2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
64 #define DO_NOT_DRIVE_TX 1
66 #define DO_NOT_QUEUE_DMA 0
73 * Macros to access SSP Registers with their offsets
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r) (r + 0x080)
87 #define SSP_ITIP(r) (r + 0x084)
88 #define SSP_ITOP(r) (r + 0x088)
89 #define SSP_TDR(r) (r + 0x08C)
91 #define SSP_PID0(r) (r + 0xFE0)
92 #define SSP_PID1(r) (r + 0xFE4)
93 #define SSP_PID2(r) (r + 0xFE8)
94 #define SSP_PID3(r) (r + 0xFEC)
96 #define SSP_CID0(r) (r + 0xFF0)
97 #define SSP_CID1(r) (r + 0xFF4)
98 #define SSP_CID2(r) (r + 0xFF8)
99 #define SSP_CID3(r) (r + 0xFFC)
102 * SSP Control Register 0 - SSP_CR0
104 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF (0x3UL << 4)
106 #define SSP_CR0_MASK_SPO (0x1UL << 6)
107 #define SSP_CR0_MASK_SPH (0x1UL << 7)
108 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
111 * The ST version of this block moves som bits
112 * in SSP_CR0 and extends it to 32 bits
114 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
120 * SSP Control Register 0 - SSP_CR1
122 #define SSP_CR1_MASK_LBM (0x1UL << 0)
123 #define SSP_CR1_MASK_SSE (0x1UL << 1)
124 #define SSP_CR1_MASK_MS (0x1UL << 2)
125 #define SSP_CR1_MASK_SOD (0x1UL << 3)
128 * The ST version of this block adds some bits
131 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
140 * SSP Status Register - SSP_SR
142 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
149 * SSP Clock Prescale Register - SSP_CPSR
151 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
162 * SSP Raw Interrupt Status Register - SSP_RIS
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
174 * SSP Masked Interrupt Status Register - SSP_MIS
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
186 * SSP Interrupt Clear Register - SSP_ICR
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
194 * SSP DMA Control Register - SSP_DMACR
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
202 * SSP Chip Select Control Register - SSP_CSR
205 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
208 * SSP Integration Test control Register - SSP_ITCR
210 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
214 * SSP Integration Test Input Register - SSP_ITIP
216 #define ITIP_MASK_SSPRXD (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
224 * SSP Integration Test output Register - SSP_ITOP
226 #define ITOP_MASK_SSPTXD (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
231 #define ITOP_MASK_RORINTR (0x1UL << 5)
232 #define ITOP_MASK_RTINTR (0x1UL << 6)
233 #define ITOP_MASK_RXINTR (0x1UL << 7)
234 #define ITOP_MASK_TXINTR (0x1UL << 8)
235 #define ITOP_MASK_INTR (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
242 * SSP Test Data Register - SSP_TDR
244 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
248 * we use the spi_message.state (void *) pointer to
249 * hold a single state value, that's why all this
250 * (void *) casting is done here.
252 #define STATE_START ((void *) 0)
253 #define STATE_RUNNING ((void *) 1)
254 #define STATE_DONE ((void *) 2)
255 #define STATE_ERROR ((void *) -1)
258 * SSP State - Whether Enabled or Disabled
260 #define SSP_DISABLED (0)
261 #define SSP_ENABLED (1)
264 * SSP DMA State - Whether DMA Enabled or Disabled
266 #define SSP_DMA_DISABLED (0)
267 #define SSP_DMA_ENABLED (1)
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
276 * SSP Clock Parameter ranges
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
284 * SSP Interrupt related Macros
286 #define DEFAULT_SSP_REG_IMSC 0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS ( \
289 SSP_IMSC_MASK_RORIM | \
290 SSP_IMSC_MASK_RTIM | \
291 SSP_IMSC_MASK_RXIM | \
295 #define CLEAR_ALL_INTERRUPTS 0x3
297 #define SPI_POLLING_TIMEOUT 1000
300 * The type of reading going on on this chip
310 * The type of writing going on on this chip
320 * struct vendor_data - vendor-specific config parameters
321 * for PL022 derivates
322 * @fifodepth: depth of FIFOs (both)
323 * @max_bpw: maximum number of bits per word
324 * @unidir: supports unidirection transfers
325 * @extended_cr: 32 bit wide control register 0 with extra
326 * features and extra features in CR1 as found in the ST variants
327 * @pl023: supports a subset of the ST extensions called "PL023"
328 * @internal_cs_ctrl: supports chip select control register
337 bool internal_cs_ctrl
;
341 * struct pl022 - This is the private SSP driver data structure
342 * @adev: AMBA device model hookup
343 * @vendor: vendor data for the IP block
344 * @phybase: the physical memory where the SSP device resides
345 * @virtbase: the virtual memory where the SSP is mapped
346 * @clk: outgoing clock "SPICLK" for the SPI bus
347 * @master: SPI framework hookup
348 * @master_info: controller-specific data from machine setup
349 * @kworker: thread struct for message pump
350 * @kworker_task: pointer to task for message pump kworker thread
351 * @pump_messages: work struct for scheduling work to the message pump
352 * @queue_lock: spinlock to syncronise access to message queue
353 * @queue: message queue
354 * @busy: message pump is busy
355 * @running: message pump is running
356 * @pump_transfers: Tasklet used in Interrupt Transfer mode
357 * @cur_msg: Pointer to current spi_message being processed
358 * @cur_transfer: Pointer to current spi_transfer
359 * @cur_chip: pointer to current clients chip(assigned from controller_state)
360 * @next_msg_cs_active: the next message in the queue has been examined
361 * and it was found that it uses the same chip select as the previous
362 * message, so we left it active after the previous transfer, and it's
364 * @tx: current position in TX buffer to be read
365 * @tx_end: end position in TX buffer to be read
366 * @rx: current position in RX buffer to be written
367 * @rx_end: end position in RX buffer to be written
368 * @read: the type of read currently going on
369 * @write: the type of write currently going on
370 * @exp_fifo_level: expected FIFO level
371 * @dma_rx_channel: optional channel for RX DMA
372 * @dma_tx_channel: optional channel for TX DMA
373 * @sgt_rx: scattertable for the RX transfer
374 * @sgt_tx: scattertable for the TX transfer
375 * @dummypage: a dummy page used for driving data on the bus with DMA
376 * @cur_cs: current chip select (gpio)
377 * @chipselects: list of chipselects (gpios)
380 struct amba_device
*adev
;
381 struct vendor_data
*vendor
;
382 resource_size_t phybase
;
383 void __iomem
*virtbase
;
385 struct spi_master
*master
;
386 struct pl022_ssp_controller
*master_info
;
387 /* Message per-transfer pump */
388 struct tasklet_struct pump_transfers
;
389 struct spi_message
*cur_msg
;
390 struct spi_transfer
*cur_transfer
;
391 struct chip_data
*cur_chip
;
392 bool next_msg_cs_active
;
397 enum ssp_reading read
;
398 enum ssp_writing write
;
400 enum ssp_rx_level_trig rx_lev_trig
;
401 enum ssp_tx_level_trig tx_lev_trig
;
403 #ifdef CONFIG_DMA_ENGINE
404 struct dma_chan
*dma_rx_channel
;
405 struct dma_chan
*dma_tx_channel
;
406 struct sg_table sgt_rx
;
407 struct sg_table sgt_tx
