Linux 4.2.1
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blob8b3130f22b42b334ff0d22718e46484012fb2c2b
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
45 #include "remoteproc_internal.h"
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
62 /* translate rproc_crash_type to string */
63 static const char *rproc_crash_to_string(enum rproc_crash_type type)
65 if (type < ARRAY_SIZE(rproc_crash_names))
66 return rproc_crash_names[type];
67 return "unknown";
71 * This is the IOMMU fault handler we register with the IOMMU API
72 * (when relevant; not all remote processors access memory through
73 * an IOMMU).
75 * IOMMU core will invoke this handler whenever the remote processor
76 * will try to access an unmapped device address.
78 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
79 unsigned long iova, int flags, void *token)
81 struct rproc *rproc = token;
83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
85 rproc_report_crash(rproc, RPROC_MMUFAULT);
88 * Let the iommu core know we're not really handling this fault;
89 * we just used it as a recovery trigger.
91 return -ENOSYS;
94 static int rproc_enable_iommu(struct rproc *rproc)
96 struct iommu_domain *domain;
97 struct device *dev = rproc->dev.parent;
98 int ret;
100 if (!rproc->has_iommu) {
101 dev_dbg(dev, "iommu not present\n");
102 return 0;
105 domain = iommu_domain_alloc(dev->bus);
106 if (!domain) {
107 dev_err(dev, "can't alloc iommu domain\n");
108 return -ENOMEM;
111 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
113 ret = iommu_attach_device(domain, dev);
114 if (ret) {
115 dev_err(dev, "can't attach iommu device: %d\n", ret);
116 goto free_domain;
119 rproc->domain = domain;
121 return 0;
123 free_domain:
124 iommu_domain_free(domain);
125 return ret;
128 static void rproc_disable_iommu(struct rproc *rproc)
130 struct iommu_domain *domain = rproc->domain;
131 struct device *dev = rproc->dev.parent;
133 if (!domain)
134 return;
136 iommu_detach_device(domain, dev);
137 iommu_domain_free(domain);
141 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
142 * @rproc: handle of a remote processor
143 * @da: remoteproc device address to translate
144 * @len: length of the memory region @da is pointing to
146 * Some remote processors will ask us to allocate them physically contiguous
147 * memory regions (which we call "carveouts"), and map them to specific
148 * device addresses (which are hardcoded in the firmware). They may also have
149 * dedicated memory regions internal to the processors, and use them either
150 * exclusively or alongside carveouts.
152 * They may then ask us to copy objects into specific device addresses (e.g.
153 * code/data sections) or expose us certain symbols in other device address
154 * (e.g. their trace buffer).
156 * This function is a helper function with which we can go over the allocated
157 * carveouts and translate specific device addresses to kernel virtual addresses
158 * so we can access the referenced memory. This function also allows to perform
159 * translations on the internal remoteproc memory regions through a platform
160 * implementation specific da_to_va ops, if present.
162 * The function returns a valid kernel address on success or NULL on failure.
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API for the carveouts, which should be more
167 * correct.
169 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
171 struct rproc_mem_entry *carveout;
172 void *ptr = NULL;
174 if (rproc->ops->da_to_va) {
175 ptr = rproc->ops->da_to_va(rproc, da, len);
176 if (ptr)
177 goto out;
180 list_for_each_entry(carveout, &rproc->carveouts, node) {
181 int offset = da - carveout->da;
183 /* try next carveout if da is too small */
184 if (offset < 0)
185 continue;
187 /* try next carveout if da is too large */
188 if (offset + len > carveout->len)
189 continue;
191 ptr = carveout->va + offset;
193 break;
196 out:
197 return ptr;
199 EXPORT_SYMBOL(rproc_da_to_va);
201 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
203 struct rproc *rproc = rvdev->rproc;
204 struct device *dev = &rproc->dev;
205 struct rproc_vring *rvring = &rvdev->vring[i];
206 struct fw_rsc_vdev *rsc;
207 dma_addr_t dma;
208 void *va;
209 int ret, size, notifyid;
211 /* actual size of vring (in bytes) */
212 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 * Allocate non-cacheable memory for the vring. In the future
216 * this call will also configure the IOMMU for us
218 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
219 if (!va) {
220 dev_err(dev->parent, "dma_alloc_coherent failed\n");
221 return -EINVAL;
225 * Assign an rproc-wide unique index for this vring
226 * TODO: assign a notifyid for rvdev updates as well
227 * TODO: support predefined notifyids (via resource table)
229 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
230 if (ret < 0) {
231 dev_err(dev, "idr_alloc failed: %d\n", ret);
232 dma_free_coherent(dev->parent, size, va, dma);
233 return ret;
235 notifyid = ret;
237 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
238 (unsigned long long)dma, size, notifyid);
240 rvring->va = va;
241 rvring->dma = dma;
242 rvring->notifyid = notifyid;
245 * Let the rproc know the notifyid and da of this vring.
