have to skip over a lot of full or unallowed zones.
1514 * If the zonelist cache is present in the passed in zonelist, then
1515 * returns a pointer to the allowed node mask (either the current
1516 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1518 * If the zonelist cache is not available for this zonelist, does
1519 * nothing and returns NULL.
1521 * If the fullzones BITMAP in the zonelist cache is stale (more than
1522 * a second since last zap'd) then we zap it out (clear its bits.)
1524 * We hold off even calling zlc_setup, until after we've checked the
1525 * first zone in the zonelist, on the theory that most allocations will
1526 * be satisfied from that first zone, so best to examine that zone as
1527 * quickly as we can.
1529 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1531 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1532 nodemask_t *allowednodes; /* zonelist_cache approximation */
1534 zlc = zonelist->zlcache_ptr;
1535 if (!zlc)
1536 return NULL;
1538 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1539 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1540 zlc->last_full_zap = jiffies;
1543 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1544 &cpuset_current_mems_allowed :
1545 &node_states[N_HIGH_MEMORY];
1546 return allowednodes;
1550 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1551 * if it is worth looking at further for free memory:
1552 * 1) Check that the zone isn't thought to be full (doesn't have its
1553 * bit set in the zonelist_cache fullzones BITMAP).
1554 * 2) Check that the zones node (obtained from the zonelist_cache
1555 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1556 * Return true (non-zero) if zone is worth looking at further, or
1557 * else return false (zero) if it is not.
1559 * This check -ignores- the distinction between various watermarks,
1560 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1561 * found to be full for any variation of these watermarks, it will
1562 * be considered full for up to one second by all requests, unless
1563 * we are so low on memory on all allowed nodes that we are forced
1564 * into the second scan of the zonelist.
1566 * In the second scan we ignore this zonelist cache and exactly
1567 * apply the watermarks to all zones, even it is slower to do so.
1568 * We are low on memory in the second scan, and should leave no stone
1569 * unturned looking for a free page.
1571 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1572 nodemask_t *allowednodes)
1574 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1575 int i; /* index of *z in zonelist zones */
1576 int n; /* node that zone *z is on */
1578 zlc = zonelist->zlcache_ptr;
1579 if (!zlc)
1580 return 1;
1582 i = z - zonelist->_zonerefs;
1583 n = zlc->z_to_n[i];
1585 /* This zone is worth trying if it is allowed but not full */
1586 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1590 * Given 'z' scanning a zonelist, set the corresponding bit in
1591 * zlc->fullzones, so that subsequent attempts to allocate a page
1592 * from that zone don't waste time re-examining it.
1594 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1596 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1597 int i; /* index of *z in zonelist zones */
1599 zlc = zonelist->zlcache_ptr;
1600 if (!zlc)
1601 return;
1603 i = z - zonelist->_zonerefs;
1605 set_bit(i, zlc->fullzones);
1608 #else /* CONFIG_NUMA */
1610 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1612 return NULL;
1615 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1616 nodemask_t *allowednodes)
1618 return 1;
1621 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1624 #endif /* CONFIG_NUMA */
1627 * get_page_from_freelist goes through the zonelist trying to allocate
1628 * a page.
1630 static struct page *
1631 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1632 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1633 struct zone *preferred_zone, int migratetype)
1635 struct zoneref *z;
1636 struct page *page = NULL;
1637 int classzone_idx;
1638 struct zone *zone;
1639 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1640 int zlc_active = 0; /* set if using zonelist_cache */
1641 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1643 classzone_idx = zone_idx(preferred_zone);
1644 zonelist_scan:
1646 * Scan zonelist, looking for a zone with enough free.
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1649 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1650 high_zoneidx, nodemask) {
1651 if (NUMA_BUILD && zlc_active &&
1652 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1653 continue;
1654 if ((alloc_flags & ALLOC_CPUSET) &&
1655 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1656 goto try_next_zone;
1658 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1659 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1660 unsigned long mark;
1661 int ret;
1663 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1664 if (zone_watermark_ok(zone, order, mark,
1665 classzone_idx, alloc_flags))
1666 goto try_this_zone;
1668 if (zone_reclaim_mode == 0)
1669 goto this_zone_full;
1671 ret = zone_reclaim(zone, gfp_mask, order);
1672 switch (ret) {
1673 case ZONE_RECLAIM_NOSCAN:
1674 /* did not scan */
1675 goto try_next_zone;
1676 case ZONE_RECLAIM_FULL:
1677 /* scanned but unreclaimable */
1678 goto this_zone_full;
1679 default:
1680 /* did we reclaim enough */
1681 if (!zone_watermark_ok(zone, order, mark,
1682 classzone_idx, alloc_flags))
1683 goto this_zone_full;
1687 try_this_zone:
1688 page = buffered_rmqueue(preferred_zone, zone, order,
1689 gfp_mask, migratetype);
1690 if (page)
1691 break;
1692 this_zone_full:
1693 if (NUMA_BUILD)
1694 zlc_mark_zone_full(zonelist, z);
1695 try_next_zone:
1696 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1698 * we do zlc_setup after the first zone is tried but only
1699 * if there are multiple nodes make it worthwhile
1701 allowednodes = zlc_setup(zonelist, alloc_flags);
1702 zlc_active = 1;
1703 did_zlc_setup = 1;
1707 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1708 /* Disable zlc cache for second zonelist scan */
1709 zlc_active = 0;
1710 goto zonelist_scan;
1712 return page;
1715 static inline int
1716 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1717 unsigned long pages_reclaimed)
1719 /* Do not loop if specifically requested */
1720 if (gfp_mask & __GFP_NORETRY)
1721 return 0;
1724 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1725 * means __GFP_NOFAIL, but that may not be true in other
1726 * implementations.
1728 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1729 return 1;
1732 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1733 * specified, then we retry until we no longer reclaim any pages
1734 * (above), or we've reclaimed an order of pages at least as
1735 * large as the allocation's order. In both cases, if the
1736 * allocation still fails, we stop retrying.
1738 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1739 return 1;
1742 * Don't let big-order allocations loop unless the caller
1743 * explicitly requests that.
1745 if (gfp_mask & __GFP_NOFAIL)
1746 return 1;
1748 return 0;
1751 static inline struct page *
1752 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1753 struct zonelist *zonelist, enum zone_type high_zoneidx,
1754 nodemask_t *nodemask, struct zone *preferred_zone,
1755 int migratetype)
1757 struct page *page;
1759 /* Acquire the OOM killer lock for the zones in zonelist */
1760 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1761 schedule_timeout_uninterruptible(1);
1762 return NULL;
1766 * Go through the zonelist yet one more time, keep very high watermark
1767 * here, this is only to catch a parallel oom killing, we must fail if
1768 * we're still under heavy pressure.
1770 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1771 order, zonelist, high_zoneidx,
1772 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1773 preferred_zone, migratetype);
1774 if (page)
1775 goto out;
1777 if (!(gfp_mask & __GFP_NOFAIL)) {
1778 /* The OOM killer will not help higher order allocs */
1779 if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 goto out;
1781 /* The OOM killer does not needlessly kill tasks for lowmem */
1782 if (high_zoneidx < ZONE_NORMAL)
1783 goto out;
1785 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1786 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1787 * The caller should handle page allocation failure by itself if
1788 * it specifies __GFP_THISNODE.
1789 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1791 if (gfp_mask & __GFP_THISNODE)
1792 goto out;
1794 /* Exhausted what can be done so it's blamo time */
1795 out_of_memory(zonelist, gfp_mask, order, nodemask);
1797 out:
1798 clear_zonelist_oom(zonelist, gfp_mask);
1799 return page;
1802 #ifdef CONFIG_COMPACTION
1803 /* Try memory compaction for high-order allocations before reclaim */
1804 static struct page *
1805 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1806 struct zonelist *zonelist, enum zone_type high_zoneidx,
1807 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1808 int migratetype, unsigned long *did_some_progress,
1809 bool sync_migration)
1811 struct page *page;
1813 if (!order || compaction_deferred(preferred_zone))
1814 return NULL;
1816 current->flags |= PF_MEMALLOC;
1817 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1818 nodemask, sync_migration);
1819 current->flags &= ~PF_MEMALLOC;
1820 if (*did_some_progress != COMPACT_SKIPPED) {
1822 /* Page migration frees to the PCP lists but we want merging */
1823 drain_pages(get_cpu());
1824 put_cpu();
1826 page = get_page_from_freelist(gfp_mask, nodemask,
1827 order, zonelist, high_zoneidx,
1828 alloc_flags, preferred_zone,
1829 migratetype);
1830 if (page) {
1831 preferred_zone->compact_considered = 0;
1832 preferred_zone->compact_defer_shift = 0;
1833 count_vm_event(COMPACTSUCCESS);
1834 return page;
1838 * It's bad if compaction run occurs and fails.
1839 * The most likely reason is that pages exist,
1840 * but not enough to satisfy watermarks.
1842 count_vm_event(COMPACTFAIL);
1843 defer_compaction(preferred_zone);
1845 cond_resched();
1848 return NULL;
1850 #else
1851 static inline struct page *
1852 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1853 struct zonelist *zonelist, enum zone_type high_zoneidx,
1854 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1855 int migratetype, unsigned long *did_some_progress,
1856 bool sync_migration)
1858 return NULL;
1860 #endif /* CONFIG_COMPACTION */
1862 /* The really slow allocator path where we enter direct reclaim */
1863 static inline struct page *
1864 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1865 struct zonelist *zonelist, enum zone_type high_zoneidx,
1866 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1867 int migratetype, unsigned long *did_some_progress)
1869 struct page *page = NULL;
1870 struct reclaim_state reclaim_state;
1871 bool drained = false;
1873 cond_resched();
1875 /* We now go into synchronous reclaim */
1876 cpuset_memory_pressure_bump();
1877 current->flags |= PF_MEMALLOC;
1878 lockdep_set_current_reclaim_state(gfp_mask);
1879 reclaim_state.reclaimed_slab = 0;
1880 current->reclaim_state = &reclaim_state;
1882 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1884 current->reclaim_state = NULL;
1885 lockdep_clear_current_reclaim_state();
1886 current->flags &= ~PF_MEMALLOC;
1888 cond_resched();
1890 if (unlikely(!(*did_some_progress)))
1891 return NULL;
1893 retry:
1894 page = get_page_from_freelist(gfp_mask, nodemask, order,
1895 zonelist, high_zoneidx,
1896 alloc_flags, preferred_zone,
1897 migratetype);
1900 * If an allocation failed after direct reclaim, it could be because
1901 * pages are pinned on the per-cpu lists. Drain them and try again
1903 if (!page && !drained) {
1904 drain_all_pages();
1905 drained = true;
1906 goto retry;
1909 return page;
1913 * This is called in the allocator slow-path if the allocation request is of
1914 * sufficient urgency to ignore watermarks and take other desperate measures
1916 static inline struct page *
1917 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1918 struct zonelist *zonelist, enum zone_type high_zoneidx,
1919 nodemask_t *nodemask, struct zone *preferred_zone,
1920 int migratetype)
1922 struct page *page;
1924 do {
1925 page = get_page_from_freelist(gfp_mask, nodemask, order,
1926 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1927 preferred_zone, migratetype);
1929 if (!page && gfp_mask & __GFP_NOFAIL)
1930 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1931 } while (!page && (gfp_mask & __GFP_NOFAIL));
1933 return page;
1936 static inline
1937 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1938 enum zone_type high_zoneidx,
1939 enum zone_type classzone_idx)
1941 struct zoneref *z;
1942 struct zone *zone;
1944 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1945 wakeup_kswapd(zone, order, classzone_idx);
1948 static inline int
1949 gfp_to_alloc_flags(gfp_t gfp_mask)
1951 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1952 const gfp_t wait = gfp_mask & __GFP_WAIT;
1954 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1955 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1958 * The caller may dip into page reserves a bit more if the caller
1959 * cannot run direct reclaim, or if the caller has realtime scheduling
1960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1963 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1965 if (!wait) {
1967 * Not worth trying to allocate harder for
1968 * __GFP_NOMEMALLOC even if it can't schedule.
1970 if (!(gfp_mask & __GFP_NOMEMALLOC))
1971 alloc_flags |= ALLOC_HARDER;
1973 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1974 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1976 alloc_flags &= ~ALLOC_CPUSET;
1977 } else if (unlikely(rt_task(current)) && !in_interrupt())
1978 alloc_flags |= ALLOC_HARDER;
1980 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1981 if (!in_interrupt() &&
1982 ((current->flags & PF_MEMALLOC) ||
1983 unlikely(test_thread_flag(TIF_MEMDIE))))
1984 alloc_flags |= ALLOC_NO_WATERMARKS;
1987 return alloc_flags;
1990 static inline struct page *
1991 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1992 struct zonelist *zonelist, enum zone_type high_zoneidx,
1993 nodemask_t *nodemask, struct zone *preferred_zone,
1994 int migratetype)
1996 const gfp_t wait = gfp_mask & __GFP_WAIT;
1997 struct page *page = NULL;
1998 int alloc_flags;
1999 unsigned long pages_reclaimed = 0;
2000 unsigned long did_some_progress;
2001 bool sync_migration = false;
2004 * In the slowpath, we sanity check order to avoid ever trying to
2005 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2006 * be using allocators in order of preference for an area that is
2007 * too large.
2009 if (order >= MAX_ORDER) {
2010 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2011 return NULL;
2015 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2016 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2017 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2018 * using a larger set of nodes after it has established that the
2019 * allowed per node queues are empty and that nodes are
2020 * over allocated.
2022 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2023 goto nopage;
2025 restart:
2026 if (!(gfp_mask & __GFP_NO_KSWAPD))
2027 wake_all_kswapd(order, zonelist, high_zoneidx,
2028 zone_idx(preferred_zone));
2031 * OK, we're below the kswapd watermark and have kicked background
2032 * reclaim. Now things get more complex, so set up alloc_flags according
2033 * to how we want to proceed.