;
416 * struct chip_data - To maintain runtime state of SSP for each client chip
417 * @cr0: Value of control register CR0 of SSP - on later ST variants this
418 * register is 32 bits wide rather than just 16
419 * @cr1: Value of control register CR1 of SSP
420 * @dmacr: Value of DMA control Register of SSP
421 * @cpsr: Value of Clock prescale register
422 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
423 * @enable_dma: Whether to enable DMA or not
424 * @read: function ptr to be used to read when doing xfer for this chip
425 * @write: function ptr to be used to write when doing xfer for this chip
426 * @cs_control: chip select callback provided by chip
427 * @xfer_type: polling/interrupt/DMA
429 * Runtime state of the SSP controller, maintained per chip,
430 * This would be set according to the current message that would be served
439 enum ssp_reading read
;
440 enum ssp_writing write
;
441 void (*cs_control
) (u32 command
);
446 * null_cs_control - Dummy chip select function
447 * @command: select/delect the chip
449 * If no chip select function is provided by client this is used as dummy
452 static void null_cs_control(u32 command
)
454 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
458 * internal_cs_control - Control chip select signals via SSP_CSR.
459 * @pl022: SSP driver private data structure
460 * @command: select/delect the chip
462 * Used on controller with internal chip select control via SSP_CSR register
463 * (vendor extension). Each of the 5 LSB in the register controls one chip
466 static void internal_cs_control(struct pl022
*pl022
, u32 command
)
470 tmp
= readw(SSP_CSR(pl022
->virtbase
));
471 if (command
== SSP_CHIP_SELECT
)
472 tmp
&= ~BIT(pl022
->cur_cs
);
474 tmp
|= BIT(pl022
->cur_cs
);
475 writew(tmp
, SSP_CSR(pl022
->virtbase
));
478 static void pl022_cs_control(struct pl022
*pl022
, u32 command
)
480 if (pl022
->vendor
->internal_cs_ctrl
)
481 internal_cs_control(pl022
, command
);
482 else if (gpio_is_valid(pl022
->cur_cs
))
483 gpio_set_value(pl022
->cur_cs
, command
);
485 pl022
->cur_chip
->cs_control(command
);
489 * giveback - current spi_message is over, schedule next message and call
490 * callback of this message. Assumes that caller already
491 * set message->status; dma and pio irqs are blocked
492 * @pl022: SSP driver private data structure
494 static void giveback(struct pl022
*pl022
)
496 struct spi_transfer
*last_transfer
;
497 pl022
->next_msg_cs_active
= false;
499 last_transfer
= list_last_entry(&pl022
->cur_msg
->transfers
,
500 struct spi_transfer
, transfer_list
);
502 /* Delay if requested before any change in chip select */
503 if (last_transfer
->delay_usecs
)
505 * FIXME: This runs in interrupt context.
506 * Is this really smart?
508 udelay(last_transfer
->delay_usecs
);
510 if (!last_transfer
->cs_change
) {
511 struct spi_message
*next_msg
;
514 * cs_change was not set. We can keep the chip select
515 * enabled if there is message in the queue and it is
516 * for the same spi device.
518 * We cannot postpone this until pump_messages, because
519 * after calling msg->complete (below) the driver that
520 * sent the current message could be unloaded, which
521 * could invalidate the cs_control() callback...
523 /* get a pointer to the next message, if any */
524 next_msg
= spi_get_next_queued_message(pl022
->master
);
527 * see if the next and current messages point
528 * to the same spi device.
530 if (next_msg
&& next_msg
->spi
!= pl022
->cur_msg
->spi
)
532 if (!next_msg
|| pl022
->cur_msg
->state
== STATE_ERROR
)
533 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
535 pl022
->next_msg_cs_active
= true;
539 pl022
->cur_msg
= NULL
;
540 pl022
->cur_transfer
= NULL
;
541 pl022
->cur_chip
= NULL
;
543 /* disable the SPI/SSP operation */
544 writew((readw(SSP_CR1(pl022
->virtbase
)) &
545 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
547 spi_finalize_current_message(pl022
->master
);
551 * flush - flush the FIFO to reach a clean state
552 * @pl022: SSP driver private data structure
554 static int flush(struct pl022
*pl022
)
556 unsigned long limit
= loops_per_jiffy
<< 1;
558 dev_dbg(&pl022
->adev
->dev
, "flush\n");
560 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
561 readw(SSP_DR(pl022
->virtbase
));
562 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
564 pl022
->exp_fifo_level
= 0;
570 * restore_state - Load configuration of current chip
571 * @pl022: SSP driver private data structure
573 static void restore_state(struct pl022
*pl022
)
575 struct chip_data
*chip
= pl022
->cur_chip
;
577 if (pl022
->vendor
->extended_cr
)
578 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
580 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
581 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
582 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
583 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
584 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
585 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
589 * Default SSP Register Values
591 #define DEFAULT_SSP_REG_CR0 ( \
592 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
593 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
594 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
595 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
596 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
599 /* ST versions have slightly different bit layout */
600 #define DEFAULT_SSP_REG_CR0_ST ( \
601 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
602 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
603 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
604 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
605 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
606 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
607 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
610 /* The PL023 version is slightly different again */
611 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
612 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
613 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
614 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
615 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
618 #define DEFAULT_SSP_REG_CR1 ( \
619 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
620 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
621 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
622 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
625 /* ST versions extend this register to use all 16 bits */
626 #define DEFAULT_SSP_REG_CR1_ST ( \
627 DEFAULT_SSP_REG_CR1 | \
628 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
629 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
630 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
631 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
632 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
636 * The PL023 variant has further differences: no loopback mode, no microwire
637 * support, and a new clock feedback delay setting.