246 * Not all platforms use dma_alloc_coherent to automatically
247 * set up the iommu. In this case the device address (da) will
248 * hold the physical address and not the device address.
250 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
251 rsc->vring[i].da = dma;
252 rsc->vring[i].notifyid = notifyid;
253 return 0;
256 static int
257 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
259 struct rproc *rproc = rvdev->rproc;
260 struct device *dev = &rproc->dev;
261 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
262 struct rproc_vring *rvring = &rvdev->vring[i];
264 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
265 i, vring->da, vring->num, vring->align);
267 /* make sure reserved bytes are zeroes */
268 if (vring->reserved) {
269 dev_err(dev, "vring rsc has non zero reserved bytes\n");
270 return -EINVAL;
273 /* verify queue size and vring alignment are sane */
274 if (!vring->num || !vring->align) {
275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276 vring->num, vring->align);
277 return -EINVAL;
280 rvring->len = vring->num;
281 rvring->align = vring->align;
282 rvring->rvdev = rvdev;
284 return 0;
287 void rproc_free_vring(struct rproc_vring *rvring)
289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
290 struct rproc *rproc = rvring->rvdev->rproc;
291 int idx = rvring->rvdev->vring - rvring;
292 struct fw_rsc_vdev *rsc;
294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295 idr_remove(&rproc->notifyids, rvring->notifyid);
297 /* reset resource entry info */
298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
299 rsc->vring[idx].da = 0;
300 rsc->vring[idx].notifyid = -1;
304 * rproc_handle_vdev() - handle a vdev fw resource
305 * @rproc: the remote processor
306 * @rsc: the vring resource descriptor
307 * @avail: size of available data (for sanity checking the image)
309 * This resource entry requests the host to statically register a virtio
310 * device (vdev), and setup everything needed to support it. It contains
311 * everything needed to make it possible: the virtio device id, virtio
312 * device features, vrings information, virtio config space, etc...
314 * Before registering the vdev, the vrings are allocated from non-cacheable
315 * physically contiguous memory. Currently we only support two vrings per
316 * remote processor (temporary limitation). We might also want to consider
317 * doing the vring allocation only later when ->find_vqs() is invoked, and
318 * then release them upon ->del_vqs().
320 * Note: @da is currently not really handled correctly: we dynamically
321 * allocate it using the DMA API, ignoring requested hard coded addresses,
322 * and we don't take care of any required IOMMU programming. This is all
323 * going to be taken care of when the generic iommu-based DMA API will be
324 * merged. Meanwhile, statically-addressed iommu-based firmware images should
325 * use RSC_DEVMEM resource entries to map their required @da to the physical
326 * address of their base CMA region (ouch, hacky!).
328 * Returns 0 on success, or an appropriate error code otherwise
330 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
331 int offset, int avail)
333 struct device *dev = &rproc->dev;
334 struct rproc_vdev *rvdev;
335 int i, ret;
337 /* make sure resource isn't truncated */
338 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
339 + rsc->config_len > avail) {
340 dev_err(dev, "vdev rsc is truncated\n");
341 return -EINVAL;
344 /* make sure reserved bytes are zeroes */
345 if (rsc->reserved[0] || rsc->reserved[1]) {
346 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
347 return -EINVAL;
350 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
351 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
353 /* we currently support only two vrings per rvdev */
354 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
355 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
356 return -EINVAL;
359 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
360 if (!rvdev)
361 return -ENOMEM;
363 rvdev->rproc = rproc;
365 /* parse the vrings */
366 for (i = 0; i < rsc->num_of_vrings; i++) {
367 ret = rproc_parse_vring(rvdev, rsc, i);
368 if (ret)
369 goto free_rvdev;
372 /* remember the resource offset*/
373 rvdev->rsc_offset = offset;
375 list_add_tail(&rvdev->node, &rproc->rvdevs);
377 /* it is now safe to add the virtio device */
378 ret = rproc_add_virtio_dev(rvdev, rsc->id);
379 if (ret)
380 goto remove_rvdev;
382 return 0;
384 remove_rvdev:
385 list_del(&rvdev->node);
386 free_rvdev:
387 kfree(rvdev);
388 return ret;
392 * rproc_handle_trace() - handle a shared trace buffer resource
393 * @rproc: the remote processor
394 * @rsc: the trace resource descriptor
395 * @avail: size of available data (for sanity checking the image)
397 * In case the remote processor dumps trace logs into memory,
398 * export it via debugfs.
400 * Currently, the 'da' member of @rsc should contain the device address
401 * where the remote processor is dumping the traces. Later we could also
402 * support dynamically allocating this address using the generic
403 * DMA API (but currently there isn't a use case for that).