2035 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2037 /* This is the last chance, in general, before the goto nopage. */
2038 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2039 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2040 preferred_zone, migratetype);
2041 if (page)
2042 goto got_pg;
2044 rebalance:
2045 /* Allocate without watermarks if the context allows */
2046 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2047 page = __alloc_pages_high_priority(gfp_mask, order,
2048 zonelist, high_zoneidx, nodemask,
2049 preferred_zone, migratetype);
2050 if (page)
2051 goto got_pg;
2054 /* Atomic allocations - we can't balance anything */
2055 if (!wait)
2056 goto nopage;
2058 /* Avoid recursion of direct reclaim */
2059 if (current->flags & PF_MEMALLOC)
2060 goto nopage;
2062 /* Avoid allocations with no watermarks from looping endlessly */
2063 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2064 goto nopage;
2067 * Try direct compaction. The first pass is asynchronous. Subsequent
2068 * attempts after direct reclaim are synchronous
2070 page = __alloc_pages_direct_compact(gfp_mask, order,
2071 zonelist, high_zoneidx,
2072 nodemask,
2073 alloc_flags, preferred_zone,
2074 migratetype, &did_some_progress,
2075 sync_migration);
2076 if (page)
2077 goto got_pg;
2078 sync_migration = true;
2080 /* Try direct reclaim and then allocating */
2081 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2082 zonelist, high_zoneidx,
2083 nodemask,
2084 alloc_flags, preferred_zone,
2085 migratetype, &did_some_progress);
2086 if (page)
2087 goto got_pg;
2090 * If we failed to make any progress reclaiming, then we are
2091 * running out of options and have to consider going OOM
2093 if (!did_some_progress) {
2094 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2095 if (oom_killer_disabled)
2096 goto nopage;
2097 page = __alloc_pages_may_oom(gfp_mask, order,
2098 zonelist, high_zoneidx,
2099 nodemask, preferred_zone,
2100 migratetype);
2101 if (page)
2102 goto got_pg;
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2106 * The oom killer is not called for high-order
2107 * allocations that may fail, so if no progress
2108 * is being made, there are no other options and
2109 * retrying is unlikely to help.
2111 if (order > PAGE_ALLOC_COSTLY_ORDER)
2112 goto nopage;
2114 * The oom killer is not called for lowmem
2115 * allocations to prevent needlessly killing
2116 * innocent tasks.
2118 if (high_zoneidx < ZONE_NORMAL)
2119 goto nopage;
2122 goto restart;
2126 /* Check if we should retry the allocation */
2127 pages_reclaimed += did_some_progress;
2128 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2129 /* Wait for some write requests to complete then retry */
2130 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2131 goto rebalance;
2132 } else {
2134 * High-order allocations do not necessarily loop after
2135 * direct reclaim and reclaim/compaction depends on compaction
2136 * being called after reclaim so call directly if necessary
2138 page = __alloc_pages_direct_compact(gfp_mask, order,
2139 zonelist, high_zoneidx,
2140 nodemask,
2141 alloc_flags, preferred_zone,
2142 migratetype, &did_some_progress,
2143 sync_migration);
2144 if (page)
2145 goto got_pg;
2148 nopage:
2149 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2150 printk(KERN_WARNING "%s: page allocation failure."
2151 " order:%d, mode:0x%x\n",
2152 current->comm, order, gfp_mask);
2153 dump_stack();
2154 show_mem();
2156 return page;
2157 got_pg:
2158 if (kmemcheck_enabled)
2159 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2160 return page;
2165 * This is the 'heart' of the zoned buddy allocator.
2167 struct page *
2168 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2169 struct zonelist *zonelist, nodemask_t *nodemask)
2171 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2172 struct zone *preferred_zone;
2173 struct page *page;
2174 int migratetype = allocflags_to_migratetype(gfp_mask);
2176 gfp_mask &= gfp_allowed_mask;
2178 lockdep_trace_alloc(gfp_mask);
2180 might_sleep_if(gfp_mask & __GFP_WAIT);
2182 if (should_fail_alloc_page(gfp_mask, order))
2183 return NULL;
2186 * Check the zones suitable for the gfp_mask contain at least one
2187 * valid zone. It's possible to have an empty zonelist as a result
2188 * of GFP_THISNODE and a memoryless node
2190 if (unlikely(!zonelist->_zonerefs->zone))
2191 return NULL;
2193 get_mems_allowed();
2194 /* The preferred zone is used for statistics later */
2195 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2196 if (!preferred_zone) {
2197 put_mems_allowed();
2198 return NULL;
2201 /* First allocation attempt */
2202 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2203 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2204 preferred_zone, migratetype);
2205 if (unlikely(!page))
2206 page = __alloc_pages_slowpath(gfp_mask, order,
2207 zonelist, high_zoneidx, nodemask,
2208 preferred_zone, migratetype);
2209 put_mems_allowed();
2211 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2212 return page;
2214 EXPORT_SYMBOL(__alloc_pages_nodemask);
2217 * Common helper functions.
2219 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2221 struct page *page;
2224 * __get_free_pages() returns a 32-bit address, which cannot represent
2225 * a highmem page
2227 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2229 page = alloc_pages(gfp_mask, order);
2230 if (!page)
2231 return 0;
2232 return (unsigned long) page_address(page);
2234 EXPORT_SYMBOL(__get_free_pages);
2236 unsigned long get_zeroed_page(gfp_t gfp_mask)
2238 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2240 EXPORT_SYMBOL(get_zeroed_page);
2242 void __pagevec_free(struct pagevec *pvec)
2244 int i = pagevec_count(pvec);
2246 while (--i >= 0) {
2247 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2248 free_hot_cold_page(pvec->pages[i], pvec->cold);
2252 void __free_pages(struct page *page, unsigned int order)
2254 if (put_page_testzero(page)) {
2255 if (order == 0)
2256 free_hot_cold_page(page, 0);
2257 else
2258 __free_pages_ok(page, order);
2262 EXPORT_SYMBOL(__free_pages);
2264 void free_pages(unsigned long addr, unsigned int order)
2266 if (addr != 0) {
2267 VM_BUG_ON(!virt_addr_valid((void *)addr));
2268 __free_pages(virt_to_page((void *)addr), order);
2272 EXPORT_SYMBOL(free_pages);
2275 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2276 * @size: the number of bytes to allocate
2277 * @gfp_mask: GFP flags for the allocation
2279 * This function is similar to alloc_pages(), except that it allocates the
2280 * minimum number of pages to satisfy the request. alloc_pages() can only
2281 * allocate memory in power-of-two pages.
2283 * This function is also limited by MAX_ORDER.
2285 * Memory allocated by this function must be released by free_pages_exact().
2287 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2289 unsigned int order = get_order(size);
2290 unsigned long addr;
2292 addr = __get_free_pages(gfp_mask, order);
2293 if (addr) {
2294 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2295 unsigned long used = addr + PAGE_ALIGN(size);
2297 split_page(virt_to_page((void *)addr), order);
2298 while (used < alloc_end) {
2299 free_page(used);
2300 used += PAGE_SIZE;
2304 return (void *)addr;
2306 EXPORT_SYMBOL(alloc_pages_exact);
2309 * free_pages_exact - release memory allocated via alloc_pages_exact()
2310 * @virt: the value returned by alloc_pages_exact.
2311 * @size: size of allocation, same value as passed to alloc_pages_exact().
2313 * Release the memory allocated by a previous call to alloc_pages_exact.
2315 void free_pages_exact(void *virt, size_t size)
2317 unsigned long addr = (unsigned long)virt;
2318 unsigned long end = addr + PAGE_ALIGN(size);
2320 while (addr < end) {
2321 free_page(addr);
2322 addr += PAGE_SIZE;
2325 EXPORT_SYMBOL(free_pages_exact);
2327 static unsigned int nr_free_zone_pages(int offset)
2329 struct zoneref *z;
2330 struct zone *zone;
2332 /* Just pick one node, since fallback list is circular */
2333 unsigned int sum = 0;
2335 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2337 for_each_zone_zonelist(zone, z, zonelist, offset) {
2338 unsigned long size = zone->present_pages;
2339 unsigned long high = high_wmark_pages(zone);
2340 if (size > high)
2341 sum += size - high;
2344 return sum;
2348 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2350 unsigned int nr_free_buffer_pages(void)
2352 return nr_free_zone_pages(gfp_zone(GFP_USER));
2354 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2357 * Amount of free RAM allocatable within all zones
2359 unsigned int nr_free_pagecache_pages(void)
2361 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2364 static inline void show_node(struct zone *zone)
2366 if (NUMA_BUILD)
2367 printk("Node %d ", zone_to_nid(zone));
2370 void si_meminfo(struct sysinfo *val)
2372 val->totalram = totalram_pages;
2373 val->sharedram = 0;
2374 val->freeram = global_page_state(NR_FREE_PAGES);
2375 val->bufferram = nr_blockdev_pages();
2376 val->totalhigh = totalhigh_pages;
2377 val->freehigh = nr_free_highpages();
2378 val->mem_unit = PAGE_SIZE;
2381 EXPORT_SYMBOL(si_meminfo);
2383 #ifdef CONFIG_NUMA
2384 void si_meminfo_node(struct sysinfo *val, int nid)
2386 pg_data_t *pgdat = NODE_DATA(nid);
2388 val->totalram = pgdat->node_present_pages;
2389 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2390 #ifdef CONFIG_HIGHMEM
2391 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2392 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2393 NR_FREE_PAGES);
2394 #else
2395 val->totalhigh = 0;
2396 val->freehigh = 0;
2397 #endif
2398 val->mem_unit = PAGE_SIZE;
2400 #endif
2402 #define K(x) ((x) << (PAGE_SHIFT-10))
2405 * Show free area list (used inside shift_scroll-lock stuff)
2406 * We also calculate the percentage fragmentation. We do this by counting the
2407 * memory on each free list with the exception of the first item on the list.
2409 void show_free_areas(void)
2411 int cpu;
2412 struct zone *zone;
2414 for_each_populated_zone(zone) {
2415 show_node(zone);
2416 printk("%s per-cpu:\n", zone->name);
2418 for_each_online_cpu(cpu) {
2419 struct per_cpu_pageset *pageset;
2421 pageset = per_cpu_ptr(zone->pageset, cpu);
2423 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2424 cpu, pageset->pcp.high,
2425 pageset->pcp.batch, pageset->pcp.count);
2429 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2430 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2431 " unevictable:%lu"
2432 " dirty:%lu writeback:%lu unstable:%lu\n"
2433 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2434 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2435 global_page_state(NR_ACTIVE_ANON),
2436 global_page_state(NR_INACTIVE_ANON),
2437 global_page_state(NR_ISOLATED_ANON),
2438 global_page_state(NR_ACTIVE_FILE),
2439 global_page_state(NR_INACTIVE_FILE),
2440 global_page_state(NR_ISOLATED_FILE),
2441 global_page_state(NR_UNEVICTABLE),
2442 global_page_state(NR_FILE_DIRTY),
2443 global_page_state(NR_WRITEBACK),
2444 global_page_state(NR_UNSTABLE_NFS),
2445 global_page_state(NR_FREE_PAGES),
2446 global_page_state(NR_SLAB_RECLAIMABLE),
2447 global_page_state(NR_SLAB_UNRECLAIMABLE),
2448 global_page_state(NR_FILE_MAPPED),
2449 global_page_state(NR_SHMEM),
2450 global_page_state(NR_PAGETABLE),
2451 global_page_state(NR_BOUNCE));
2453 for_each_populated_zone(zone) {
2454 int i;
2456 show_node(zone);
2457 printk("%s"
2458 " free:%lukB"
2459 " min:%lukB"
2460 " low:%lukB"
2461 " high:%lukB"
2462 " active_anon:%lukB"
2463 " inactive_anon:%lukB"
2464 " active_file:%lukB"
2465 " inactive_file:%lukB"
2466 " unevictable:%lukB"
2467 " isolated(anon):%lukB"
2468 " isolated(file):%lukB"
2469 " present:%lukB"
2470 " mlocked:%lukB"
2471 " dirty:%lukB"
2472 " writeback:%lukB"
2473 " mapped:%lukB"
2474 " shmem:%lukB"
2475 " slab_reclaimable:%lukB"
2476 " slab_unreclaimable:%lukB"
2477 " kernel_stack:%lukB"
2478 " pagetables:%lukB"
2479 " unstable:%lukB"
2480 " bounce:%lukB"
2481 " writeback_tmp:%lukB"
2482 " pages_scanned:%lu"
2483 " all_unreclaimable? %s"
2484 "\n",
2485 zone->name,
2486 K(zone_page_state(zone, NR_FREE_PAGES)),
2487 K(min_wmark_pages(zone)),
2488 K(low_wmark_pages(zone)),
2489 K(high_wmark_pages(zone)),
2490 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2491 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2492 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2493 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2494 K(zone_page_state(zone, NR_UNEVICTABLE)),
2495 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2496 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2497 K(zone->present_pages),
2498 K(zone_page_state(zone, NR_MLOCK)),
2499 K(zone_page_state(zone, NR_FILE_DIRTY)),
2500 K(zone_page_state(zone, NR_WRITEBACK)),
2501 K(zone_page_state(zone, NR_FILE_MAPPED)),
2502 K(zone_page_state(zone, NR_SHMEM)),
2503 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2504 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2505 zone_page_state(zone, NR_KERNEL_STACK) *
2506 THREAD_SIZE / 1024,
2507 K(zone_page_state(zone, NR_PAGETABLE)),
2508 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2509 K(zone_page_state(zone, NR_BOUNCE)),
2510 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2511 zone->pages_scanned,
2512 (zone->all_unreclaimable ? "yes" : "no")
2514 printk("lowmem_reserve[]:");
2515 for (i = 0; i < MAX_NR_ZONES; i++)
2516 printk(" %lu", zone->lowmem_reserve[i]);
2517 printk("\n");
2520 for_each_populated_zone(zone) {
2521 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2523 show_node(zone);
2524 printk("%s: ", zone->name);
2526 spin_lock_irqsave(&zone->lock, flags);
2527 for (order = 0; order < MAX_ORDER; order++) {
2528 nr[order] = zone->free_area[order].nr_free;
2529 total += nr[order] << order;
2531 spin_unlock_irqrestore(&zone->lock, flags);
2532 for (order = 0; order < MAX_ORDER; order++)
2533 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2534 printk("= %lukB\n", K(total));
2537 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2539 show_swap_cache_info();
2542 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2544 zoneref->zone = zone;
2545 zoneref->zone_idx = zone_idx(zone);
2549 * Builds allocation fallback zone lists.
2551 * Add all populated zones of a node to the zonelist.
2553 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2554 int nr_zones, enum zone_type zone_type)
2556 struct zone *zone;
2558 BUG_ON(zone_type >= MAX_NR_ZONES);
2559 zone_type++;
2561 do {
2562 zone_type--;
2563 zone = pgdat->node_zones + zone_type;
2564 if (populated_zone(zone)) {
2565 zoneref_set_zone(zone,
2566 &zonelist->_zonerefs[nr_zones++]);
2567 check_highest_zone(zone_type);
2570 } while (zone_type);
2571 return nr_zones;
2576 * zonelist_order:
2577 * 0 = automatic detection of better ordering.