639 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
640 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
641 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
642 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
643 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
644 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
645 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
646 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
647 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
650 #define DEFAULT_SSP_REG_CPSR ( \
651 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
654 #define DEFAULT_SSP_REG_DMACR (\
655 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
656 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
660 * load_ssp_default_config - Load default configuration for SSP
661 * @pl022: SSP driver private data structure
663 static void load_ssp_default_config(struct pl022
*pl022
)
665 if (pl022
->vendor
->pl023
) {
666 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
667 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
668 } else if (pl022
->vendor
->extended_cr
) {
669 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
670 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
672 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
673 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
675 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
676 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
677 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
678 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
682 * This will write to TX and read from RX according to the parameters
685 static void readwriter(struct pl022
*pl022
)
689 * The FIFO depth is different between primecell variants.
690 * I believe filling in too much in the FIFO might cause
691 * errons in 8bit wide transfers on ARM variants (just 8 words
692 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
694 * To prevent this issue, the TX FIFO is only filled to the
695 * unused RX FIFO fill length, regardless of what the TX
696 * FIFO status flag indicates.
698 dev_dbg(&pl022
->adev
->dev
,
699 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
700 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
702 /* Read as much as you can */
703 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
704 && (pl022
->rx
< pl022
->rx_end
)) {
705 switch (pl022
->read
) {
707 readw(SSP_DR(pl022
->virtbase
));
710 *(u8
*) (pl022
->rx
) =
711 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
714 *(u16
*) (pl022
->rx
) =
715 (u16
) readw(SSP_DR(pl022
->virtbase
));
718 *(u32
*) (pl022
->rx
) =
719 readl(SSP_DR(pl022
->virtbase
));
722 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
723 pl022
->exp_fifo_level
--;
726 * Write as much as possible up to the RX FIFO size
728 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
729 && (pl022
->tx
< pl022
->tx_end
)) {
730 switch (pl022
->write
) {
732 writew(0x0, SSP_DR(pl022
->virtbase
));
735 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
738 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
741 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
744 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
745 pl022
->exp_fifo_level
++;
747 * This inner reader takes care of things appearing in the RX
748 * FIFO as we're transmitting. This will happen a lot since the
749 * clock starts running when you put things into the TX FIFO,
750 * and then things are continuously clocked into the RX FIFO.
752 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
753 && (pl022
->rx
< pl022
->rx_end
)) {
754 switch (pl022
->read
) {
756 readw(SSP_DR(pl022
->virtbase
));
759 *(u8
*) (pl022
->rx
) =
760 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
763 *(u16
*) (pl022
->rx
) =
764 (u16
) readw(SSP_DR(pl022
->virtbase
));
767 *(u32
*) (pl022
->rx
) =
768 readl(SSP_DR(pl022
->virtbase
));
771 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
772 pl022
->exp_fifo_level
--;
776 * When we exit here the TX FIFO should be full and the RX FIFO
782 * next_transfer - Move to the Next transfer in the current spi message
783 * @pl022: SSP driver private data structure
785 * This function moves though the linked list of spi transfers in the
786 * current spi message and returns with the state of current spi
787 * message i.e whether its last transfer is done(STATE_DONE) or
788 * Next transfer is ready(STATE_RUNNING)
790 static void *next_transfer(struct pl022
*pl022
)
792 struct spi_message
*msg
= pl022
->cur_msg
;
793 struct spi_transfer
*trans
= pl022
->cur_transfer
;
795 /* Move to next transfer */
796 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
797 pl022
->cur_transfer
=
798 list_entry(trans
->transfer_list
.next
,
799 struct spi_transfer
, transfer_list
);
800 return STATE_RUNNING
;
806 * This DMA functionality is only compiled in if we have
807 * access to the generic DMA devices/DMA engine.
809 #ifdef CONFIG_DMA_ENGINE
810 static void unmap_free_dma_scatter(struct pl022
*pl022
)
812 /* Unmap and free the SG tables */
813 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
814 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
815 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
816 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
817 sg_free_table(&pl022
->sgt_rx
);
818 sg_free_table(&pl022
->sgt_tx
);
821 static void dma_callback(void *data
)
823 struct pl022
*pl022
= data
;
824 struct spi_message
*msg
= pl022
->cur_msg
;
826 BUG_ON(!pl022
->sgt_rx
.sgl
);
830 * Optionally dump out buffers to inspect contents, this is
831 * good if you want to convince yourself that the loopback
832 * read/write contents are the same, when adopting to a new
836 struct scatterlist
*sg
;
839 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
844 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
845 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
846 print_hex_dump(KERN_ERR
, "SPI RX: ",
854 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
855 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
856 print_hex_dump(KERN_ERR
, "SPI TX: ",
867 unmap_free_dma_scatter(pl022
);
869 /* Update total bytes transferred */
870 msg
->actual_length
+= pl022
->cur_transfer
->len
;
871 if (pl022
->cur_transfer
->cs_change
)
872 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
874 /* Move to next transfer */
875 msg
->state
= next_transfer(pl022
);
876 tasklet_schedule(&pl022
->pump_transfers
);
879 static void setup_dma_scatter(struct pl022
*pl022
,
882 struct sg_table
*sgtab
)
884 struct scatterlist
*sg
;
885 int bytesleft
= length
;
891 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
893 * If there are less bytes left than what fits
894 * in the current page (plus page alignment offset)
895 * we just feed in this, else we stuff in as much
898 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
899 mapbytes
= bytesleft
;
901 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
902 sg_set_page(sg
, virt_to_page(bufp
),
903 mapbytes
, offset_in_page(bufp
));
905 bytesleft
-= mapbytes
;
906 dev_dbg(&pl022
->adev
->dev
,
907 "set RX/TX target page @ %p, %d bytes, %d left\n",
908 bufp
, mapbytes
, bytesleft
);
911 /* Map the dummy buffer on every page */
912 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
913 if (bytesleft
< PAGE_SIZE
)
914 mapbytes
= bytesleft
;
916 mapbytes
= PAGE_SIZE
;
917 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
919 bytesleft
-= mapbytes
;
920 dev_dbg(&pl022
->adev
->dev
,
921 "set RX/TX to dummy page %d bytes, %d left\n",
922 mapbytes
, bytesleft
);
930 * configure_dma - configures the channels for the next transfer
931 * @pl022: SSP driver's private data structure
933 static int configure_dma(struct pl022
*pl022
)
935 struct dma_slave_config rx_conf
= {
936 .src_addr
= SSP_DR(pl022
->phybase
),
937 .direction
= DMA_DEV_TO_MEM
,
940 struct dma_slave_config tx_conf
= {
941 .dst_addr
= SSP_DR(pl022
->phybase
),
942 .direction
= DMA_MEM_TO_DEV
,
947 int rx_sglen
, tx_sglen
;
948 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
949 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
950 struct dma_async_tx_descriptor
*rxdesc
;
951 struct dma_async_tx_descriptor
*txdesc
;
953 /* Check that the channels are available */
954 if (!rxchan
|| !txchan
)
958 * If supplied, the DMA burstsize should equal the FIFO trigger level.