405 * Returns 0 on success, or an appropriate error code otherwise
407 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
408 int offset, int avail)
410 struct rproc_mem_entry *trace;
411 struct device *dev = &rproc->dev;
412 void *ptr;
413 char name[15];
415 if (sizeof(*rsc) > avail) {
416 dev_err(dev, "trace rsc is truncated\n");
417 return -EINVAL;
420 /* make sure reserved bytes are zeroes */
421 if (rsc->reserved) {
422 dev_err(dev, "trace rsc has non zero reserved bytes\n");
423 return -EINVAL;
426 /* what's the kernel address of this resource ? */
427 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
428 if (!ptr) {
429 dev_err(dev, "erroneous trace resource entry\n");
430 return -EINVAL;
433 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
434 if (!trace)
435 return -ENOMEM;
437 /* set the trace buffer dma properties */
438 trace->len = rsc->len;
439 trace->va = ptr;
441 /* make sure snprintf always null terminates, even if truncating */
442 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
444 /* create the debugfs entry */
445 trace->priv = rproc_create_trace_file(name, rproc, trace);
446 if (!trace->priv) {
447 trace->va = NULL;
448 kfree(trace);
449 return -EINVAL;
452 list_add_tail(&trace->node, &rproc->traces);
454 rproc->num_traces++;
456 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
457 rsc->da, rsc->len);
459 return 0;
463 * rproc_handle_devmem() - handle devmem resource entry
464 * @rproc: remote processor handle
465 * @rsc: the devmem resource entry
466 * @avail: size of available data (for sanity checking the image)
468 * Remote processors commonly need to access certain on-chip peripherals.
470 * Some of these remote processors access memory via an iommu device,
471 * and might require us to configure their iommu before they can access
472 * the on-chip peripherals they need.
474 * This resource entry is a request to map such a peripheral device.
476 * These devmem entries will contain the physical address of the device in
477 * the 'pa' member. If a specific device address is expected, then 'da' will
478 * contain it (currently this is the only use case supported). 'len' will
479 * contain the size of the physical region we need to map.
481 * Currently we just "trust" those devmem entries to contain valid physical
482 * addresses, but this is going to change: we want the implementations to
483 * tell us ranges of physical addresses the firmware is allowed to request,
484 * and not allow firmwares to request access to physical addresses that
485 * are outside those ranges.
487 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
488 int offset, int avail)
490 struct rproc_mem_entry *mapping;
491 struct device *dev = &rproc->dev;
492 int ret;
494 /* no point in handling this resource without a valid iommu domain */
495 if (!rproc->domain)
496 return -EINVAL;
498 if (sizeof(*rsc) > avail) {
499 dev_err(dev, "devmem rsc is truncated\n");
500 return -EINVAL;
503 /* make sure reserved bytes are zeroes */
504 if (rsc->reserved) {
505 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
506 return -EINVAL;
509 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
510 if (!mapping)
511 return -ENOMEM;
513 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
514 if (ret) {
515 dev_err(dev, "failed to map devmem: %d\n", ret);
516 goto out;
520 * We'll need this info later when we'll want to unmap everything
521 * (e.g. on shutdown).
523 * We can't trust the remote processor not to change the resource
524 * table, so we must maintain this info independently.
526 mapping->da = rsc->da;
527 mapping->len = rsc->len;
528 list_add_tail(&mapping->node, &rproc->mappings);
530 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
531 rsc->pa, rsc->da, rsc->len);
533 return 0;
535 out:
536 kfree(mapping);
537 return ret;
541 * rproc_handle_carveout() - handle phys contig memory allocation requests
542 * @rproc: rproc handle
543 * @rsc: the resource entry
544 * @avail: size of available data (for image validation)
546 * This function will handle firmware requests for allocation of physically
547 * contiguous memory regions.
549 * These request entries should come first in the firmware's resource table,
550 * as other firmware entries might request placing other data objects inside
551 * these memory regions (e.g. data/code segments, trace resource entries, ...).
553 * Allocating memory this way helps utilizing the reserved physical memory
554 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
555 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
556 * pressure is important; it may have a substantial impact on performance.
558 static int rproc_handle_carveout(struct rproc *rproc,
559 struct fw_rsc_carveout *rsc,
560 int offset, int avail)
563 struct rproc_mem_entry *carveout, *mapping;
564 struct device *dev = &rproc->dev;
565 dma_addr_t dma;
566 void *va;
567 int ret;
569 if (sizeof(*rsc) > avail) {
570 dev_err(dev, "carveout rsc is truncated\n");
571 return -EINVAL;
574 /* make sure reserved bytes are zeroes */
575 if (rsc->reserved) {
576 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
577 return -EINVAL;
580 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
581 rsc->da, rsc->pa, rsc->len, rsc->flags);
583 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
584 if (!carveout)
585 return -ENOMEM;
587 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
588 if (!va) {
589 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
590 ret = -ENOMEM;
591 goto free_carv;
594 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
595 (unsigned long long)dma, rsc->len);
598 * Ok, this is non-standard.
