ARM: dma-api: fix max_pfn off-by-one error in __dma_supported()
[linux/fpc-iii.git] / arch / x86 / kvm / mmu / mmu.c
blobadc84f0f16ba96f04cee825747034167760e8e77
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * MMU support
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
42 #include <asm/page.h>
43 #include <asm/memtype.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
51 extern bool itlb_multihit_kvm_mitigation;
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
64 static struct kernel_param_ops nx_huge_pages_ops = {
65 .set = set_nx_huge_pages,
66 .get = param_get_bool,
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 .set = set_nx_huge_pages_recovery_ratio,
71 .get = param_get_uint,
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
81 * When setting this variable to true it enables Two-Dimensional-Paging
82 * where the hardware walks 2 page tables:
83 * 1. the guest-virtual to guest-physical
84 * 2. while doing 1. it walks guest-physical to host-physical
85 * If the hardware supports that we don't need to do shadow paging.
87 bool tdp_enabled = false;
89 enum {
90 AUDIT_PRE_PAGE_FAULT,
91 AUDIT_POST_PAGE_FAULT,
92 AUDIT_PRE_PTE_WRITE,
93 AUDIT_POST_PTE_WRITE,
94 AUDIT_PRE_SYNC,
95 AUDIT_POST_SYNC
98 #undef MMU_DEBUG
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
113 #define PTE_PREFETCH_NUM 8
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120 * Access Tracking SPTEs.
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
128 #define PT64_LEVEL_BITS 9
130 #define PT64_LEVEL_SHIFT(level) \
131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
133 #define PT64_INDEX(address, level)\
134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
137 #define PT32_LEVEL_BITS 10
139 #define PT32_LEVEL_SHIFT(level) \
140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
142 #define PT32_LVL_OFFSET_MASK(level) \
143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT32_LEVEL_BITS))) - 1))
146 #define PT32_INDEX(address, level)\
147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT32_LEVEL_BITS))) - 1))
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
172 #define ACC_EXEC_MASK 1
173 #define ACC_WRITE_MASK PT_WRITABLE_MASK
174 #define ACC_USER_MASK PT_USER_MASK
175 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK 0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
181 #include <trace/events/kvm.h>
183 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
192 * Return values of handle_mmio_page_fault and mmu.page_fault:
193 * RET_PF_RETRY: let CPU fault again on the address.
194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
196 * For handle_mmio_page_fault only:
197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
199 enum {
200 RET_PF_RETRY = 0,
201 RET_PF_EMULATE = 1,
202 RET_PF_INVALID = 2,
205 struct pte_list_desc {
206 u64 *sptes[PTE_LIST_EXT];
207 struct pte_list_desc *more;
210 struct kvm_shadow_walk_iterator {
211 u64 addr;
212 hpa_t shadow_addr;
213 u64 *sptep;
214 int level;
215 unsigned index;
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219 .cr0_wp = 1,
220 .gpte_is_8_bytes = 1,
221 .nxe = 1,
222 .smep_andnot_wp = 1,
223 .smap_andnot_wp = 1,
224 .smm = 1,
225 .guest_mode = 1,
226 .ad_disabled = 1,
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
231 (_root), (_addr)); \
232 shadow_walk_okay(&(_walker)); \
233 shadow_walk_next(&(_walker)))
235 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
237 shadow_walk_okay(&(_walker)); \
238 shadow_walk_next(&(_walker)))
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
242 shadow_walk_okay(&(_walker)) && \
243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
244 __shadow_walk_next(&(_walker), spte))
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264 * pages.
266 static u64 __read_mostly shadow_acc_track_mask;
269 * The mask/shift to use for saving the original R/X bits when marking the PTE
270 * as not-present for access tracking purposes. We do not save the W bit as the
271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272 * restored only when a write is attempted to the page.
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275 PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280 * to guard against L1TF attacks.
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
285 * The number of high-order 1 bits to use in the mask above.
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
290 * In some cases, we need to preserve the GFN of a non-present or reserved
291 * SPTE when we usurp the upper five bits of the physical address space to
292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295 * high and low parts. This mask covers the lower bits of the GFN.
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
300 * The number of non-reserved physical address bits irrespective of features
301 * that repurpose legal bits, e.g. MKTME.
303 static u8 __read_mostly shadow_phys_bits;
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
314 static inline bool kvm_available_flush_tlb_with_range(void)
316 return kvm_x86_ops->tlb_remote_flush_with_range;
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320 struct kvm_tlb_range *range)
322 int ret = -ENOTSUPP;
324 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
327 if (ret)
328 kvm_flush_remote_tlbs(kvm);
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332 u64 start_gfn, u64 pages)
334 struct kvm_tlb_range range;
336 range.start_gfn = start_gfn;
337 range.pages = pages;
339 kvm_flush_remote_tlbs_with_range(kvm, &range);
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
344 BUG_ON((u64)(unsigned)access_mask != access_mask);
345 BUG_ON((mmio_mask & mmio_value) != mmio_value);
346 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348 shadow_mmio_access_mask = access_mask;
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
352 static bool is_mmio_spte(u64 spte)
354 return (spte & shadow_mmio_mask) == shadow_mmio_value;
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
359 return sp->role.ad_disabled;
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
365 * When using the EPT page-modification log, the GPAs in the log
366 * would come from L2 rather than L1. Therefore, we need to rely
367 * on write protection to record dirty pages. This also bypasses
368 * PML, since writes now result in a vmexit.
370 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
373 static inline bool spte_ad_enabled(u64 spte)
375 MMU_WARN_ON(is_mmio_spte(spte));
376 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
379 static inline bool spte_ad_need_write_protect(u64 spte)
381 MMU_WARN_ON(is_mmio_spte(spte));
382 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
385 static bool is_nx_huge_page_enabled(void)
387 return READ_ONCE(nx_huge_pages);
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
392 MMU_WARN_ON(is_mmio_spte(spte));
393 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
398 MMU_WARN_ON(is_mmio_spte(spte));
399 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
402 static inline bool is_access_track_spte(u64 spte)
404 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409 * the memslots generation and is derived as follows:
411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415 * the MMIO generation number, as doing so would require stealing a bit from
416 * the "real" generation number and thus effectively halve the maximum number
417 * of MMIO generations that can be handled before encountering a wrap (which
418 * requires a full MMU zap). The flag is instead explicitly queried when
419 * checking for MMIO spte cache hits.
421 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
423 #define MMIO_SPTE_GEN_LOW_START 3
424 #define MMIO_SPTE_GEN_LOW_END 11
425 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426 MMIO_SPTE_GEN_LOW_START)
428 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
429 #define MMIO_SPTE_GEN_HIGH_END 62
430 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431 MMIO_SPTE_GEN_HIGH_START)
433 static u64 generation_mmio_spte_mask(u64 gen)
435 u64 mask;
437 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
438 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
440 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
441 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
442 return mask;
445 static u64 get_mmio_spte_generation(u64 spte)
447 u64 gen;
449 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 return gen;
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455 unsigned access)
457 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458 u64 mask = generation_mmio_spte_mask(gen);
459 u64 gpa = gfn << PAGE_SHIFT;
461 access &= shadow_mmio_access_mask;
462 mask |= shadow_mmio_value | access;
463 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465 << shadow_nonpresent_or_rsvd_mask_len;
467 trace_mark_mmio_spte(sptep, gfn, access, gen);
468 mmu_spte_set(sptep, mask);
471 static gfn_t get_mmio_spte_gfn(u64 spte)
473 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
475 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476 & shadow_nonpresent_or_rsvd_mask;
478 return gpa >> PAGE_SHIFT;
481 static unsigned get_mmio_spte_access(u64 spte)
483 return spte & shadow_mmio_access_mask;
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487 kvm_pfn_t pfn, unsigned access)
489 if (unlikely(is_noslot_pfn(pfn))) {
490 mark_mmio_spte(vcpu, sptep, gfn, access);
491 return true;
494 return false;
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
499 u64 kvm_gen, spte_gen, gen;
501 gen = kvm_vcpu_memslots(vcpu)->generation;
502 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503 return false;
505 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506 spte_gen = get_mmio_spte_generation(spte);
508 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509 return likely(kvm_gen == spte_gen);
513 * Sets the shadow PTE masks used by the MMU.
515 * Assumptions:
516 * - Setting either @accessed_mask or @dirty_mask requires setting both
517 * - At least one of @accessed_mask or @acc_track_mask must be set
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521 u64 acc_track_mask, u64 me_mask)
523 BUG_ON(!dirty_mask != !accessed_mask);
524 BUG_ON(!accessed_mask && !acc_track_mask);
525 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
527 shadow_user_mask = user_mask;
528 shadow_accessed_mask = accessed_mask;
529 shadow_dirty_mask = dirty_mask;
530 shadow_nx_mask = nx_mask;
531 shadow_x_mask = x_mask;
532 shadow_present_mask = p_mask;
533 shadow_acc_track_mask = acc_track_mask;
534 shadow_me_mask = me_mask;
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
538 static u8 kvm_get_shadow_phys_bits(void)
541 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542 * in CPU detection code, but the processor treats those reduced bits as
543 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544 * the physical address bits reported by CPUID.
546 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547 return cpuid_eax(0x80000008) & 0xff;
550 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551 * custom CPUID. Proceed with whatever the kernel found since these features
552 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
554 return boot_cpu_data.x86_phys_bits;
557 static void kvm_mmu_reset_all_pte_masks(void)
559 u8 low_phys_bits;
561 shadow_user_mask = 0;
562 shadow_accessed_mask = 0;
563 shadow_dirty_mask = 0;
564 shadow_nx_mask = 0;
565 shadow_x_mask = 0;
566 shadow_mmio_mask = 0;
567 shadow_present_mask = 0;
568 shadow_acc_track_mask = 0;
570 shadow_phys_bits = kvm_get_shadow_phys_bits();
573 * If the CPU has 46 or less physical address bits, then set an
574 * appropriate mask to guard against L1TF attacks. Otherwise, it is
575 * assumed that the CPU is not vulnerable to L1TF.
577 * Some Intel CPUs address the L1 cache using more PA bits than are
578 * reported by CPUID. Use the PA width of the L1 cache when possible
579 * to achieve more effective mitigation, e.g. if system RAM overlaps
580 * the most significant bits of legal physical address space.
582 shadow_nonpresent_or_rsvd_mask = 0;
583 low_phys_bits = boot_cpu_data.x86_cache_bits;
584 if (boot_cpu_data.x86_cache_bits <
585 52 - shadow_nonpresent_or_rsvd_mask_len) {
586 shadow_nonpresent_or_rsvd_mask =
587 rsvd_bits(boot_cpu_data.x86_cache_bits -
588 shadow_nonpresent_or_rsvd_mask_len,
589 boot_cpu_data.x86_cache_bits - 1);
590 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591 } else
592 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
594 shadow_nonpresent_or_rsvd_lower_gfn_mask =
595 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
598 static int is_cpuid_PSE36(void)
600 return 1;
603 static int is_nx(struct kvm_vcpu *vcpu)
605 return vcpu->arch.efer & EFER_NX;
608 static int is_shadow_present_pte(u64 pte)
610 return (pte != 0) && !is_mmio_spte(pte);
613 static int is_large_pte(u64 pte)
615 return pte & PT_PAGE_SIZE_MASK;
618 static int is_last_spte(u64 pte, int level)
620 if (level == PT_PAGE_TABLE_LEVEL)
621 return 1;
622 if (is_large_pte(pte))
623 return 1;
624 return 0;
627 static bool is_executable_pte(u64 spte)
629 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
632 static kvm_pfn_t spte_to_pfn(u64 pte)
634 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
637 static gfn_t pse36_gfn_delta(u32 gpte)
639 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
641 return (gpte & PT32_DIR_PSE36_MASK) << shift;
644 #ifdef CONFIG_X86_64
645 static void __set_spte(u64 *sptep, u64 spte)
647 WRITE_ONCE(*sptep, spte);
650 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
652 WRITE_ONCE(*sptep, spte);
655 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
657 return xchg(sptep, spte);
660 static u64 __get_spte_lockless(u64 *sptep)
662 return READ_ONCE(*sptep);
664 #else
665 union split_spte {
666 struct {
667 u32 spte_low;
668 u32 spte_high;
670 u64 spte;
673 static void count_spte_clear(u64 *sptep, u64 spte)
675 struct kvm_mmu_page *sp = page_header(__pa(sptep));
677 if (is_shadow_present_pte(spte))
678 return;
680 /* Ensure the spte is completely set before we increase the count */
681 smp_wmb();
682 sp->clear_spte_count++;
685 static void __set_spte(u64 *sptep, u64 spte)
687 union split_spte *ssptep, sspte;
689 ssptep = (union split_spte *)sptep;
690 sspte = (union split_spte)spte;
692 ssptep->spte_high = sspte.spte_high;
695 * If we map the spte from nonpresent to present, We should store
696 * the high bits firstly, then set present bit, so cpu can not
697 * fetch this spte while we are setting the spte.
699 smp_wmb();
701 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
704 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
706 union split_spte *ssptep, sspte;
708 ssptep = (union split_spte *)sptep;
709 sspte = (union split_spte)spte;
711 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
714 * If we map the spte from present to nonpresent, we should clear
715 * present bit firstly to avoid vcpu fetch the old high bits.
717 smp_wmb();
719 ssptep->spte_high = sspte.spte_high;
720 count_spte_clear(sptep, spte);
723 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
725 union split_spte *ssptep, sspte, orig;
727 ssptep = (union split_spte *)sptep;
728 sspte = (union split_spte)spte;
730 /* xchg acts as a barrier before the setting of the high bits */
731 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732 orig.spte_high = ssptep->spte_high;
733 ssptep->spte_high = sspte.spte_high;
734 count_spte_clear(sptep, spte);
736 return orig.spte;
740 * The idea using the light way get the spte on x86_32 guest is from
741 * gup_get_pte (mm/gup.c).
743 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744 * coalesces them and we are running out of the MMU lock. Therefore
745 * we need to protect against in-progress updates of the spte.
747 * Reading the spte while an update is in progress may get the old value
748 * for the high part of the spte. The race is fine for a present->non-present
749 * change (because the high part of the spte is ignored for non-present spte),
750 * but for a present->present change we must reread the spte.
752 * All such changes are done in two steps (present->non-present and
753 * non-present->present), hence it is enough to count the number of
754 * present->non-present updates: if it changed while reading the spte,
755 * we might have hit the race. This is done using clear_spte_count.
757 static u64 __get_spte_lockless(u64 *sptep)
759 struct kvm_mmu_page *sp = page_header(__pa(sptep));
760 union split_spte spte, *orig = (union split_spte *)sptep;
761 int count;
763 retry:
764 count = sp->clear_spte_count;
765 smp_rmb();
767 spte.spte_low = orig->spte_low;
768 smp_rmb();
770 spte.spte_high = orig->spte_high;
771 smp_rmb();
773 if (unlikely(spte.spte_low != orig->spte_low ||
774 count != sp->clear_spte_count))
775 goto retry;
777 return spte.spte;
779 #endif
781 static bool spte_can_locklessly_be_made_writable(u64 spte)
783 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
787 static bool spte_has_volatile_bits(u64 spte)
789 if (!is_shadow_present_pte(spte))
790 return false;
793 * Always atomically update spte if it can be updated
794 * out of mmu-lock, it can ensure dirty bit is not lost,
795 * also, it can help us to get a stable is_writable_pte()
796 * to ensure tlb flush is not missed.
798 if (spte_can_locklessly_be_made_writable(spte) ||
799 is_access_track_spte(spte))
800 return true;
802 if (spte_ad_enabled(spte)) {
803 if ((spte & shadow_accessed_mask) == 0 ||
804 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805 return true;
808 return false;
811 static bool is_accessed_spte(u64 spte)
813 u64 accessed_mask = spte_shadow_accessed_mask(spte);
815 return accessed_mask ? spte & accessed_mask
816 : !is_access_track_spte(spte);
819 static bool is_dirty_spte(u64 spte)
821 u64 dirty_mask = spte_shadow_dirty_mask(spte);
823 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
826 /* Rules for using mmu_spte_set:
827 * Set the sptep from nonpresent to present.
828 * Note: the sptep being assigned *must* be either not present
829 * or in a state where the hardware will not attempt to update
830 * the spte.
832 static void mmu_spte_set(u64 *sptep, u64 new_spte)
834 WARN_ON(is_shadow_present_pte(*sptep));
835 __set_spte(sptep, new_spte);
839 * Update the SPTE (excluding the PFN), but do not track changes in its
840 * accessed/dirty status.
842 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
844 u64 old_spte = *sptep;
846 WARN_ON(!is_shadow_present_pte(new_spte));
848 if (!is_shadow_present_pte(old_spte)) {
849 mmu_spte_set(sptep, new_spte);
850 return old_spte;
853 if (!spte_has_volatile_bits(old_spte))
854 __update_clear_spte_fast(sptep, new_spte);
855 else
856 old_spte = __update_clear_spte_slow(sptep, new_spte);
858 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
860 return old_spte;
863 /* Rules for using mmu_spte_update:
864 * Update the state bits, it means the mapped pfn is not changed.
866 * Whenever we overwrite a writable spte with a read-only one we
867 * should flush remote TLBs. Otherwise rmap_write_protect
868 * will find a read-only spte, even though the writable spte
869 * might be cached on a CPU's TLB, the return value indicates this
870 * case.
872 * Returns true if the TLB needs to be flushed
874 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
876 bool flush = false;
877 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
879 if (!is_shadow_present_pte(old_spte))
880 return false;
883 * For the spte updated out of mmu-lock is safe, since
884 * we always atomically update it, see the comments in
885 * spte_has_volatile_bits().
887 if (spte_can_locklessly_be_made_writable(old_spte) &&
888 !is_writable_pte(new_spte))
889 flush = true;
892 * Flush TLB when accessed/dirty states are changed in the page tables,
893 * to guarantee consistency between TLB and page tables.
896 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897 flush = true;
898 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
901 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902 flush = true;
903 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
906 return flush;
910 * Rules for using mmu_spte_clear_track_bits:
911 * It sets the sptep from present to nonpresent, and track the
912 * state bits, it is used to clear the last level sptep.
913 * Returns non-zero if the PTE was previously valid.
915 static int mmu_spte_clear_track_bits(u64 *sptep)
917 kvm_pfn_t pfn;
918 u64 old_spte = *sptep;
920 if (!spte_has_volatile_bits(old_spte))
921 __update_clear_spte_fast(sptep, 0ull);
922 else
923 old_spte = __update_clear_spte_slow(sptep, 0ull);
925 if (!is_shadow_present_pte(old_spte))
926 return 0;
928 pfn = spte_to_pfn(old_spte);
931 * KVM does not hold the refcount of the page used by
932 * kvm mmu, before reclaiming the page, we should
933 * unmap it from mmu first.