2578 * 1 = order by ([node] distance, -zonetype)
2579 * 2 = order by (-zonetype, [node] distance)
2581 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2582 * the same zonelist. So only NUMA can configure this param.
2584 #define ZONELIST_ORDER_DEFAULT 0
2585 #define ZONELIST_ORDER_NODE 1
2586 #define ZONELIST_ORDER_ZONE 2
2588 /* zonelist order in the kernel.
2589 * set_zonelist_order() will set this to NODE or ZONE.
2591 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2592 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2595 #ifdef CONFIG_NUMA
2596 /* The value user specified ....changed by config */
2597 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2598 /* string for sysctl */
2599 #define NUMA_ZONELIST_ORDER_LEN 16
2600 char numa_zonelist_order[16] = "default";
2603 * interface for configure zonelist ordering.
2604 * command line option "numa_zonelist_order"
2605 * = "[dD]efault - default, automatic configuration.
2606 * = "[nN]ode - order by node locality, then by zone within node
2607 * = "[zZ]one - order by zone, then by locality within zone
2610 static int __parse_numa_zonelist_order(char *s)
2612 if (*s == 'd' || *s == 'D') {
2613 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2614 } else if (*s == 'n' || *s == 'N') {
2615 user_zonelist_order = ZONELIST_ORDER_NODE;
2616 } else if (*s == 'z' || *s == 'Z') {
2617 user_zonelist_order = ZONELIST_ORDER_ZONE;
2618 } else {
2619 printk(KERN_WARNING
2620 "Ignoring invalid numa_zonelist_order value: "
2621 "%s\n", s);
2622 return -EINVAL;
2624 return 0;
2627 static __init int setup_numa_zonelist_order(char *s)
2629 int ret;
2631 if (!s)
2632 return 0;
2634 ret = __parse_numa_zonelist_order(s);
2635 if (ret == 0)
2636 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2638 return ret;
2640 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2643 * sysctl handler for numa_zonelist_order
2645 int numa_zonelist_order_handler(ctl_table *table, int write,
2646 void __user *buffer, size_t *length,
2647 loff_t *ppos)
2649 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2650 int ret;
2651 static DEFINE_MUTEX(zl_order_mutex);
2653 mutex_lock(&zl_order_mutex);
2654 if (write)
2655 strcpy(saved_string, (char*)table->data);
2656 ret = proc_dostring(table, write, buffer, length, ppos);
2657 if (ret)
2658 goto out;
2659 if (write) {
2660 int oldval = user_zonelist_order;
2661 if (__parse_numa_zonelist_order((char*)table->data)) {
2663 * bogus value. restore saved string
2665 strncpy((char*)table->data, saved_string,
2666 NUMA_ZONELIST_ORDER_LEN);
2667 user_zonelist_order = oldval;
2668 } else if (oldval != user_zonelist_order) {
2669 mutex_lock(&zonelists_mutex);
2670 build_all_zonelists(NULL);
2671 mutex_unlock(&zonelists_mutex);
2674 out:
2675 mutex_unlock(&zl_order_mutex);
2676 return ret;
2680 #define MAX_NODE_LOAD (nr_online_nodes)
2681 static int node_load[MAX_NUMNODES];
2684 * find_next_best_node - find the next node that should appear in a given node's fallback list
2685 * @node: node whose fallback list we're appending
2686 * @used_node_mask: nodemask_t of already used nodes
2688 * We use a number of factors to determine which is the next node that should
2689 * appear on a given node's fallback list. The node should not have appeared
2690 * already in @node's fallback list, and it should be the next closest node
2691 * according to the distance array (which contains arbitrary distance values
2692 * from each node to each node in the system), and should also prefer nodes
2693 * with no CPUs, since presumably they'll have very little allocation pressure
2694 * on them otherwise.
2695 * It returns -1 if no node is found.
2697 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2699 int n, val;
2700 int min_val = INT_MAX;
2701 int best_node = -1;
2702 const struct cpumask *tmp = cpumask_of_node(0);
2704 /* Use the local node if we haven't already */
2705 if (!node_isset(node, *used_node_mask)) {
2706 node_set(node, *used_node_mask);
2707 return node;
2710 for_each_node_state(n, N_HIGH_MEMORY) {
2712 /* Don't want a node to appear more than once */
2713 if (node_isset(n, *used_node_mask))
2714 continue;
2716 /* Use the distance array to find the distance */
2717 val = node_distance(node, n);
2719 /* Penalize nodes under us ("prefer the next node") */
2720 val += (n < node);
2722 /* Give preference to headless and unused nodes */
2723 tmp = cpumask_of_node(n);
2724 if (!cpumask_empty(tmp))
2725 val += PENALTY_FOR_NODE_WITH_CPUS;
2727 /* Slight preference for less loaded node */
2728 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2729 val += node_load[n];
2731 if (val < min_val) {
2732 min_val = val;
2733 best_node = n;
2737 if (best_node >= 0)
2738 node_set(best_node, *used_node_mask);
2740 return best_node;
2745 * Build zonelists ordered by node and zones within node.
2746 * This results in maximum locality--normal zone overflows into local
2747 * DMA zone, if any--but risks exhausting DMA zone.
2749 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2751 int j;
2752 struct zonelist *zonelist;
2754 zonelist = &pgdat->node_zonelists[0];
2755 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2757 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2758 MAX_NR_ZONES - 1);
2759 zonelist->_zonerefs[j].zone = NULL;
2760 zonelist->_zonerefs[j].zone_idx = 0;
2764 * Build gfp_thisnode zonelists
2766 static void build_thisnode_zonelists(pg_data_t *pgdat)
2768 int j;
2769 struct zonelist *zonelist;
2771 zonelist = &pgdat->node_zonelists[1];
2772 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2773 zonelist->_zonerefs[j].zone = NULL;
2774 zonelist->_zonerefs[j].zone_idx = 0;
2778 * Build zonelists ordered by zone and nodes within zones.
2779 * This results in conserving DMA zone[s] until all Normal memory is
2780 * exhausted, but results in overflowing to remote node while memory
2781 * may still exist in local DMA zone.
2783 static int node_order[MAX_NUMNODES];
2785 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2787 int pos, j, node;
2788 int zone_type; /* needs to be signed */
2789 struct zone *z;
2790 struct zonelist *zonelist;
2792 zonelist = &pgdat->node_zonelists[0];
2793 pos = 0;
2794 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2795 for (j = 0; j < nr_nodes; j++) {
2796 node = node_order[j];
2797 z = &NODE_DATA(node)->node_zones[zone_type];
2798 if (populated_zone(z)) {
2799 zoneref_set_zone(z,
2800 &zonelist->_zonerefs[pos++]);
2801 check_highest_zone(zone_type);
2805 zonelist->_zonerefs[pos].zone = NULL;
2806 zonelist->_zonerefs[pos].zone_idx = 0;
2809 static int default_zonelist_order(void)
2811 int nid, zone_type;
2812 unsigned long low_kmem_size,total_size;
2813 struct zone *z;
2814 int average_size;
2816 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2817 * If they are really small and used heavily, the system can fall
2818 * into OOM very easily.
2819 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2821 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2822 low_kmem_size = 0;
2823 total_size = 0;
2824 for_each_online_node(nid) {
2825 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2826 z = &NODE_DATA(nid)->node_zones[zone_type];
2827 if (populated_zone(z)) {
2828 if (zone_type < ZONE_NORMAL)
2829 low_kmem_size += z->present_pages;
2830 total_size += z->present_pages;
2831 } else if (zone_type == ZONE_NORMAL) {
2833 * If any node has only lowmem, then node order
2834 * is preferred to allow kernel allocations
2835 * locally; otherwise, they can easily infringe
2836 * on other nodes when there is an abundance of
2837 * lowmem available to allocate from.
2839 return ZONELIST_ORDER_NODE;
2843 if (!low_kmem_size || /* there are no DMA area. */
2844 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2845 return ZONELIST_ORDER_NODE;
2847 * look into each node's config.
2848 * If there is a node whose DMA/DMA32 memory is very big area on
2849 * local memory, NODE_ORDER may be suitable.
2851 average_size = total_size /
2852 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2853 for_each_online_node(nid) {
2854 low_kmem_size = 0;
2855 total_size = 0;
2856 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2857 z = &NODE_DATA(nid)->node_zones[zone_type];
2858 if (populated_zone(z)) {
2859 if (zone_type < ZONE_NORMAL)
2860 low_kmem_size += z->present_pages;
2861 total_size += z->present_pages;
2864 if (low_kmem_size &&
2865 total_size > average_size && /* ignore small node */
2866 low_kmem_size > total_size * 70/100)
2867 return ZONELIST_ORDER_NODE;
2869 return ZONELIST_ORDER_ZONE;
2872 static void set_zonelist_order(void)
2874 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2875 current_zonelist_order = default_zonelist_order();
2876 else
2877 current_zonelist_order = user_zonelist_order;
2880 static void build_zonelists(pg_data_t *pgdat)
2882 int j, node, load;
2883 enum zone_type i;
2884 nodemask_t used_mask;
2885 int local_node, prev_node;
2886 struct zonelist *zonelist;
2887 int order = current_zonelist_order;
2889 /* initialize zonelists */
2890 for (i = 0; i < MAX_ZONELISTS; i++) {
2891 zonelist = pgdat->node_zonelists + i;
2892 zonelist->_zonerefs[0].zone = NULL;
2893 zonelist->_zonerefs[0].zone_idx = 0;
2896 /* NUMA-aware ordering of nodes */
2897 local_node = pgdat->node_id;
2898 load = nr_online_nodes;
2899 prev_node = local_node;
2900 nodes_clear(used_mask);
2902 memset(node_order, 0, sizeof(node_order));
2903 j = 0;
2905 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2906 int distance = node_distance(local_node, node);
2909 * If another node is sufficiently far away then it is better
2910 * to reclaim pages in a zone before going off node.
2912 if (distance > RECLAIM_DISTANCE)
2913 zone_reclaim_mode = 1;
2916 * We don't want to pressure a particular node.
2917 * So adding penalty to the first node in same
2918 * distance group to make it round-robin.
2920 if (distance != node_distance(local_node, prev_node))
2921 node_load[node] = load;
2923 prev_node = node;
2924 load--;
2925 if (order == ZONELIST_ORDER_NODE)
2926 build_zonelists_in_node_order(pgdat, node);
2927 else
2928 node_order[j++] = node; /* remember order */
2931 if (order == ZONELIST_ORDER_ZONE) {
2932 /* calculate node order -- i.e., DMA last! */
2933 build_zonelists_in_zone_order(pgdat, j);
2936 build_thisnode_zonelists(pgdat);
2939 /* Construct the zonelist performance cache - see further mmzone.h */
2940 static void build_zonelist_cache(pg_data_t *pgdat)
2942 struct zonelist *zonelist;
2943 struct zonelist_cache *zlc;
2944 struct zoneref *z;
2946 zonelist = &pgdat->node_zonelists[0];
2947 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2948 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2949 for (z = zonelist->_zonerefs; z->zone; z++)
2950 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2953 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2955 * Return node id of node used for "local" allocations.
2956 * I.e., first node id of first zone in arg node's generic zonelist.
2957 * Used for initializing percpu 'numa_mem', which is used primarily
2958 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2960 int local_memory_node(int node)
2962 struct zone *zone;
2964 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2965 gfp_zone(GFP_KERNEL),
2966 NULL,
2967 &zone);
2968 return zone->node;
2970 #endif
2972 #else /* CONFIG_NUMA */
2974 static void set_zonelist_order(void)
2976 current_zonelist_order = ZONELIST_ORDER_ZONE;
2979 static void build_zonelists(pg_data_t *pgdat)
2981 int node, local_node;
2982 enum zone_type j;
2983 struct zonelist *zonelist;
2985 local_node = pgdat->node_id;
2987 zonelist = &pgdat->node_zonelists[0];
2988 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2991 * Now we build the zonelist so that it contains the zones
2992 * of all the other nodes.
2993 * We don't want to pressure a particular node, so when
2994 * building the zones for node N, we make sure that the
2995 * zones coming right after the local ones are those from
2996 * node N+1 (modulo N)
2998 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2999 if (!node_online(node))
3000 continue;
3001 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3002 MAX_NR_ZONES - 1);
3004 for (node = 0; node < local_node; node++) {
3005 if (!node_online(node))
3006 continue;
3007 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3008 MAX_NR_ZONES - 1);
3011 zonelist->_zonerefs[j].zone = NULL;
3012 zonelist->_zonerefs[j].zone_idx = 0;
3015 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3016 static void build_zonelist_cache(pg_data_t *pgdat)
3018 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3021 #endif /* CONFIG_NUMA */
3024 * Boot pageset table. One per cpu which is going to be used for all
3025 * zones and all nodes. The parameters will be set in such a way
3026 * that an item put on a list will immediately be handed over to
3027 * the buddy list. This is safe since pageset manipulation is done
3028 * with interrupts disabled.
3030 * The boot_pagesets must be kept even after bootup is complete for
3031 * unused processors and/or zones. They do play a role for bootstrapping
3032 * hotplugged processors.
3034 * zoneinfo_show() and maybe other functions do
3035 * not check if the processor is online before following the pageset pointer.
3036 * Other parts of the kernel may not check if the zone is available.
3038 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3039 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3040 static void setup_zone_pageset(struct zone *zone);
3043 * Global mutex to protect against size modification of zonelists
3044 * as well as to serialize pageset setup for the new populated zone.
3046 DEFINE_MUTEX(zonelists_mutex);
3048 /* return values int ....just for stop_machine() */
3049 static __init_refok int __build_all_zonelists(void *data)
3051 int nid;
3052 int cpu;
3054 #ifdef CONFIG_NUMA
3055 memset(node_load, 0, sizeof(node_load));
3056 #endif
3057 for_each_online_node(nid) {
3058 pg_data_t *pgdat = NODE_DATA(nid);
3060 build_zonelists(pgdat);
3061 build_zonelist_cache(pgdat);
3065 * Initialize the boot_pagesets that are going to be used
3066 * for bootstrapping processors. The real pagesets for
3067 * each zone will be allocated later when the per cpu
3068 * allocator is available.
3070 * boot_pagesets are used also for bootstrapping offline
3071 * cpus if the system is already booted because the pagesets
3072 * are needed to initialize allocators on a specific cpu too.
3073 * F.e. the percpu allocator needs the page allocator which
3074 * needs the percpu allocator in order to allocate its pagesets
3075 * (a chicken-egg dilemma).