600 * Sometimes we can't rely on the generic iommu-based DMA API
601 * to dynamically allocate the device address and then set the IOMMU
602 * tables accordingly, because some remote processors might
603 * _require_ us to use hard coded device addresses that their
604 * firmware was compiled with.
606 * In this case, we must use the IOMMU API directly and map
607 * the memory to the device address as expected by the remote
608 * processor.
610 * Obviously such remote processor devices should not be configured
611 * to use the iommu-based DMA API: we expect 'dma' to contain the
612 * physical address in this case.
614 if (rproc->domain) {
615 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
616 if (!mapping) {
617 dev_err(dev, "kzalloc mapping failed\n");
618 ret = -ENOMEM;
619 goto dma_free;
622 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
623 rsc->flags);
624 if (ret) {
625 dev_err(dev, "iommu_map failed: %d\n", ret);
626 goto free_mapping;
630 * We'll need this info later when we'll want to unmap
631 * everything (e.g. on shutdown).
633 * We can't trust the remote processor not to change the
634 * resource table, so we must maintain this info independently.
636 mapping->da = rsc->da;
637 mapping->len = rsc->len;
638 list_add_tail(&mapping->node, &rproc->mappings);
640 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
641 rsc->da, (unsigned long long)dma);
645 * Some remote processors might need to know the pa
646 * even though they are behind an IOMMU. E.g., OMAP4's
647 * remote M3 processor needs this so it can control
648 * on-chip hardware accelerators that are not behind
649 * the IOMMU, and therefor must know the pa.
651 * Generally we don't want to expose physical addresses
652 * if we don't have to (remote processors are generally
653 * _not_ trusted), so we might want to do this only for
654 * remote processor that _must_ have this (e.g. OMAP4's
655 * dual M3 subsystem).
657 * Non-IOMMU processors might also want to have this info.
658 * In this case, the device address and the physical address
659 * are the same.
661 rsc->pa = dma;
663 carveout->va = va;
664 carveout->len = rsc->len;
665 carveout->dma = dma;
666 carveout->da = rsc->da;
668 list_add_tail(&carveout->node, &rproc->carveouts);
670 return 0;
672 free_mapping:
673 kfree(mapping);
674 dma_free:
675 dma_free_coherent(dev->parent, rsc->len, va, dma);
676 free_carv:
677 kfree(carveout);
678 return ret;
681 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
682 int offset, int avail)
684 /* Summarize the number of notification IDs */
685 rproc->max_notifyid += rsc->num_of_vrings;
687 return 0;
691 * A lookup table for resource handlers. The indices are defined in
692 * enum fw_resource_type.
694 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
695 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
696 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
697 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
698 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
701 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
702 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
705 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
706 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
709 /* handle firmware resource entries before booting the remote processor */
710 static int rproc_handle_resources(struct rproc *rproc, int len,
711 rproc_handle_resource_t handlers[RSC_LAST])
713 struct device *dev = &rproc->dev;
714 rproc_handle_resource_t handler;
715 int ret = 0, i;
717 for (i = 0; i < rproc->table_ptr->num; i++) {
718 int offset = rproc->table_ptr->offset[i];
719 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
720 int avail = len - offset - sizeof(*hdr);
721 void *rsc = (void *)hdr + sizeof(*hdr);
723 /* make sure table isn't truncated */
724 if (avail < 0) {
725 dev_err(dev, "rsc table is truncated\n");
726 return -EINVAL;
729 dev_dbg(dev, "rsc: type %d\n", hdr->type);
731 if (hdr->type >= RSC_LAST) {
732 dev_warn(dev, "unsupported resource %d\n", hdr->type);
733 continue;
736 handler = handlers[hdr->type];
737 if (!handler)
738 continue;
740 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
741 if (ret)
742 break;
745 return ret;
749 * rproc_resource_cleanup() - clean up and free all acquired resources
750 * @rproc: rproc handle
752 * This function will free all resources acquired for @rproc, and it
753 * is called whenever @rproc either shuts down or fails to boot.
755 static void rproc_resource_cleanup(struct rproc *rproc)
757 struct rproc_mem_entry *entry, *tmp;
758 struct device *dev = &rproc->dev;
760 /* clean up debugfs trace entries */
761 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
762 rproc_remove_trace_file(entry->priv);
763 rproc->num_traces--;
764 list_del(&entry->node);
765 kfree(entry);
768 /* clean up iommu mapping entries */
769 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
770 size_t unmapped;
772 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
773 if (unmapped != entry->len) {
774 /* nothing much to do besides complaining */
775 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
776 unmapped);
779 list_del(&entry->node);
780 kfree(entry);
783 /* clean up carveout allocations */
784 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
785 dma_free_coherent(dev->parent, entry->len, entry->va,
786 entry->dma);
787 list_del(&entry->node);
788 kfree(entry);
793 * take a firmware and boot a remote processor with it.