935 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
937 if (is_accessed_spte(old_spte))
938 kvm_set_pfn_accessed(pfn);
940 if (is_dirty_spte(old_spte))
941 kvm_set_pfn_dirty(pfn);
943 return 1;
947 * Rules for using mmu_spte_clear_no_track:
948 * Directly clear spte without caring the state bits of sptep,
949 * it is used to set the upper level spte.
951 static void mmu_spte_clear_no_track(u64 *sptep)
953 __update_clear_spte_fast(sptep, 0ull);
956 static u64 mmu_spte_get_lockless(u64 *sptep)
958 return __get_spte_lockless(sptep);
961 static u64 mark_spte_for_access_track(u64 spte)
963 if (spte_ad_enabled(spte))
964 return spte & ~shadow_accessed_mask;
966 if (is_access_track_spte(spte))
967 return spte;
970 * Making an Access Tracking PTE will result in removal of write access
971 * from the PTE. So, verify that we will be able to restore the write
972 * access in the fast page fault path later on.
974 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975 !spte_can_locklessly_be_made_writable(spte),
976 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
978 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979 shadow_acc_track_saved_bits_shift),
980 "kvm: Access Tracking saved bit locations are not zero\n");
982 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983 shadow_acc_track_saved_bits_shift;
984 spte &= ~shadow_acc_track_mask;
986 return spte;
989 /* Restore an acc-track PTE back to a regular PTE */
990 static u64 restore_acc_track_spte(u64 spte)
992 u64 new_spte = spte;
993 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994 & shadow_acc_track_saved_bits_mask;
996 WARN_ON_ONCE(spte_ad_enabled(spte));
997 WARN_ON_ONCE(!is_access_track_spte(spte));
999 new_spte &= ~shadow_acc_track_mask;
1000 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001 shadow_acc_track_saved_bits_shift);
1002 new_spte |= saved_bits;
1004 return new_spte;
1007 /* Returns the Accessed status of the PTE and resets it at the same time. */
1008 static bool mmu_spte_age(u64 *sptep)
1010 u64 spte = mmu_spte_get_lockless(sptep);
1012 if (!is_accessed_spte(spte))
1013 return false;
1015 if (spte_ad_enabled(spte)) {
1016 clear_bit((ffs(shadow_accessed_mask) - 1),
1017 (unsigned long *)sptep);
1018 } else {
1020 * Capture the dirty status of the page, so that it doesn't get
1021 * lost when the SPTE is marked for access tracking.
1023 if (is_writable_pte(spte))
1024 kvm_set_pfn_dirty(spte_to_pfn(spte));
1026 spte = mark_spte_for_access_track(spte);
1027 mmu_spte_update_no_track(sptep, spte);
1030 return true;
1033 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1036 * Prevent page table teardown by making any free-er wait during
1037 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1039 local_irq_disable();
1042 * Make sure a following spte read is not reordered ahead of the write
1043 * to vcpu->mode.
1045 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1048 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1051 * Make sure the write to vcpu->mode is not reordered in front of
1052 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
1053 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1055 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056 local_irq_enable();
1059 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060 struct kmem_cache *base_cache, int min)
1062 void *obj;
1064 if (cache->nobjs >= min)
1065 return 0;
1066 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068 if (!obj)
1069 return cache->nobjs >= min ? 0 : -ENOMEM;
1070 cache->objects[cache->nobjs++] = obj;
1072 return 0;
1075 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1077 return cache->nobjs;
1080 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081 struct kmem_cache *cache)
1083 while (mc->nobjs)
1084 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1087 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088 int min)
1090 void *page;
1092 if (cache->nobjs >= min)
1093 return 0;
1094 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1096 if (!page)
1097 return cache->nobjs >= min ? 0 : -ENOMEM;
1098 cache->objects[cache->nobjs++] = page;
1100 return 0;
1103 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1105 while (mc->nobjs)
1106 free_page((unsigned long)mc->objects[--mc->nobjs]);
1109 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1111 int r;
1113 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115 if (r)
1116 goto out;
1117 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118 if (r)
1119 goto out;
1120 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121 mmu_page_header_cache, 4);
1122 out:
1123 return r;
1126 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1128 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129 pte_list_desc_cache);
1130 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132 mmu_page_header_cache);
1135 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1137 void *p;
1139 BUG_ON(!mc->nobjs);
1140 p = mc->objects[--mc->nobjs];
1141 return p;
1144 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1146 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1149 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1151 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1154 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1156 if (!sp->role.direct)
1157 return sp->gfns[index];
1159 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1162 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1164 if (!sp->role.direct) {
1165 sp->gfns[index] = gfn;
1166 return;
1169 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171 "(expected %llx, got %llx)\n",
1172 sp->gfn,
1173 kvm_mmu_page_get_gfn(sp, index), gfn);
1177 * Return the pointer to the large page information for a given gfn,
1178 * handling slots that are not large page aligned.
1180 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181 struct kvm_memory_slot *slot,
1182 int level)
1184 unsigned long idx;
1186 idx = gfn_to_index(gfn, slot->base_gfn, level);
1187 return &slot->arch.lpage_info[level - 2][idx];
1190 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191 gfn_t gfn, int count)
1193 struct kvm_lpage_info *linfo;
1194 int i;
1196 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197 linfo = lpage_info_slot(gfn, slot, i);
1198 linfo->disallow_lpage += count;
1199 WARN_ON(linfo->disallow_lpage < 0);
1203 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1205 update_gfn_disallow_lpage_count(slot, gfn, 1);
1208 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1210 update_gfn_disallow_lpage_count(slot, gfn, -1);
1213 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1215 struct kvm_memslots *slots;
1216 struct kvm_memory_slot *slot;
1217 gfn_t gfn;
1219 kvm->arch.indirect_shadow_pages++;
1220 gfn = sp->gfn;
1221 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222 slot = __gfn_to_memslot(slots, gfn);
1224 /* the non-leaf shadow pages are keeping readonly. */
1225 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227 KVM_PAGE_TRACK_WRITE);
1229 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1232 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1234 if (sp->lpage_disallowed)
1235 return;
1237 ++kvm->stat.nx_lpage_splits;
1238 list_add_tail(&sp->lpage_disallowed_link,
1239 &kvm->arch.lpage_disallowed_mmu_pages);
1240 sp->lpage_disallowed = true;
1243 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1245 struct kvm_memslots *slots;
1246 struct kvm_memory_slot *slot;
1247 gfn_t gfn;
1249 kvm->arch.indirect_shadow_pages--;
1250 gfn = sp->gfn;
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
1253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255 KVM_PAGE_TRACK_WRITE);
1257 kvm_mmu_gfn_allow_lpage(slot, gfn);
1260 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1262 --kvm->stat.nx_lpage_splits;
1263 sp->lpage_disallowed = false;
1264 list_del(&sp->lpage_disallowed_link);
1267 static struct kvm_memory_slot *
1268 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1269 bool no_dirty_log)
1271 struct kvm_memory_slot *slot;
1273 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1275 return NULL;
1276 if (no_dirty_log && slot->dirty_bitmap)
1277 return NULL;
1279 return slot;
1283 * About rmap_head encoding:
1285 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1286 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1287 * pte_list_desc containing more mappings.
1291 * Returns the number of pointers in the rmap chain, not counting the new one.
1293 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1294 struct kvm_rmap_head *rmap_head)
1296 struct pte_list_desc *desc;
1297 int i, count = 0;
1299 if (!rmap_head->val) {
1300 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1301 rmap_head->val = (unsigned long)spte;
1302 } else if (!(rmap_head->val & 1)) {
1303 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1304 desc = mmu_alloc_pte_list_desc(vcpu);
1305 desc->sptes[0] = (u64 *)rmap_head->val;
1306 desc->sptes[1] = spte;
1307 rmap_head->val = (unsigned long)desc | 1;
1308 ++count;
1309 } else {
1310 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1311 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1312 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1313 desc = desc->more;
1314 count += PTE_LIST_EXT;
1316 if (desc->sptes[PTE_LIST_EXT-1]) {
1317 desc->more = mmu_alloc_pte_list_desc(vcpu);
1318 desc = desc->more;
1320 for (i = 0; desc->sptes[i]; ++i)
1321 ++count;
1322 desc->sptes[i] = spte;
1324 return count;
1327 static void
1328 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1329 struct pte_list_desc *desc, int i,
1330 struct pte_list_desc *prev_desc)
1332 int j;
1334 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1336 desc->sptes[i] = desc->sptes[j];
1337 desc->sptes[j] = NULL;
1338 if (j != 0)
1339 return;
1340 if (!prev_desc && !desc->more)
1341 rmap_head->val = 0;
1342 else
1343 if (prev_desc)
1344 prev_desc->more = desc->more;
1345 else
1346 rmap_head->val = (unsigned long)desc->more | 1;
1347 mmu_free_pte_list_desc(desc);
1350 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1352 struct pte_list_desc *desc;
1353 struct pte_list_desc *prev_desc;
1354 int i;
1356 if (!rmap_head->val) {
1357 pr_err("%s: %p 0->BUG\n", __func__, spte);
1358 BUG();
1359 } else if (!(rmap_head->val & 1)) {
1360 rmap_printk("%s: %p 1->0\n", __func__, spte);
1361 if ((u64 *)rmap_head->val != spte) {
1362 pr_err("%s: %p 1->BUG\n", __func__, spte);
1363 BUG();
1365 rmap_head->val = 0;
1366 } else {
1367 rmap_printk("%s: %p many->many\n", __func__, spte);
1368 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1369 prev_desc = NULL;
1370 while (desc) {
1371 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1372 if (desc->sptes[i] == spte) {
1373 pte_list_desc_remove_entry(rmap_head,
1374 desc, i, prev_desc);
1375 return;
1378 prev_desc = desc;
1379 desc = desc->more;
1381 pr_err("%s: %p many->many\n", __func__, spte);
1382 BUG();
1386 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1388 mmu_spte_clear_track_bits(sptep);
1389 __pte_list_remove(sptep, rmap_head);
1392 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1393 struct kvm_memory_slot *slot)
1395 unsigned long idx;
1397 idx = gfn_to_index(gfn, slot->base_gfn, level);
1398 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1401 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1402 struct kvm_mmu_page *sp)
1404 struct kvm_memslots *slots;
1405 struct kvm_memory_slot *slot;
1407 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1408 slot = __gfn_to_memslot(slots, gfn);
1409 return __gfn_to_rmap(gfn, sp->role.level, slot);
1412 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1414 struct kvm_mmu_memory_cache *cache;
1416 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1417 return mmu_memory_cache_free_objects(cache);
1420 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1422 struct kvm_mmu_page *sp;
1423 struct kvm_rmap_head *rmap_head;
1425 sp = page_header(__pa(spte));
1426 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1427 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1428 return pte_list_add(vcpu, spte, rmap_head);
1431 static void rmap_remove(struct kvm *kvm, u64 *spte)
1433 struct kvm_mmu_page *sp;
1434 gfn_t gfn;
1435 struct kvm_rmap_head *rmap_head;
1437 sp = page_header(__pa(spte));
1438 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1439 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1440 __pte_list_remove(spte, rmap_head);
1444 * Used by the following functions to iterate through the sptes linked by a
1445 * rmap. All fields are private and not assumed to be used outside.
1447 struct rmap_iterator {
1448 /* private fields */
1449 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1450 int pos; /* index of the sptep */
1454 * Iteration must be started by this function. This should also be used after
1455 * removing/dropping sptes from the rmap link because in such cases the
1456 * information in the iterator may not be valid.
1458 * Returns sptep if found, NULL otherwise.
1460 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1461 struct rmap_iterator *iter)
1463 u64 *sptep;
1465 if (!rmap_head->val)
1466 return NULL;
1468 if (!(rmap_head->val & 1)) {
1469 iter->desc = NULL;
1470 sptep = (u64 *)rmap_head->val;
1471 goto out;
1474 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1475 iter->pos = 0;
1476 sptep = iter->desc->sptes[iter->pos];
1477 out:
1478 BUG_ON(!is_shadow_present_pte(*sptep));
1479 return sptep;
1483 * Must be used with a valid iterator: e.g. after rmap_get_first().
1485 * Returns sptep if found, NULL otherwise.
1487 static u64 *rmap_get_next(struct rmap_iterator *iter)
1489 u64 *sptep;
1491 if (iter->desc) {
1492 if (iter->pos < PTE_LIST_EXT - 1) {
1493 ++iter->pos;
1494 sptep = iter->desc->sptes[iter->pos];
1495 if (sptep)
1496 goto out;
1499 iter->desc = iter->desc->more;
1501 if (iter->desc) {
1502 iter->pos = 0;
1503 /* desc->sptes[0] cannot be NULL */
1504 sptep = iter->desc->sptes[iter->pos];
1505 goto out;
1509 return NULL;
1510 out:
1511 BUG_ON(!is_shadow_present_pte(*sptep));
1512 return sptep;
1515 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1516 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1517 _spte_; _spte_ = rmap_get_next(_iter_))
1519 static void drop_spte(struct kvm *kvm, u64 *sptep)
1521 if (mmu_spte_clear_track_bits(sptep))
1522 rmap_remove(kvm, sptep);
1526 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1528 if (is_large_pte(*sptep)) {
1529 WARN_ON(page_header(__pa(sptep))->role.level ==
1530 PT_PAGE_TABLE_LEVEL);
1531 drop_spte(kvm, sptep);
1532 --kvm->stat.lpages;
1533 return true;
1536 return false;
1539 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1541 if (__drop_large_spte(vcpu->kvm, sptep)) {
1542 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1544 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1545 KVM_PAGES_PER_HPAGE(sp->role.level));
1550 * Write-protect on the specified @sptep, @pt_protect indicates whether
1551 * spte write-protection is caused by protecting shadow page table.
1553 * Note: write protection is difference between dirty logging and spte
1554 * protection:
1555 * - for dirty logging, the spte can be set to writable at anytime if
1556 * its dirty bitmap is properly set.
1557 * - for spte protection, the spte can be writable only after unsync-ing
1558 * shadow page.
1560 * Return true if tlb need be flushed.
1562 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1564 u64 spte = *sptep;
1566 if (!is_writable_pte(spte) &&
1567 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1568 return false;
1570 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1572 if (pt_protect)
1573 spte &= ~SPTE_MMU_WRITEABLE;
1574 spte = spte & ~PT_WRITABLE_MASK;
1576 return mmu_spte_update(sptep, spte);
1579 static bool __rmap_write_protect(struct kvm *kvm,
1580 struct kvm_rmap_head *rmap_head,
1581 bool pt_protect)
1583 u64 *sptep;
1584 struct rmap_iterator iter;
1585 bool flush = false;
1587 for_each_rmap_spte(rmap_head, &iter, sptep)
1588 flush |= spte_write_protect(sptep, pt_protect);
1590 return flush;
1593 static bool spte_clear_dirty(u64 *sptep)
1595 u64 spte = *sptep;
1597 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1599 MMU_WARN_ON(!spte_ad_enabled(spte));
1600 spte &= ~shadow_dirty_mask;
1601 return mmu_spte_update(sptep, spte);
1604 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1606 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1607 (unsigned long *)sptep);
1608 if (was_writable && !spte_ad_enabled(*sptep))
1609 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1611 return was_writable;
1615 * Gets the GFN ready for another round of dirty logging by clearing the
1616 * - D bit on ad-enabled SPTEs, and
1617 * - W bit on ad-disabled SPTEs.
1618 * Returns true iff any D or W bits were cleared.
1620 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1622 u64 *sptep;
1623 struct rmap_iterator iter;
1624 bool flush = false;
1626 for_each_rmap_spte(rmap_head, &iter, sptep)
1627 if (spte_ad_need_write_protect(*sptep))
1628 flush |= spte_wrprot_for_clear_dirty(sptep);
1629 else
1630 flush |= spte_clear_dirty(sptep);
1632 return flush;
1635 static bool spte_set_dirty(u64 *sptep)
1637 u64 spte = *sptep;
1639 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1642 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1643 * do not bother adding back write access to pages marked
1644 * SPTE_AD_WRPROT_ONLY_MASK.
1646 spte |= shadow_dirty_mask;
1648 return mmu_spte_update(sptep, spte);
1651 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1653 u64 *sptep;
1654 struct rmap_iterator iter;
1655 bool flush = false;
1657 for_each_rmap_spte(rmap_head, &iter, sptep)
1658 if (spte_ad_enabled(*sptep))
1659 flush |= spte_set_dirty(sptep);
1661 return flush;
1665 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1666 * @kvm: kvm instance
1667 * @slot: slot to protect
1668 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1669 * @mask: indicates which pages we should protect
1671 * Used when we do not need to care about huge page mappings: e.g. during dirty
1672 * logging we do not have any such mappings.
1674 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1675 struct kvm_memory_slot *slot,
1676 gfn_t gfn_offset, unsigned long mask)
1678 struct kvm_rmap_head *rmap_head;
1680 while (mask) {
1681 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1682 PT_PAGE_TABLE_LEVEL, slot);
1683 __rmap_write_protect(kvm, rmap_head, false);
1685 /* clear the first set bit */
1686 mask &= mask - 1;
1691 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1692 * protect the page if the D-bit isn't supported.
1693 * @kvm: kvm instance
1694 * @slot: slot to clear D-bit
1695 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1696 * @mask: indicates which pages we should clear D-bit
1698 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1700 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1701 struct kvm_memory_slot *slot,
1702 gfn_t gfn_offset, unsigned long mask)
1704 struct kvm_rmap_head *rmap_head;
1706 while (mask) {
1707 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1708 PT_PAGE_TABLE_LEVEL, slot);
1709 __rmap_clear_dirty(kvm, rmap_head);
1711 /* clear the first set bit */
1712 mask &= mask - 1;
1715 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1718 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1719 * PT level pages.
1721 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1722 * enable dirty logging for them.
1724 * Used when we do not need to care about huge page mappings: e.g. during dirty
1725 * logging we do not have any such mappings.