3077 for_each_possible_cpu(cpu) {
3078 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3080 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3082 * We now know the "local memory node" for each node--
3083 * i.e., the node of the first zone in the generic zonelist.
3084 * Set up numa_mem percpu variable for on-line cpus. During
3085 * boot, only the boot cpu should be on-line; we'll init the
3086 * secondary cpus' numa_mem as they come on-line. During
3087 * node/memory hotplug, we'll fixup all on-line cpus.
3089 if (cpu_online(cpu))
3090 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3091 #endif
3094 return 0;
3098 * Called with zonelists_mutex held always
3099 * unless system_state == SYSTEM_BOOTING.
3101 void build_all_zonelists(void *data)
3103 set_zonelist_order();
3105 if (system_state == SYSTEM_BOOTING) {
3106 __build_all_zonelists(NULL);
3107 mminit_verify_zonelist();
3108 cpuset_init_current_mems_allowed();
3109 } else {
3110 /* we have to stop all cpus to guarantee there is no user
3111 of zonelist */
3112 #ifdef CONFIG_MEMORY_HOTPLUG
3113 if (data)
3114 setup_zone_pageset((struct zone *)data);
3115 #endif
3116 stop_machine(__build_all_zonelists, NULL, NULL);
3117 /* cpuset refresh routine should be here */
3119 vm_total_pages = nr_free_pagecache_pages();
3121 * Disable grouping by mobility if the number of pages in the
3122 * system is too low to allow the mechanism to work. It would be
3123 * more accurate, but expensive to check per-zone. This check is
3124 * made on memory-hotadd so a system can start with mobility
3125 * disabled and enable it later
3127 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3128 page_group_by_mobility_disabled = 1;
3129 else
3130 page_group_by_mobility_disabled = 0;
3132 printk("Built %i zonelists in %s order, mobility grouping %s. "
3133 "Total pages: %ld\n",
3134 nr_online_nodes,
3135 zonelist_order_name[current_zonelist_order],
3136 page_group_by_mobility_disabled ? "off" : "on",
3137 vm_total_pages);
3138 #ifdef CONFIG_NUMA
3139 printk("Policy zone: %s\n", zone_names[policy_zone]);
3140 #endif
3144 * Helper functions to size the waitqueue hash table.
3145 * Essentially these want to choose hash table sizes sufficiently
3146 * large so that collisions trying to wait on pages are rare.
3147 * But in fact, the number of active page waitqueues on typical
3148 * systems is ridiculously low, less than 200. So this is even
3149 * conservative, even though it seems large.
3151 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3152 * waitqueues, i.e. the size of the waitq table given the number of pages.
3154 #define PAGES_PER_WAITQUEUE 256
3156 #ifndef CONFIG_MEMORY_HOTPLUG
3157 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3159 unsigned long size = 1;
3161 pages /= PAGES_PER_WAITQUEUE;
3163 while (size < pages)
3164 size <<= 1;
3167 * Once we have dozens or even hundreds of threads sleeping
3168 * on IO we've got bigger problems than wait queue collision.
3169 * Limit the size of the wait table to a reasonable size.
3171 size = min(size, 4096UL);
3173 return max(size, 4UL);
3175 #else
3177 * A zone's size might be changed by hot-add, so it is not possible to determine
3178 * a suitable size for its wait_table. So we use the maximum size now.
3180 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3182 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3183 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3184 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3186 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3187 * or more by the traditional way. (See above). It equals:
3189 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3190 * ia64(16K page size) : = ( 8G + 4M)byte.
3191 * powerpc (64K page size) : = (32G +16M)byte.
3193 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3195 return 4096UL;
3197 #endif
3200 * This is an integer logarithm so that shifts can be used later
3201 * to extract the more random high bits from the multiplicative
3202 * hash function before the remainder is taken.
3204 static inline unsigned long wait_table_bits(unsigned long size)
3206 return ffz(~size);
3209 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3212 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3213 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3214 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3215 * higher will lead to a bigger reserve which will get freed as contiguous
3216 * blocks as reclaim kicks in
3218 static void setup_zone_migrate_reserve(struct zone *zone)
3220 unsigned long start_pfn, pfn, end_pfn;
3221 struct page *page;
3222 unsigned long block_migratetype;
3223 int reserve;
3225 /* Get the start pfn, end pfn and the number of blocks to reserve */
3226 start_pfn = zone->zone_start_pfn;
3227 end_pfn = start_pfn + zone->spanned_pages;
3228 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3229 pageblock_order;
3232 * Reserve blocks are generally in place to help high-order atomic
3233 * allocations that are short-lived. A min_free_kbytes value that
3234 * would result in more than 2 reserve blocks for atomic allocations
3235 * is assumed to be in place to help anti-fragmentation for the
3236 * future allocation of hugepages at runtime.
3238 reserve = min(2, reserve);
3240 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3241 if (!pfn_valid(pfn))
3242 continue;
3243 page = pfn_to_page(pfn);
3245 /* Watch out for overlapping nodes */
3246 if (page_to_nid(page) != zone_to_nid(zone))
3247 continue;
3249 /* Blocks with reserved pages will never free, skip them. */
3250 if (PageReserved(page))
3251 continue;
3253 block_migratetype = get_pageblock_migratetype(page);
3255 /* If this block is reserved, account for it */
3256 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3257 reserve--;
3258 continue;
3261 /* Suitable for reserving if this block is movable */
3262 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3263 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3264 move_freepages_block(zone, page, MIGRATE_RESERVE);
3265 reserve--;
3266 continue;
3270 * If the reserve is met and this is a previous reserved block,
3271 * take it back
3273 if (block_migratetype == MIGRATE_RESERVE) {
3274 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3275 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3281 * Initially all pages are reserved - free ones are freed
3282 * up by free_all_bootmem() once the early boot process is
3283 * done. Non-atomic initialization, single-pass.
3285 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3286 unsigned long start_pfn, enum memmap_context context)
3288 struct page *page;
3289 unsigned long end_pfn = start_pfn + size;
3290 unsigned long pfn;
3291 struct zone *z;
3293 if (highest_memmap_pfn < end_pfn - 1)
3294 highest_memmap_pfn = end_pfn - 1;
3296 z = &NODE_DATA(nid)->node_zones[zone];
3297 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3299 * There can be holes in boot-time mem_map[]s
3300 * handed to this function. They do not
3301 * exist on hotplugged memory.
3303 if (context == MEMMAP_EARLY) {
3304 if (!early_pfn_valid(pfn))
3305 continue;
3306 if (!early_pfn_in_nid(pfn, nid))
3307 continue;
3309 page = pfn_to_page(pfn);
3310 set_page_links(page, zone, nid, pfn);
3311 mminit_verify_page_links(page, zone, nid, pfn);
3312 init_page_count(page);
3313 reset_page_mapcount(page);
3314 SetPageReserved(page);
3316 * Mark the block movable so that blocks are reserved for
3317 * movable at startup. This will force kernel allocations
3318 * to reserve their blocks rather than leaking throughout
3319 * the address space during boot when many long-lived
3320 * kernel allocations are made. Later some blocks near
3321 * the start are marked MIGRATE_RESERVE by
3322 * setup_zone_migrate_reserve()
3324 * bitmap is created for zone's valid pfn range. but memmap
3325 * can be created for invalid pages (for alignment)
3326 * check here not to call set_pageblock_migratetype() against
3327 * pfn out of zone.
3329 if ((z->zone_start_pfn <= pfn)
3330 && (pfn < z->zone_start_pfn + z->spanned_pages)
3331 && !(pfn & (pageblock_nr_pages - 1)))
3332 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3334 INIT_LIST_HEAD(&page->lru);
3335 #ifdef WANT_PAGE_VIRTUAL
3336 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3337 if (!is_highmem_idx(zone))
3338 set_page_address(page, __va(pfn << PAGE_SHIFT));
3339 #endif
3343 static void __meminit zone_init_free_lists(struct zone *zone)
3345 int order, t;
3346 for_each_migratetype_order(order, t) {
3347 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3348 zone->free_area[order].nr_free = 0;
3352 #ifndef __HAVE_ARCH_MEMMAP_INIT
3353 #define memmap_init(size, nid, zone, start_pfn) \
3354 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3355 #endif
3357 static int zone_batchsize(struct zone *zone)
3359 #ifdef CONFIG_MMU
3360 int batch;
3363 * The per-cpu-pages pools are set to around 1000th of the
3364 * size of the zone. But no more than 1/2 of a meg.
3366 * OK, so we don't know how big the cache is. So guess.
3368 batch = zone->present_pages / 1024;
3369 if (batch * PAGE_SIZE > 512 * 1024)
3370 batch = (512 * 1024) / PAGE_SIZE;
3371 batch /= 4; /* We effectively *= 4 below */
3372 if (batch < 1)
3373 batch = 1;
3376 * Clamp the batch to a 2^n - 1 value. Having a power
3377 * of 2 value was found to be more likely to have
3378 * suboptimal cache aliasing properties in some cases.
3380 * For example if 2 tasks are alternately allocating
3381 * batches of pages, one task can end up with a lot
3382 * of pages of one half of the possible page colors
3383 * and the other with pages of the other colors.
3385 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3387 return batch;
3389 #else
3390 /* The deferral and batching of frees should be suppressed under NOMMU
3391 * conditions.
3393 * The problem is that NOMMU needs to be able to allocate large chunks
3394 * of contiguous memory as there's no hardware page translation to
3395 * assemble apparent contiguous memory from discontiguous pages.
3397 * Queueing large contiguous runs of pages for batching, however,
3398 * causes the pages to actually be freed in smaller chunks. As there
3399 * can be a significant delay between the individual batches being
3400 * recycled, this leads to the once large chunks of space being
3401 * fragmented and becoming unavailable for high-order allocations.
3403 return 0;
3404 #endif
3407 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3409 struct per_cpu_pages *pcp;
3410 int migratetype;
3412 memset(p, 0, sizeof(*p));
3414 pcp = &p->pcp;
3415 pcp->count = 0;
3416 pcp->high = 6 * batch;
3417 pcp->batch = max(1UL, 1 * batch);
3418 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3419 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3423 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3424 * to the value high for the pageset p.
3427 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3428 unsigned long high)
3430 struct per_cpu_pages *pcp;
3432 pcp = &p->pcp;
3433 pcp->high = high;
3434 pcp->batch = max(1UL, high/4);
3435 if ((high/4) > (PAGE_SHIFT * 8))
3436 pcp->batch = PAGE_SHIFT * 8;
3439 static __meminit void setup_zone_pageset(struct zone *zone)
3441 int cpu;
3443 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3445 for_each_possible_cpu(cpu) {
3446 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3448 setup_pageset(pcp, zone_batchsize(zone));
3450 if (percpu_pagelist_fraction)
3451 setup_pagelist_highmark(pcp,
3452 (zone->present_pages /
3453 percpu_pagelist_fraction));
3458 * Allocate per cpu pagesets and initialize them.
3459 * Before this call only boot pagesets were available.
3461 void __init setup_per_cpu_pageset(void)
3463 struct zone *zone;
3465 for_each_populated_zone(zone)
3466 setup_zone_pageset(zone);
3469 static noinline __init_refok
3470 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3472 int i;
3473 struct pglist_data *pgdat = zone->zone_pgdat;
3474 size_t alloc_size;
3477 * The per-page waitqueue mechanism uses hashed waitqueues
3478 * per zone.
3480 zone->wait_table_hash_nr_entries =
3481 wait_table_hash_nr_entries(zone_size_pages);
3482 zone->wait_table_bits =
3483 wait_table_bits(zone->wait_table_hash_nr_entries);
3484 alloc_size = zone->wait_table_hash_nr_entries
3485 * sizeof(wait_queue_head_t);
3487 if (!slab_is_available()) {
3488 zone->wait_table = (wait_queue_head_t *)
3489 alloc_bootmem_node(pgdat, alloc_size);
3490 } else {
3492 * This case means that a zone whose size was 0 gets new memory
3493 * via memory hot-add.
3494 * But it may be the case that a new node was hot-added. In
3495 * this case vmalloc() will not be able to use this new node's
3496 * memory - this wait_table must be initialized to use this new
3497 * node itself as well.
3498 * To use this new node's memory, further consideration will be
3499 * necessary.
3501 zone->wait_table = vmalloc(alloc_size);
3503 if (!zone->wait_table)
3504 return -ENOMEM;
3506 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3507 init_waitqueue_head(zone->wait_table + i);
3509 return 0;
3512 static int __zone_pcp_update(void *data)
3514 struct zone *zone = data;
3515 int cpu;
3516 unsigned long batch = zone_batchsize(zone), flags;
3518 for_each_possible_cpu(cpu) {
3519 struct per_cpu_pageset *pset;
3520 struct per_cpu_pages *pcp;
3522 pset = per_cpu_ptr(zone->pageset, cpu);
3523 pcp = &pset->pcp;
3525 local_irq_save(flags);
3526 free_pcppages_bulk(zone, pcp->count, pcp);
3527 setup_pageset(pset, batch);
3528 local_irq_restore(flags);
3530 return 0;
3533 void zone_pcp_update(struct zone *zone)
3535 stop_machine(__zone_pcp_update, zone, NULL);
3538 static __meminit void zone_pcp_init(struct zone *zone)
3541 * per cpu subsystem is not up at this point. The following code
3542 * relies on the ability of the linker to provide the
3543 * offset of a (static) per cpu variable into the per cpu area.