795 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
797 struct device *dev = &rproc->dev;
798 const char *name = rproc->firmware;
799 struct resource_table *table, *loaded_table;
800 int ret, tablesz;
802 if (!rproc->table_ptr)
803 return -ENOMEM;
805 ret = rproc_fw_sanity_check(rproc, fw);
806 if (ret)
807 return ret;
809 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
812 * if enabling an IOMMU isn't relevant for this rproc, this is
813 * just a nop
815 ret = rproc_enable_iommu(rproc);
816 if (ret) {
817 dev_err(dev, "can't enable iommu: %d\n", ret);
818 return ret;
821 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
822 ret = -EINVAL;
824 /* look for the resource table */
825 table = rproc_find_rsc_table(rproc, fw, &tablesz);
826 if (!table)
827 goto clean_up;
829 /* Verify that resource table in loaded fw is unchanged */
830 if (rproc->table_csum != crc32(0, table, tablesz)) {
831 dev_err(dev, "resource checksum failed, fw changed?\n");
832 goto clean_up;
835 /* handle fw resources which are required to boot rproc */
836 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
837 if (ret) {
838 dev_err(dev, "Failed to process resources: %d\n", ret);
839 goto clean_up;
842 /* load the ELF segments to memory */
843 ret = rproc_load_segments(rproc, fw);
844 if (ret) {
845 dev_err(dev, "Failed to load program segments: %d\n", ret);
846 goto clean_up;
850 * The starting device has been given the rproc->cached_table as the
851 * resource table. The address of the vring along with the other
852 * allocated resources (carveouts etc) is stored in cached_table.
853 * In order to pass this information to the remote device we must
854 * copy this information to device memory.
856 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
857 if (!loaded_table) {
858 ret = -EINVAL;
859 goto clean_up;
862 memcpy(loaded_table, rproc->cached_table, tablesz);
864 /* power up the remote processor */
865 ret = rproc->ops->start(rproc);
866 if (ret) {
867 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
868 goto clean_up;
872 * Update table_ptr so that all subsequent vring allocations and
873 * virtio fields manipulation update the actual loaded resource table
874 * in device memory.
876 rproc->table_ptr = loaded_table;
878 rproc->state = RPROC_RUNNING;
880 dev_info(dev, "remote processor %s is now up\n", rproc->name);
882 return 0;
884 clean_up:
885 rproc_resource_cleanup(rproc);
886 rproc_disable_iommu(rproc);
887 return ret;
891 * take a firmware and look for virtio devices to register.
893 * Note: this function is called asynchronously upon registration of the
894 * remote processor (so we must wait until it completes before we try
895 * to unregister the device. one other option is just to use kref here,
896 * that might be cleaner).
898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
900 struct rproc *rproc = context;
901 struct resource_table *table;
902 int ret, tablesz;
904 if (rproc_fw_sanity_check(rproc, fw) < 0)
905 goto out;
907 /* look for the resource table */
908 table = rproc_find_rsc_table(rproc, fw, &tablesz);
909 if (!table)
910 goto out;
912 rproc->table_csum = crc32(0, table, tablesz);
915 * Create a copy of the resource table. When a virtio device starts
916 * and calls vring_new_virtqueue() the address of the allocated vring
917 * will be stored in the cached_table. Before the device is started,
918 * cached_table will be copied into devic memory.
920 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
921 if (!rproc->cached_table)
922 goto out;
924 rproc->table_ptr = rproc->cached_table;
926 /* count the number of notify-ids */
927 rproc->max_notifyid = -1;
928 ret = rproc_handle_resources(rproc, tablesz,
929 rproc_count_vrings_handler);
930 if (ret)
931 goto out;
933 /* look for virtio devices and register them */
934 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
936 out:
937 release_firmware(fw);
938 /* allow rproc_del() contexts, if any, to proceed */
939 complete_all(&rproc->firmware_loading_complete);
942 static int rproc_add_virtio_devices(struct rproc *rproc)
944 int ret;
946 /* rproc_del() calls must wait until async loader completes */
947 init_completion(&rproc->firmware_loading_complete);
950 * We must retrieve early virtio configuration info from
951 * the firmware (e.g. whether to register a virtio device,
952 * what virtio features does it support, ...).
954 * We're initiating an asynchronous firmware loading, so we can
955 * be built-in kernel code, without hanging the boot process.
957 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
958 rproc->firmware, &rproc->dev, GFP_KERNEL,
959 rproc, rproc_fw_config_virtio);
960 if (ret < 0) {
961 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
962 complete_all(&rproc->firmware_loading_complete);
965 return ret;
969 * rproc_trigger_recovery() - recover a remoteproc
970 * @rproc: the remote processor
972 * The recovery is done by reseting all the virtio devices, that way all the
973 * rpmsg drivers will be reseted along with the remote processor making the
974 * remoteproc functional again.