1727 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1728 struct kvm_memory_slot *slot,
1729 gfn_t gfn_offset, unsigned long mask)
1731 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1732 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1733 mask);
1734 else
1735 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 * kvm_arch_write_log_dirty - emulate dirty page logging
1740 * @vcpu: Guest mode vcpu
1742 * Emulate arch specific page modification logging for the
1743 * nested hypervisor
1745 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1747 if (kvm_x86_ops->write_log_dirty)
1748 return kvm_x86_ops->write_log_dirty(vcpu);
1750 return 0;
1753 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1754 struct kvm_memory_slot *slot, u64 gfn)
1756 struct kvm_rmap_head *rmap_head;
1757 int i;
1758 bool write_protected = false;
1760 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1761 rmap_head = __gfn_to_rmap(gfn, i, slot);
1762 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1765 return write_protected;
1768 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1770 struct kvm_memory_slot *slot;
1772 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1773 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1776 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1778 u64 *sptep;
1779 struct rmap_iterator iter;
1780 bool flush = false;
1782 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1783 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1785 pte_list_remove(rmap_head, sptep);
1786 flush = true;
1789 return flush;
1792 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1793 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1794 unsigned long data)
1796 return kvm_zap_rmapp(kvm, rmap_head);
1799 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1800 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1801 unsigned long data)
1803 u64 *sptep;
1804 struct rmap_iterator iter;
1805 int need_flush = 0;
1806 u64 new_spte;
1807 pte_t *ptep = (pte_t *)data;
1808 kvm_pfn_t new_pfn;
1810 WARN_ON(pte_huge(*ptep));
1811 new_pfn = pte_pfn(*ptep);
1813 restart:
1814 for_each_rmap_spte(rmap_head, &iter, sptep) {
1815 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1816 sptep, *sptep, gfn, level);
1818 need_flush = 1;
1820 if (pte_write(*ptep)) {
1821 pte_list_remove(rmap_head, sptep);
1822 goto restart;
1823 } else {
1824 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1825 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1827 new_spte &= ~PT_WRITABLE_MASK;
1828 new_spte &= ~SPTE_HOST_WRITEABLE;
1830 new_spte = mark_spte_for_access_track(new_spte);
1832 mmu_spte_clear_track_bits(sptep);
1833 mmu_spte_set(sptep, new_spte);
1837 if (need_flush && kvm_available_flush_tlb_with_range()) {
1838 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1839 return 0;
1842 return need_flush;
1845 struct slot_rmap_walk_iterator {
1846 /* input fields. */
1847 struct kvm_memory_slot *slot;
1848 gfn_t start_gfn;
1849 gfn_t end_gfn;
1850 int start_level;
1851 int end_level;
1853 /* output fields. */
1854 gfn_t gfn;
1855 struct kvm_rmap_head *rmap;
1856 int level;
1858 /* private field. */
1859 struct kvm_rmap_head *end_rmap;
1862 static void
1863 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1865 iterator->level = level;
1866 iterator->gfn = iterator->start_gfn;
1867 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1868 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1869 iterator->slot);
1872 static void
1873 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1874 struct kvm_memory_slot *slot, int start_level,
1875 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1877 iterator->slot = slot;
1878 iterator->start_level = start_level;
1879 iterator->end_level = end_level;
1880 iterator->start_gfn = start_gfn;
1881 iterator->end_gfn = end_gfn;
1883 rmap_walk_init_level(iterator, iterator->start_level);
1886 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1888 return !!iterator->rmap;
1891 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1893 if (++iterator->rmap <= iterator->end_rmap) {
1894 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1895 return;
1898 if (++iterator->level > iterator->end_level) {
1899 iterator->rmap = NULL;
1900 return;
1903 rmap_walk_init_level(iterator, iterator->level);
1906 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1907 _start_gfn, _end_gfn, _iter_) \
1908 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1909 _end_level_, _start_gfn, _end_gfn); \
1910 slot_rmap_walk_okay(_iter_); \
1911 slot_rmap_walk_next(_iter_))
1913 static int kvm_handle_hva_range(struct kvm *kvm,
1914 unsigned long start,
1915 unsigned long end,
1916 unsigned long data,
1917 int (*handler)(struct kvm *kvm,
1918 struct kvm_rmap_head *rmap_head,
1919 struct kvm_memory_slot *slot,
1920 gfn_t gfn,
1921 int level,
1922 unsigned long data))
1924 struct kvm_memslots *slots;
1925 struct kvm_memory_slot *memslot;
1926 struct slot_rmap_walk_iterator iterator;
1927 int ret = 0;
1928 int i;
1930 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1931 slots = __kvm_memslots(kvm, i);
1932 kvm_for_each_memslot(memslot, slots) {
1933 unsigned long hva_start, hva_end;
1934 gfn_t gfn_start, gfn_end;
1936 hva_start = max(start, memslot->userspace_addr);
1937 hva_end = min(end, memslot->userspace_addr +
1938 (memslot->npages << PAGE_SHIFT));
1939 if (hva_start >= hva_end)
1940 continue;
1942 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1943 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1945 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1946 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1948 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1949 PT_MAX_HUGEPAGE_LEVEL,
1950 gfn_start, gfn_end - 1,
1951 &iterator)
1952 ret |= handler(kvm, iterator.rmap, memslot,
1953 iterator.gfn, iterator.level, data);
1957 return ret;
1960 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1961 unsigned long data,
1962 int (*handler)(struct kvm *kvm,
1963 struct kvm_rmap_head *rmap_head,
1964 struct kvm_memory_slot *slot,
1965 gfn_t gfn, int level,
1966 unsigned long data))
1968 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1971 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1973 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1976 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1978 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1981 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1982 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1983 unsigned long data)
1985 u64 *sptep;
1986 struct rmap_iterator uninitialized_var(iter);
1987 int young = 0;
1989 for_each_rmap_spte(rmap_head, &iter, sptep)
1990 young |= mmu_spte_age(sptep);
1992 trace_kvm_age_page(gfn, level, slot, young);
1993 return young;
1996 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1997 struct kvm_memory_slot *slot, gfn_t gfn,
1998 int level, unsigned long data)
2000 u64 *sptep;
2001 struct rmap_iterator iter;
2003 for_each_rmap_spte(rmap_head, &iter, sptep)
2004 if (is_accessed_spte(*sptep))
2005 return 1;
2006 return 0;
2009 #define RMAP_RECYCLE_THRESHOLD 1000
2011 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2013 struct kvm_rmap_head *rmap_head;
2014 struct kvm_mmu_page *sp;
2016 sp = page_header(__pa(spte));
2018 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2020 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2021 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2022 KVM_PAGES_PER_HPAGE(sp->role.level));
2025 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2027 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2030 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2032 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2035 #ifdef MMU_DEBUG
2036 static int is_empty_shadow_page(u64 *spt)
2038 u64 *pos;
2039 u64 *end;
2041 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2042 if (is_shadow_present_pte(*pos)) {
2043 printk(KERN_ERR "%s: %p %llx\n", __func__,
2044 pos, *pos);
2045 return 0;
2047 return 1;
2049 #endif
2052 * This value is the sum of all of the kvm instances's
2053 * kvm->arch.n_used_mmu_pages values. We need a global,
2054 * aggregate version in order to make the slab shrinker
2055 * faster
2057 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2059 kvm->arch.n_used_mmu_pages += nr;
2060 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2063 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2065 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2066 hlist_del(&sp->hash_link);
2067 list_del(&sp->link);
2068 free_page((unsigned long)sp->spt);
2069 if (!sp->role.direct)
2070 free_page((unsigned long)sp->gfns);
2071 kmem_cache_free(mmu_page_header_cache, sp);
2074 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2076 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2079 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2080 struct kvm_mmu_page *sp, u64 *parent_pte)
2082 if (!parent_pte)
2083 return;
2085 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2088 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2089 u64 *parent_pte)
2091 __pte_list_remove(parent_pte, &sp->parent_ptes);
2094 static void drop_parent_pte(struct kvm_mmu_page *sp,
2095 u64 *parent_pte)
2097 mmu_page_remove_parent_pte(sp, parent_pte);
2098 mmu_spte_clear_no_track(parent_pte);
2101 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2103 struct kvm_mmu_page *sp;
2105 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2106 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2107 if (!direct)
2108 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2109 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2112 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2113 * depends on valid pages being added to the head of the list. See
2114 * comments in kvm_zap_obsolete_pages().
2116 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2117 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2118 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2119 return sp;
2122 static void mark_unsync(u64 *spte);
2123 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2125 u64 *sptep;
2126 struct rmap_iterator iter;
2128 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2129 mark_unsync(sptep);
2133 static void mark_unsync(u64 *spte)
2135 struct kvm_mmu_page *sp;
2136 unsigned int index;
2138 sp = page_header(__pa(spte));
2139 index = spte - sp->spt;
2140 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2141 return;
2142 if (sp->unsync_children++)
2143 return;
2144 kvm_mmu_mark_parents_unsync(sp);
2147 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2148 struct kvm_mmu_page *sp)
2150 return 0;
2153 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2157 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2158 struct kvm_mmu_page *sp, u64 *spte,
2159 const void *pte)
2161 WARN_ON(1);
2164 #define KVM_PAGE_ARRAY_NR 16
2166 struct kvm_mmu_pages {
2167 struct mmu_page_and_offset {
2168 struct kvm_mmu_page *sp;
2169 unsigned int idx;
2170 } page[KVM_PAGE_ARRAY_NR];
2171 unsigned int nr;
2174 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2175 int idx)
2177 int i;
2179 if (sp->unsync)
2180 for (i=0; i < pvec->nr; i++)
2181 if (pvec->page[i].sp == sp)
2182 return 0;
2184 pvec->page[pvec->nr].sp = sp;
2185 pvec->page[pvec->nr].idx = idx;
2186 pvec->nr++;
2187 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2190 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2192 --sp->unsync_children;
2193 WARN_ON((int)sp->unsync_children < 0);
2194 __clear_bit(idx, sp->unsync_child_bitmap);
2197 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2198 struct kvm_mmu_pages *pvec)
2200 int i, ret, nr_unsync_leaf = 0;
2202 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2203 struct kvm_mmu_page *child;
2204 u64 ent = sp->spt[i];
2206 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2207 clear_unsync_child_bit(sp, i);
2208 continue;
2211 child = page_header(ent & PT64_BASE_ADDR_MASK);
2213 if (child->unsync_children) {
2214 if (mmu_pages_add(pvec, child, i))
2215 return -ENOSPC;
2217 ret = __mmu_unsync_walk(child, pvec);
2218 if (!ret) {
2219 clear_unsync_child_bit(sp, i);
2220 continue;
2221 } else if (ret > 0) {
2222 nr_unsync_leaf += ret;
2223 } else
2224 return ret;
2225 } else if (child->unsync) {
2226 nr_unsync_leaf++;
2227 if (mmu_pages_add(pvec, child, i))
2228 return -ENOSPC;
2229 } else
2230 clear_unsync_child_bit(sp, i);
2233 return nr_unsync_leaf;
2236 #define INVALID_INDEX (-1)
2238 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2239 struct kvm_mmu_pages *pvec)
2241 pvec->nr = 0;
2242 if (!sp->unsync_children)
2243 return 0;
2245 mmu_pages_add(pvec, sp, INVALID_INDEX);
2246 return __mmu_unsync_walk(sp, pvec);
2249 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2251 WARN_ON(!sp->unsync);
2252 trace_kvm_mmu_sync_page(sp);
2253 sp->unsync = 0;
2254 --kvm->stat.mmu_unsync;
2257 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2258 struct list_head *invalid_list);
2259 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2260 struct list_head *invalid_list);
2263 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2264 hlist_for_each_entry(_sp, \
2265 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2266 if (is_obsolete_sp((_kvm), (_sp))) { \
2267 } else
2269 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2270 for_each_valid_sp(_kvm, _sp, _gfn) \
2271 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2273 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2275 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2278 /* @sp->gfn should be write-protected at the call site */
2279 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2280 struct list_head *invalid_list)
2282 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2283 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2284 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2285 return false;
2288 return true;
2291 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2292 struct list_head *invalid_list,
2293 bool remote_flush)
2295 if (!remote_flush && list_empty(invalid_list))
2296 return false;
2298 if (!list_empty(invalid_list))
2299 kvm_mmu_commit_zap_page(kvm, invalid_list);
2300 else
2301 kvm_flush_remote_tlbs(kvm);
2302 return true;
2305 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2306 struct list_head *invalid_list,
2307 bool remote_flush, bool local_flush)
2309 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2310 return;
2312 if (local_flush)
2313 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2316 #ifdef CONFIG_KVM_MMU_AUDIT
2317 #include "mmu_audit.c"
2318 #else
2319 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2320 static void mmu_audit_disable(void) { }
2321 #endif
2323 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2325 return sp->role.invalid ||
2326 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2329 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2330 struct list_head *invalid_list)
2332 kvm_unlink_unsync_page(vcpu->kvm, sp);
2333 return __kvm_sync_page(vcpu, sp, invalid_list);
2336 /* @gfn should be write-protected at the call site */
2337 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2338 struct list_head *invalid_list)
2340 struct kvm_mmu_page *s;
2341 bool ret = false;
2343 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2344 if (!s->unsync)
2345 continue;
2347 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2348 ret |= kvm_sync_page(vcpu, s, invalid_list);
2351 return ret;
2354 struct mmu_page_path {
2355 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2356 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2359 #define for_each_sp(pvec, sp, parents, i) \
2360 for (i = mmu_pages_first(&pvec, &parents); \
2361 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2362 i = mmu_pages_next(&pvec, &parents, i))
2364 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2365 struct mmu_page_path *parents,
2366 int i)
2368 int n;
2370 for (n = i+1; n < pvec->nr; n++) {
2371 struct kvm_mmu_page *sp = pvec->page[n].sp;
2372 unsigned idx = pvec->page[n].idx;
2373 int level = sp->role.level;
2375 parents->idx[level-1] = idx;
2376 if (level == PT_PAGE_TABLE_LEVEL)
2377 break;
2379 parents->parent[level-2] = sp;
2382 return n;
2385 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2386 struct mmu_page_path *parents)
2388 struct kvm_mmu_page *sp;
2389 int level;
2391 if (pvec->nr == 0)
2392 return 0;
2394 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2396 sp = pvec->page[0].sp;
2397 level = sp->role.level;
2398 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2400 parents->parent[level-2] = sp;
2402 /* Also set up a sentinel. Further entries in pvec are all
2403 * children of sp, so this element is never overwritten.
2405 parents->parent[level-1] = NULL;
2406 return mmu_pages_next(pvec, parents, 0);
2409 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2411 struct kvm_mmu_page *sp;
2412 unsigned int level = 0;
2414 do {
2415 unsigned int idx = parents->idx[level];
2416 sp = parents->parent[level];
2417 if (!sp)
2418 return;
2420 WARN_ON(idx == INVALID_INDEX);
2421 clear_unsync_child_bit(sp, idx);
2422 level++;
2423 } while (!sp->unsync_children);
2426 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2427 struct kvm_mmu_page *parent)
2429 int i;
2430 struct kvm_mmu_page *sp;
2431 struct mmu_page_path parents;
2432 struct kvm_mmu_pages pages;
2433 LIST_HEAD(invalid_list);
2434 bool flush = false;
2436 while (mmu_unsync_walk(parent, &pages)) {
2437 bool protected = false;
2439 for_each_sp(pages, sp, parents, i)
2440 protected |= rmap_write_protect(vcpu, sp->gfn);
2442 if (protected) {
2443 kvm_flush_remote_tlbs(vcpu->kvm);
2444 flush = false;
2447 for_each_sp(pages, sp, parents, i) {
2448 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2449 mmu_pages_clear_parents(&parents);
2451 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2452 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2453 cond_resched_lock(&vcpu->kvm->mmu_lock);
2454 flush = false;
2458 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2461 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2463 atomic_set(&sp->write_flooding_count, 0);
2466 static void clear_sp_write_flooding_count(u64 *spte)
2468 struct kvm_mmu_page *sp = page_header(__pa(spte));
2470 __clear_sp_write_flooding_count(sp);
2473 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2474 gfn_t gfn,
2475 gva_t gaddr,
2476 unsigned level,
2477 int direct,
2478 unsigned access)
2480 union kvm_mmu_page_role role;
2481 unsigned quadrant;
2482 struct kvm_mmu_page *sp;
2483 bool need_sync = false;
2484 bool flush = false;
2485 int collisions = 0;
2486 LIST_HEAD(invalid_list);
2488 role = vcpu->arch.mmu->mmu_role.base;
2489 role.level = level;
2490 role.direct = direct;
2491 if (role.direct)
2492 role.gpte_is_8_bytes = true;
2493 role.access = access;
2494 if (!vcpu->arch.mmu->direct_map
2495 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2496 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2497 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2498 role.quadrant = quadrant;
2500 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2501 if (sp->gfn != gfn) {
2502 collisions++;
2503 continue;
2506 if (!need_sync && sp->unsync)
2507 need_sync = true;
2509 if (sp->role.word != role.word)
2510 continue;
2512 if (sp->unsync) {
2513 /* The page is good, but __kvm_sync_page might still end
2514 * up zapping it. If so, break in order to rebuild it.
2516 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2517 break;
2519 WARN_ON(!list_empty(&invalid_list));
2520 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2523 if (sp->unsync_children)
2524 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2526 __clear_sp_write_flooding_count(sp);
2527 trace_kvm_mmu_get_page(sp, false);
2528 goto out;
2531 ++vcpu->kvm->stat.mmu_cache_miss;
2533 sp = kvm_mmu_alloc_page(vcpu, direct);
2535 sp->gfn = gfn;
2536 sp->role = role;
2537 hlist_add_head(&sp->hash_link,
2538 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2539 if (!direct) {
2541 * we should do write protection before syncing pages
2542 * otherwise the content of the synced shadow page may
2543 * be inconsistent with guest page table.
2545 account_shadowed(vcpu->kvm, sp);
2546 if (level == PT_PAGE_TABLE_LEVEL &&
2547 rmap_write_protect(vcpu, gfn))
2548 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2550 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2551 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2553 clear_page(sp->spt);
2554 trace_kvm_mmu_get_page(sp, true);
2556 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2557 out:
2558 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2559 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2560 return sp;
2563 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2564 struct kvm_vcpu *vcpu, hpa_t root,
2565 u64 addr)
2567 iterator->addr = addr;
2568 iterator->shadow_addr = root;
2569 iterator->level = vcpu->arch.mmu->shadow_root_level;
2571 if (iterator->level == PT64_ROOT_4LEVEL &&
2572 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2573 !vcpu->arch.mmu->direct_map)
2574 --iterator->level;
2576 if (iterator->level == PT32E_ROOT_LEVEL) {
2578 * prev_root is currently only used for 64-bit hosts. So only
2579 * the active root_hpa is valid here.