959 * Notice that the DMA engine uses one-to-one mapping. Since we can
960 * not trigger on 2 elements this needs explicit mapping rather than
963 switch (pl022
->rx_lev_trig
) {
964 case SSP_RX_1_OR_MORE_ELEM
:
965 rx_conf
.src_maxburst
= 1;
967 case SSP_RX_4_OR_MORE_ELEM
:
968 rx_conf
.src_maxburst
= 4;
970 case SSP_RX_8_OR_MORE_ELEM
:
971 rx_conf
.src_maxburst
= 8;
973 case SSP_RX_16_OR_MORE_ELEM
:
974 rx_conf
.src_maxburst
= 16;
976 case SSP_RX_32_OR_MORE_ELEM
:
977 rx_conf
.src_maxburst
= 32;
980 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
984 switch (pl022
->tx_lev_trig
) {
985 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
986 tx_conf
.dst_maxburst
= 1;
988 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
989 tx_conf
.dst_maxburst
= 4;
991 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
992 tx_conf
.dst_maxburst
= 8;
994 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
995 tx_conf
.dst_maxburst
= 16;
997 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
998 tx_conf
.dst_maxburst
= 32;
1001 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
1005 switch (pl022
->read
) {
1007 /* Use the same as for writing */
1008 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
1011 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1014 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1017 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1021 switch (pl022
->write
) {
1023 /* Use the same as for reading */
1024 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
1027 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1030 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1033 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1037 /* SPI pecularity: we need to read and write the same width */
1038 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1039 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1040 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1041 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1042 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1044 dmaengine_slave_config(rxchan
, &rx_conf
);
1045 dmaengine_slave_config(txchan
, &tx_conf
);
1047 /* Create sglists for the transfers */
1048 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
1049 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1051 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
1053 goto err_alloc_rx_sg
;
1055 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1057 goto err_alloc_tx_sg
;
1059 /* Fill in the scatterlists for the RX+TX buffers */
1060 setup_dma_scatter(pl022
, pl022
->rx
,
1061 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1062 setup_dma_scatter(pl022
, pl022
->tx
,
1063 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1065 /* Map DMA buffers */
1066 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1067 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1071 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1072 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1076 /* Send both scatterlists */
1077 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
1081 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1085 txdesc
= dmaengine_prep_slave_sg(txchan
,
1089 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1093 /* Put the callback on the RX transfer only, that should finish last */
1094 rxdesc
->callback
= dma_callback
;
1095 rxdesc
->callback_param
= pl022
;
1097 /* Submit and fire RX and TX with TX last so we're ready to read! */
1098 dmaengine_submit(rxdesc
);
1099 dmaengine_submit(txdesc
);
1100 dma_async_issue_pending(rxchan
);
1101 dma_async_issue_pending(txchan
);
1102 pl022
->dma_running
= true;
1107 dmaengine_terminate_all(txchan
);
1109 dmaengine_terminate_all(rxchan
);
1110 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1111 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1113 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1114 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1116 sg_free_table(&pl022
->sgt_tx
);
1118 sg_free_table(&pl022
->sgt_rx
);
1123 static int pl022_dma_probe(struct pl022
*pl022
)
1125 dma_cap_mask_t mask
;
1127 /* Try to acquire a generic DMA engine slave channel */
1129 dma_cap_set(DMA_SLAVE
, mask
);
1131 * We need both RX and TX channels to do DMA, else do none
1134 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1135 pl022
->master_info
->dma_filter
,
1136 pl022
->master_info
->dma_rx_param
);
1137 if (!pl022
->dma_rx_channel
) {
1138 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1142 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1143 pl022
->master_info
->dma_filter
,
1144 pl022
->master_info
->dma_tx_param
);
1145 if (!pl022
->dma_tx_channel
) {
1146 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1150 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1151 if (!pl022
->dummypage
)
1152 goto err_no_dummypage
;
1154 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1155 dma_chan_name(pl022
->dma_rx_channel
),
1156 dma_chan_name(pl022
->dma_tx_channel
));
1161 dma_release_channel(pl022
->dma_tx_channel
);
1163 dma_release_channel(pl022
->dma_rx_channel
);
1164 pl022
->dma_rx_channel
= NULL
;
1166 dev_err(&pl022
->adev
->dev
,
1167 "Failed to work in dma mode, work without dma!\n");
1171 static int pl022_dma_autoprobe(struct pl022
*pl022
)
1173 struct device
*dev
= &pl022
->adev
->dev
;
1175 /* automatically configure DMA channels from platform, normally using DT */
1176 pl022
->dma_rx_channel
= dma_request_slave_channel(dev
, "rx");
1177 if (!pl022
->dma_rx_channel
)
1180 pl022
->dma_tx_channel
= dma_request_slave_channel(dev
, "tx");
1181 if (!pl022
->dma_tx_channel
)
1184 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1185 if (!pl022
->dummypage
)
1186 goto err_no_dummypage
;
1191 dma_release_channel(pl022
->dma_tx_channel
);
1192 pl022
->dma_tx_channel
= NULL
;
1194 dma_release_channel(pl022
->dma_rx_channel
);
1195 pl022
->dma_rx_channel
= NULL
;
1200 static void terminate_dma(struct pl022
*pl022
)
1202 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1203 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1205 dmaengine_terminate_all(rxchan
);
1206 dmaengine_terminate_all(txchan
);
1207 unmap_free_dma_scatter(pl022
);
1208 pl022
->dma_running
= false;
1211 static void pl022_dma_remove(struct pl022
*pl022
)
1213 if (pl022
->dma_running
)
1214 terminate_dma(pl022
);
1215 if (pl022
->dma_tx_channel
)
1216 dma_release_channel(pl022
->dma_tx_channel
);
1217 if (pl022
->dma_rx_channel
)
1218 dma_release_channel(pl022
->dma_rx_channel
);
1219 kfree(pl022
->dummypage
);
1223 static inline int configure_dma(struct pl022
*pl022
)
1228 static inline int pl022_dma_autoprobe(struct pl022
*pl022
)
1233 static inline int pl022_dma_probe(struct pl022
*pl022
)
1238 static inline void pl022_dma_remove(struct pl022
*pl022
)
1244 * pl022_interrupt_handler - Interrupt handler for SSP controller
1246 * This function handles interrupts generated for an interrupt based transfer.