3545 zone->pageset = &boot_pageset;
3547 if (zone->present_pages)
3548 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3549 zone->name, zone->present_pages,
3550 zone_batchsize(zone));
3553 __meminit int init_currently_empty_zone(struct zone *zone,
3554 unsigned long zone_start_pfn,
3555 unsigned long size,
3556 enum memmap_context context)
3558 struct pglist_data *pgdat = zone->zone_pgdat;
3559 int ret;
3560 ret = zone_wait_table_init(zone, size);
3561 if (ret)
3562 return ret;
3563 pgdat->nr_zones = zone_idx(zone) + 1;
3565 zone->zone_start_pfn = zone_start_pfn;
3567 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3568 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3569 pgdat->node_id,
3570 (unsigned long)zone_idx(zone),
3571 zone_start_pfn, (zone_start_pfn + size));
3573 zone_init_free_lists(zone);
3575 return 0;
3578 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3580 * Basic iterator support. Return the first range of PFNs for a node
3581 * Note: nid == MAX_NUMNODES returns first region regardless of node
3583 static int __meminit first_active_region_index_in_nid(int nid)
3585 int i;
3587 for (i = 0; i < nr_nodemap_entries; i++)
3588 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3589 return i;
3591 return -1;
3595 * Basic iterator support. Return the next active range of PFNs for a node
3596 * Note: nid == MAX_NUMNODES returns next region regardless of node
3598 static int __meminit next_active_region_index_in_nid(int index, int nid)
3600 for (index = index + 1; index < nr_nodemap_entries; index++)
3601 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3602 return index;
3604 return -1;
3607 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3609 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3610 * Architectures may implement their own version but if add_active_range()
3611 * was used and there are no special requirements, this is a convenient
3612 * alternative
3614 int __meminit __early_pfn_to_nid(unsigned long pfn)
3616 int i;
3618 for (i = 0; i < nr_nodemap_entries; i++) {
3619 unsigned long start_pfn = early_node_map[i].start_pfn;
3620 unsigned long end_pfn = early_node_map[i].end_pfn;
3622 if (start_pfn <= pfn && pfn < end_pfn)
3623 return early_node_map[i].nid;
3625 /* This is a memory hole */
3626 return -1;
3628 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3630 int __meminit early_pfn_to_nid(unsigned long pfn)
3632 int nid;
3634 nid = __early_pfn_to_nid(pfn);
3635 if (nid >= 0)
3636 return nid;
3637 /* just returns 0 */
3638 return 0;
3641 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3642 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3644 int nid;
3646 nid = __early_pfn_to_nid(pfn);
3647 if (nid >= 0 && nid != node)
3648 return false;
3649 return true;
3651 #endif
3653 /* Basic iterator support to walk early_node_map[] */
3654 #define for_each_active_range_index_in_nid(i, nid) \
3655 for (i = first_active_region_index_in_nid(nid); i != -1; \
3656 i = next_active_region_index_in_nid(i, nid))
3659 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3660 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3661 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3663 * If an architecture guarantees that all ranges registered with
3664 * add_active_ranges() contain no holes and may be freed, this
3665 * this function may be used instead of calling free_bootmem() manually.
3667 void __init free_bootmem_with_active_regions(int nid,
3668 unsigned long max_low_pfn)
3670 int i;
3672 for_each_active_range_index_in_nid(i, nid) {
3673 unsigned long size_pages = 0;
3674 unsigned long end_pfn = early_node_map[i].end_pfn;
3676 if (early_node_map[i].start_pfn >= max_low_pfn)
3677 continue;
3679 if (end_pfn > max_low_pfn)
3680 end_pfn = max_low_pfn;
3682 size_pages = end_pfn - early_node_map[i].start_pfn;
3683 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3684 PFN_PHYS(early_node_map[i].start_pfn),
3685 size_pages << PAGE_SHIFT);
3689 #ifdef CONFIG_HAVE_MEMBLOCK
3690 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3691 u64 goal, u64 limit)
3693 int i;
3695 /* Need to go over early_node_map to find out good range for node */
3696 for_each_active_range_index_in_nid(i, nid) {
3697 u64 addr;
3698 u64 ei_start, ei_last;
3699 u64 final_start, final_end;
3701 ei_last = early_node_map[i].end_pfn;
3702 ei_last <<= PAGE_SHIFT;
3703 ei_start = early_node_map[i].start_pfn;
3704 ei_start <<= PAGE_SHIFT;
3706 final_start = max(ei_start, goal);
3707 final_end = min(ei_last, limit);
3709 if (final_start >= final_end)
3710 continue;
3712 addr = memblock_find_in_range(final_start, final_end, size, align);
3714 if (addr == MEMBLOCK_ERROR)
3715 continue;
3717 return addr;
3720 return MEMBLOCK_ERROR;
3722 #endif
3724 int __init add_from_early_node_map(struct range *range, int az,
3725 int nr_range, int nid)
3727 int i;
3728 u64 start, end;
3730 /* need to go over early_node_map to find out good range for node */
3731 for_each_active_range_index_in_nid(i, nid) {
3732 start = early_node_map[i].start_pfn;
3733 end = early_node_map[i].end_pfn;
3734 nr_range = add_range(range, az, nr_range, start, end);
3736 return nr_range;
3739 #ifdef CONFIG_NO_BOOTMEM
3740 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3741 u64 goal, u64 limit)
3743 void *ptr;
3744 u64 addr;
3746 if (limit > memblock.current_limit)
3747 limit = memblock.current_limit;
3749 addr = find_memory_core_early(nid, size, align, goal, limit);
3751 if (addr == MEMBLOCK_ERROR)
3752 return NULL;
3754 ptr = phys_to_virt(addr);
3755 memset(ptr, 0, size);
3756 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3758 * The min_count is set to 0 so that bootmem allocated blocks
3759 * are never reported as leaks.
3761 kmemleak_alloc(ptr, size, 0, 0);
3762 return ptr;
3764 #endif
3767 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3769 int i;
3770 int ret;
3772 for_each_active_range_index_in_nid(i, nid) {
3773 ret = work_fn(early_node_map[i].start_pfn,
3774 early_node_map[i].end_pfn, data);
3775 if (ret)
3776 break;
3780 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3781 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3783 * If an architecture guarantees that all ranges registered with
3784 * add_active_ranges() contain no holes and may be freed, this
3785 * function may be used instead of calling memory_present() manually.
3787 void __init sparse_memory_present_with_active_regions(int nid)
3789 int i;
3791 for_each_active_range_index_in_nid(i, nid)
3792 memory_present(early_node_map[i].nid,
3793 early_node_map[i].start_pfn,
3794 early_node_map[i].end_pfn);
3798 * get_pfn_range_for_nid - Return the start and end page frames for a node
3799 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3800 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3801 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3803 * It returns the start and end page frame of a node based on information
3804 * provided by an arch calling add_active_range(). If called for a node
3805 * with no available memory, a warning is printed and the start and end
3806 * PFNs will be 0.
3808 void __meminit get_pfn_range_for_nid(unsigned int nid,
3809 unsigned long *start_pfn, unsigned long *end_pfn)
3811 int i;
3812 *start_pfn = -1UL;
3813 *end_pfn = 0;
3815 for_each_active_range_index_in_nid(i, nid) {
3816 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3817 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3820 if (*start_pfn == -1UL)
3821 *start_pfn = 0;
3825 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3826 * assumption is made that zones within a node are ordered in monotonic
3827 * increasing memory addresses so that the "highest" populated zone is used
3829 static void __init find_usable_zone_for_movable(void)
3831 int zone_index;
3832 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3833 if (zone_index == ZONE_MOVABLE)
3834 continue;
3836 if (arch_zone_highest_possible_pfn[zone_index] >
3837 arch_zone_lowest_possible_pfn[zone_index])
3838 break;
3841 VM_BUG_ON(zone_index == -1);
3842 movable_zone = zone_index;
3846 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3847 * because it is sized independant of architecture. Unlike the other zones,
3848 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3849 * in each node depending on the size of each node and how evenly kernelcore
3850 * is distributed. This helper function adjusts the zone ranges
3851 * provided by the architecture for a given node by using the end of the
3852 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3853 * zones within a node are in order of monotonic increases memory addresses
3855 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3856 unsigned long zone_type,
3857 unsigned long node_start_pfn,
3858 unsigned long node_end_pfn,
3859 unsigned long *zone_start_pfn,
3860 unsigned long *zone_end_pfn)
3862 /* Only adjust if ZONE_MOVABLE is on this node */
3863 if (zone_movable_pfn[nid]) {
3864 /* Size ZONE_MOVABLE */
3865 if (zone_type == ZONE_MOVABLE) {
3866 *zone_start_pfn = zone_movable_pfn[nid];
3867 *zone_end_pfn = min(node_end_pfn,
3868 arch_zone_highest_possible_pfn[movable_zone]);
3870 /* Adjust for ZONE_MOVABLE starting within this range */
3871 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3872 *zone_end_pfn > zone_movable_pfn[nid]) {
3873 *zone_end_pfn = zone_movable_pfn[nid];
3875 /* Check if this whole range is within ZONE_MOVABLE */
3876 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3877 *zone_start_pfn = *zone_end_pfn;
3882 * Return the number of pages a zone spans in a node, including holes
3883 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3885 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3886 unsigned long zone_type,
3887 unsigned long *ignored)
3889 unsigned long node_start_pfn, node_end_pfn;
3890 unsigned long zone_start_pfn, zone_end_pfn;
3892 /* Get the start and end of the node and zone */
3893 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3894 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3895 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3896 adjust_zone_range_for_zone_movable(nid, zone_type,
3897 node_start_pfn, node_end_pfn,
3898 &zone_start_pfn, &zone_end_pfn);
3900 /* Check that this node has pages within the zone's required range */
3901 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3902 return 0;
3904 /* Move the zone boundaries inside the node if necessary */
3905 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3906 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3908 /* Return the spanned pages */
3909 return zone_end_pfn - zone_start_pfn;
3913 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3914 * then all holes in the requested range will be accounted for.
3916 unsigned long __meminit __absent_pages_in_range(int nid,
3917 unsigned long range_start_pfn,
3918 unsigned long range_end_pfn)
3920 int i = 0;
3921 unsigned long prev_end_pfn = 0, hole_pages = 0;
3922 unsigned long start_pfn;
3924 /* Find the end_pfn of the first active range of pfns in the node */
3925 i = first_active_region_index_in_nid(nid);
3926 if (i == -1)
3927 return 0;
3929 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3931 /* Account for ranges before physical memory on this node */
3932 if (early_node_map[i].start_pfn > range_start_pfn)
3933 hole_pages = prev_end_pfn - range_start_pfn;
3935 /* Find all holes for the zone within the node */
3936 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3938 /* No need to continue if prev_end_pfn is outside the zone */
3939 if (prev_end_pfn >= range_end_pfn)
3940 break;
3942 /* Make sure the end of the zone is not within the hole */
3943 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3944 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3946 /* Update the hole size cound and move on */
3947 if (start_pfn > range_start_pfn) {
3948 BUG_ON(prev_end_pfn > start_pfn);
3949 hole_pages += start_pfn - prev_end_pfn;
3951 prev_end_pfn = early_node_map[i].end_pfn;
3954 /* Account for ranges past physical memory on this node */
3955 if (range_end_pfn > prev_end_pfn)
3956 hole_pages += range_end_pfn -
3957 max(range_start_pfn, prev_end_pfn);
3959 return hole_pages;
3963 * absent_pages_in_range - Return number of page frames in holes within a range
3964 * @start_pfn: The start PFN to start searching for holes
3965 * @end_pfn: The end PFN to stop searching for holes
3967 * It returns the number of pages frames in memory holes within a range.
3969 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3970 unsigned long end_pfn)
3972 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3975 /* Return the number of page frames in holes in a zone on a node */
3976 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3977 unsigned long zone_type,
3978 unsigned long *ignored)
3980 unsigned long node_start_pfn, node_end_pfn;
3981 unsigned long zone_start_pfn, zone_end_pfn;
3983 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3984 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3985 node_start_pfn);
3986 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3987 node_end_pfn);
3989 adjust_zone_range_for_zone_movable(nid, zone_type,
3990 node_start_pfn, node_end_pfn,
3991 &zone_start_pfn, &zone_end_pfn);
3992 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3995 #else
3996 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3997 unsigned long zone_type,
3998 unsigned long *zones_size)
4000 return zones_size[zone_type];
4003 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4004 unsigned long zone_type,
4005 unsigned long *zholes_size)
4007 if (!zholes_size)
4008 return 0;
4010 return zholes_size[zone_type];
4013 #endif
4015 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4016 unsigned long *zones_size, unsigned long *zholes_size)
4018 unsigned long realtotalpages, totalpages = 0;
4019 enum zone_type i;
4021 for (i = 0; i < MAX_NR_ZONES; i++)
4022 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4023 zones_size);
4024 pgdat->node_spanned_pages = totalpages;
4026 realtotalpages = totalpages;
4027 for (i = 0; i < MAX_NR_ZONES; i++)
4028 realtotalpages -=
4029 zone_absent_pages_in_node(pgdat->node_id, i,
4030 zholes_size);
4031 pgdat->node_present_pages = realtotalpages;
4032 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4033 realtotalpages);
4036 #ifndef CONFIG_SPARSEMEM
4038 * Calculate the size of the zone->blockflags rounded to an unsigned long
4039 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4040 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4041 * round what is now in bits to nearest long in bits, then return it in
4042 * bytes.
4044 static unsigned long __init usemap_size(unsigned long zonesize)
4046 unsigned long usemapsize;
4048 usemapsize = roundup(zonesize, pageblock_nr_pages);
4049 usemapsize = usemapsize >> pageblock_order;
4050 usemapsize *= NR_PAGEBLOCK_BITS;
4051 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4053 return usemapsize / 8;
4056 static void __init setup_usemap(struct pglist_data *pgdat,
4057 struct zone *zone, unsigned long zonesize)
4059 unsigned long usemapsize = usemap_size(zonesize);
4060 zone->pageblock_flags = NULL;
4061 if (usemapsize)
4062 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4064 #else
4065 static inline void setup_usemap(struct pglist_data *pgdat,
4066 struct zone *zone, unsigned long zonesize) {}
4067 #endif /* CONFIG_SPARSEMEM */
4069 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4071 /* Return a sensible default order for the pageblock size. */
4072 static inline int pageblock_default_order(void)
4074 if (HPAGE_SHIFT > PAGE_SHIFT)
4075 return HUGETLB_PAGE_ORDER;
4077 return MAX_ORDER-1;
4080 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4081 static inline void __init set_pageblock_order(unsigned int order)
4083 /* Check that pageblock_nr_pages has not already been setup */
4084 if (pageblock_order)
4085 return;
4088 * Assume the largest contiguous order of interest is a huge page.