2581 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2583 iterator->shadow_addr
2584 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2585 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2586 --iterator->level;
2587 if (!iterator->shadow_addr)
2588 iterator->level = 0;
2592 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2593 struct kvm_vcpu *vcpu, u64 addr)
2595 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2596 addr);
2599 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2601 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2602 return false;
2604 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2605 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2606 return true;
2609 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2610 u64 spte)
2612 if (is_last_spte(spte, iterator->level)) {
2613 iterator->level = 0;
2614 return;
2617 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2618 --iterator->level;
2621 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2623 __shadow_walk_next(iterator, *iterator->sptep);
2626 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2627 struct kvm_mmu_page *sp)
2629 u64 spte;
2631 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2633 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2634 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2636 if (sp_ad_disabled(sp))
2637 spte |= SPTE_AD_DISABLED_MASK;
2638 else
2639 spte |= shadow_accessed_mask;
2641 mmu_spte_set(sptep, spte);
2643 mmu_page_add_parent_pte(vcpu, sp, sptep);
2645 if (sp->unsync_children || sp->unsync)
2646 mark_unsync(sptep);
2649 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2650 unsigned direct_access)
2652 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2653 struct kvm_mmu_page *child;
2656 * For the direct sp, if the guest pte's dirty bit
2657 * changed form clean to dirty, it will corrupt the
2658 * sp's access: allow writable in the read-only sp,
2659 * so we should update the spte at this point to get
2660 * a new sp with the correct access.
2662 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2663 if (child->role.access == direct_access)
2664 return;
2666 drop_parent_pte(child, sptep);
2667 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2671 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2672 u64 *spte)
2674 u64 pte;
2675 struct kvm_mmu_page *child;
2677 pte = *spte;
2678 if (is_shadow_present_pte(pte)) {
2679 if (is_last_spte(pte, sp->role.level)) {
2680 drop_spte(kvm, spte);
2681 if (is_large_pte(pte))
2682 --kvm->stat.lpages;
2683 } else {
2684 child = page_header(pte & PT64_BASE_ADDR_MASK);
2685 drop_parent_pte(child, spte);
2687 return true;
2690 if (is_mmio_spte(pte))
2691 mmu_spte_clear_no_track(spte);
2693 return false;
2696 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2697 struct kvm_mmu_page *sp)
2699 unsigned i;
2701 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2702 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2705 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2707 u64 *sptep;
2708 struct rmap_iterator iter;
2710 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2711 drop_parent_pte(sp, sptep);
2714 static int mmu_zap_unsync_children(struct kvm *kvm,
2715 struct kvm_mmu_page *parent,
2716 struct list_head *invalid_list)
2718 int i, zapped = 0;
2719 struct mmu_page_path parents;
2720 struct kvm_mmu_pages pages;
2722 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2723 return 0;
2725 while (mmu_unsync_walk(parent, &pages)) {
2726 struct kvm_mmu_page *sp;
2728 for_each_sp(pages, sp, parents, i) {
2729 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2730 mmu_pages_clear_parents(&parents);
2731 zapped++;
2735 return zapped;
2738 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2739 struct kvm_mmu_page *sp,
2740 struct list_head *invalid_list,
2741 int *nr_zapped)
2743 bool list_unstable;
2745 trace_kvm_mmu_prepare_zap_page(sp);
2746 ++kvm->stat.mmu_shadow_zapped;
2747 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2748 kvm_mmu_page_unlink_children(kvm, sp);
2749 kvm_mmu_unlink_parents(kvm, sp);
2751 /* Zapping children means active_mmu_pages has become unstable. */
2752 list_unstable = *nr_zapped;
2754 if (!sp->role.invalid && !sp->role.direct)
2755 unaccount_shadowed(kvm, sp);
2757 if (sp->unsync)
2758 kvm_unlink_unsync_page(kvm, sp);
2759 if (!sp->root_count) {
2760 /* Count self */
2761 (*nr_zapped)++;
2762 list_move(&sp->link, invalid_list);
2763 kvm_mod_used_mmu_pages(kvm, -1);
2764 } else {
2765 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2768 * Obsolete pages cannot be used on any vCPUs, see the comment
2769 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2770 * treats invalid shadow pages as being obsolete.
2772 if (!is_obsolete_sp(kvm, sp))
2773 kvm_reload_remote_mmus(kvm);
2776 if (sp->lpage_disallowed)
2777 unaccount_huge_nx_page(kvm, sp);
2779 sp->role.invalid = 1;
2780 return list_unstable;
2783 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2784 struct list_head *invalid_list)
2786 int nr_zapped;
2788 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2789 return nr_zapped;
2792 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2793 struct list_head *invalid_list)
2795 struct kvm_mmu_page *sp, *nsp;
2797 if (list_empty(invalid_list))
2798 return;
2801 * We need to make sure everyone sees our modifications to
2802 * the page tables and see changes to vcpu->mode here. The barrier
2803 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2804 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2806 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2807 * guest mode and/or lockless shadow page table walks.
2809 kvm_flush_remote_tlbs(kvm);
2811 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2812 WARN_ON(!sp->role.invalid || sp->root_count);
2813 kvm_mmu_free_page(sp);
2817 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2818 struct list_head *invalid_list)
2820 struct kvm_mmu_page *sp;
2822 if (list_empty(&kvm->arch.active_mmu_pages))
2823 return false;
2825 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2826 struct kvm_mmu_page, link);
2827 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2830 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2832 LIST_HEAD(invalid_list);
2834 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2835 return 0;
2837 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2838 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2839 break;
2841 ++vcpu->kvm->stat.mmu_recycled;
2843 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2845 if (!kvm_mmu_available_pages(vcpu->kvm))
2846 return -ENOSPC;
2847 return 0;
2851 * Changing the number of mmu pages allocated to the vm
2852 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2854 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2856 LIST_HEAD(invalid_list);
2858 spin_lock(&kvm->mmu_lock);
2860 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2861 /* Need to free some mmu pages to achieve the goal. */
2862 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2863 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2864 break;
2866 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2867 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2870 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2872 spin_unlock(&kvm->mmu_lock);
2875 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2877 struct kvm_mmu_page *sp;
2878 LIST_HEAD(invalid_list);
2879 int r;
2881 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2882 r = 0;
2883 spin_lock(&kvm->mmu_lock);
2884 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2885 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2886 sp->role.word);
2887 r = 1;
2888 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2890 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2891 spin_unlock(&kvm->mmu_lock);
2893 return r;
2895 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2897 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2899 trace_kvm_mmu_unsync_page(sp);
2900 ++vcpu->kvm->stat.mmu_unsync;
2901 sp->unsync = 1;
2903 kvm_mmu_mark_parents_unsync(sp);
2906 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2907 bool can_unsync)
2909 struct kvm_mmu_page *sp;
2911 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2912 return true;
2914 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2915 if (!can_unsync)
2916 return true;
2918 if (sp->unsync)
2919 continue;
2921 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2922 kvm_unsync_page(vcpu, sp);
2926 * We need to ensure that the marking of unsync pages is visible
2927 * before the SPTE is updated to allow writes because
2928 * kvm_mmu_sync_roots() checks the unsync flags without holding
2929 * the MMU lock and so can race with this. If the SPTE was updated
2930 * before the page had been marked as unsync-ed, something like the
2931 * following could happen:
2933 * CPU 1 CPU 2
2934 * ---------------------------------------------------------------------
2935 * 1.2 Host updates SPTE
2936 * to be writable
2937 * 2.1 Guest writes a GPTE for GVA X.
2938 * (GPTE being in the guest page table shadowed
2939 * by the SP from CPU 1.)
2940 * This reads SPTE during the page table walk.
2941 * Since SPTE.W is read as 1, there is no
2942 * fault.
2944 * 2.2 Guest issues TLB flush.
2945 * That causes a VM Exit.
2947 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2948 * Since it is false, so it just returns.
2950 * 2.4 Guest accesses GVA X.
2951 * Since the mapping in the SP was not updated,
2952 * so the old mapping for GVA X incorrectly
2953 * gets used.
2954 * 1.1 Host marks SP
2955 * as unsync
2956 * (sp->unsync = true)
2958 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2959 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2960 * pairs with this write barrier.
2962 smp_wmb();
2964 return false;
2967 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2969 if (pfn_valid(pfn))
2970 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2972 * Some reserved pages, such as those from NVDIMM
2973 * DAX devices, are not for MMIO, and can be mapped
2974 * with cached memory type for better performance.
2975 * However, the above check misconceives those pages
2976 * as MMIO, and results in KVM mapping them with UC
2977 * memory type, which would hurt the performance.
2978 * Therefore, we check the host memory type in addition
2979 * and only treat UC/UC-/WC pages as MMIO.
2981 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2983 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2984 pfn_to_hpa(pfn + 1) - 1,
2985 E820_TYPE_RAM);
2988 /* Bits which may be returned by set_spte() */
2989 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2990 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2992 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2993 unsigned pte_access, int level,
2994 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2995 bool can_unsync, bool host_writable)
2997 u64 spte = 0;
2998 int ret = 0;
2999 struct kvm_mmu_page *sp;
3001 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3002 return 0;
3004 sp = page_header(__pa(sptep));
3005 if (sp_ad_disabled(sp))
3006 spte |= SPTE_AD_DISABLED_MASK;
3007 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3008 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3011 * For the EPT case, shadow_present_mask is 0 if hardware
3012 * supports exec-only page table entries. In that case,
3013 * ACC_USER_MASK and shadow_user_mask are used to represent
3014 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3016 spte |= shadow_present_mask;
3017 if (!speculative)
3018 spte |= spte_shadow_accessed_mask(spte);
3020 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3021 is_nx_huge_page_enabled()) {
3022 pte_access &= ~ACC_EXEC_MASK;
3025 if (pte_access & ACC_EXEC_MASK)
3026 spte |= shadow_x_mask;
3027 else
3028 spte |= shadow_nx_mask;
3030 if (pte_access & ACC_USER_MASK)
3031 spte |= shadow_user_mask;
3033 if (level > PT_PAGE_TABLE_LEVEL)
3034 spte |= PT_PAGE_SIZE_MASK;
3035 if (tdp_enabled)
3036 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3037 kvm_is_mmio_pfn(pfn));
3039 if (host_writable)
3040 spte |= SPTE_HOST_WRITEABLE;
3041 else
3042 pte_access &= ~ACC_WRITE_MASK;
3044 if (!kvm_is_mmio_pfn(pfn))
3045 spte |= shadow_me_mask;
3047 spte |= (u64)pfn << PAGE_SHIFT;
3049 if (pte_access & ACC_WRITE_MASK) {
3050 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3053 * Optimization: for pte sync, if spte was writable the hash
3054 * lookup is unnecessary (and expensive). Write protection
3055 * is responsibility of mmu_get_page / kvm_sync_page.
3056 * Same reasoning can be applied to dirty page accounting.
3058 if (!can_unsync && is_writable_pte(*sptep))
3059 goto set_pte;
3061 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3062 pgprintk("%s: found shadow page for %llx, marking ro\n",
3063 __func__, gfn);
3064 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3065 pte_access &= ~ACC_WRITE_MASK;
3066 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3070 if (pte_access & ACC_WRITE_MASK) {
3071 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3072 spte |= spte_shadow_dirty_mask(spte);
3075 if (speculative)
3076 spte = mark_spte_for_access_track(spte);
3078 set_pte:
3079 if (mmu_spte_update(sptep, spte))
3080 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3081 return ret;
3084 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3085 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3086 bool speculative, bool host_writable)
3088 int was_rmapped = 0;
3089 int rmap_count;
3090 int set_spte_ret;
3091 int ret = RET_PF_RETRY;
3092 bool flush = false;
3094 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3095 *sptep, write_fault, gfn);
3097 if (is_shadow_present_pte(*sptep)) {
3099 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3100 * the parent of the now unreachable PTE.
3102 if (level > PT_PAGE_TABLE_LEVEL &&
3103 !is_large_pte(*sptep)) {
3104 struct kvm_mmu_page *child;
3105 u64 pte = *sptep;
3107 child = page_header(pte & PT64_BASE_ADDR_MASK);
3108 drop_parent_pte(child, sptep);
3109 flush = true;
3110 } else if (pfn != spte_to_pfn(*sptep)) {
3111 pgprintk("hfn old %llx new %llx\n",
3112 spte_to_pfn(*sptep), pfn);
3113 drop_spte(vcpu->kvm, sptep);
3114 flush = true;
3115 } else
3116 was_rmapped = 1;
3119 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3120 speculative, true, host_writable);
3121 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3122 if (write_fault)
3123 ret = RET_PF_EMULATE;
3124 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3127 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3128 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3129 KVM_PAGES_PER_HPAGE(level));
3131 if (unlikely(is_mmio_spte(*sptep)))
3132 ret = RET_PF_EMULATE;
3134 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3135 trace_kvm_mmu_set_spte(level, gfn, sptep);
3136 if (!was_rmapped && is_large_pte(*sptep))
3137 ++vcpu->kvm->stat.lpages;
3139 if (is_shadow_present_pte(*sptep)) {
3140 if (!was_rmapped) {
3141 rmap_count = rmap_add(vcpu, sptep, gfn);
3142 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3143 rmap_recycle(vcpu, sptep, gfn);
3147 return ret;
3150 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3151 bool no_dirty_log)
3153 struct kvm_memory_slot *slot;
3155 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3156 if (!slot)
3157 return KVM_PFN_ERR_FAULT;
3159 return gfn_to_pfn_memslot_atomic(slot, gfn);
3162 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3163 struct kvm_mmu_page *sp,
3164 u64 *start, u64 *end)
3166 struct page *pages[PTE_PREFETCH_NUM];
3167 struct kvm_memory_slot *slot;
3168 unsigned access = sp->role.access;
3169 int i, ret;
3170 gfn_t gfn;
3172 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3173 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3174 if (!slot)
3175 return -1;
3177 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3178 if (ret <= 0)
3179 return -1;
3181 for (i = 0; i < ret; i++, gfn++, start++) {
3182 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3183 page_to_pfn(pages[i]), true, true);
3184 put_page(pages[i]);
3187 return 0;
3190 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3191 struct kvm_mmu_page *sp, u64 *sptep)
3193 u64 *spte, *start = NULL;
3194 int i;
3196 WARN_ON(!sp->role.direct);
3198 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3199 spte = sp->spt + i;
3201 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3202 if (is_shadow_present_pte(*spte) || spte == sptep) {
3203 if (!start)
3204 continue;
3205 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3206 break;
3207 start = NULL;
3208 } else if (!start)
3209 start = spte;
3213 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3215 struct kvm_mmu_page *sp;
3217 sp = page_header(__pa(sptep));
3220 * Without accessed bits, there's no way to distinguish between
3221 * actually accessed translations and prefetched, so disable pte
3222 * prefetch if accessed bits aren't available.
3224 if (sp_ad_disabled(sp))
3225 return;
3227 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3228 return;
3230 __direct_pte_prefetch(vcpu, sp, sptep);
3233 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3234 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3236 unsigned long hva;
3237 pte_t *pte;
3238 int level;
3240 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3241 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3242 PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3244 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3245 return PT_PAGE_TABLE_LEVEL;
3248 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3249 * is not solely for performance, it's also necessary to avoid the
3250 * "writable" check in __gfn_to_hva_many(), which will always fail on
3251 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3252 * page fault steps have already verified the guest isn't writing a
3253 * read-only memslot.
3255 hva = __gfn_to_hva_memslot(slot, gfn);
3257 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3258 if (unlikely(!pte))
3259 return PT_PAGE_TABLE_LEVEL;
3261 return level;
3264 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3265 int max_level, kvm_pfn_t *pfnp)
3267 struct kvm_memory_slot *slot;
3268 struct kvm_lpage_info *linfo;
3269 kvm_pfn_t pfn = *pfnp;
3270 kvm_pfn_t mask;
3271 int level;
3273 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3274 return PT_PAGE_TABLE_LEVEL;
3276 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3277 return PT_PAGE_TABLE_LEVEL;
3279 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3280 if (!slot)
3281 return PT_PAGE_TABLE_LEVEL;
3283 max_level = min(max_level, kvm_x86_ops->get_lpage_level());
3284 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3285 linfo = lpage_info_slot(gfn, slot, max_level);
3286 if (!linfo->disallow_lpage)
3287 break;
3290 if (max_level == PT_PAGE_TABLE_LEVEL)
3291 return PT_PAGE_TABLE_LEVEL;
3293 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3294 if (level == PT_PAGE_TABLE_LEVEL)
3295 return level;
3297 level = min(level, max_level);
3300 * mmu_notifier_retry() was successful and mmu_lock is held, so
3301 * the pmd can't be split from under us.
3303 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3304 VM_BUG_ON((gfn & mask) != (pfn & mask));
3305 *pfnp = pfn & ~mask;
3307 return level;
3310 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3311 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3313 int level = *levelp;
3314 u64 spte = *it.sptep;
3316 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3317 is_nx_huge_page_enabled() &&
3318 is_shadow_present_pte(spte) &&
3319 !is_large_pte(spte)) {
3321 * A small SPTE exists for this pfn, but FNAME(fetch)
3322 * and __direct_map would like to create a large PTE
3323 * instead: just force them to go down another level,
3324 * patching back for them into pfn the next 9 bits of
3325 * the address.
3327 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3328 *pfnp |= gfn & page_mask;
3329 (*levelp)--;
3333 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3334 int map_writable, int max_level, kvm_pfn_t pfn,
3335 bool prefault, bool account_disallowed_nx_lpage)
3337 struct kvm_shadow_walk_iterator it;
3338 struct kvm_mmu_page *sp;
3339 int level, ret;
3340 gfn_t gfn = gpa >> PAGE_SHIFT;
3341 gfn_t base_gfn = gfn;
3343 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3344 return RET_PF_RETRY;
3346 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3348 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3349 for_each_shadow_entry(vcpu, gpa, it) {
3351 * We cannot overwrite existing page tables with an NX
3352 * large page, as the leaf could be executable.
3354 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3356 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3357 if (it.level == level)
3358 break;
3360 drop_large_spte(vcpu, it.sptep);
3361 if (!is_shadow_present_pte(*it.sptep)) {
3362 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3363 it.level - 1, true, ACC_ALL);
3365 link_shadow_page(vcpu, it.sptep, sp);
3366 if (account_disallowed_nx_lpage)
3367 account_huge_nx_page(vcpu->kvm, sp);
3371 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3372 write, level, base_gfn, pfn, prefault,
3373 map_writable);
3374 direct_pte_prefetch(vcpu, it.sptep);
3375 ++vcpu->stat.pf_fixed;
3376 return ret;
3379 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3381 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3384 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3387 * Do not cache the mmio info caused by writing the readonly gfn
3388 * into the spte otherwise read access on readonly gfn also can
3389 * caused mmio page fault and treat it as mmio access.