1247 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1248 * current message's state as STATE_ERROR and schedule the tasklet
1249 * pump_transfers which will do the postprocessing of the current message by
1250 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1251 * more data, and writes data in TX FIFO till it is not full. If we complete
1252 * the transfer we move to the next transfer and schedule the tasklet.
1254 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1256 struct pl022
*pl022
= dev_id
;
1257 struct spi_message
*msg
= pl022
->cur_msg
;
1260 if (unlikely(!msg
)) {
1261 dev_err(&pl022
->adev
->dev
,
1262 "bad message state in interrupt handler");
1267 /* Read the Interrupt Status Register */
1268 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1270 if (unlikely(!irq_status
))
1274 * This handles the FIFO interrupts, the timeout
1275 * interrupts are flatly ignored, they cannot be
1278 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1280 * Overrun interrupt - bail out since our Data has been
1283 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1284 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1285 dev_err(&pl022
->adev
->dev
,
1286 "RXFIFO is full\n");
1289 * Disable and clear interrupts, disable SSP,
1290 * mark message with bad status so it can be
1293 writew(DISABLE_ALL_INTERRUPTS
,
1294 SSP_IMSC(pl022
->virtbase
));
1295 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1296 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1297 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1298 msg
->state
= STATE_ERROR
;
1300 /* Schedule message queue handler */
1301 tasklet_schedule(&pl022
->pump_transfers
);
1307 if (pl022
->tx
== pl022
->tx_end
) {
1308 /* Disable Transmit interrupt, enable receive interrupt */
1309 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1310 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1311 SSP_IMSC(pl022
->virtbase
));
1315 * Since all transactions must write as much as shall be read,
1316 * we can conclude the entire transaction once RX is complete.
1317 * At this point, all TX will always be finished.
1319 if (pl022
->rx
>= pl022
->rx_end
) {
1320 writew(DISABLE_ALL_INTERRUPTS
,
1321 SSP_IMSC(pl022
->virtbase
));
1322 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1323 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1324 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1325 "bytes (did you request an odd "
1326 "number of bytes on a 16bit bus?)\n",
1327 (u32
) (pl022
->rx
- pl022
->rx_end
));
1329 /* Update total bytes transferred */
1330 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1331 if (pl022
->cur_transfer
->cs_change
)
1332 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1333 /* Move to next transfer */
1334 msg
->state
= next_transfer(pl022
);
1335 tasklet_schedule(&pl022
->pump_transfers
);
1343 * This sets up the pointers to memory for the next message to
1344 * send out on the SPI bus.
1346 static int set_up_next_transfer(struct pl022
*pl022
,
1347 struct spi_transfer
*transfer
)
1351 /* Sanity check the message for this bus width */
1352 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1353 if (unlikely(residue
!= 0)) {
1354 dev_err(&pl022
->adev
->dev
,
1355 "message of %u bytes to transmit but the current "
1356 "chip bus has a data width of %u bytes!\n",
1357 pl022
->cur_transfer
->len
,
1358 pl022
->cur_chip
->n_bytes
);
1359 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1362 pl022
->tx
= (void *)transfer
->tx_buf
;
1363 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1364 pl022
->rx
= (void *)transfer
->rx_buf
;
1365 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1367 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1368 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1373 * pump_transfers - Tasklet function which schedules next transfer
1374 * when running in interrupt or DMA transfer mode.
1375 * @data: SSP driver private data structure
1378 static void pump_transfers(unsigned long data
)
1380 struct pl022
*pl022
= (struct pl022
*) data
;
1381 struct spi_message
*message
= NULL
;
1382 struct spi_transfer
*transfer
= NULL
;
1383 struct spi_transfer
*previous
= NULL
;
1385 /* Get current state information */
1386 message
= pl022
->cur_msg
;
1387 transfer
= pl022
->cur_transfer
;
1389 /* Handle for abort */
1390 if (message
->state
== STATE_ERROR
) {
1391 message
->status
= -EIO
;
1396 /* Handle end of message */
1397 if (message
->state
== STATE_DONE
) {
1398 message
->status
= 0;
1403 /* Delay if requested at end of transfer before CS change */
1404 if (message
->state
== STATE_RUNNING
) {
1405 previous
= list_entry(transfer
->transfer_list
.prev
,
1406 struct spi_transfer
,
1408 if (previous
->delay_usecs
)
1410 * FIXME: This runs in interrupt context.
1411 * Is this really smart?