4089 * This value may be variable depending on boot parameters on IA64
4091 pageblock_order = order;
4093 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4096 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4097 * and pageblock_default_order() are unused as pageblock_order is set
4098 * at compile-time. See include/linux/pageblock-flags.h for the values of
4099 * pageblock_order based on the kernel config
4101 static inline int pageblock_default_order(unsigned int order)
4103 return MAX_ORDER-1;
4105 #define set_pageblock_order(x) do {} while (0)
4107 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4110 * Set up the zone data structures:
4111 * - mark all pages reserved
4112 * - mark all memory queues empty
4113 * - clear the memory bitmaps
4115 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4116 unsigned long *zones_size, unsigned long *zholes_size)
4118 enum zone_type j;
4119 int nid = pgdat->node_id;
4120 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4121 int ret;
4123 pgdat_resize_init(pgdat);
4124 pgdat->nr_zones = 0;
4125 init_waitqueue_head(&pgdat->kswapd_wait);
4126 pgdat->kswapd_max_order = 0;
4127 pgdat_page_cgroup_init(pgdat);
4129 for (j = 0; j < MAX_NR_ZONES; j++) {
4130 struct zone *zone = pgdat->node_zones + j;
4131 unsigned long size, realsize, memmap_pages;
4132 enum lru_list l;
4134 size = zone_spanned_pages_in_node(nid, j, zones_size);
4135 realsize = size - zone_absent_pages_in_node(nid, j,
4136 zholes_size);
4139 * Adjust realsize so that it accounts for how much memory
4140 * is used by this zone for memmap. This affects the watermark
4141 * and per-cpu initialisations
4143 memmap_pages =
4144 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4145 if (realsize >= memmap_pages) {
4146 realsize -= memmap_pages;
4147 if (memmap_pages)
4148 printk(KERN_DEBUG
4149 " %s zone: %lu pages used for memmap\n",
4150 zone_names[j], memmap_pages);
4151 } else
4152 printk(KERN_WARNING
4153 " %s zone: %lu pages exceeds realsize %lu\n",
4154 zone_names[j], memmap_pages, realsize);
4156 /* Account for reserved pages */
4157 if (j == 0 && realsize > dma_reserve) {
4158 realsize -= dma_reserve;
4159 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4160 zone_names[0], dma_reserve);
4163 if (!is_highmem_idx(j))
4164 nr_kernel_pages += realsize;
4165 nr_all_pages += realsize;
4167 zone->spanned_pages = size;
4168 zone->present_pages = realsize;
4169 #ifdef CONFIG_NUMA
4170 zone->node = nid;
4171 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4172 / 100;
4173 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4174 #endif
4175 zone->name = zone_names[j];
4176 spin_lock_init(&zone->lock);
4177 spin_lock_init(&zone->lru_lock);
4178 zone_seqlock_init(zone);
4179 zone->zone_pgdat = pgdat;
4181 zone_pcp_init(zone);
4182 for_each_lru(l) {
4183 INIT_LIST_HEAD(&zone->lru[l].list);
4184 zone->reclaim_stat.nr_saved_scan[l] = 0;
4186 zone->reclaim_stat.recent_rotated[0] = 0;
4187 zone->reclaim_stat.recent_rotated[1] = 0;
4188 zone->reclaim_stat.recent_scanned[0] = 0;
4189 zone->reclaim_stat.recent_scanned[1] = 0;
4190 zap_zone_vm_stats(zone);
4191 zone->flags = 0;
4192 if (!size)
4193 continue;
4195 set_pageblock_order(pageblock_default_order());
4196 setup_usemap(pgdat, zone, size);
4197 ret = init_currently_empty_zone(zone, zone_start_pfn,
4198 size, MEMMAP_EARLY);
4199 BUG_ON(ret);
4200 memmap_init(size, nid, j, zone_start_pfn);
4201 zone_start_pfn += size;
4205 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4207 /* Skip empty nodes */
4208 if (!pgdat->node_spanned_pages)
4209 return;
4211 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4212 /* ia64 gets its own node_mem_map, before this, without bootmem */
4213 if (!pgdat->node_mem_map) {
4214 unsigned long size, start, end;
4215 struct page *map;
4218 * The zone's endpoints aren't required to be MAX_ORDER
4219 * aligned but the node_mem_map endpoints must be in order
4220 * for the buddy allocator to function correctly.
4222 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4223 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4224 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4225 size = (end - start) * sizeof(struct page);
4226 map = alloc_remap(pgdat->node_id, size);
4227 if (!map)
4228 map = alloc_bootmem_node(pgdat, size);
4229 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4231 #ifndef CONFIG_NEED_MULTIPLE_NODES
4233 * With no DISCONTIG, the global mem_map is just set as node 0's
4235 if (pgdat == NODE_DATA(0)) {
4236 mem_map = NODE_DATA(0)->node_mem_map;
4237 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4238 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4239 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4240 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4242 #endif
4243 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4246 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4247 unsigned long node_start_pfn, unsigned long *zholes_size)
4249 pg_data_t *pgdat = NODE_DATA(nid);
4251 pgdat->node_id = nid;
4252 pgdat->node_start_pfn = node_start_pfn;
4253 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4255 alloc_node_mem_map(pgdat);
4256 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4257 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4258 nid, (unsigned long)pgdat,
4259 (unsigned long)pgdat->node_mem_map);
4260 #endif
4262 free_area_init_core(pgdat, zones_size, zholes_size);
4265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4267 #if MAX_NUMNODES > 1
4269 * Figure out the number of possible node ids.
4271 static void __init setup_nr_node_ids(void)
4273 unsigned int node;
4274 unsigned int highest = 0;
4276 for_each_node_mask(node, node_possible_map)
4277 highest = node;
4278 nr_node_ids = highest + 1;
4280 #else
4281 static inline void setup_nr_node_ids(void)
4284 #endif
4287 * add_active_range - Register a range of PFNs backed by physical memory
4288 * @nid: The node ID the range resides on
4289 * @start_pfn: The start PFN of the available physical memory
4290 * @end_pfn: The end PFN of the available physical memory
4292 * These ranges are stored in an early_node_map[] and later used by
4293 * free_area_init_nodes() to calculate zone sizes and holes. If the
4294 * range spans a memory hole, it is up to the architecture to ensure
4295 * the memory is not freed by the bootmem allocator. If possible
4296 * the range being registered will be merged with existing ranges.
4298 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4299 unsigned long end_pfn)
4301 int i;
4303 mminit_dprintk(MMINIT_TRACE, "memory_register",
4304 "Entering add_active_range(%d, %#lx, %#lx) "
4305 "%d entries of %d used\n",
4306 nid, start_pfn, end_pfn,
4307 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4309 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4311 /* Merge with existing active regions if possible */
4312 for (i = 0; i < nr_nodemap_entries; i++) {
4313 if (early_node_map[i].nid != nid)
4314 continue;
4316 /* Skip if an existing region covers this new one */
4317 if (start_pfn >= early_node_map[i].start_pfn &&
4318 end_pfn <= early_node_map[i].end_pfn)
4319 return;
4321 /* Merge forward if suitable */
4322 if (start_pfn <= early_node_map[i].end_pfn &&
4323 end_pfn > early_node_map[i].end_pfn) {
4324 early_node_map[i].end_pfn = end_pfn;
4325 return;
4328 /* Merge backward if suitable */
4329 if (start_pfn < early_node_map[i].start_pfn &&
4330 end_pfn >= early_node_map[i].start_pfn) {
4331 early_node_map[i].start_pfn = start_pfn;
4332 return;
4336 /* Check that early_node_map is large enough */
4337 if (i >= MAX_ACTIVE_REGIONS) {
4338 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4339 MAX_ACTIVE_REGIONS);
4340 return;
4343 early_node_map[i].nid = nid;
4344 early_node_map[i].start_pfn = start_pfn;
4345 early_node_map[i].end_pfn = end_pfn;
4346 nr_nodemap_entries = i + 1;
4350 * remove_active_range - Shrink an existing registered range of PFNs
4351 * @nid: The node id the range is on that should be shrunk
4352 * @start_pfn: The new PFN of the range
4353 * @end_pfn: The new PFN of the range
4355 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4356 * The map is kept near the end physical page range that has already been
4357 * registered. This function allows an arch to shrink an existing registered
4358 * range.
4360 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4361 unsigned long end_pfn)
4363 int i, j;
4364 int removed = 0;
4366 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4367 nid, start_pfn, end_pfn);
4369 /* Find the old active region end and shrink */
4370 for_each_active_range_index_in_nid(i, nid) {
4371 if (early_node_map[i].start_pfn >= start_pfn &&
4372 early_node_map[i].end_pfn <= end_pfn) {
4373 /* clear it */
4374 early_node_map[i].start_pfn = 0;
4375 early_node_map[i].end_pfn = 0;
4376 removed = 1;
4377 continue;
4379 if (early_node_map[i].start_pfn < start_pfn &&
4380 early_node_map[i].end_pfn > start_pfn) {
4381 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4382 early_node_map[i].end_pfn = start_pfn;
4383 if (temp_end_pfn > end_pfn)
4384 add_active_range(nid, end_pfn, temp_end_pfn);
4385 continue;
4387 if (early_node_map[i].start_pfn >= start_pfn &&
4388 early_node_map[i].end_pfn > end_pfn &&
4389 early_node_map[i].start_pfn < end_pfn) {
4390 early_node_map[i].start_pfn = end_pfn;
4391 continue;
4395 if (!removed)
4396 return;
4398 /* remove the blank ones */
4399 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4400 if (early_node_map[i].nid != nid)
4401 continue;
4402 if (early_node_map[i].end_pfn)
4403 continue;
4404 /* we found it, get rid of it */
4405 for (j = i; j < nr_nodemap_entries - 1; j++)
4406 memcpy(&early_node_map[j], &early_node_map[j+1],
4407 sizeof(early_node_map[j]));
4408 j = nr_nodemap_entries - 1;
4409 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4410 nr_nodemap_entries--;
4415 * remove_all_active_ranges - Remove all currently registered regions
4417 * During discovery, it may be found that a table like SRAT is invalid
4418 * and an alternative discovery method must be used. This function removes
4419 * all currently registered regions.
4421 void __init remove_all_active_ranges(void)
4423 memset(early_node_map, 0, sizeof(early_node_map));
4424 nr_nodemap_entries = 0;
4427 /* Compare two active node_active_regions */
4428 static int __init cmp_node_active_region(const void *a, const void *b)
4430 struct node_active_region *arange = (struct node_active_region *)a;
4431 struct node_active_region *brange = (struct node_active_region *)b;
4433 /* Done this way to avoid overflows */
4434 if (arange->start_pfn > brange->start_pfn)
4435 return 1;
4436 if (arange->start_pfn < brange->start_pfn)
4437 return -1;
4439 return 0;
4442 /* sort the node_map by start_pfn */
4443 void __init sort_node_map(void)
4445 sort(early_node_map, (size_t)nr_nodemap_entries,
4446 sizeof(struct node_active_region),
4447 cmp_node_active_region, NULL);
4450 /* Find the lowest pfn for a node */
4451 static unsigned long __init find_min_pfn_for_node(int nid)
4453 int i;
4454 unsigned long min_pfn = ULONG_MAX;
4456 /* Assuming a sorted map, the first range found has the starting pfn */
4457 for_each_active_range_index_in_nid(i, nid)
4458 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4460 if (min_pfn == ULONG_MAX) {
4461 printk(KERN_WARNING
4462 "Could not find start_pfn for node %d\n", nid);
4463 return 0;
4466 return min_pfn;
4470 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4472 * It returns the minimum PFN based on information provided via
4473 * add_active_range().
4475 unsigned long __init find_min_pfn_with_active_regions(void)
4477 return find_min_pfn_for_node(MAX_NUMNODES);
4481 * early_calculate_totalpages()
4482 * Sum pages in active regions for movable zone.
4483 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4485 static unsigned long __init early_calculate_totalpages(void)
4487 int i;
4488 unsigned long totalpages = 0;
4490 for (i = 0; i < nr_nodemap_entries; i++) {
4491 unsigned long pages = early_node_map[i].end_pfn -
4492 early_node_map[i].start_pfn;
4493 totalpages += pages;
4494 if (pages)
4495 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4497 return totalpages;
4501 * Find the PFN the Movable zone begins in each node. Kernel memory
4502 * is spread evenly between nodes as long as the nodes have enough
4503 * memory. When they don't, some nodes will have more kernelcore than
4504 * others
4506 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4508 int i, nid;
4509 unsigned long usable_startpfn;
4510 unsigned long kernelcore_node, kernelcore_remaining;
4511 /* save the state before borrow the nodemask */
4512 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4513 unsigned long totalpages = early_calculate_totalpages();
4514 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4517 * If movablecore was specified, calculate what size of
4518 * kernelcore that corresponds so that memory usable for
4519 * any allocation type is evenly spread. If both kernelcore
4520 * and movablecore are specified, then the value of kernelcore
4521 * will be used for required_kernelcore if it's greater than
4522 * what movablecore would have allowed.
4524 if (required_movablecore) {
4525 unsigned long corepages;
4528 * Round-up so that ZONE_MOVABLE is at least as large as what
4529 * was requested by the user
4531 required_movablecore =
4532 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4533 corepages = totalpages - required_movablecore;
4535 required_kernelcore = max(required_kernelcore, corepages);
4538 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4539 if (!required_kernelcore)
4540 goto out;
4542 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4543 find_usable_zone_for_movable();
4544 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4546 restart:
4547 /* Spread kernelcore memory as evenly as possible throughout nodes */
4548 kernelcore_node = required_kernelcore / usable_nodes;
4549 for_each_node_state(nid, N_HIGH_MEMORY) {
4551 * Recalculate kernelcore_node if the division per node
4552 * now exceeds what is necessary to satisfy the requested
4553 * amount of memory for the kernel
4555 if (required_kernelcore < kernelcore_node)
4556 kernelcore_node = required_kernelcore / usable_nodes;
4559 * As the map is walked, we track how much memory is usable
4560 * by the kernel using kernelcore_remaining. When it is
4561 * 0, the rest of the node is usable by ZONE_MOVABLE
4563 kernelcore_remaining = kernelcore_node;
4565 /* Go through each range of PFNs within this node */
4566 for_each_active_range_index_in_nid(i, nid) {
4567 unsigned long start_pfn, end_pfn;
4568 unsigned long size_pages;
4570 start_pfn = max(early_node_map[i].start_pfn,
4571 zone_movable_pfn[nid]);
4572 end_pfn = early_node_map[i].end_pfn;
4573 if (start_pfn >= end_pfn)
4574 continue;
4576 /* Account for what is only usable for kernelcore */
4577 if (start_pfn < usable_startpfn) {
4578 unsigned long kernel_pages;
4579 kernel_pages = min(end_pfn, usable_startpfn)
4580 - start_pfn;
4582 kernelcore_remaining -= min(kernel_pages,
4583 kernelcore_remaining);
4584 required_kernelcore -= min(kernel_pages,
4585 required_kernelcore);
4587 /* Continue if range is now fully accounted */
4588 if (end_pfn <= usable_startpfn) {
4591 * Push zone_movable_pfn to the end so
4592 * that if we have to rebalance
4593 * kernelcore across nodes, we will
4594 * not double account here
4596 zone_movable_pfn[nid] = end_pfn;
4597 continue;
4599 start_pfn = usable_startpfn;
4603 * The usable PFN range for ZONE_MOVABLE is from
4604 * start_pfn->end_pfn. Calculate size_pages as the
4605 * number of pages used as kernelcore
4607 size_pages = end_pfn - start_pfn;
4608 if (size_pages > kernelcore_remaining)
4609 size_pages = kernelcore_remaining;
4610 zone_movable_pfn[nid] = start_pfn + size_pages;
4613 * Some kernelcore has been met, update counts and
4614 * break if the kernelcore for this node has been
4615 * satisified
4617 required_kernelcore -= min(required_kernelcore,
4618 size_pages);
4619 kernelcore_remaining -= size_pages;
4620 if (!kernelcore_remaining)
4621 break;
4626 * If there is still required_kernelcore, we do another pass with one
4627 * less node in the count. This will push zone_movable_pfn[nid] further
4628 * along on the nodes that still have memory until kernelcore is
4629 * satisified
4631 usable_nodes--;
4632 if (usable_nodes && required_kernelcore > usable_nodes)
4633 goto restart;
4635 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4636 for (nid = 0; nid < MAX_NUMNODES; nid++)
4637 zone_movable_pfn[nid] =
4638 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4640 out:
4641 /* restore the node_state */
4642 node_states[N_HIGH_MEMORY] = saved_node_state;
4645 /* Any regular memory on that node ? */
4646 static void check_for_regular_memory(pg_data_t *pgdat)
4648 #ifdef CONFIG_HIGHMEM
4649 enum zone_type zone_type;
4651 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4652 struct zone *zone = &pgdat->node_zones[zone_type];
4653 if (zone->present_pages)
4654 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4656 #endif
4660 * free_area_init_nodes - Initialise all pg_data_t and zone data
4661 * @max_zone_pfn: an array of max PFNs for each zone
4663 * This will call free_area_init_node() for each active node in the system.
