2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 #include "intel_drv.h"
25 #include "i915_vgpu.h"
28 * DOC: Intel GVT-g guest support
30 * Intel GVT-g is a graphics virtualization technology which shares the
31 * GPU among multiple virtual machines on a time-sharing basis. Each
32 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
33 * features as the underlying physical GPU (pGPU), so i915 driver can run
34 * seamlessly in a virtual machine. This file provides vGPU specific
35 * optimizations when running in a virtual machine, to reduce the complexity
36 * of vGPU emulation and to improve the overall performance.
38 * A primary function introduced here is so-called "address space ballooning"
39 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
40 * so each VM can directly access a portion of the memory without hypervisor's
41 * intervention, e.g. filling textures or queuing commands. However with the
42 * partitioning an unmodified i915 driver would assume a smaller graphics
43 * memory starting from address ZERO, then requires vGPU emulation module to
44 * translate the graphics address between 'guest view' and 'host view', for
45 * all registers and command opcodes which contain a graphics memory address.
46 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
47 * by telling the exact partitioning knowledge to each guest i915 driver, which
48 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
49 * emulation module only needs to scan and validate graphics addresses without
50 * complexity of address translation.
55 * i915_check_vgpu - detect virtual GPU
58 * This function is called at the initialization stage, to detect whether
61 void i915_check_vgpu(struct drm_device
*dev
)
63 struct drm_i915_private
*dev_priv
= to_i915(dev
);
67 BUILD_BUG_ON(sizeof(struct vgt_if
) != VGT_PVINFO_SIZE
);
72 magic
= readq(dev_priv
->regs
+ vgtif_reg(magic
));
73 if (magic
!= VGT_MAGIC
)
76 version
= INTEL_VGT_IF_VERSION_ENCODE(
77 readw(dev_priv
->regs
+ vgtif_reg(version_major
)),
78 readw(dev_priv
->regs
+ vgtif_reg(version_minor
)));
79 if (version
!= INTEL_VGT_IF_VERSION
) {
80 DRM_INFO("VGT interface version mismatch!\n");
84 dev_priv
->vgpu
.active
= true;
85 DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
88 struct _balloon_info_
{
90 * There are up to 2 regions per mappable/unmappable graphic
91 * memory that might be ballooned. Here, index 0/1 is for mappable
92 * graphic memory, 2/3 for unmappable graphic memory.
94 struct drm_mm_node space
[4];
97 static struct _balloon_info_ bl_info
;
100 * intel_vgt_deballoon - deballoon reserved graphics address trunks
102 * This function is called to deallocate the ballooned-out graphic memory, when
103 * driver is unloaded or when ballooning fails.
105 void intel_vgt_deballoon(void)
109 DRM_DEBUG("VGT deballoon.\n");
111 for (i
= 0; i
< 4; i
++) {
112 if (bl_info
.space
[i
].allocated
)
113 drm_mm_remove_node(&bl_info
.space
[i
]);
116 memset(&bl_info
, 0, sizeof(bl_info
));
119 static int vgt_balloon_space(struct drm_mm
*mm
,
120 struct drm_mm_node
*node
,
121 unsigned long start
, unsigned long end
)
123 unsigned long size
= end
- start
;
128 DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
129 start
, end
, size
/ 1024);
134 return drm_mm_reserve_node(mm
, node
);
138 * intel_vgt_balloon - balloon out reserved graphics address trunks
141 * This function is called at the initialization stage, to balloon out the
142 * graphic address space allocated to other vGPUs, by marking these spaces as
143 * reserved. The ballooning related knowledge(starting address and size of
144 * the mappable/unmappable graphic memory) is described in the vgt_if structure
145 * in a reserved mmio range.
147 * To give an example, the drawing below depicts one typical scenario after
148 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
149 * out each for the mappable and the non-mappable part. From the vGPU1 point of
150 * view, the total size is the same as the physical one, with the start address
151 * of its graphic space being zero. Yet there are some portions ballooned out(
152 * the shadow part, which are marked as reserved by drm allocator). From the
153 * host point of view, the graphic address space is partitioned by multiple
154 * vGPUs in different VMs.