3391 if (pfn == KVM_PFN_ERR_RO_FAULT)
3392 return RET_PF_EMULATE;
3394 if (pfn == KVM_PFN_ERR_HWPOISON) {
3395 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3396 return RET_PF_RETRY;
3399 return -EFAULT;
3402 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3403 kvm_pfn_t pfn, unsigned access, int *ret_val)
3405 /* The pfn is invalid, report the error! */
3406 if (unlikely(is_error_pfn(pfn))) {
3407 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3408 return true;
3411 if (unlikely(is_noslot_pfn(pfn)))
3412 vcpu_cache_mmio_info(vcpu, gva, gfn,
3413 access & shadow_mmio_access_mask);
3415 return false;
3418 static bool page_fault_can_be_fast(u32 error_code)
3421 * Do not fix the mmio spte with invalid generation number which
3422 * need to be updated by slow page fault path.
3424 if (unlikely(error_code & PFERR_RSVD_MASK))
3425 return false;
3427 /* See if the page fault is due to an NX violation */
3428 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3429 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3430 return false;
3433 * #PF can be fast if:
3434 * 1. The shadow page table entry is not present, which could mean that
3435 * the fault is potentially caused by access tracking (if enabled).
3436 * 2. The shadow page table entry is present and the fault
3437 * is caused by write-protect, that means we just need change the W
3438 * bit of the spte which can be done out of mmu-lock.
3440 * However, if access tracking is disabled we know that a non-present
3441 * page must be a genuine page fault where we have to create a new SPTE.
3442 * So, if access tracking is disabled, we return true only for write
3443 * accesses to a present page.
3446 return shadow_acc_track_mask != 0 ||
3447 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3448 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3452 * Returns true if the SPTE was fixed successfully. Otherwise,
3453 * someone else modified the SPTE from its original value.
3455 static bool
3456 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3457 u64 *sptep, u64 old_spte, u64 new_spte)
3459 gfn_t gfn;
3461 WARN_ON(!sp->role.direct);
3464 * Theoretically we could also set dirty bit (and flush TLB) here in
3465 * order to eliminate unnecessary PML logging. See comments in
3466 * set_spte. But fast_page_fault is very unlikely to happen with PML
3467 * enabled, so we do not do this. This might result in the same GPA
3468 * to be logged in PML buffer again when the write really happens, and
3469 * eventually to be called by mark_page_dirty twice. But it's also no
3470 * harm. This also avoids the TLB flush needed after setting dirty bit
3471 * so non-PML cases won't be impacted.
3473 * Compare with set_spte where instead shadow_dirty_mask is set.
3475 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3476 return false;
3478 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3480 * The gfn of direct spte is stable since it is
3481 * calculated by sp->gfn.
3483 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3484 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3487 return true;
3490 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3492 if (fault_err_code & PFERR_FETCH_MASK)
3493 return is_executable_pte(spte);
3495 if (fault_err_code & PFERR_WRITE_MASK)
3496 return is_writable_pte(spte);
3498 /* Fault was on Read access */
3499 return spte & PT_PRESENT_MASK;
3503 * Return value:
3504 * - true: let the vcpu to access on the same address again.
3505 * - false: let the real page fault path to fix it.
3507 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3508 u32 error_code)
3510 struct kvm_shadow_walk_iterator iterator;
3511 struct kvm_mmu_page *sp;
3512 bool fault_handled = false;
3513 u64 spte = 0ull;
3514 uint retry_count = 0;
3516 if (!page_fault_can_be_fast(error_code))
3517 return false;
3519 walk_shadow_page_lockless_begin(vcpu);
3521 do {
3522 u64 new_spte;
3524 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3525 if (!is_shadow_present_pte(spte))
3526 break;
3528 sp = page_header(__pa(iterator.sptep));
3529 if (!is_last_spte(spte, sp->role.level))
3530 break;
3533 * Check whether the memory access that caused the fault would
3534 * still cause it if it were to be performed right now. If not,
3535 * then this is a spurious fault caused by TLB lazily flushed,
3536 * or some other CPU has already fixed the PTE after the
3537 * current CPU took the fault.
3539 * Need not check the access of upper level table entries since
3540 * they are always ACC_ALL.
3542 if (is_access_allowed(error_code, spte)) {
3543 fault_handled = true;
3544 break;
3547 new_spte = spte;
3549 if (is_access_track_spte(spte))
3550 new_spte = restore_acc_track_spte(new_spte);
3553 * Currently, to simplify the code, write-protection can
3554 * be removed in the fast path only if the SPTE was
3555 * write-protected for dirty-logging or access tracking.
3557 if ((error_code & PFERR_WRITE_MASK) &&
3558 spte_can_locklessly_be_made_writable(spte))
3560 new_spte |= PT_WRITABLE_MASK;
3563 * Do not fix write-permission on the large spte. Since
3564 * we only dirty the first page into the dirty-bitmap in
3565 * fast_pf_fix_direct_spte(), other pages are missed
3566 * if its slot has dirty logging enabled.
3568 * Instead, we let the slow page fault path create a
3569 * normal spte to fix the access.
3571 * See the comments in kvm_arch_commit_memory_region().
3573 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3574 break;
3577 /* Verify that the fault can be handled in the fast path */
3578 if (new_spte == spte ||
3579 !is_access_allowed(error_code, new_spte))
3580 break;
3583 * Currently, fast page fault only works for direct mapping
3584 * since the gfn is not stable for indirect shadow page. See
3585 * Documentation/virt/kvm/locking.txt to get more detail.
3587 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3588 iterator.sptep, spte,
3589 new_spte);
3590 if (fault_handled)
3591 break;
3593 if (++retry_count > 4) {
3594 printk_once(KERN_WARNING
3595 "kvm: Fast #PF retrying more than 4 times.\n");
3596 break;
3599 } while (true);
3601 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3602 spte, fault_handled);
3603 walk_shadow_page_lockless_end(vcpu);
3605 return fault_handled;
3608 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3609 struct list_head *invalid_list)
3611 struct kvm_mmu_page *sp;
3613 if (!VALID_PAGE(*root_hpa))
3614 return;
3616 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3617 --sp->root_count;
3618 if (!sp->root_count && sp->role.invalid)
3619 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3621 *root_hpa = INVALID_PAGE;
3624 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3625 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3626 ulong roots_to_free)
3628 int i;
3629 LIST_HEAD(invalid_list);
3630 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3632 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3634 /* Before acquiring the MMU lock, see if we need to do any real work. */
3635 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3637 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3638 VALID_PAGE(mmu->prev_roots[i].hpa))
3639 break;
3641 if (i == KVM_MMU_NUM_PREV_ROOTS)
3642 return;
3645 spin_lock(&vcpu->kvm->mmu_lock);
3647 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3648 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3649 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3650 &invalid_list);
3652 if (free_active_root) {
3653 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3654 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3655 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3656 &invalid_list);
3657 } else {
3658 for (i = 0; i < 4; ++i)
3659 if (mmu->pae_root[i] != 0)
3660 mmu_free_root_page(vcpu->kvm,
3661 &mmu->pae_root[i],
3662 &invalid_list);
3663 mmu->root_hpa = INVALID_PAGE;
3665 mmu->root_cr3 = 0;
3668 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3669 spin_unlock(&vcpu->kvm->mmu_lock);
3671 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3673 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3675 int ret = 0;
3677 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3678 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3679 ret = 1;
3682 return ret;
3685 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3687 struct kvm_mmu_page *sp;
3688 unsigned i;
3690 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3691 spin_lock(&vcpu->kvm->mmu_lock);
3692 if(make_mmu_pages_available(vcpu) < 0) {
3693 spin_unlock(&vcpu->kvm->mmu_lock);
3694 return -ENOSPC;
3696 sp = kvm_mmu_get_page(vcpu, 0, 0,
3697 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3698 ++sp->root_count;
3699 spin_unlock(&vcpu->kvm->mmu_lock);
3700 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3701 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3702 for (i = 0; i < 4; ++i) {
3703 hpa_t root = vcpu->arch.mmu->pae_root[i];
3705 MMU_WARN_ON(VALID_PAGE(root));
3706 spin_lock(&vcpu->kvm->mmu_lock);
3707 if (make_mmu_pages_available(vcpu) < 0) {
3708 spin_unlock(&vcpu->kvm->mmu_lock);
3709 return -ENOSPC;
3711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3712 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3713 root = __pa(sp->spt);
3714 ++sp->root_count;
3715 spin_unlock(&vcpu->kvm->mmu_lock);
3716 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3718 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719 } else
3720 BUG();
3721 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3723 return 0;
3726 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3728 struct kvm_mmu_page *sp;
3729 u64 pdptr, pm_mask;
3730 gfn_t root_gfn, root_cr3;
3731 int i;
3733 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3734 root_gfn = root_cr3 >> PAGE_SHIFT;
3736 if (mmu_check_root(vcpu, root_gfn))
3737 return 1;
3740 * Do we shadow a long mode page table? If so we need to
3741 * write-protect the guests page table root.
3743 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3744 hpa_t root = vcpu->arch.mmu->root_hpa;
3746 MMU_WARN_ON(VALID_PAGE(root));
3748 spin_lock(&vcpu->kvm->mmu_lock);
3749 if (make_mmu_pages_available(vcpu) < 0) {
3750 spin_unlock(&vcpu->kvm->mmu_lock);
3751 return -ENOSPC;
3753 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3754 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3755 root = __pa(sp->spt);
3756 ++sp->root_count;
3757 spin_unlock(&vcpu->kvm->mmu_lock);
3758 vcpu->arch.mmu->root_hpa = root;
3759 goto set_root_cr3;
3763 * We shadow a 32 bit page table. This may be a legacy 2-level
3764 * or a PAE 3-level page table. In either case we need to be aware that
3765 * the shadow page table may be a PAE or a long mode page table.
3767 pm_mask = PT_PRESENT_MASK;
3768 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3769 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3771 for (i = 0; i < 4; ++i) {
3772 hpa_t root = vcpu->arch.mmu->pae_root[i];
3774 MMU_WARN_ON(VALID_PAGE(root));
3775 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3776 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3777 if (!(pdptr & PT_PRESENT_MASK)) {
3778 vcpu->arch.mmu->pae_root[i] = 0;
3779 continue;
3781 root_gfn = pdptr >> PAGE_SHIFT;
3782 if (mmu_check_root(vcpu, root_gfn))
3783 return 1;
3785 spin_lock(&vcpu->kvm->mmu_lock);
3786 if (make_mmu_pages_available(vcpu) < 0) {
3787 spin_unlock(&vcpu->kvm->mmu_lock);
3788 return -ENOSPC;
3790 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3791 0, ACC_ALL);
3792 root = __pa(sp->spt);
3793 ++sp->root_count;
3794 spin_unlock(&vcpu->kvm->mmu_lock);
3796 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3798 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3801 * If we shadow a 32 bit page table with a long mode page
3802 * table we enter this path.
3804 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3805 if (vcpu->arch.mmu->lm_root == NULL) {
3807 * The additional page necessary for this is only
3808 * allocated on demand.
3811 u64 *lm_root;
3813 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3814 if (lm_root == NULL)
3815 return 1;
3817 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3819 vcpu->arch.mmu->lm_root = lm_root;
3822 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3825 set_root_cr3:
3826 vcpu->arch.mmu->root_cr3 = root_cr3;
3828 return 0;
3831 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3833 if (vcpu->arch.mmu->direct_map)
3834 return mmu_alloc_direct_roots(vcpu);
3835 else
3836 return mmu_alloc_shadow_roots(vcpu);
3839 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3841 int i;
3842 struct kvm_mmu_page *sp;
3844 if (vcpu->arch.mmu->direct_map)
3845 return;
3847 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3848 return;
3850 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3852 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3853 hpa_t root = vcpu->arch.mmu->root_hpa;
3854 sp = page_header(root);
3857 * Even if another CPU was marking the SP as unsync-ed
3858 * simultaneously, any guest page table changes are not
3859 * guaranteed to be visible anyway until this VCPU issues a TLB
3860 * flush strictly after those changes are made. We only need to
3861 * ensure that the other CPU sets these flags before any actual
3862 * changes to the page tables are made. The comments in
3863 * mmu_need_write_protect() describe what could go wrong if this
3864 * requirement isn't satisfied.
3866 if (!smp_load_acquire(&sp->unsync) &&
3867 !smp_load_acquire(&sp->unsync_children))
3868 return;
3870 spin_lock(&vcpu->kvm->mmu_lock);
3871 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3873 mmu_sync_children(vcpu, sp);
3875 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3876 spin_unlock(&vcpu->kvm->mmu_lock);
3877 return;
3880 spin_lock(&vcpu->kvm->mmu_lock);
3881 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3883 for (i = 0; i < 4; ++i) {
3884 hpa_t root = vcpu->arch.mmu->pae_root[i];
3886 if (root && VALID_PAGE(root)) {
3887 root &= PT64_BASE_ADDR_MASK;
3888 sp = page_header(root);
3889 mmu_sync_children(vcpu, sp);
3893 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3894 spin_unlock(&vcpu->kvm->mmu_lock);
3896 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3898 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3899 u32 access, struct x86_exception *exception)
3901 if (exception)
3902 exception->error_code = 0;
3903 return vaddr;
3906 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3907 u32 access,
3908 struct x86_exception *exception)
3910 if (exception)
3911 exception->error_code = 0;
3912 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3915 static bool
3916 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3918 int bit7 = (pte >> 7) & 1;
3920 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3923 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3925 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3928 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3931 * A nested guest cannot use the MMIO cache if it is using nested
3932 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3934 if (mmu_is_nested(vcpu))
3935 return false;
3937 if (direct)
3938 return vcpu_match_mmio_gpa(vcpu, addr);
3940 return vcpu_match_mmio_gva(vcpu, addr);
3943 /* return true if reserved bit is detected on spte. */
3944 static bool
3945 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3947 struct kvm_shadow_walk_iterator iterator;
3948 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3949 struct rsvd_bits_validate *rsvd_check;
3950 int root, leaf;
3951 bool reserved = false;
3953 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3955 walk_shadow_page_lockless_begin(vcpu);
3957 for (shadow_walk_init(&iterator, vcpu, addr),
3958 leaf = root = iterator.level;
3959 shadow_walk_okay(&iterator);
3960 __shadow_walk_next(&iterator, spte)) {
3961 spte = mmu_spte_get_lockless(iterator.sptep);
3963 sptes[leaf - 1] = spte;
3964 leaf--;
3966 if (!is_shadow_present_pte(spte))
3967 break;
3970 * Use a bitwise-OR instead of a logical-OR to aggregate the
3971 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3972 * adding a Jcc in the loop.
3974 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3975 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3978 walk_shadow_page_lockless_end(vcpu);
3980 if (reserved) {
3981 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3982 __func__, addr);
3983 while (root > leaf) {
3984 pr_err("------ spte 0x%llx level %d.\n",
3985 sptes[root - 1], root);
3986 root--;
3990 *sptep = spte;
3991 return reserved;
3994 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3996 u64 spte;
3997 bool reserved;
3999 if (mmio_info_in_cache(vcpu, addr, direct))
4000 return RET_PF_EMULATE;
4002 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4003 if (WARN_ON(reserved))
4004 return -EINVAL;
4006 if (is_mmio_spte(spte)) {
4007 gfn_t gfn = get_mmio_spte_gfn(spte);
4008 unsigned access = get_mmio_spte_access(spte);
4010 if (!check_mmio_spte(vcpu, spte))
4011 return RET_PF_INVALID;
4013 if (direct)
4014 addr = 0;
4016 trace_handle_mmio_page_fault(addr, gfn, access);
4017 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4018 return RET_PF_EMULATE;
4022 * If the page table is zapped by other cpus, let CPU fault again on
4023 * the address.
4025 return RET_PF_RETRY;
4028 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4029 u32 error_code, gfn_t gfn)
4031 if (unlikely(error_code & PFERR_RSVD_MASK))
4032 return false;
4034 if (!(error_code & PFERR_PRESENT_MASK) ||
4035 !(error_code & PFERR_WRITE_MASK))
4036 return false;
4039 * guest is writing the page which is write tracked which can
4040 * not be fixed by page fault handler.
4042 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4043 return true;
4045 return false;
4048 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4050 struct kvm_shadow_walk_iterator iterator;
4051 u64 spte;
4053 walk_shadow_page_lockless_begin(vcpu);
4054 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4055 clear_sp_write_flooding_count(iterator.sptep);
4056 if (!is_shadow_present_pte(spte))
4057 break;
4059 walk_shadow_page_lockless_end(vcpu);
4062 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4063 gfn_t gfn)
4065 struct kvm_arch_async_pf arch;
4067 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4068 arch.gfn = gfn;
4069 arch.direct_map = vcpu->arch.mmu->direct_map;
4070 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4072 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4073 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4076 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4077 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4078 bool *writable)
4080 struct kvm_memory_slot *slot;
4081 bool async;
4084 * Don't expose private memslots to L2.