4664 * Using the page ranges provided by add_active_range(), the size of each
4665 * zone in each node and their holes is calculated. If the maximum PFN
4666 * between two adjacent zones match, it is assumed that the zone is empty.
4667 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4668 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4669 * starts where the previous one ended. For example, ZONE_DMA32 starts
4670 * at arch_max_dma_pfn.
4672 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4674 unsigned long nid;
4675 int i;
4677 /* Sort early_node_map as initialisation assumes it is sorted */
4678 sort_node_map();
4680 /* Record where the zone boundaries are */
4681 memset(arch_zone_lowest_possible_pfn, 0,
4682 sizeof(arch_zone_lowest_possible_pfn));
4683 memset(arch_zone_highest_possible_pfn, 0,
4684 sizeof(arch_zone_highest_possible_pfn));
4685 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4686 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4687 for (i = 1; i < MAX_NR_ZONES; i++) {
4688 if (i == ZONE_MOVABLE)
4689 continue;
4690 arch_zone_lowest_possible_pfn[i] =
4691 arch_zone_highest_possible_pfn[i-1];
4692 arch_zone_highest_possible_pfn[i] =
4693 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4695 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4696 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4698 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4699 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4700 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4702 /* Print out the zone ranges */
4703 printk("Zone PFN ranges:\n");
4704 for (i = 0; i < MAX_NR_ZONES; i++) {
4705 if (i == ZONE_MOVABLE)
4706 continue;
4707 printk(" %-8s ", zone_names[i]);
4708 if (arch_zone_lowest_possible_pfn[i] ==
4709 arch_zone_highest_possible_pfn[i])
4710 printk("empty\n");
4711 else
4712 printk("%0#10lx -> %0#10lx\n",
4713 arch_zone_lowest_possible_pfn[i],
4714 arch_zone_highest_possible_pfn[i]);
4717 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4718 printk("Movable zone start PFN for each node\n");
4719 for (i = 0; i < MAX_NUMNODES; i++) {
4720 if (zone_movable_pfn[i])
4721 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4724 /* Print out the early_node_map[] */
4725 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4726 for (i = 0; i < nr_nodemap_entries; i++)
4727 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4728 early_node_map[i].start_pfn,
4729 early_node_map[i].end_pfn);
4731 /* Initialise every node */
4732 mminit_verify_pageflags_layout();
4733 setup_nr_node_ids();
4734 for_each_online_node(nid) {
4735 pg_data_t *pgdat = NODE_DATA(nid);
4736 free_area_init_node(nid, NULL,
4737 find_min_pfn_for_node(nid), NULL);
4739 /* Any memory on that node */
4740 if (pgdat->node_present_pages)
4741 node_set_state(nid, N_HIGH_MEMORY);
4742 check_for_regular_memory(pgdat);
4746 static int __init cmdline_parse_core(char *p, unsigned long *core)
4748 unsigned long long coremem;
4749 if (!p)
4750 return -EINVAL;
4752 coremem = memparse(p, &p);
4753 *core = coremem >> PAGE_SHIFT;
4755 /* Paranoid check that UL is enough for the coremem value */
4756 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4758 return 0;
4762 * kernelcore=size sets the amount of memory for use for allocations that
4763 * cannot be reclaimed or migrated.
4765 static int __init cmdline_parse_kernelcore(char *p)
4767 return cmdline_parse_core(p, &required_kernelcore);
4771 * movablecore=size sets the amount of memory for use for allocations that
4772 * can be reclaimed or migrated.
4774 static int __init cmdline_parse_movablecore(char *p)
4776 return cmdline_parse_core(p, &required_movablecore);
4779 early_param("kernelcore", cmdline_parse_kernelcore);
4780 early_param("movablecore", cmdline_parse_movablecore);
4782 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4785 * set_dma_reserve - set the specified number of pages reserved in the first zone
4786 * @new_dma_reserve: The number of pages to mark reserved
4788 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4789 * In the DMA zone, a significant percentage may be consumed by kernel image
4790 * and other unfreeable allocations which can skew the watermarks badly. This
4791 * function may optionally be used to account for unfreeable pages in the
4792 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4793 * smaller per-cpu batchsize.
4795 void __init set_dma_reserve(unsigned long new_dma_reserve)
4797 dma_reserve = new_dma_reserve;
4800 #ifndef CONFIG_NEED_MULTIPLE_NODES
4801 struct pglist_data __refdata contig_page_data = {
4802 #ifndef CONFIG_NO_BOOTMEM
4803 .bdata = &bootmem_node_data[0]
4804 #endif
4806 EXPORT_SYMBOL(contig_page_data);
4807 #endif
4809 void __init free_area_init(unsigned long *zones_size)
4811 free_area_init_node(0, zones_size,
4812 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4815 static int page_alloc_cpu_notify(struct notifier_block *self,
4816 unsigned long action, void *hcpu)
4818 int cpu = (unsigned long)hcpu;
4820 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4821 drain_pages(cpu);
4824 * Spill the event counters of the dead processor
4825 * into the current processors event counters.
4826 * This artificially elevates the count of the current
4827 * processor.
4829 vm_events_fold_cpu(cpu);
4832 * Zero the differential counters of the dead processor
4833 * so that the vm statistics are consistent.
4835 * This is only okay since the processor is dead and cannot
4836 * race with what we are doing.
4838 refresh_cpu_vm_stats(cpu);
4840 return NOTIFY_OK;
4843 void __init page_alloc_init(void)
4845 hotcpu_notifier(page_alloc_cpu_notify, 0);
4849 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4850 * or min_free_kbytes changes.
4852 static void calculate_totalreserve_pages(void)
4854 struct pglist_data *pgdat;
4855 unsigned long reserve_pages = 0;
4856 enum zone_type i, j;
4858 for_each_online_pgdat(pgdat) {
4859 for (i = 0; i < MAX_NR_ZONES; i++) {
4860 struct zone *zone = pgdat->node_zones + i;
4861 unsigned long max = 0;
4863 /* Find valid and maximum lowmem_reserve in the zone */
4864 for (j = i; j < MAX_NR_ZONES; j++) {
4865 if (zone->lowmem_reserve[j] > max)
4866 max = zone->lowmem_reserve[j];
4869 /* we treat the high watermark as reserved pages. */
4870 max += high_wmark_pages(zone);
4872 if (max > zone->present_pages)
4873 max = zone->present_pages;
4874 reserve_pages += max;
4877 totalreserve_pages = reserve_pages;
4881 * setup_per_zone_lowmem_reserve - called whenever
4882 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4883 * has a correct pages reserved value, so an adequate number of
4884 * pages are left in the zone after a successful __alloc_pages().
4886 static void setup_per_zone_lowmem_reserve(void)
4888 struct pglist_data *pgdat;
4889 enum zone_type j, idx;
4891 for_each_online_pgdat(pgdat) {
4892 for (j = 0; j < MAX_NR_ZONES; j++) {
4893 struct zone *zone = pgdat->node_zones + j;
4894 unsigned long present_pages = zone->present_pages;
4896 zone->lowmem_reserve[j] = 0;
4898 idx = j;
4899 while (idx) {
4900 struct zone *lower_zone;
4902 idx--;
4904 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4905 sysctl_lowmem_reserve_ratio[idx] = 1;
4907 lower_zone = pgdat->node_zones + idx;
4908 lower_zone->lowmem_reserve[j] = present_pages /
4909 sysctl_lowmem_reserve_ratio[idx];
4910 present_pages += lower_zone->present_pages;
4915 /* update totalreserve_pages */
4916 calculate_totalreserve_pages();
4920 * setup_per_zone_wmarks - called when min_free_kbytes changes
4921 * or when memory is hot-{added|removed}
4923 * Ensures that the watermark[min,low,high] values for each zone are set
4924 * correctly with respect to min_free_kbytes.
4926 void setup_per_zone_wmarks(void)
4928 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4929 unsigned long lowmem_pages = 0;
4930 struct zone *zone;
4931 unsigned long flags;
4933 /* Calculate total number of !ZONE_HIGHMEM pages */
4934 for_each_zone(zone) {
4935 if (!is_highmem(zone))
4936 lowmem_pages += zone->present_pages;
4939 for_each_zone(zone) {
4940 u64 tmp;
4942 spin_lock_irqsave(&zone->lock, flags);
4943 tmp = (u64)pages_min * zone->present_pages;
4944 do_div(tmp, lowmem_pages);
4945 if (is_highmem(zone)) {
4947 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4948 * need highmem pages, so cap pages_min to a small
4949 * value here.
4951 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4952 * deltas controls asynch page reclaim, and so should
4953 * not be capped for highmem.
4955 int min_pages;
4957 min_pages = zone->present_pages / 1024;
4958 if (min_pages < SWAP_CLUSTER_MAX)
4959 min_pages = SWAP_CLUSTER_MAX;
4960 if (min_pages > 128)
4961 min_pages = 128;
4962 zone->watermark[WMARK_MIN] = min_pages;
4963 } else {
4965 * If it's a lowmem zone, reserve a number of pages
4966 * proportionate to the zone's size.
4968 zone->watermark[WMARK_MIN] = tmp;
4971 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4972 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4973 setup_zone_migrate_reserve(zone);
4974 spin_unlock_irqrestore(&zone->lock, flags);
4977 /* update totalreserve_pages */
4978 calculate_totalreserve_pages();
4982 * The inactive anon list should be small enough that the VM never has to
4983 * do too much work, but large enough that each inactive page has a chance
4984 * to be referenced again before it is swapped out.
4986 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4987 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4988 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4989 * the anonymous pages are kept on the inactive list.
4991 * total target max
4992 * memory ratio inactive anon
4993 * -------------------------------------
4994 * 10MB 1 5MB
4995 * 100MB 1 50MB
4996 * 1GB 3 250MB
4997 * 10GB 10 0.9GB
4998 * 100GB 31 3GB
4999 * 1TB 101 10GB
5000 * 10TB 320 32GB
5002 void calculate_zone_inactive_ratio(struct zone *zone)
5004 unsigned int gb, ratio;
5006 /* Zone size in gigabytes */
5007 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5008 if (gb)
5009 ratio = int_sqrt(10 * gb);
5010 else
5011 ratio = 1;
5013 zone->inactive_ratio = ratio;
5016 static void __init setup_per_zone_inactive_ratio(void)
5018 struct zone *zone;
5020 for_each_zone(zone)
5021 calculate_zone_inactive_ratio(zone);
5025 * Initialise min_free_kbytes.
5027 * For small machines we want it small (128k min). For large machines
5028 * we want it large (64MB max). But it is not linear, because network
5029 * bandwidth does not increase linearly with machine size. We use
5031 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5032 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5034 * which yields
5036 * 16MB: 512k
5037 * 32MB: 724k
5038 * 64MB: 1024k
5039 * 128MB: 1448k
5040 * 256MB: 2048k
5041 * 512MB: 2896k
5042 * 1024MB: 4096k
5043 * 2048MB: 5792k
5044 * 4096MB: 8192k
5045 * 8192MB: 11584k
5046 * 16384MB: 16384k
5048 static int __init init_per_zone_wmark_min(void)
5050 unsigned long lowmem_kbytes;
5052 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5054 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5055 if (min_free_kbytes < 128)
5056 min_free_kbytes = 128;
5057 if (min_free_kbytes > 65536)
5058 min_free_kbytes = 65536;
5059 setup_per_zone_wmarks();
5060 setup_per_zone_lowmem_reserve();
5061 setup_per_zone_inactive_ratio();
5062 return 0;
5064 module_init(init_per_zone_wmark_min)
5067 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5068 * that we can call two helper functions whenever min_free_kbytes
5069 * changes.
5071 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5072 void __user *buffer, size_t *length, loff_t *ppos)
5074 proc_dointvec(table, write, buffer, length, ppos);
5075 if (write)
5076 setup_per_zone_wmarks();
5077 return 0;
5080 #ifdef CONFIG_NUMA
5081 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5082 void __user *buffer, size_t *length, loff_t *ppos)
5084 struct zone *zone;
5085 int rc;
5087 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5088 if (rc)
5089 return rc;
5091 for_each_zone(zone)
5092 zone->min_unmapped_pages = (zone->present_pages *
5093 sysctl_min_unmapped_ratio) / 100;
5094 return 0;
5097 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5098 void __user *buffer, size_t *length, loff_t *ppos)
5100 struct zone *zone;
5101 int rc;
5103 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5104 if (rc)
5105 return rc;
5107 for_each_zone(zone)
5108 zone->min_slab_pages = (zone->present_pages *
5109 sysctl_min_slab_ratio) / 100;
5110 return 0;
5112 #endif
5115 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5116 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5117 * whenever sysctl_lowmem_reserve_ratio changes.
5119 * The reserve ratio obviously has absolutely no relation with the
5120 * minimum watermarks. The lowmem reserve ratio can only make sense
5121 * if in function of the boot time zone sizes.