1413 udelay(previous
->delay_usecs
);
1415 /* Reselect chip select only if cs_change was requested */
1416 if (previous
->cs_change
)
1417 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1420 message
->state
= STATE_RUNNING
;
1423 if (set_up_next_transfer(pl022
, transfer
)) {
1424 message
->state
= STATE_ERROR
;
1425 message
->status
= -EIO
;
1429 /* Flush the FIFOs and let's go! */
1432 if (pl022
->cur_chip
->enable_dma
) {
1433 if (configure_dma(pl022
)) {
1434 dev_dbg(&pl022
->adev
->dev
,
1435 "configuration of DMA failed, fall back to interrupt mode\n");
1436 goto err_config_dma
;
1442 /* enable all interrupts except RX */
1443 writew(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
, SSP_IMSC(pl022
->virtbase
));
1446 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1449 * Default is to enable all interrupts except RX -
1450 * this will be enabled once TX is complete
1452 u32 irqflags
= (u32
)(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
);
1454 /* Enable target chip, if not already active */
1455 if (!pl022
->next_msg_cs_active
)
1456 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1458 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1460 pl022
->cur_msg
->state
= STATE_ERROR
;
1461 pl022
->cur_msg
->status
= -EIO
;
1465 /* If we're using DMA, set up DMA here */
1466 if (pl022
->cur_chip
->enable_dma
) {
1467 /* Configure DMA transfer */
1468 if (configure_dma(pl022
)) {
1469 dev_dbg(&pl022
->adev
->dev
,
1470 "configuration of DMA failed, fall back to interrupt mode\n");
1471 goto err_config_dma
;
1473 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1474 irqflags
= DISABLE_ALL_INTERRUPTS
;
1477 /* Enable SSP, turn on interrupts */
1478 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1479 SSP_CR1(pl022
->virtbase
));
1480 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1483 static void do_polling_transfer(struct pl022
*pl022
)
1485 struct spi_message
*message
= NULL
;
1486 struct spi_transfer
*transfer
= NULL
;
1487 struct spi_transfer
*previous
= NULL
;
1488 struct chip_data
*chip
;
1489 unsigned long time
, timeout
;
1491 chip
= pl022
->cur_chip
;
1492 message
= pl022
->cur_msg
;
1494 while (message
->state
!= STATE_DONE
) {
1495 /* Handle for abort */
1496 if (message
->state
== STATE_ERROR
)
1498 transfer
= pl022
->cur_transfer
;
1500 /* Delay if requested at end of transfer */
1501 if (message
->state
== STATE_RUNNING
) {
1503 list_entry(transfer
->transfer_list
.prev
,
1504 struct spi_transfer
, transfer_list
);
1505 if (previous
->delay_usecs
)
1506 udelay(previous
->delay_usecs
);
1507 if (previous
->cs_change
)
1508 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1511 message
->state
= STATE_RUNNING
;
1512 if (!pl022
->next_msg_cs_active
)
1513 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1516 /* Configuration Changing Per Transfer */
1517 if (set_up_next_transfer(pl022
, transfer
)) {
1519 message
->state
= STATE_ERROR
;
1522 /* Flush FIFOs and enable SSP */
1524 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1525 SSP_CR1(pl022
->virtbase
));
1527 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1529 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1530 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1533 if (time_after(time
, timeout
)) {
1534 dev_warn(&pl022
->adev
->dev
,
1535 "%s: timeout!\n", __func__
);
1536 message
->state
= STATE_ERROR
;
1542 /* Update total byte transferred */
1543 message
->actual_length
+= pl022
->cur_transfer
->len
;
1544 if (pl022
->cur_transfer
->cs_change
)
1545 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1546 /* Move to next transfer */
1547 message
->state
= next_transfer(pl022
);
1550 /* Handle end of message */
1551 if (message
->state
== STATE_DONE
)
1552 message
->status
= 0;
1554 message
->status
= -EIO
;
1560 static int pl022_transfer_one_message(struct spi_master
*master
,
1561 struct spi_message
*msg
)
1563 struct pl022
*pl022
= spi_master_get_devdata(master
);
1565 /* Initial message state */
1566 pl022
->cur_msg
= msg
;
1567 msg
->state
= STATE_START
;
1569 pl022
->cur_transfer
= list_entry(msg
->transfers
.next
,
1570 struct spi_transfer
, transfer_list
);
1572 /* Setup the SPI using the per chip configuration */
1573 pl022
->cur_chip
= spi_get_ctldata(msg
->spi
);
1574 pl022
->cur_cs
= pl022
->chipselects
[msg
->spi
->chip_select
];
1576 restore_state(pl022
);
1579 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1580 do_polling_transfer(pl022
);
1582 do_interrupt_dma_transfer(pl022
);
1587 static int pl022_unprepare_transfer_hardware(struct spi_master
*master
)
1589 struct pl022
*pl022
= spi_master_get_devdata(master
);
1591 /* nothing more to do - disable spi/ssp and power off */
1592 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1593 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1598 static int verify_controller_parameters(struct pl022
*pl022
,
1599 struct pl022_config_chip
const *chip_info
)
1601 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1602 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1603 dev_err(&pl022
->adev
->dev
,
1604 "interface is configured incorrectly\n");
1607 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1608 (!pl022
->vendor
->unidir
)) {
1609 dev_err(&pl022
->adev
->dev
,
1610 "unidirectional mode not supported in this "
1611 "hardware version\n");
1614 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1615 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1616 dev_err(&pl022
->adev
->dev
,
1617 "hierarchy is configured incorrectly\n");
1620 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1621 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1622 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1623 dev_err(&pl022
->adev
->dev
,
1624 "Communication mode is configured incorrectly\n");
1627 switch (chip_info
->rx_lev_trig
) {
1628 case SSP_RX_1_OR_MORE_ELEM
:
1629 case SSP_RX_4_OR_MORE_ELEM
:
1630 case SSP_RX_8_OR_MORE_ELEM
:
1631 /* These are always OK, all variants can handle this */
1633 case SSP_RX_16_OR_MORE_ELEM
:
1634 if (pl022
->vendor
->fifodepth
< 16) {
1635 dev_err(&pl022
->adev
->dev
,
1636 "RX FIFO Trigger Level is configured incorrectly\n");
1640 case SSP_RX_32_OR_MORE_ELEM
:
1641 if (pl022
->vendor
->fifodepth
< 32) {
1642 dev_err(&pl022
->adev
->dev
,
1643 "RX FIFO Trigger Level is configured incorrectly\n");
1648 dev_err(&pl022
->adev
->dev
,
1649 "RX FIFO Trigger Level is configured incorrectly\n");
1652 switch (chip_info
->tx_lev_trig
) {
1653 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1654 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1655 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1656 /* These are always OK, all variants can handle this */
1658 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1659 if (pl022
->vendor
->fifodepth
< 16) {
1660 dev_err(&pl022
->adev
->dev
,
1661 "TX FIFO Trigger Level is configured incorrectly\n");
1665 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1666 if (pl022
->vendor
->fifodepth
< 32) {
1667 dev_err(&pl022
->adev
->dev
,
1668 "TX FIFO Trigger Level is configured incorrectly\n");
1673 dev_err(&pl022
->adev
->dev
,
1674 "TX FIFO Trigger Level is configured incorrectly\n");
1677 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1678 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1679 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1680 dev_err(&pl022
->adev
->dev
,
1681 "CTRL LEN is configured incorrectly\n");
1684 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1685 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1686 dev_err(&pl022
->adev
->dev
,
1687 "Wait State is configured incorrectly\n");
1690 /* Half duplex is only available in the ST Micro version */
1691 if (pl022
->vendor
->extended_cr
) {
1692 if ((chip_info
->duplex
!=
1693 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1694 && (chip_info
->duplex
!=
1695 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1696 dev_err(&pl022
->adev
->dev
,
1697 "Microwire duplex mode is configured incorrectly\n");
1701 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1702 dev_err(&pl022
->adev
->dev
,
1703 "Microwire half duplex mode requested,"
1704 " but this is only available in the"
1705 " ST version of PL022\n");
1712 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1714 return rate
/ (cpsdvsr
* (1 + scr
));
1717 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1718 ssp_clock_params
* clk_freq
)
1720 /* Lets calculate the frequency parameters */
1721 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1722 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1723 best_scr
= 0, tmp
, found
= 0;
1725 rate
= clk_get_rate(pl022
->clk
);
1726 /* cpsdvscr = 2 & scr 0 */
1727 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1728 /* cpsdvsr = 254 & scr = 255 */
1729 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1731 if (freq
> max_tclk
)
1732 dev_warn(&pl022
->adev
->dev
,
1733 "Max speed that can be programmed is %d Hz, you requested %d\n",
1736 if (freq
< min_tclk
) {
1737 dev_err(&pl022
->adev
->dev
,
1738 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1744 * best_freq will give closest possible available rate (<= requested
1745 * freq) for all values of scr & cpsdvsr.