4086 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4087 *pfn = KVM_PFN_NOSLOT;
4088 return false;
4091 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4092 async = false;
4093 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4094 if (!async)
4095 return false; /* *pfn has correct page already */
4097 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4098 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4099 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4100 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4101 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4102 return true;
4103 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4104 return true;
4107 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4108 return false;
4111 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4112 bool prefault, int max_level, bool is_tdp)
4114 bool write = error_code & PFERR_WRITE_MASK;
4115 bool exec = error_code & PFERR_FETCH_MASK;
4116 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4117 bool map_writable;
4119 gfn_t gfn = gpa >> PAGE_SHIFT;
4120 unsigned long mmu_seq;
4121 kvm_pfn_t pfn;
4122 int r;
4124 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4125 return RET_PF_EMULATE;
4127 r = mmu_topup_memory_caches(vcpu);
4128 if (r)
4129 return r;
4131 if (lpage_disallowed)
4132 max_level = PT_PAGE_TABLE_LEVEL;
4134 if (fast_page_fault(vcpu, gpa, error_code))
4135 return RET_PF_RETRY;
4137 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4138 smp_rmb();
4140 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4141 return RET_PF_RETRY;
4143 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4144 return r;
4146 r = RET_PF_RETRY;
4147 spin_lock(&vcpu->kvm->mmu_lock);
4148 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4149 goto out_unlock;
4150 if (make_mmu_pages_available(vcpu) < 0)
4151 goto out_unlock;
4152 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4153 prefault, is_tdp && lpage_disallowed);
4155 out_unlock:
4156 spin_unlock(&vcpu->kvm->mmu_lock);
4157 kvm_release_pfn_clean(pfn);
4158 return r;
4161 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4162 u32 error_code, bool prefault)
4164 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4166 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4167 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4168 PT_DIRECTORY_LEVEL, false);
4171 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4172 u64 fault_address, char *insn, int insn_len)
4174 int r = 1;
4176 #ifndef CONFIG_X86_64
4177 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4178 if (WARN_ON_ONCE(fault_address >> 32))
4179 return -EFAULT;
4180 #endif
4182 vcpu->arch.l1tf_flush_l1d = true;
4183 switch (vcpu->arch.apf.host_apf_reason) {
4184 default:
4185 trace_kvm_page_fault(fault_address, error_code);
4187 if (kvm_event_needs_reinjection(vcpu))
4188 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4189 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4190 insn_len);
4191 break;
4192 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4193 vcpu->arch.apf.host_apf_reason = 0;
4194 local_irq_disable();
4195 kvm_async_pf_task_wait(fault_address, 0);
4196 local_irq_enable();
4197 break;
4198 case KVM_PV_REASON_PAGE_READY:
4199 vcpu->arch.apf.host_apf_reason = 0;
4200 local_irq_disable();
4201 kvm_async_pf_task_wake(fault_address);
4202 local_irq_enable();
4203 break;
4205 return r;
4207 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4209 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4210 bool prefault)
4212 int max_level;
4214 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4215 max_level > PT_PAGE_TABLE_LEVEL;
4216 max_level--) {
4217 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4218 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4220 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4221 break;
4224 return direct_page_fault(vcpu, gpa, error_code, prefault,
4225 max_level, true);
4228 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4229 struct kvm_mmu *context)
4231 context->page_fault = nonpaging_page_fault;
4232 context->gva_to_gpa = nonpaging_gva_to_gpa;
4233 context->sync_page = nonpaging_sync_page;
4234 context->invlpg = nonpaging_invlpg;
4235 context->update_pte = nonpaging_update_pte;
4236 context->root_level = 0;
4237 context->shadow_root_level = PT32E_ROOT_LEVEL;
4238 context->direct_map = true;
4239 context->nx = false;
4243 * Find out if a previously cached root matching the new CR3/role is available.
4244 * The current root is also inserted into the cache.
4245 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4246 * returned.
4247 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4248 * false is returned. This root should now be freed by the caller.
4250 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4251 union kvm_mmu_page_role new_role)
4253 uint i;
4254 struct kvm_mmu_root_info root;
4255 struct kvm_mmu *mmu = vcpu->arch.mmu;
4257 root.cr3 = mmu->root_cr3;
4258 root.hpa = mmu->root_hpa;
4260 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4261 swap(root, mmu->prev_roots[i]);
4263 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4264 page_header(root.hpa) != NULL &&
4265 new_role.word == page_header(root.hpa)->role.word)
4266 break;
4269 mmu->root_hpa = root.hpa;
4270 mmu->root_cr3 = root.cr3;
4272 return i < KVM_MMU_NUM_PREV_ROOTS;
4275 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4276 union kvm_mmu_page_role new_role,
4277 bool skip_tlb_flush)
4279 struct kvm_mmu *mmu = vcpu->arch.mmu;
4282 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4283 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4284 * later if necessary.
4286 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4287 mmu->root_level >= PT64_ROOT_4LEVEL) {
4288 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4289 return false;
4291 if (cached_root_available(vcpu, new_cr3, new_role)) {
4293 * It is possible that the cached previous root page is
4294 * obsolete because of a change in the MMU generation
4295 * number. However, changing the generation number is
4296 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4297 * the root set here and allocate a new one.
4299 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4300 if (!skip_tlb_flush) {
4301 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4302 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4306 * The last MMIO access's GVA and GPA are cached in the
4307 * VCPU. When switching to a new CR3, that GVA->GPA
4308 * mapping may no longer be valid. So clear any cached
4309 * MMIO info even when we don't need to sync the shadow
4310 * page tables.
4312 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4314 __clear_sp_write_flooding_count(
4315 page_header(mmu->root_hpa));
4317 return true;
4321 return false;
4324 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4325 union kvm_mmu_page_role new_role,
4326 bool skip_tlb_flush)
4328 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4329 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4330 KVM_MMU_ROOT_CURRENT);
4333 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4335 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4336 skip_tlb_flush);
4338 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4340 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4342 return kvm_read_cr3(vcpu);
4345 static void inject_page_fault(struct kvm_vcpu *vcpu,
4346 struct x86_exception *fault)
4348 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4351 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4352 unsigned access, int *nr_present)
4354 if (unlikely(is_mmio_spte(*sptep))) {
4355 if (gfn != get_mmio_spte_gfn(*sptep)) {
4356 mmu_spte_clear_no_track(sptep);
4357 return true;
4360 (*nr_present)++;
4361 mark_mmio_spte(vcpu, sptep, gfn, access);
4362 return true;
4365 return false;
4368 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4369 unsigned level, unsigned gpte)
4372 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4373 * If it is clear, there are no large pages at this level, so clear
4374 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4376 gpte &= level - mmu->last_nonleaf_level;
4379 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4380 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4381 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4383 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4385 return gpte & PT_PAGE_SIZE_MASK;
4388 #define PTTYPE_EPT 18 /* arbitrary */
4389 #define PTTYPE PTTYPE_EPT
4390 #include "paging_tmpl.h"
4391 #undef PTTYPE
4393 #define PTTYPE 64
4394 #include "paging_tmpl.h"
4395 #undef PTTYPE
4397 #define PTTYPE 32
4398 #include "paging_tmpl.h"
4399 #undef PTTYPE
4401 static void
4402 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4403 struct rsvd_bits_validate *rsvd_check,
4404 int maxphyaddr, int level, bool nx, bool gbpages,
4405 bool pse, bool amd)
4407 u64 exb_bit_rsvd = 0;
4408 u64 gbpages_bit_rsvd = 0;
4409 u64 nonleaf_bit8_rsvd = 0;
4411 rsvd_check->bad_mt_xwr = 0;
4413 if (!nx)
4414 exb_bit_rsvd = rsvd_bits(63, 63);
4415 if (!gbpages)
4416 gbpages_bit_rsvd = rsvd_bits(7, 7);
4419 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4420 * leaf entries) on AMD CPUs only.
4422 if (amd)
4423 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4425 switch (level) {
4426 case PT32_ROOT_LEVEL:
4427 /* no rsvd bits for 2 level 4K page table entries */
4428 rsvd_check->rsvd_bits_mask[0][1] = 0;
4429 rsvd_check->rsvd_bits_mask[0][0] = 0;
4430 rsvd_check->rsvd_bits_mask[1][0] =
4431 rsvd_check->rsvd_bits_mask[0][0];
4433 if (!pse) {
4434 rsvd_check->rsvd_bits_mask[1][1] = 0;
4435 break;
4438 if (is_cpuid_PSE36())
4439 /* 36bits PSE 4MB page */
4440 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4441 else
4442 /* 32 bits PSE 4MB page */
4443 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4444 break;
4445 case PT32E_ROOT_LEVEL:
4446 rsvd_check->rsvd_bits_mask[0][2] =
4447 rsvd_bits(maxphyaddr, 63) |
4448 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4449 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4450 rsvd_bits(maxphyaddr, 62); /* PDE */
4451 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4452 rsvd_bits(maxphyaddr, 62); /* PTE */
4453 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4454 rsvd_bits(maxphyaddr, 62) |
4455 rsvd_bits(13, 20); /* large page */
4456 rsvd_check->rsvd_bits_mask[1][0] =
4457 rsvd_check->rsvd_bits_mask[0][0];
4458 break;
4459 case PT64_ROOT_5LEVEL:
4460 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4461 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4462 rsvd_bits(maxphyaddr, 51);
4463 rsvd_check->rsvd_bits_mask[1][4] =
4464 rsvd_check->rsvd_bits_mask[0][4];
4465 /* fall through */
4466 case PT64_ROOT_4LEVEL:
4467 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4468 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4469 rsvd_bits(maxphyaddr, 51);
4470 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4471 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4472 rsvd_bits(maxphyaddr, 51);
4473 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4474 rsvd_bits(maxphyaddr, 51);
4475 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4476 rsvd_bits(maxphyaddr, 51);
4477 rsvd_check->rsvd_bits_mask[1][3] =
4478 rsvd_check->rsvd_bits_mask[0][3];
4479 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4480 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4481 rsvd_bits(13, 29);
4482 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4483 rsvd_bits(maxphyaddr, 51) |
4484 rsvd_bits(13, 20); /* large page */
4485 rsvd_check->rsvd_bits_mask[1][0] =
4486 rsvd_check->rsvd_bits_mask[0][0];
4487 break;
4491 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4492 struct kvm_mmu *context)
4494 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4495 cpuid_maxphyaddr(vcpu), context->root_level,
4496 context->nx,
4497 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4498 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4501 static void
4502 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4503 int maxphyaddr, bool execonly)
4505 u64 bad_mt_xwr;
4507 rsvd_check->rsvd_bits_mask[0][4] =
4508 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4509 rsvd_check->rsvd_bits_mask[0][3] =
4510 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4511 rsvd_check->rsvd_bits_mask[0][2] =
4512 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4513 rsvd_check->rsvd_bits_mask[0][1] =
4514 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4515 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4517 /* large page */
4518 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4519 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4520 rsvd_check->rsvd_bits_mask[1][2] =
4521 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4522 rsvd_check->rsvd_bits_mask[1][1] =
4523 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4524 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4526 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4527 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4528 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4529 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4530 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4531 if (!execonly) {
4532 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4533 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4535 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4538 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4539 struct kvm_mmu *context, bool execonly)
4541 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4542 cpuid_maxphyaddr(vcpu), execonly);
4546 * the page table on host is the shadow page table for the page
4547 * table in guest or amd nested guest, its mmu features completely
4548 * follow the features in guest.
4550 void
4551 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4553 bool uses_nx = context->nx ||
4554 context->mmu_role.base.smep_andnot_wp;
4555 struct rsvd_bits_validate *shadow_zero_check;
4556 int i;
4559 * Passing "true" to the last argument is okay; it adds a check
4560 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4562 shadow_zero_check = &context->shadow_zero_check;
4563 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4564 shadow_phys_bits,
4565 context->shadow_root_level, uses_nx,
4566 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4567 is_pse(vcpu), true);
4569 if (!shadow_me_mask)
4570 return;
4572 for (i = context->shadow_root_level; --i >= 0;) {
4573 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4574 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4578 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4580 static inline bool boot_cpu_is_amd(void)
4582 WARN_ON_ONCE(!tdp_enabled);
4583 return shadow_x_mask == 0;
4587 * the direct page table on host, use as much mmu features as
4588 * possible, however, kvm currently does not do execution-protection.
4590 static void
4591 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4592 struct kvm_mmu *context)
4594 struct rsvd_bits_validate *shadow_zero_check;
4595 int i;
4597 shadow_zero_check = &context->shadow_zero_check;
4599 if (boot_cpu_is_amd())
4600 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4601 shadow_phys_bits,
4602 context->shadow_root_level, false,
4603 boot_cpu_has(X86_FEATURE_GBPAGES),
4604 true, true);
4605 else
4606 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4607 shadow_phys_bits,
4608 false);
4610 if (!shadow_me_mask)
4611 return;
4613 for (i = context->shadow_root_level; --i >= 0;) {
4614 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4615 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4620 * as the comments in reset_shadow_zero_bits_mask() except it
4621 * is the shadow page table for intel nested guest.
4623 static void
4624 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4625 struct kvm_mmu *context, bool execonly)
4627 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4628 shadow_phys_bits, execonly);
4631 #define BYTE_MASK(access) \
4632 ((1 & (access) ? 2 : 0) | \
4633 (2 & (access) ? 4 : 0) | \
4634 (3 & (access) ? 8 : 0) | \
4635 (4 & (access) ? 16 : 0) | \
4636 (5 & (access) ? 32 : 0) | \
4637 (6 & (access) ? 64 : 0) | \
4638 (7 & (access) ? 128 : 0))
4641 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4642 struct kvm_mmu *mmu, bool ept)
4644 unsigned byte;
4646 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4647 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4648 const u8 u = BYTE_MASK(ACC_USER_MASK);
4650 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4651 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4652 bool cr0_wp = is_write_protection(vcpu);
4654 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4655 unsigned pfec = byte << 1;
4658 * Each "*f" variable has a 1 bit for each UWX value
4659 * that causes a fault with the given PFEC.
4662 /* Faults from writes to non-writable pages */
4663 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4664 /* Faults from user mode accesses to supervisor pages */
4665 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4666 /* Faults from fetches of non-executable pages*/
4667 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4668 /* Faults from kernel mode fetches of user pages */
4669 u8 smepf = 0;
4670 /* Faults from kernel mode accesses of user pages */
4671 u8 smapf = 0;
4673 if (!ept) {
4674 /* Faults from kernel mode accesses to user pages */
4675 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4677 /* Not really needed: !nx will cause pte.nx to fault */
4678 if (!mmu->nx)
4679 ff = 0;
4681 /* Allow supervisor writes if !cr0.wp */
4682 if (!cr0_wp)
4683 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4685 /* Disallow supervisor fetches of user code if cr4.smep */
4686 if (cr4_smep)
4687 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4690 * SMAP:kernel-mode data accesses from user-mode
4691 * mappings should fault. A fault is considered
4692 * as a SMAP violation if all of the following
4693 * conditions are true:
4694 * - X86_CR4_SMAP is set in CR4
4695 * - A user page is accessed
4696 * - The access is not a fetch
4697 * - Page fault in kernel mode
4698 * - if CPL = 3 or X86_EFLAGS_AC is clear
4700 * Here, we cover the first three conditions.
4701 * The fourth is computed dynamically in permission_fault();
4702 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4703 * *not* subject to SMAP restrictions.
4705 if (cr4_smap)
4706 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4709 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4714 * PKU is an additional mechanism by which the paging controls access to
4715 * user-mode addresses based on the value in the PKRU register. Protection
4716 * key violations are reported through a bit in the page fault error code.
4717 * Unlike other bits of the error code, the PK bit is not known at the
4718 * call site of e.g. gva_to_gpa; it must be computed directly in
4719 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4720 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4722 * In particular the following conditions come from the error code, the
4723 * page tables and the machine state:
4724 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4725 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4726 * - PK is always zero if U=0 in the page tables
4727 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4729 * The PKRU bitmask caches the result of these four conditions. The error
4730 * code (minus the P bit) and the page table's U bit form an index into the
4731 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4732 * with the two bits of the PKRU register corresponding to the protection key.
4733 * For the first three conditions above the bits will be 00, thus masking
4734 * away both AD and WD. For all reads or if the last condition holds, WD
4735 * only will be masked away.
4737 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4738 bool ept)
4740 unsigned bit;
4741 bool wp;
4743 if (ept) {
4744 mmu->pkru_mask = 0;
4745 return;
4748 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4749 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4750 mmu->pkru_mask = 0;
4751 return;
4754 wp = is_write_protection(vcpu);
4756 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4757 unsigned pfec, pkey_bits;
4758 bool check_pkey, check_write, ff, uf, wf, pte_user;
4760 pfec = bit << 1;
4761 ff = pfec & PFERR_FETCH_MASK;
4762 uf = pfec & PFERR_USER_MASK;
4763 wf = pfec & PFERR_WRITE_MASK;
4765 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4766 pte_user = pfec & PFERR_RSVD_MASK;
4769 * Only need to check the access which is not an
4770 * instruction fetch and is to a user page.
4772 check_pkey = (!ff && pte_user);
4774 * write access is controlled by PKRU if it is a
4775 * user access or CR0.WP = 1.
4777 check_write = check_pkey && wf && (uf || wp);
4779 /* PKRU.AD stops both read and write access. */
4780 pkey_bits = !!check_pkey;
4781 /* PKRU.WD stops write access. */
4782 pkey_bits |= (!!check_write) << 1;
4784 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4788 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4790 unsigned root_level = mmu->root_level;
4792 mmu->last_nonleaf_level = root_level;
4793 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4794 mmu->last_nonleaf_level++;
4797 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4798 struct kvm_mmu *context,
4799 int level)
4801 context->nx = is_nx(vcpu);
4802 context->root_level = level;
4804 reset_rsvds_bits_mask(vcpu, context);
4805 update_permission_bitmask(vcpu, context, false);
4806 update_pkru_bitmask(vcpu, context, false);
4807 update_last_nonleaf_level(vcpu, context);
4809 MMU_WARN_ON(!is_pae(vcpu));
4810 context->page_fault = paging64_page_fault;
4811 context->gva_to_gpa = paging64_gva_to_gpa;
4812 context->sync_page = paging64_sync_page;
4813 context->invlpg = paging64_invlpg;
4814 context->update_pte = paging64_update_pte;
4815 context->shadow_root_level = level;
4816 context->direct_map = false;
4819 static void paging64_init_context(struct kvm_vcpu *vcpu,
4820 struct kvm_mmu *context)
4822 int root_level = is_la57_mode(vcpu) ?
4823 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4825 paging64_init_context_common(vcpu, context, root_level);
4828 static void paging32_init_context(struct kvm_vcpu *vcpu,
4829 struct kvm_mmu *context)
4831 context->nx = false;
4832 context->root_level = PT32_ROOT_LEVEL;
4834 reset_rsvds_bits_mask(vcpu, context);
4835 update_permission_bitmask(vcpu, context, false);
4836 update_pkru_bitmask(vcpu, context, false);
4837 update_last_nonleaf_level(vcpu, context);
4839 context->page_fault = paging32_page_fault;
4840 context->gva_to_gpa = paging32_gva_to_gpa;
4841 context->sync_page = paging32_sync_page;
4842 context->invlpg = paging32_invlpg;
4843 context->update_pte = paging32_update_pte;
4844 context->shadow_root_level = PT32E_ROOT_LEVEL;
4845 context->direct_map = false;
4848 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4849 struct kvm_mmu *context)
4851 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4854 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4856 union kvm_mmu_extended_role ext = {0};
4858 ext.cr0_pg = !!is_paging(vcpu);
4859 ext.cr4_pae = !!is_pae(vcpu);
4860 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4861 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4862 ext.cr4_pse = !!is_pse(vcpu);
4863 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4864 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4865 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4867 ext.valid = 1;
4869 return ext;
4872 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4873 bool base_only)
4875 union kvm_mmu_role role = {0};
4877 role.base.access = ACC_ALL;
4878 role.base.nxe = !!is_nx(vcpu);
4879 role.base.cr0_wp = is_write_protection(vcpu);
4880 role.base.smm = is_smm(vcpu);
4881 role.base.guest_mode = is_guest_mode(vcpu);
4883 if (base_only)
4884 return role;
4886 role.ext = kvm_calc_mmu_role_ext(vcpu);
4888 return role;
4891 static union kvm_mmu_role
4892 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4894 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4896 role.base.ad_disabled = (shadow_accessed_mask == 0);
4897 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4898 role.base.direct = true;
4899 role.base.gpte_is_8_bytes = true;
4901 return role;
4904 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4906 struct kvm_mmu *context = vcpu->arch.mmu;
4907 union kvm_mmu_role new_role =
4908 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4910 new_role.base.word &= mmu_base_role_mask.word;
4911 if (new_role.as_u64 == context->mmu_role.as_u64)
4912 return;
4914 context->mmu_role.as_u64 = new_role.as_u64;
4915 context->page_fault = tdp_page_fault;
4916 context->sync_page = nonpaging_sync_page;
4917 context->invlpg = nonpaging_invlpg;
4918 context->update_pte = nonpaging_update_pte;
4919 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4920 context->direct_map = true;
4921 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4922 context->get_cr3 = get_cr3;
4923 context->get_pdptr = kvm_pdptr_read;
4924 context->inject_page_fault = kvm_inject_page_fault;
4926 if (!is_paging(vcpu)) {
4927 context->nx = false;
4928 context->gva_to_gpa = nonpaging_gva_to_gpa;
4929 context->root_level = 0;
4930 } else if (is_long_mode(vcpu)) {
4931 context->nx = is_nx(vcpu);
4932 context->root_level = is_la57_mode(vcpu) ?