156 * vGPU1 view Host view
157 * 0 ------> +-----------+ +-----------+
158 * ^ |///////////| | vGPU3 |
159 * | |///////////| +-----------+
160 * | |///////////| | vGPU2 |
161 * | +-----------+ +-----------+
162 * mappable GM | available | ==> | vGPU1 |
163 * | +-----------+ +-----------+
164 * | |///////////| | |
165 * v |///////////| | Host |
166 * +=======+===========+ +===========+
167 * ^ |///////////| | vGPU3 |
168 * | |///////////| +-----------+
169 * | |///////////| | vGPU2 |
170 * | +-----------+ +-----------+
171 * unmappable GM | available | ==> | vGPU1 |
172 * | +-----------+ +-----------+
173 * | |///////////| | |
174 * | |///////////| | Host |
175 * v |///////////| | |
176 * total GM size ------> +-----------+ +-----------+
179 * zero on success, non-zero if configuration invalid or ballooning failed
181 int intel_vgt_balloon(struct drm_device
*dev
)
183 struct drm_i915_private
*dev_priv
= to_i915(dev
);
184 struct i915_address_space
*ggtt_vm
= &dev_priv
->gtt
.base
;
185 unsigned long ggtt_vm_end
= ggtt_vm
->start
+ ggtt_vm
->total
;
187 unsigned long mappable_base
, mappable_size
, mappable_end
;
188 unsigned long unmappable_base
, unmappable_size
, unmappable_end
;
191 mappable_base
= I915_READ(vgtif_reg(avail_rs
.mappable_gmadr
.base
));
192 mappable_size
= I915_READ(vgtif_reg(avail_rs
.mappable_gmadr
.size
));
193 unmappable_base
= I915_READ(vgtif_reg(avail_rs
.nonmappable_gmadr
.base
));
194 unmappable_size
= I915_READ(vgtif_reg(avail_rs
.nonmappable_gmadr
.size
));
196 mappable_end
= mappable_base
+ mappable_size
;
197 unmappable_end
= unmappable_base
+ unmappable_size
;
199 DRM_INFO("VGT ballooning configuration:\n");
200 DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
201 mappable_base
, mappable_size
/ 1024);
202 DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
203 unmappable_base
, unmappable_size
/ 1024);
205 if (mappable_base
< ggtt_vm
->start
||
206 mappable_end
> dev_priv
->gtt
.mappable_end
||
207 unmappable_base
< dev_priv
->gtt
.mappable_end
||
208 unmappable_end
> ggtt_vm_end
) {
209 DRM_ERROR("Invalid ballooning configuration!\n");
213 /* Unmappable graphic memory ballooning */
214 if (unmappable_base
> dev_priv
->gtt
.mappable_end
) {
215 ret
= vgt_balloon_space(&ggtt_vm
->mm
,
217 dev_priv
->gtt
.mappable_end
,
225 * No need to partition out the last physical page,
226 * because it is reserved to the guard page.
228 if (unmappable_end
< ggtt_vm_end
- PAGE_SIZE
) {
229 ret
= vgt_balloon_space(&ggtt_vm
->mm
,
232 ggtt_vm_end
- PAGE_SIZE
);
237 /* Mappable graphic memory ballooning */
238 if (mappable_base
> ggtt_vm
->start
) {
239 ret
= vgt_balloon_space(&ggtt_vm
->mm
,
241 ggtt_vm
->start
, mappable_base
);
247 if (mappable_end
< dev_priv
->gtt
.mappable_end
) {
248 ret
= vgt_balloon_space(&ggtt_vm
->mm
,
251 dev_priv
->gtt
.mappable_end
);
257 DRM_INFO("VGT balloon successfully\n");
261 DRM_ERROR("VGT balloon fail\n");
262 intel_vgt_deballoon();