5123 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5124 void __user *buffer, size_t *length, loff_t *ppos)
5126 proc_dointvec_minmax(table, write, buffer, length, ppos);
5127 setup_per_zone_lowmem_reserve();
5128 return 0;
5132 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5133 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5134 * can have before it gets flushed back to buddy allocator.
5137 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5138 void __user *buffer, size_t *length, loff_t *ppos)
5140 struct zone *zone;
5141 unsigned int cpu;
5142 int ret;
5144 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5145 if (!write || (ret == -EINVAL))
5146 return ret;
5147 for_each_populated_zone(zone) {
5148 for_each_possible_cpu(cpu) {
5149 unsigned long high;
5150 high = zone->present_pages / percpu_pagelist_fraction;
5151 setup_pagelist_highmark(
5152 per_cpu_ptr(zone->pageset, cpu), high);
5155 return 0;
5158 int hashdist = HASHDIST_DEFAULT;
5160 #ifdef CONFIG_NUMA
5161 static int __init set_hashdist(char *str)
5163 if (!str)
5164 return 0;
5165 hashdist = simple_strtoul(str, &str, 0);
5166 return 1;
5168 __setup("hashdist=", set_hashdist);
5169 #endif
5172 * allocate a large system hash table from bootmem
5173 * - it is assumed that the hash table must contain an exact power-of-2
5174 * quantity of entries
5175 * - limit is the number of hash buckets, not the total allocation size
5177 void *__init alloc_large_system_hash(const char *tablename,
5178 unsigned long bucketsize,
5179 unsigned long numentries,
5180 int scale,
5181 int flags,
5182 unsigned int *_hash_shift,
5183 unsigned int *_hash_mask,
5184 unsigned long limit)
5186 unsigned long long max = limit;
5187 unsigned long log2qty, size;
5188 void *table = NULL;
5190 /* allow the kernel cmdline to have a say */
5191 if (!numentries) {
5192 /* round applicable memory size up to nearest megabyte */
5193 numentries = nr_kernel_pages;
5194 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5195 numentries >>= 20 - PAGE_SHIFT;
5196 numentries <<= 20 - PAGE_SHIFT;
5198 /* limit to 1 bucket per 2^scale bytes of low memory */
5199 if (scale > PAGE_SHIFT)
5200 numentries >>= (scale - PAGE_SHIFT);
5201 else
5202 numentries <<= (PAGE_SHIFT - scale);
5204 /* Make sure we've got at least a 0-order allocation.. */
5205 if (unlikely(flags & HASH_SMALL)) {
5206 /* Makes no sense without HASH_EARLY */
5207 WARN_ON(!(flags & HASH_EARLY));
5208 if (!(numentries >> *_hash_shift)) {
5209 numentries = 1UL << *_hash_shift;
5210 BUG_ON(!numentries);
5212 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5213 numentries = PAGE_SIZE / bucketsize;
5215 numentries = roundup_pow_of_two(numentries);
5217 /* limit allocation size to 1/16 total memory by default */
5218 if (max == 0) {
5219 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5220 do_div(max, bucketsize);
5223 if (numentries > max)
5224 numentries = max;
5226 log2qty = ilog2(numentries);
5228 do {
5229 size = bucketsize << log2qty;
5230 if (flags & HASH_EARLY)
5231 table = alloc_bootmem_nopanic(size);
5232 else if (hashdist)
5233 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5234 else {
5236 * If bucketsize is not a power-of-two, we may free
5237 * some pages at the end of hash table which
5238 * alloc_pages_exact() automatically does
5240 if (get_order(size) < MAX_ORDER) {
5241 table = alloc_pages_exact(size, GFP_ATOMIC);
5242 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5245 } while (!table && size > PAGE_SIZE && --log2qty);
5247 if (!table)
5248 panic("Failed to allocate %s hash table\n", tablename);
5250 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5251 tablename,
5252 (1UL << log2qty),
5253 ilog2(size) - PAGE_SHIFT,
5254 size);
5256 if (_hash_shift)
5257 *_hash_shift = log2qty;
5258 if (_hash_mask)
5259 *_hash_mask = (1 << log2qty) - 1;
5261 return table;
5264 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5265 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5266 unsigned long pfn)
5268 #ifdef CONFIG_SPARSEMEM
5269 return __pfn_to_section(pfn)->pageblock_flags;
5270 #else
5271 return zone->pageblock_flags;
5272 #endif /* CONFIG_SPARSEMEM */
5275 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5277 #ifdef CONFIG_SPARSEMEM
5278 pfn &= (PAGES_PER_SECTION-1);
5279 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5280 #else
5281 pfn = pfn - zone->zone_start_pfn;
5282 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5283 #endif /* CONFIG_SPARSEMEM */
5287 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5288 * @page: The page within the block of interest
5289 * @start_bitidx: The first bit of interest to retrieve
5290 * @end_bitidx: The last bit of interest
5291 * returns pageblock_bits flags
5293 unsigned long get_pageblock_flags_group(struct page *page,
5294 int start_bitidx, int end_bitidx)
5296 struct zone *zone;
5297 unsigned long *bitmap;
5298 unsigned long pfn, bitidx;
5299 unsigned long flags = 0;
5300 unsigned long value = 1;
5302 zone = page_zone(page);
5303 pfn = page_to_pfn(page);
5304 bitmap = get_pageblock_bitmap(zone, pfn);
5305 bitidx = pfn_to_bitidx(zone, pfn);
5307 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5308 if (test_bit(bitidx + start_bitidx, bitmap))
5309 flags |= value;
5311 return flags;
5315 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5316 * @page: The page within the block of interest
5317 * @start_bitidx: The first bit of interest
5318 * @end_bitidx: The last bit of interest
5319 * @flags: The flags to set
5321 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5322 int start_bitidx, int end_bitidx)
5324 struct zone *zone;
5325 unsigned long *bitmap;
5326 unsigned long pfn, bitidx;
5327 unsigned long value = 1;
5329 zone = page_zone(page);
5330 pfn = page_to_pfn(page);
5331 bitmap = get_pageblock_bitmap(zone, pfn);
5332 bitidx = pfn_to_bitidx(zone, pfn);
5333 VM_BUG_ON(pfn < zone->zone_start_pfn);
5334 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5336 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5337 if (flags & value)
5338 __set_bit(bitidx + start_bitidx, bitmap);
5339 else
5340 __clear_bit(bitidx + start_bitidx, bitmap);
5344 * This is designed as sub function...plz see page_isolation.c also.
5345 * set/clear page block's type to be ISOLATE.
5346 * page allocater never alloc memory from ISOLATE block.
5349 static int
5350 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5352 unsigned long pfn, iter, found;
5354 * For avoiding noise data, lru_add_drain_all() should be called
5355 * If ZONE_MOVABLE, the zone never contains immobile pages
5357 if (zone_idx(zone) == ZONE_MOVABLE)
5358 return true;
5360 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5361 return true;
5363 pfn = page_to_pfn(page);
5364 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5365 unsigned long check = pfn + iter;
5367 if (!pfn_valid_within(check)) {
5368 iter++;
5369 continue;
5371 page = pfn_to_page(check);
5372 if (!page_count(page)) {
5373 if (PageBuddy(page))
5374 iter += (1 << page_order(page)) - 1;
5375 continue;
5377 if (!PageLRU(page))
5378 found++;
5380 * If there are RECLAIMABLE pages, we need to check it.
5381 * But now, memory offline itself doesn't call shrink_slab()
5382 * and it still to be fixed.
5385 * If the page is not RAM, page_count()should be 0.
5386 * we don't need more check. This is an _used_ not-movable page.
5388 * The problematic thing here is PG_reserved pages. PG_reserved
5389 * is set to both of a memory hole page and a _used_ kernel
5390 * page at boot.
5392 if (found > count)
5393 return false;
5395 return true;
5398 bool is_pageblock_removable_nolock(struct page *page)
5400 struct zone *zone = page_zone(page);
5401 return __count_immobile_pages(zone, page, 0);
5404 int set_migratetype_isolate(struct page *page)
5406 struct zone *zone;
5407 unsigned long flags, pfn;
5408 struct memory_isolate_notify arg;
5409 int notifier_ret;
5410 int ret = -EBUSY;
5411 int zone_idx;
5413 zone = page_zone(page);
5414 zone_idx = zone_idx(zone);
5416 spin_lock_irqsave(&zone->lock, flags);
5418 pfn = page_to_pfn(page);
5419 arg.start_pfn = pfn;
5420 arg.nr_pages = pageblock_nr_pages;
5421 arg.pages_found = 0;
5424 * It may be possible to isolate a pageblock even if the
5425 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5426 * notifier chain is used by balloon drivers to return the
5427 * number of pages in a range that are held by the balloon
5428 * driver to shrink memory. If all the pages are accounted for
5429 * by balloons, are free, or on the LRU, isolation can continue.
5430 * Later, for example, when memory hotplug notifier runs, these
5431 * pages reported as "can be isolated" should be isolated(freed)
5432 * by the balloon driver through the memory notifier chain.
5434 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5435 notifier_ret = notifier_to_errno(notifier_ret);
5436 if (notifier_ret)
5437 goto out;
5439 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5440 * We just check MOVABLE pages.
5442 if (__count_immobile_pages(zone, page, arg.pages_found))
5443 ret = 0;
5446 * immobile means "not-on-lru" paes. If immobile is larger than
5447 * removable-by-driver pages reported by notifier, we'll fail.
5450 out:
5451 if (!ret) {
5452 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5453 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5456 spin_unlock_irqrestore(&zone->lock, flags);
5457 if (!ret)
5458 drain_all_pages();
5459 return ret;
5462 void unset_migratetype_isolate(struct page *page)
5464 struct zone *zone;
5465 unsigned long flags;
5466 zone = page_zone(page);
5467 spin_lock_irqsave(&zone->lock, flags);
5468 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5469 goto out;
5470 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5471 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5472 out:
5473 spin_unlock_irqrestore(&zone->lock, flags);
5476 #ifdef CONFIG_MEMORY_HOTREMOVE
5478 * All pages in the range must be isolated before calling this.
5480 void
5481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5483 struct page *page;
5484 struct zone *zone;
5485 int order, i;
5486 unsigned long pfn;
5487 unsigned long flags;
5488 /* find the first valid pfn */
5489 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5490 if (pfn_valid(pfn))
5491 break;
5492 if (pfn == end_pfn)
5493 return;
5494 zone = page_zone(pfn_to_page(pfn));
5495 spin_lock_irqsave(&zone->lock, flags);
5496 pfn = start_pfn;
5497 while (pfn < end_pfn) {
5498 if (!pfn_valid(pfn)) {
5499 pfn++;
5500 continue;
5502 page = pfn_to_page(pfn);
5503 BUG_ON(page_count(page));
5504 BUG_ON(!PageBuddy(page));
5505 order = page_order(page);
5506 #ifdef CONFIG_DEBUG_VM
5507 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5508 pfn, 1 << order, end_pfn);
5509 #endif
5510 list_del(&page->lru);
5511 rmv_page_order(page);
5512 zone->free_area[order].nr_free--;
5513 __mod_zone_page_state(zone, NR_FREE_PAGES,
5514 - (1UL << order));
5515 for (i = 0; i < (1 << order); i++)
5516 SetPageReserved((page+i));
5517 pfn += (1 << order);
5519 spin_unlock_irqrestore(&zone->lock, flags);
5521 #endif
5523 #ifdef CONFIG_MEMORY_FAILURE
5524 bool is_free_buddy_page(struct page *page)
5526 struct zone *zone = page_zone(page);
5527 unsigned long pfn = page_to_pfn(page);
5528 unsigned long flags;
5529 int order;
5531 spin_lock_irqsave(&zone->lock, flags);
5532 for (order = 0; order < MAX_ORDER; order++) {
5533 struct page *page_head = page - (pfn & ((1 << order) - 1));
5535 if (PageBuddy(page_head) && page_order(page_head) >= order)
5536 break;
5538 spin_unlock_irqrestore(&zone->lock, flags);
5540 return order < MAX_ORDER;
5542 #endif
5544 static struct trace_print_flags pageflag_names[] = {
5545 {1UL << PG_locked, "locked" },
5546 {1UL << PG_error, "error" },
5547 {1UL << PG_referenced, "referenced" },
5548 {1UL << PG_uptodate, "uptodate" },
5549 {1UL << PG_dirty, "dirty" },
5550 {1UL << PG_lru, "lru" },
5551 {1UL << PG_active, "active" },
5552 {1UL << PG_slab, "slab" },
5553 {1UL << PG_owner_priv_1, "owner_priv_1" },
5554 {1UL << PG_arch_1, "arch_1" },
5555 {1UL << PG_reserved, "reserved" },
5556 {1UL << PG_private, "private" },
5557 {1UL << PG_private_2, "private_2" },
5558 {1UL << PG_writeback, "writeback" },
5559 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5560 {1UL << PG_head, "head" },
5561 {1UL << PG_tail, "tail" },
5562 #else
5563 {1UL << PG_compound, "compound" },
5564 #endif
5565 {1UL << PG_swapcache, "swapcache" },
5566 {1UL << PG_mappedtodisk, "mappedtodisk" },
5567 {1UL << PG_reclaim, "reclaim" },
5568 {1UL << PG_swapbacked, "swapbacked" },
5569 {1UL << PG_unevictable, "unevictable" },
5570 #ifdef CONFIG_MMU
5571 {1UL << PG_mlocked, "mlocked" },
5572 #endif
5573 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5574 {1UL << PG_uncached, "uncached" },
5575 #endif
5576 #ifdef CONFIG_MEMORY_FAILURE
5577 {1UL << PG_hwpoison, "hwpoison" },
5578 #endif
5579 {-1UL, NULL },
5582 static void dump_page_flags(unsigned long flags)
5584 const char *delim = "";
5585 unsigned long mask;
5586 int i;
5588 printk(KERN_ALERT "page flags: %#lx(", flags);
5590 /* remove zone id */
5591 flags &= (1UL << NR_PAGEFLAGS) - 1;
5593 for (i = 0; pageflag_names[i].name && flags; i++) {
5595 mask = pageflag_names[i].mask;
5596 if ((flags & mask) != mask)
5597 continue;
5599 flags &= ~mask;
5600 printk("%s%s", delim, pageflag_names[i].name);
5601 delim = "|";
5604 /* check for left over flags */
5605 if (flags)
5606 printk("%s%#lx", delim, flags);
5608 printk(")\n");
5611 void dump_page(struct page *page)
5613 printk(KERN_ALERT
5614 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5615 page, atomic_read(&page->_count), page_mapcount(page),
5616 page->mapping, page->index);
5617 dump_page_flags(page->flags);