4933 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4934 reset_rsvds_bits_mask(vcpu, context);
4935 context->gva_to_gpa = paging64_gva_to_gpa;
4936 } else if (is_pae(vcpu)) {
4937 context->nx = is_nx(vcpu);
4938 context->root_level = PT32E_ROOT_LEVEL;
4939 reset_rsvds_bits_mask(vcpu, context);
4940 context->gva_to_gpa = paging64_gva_to_gpa;
4941 } else {
4942 context->nx = false;
4943 context->root_level = PT32_ROOT_LEVEL;
4944 reset_rsvds_bits_mask(vcpu, context);
4945 context->gva_to_gpa = paging32_gva_to_gpa;
4948 update_permission_bitmask(vcpu, context, false);
4949 update_pkru_bitmask(vcpu, context, false);
4950 update_last_nonleaf_level(vcpu, context);
4951 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4954 static union kvm_mmu_role
4955 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4957 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4959 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4960 !is_write_protection(vcpu);
4961 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4962 !is_write_protection(vcpu);
4963 role.base.direct = !is_paging(vcpu);
4964 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4966 if (!is_long_mode(vcpu))
4967 role.base.level = PT32E_ROOT_LEVEL;
4968 else if (is_la57_mode(vcpu))
4969 role.base.level = PT64_ROOT_5LEVEL;
4970 else
4971 role.base.level = PT64_ROOT_4LEVEL;
4973 return role;
4976 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4978 struct kvm_mmu *context = vcpu->arch.mmu;
4979 union kvm_mmu_role new_role =
4980 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4982 new_role.base.word &= mmu_base_role_mask.word;
4983 if (new_role.as_u64 == context->mmu_role.as_u64)
4984 return;
4986 if (!is_paging(vcpu))
4987 nonpaging_init_context(vcpu, context);
4988 else if (is_long_mode(vcpu))
4989 paging64_init_context(vcpu, context);
4990 else if (is_pae(vcpu))
4991 paging32E_init_context(vcpu, context);
4992 else
4993 paging32_init_context(vcpu, context);
4995 context->mmu_role.as_u64 = new_role.as_u64;
4996 reset_shadow_zero_bits_mask(vcpu, context);
4998 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5000 static union kvm_mmu_role
5001 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5002 bool execonly)
5004 union kvm_mmu_role role = {0};
5006 /* SMM flag is inherited from root_mmu */
5007 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5009 role.base.level = PT64_ROOT_4LEVEL;
5010 role.base.gpte_is_8_bytes = true;
5011 role.base.direct = false;
5012 role.base.ad_disabled = !accessed_dirty;
5013 role.base.guest_mode = true;
5014 role.base.access = ACC_ALL;
5017 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5018 * SMAP variation to denote shadow EPT entries.
5020 role.base.cr0_wp = true;
5021 role.base.smap_andnot_wp = true;
5023 role.ext = kvm_calc_mmu_role_ext(vcpu);
5024 role.ext.execonly = execonly;
5026 return role;
5029 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5030 bool accessed_dirty, gpa_t new_eptp)
5032 struct kvm_mmu *context = vcpu->arch.mmu;
5033 union kvm_mmu_role new_role =
5034 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5035 execonly);
5037 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5039 new_role.base.word &= mmu_base_role_mask.word;
5040 if (new_role.as_u64 == context->mmu_role.as_u64)
5041 return;
5043 context->shadow_root_level = PT64_ROOT_4LEVEL;
5045 context->nx = true;
5046 context->ept_ad = accessed_dirty;
5047 context->page_fault = ept_page_fault;
5048 context->gva_to_gpa = ept_gva_to_gpa;
5049 context->sync_page = ept_sync_page;
5050 context->invlpg = ept_invlpg;
5051 context->update_pte = ept_update_pte;
5052 context->root_level = PT64_ROOT_4LEVEL;
5053 context->direct_map = false;
5054 context->mmu_role.as_u64 = new_role.as_u64;
5056 update_permission_bitmask(vcpu, context, true);
5057 update_pkru_bitmask(vcpu, context, true);
5058 update_last_nonleaf_level(vcpu, context);
5059 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5060 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5062 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5064 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5066 struct kvm_mmu *context = vcpu->arch.mmu;
5068 kvm_init_shadow_mmu(vcpu);
5069 context->set_cr3 = kvm_x86_ops->set_cr3;
5070 context->get_cr3 = get_cr3;
5071 context->get_pdptr = kvm_pdptr_read;
5072 context->inject_page_fault = kvm_inject_page_fault;
5075 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5077 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5078 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5080 new_role.base.word &= mmu_base_role_mask.word;
5081 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5082 return;
5084 g_context->mmu_role.as_u64 = new_role.as_u64;
5085 g_context->get_cr3 = get_cr3;
5086 g_context->get_pdptr = kvm_pdptr_read;
5087 g_context->inject_page_fault = kvm_inject_page_fault;
5090 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5091 * L1's nested page tables (e.g. EPT12). The nested translation
5092 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5093 * L2's page tables as the first level of translation and L1's
5094 * nested page tables as the second level of translation. Basically
5095 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5097 if (!is_paging(vcpu)) {
5098 g_context->nx = false;
5099 g_context->root_level = 0;
5100 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5101 } else if (is_long_mode(vcpu)) {
5102 g_context->nx = is_nx(vcpu);
5103 g_context->root_level = is_la57_mode(vcpu) ?
5104 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5105 reset_rsvds_bits_mask(vcpu, g_context);
5106 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5107 } else if (is_pae(vcpu)) {
5108 g_context->nx = is_nx(vcpu);
5109 g_context->root_level = PT32E_ROOT_LEVEL;
5110 reset_rsvds_bits_mask(vcpu, g_context);
5111 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5112 } else {
5113 g_context->nx = false;
5114 g_context->root_level = PT32_ROOT_LEVEL;
5115 reset_rsvds_bits_mask(vcpu, g_context);
5116 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5119 update_permission_bitmask(vcpu, g_context, false);
5120 update_pkru_bitmask(vcpu, g_context, false);
5121 update_last_nonleaf_level(vcpu, g_context);
5124 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5126 if (reset_roots) {
5127 uint i;
5129 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5131 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5132 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5135 if (mmu_is_nested(vcpu))
5136 init_kvm_nested_mmu(vcpu);
5137 else if (tdp_enabled)
5138 init_kvm_tdp_mmu(vcpu);
5139 else
5140 init_kvm_softmmu(vcpu);
5142 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5144 static union kvm_mmu_page_role
5145 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5147 union kvm_mmu_role role;
5149 if (tdp_enabled)
5150 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5151 else
5152 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5154 return role.base;
5157 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5159 kvm_mmu_unload(vcpu);
5160 kvm_init_mmu(vcpu, true);
5162 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5164 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5166 int r;
5168 r = mmu_topup_memory_caches(vcpu);
5169 if (r)
5170 goto out;
5171 r = mmu_alloc_roots(vcpu);
5172 kvm_mmu_sync_roots(vcpu);
5173 if (r)
5174 goto out;
5175 kvm_mmu_load_cr3(vcpu);
5176 kvm_x86_ops->tlb_flush(vcpu, true);
5177 out:
5178 return r;
5180 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5182 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5184 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5185 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5186 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5187 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5189 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5191 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5192 struct kvm_mmu_page *sp, u64 *spte,
5193 const void *new)
5195 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5196 ++vcpu->kvm->stat.mmu_pde_zapped;
5197 return;
5200 ++vcpu->kvm->stat.mmu_pte_updated;
5201 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5204 static bool need_remote_flush(u64 old, u64 new)
5206 if (!is_shadow_present_pte(old))
5207 return false;
5208 if (!is_shadow_present_pte(new))
5209 return true;
5210 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5211 return true;
5212 old ^= shadow_nx_mask;
5213 new ^= shadow_nx_mask;
5214 return (old & ~new & PT64_PERM_MASK) != 0;
5217 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5218 int *bytes)
5220 u64 gentry = 0;
5221 int r;
5224 * Assume that the pte write on a page table of the same type
5225 * as the current vcpu paging mode since we update the sptes only
5226 * when they have the same mode.
5228 if (is_pae(vcpu) && *bytes == 4) {
5229 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5230 *gpa &= ~(gpa_t)7;
5231 *bytes = 8;
5234 if (*bytes == 4 || *bytes == 8) {
5235 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5236 if (r)
5237 gentry = 0;
5240 return gentry;
5244 * If we're seeing too many writes to a page, it may no longer be a page table,
5245 * or we may be forking, in which case it is better to unmap the page.
5247 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5250 * Skip write-flooding detected for the sp whose level is 1, because
5251 * it can become unsync, then the guest page is not write-protected.
5253 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5254 return false;
5256 atomic_inc(&sp->write_flooding_count);
5257 return atomic_read(&sp->write_flooding_count) >= 3;
5261 * Misaligned accesses are too much trouble to fix up; also, they usually
5262 * indicate a page is not used as a page table.
5264 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5265 int bytes)
5267 unsigned offset, pte_size, misaligned;
5269 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5270 gpa, bytes, sp->role.word);
5272 offset = offset_in_page(gpa);
5273 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5276 * Sometimes, the OS only writes the last one bytes to update status
5277 * bits, for example, in linux, andb instruction is used in clear_bit().
5279 if (!(offset & (pte_size - 1)) && bytes == 1)
5280 return false;
5282 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5283 misaligned |= bytes < 4;
5285 return misaligned;
5288 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5290 unsigned page_offset, quadrant;
5291 u64 *spte;
5292 int level;
5294 page_offset = offset_in_page(gpa);
5295 level = sp->role.level;
5296 *nspte = 1;
5297 if (!sp->role.gpte_is_8_bytes) {
5298 page_offset <<= 1; /* 32->64 */
5300 * A 32-bit pde maps 4MB while the shadow pdes map
5301 * only 2MB. So we need to double the offset again
5302 * and zap two pdes instead of one.
5304 if (level == PT32_ROOT_LEVEL) {
5305 page_offset &= ~7; /* kill rounding error */
5306 page_offset <<= 1;
5307 *nspte = 2;
5309 quadrant = page_offset >> PAGE_SHIFT;
5310 page_offset &= ~PAGE_MASK;
5311 if (quadrant != sp->role.quadrant)
5312 return NULL;
5315 spte = &sp->spt[page_offset / sizeof(*spte)];
5316 return spte;
5319 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5320 const u8 *new, int bytes,
5321 struct kvm_page_track_notifier_node *node)
5323 gfn_t gfn = gpa >> PAGE_SHIFT;
5324 struct kvm_mmu_page *sp;
5325 LIST_HEAD(invalid_list);
5326 u64 entry, gentry, *spte;
5327 int npte;
5328 bool remote_flush, local_flush;
5331 * If we don't have indirect shadow pages, it means no page is
5332 * write-protected, so we can exit simply.
5334 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5335 return;
5337 remote_flush = local_flush = false;
5339 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5342 * No need to care whether allocation memory is successful
5343 * or not since pte prefetch is skiped if it does not have
5344 * enough objects in the cache.
5346 mmu_topup_memory_caches(vcpu);
5348 spin_lock(&vcpu->kvm->mmu_lock);
5350 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5352 ++vcpu->kvm->stat.mmu_pte_write;
5353 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5355 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5356 if (detect_write_misaligned(sp, gpa, bytes) ||
5357 detect_write_flooding(sp)) {
5358 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5359 ++vcpu->kvm->stat.mmu_flooded;
5360 continue;
5363 spte = get_written_sptes(sp, gpa, &npte);
5364 if (!spte)
5365 continue;
5367 local_flush = true;
5368 while (npte--) {
5369 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5371 entry = *spte;
5372 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5373 if (gentry &&
5374 !((sp->role.word ^ base_role)
5375 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5376 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5377 if (need_remote_flush(entry, *spte))
5378 remote_flush = true;
5379 ++spte;
5382 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5383 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5384 spin_unlock(&vcpu->kvm->mmu_lock);
5387 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5389 gpa_t gpa;
5390 int r;
5392 if (vcpu->arch.mmu->direct_map)
5393 return 0;
5395 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5397 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5399 return r;
5401 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5403 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5404 void *insn, int insn_len)
5406 int r, emulation_type = 0;
5407 bool direct = vcpu->arch.mmu->direct_map;
5409 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5410 return RET_PF_RETRY;
5412 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5413 if (vcpu->arch.mmu->direct_map) {
5414 vcpu->arch.gpa_available = true;
5415 vcpu->arch.gpa_val = cr2_or_gpa;
5418 r = RET_PF_INVALID;
5419 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5420 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5421 if (r == RET_PF_EMULATE)
5422 goto emulate;
5425 if (r == RET_PF_INVALID) {
5426 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5427 lower_32_bits(error_code),
5428 false);
5429 WARN_ON(r == RET_PF_INVALID);
5432 if (r == RET_PF_RETRY)
5433 return 1;
5434 if (r < 0)
5435 return r;
5438 * Before emulating the instruction, check if the error code
5439 * was due to a RO violation while translating the guest page.
5440 * This can occur when using nested virtualization with nested
5441 * paging in both guests. If true, we simply unprotect the page
5442 * and resume the guest.
5444 if (vcpu->arch.mmu->direct_map &&
5445 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5446 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5447 return 1;
5451 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5452 * optimistically try to just unprotect the page and let the processor
5453 * re-execute the instruction that caused the page fault. Do not allow
5454 * retrying MMIO emulation, as it's not only pointless but could also
5455 * cause us to enter an infinite loop because the processor will keep
5456 * faulting on the non-existent MMIO address. Retrying an instruction
5457 * from a nested guest is also pointless and dangerous as we are only
5458 * explicitly shadowing L1's page tables, i.e. unprotecting something
5459 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5461 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5462 emulation_type = EMULTYPE_ALLOW_RETRY;
5463 emulate:
5465 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5466 * This can happen if a guest gets a page-fault on data access but the HW
5467 * table walker is not able to read the instruction page (e.g instruction
5468 * page is not present in memory). In those cases we simply restart the
5469 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5471 if (unlikely(insn && !insn_len)) {
5472 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5473 return 1;
5476 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5477 insn_len);
5479 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5481 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5483 struct kvm_mmu *mmu = vcpu->arch.mmu;
5484 int i;
5486 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5487 if (is_noncanonical_address(gva, vcpu))
5488 return;
5490 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5493 * INVLPG is required to invalidate any global mappings for the VA,
5494 * irrespective of PCID. Since it would take us roughly similar amount
5495 * of work to determine whether any of the prev_root mappings of the VA
5496 * is marked global, or to just sync it blindly, so we might as well
5497 * just always sync it.
5499 * Mappings not reachable via the current cr3 or the prev_roots will be
5500 * synced when switching to that cr3, so nothing needs to be done here
5501 * for them.
5503 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5504 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5505 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5507 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5508 ++vcpu->stat.invlpg;
5510 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5512 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5514 struct kvm_mmu *mmu = vcpu->arch.mmu;
5515 bool tlb_flush = false;
5516 uint i;
5518 if (pcid == kvm_get_active_pcid(vcpu)) {
5519 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5520 tlb_flush = true;
5523 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5524 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5525 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5526 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5527 tlb_flush = true;
5531 if (tlb_flush)
5532 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5534 ++vcpu->stat.invlpg;
5537 * Mappings not reachable via the current cr3 or the prev_roots will be
5538 * synced when switching to that cr3, so nothing needs to be done here
5539 * for them.
5542 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5544 void kvm_enable_tdp(void)
5546 tdp_enabled = true;
5548 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5550 void kvm_disable_tdp(void)
5552 tdp_enabled = false;
5554 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5557 /* The return value indicates if tlb flush on all vcpus is needed. */
5558 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5560 /* The caller should hold mmu-lock before calling this function. */
5561 static __always_inline bool
5562 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5563 slot_level_handler fn, int start_level, int end_level,
5564 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5566 struct slot_rmap_walk_iterator iterator;
5567 bool flush = false;
5569 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5570 end_gfn, &iterator) {
5571 if (iterator.rmap)
5572 flush |= fn(kvm, iterator.rmap);
5574 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5575 if (flush && lock_flush_tlb) {
5576 kvm_flush_remote_tlbs_with_address(kvm,
5577 start_gfn,
5578 iterator.gfn - start_gfn + 1);
5579 flush = false;
5581 cond_resched_lock(&kvm->mmu_lock);
5585 if (flush && lock_flush_tlb) {
5586 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5587 end_gfn - start_gfn + 1);
5588 flush = false;
5591 return flush;
5594 static __always_inline bool
5595 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5596 slot_level_handler fn, int start_level, int end_level,
5597 bool lock_flush_tlb)
5599 return slot_handle_level_range(kvm, memslot, fn, start_level,
5600 end_level, memslot->base_gfn,
5601 memslot->base_gfn + memslot->npages - 1,
5602 lock_flush_tlb);
5605 static __always_inline bool
5606 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5607 slot_level_handler fn, bool lock_flush_tlb)
5609 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5610 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5613 static __always_inline bool
5614 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5615 slot_level_handler fn, bool lock_flush_tlb)
5617 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5618 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5621 static __always_inline bool
5622 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5623 slot_level_handler fn, bool lock_flush_tlb)
5625 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5626 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5629 static void free_mmu_pages(struct kvm_mmu *mmu)
5631 free_page((unsigned long)mmu->pae_root);
5632 free_page((unsigned long)mmu->lm_root);
5635 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5637 struct page *page;
5638 int i;
5641 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5642 * while the PDP table is a per-vCPU construct that's allocated at MMU
5643 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5644 * x86_64. Therefore we need to allocate the PDP table in the first
5645 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5646 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5647 * skip allocating the PDP table.