976 * This function can sleep, so it cannot be called from atomic context.
978 int rproc_trigger_recovery(struct rproc *rproc)
980 struct rproc_vdev *rvdev, *rvtmp;
982 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
984 init_completion(&rproc->crash_comp);
986 /* clean up remote vdev entries */
987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 rproc_remove_virtio_dev(rvdev);
990 /* wait until there is no more rproc users */
991 wait_for_completion(&rproc->crash_comp);
993 /* Free the copy of the resource table */
994 kfree(rproc->cached_table);
996 return rproc_add_virtio_devices(rproc);
1000 * rproc_crash_handler_work() - handle a crash
1002 * This function needs to handle everything related to a crash, like cpu
1003 * registers and stack dump, information to help to debug the fatal error, etc.
1005 static void rproc_crash_handler_work(struct work_struct *work)
1007 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1008 struct device *dev = &rproc->dev;
1010 dev_dbg(dev, "enter %s\n", __func__);
1012 mutex_lock(&rproc->lock);
1014 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1015 /* handle only the first crash detected */
1016 mutex_unlock(&rproc->lock);
1017 return;
1020 rproc->state = RPROC_CRASHED;
1021 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1022 rproc->name);
1024 mutex_unlock(&rproc->lock);
1026 if (!rproc->recovery_disabled)
1027 rproc_trigger_recovery(rproc);
1031 * rproc_boot() - boot a remote processor
1032 * @rproc: handle of a remote processor
1034 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1036 * If the remote processor is already powered on, this function immediately
1037 * returns (successfully).
1039 * Returns 0 on success, and an appropriate error value otherwise.
1041 int rproc_boot(struct rproc *rproc)
1043 const struct firmware *firmware_p;
1044 struct device *dev;
1045 int ret;
1047 if (!rproc) {
1048 pr_err("invalid rproc handle\n");
1049 return -EINVAL;
1052 dev = &rproc->dev;
1054 ret = mutex_lock_interruptible(&rproc->lock);
1055 if (ret) {
1056 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1057 return ret;
1060 /* loading a firmware is required */
1061 if (!rproc->firmware) {
1062 dev_err(dev, "%s: no firmware to load\n", __func__);
1063 ret = -EINVAL;
1064 goto unlock_mutex;
1067 /* prevent underlying implementation from being removed */
1068 if (!try_module_get(dev->parent->driver->owner)) {
1069 dev_err(dev, "%s: can't get owner\n", __func__);
1070 ret = -EINVAL;
1071 goto unlock_mutex;
1074 /* skip the boot process if rproc is already powered up */
1075 if (atomic_inc_return(&rproc->power) > 1) {
1076 ret = 0;
1077 goto unlock_mutex;
1080 dev_info(dev, "powering up %s\n", rproc->name);
1082 /* load firmware */
1083 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1084 if (ret < 0) {
1085 dev_err(dev, "request_firmware failed: %d\n", ret);
1086 goto downref_rproc;
1089 ret = rproc_fw_boot(rproc, firmware_p);
1091 release_firmware(firmware_p);
1093 downref_rproc:
1094 if (ret) {
1095 module_put(dev->parent->driver->owner);
1096 atomic_dec(&rproc->power);
1098 unlock_mutex:
1099 mutex_unlock(&rproc->lock);
1100 return ret;
1102 EXPORT_SYMBOL(rproc_boot);
1105 * rproc_shutdown() - power off the remote processor
1106 * @rproc: the remote processor
1108 * Power off a remote processor (previously booted with rproc_boot()).
1110 * In case @rproc is still being used by an additional user(s), then
1111 * this function will just decrement the power refcount and exit,
1112 * without really powering off the device.
1114 * Every call to rproc_boot() must (eventually) be accompanied by a call
1115 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1117 * Notes:
1118 * - we're not decrementing the rproc's refcount, only the power refcount.
1119 * which means that the @rproc handle stays valid even after rproc_shutdown()
1120 * returns, and users can still use it with a subsequent rproc_boot(), if
1121 * needed.
1123 void rproc_shutdown(struct rproc *rproc)
1125 struct device *dev = &rproc->dev;
1126 int ret;
1128 ret = mutex_lock_interruptible(&rproc->lock);
1129 if (ret) {
1130 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1131 return;
1134 /* if the remote proc is still needed, bail out */
1135 if (!atomic_dec_and_test(&rproc->power))
1136 goto out;
1138 /* power off the remote processor */
1139 ret = rproc->ops->stop(rproc);
1140 if (ret) {
1141 atomic_inc(&rproc->power);
1142 dev_err(dev, "can't stop rproc: %d\n", ret);
1143 goto out;
1146 /* clean up all acquired resources */
1147 rproc_resource_cleanup(rproc);
1149 rproc_disable_iommu(rproc);
1151 /* Give the next start a clean resource table */
1152 rproc->table_ptr = rproc->cached_table;
1154 /* if in crash state, unlock crash handler */
1155 if (rproc->state == RPROC_CRASHED)
1156 complete_all(&rproc->crash_comp);
1158 rproc->state = RPROC_OFFLINE;
1160 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1162 out:
1163 mutex_unlock(&rproc->lock);
1164 if (!ret)
1165 module_put(dev->parent->driver->owner);
1167 EXPORT_SYMBOL(rproc_shutdown);
1170 * rproc_get_by_phandle() - find a remote processor by phandle
1171 * @phandle: phandle to the rproc
1173 * Finds an rproc handle using the remote processor's phandle, and then
1174 * return a handle to the rproc.