1747 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1748 while (scr
<= SCR_MAX
) {
1749 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1752 /* we need lower freq */
1758 * If found exact value, mark found and break.
1759 * If found more closer value, update and break.
1761 if (tmp
> best_freq
) {
1763 best_cpsdvsr
= cpsdvsr
;
1770 * increased scr will give lower rates, which are not
1779 WARN(!best_freq
, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1782 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1783 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1784 dev_dbg(&pl022
->adev
->dev
,
1785 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1787 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1788 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1794 * A piece of default chip info unless the platform
1797 static const struct pl022_config_chip pl022_default_chip_info
= {
1798 .com_mode
= POLLING_TRANSFER
,
1799 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1800 .hierarchy
= SSP_SLAVE
,
1801 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1802 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1803 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1804 .ctrl_len
= SSP_BITS_8
,
1805 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1806 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1807 .cs_control
= null_cs_control
,
1811 * pl022_setup - setup function registered to SPI master framework
1812 * @spi: spi device which is requesting setup
1814 * This function is registered to the SPI framework for this SPI master
1815 * controller. If it is the first time when setup is called by this device,
1816 * this function will initialize the runtime state for this chip and save
1817 * the same in the device structure. Else it will update the runtime info
1818 * with the updated chip info. Nothing is really being written to the
1819 * controller hardware here, that is not done until the actual transfer
1822 static int pl022_setup(struct spi_device
*spi
)
1824 struct pl022_config_chip
const *chip_info
;
1825 struct pl022_config_chip chip_info_dt
;
1826 struct chip_data
*chip
;
1827 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1829 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1830 unsigned int bits
= spi
->bits_per_word
;
1832 struct device_node
*np
= spi
->dev
.of_node
;
1834 if (!spi
->max_speed_hz
)
1837 /* Get controller_state if one is supplied */
1838 chip
= spi_get_ctldata(spi
);
1841 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1845 "allocated memory for controller's runtime state\n");
1848 /* Get controller data if one is supplied */
1849 chip_info
= spi
->controller_data
;
1851 if (chip_info
== NULL
) {
1853 chip_info_dt
= pl022_default_chip_info
;
1855 chip_info_dt
.hierarchy
= SSP_MASTER
;
1856 of_property_read_u32(np
, "pl022,interface",
1857 &chip_info_dt
.iface
);
1858 of_property_read_u32(np
, "pl022,com-mode",
1859 &chip_info_dt
.com_mode
);
1860 of_property_read_u32(np
, "pl022,rx-level-trig",
1861 &chip_info_dt
.rx_lev_trig
);
1862 of_property_read_u32(np
, "pl022,tx-level-trig",
1863 &chip_info_dt
.tx_lev_trig
);
1864 of_property_read_u32(np
, "pl022,ctrl-len",
1865 &chip_info_dt
.ctrl_len
);
1866 of_property_read_u32(np
, "pl022,wait-state",
1867 &chip_info_dt
.wait_state
);
1868 of_property_read_u32(np
, "pl022,duplex",
1869 &chip_info_dt
.duplex
);
1871 chip_info
= &chip_info_dt
;
1873 chip_info
= &pl022_default_chip_info
;
1874 /* spi_board_info.controller_data not is supplied */
1876 "using default controller_data settings\n");
1880 "using user supplied controller_data settings\n");
1883 * We can override with custom divisors, else we use the board
1886 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1887 && (0 == chip_info
->clk_freq
.scr
)) {
1888 status
= calculate_effective_freq(pl022
,
1892 goto err_config_params
;
1894 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1895 if ((clk_freq
.cpsdvsr
% 2) != 0)
1897 clk_freq
.cpsdvsr
- 1;
1899 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1900 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1903 "cpsdvsr is configured incorrectly\n");
1904 goto err_config_params
;
1907 status
= verify_controller_parameters(pl022
, chip_info
);
1909 dev_err(&spi
->dev
, "controller data is incorrect");
1910 goto err_config_params
;
1913 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1914 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1916 /* Now set controller state based on controller data */
1917 chip
->xfer_type
= chip_info
->com_mode
;
1918 if (!chip_info
->cs_control
) {
1919 chip
->cs_control
= null_cs_control
;
1920 if (!gpio_is_valid(pl022
->chipselects
[spi
->chip_select
]))
1922 "invalid chip select\n");
1924 chip
->cs_control
= chip_info
->cs_control
;
1926 /* Check bits per word with vendor specific range */
1927 if ((bits
<= 3) || (bits
> pl022
->vendor
->max_bpw
)) {
1929 dev_err(&spi
->dev
, "illegal data size for this controller!\n");
1930 dev_err(&spi
->dev
, "This controller can only handle 4 <= n <= %d bit words\n",
1931 pl022
->vendor
->max_bpw
);
1932 goto err_config_params
;
1933 } else if (bits
<= 8) {
1934 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1936 chip
->read
= READING_U8
;
1937 chip
->write
= WRITING_U8
;
1938 } else if (bits
<= 16) {
1939 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1941 chip
->read
= READING_U16
;
1942 chip
->write
= WRITING_U16
;
1944 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1946 chip
->read
= READING_U32
;
1947 chip
->write
= WRITING_U32
;
1950 /* Now Initialize all register settings required for this chip */
1955 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1956 && ((pl022
->master_info
)->enable_dma
)) {
1957 chip
->enable_dma
= true;
1958 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1959 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1960 SSP_DMACR_MASK_RXDMAE
, 0);
1961 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1962 SSP_DMACR_MASK_TXDMAE
, 1);
1964 chip
->enable_dma
= false;
1965 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1966 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1967 SSP_DMACR_MASK_RXDMAE
, 0);
1968 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1969 SSP_DMACR_MASK_TXDMAE