5649 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5650 return 0;
5652 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5653 if (!page)
5654 return -ENOMEM;
5656 mmu->pae_root = page_address(page);
5657 for (i = 0; i < 4; ++i)
5658 mmu->pae_root[i] = INVALID_PAGE;
5660 return 0;
5663 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5665 uint i;
5666 int ret;
5668 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5669 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5671 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5672 vcpu->arch.root_mmu.root_cr3 = 0;
5673 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5674 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5675 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5677 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5678 vcpu->arch.guest_mmu.root_cr3 = 0;
5679 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5680 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5681 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5683 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5685 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5686 if (ret)
5687 return ret;
5689 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5690 if (ret)
5691 goto fail_allocate_root;
5693 return ret;
5694 fail_allocate_root:
5695 free_mmu_pages(&vcpu->arch.guest_mmu);
5696 return ret;
5699 #define BATCH_ZAP_PAGES 10
5700 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5702 struct kvm_mmu_page *sp, *node;
5703 int nr_zapped, batch = 0;
5705 restart:
5706 list_for_each_entry_safe_reverse(sp, node,
5707 &kvm->arch.active_mmu_pages, link) {
5709 * No obsolete valid page exists before a newly created page
5710 * since active_mmu_pages is a FIFO list.
5712 if (!is_obsolete_sp(kvm, sp))
5713 break;
5716 * Skip invalid pages with a non-zero root count, zapping pages
5717 * with a non-zero root count will never succeed, i.e. the page
5718 * will get thrown back on active_mmu_pages and we'll get stuck
5719 * in an infinite loop.
5721 if (sp->role.invalid && sp->root_count)
5722 continue;
5725 * No need to flush the TLB since we're only zapping shadow
5726 * pages with an obsolete generation number and all vCPUS have
5727 * loaded a new root, i.e. the shadow pages being zapped cannot
5728 * be in active use by the guest.
5730 if (batch >= BATCH_ZAP_PAGES &&
5731 cond_resched_lock(&kvm->mmu_lock)) {
5732 batch = 0;
5733 goto restart;
5736 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5737 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5738 batch += nr_zapped;
5739 goto restart;
5744 * Trigger a remote TLB flush before freeing the page tables to ensure
5745 * KVM is not in the middle of a lockless shadow page table walk, which
5746 * may reference the pages.
5748 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5752 * Fast invalidate all shadow pages and use lock-break technique
5753 * to zap obsolete pages.
5755 * It's required when memslot is being deleted or VM is being
5756 * destroyed, in these cases, we should ensure that KVM MMU does
5757 * not use any resource of the being-deleted slot or all slots
5758 * after calling the function.
5760 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5762 lockdep_assert_held(&kvm->slots_lock);
5764 spin_lock(&kvm->mmu_lock);
5765 trace_kvm_mmu_zap_all_fast(kvm);
5768 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5769 * held for the entire duration of zapping obsolete pages, it's
5770 * impossible for there to be multiple invalid generations associated
5771 * with *valid* shadow pages at any given time, i.e. there is exactly
5772 * one valid generation and (at most) one invalid generation.
5774 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5777 * Notify all vcpus to reload its shadow page table and flush TLB.
5778 * Then all vcpus will switch to new shadow page table with the new
5779 * mmu_valid_gen.
5781 * Note: we need to do this under the protection of mmu_lock,
5782 * otherwise, vcpu would purge shadow page but miss tlb flush.
5784 kvm_reload_remote_mmus(kvm);
5786 kvm_zap_obsolete_pages(kvm);
5787 spin_unlock(&kvm->mmu_lock);
5790 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5792 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5795 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5796 struct kvm_memory_slot *slot,
5797 struct kvm_page_track_notifier_node *node)
5799 kvm_mmu_zap_all_fast(kvm);
5802 void kvm_mmu_init_vm(struct kvm *kvm)
5804 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5806 node->track_write = kvm_mmu_pte_write;
5807 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5808 kvm_page_track_register_notifier(kvm, node);
5811 void kvm_mmu_uninit_vm(struct kvm *kvm)
5813 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5815 kvm_page_track_unregister_notifier(kvm, node);
5818 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5820 struct kvm_memslots *slots;
5821 struct kvm_memory_slot *memslot;
5822 int i;
5824 spin_lock(&kvm->mmu_lock);
5825 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5826 slots = __kvm_memslots(kvm, i);
5827 kvm_for_each_memslot(memslot, slots) {
5828 gfn_t start, end;
5830 start = max(gfn_start, memslot->base_gfn);
5831 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5832 if (start >= end)
5833 continue;
5835 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5836 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5837 start, end - 1, true);
5841 spin_unlock(&kvm->mmu_lock);
5844 static bool slot_rmap_write_protect(struct kvm *kvm,
5845 struct kvm_rmap_head *rmap_head)
5847 return __rmap_write_protect(kvm, rmap_head, false);
5850 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5851 struct kvm_memory_slot *memslot)
5853 bool flush;
5855 spin_lock(&kvm->mmu_lock);
5856 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5857 false);
5858 spin_unlock(&kvm->mmu_lock);
5861 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5862 * which do tlb flush out of mmu-lock should be serialized by
5863 * kvm->slots_lock otherwise tlb flush would be missed.
5865 lockdep_assert_held(&kvm->slots_lock);
5868 * We can flush all the TLBs out of the mmu lock without TLB
5869 * corruption since we just change the spte from writable to
5870 * readonly so that we only need to care the case of changing
5871 * spte from present to present (changing the spte from present
5872 * to nonpresent will flush all the TLBs immediately), in other
5873 * words, the only case we care is mmu_spte_update() where we
5874 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5875 * instead of PT_WRITABLE_MASK, that means it does not depend
5876 * on PT_WRITABLE_MASK anymore.
5878 if (flush)
5879 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5880 memslot->npages);
5883 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5884 struct kvm_rmap_head *rmap_head)
5886 u64 *sptep;
5887 struct rmap_iterator iter;
5888 int need_tlb_flush = 0;
5889 kvm_pfn_t pfn;
5890 struct kvm_mmu_page *sp;
5892 restart:
5893 for_each_rmap_spte(rmap_head, &iter, sptep) {
5894 sp = page_header(__pa(sptep));
5895 pfn = spte_to_pfn(*sptep);
5898 * We cannot do huge page mapping for indirect shadow pages,
5899 * which are found on the last rmap (level = 1) when not using
5900 * tdp; such shadow pages are synced with the page table in
5901 * the guest, and the guest page table is using 4K page size
5902 * mapping if the indirect sp has level = 1.
5904 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5905 (kvm_is_zone_device_pfn(pfn) ||
5906 PageCompound(pfn_to_page(pfn)))) {
5907 pte_list_remove(rmap_head, sptep);
5909 if (kvm_available_flush_tlb_with_range())
5910 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5911 KVM_PAGES_PER_HPAGE(sp->role.level));
5912 else
5913 need_tlb_flush = 1;
5915 goto restart;
5919 return need_tlb_flush;
5922 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5923 const struct kvm_memory_slot *memslot)
5925 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5926 spin_lock(&kvm->mmu_lock);
5927 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5928 kvm_mmu_zap_collapsible_spte, true);
5929 spin_unlock(&kvm->mmu_lock);
5932 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5933 struct kvm_memory_slot *memslot)
5935 bool flush;
5937 spin_lock(&kvm->mmu_lock);
5938 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5939 spin_unlock(&kvm->mmu_lock);
5941 lockdep_assert_held(&kvm->slots_lock);
5944 * It's also safe to flush TLBs out of mmu lock here as currently this
5945 * function is only used for dirty logging, in which case flushing TLB
5946 * out of mmu lock also guarantees no dirty pages will be lost in
5947 * dirty_bitmap.
5949 if (flush)
5950 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5951 memslot->npages);
5953 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5955 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5956 struct kvm_memory_slot *memslot)
5958 bool flush;
5960 spin_lock(&kvm->mmu_lock);
5961 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5962 false);
5963 spin_unlock(&kvm->mmu_lock);
5965 /* see kvm_mmu_slot_remove_write_access */
5966 lockdep_assert_held(&kvm->slots_lock);
5968 if (flush)
5969 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5970 memslot->npages);
5972 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5974 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5975 struct kvm_memory_slot *memslot)
5977 bool flush;
5979 spin_lock(&kvm->mmu_lock);
5980 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5981 spin_unlock(&kvm->mmu_lock);
5983 lockdep_assert_held(&kvm->slots_lock);
5985 /* see kvm_mmu_slot_leaf_clear_dirty */
5986 if (flush)
5987 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5988 memslot->npages);
5990 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5992 void kvm_mmu_zap_all(struct kvm *kvm)
5994 struct kvm_mmu_page *sp, *node;
5995 LIST_HEAD(invalid_list);
5996 int ign;
5998 spin_lock(&kvm->mmu_lock);
5999 restart:
6000 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6001 if (sp->role.invalid && sp->root_count)
6002 continue;
6003 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6004 goto restart;
6005 if (cond_resched_lock(&kvm->mmu_lock))
6006 goto restart;
6009 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6010 spin_unlock(&kvm->mmu_lock);
6013 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6015 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6017 gen &= MMIO_SPTE_GEN_MASK;
6020 * Generation numbers are incremented in multiples of the number of
6021 * address spaces in order to provide unique generations across all
6022 * address spaces. Strip what is effectively the address space
6023 * modifier prior to checking for a wrap of the MMIO generation so
6024 * that a wrap in any address space is detected.
6026 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6029 * The very rare case: if the MMIO generation number has wrapped,
6030 * zap all shadow pages.
6032 if (unlikely(gen == 0)) {
6033 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6034 kvm_mmu_zap_all_fast(kvm);
6038 static unsigned long
6039 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6041 struct kvm *kvm;
6042 int nr_to_scan = sc->nr_to_scan;
6043 unsigned long freed = 0;
6045 mutex_lock(&kvm_lock);
6047 list_for_each_entry(kvm, &vm_list, vm_list) {
6048 int idx;
6049 LIST_HEAD(invalid_list);
6052 * Never scan more than sc->nr_to_scan VM instances.
6053 * Will not hit this condition practically since we do not try
6054 * to shrink more than one VM and it is very unlikely to see
6055 * !n_used_mmu_pages so many times.
6057 if (!nr_to_scan--)
6058 break;
6060 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6061 * here. We may skip a VM instance errorneosly, but we do not
6062 * want to shrink a VM that only started to populate its MMU
6063 * anyway.
6065 if (!kvm->arch.n_used_mmu_pages &&
6066 !kvm_has_zapped_obsolete_pages(kvm))
6067 continue;
6069 idx = srcu_read_lock(&kvm->srcu);
6070 spin_lock(&kvm->mmu_lock);
6072 if (kvm_has_zapped_obsolete_pages(kvm)) {
6073 kvm_mmu_commit_zap_page(kvm,
6074 &kvm->arch.zapped_obsolete_pages);
6075 goto unlock;
6078 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6079 freed++;
6080 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6082 unlock:
6083 spin_unlock(&kvm->mmu_lock);
6084 srcu_read_unlock(&kvm->srcu, idx);
6087 * unfair on small ones
6088 * per-vm shrinkers cry out
6089 * sadness comes quickly
6091 list_move_tail(&kvm->vm_list, &vm_list);
6092 break;
6095 mutex_unlock(&kvm_lock);
6096 return freed;
6099 static unsigned long
6100 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6102 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6105 static struct shrinker mmu_shrinker = {
6106 .count_objects = mmu_shrink_count,
6107 .scan_objects = mmu_shrink_scan,
6108 .seeks = DEFAULT_SEEKS * 10,
6111 static void mmu_destroy_caches(void)
6113 kmem_cache_destroy(pte_list_desc_cache);
6114 kmem_cache_destroy(mmu_page_header_cache);
6117 static void kvm_set_mmio_spte_mask(void)
6119 u64 mask;
6122 * Set the reserved bits and the present bit of an paging-structure
6123 * entry to generate page fault with PFER.RSV = 1.
6127 * Mask the uppermost physical address bit, which would be reserved as
6128 * long as the supported physical address width is less than 52.
6130 mask = 1ull << 51;
6132 /* Set the present bit. */
6133 mask |= 1ull;
6136 * If reserved bit is not supported, clear the present bit to disable
6137 * mmio page fault.
6139 if (shadow_phys_bits == 52)
6140 mask &= ~1ull;
6142 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6145 static bool get_nx_auto_mode(void)
6147 /* Return true when CPU has the bug, and mitigations are ON */
6148 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6151 static void __set_nx_huge_pages(bool val)
6153 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6156 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6158 bool old_val = nx_huge_pages;
6159 bool new_val;
6161 /* In "auto" mode deploy workaround only if CPU has the bug. */
6162 if (sysfs_streq(val, "off"))
6163 new_val = 0;
6164 else if (sysfs_streq(val, "force"))
6165 new_val = 1;
6166 else if (sysfs_streq(val, "auto"))
6167 new_val = get_nx_auto_mode();
6168 else if (strtobool(val, &new_val) < 0)
6169 return -EINVAL;
6171 __set_nx_huge_pages(new_val);
6173 if (new_val != old_val) {
6174 struct kvm *kvm;
6176 mutex_lock(&kvm_lock);
6178 list_for_each_entry(kvm, &vm_list, vm_list) {
6179 mutex_lock(&kvm->slots_lock);
6180 kvm_mmu_zap_all_fast(kvm);
6181 mutex_unlock(&kvm->slots_lock);
6183 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6185 mutex_unlock(&kvm_lock);
6188 return 0;
6191 int kvm_mmu_module_init(void)
6193 int ret = -ENOMEM;
6195 if (nx_huge_pages == -1)
6196 __set_nx_huge_pages(get_nx_auto_mode());
6199 * MMU roles use union aliasing which is, generally speaking, an
6200 * undefined behavior. However, we supposedly know how compilers behave
6201 * and the current status quo is unlikely to change. Guardians below are
6202 * supposed to let us know if the assumption becomes false.
6204 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6205 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6206 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6208 kvm_mmu_reset_all_pte_masks();
6210 kvm_set_mmio_spte_mask();
6212 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6213 sizeof(struct pte_list_desc),
6214 0, SLAB_ACCOUNT, NULL);
6215 if (!pte_list_desc_cache)
6216 goto out;
6218 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6219 sizeof(struct kvm_mmu_page),
6220 0, SLAB_ACCOUNT, NULL);
6221 if (!mmu_page_header_cache)
6222 goto out;
6224 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6225 goto out;
6227 ret = register_shrinker(&mmu_shrinker);
6228 if (ret)
6229 goto out;
6231 return 0;
6233 out:
6234 mmu_destroy_caches();
6235 return ret;
6239 * Calculate mmu pages needed for kvm.
6241 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6243 unsigned long nr_mmu_pages;
6244 unsigned long nr_pages = 0;
6245 struct kvm_memslots *slots;
6246 struct kvm_memory_slot *memslot;
6247 int i;
6249 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6250 slots = __kvm_memslots(kvm, i);
6252 kvm_for_each_memslot(memslot, slots)
6253 nr_pages += memslot->npages;
6256 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6257 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6259 return nr_mmu_pages;
6262 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6264 kvm_mmu_unload(vcpu);
6265 free_mmu_pages(&vcpu->arch.root_mmu);
6266 free_mmu_pages(&vcpu->arch.guest_mmu);
6267 mmu_free_memory_caches(vcpu);
6270 void kvm_mmu_module_exit(void)
6272 mmu_destroy_caches();
6273 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6274 unregister_shrinker(&mmu_shrinker);
6275 mmu_audit_disable();
6278 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6280 unsigned int old_val;
6281 int err;
6283 old_val = nx_huge_pages_recovery_ratio;
6284 err = param_set_uint(val, kp);
6285 if (err)
6286 return err;
6288 if (READ_ONCE(nx_huge_pages) &&
6289 !old_val && nx_huge_pages_recovery_ratio) {
6290 struct kvm *kvm;
6292 mutex_lock(&kvm_lock);
6294 list_for_each_entry(kvm, &vm_list, vm_list)
6295 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6297 mutex_unlock(&kvm_lock);
6300 return err;
6303 static void kvm_recover_nx_lpages(struct kvm *kvm)
6305 int rcu_idx;
6306 struct kvm_mmu_page *sp;
6307 unsigned int ratio;
6308 LIST_HEAD(invalid_list);
6309 ulong to_zap;
6311 rcu_idx = srcu_read_lock(&kvm->srcu);
6312 spin_lock(&kvm->mmu_lock);
6314 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6315 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6316 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6318 * We use a separate list instead of just using active_mmu_pages
6319 * because the number of lpage_disallowed pages is expected to
6320 * be relatively small compared to the total.
6322 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6323 struct kvm_mmu_page,
6324 lpage_disallowed_link);
6325 WARN_ON_ONCE(!sp->lpage_disallowed);
6326 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6327 WARN_ON_ONCE(sp->lpage_disallowed);
6329 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6330 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6331 if (to_zap)
6332 cond_resched_lock(&kvm->mmu_lock);
6336 spin_unlock(&kvm->mmu_lock);
6337 srcu_read_unlock(&kvm->srcu, rcu_idx);
6340 static long get_nx_lpage_recovery_timeout(u64 start_time)
6342 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6343 ? start_time + 60 * HZ - get_jiffies_64()
6344 : MAX_SCHEDULE_TIMEOUT;
6347 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6349 u64 start_time;
6350 long remaining_time;
6352 while (true) {
6353 start_time = get_jiffies_64();
6354 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6356 set_current_state(TASK_INTERRUPTIBLE);
6357 while (!kthread_should_stop() && remaining_time > 0) {
6358 schedule_timeout(remaining_time);
6359 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6360 set_current_state(TASK_INTERRUPTIBLE);
6363 set_current_state(TASK_RUNNING);
6365 if (kthread_should_stop())
6366 return 0;
6368 kvm_recover_nx_lpages(kvm);
6372 int kvm_mmu_post_init_vm(struct kvm *kvm)
6374 int err;
6376 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6377 "kvm-nx-lpage-recovery",
6378 &kvm->arch.nx_lpage_recovery_thread);
6379 if (!err)
6380 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6382 return err;
6385 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6387 if (kvm->arch.nx_lpage_recovery_thread)
6388 kthread_stop(kvm->arch.nx_lpage_recovery_thread);