1176 * This function increments the remote processor's refcount, so always
1177 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1179 * Returns the rproc handle on success, and NULL on failure.
1181 #ifdef CONFIG_OF
1182 struct rproc *rproc_get_by_phandle(phandle phandle)
1184 struct rproc *rproc = NULL, *r;
1185 struct device_node *np;
1187 np = of_find_node_by_phandle(phandle);
1188 if (!np)
1189 return NULL;
1191 mutex_lock(&rproc_list_mutex);
1192 list_for_each_entry(r, &rproc_list, node) {
1193 if (r->dev.parent && r->dev.parent->of_node == np) {
1194 rproc = r;
1195 get_device(&rproc->dev);
1196 break;
1199 mutex_unlock(&rproc_list_mutex);
1201 of_node_put(np);
1203 return rproc;
1205 #else
1206 struct rproc *rproc_get_by_phandle(phandle phandle)
1208 return NULL;
1210 #endif
1211 EXPORT_SYMBOL(rproc_get_by_phandle);
1214 * rproc_add() - register a remote processor
1215 * @rproc: the remote processor handle to register
1217 * Registers @rproc with the remoteproc framework, after it has been
1218 * allocated with rproc_alloc().
1220 * This is called by the platform-specific rproc implementation, whenever
1221 * a new remote processor device is probed.
1223 * Returns 0 on success and an appropriate error code otherwise.
1225 * Note: this function initiates an asynchronous firmware loading
1226 * context, which will look for virtio devices supported by the rproc's
1227 * firmware.
1229 * If found, those virtio devices will be created and added, so as a result
1230 * of registering this remote processor, additional virtio drivers might be
1231 * probed.
1233 int rproc_add(struct rproc *rproc)
1235 struct device *dev = &rproc->dev;
1236 int ret;
1238 ret = device_add(dev);
1239 if (ret < 0)
1240 return ret;
1242 /* expose to rproc_get_by_phandle users */
1243 mutex_lock(&rproc_list_mutex);
1244 list_add(&rproc->node, &rproc_list);
1245 mutex_unlock(&rproc_list_mutex);
1247 dev_info(dev, "%s is available\n", rproc->name);
1249 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1250 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1252 /* create debugfs entries */
1253 rproc_create_debug_dir(rproc);
1255 return rproc_add_virtio_devices(rproc);
1257 EXPORT_SYMBOL(rproc_add);
1260 * rproc_type_release() - release a remote processor instance
1261 * @dev: the rproc's device
1263 * This function should _never_ be called directly.
1265 * It will be called by the driver core when no one holds a valid pointer
1266 * to @dev anymore.
1268 static void rproc_type_release(struct device *dev)
1270 struct rproc *rproc = container_of(dev, struct rproc, dev);
1272 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1274 rproc_delete_debug_dir(rproc);
1276 idr_destroy(&rproc->notifyids);
1278 if (rproc->index >= 0)
1279 ida_simple_remove(&rproc_dev_index, rproc->index);
1281 kfree(rproc);
1284 static struct device_type rproc_type = {
1285 .name = "remoteproc",
1286 .release = rproc_type_release,
1290 * rproc_alloc() - allocate a remote processor handle
1291 * @dev: the underlying device
1292 * @name: name of this remote processor
1293 * @ops: platform-specific handlers (mainly start/stop)
1294 * @firmware: name of firmware file to load, can be NULL
1295 * @len: length of private data needed by the rproc driver (in bytes)
1297 * Allocates a new remote processor handle, but does not register
1298 * it yet. if @firmware is NULL, a default name is used.
1300 * This function should be used by rproc implementations during initialization
1301 * of the remote processor.
1303 * After creating an rproc handle using this function, and when ready,
1304 * implementations should then call rproc_add() to complete
1305 * the registration of the remote processor.
1307 * On success the new rproc is returned, and on failure, NULL.
1309 * Note: _never_ directly deallocate @rproc, even if it was not registered
1310 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1312 struct rproc *rproc_alloc(struct device *dev, const char *name,
1313 const struct rproc_ops *ops,
1314 const char *firmware, int len)
1316 struct rproc *rproc;
1317 char *p, *template = "rproc-%s-fw";
1318 int name_len = 0;
1320 if (!dev || !name || !ops)
1321 return NULL;
1323 if (!firmware)
1325 * Make room for default firmware name (minus %s plus '\0').
1326 * If the caller didn't pass in a firmware name then
1327 * construct a default name. We're already glomming 'len'
1328 * bytes onto the end of the struct rproc allocation, so do
1329 * a few more for the default firmware name (but only if
1330 * the caller doesn't pass one).
1332 name_len = strlen(name) + strlen(template) - 2 + 1;
1334 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1335 if (!rproc)
1336 return NULL;
1338 if (!firmware) {
1339 p = (char *)rproc + sizeof(struct rproc) + len;
1340 snprintf(p, name_len, template, name);
1341 } else {
1342 p = (char *)firmware;
1345 rproc->firmware = p;
1346 rproc->name = name;
1347 rproc->ops = ops;
1348 rproc->priv = &rproc[1];
1350 device_initialize(&rproc->dev);
1351 rproc->dev.parent = dev;
1352 rproc->dev.type = &rproc_type;
1354 /* Assign a unique device index and name */
1355 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1356 if (rproc->index < 0) {
1357 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1358 put_device(&rproc->dev);
1359 return NULL;
1362 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1364 atomic_set(&rproc->power, 0);
1366 /* Set ELF as the default fw_ops handler */
1367 rproc->fw_ops = &rproc_elf_fw_ops;
1369 mutex_init(&rproc->lock);
1371 idr_init(&rproc->notifyids);
1373 INIT_LIST_HEAD(&rproc->carveouts);
1374 INIT_LIST_HEAD(&rproc->mappings);
1375 INIT_LIST_HEAD(&rproc->traces);
1376 INIT_LIST_HEAD(&rproc->rvdevs);
1378 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1379 init_completion(&rproc->crash_comp);
1381 rproc->state = RPROC_OFFLINE;
1383 return rproc;
1385 EXPORT_SYMBOL(rproc_alloc);
1388 * rproc_put() - unroll rproc_alloc()
1389 * @rproc: the remote processor handle
1391 * This function decrements the rproc dev refcount.
1393 * If no one holds any reference to rproc anymore, then its refcount would
1394 * now drop to zero, and it would be freed.
1396 void rproc_put(struct rproc *rproc)
1398 put_device(&rproc->dev);
1400 EXPORT_SYMBOL(rproc_put);
1403 * rproc_del() - unregister a remote processor
1404 * @rproc: rproc handle to unregister
1406 * This function should be called when the platform specific rproc
1407 * implementation decides to remove the rproc device. it should
1408 * _only_ be called if a previous invocation of rproc_add()
1409 * has completed successfully.
1411 * After rproc_del() returns, @rproc isn't freed yet, because
1412 * of the outstanding reference created by rproc_alloc. To decrement that
1413 * one last refcount, one still needs to call rproc_put().
1415 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1417 int rproc_del(struct rproc *rproc)
1419 struct rproc_vdev *rvdev, *tmp;
1421 if (!rproc)
1422 return -EINVAL;
1424 /* if rproc is just being registered, wait */
1425 wait_for_completion(&rproc->firmware_loading_complete);
1427 /* clean up remote vdev entries */
1428 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1429 rproc_remove_virtio_dev(rvdev);
1431 /* Free the copy of the resource table */
1432 kfree(rproc->cached_table);
1434 /* the rproc is downref'ed as soon as it's removed from the klist */
1435 mutex_lock(&rproc_list_mutex);
1436 list_del(&rproc->node);
1437 mutex_unlock(&rproc_list_mutex);
1439 device_del(&rproc->dev);
1441 return 0;
1443 EXPORT_SYMBOL(rproc_del);
1446 * rproc_report_crash() - rproc crash reporter function
1447 * @rproc: remote processor
1448 * @type: crash type
1450 * This function must be called every time a crash is detected by the low-level
1451 * drivers implementing a specific remoteproc. This should not be called from a
1452 * non-remoteproc driver.
1454 * This function can be called from atomic/interrupt context.
1456 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1458 if (!rproc) {
1459 pr_err("NULL rproc pointer\n");
1460 return;
1463 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1464 rproc->name, rproc_crash_to_string(type));
1466 /* create a new task to handle the error */
1467 schedule_work(&rproc->crash_handler);
1469 EXPORT_SYMBOL(rproc_report_crash);
1471 static int __init remoteproc_init(void)
1473 rproc_init_debugfs();
1475 return 0;
1477 module_init(remoteproc_init);
1479 static void __exit remoteproc_exit(void)
1481 rproc_exit_debugfs();
1483 module_exit(remoteproc_exit);
1485 MODULE_LICENSE("GPL v2");
1486 MODULE_DESCRIPTION("Generic Remote Processor Framework");