, 1);
1972 chip
->cpsr
= clk_freq
.cpsdvsr
;
1974 /* Special setup for the ST micro extended control registers */
1975 if (pl022
->vendor
->extended_cr
) {
1978 if (pl022
->vendor
->pl023
) {
1979 /* These bits are only in the PL023 */
1980 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
1981 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
1983 /* These bits are in the PL022 but not PL023 */
1984 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
1985 SSP_CR0_MASK_HALFDUP_ST
, 5);
1986 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
1987 SSP_CR0_MASK_CSS_ST
, 16);
1988 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1989 SSP_CR0_MASK_FRF_ST
, 21);
1990 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
1991 SSP_CR1_MASK_MWAIT_ST
, 6);
1993 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1994 SSP_CR0_MASK_DSS_ST
, 0);
1996 if (spi
->mode
& SPI_LSB_FIRST
) {
2003 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2004 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2005 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2006 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2007 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2008 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2010 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2011 SSP_CR0_MASK_DSS
, 0);
2012 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2013 SSP_CR0_MASK_FRF
, 4);
2016 /* Stuff that is common for all versions */
2017 if (spi
->mode
& SPI_CPOL
)
2018 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2020 tmp
= SSP_CLK_POL_IDLE_LOW
;
2021 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2023 if (spi
->mode
& SPI_CPHA
)
2024 tmp
= SSP_CLK_SECOND_EDGE
;
2026 tmp
= SSP_CLK_FIRST_EDGE
;
2027 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2029 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2030 /* Loopback is available on all versions except PL023 */
2031 if (pl022
->vendor
->loopback
) {
2032 if (spi
->mode
& SPI_LOOP
)
2033 tmp
= LOOPBACK_ENABLED
;
2035 tmp
= LOOPBACK_DISABLED
;
2036 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2038 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2039 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2040 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
2043 /* Save controller_state */
2044 spi_set_ctldata(spi
, chip
);
2047 spi_set_ctldata(spi
, NULL
);
2053 * pl022_cleanup - cleanup function registered to SPI master framework
2054 * @spi: spi device which is requesting cleanup
2056 * This function is registered to the SPI framework for this SPI master
2057 * controller. It will free the runtime state of chip.
2059 static void pl022_cleanup(struct spi_device
*spi
)
2061 struct chip_data
*chip
= spi_get_ctldata(spi
);
2063 spi_set_ctldata(spi
, NULL
);
2067 static struct pl022_ssp_controller
*
2068 pl022_platform_data_dt_get(struct device
*dev
)
2070 struct device_node
*np
= dev
->of_node
;
2071 struct pl022_ssp_controller
*pd
;
2075 dev_err(dev
, "no dt node defined\n");
2079 pd
= devm_kzalloc(dev
, sizeof(struct pl022_ssp_controller
), GFP_KERNEL
);
2085 of_property_read_u32(np
, "num-cs", &tmp
);
2086 pd
->num_chipselect
= tmp
;
2087 of_property_read_u32(np
, "pl022,autosuspend-delay",
2088 &pd
->autosuspend_delay
);
2089 pd
->rt
= of_property_read_bool(np
, "pl022,rt");
2094 static int pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2096 struct device
*dev
= &adev
->dev
;
2097 struct pl022_ssp_controller
*platform_info
=
2098 dev_get_platdata(&adev
->dev
);
2099 struct spi_master
*master
;
2100 struct pl022
*pl022
= NULL
; /*Data for this driver */
2101 struct device_node
*np
= adev
->dev
.of_node
;
2102 int status
= 0, i
, num_cs
;
2104 dev_info(&adev
->dev
,
2105 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2106 if (!platform_info
&& IS_ENABLED(CONFIG_OF
))
2107 platform_info
= pl022_platform_data_dt_get(dev
);
2109 if (!platform_info
) {
2110 dev_err(dev
, "probe: no platform data defined\n");
2114 if (platform_info
->num_chipselect
) {
2115 num_cs
= platform_info
->num_chipselect
;
2117 dev_err(dev
, "probe: no chip select defined\n");
2121 /* Allocate master with space for data */
2122 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2123 if (master
== NULL
) {
2124 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2128 pl022
= spi_master_get_devdata(master
);
2129 pl022
->master
= master
;
2130 pl022
->master_info
= platform_info
;
2132 pl022
->vendor
= id
->data
;
2133 pl022
->chipselects
= devm_kzalloc(dev
, num_cs
* sizeof(int),
2135 if (!pl022
->chipselects
) {
2141 * Bus Number Which has been Assigned to this SSP controller
2144 master
->bus_num
= platform_info
->bus_id
;
2145 master
->num_chipselect
= num_cs
;
2146 master
->cleanup
= pl022_cleanup
;
2147 master
->setup
= pl022_setup
;
2148 master
->auto_runtime_pm
= true;
2149 master
->transfer_one_message
= pl022_transfer_one_message
;
2150 master
->unprepare_transfer_hardware
= pl022_unprepare_transfer_hardware
;
2151 master
->rt
= platform_info
->rt
;
2152 master
->dev
.of_node
= dev
->of_node
;
2154 if (platform_info
->num_chipselect
&& platform_info
->chipselects
) {
2155 for (i
= 0; i
< num_cs
; i
++)
2156 pl022
->chipselects
[i
] = platform_info
->chipselects
[i
];
2157 } else if (pl022
->vendor
->internal_cs_ctrl
) {
2158 for (i
= 0; i
< num_cs
; i
++)
2159 pl022
->chipselects
[i
] = i
;
2160 } else if (IS_ENABLED(CONFIG_OF
)) {
2161 for (i
= 0; i
< num_cs
; i
++) {
2162 int cs_gpio
= of_get_named_gpio(np
, "cs-gpios", i
);
2164 if (cs_gpio
== -EPROBE_DEFER
) {
2165 status
= -EPROBE_DEFER
;
2169 pl022
->chipselects
[i
] = cs_gpio
;
2171 if (gpio_is_valid(cs_gpio
)) {
2172 if (devm_gpio_request(dev
, cs_gpio
, "ssp-pl022"))
2174 "could not request %d gpio\n",
2176 else if (gpio_direction_output(cs_gpio
, 1))
2178 "could not set gpio %d as output\n",
2185 * Supports mode 0-3, loopback, and active low CS. Transfers are
2186 * always MS bit first on the original pl022.
2188 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2189 if (pl022
->vendor
->extended_cr
)
2190 master
->mode_bits
|= SPI_LSB_FIRST
;
2192 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2194 status
= amba_request_regions(adev
, NULL
);
2196 goto err_no_ioregion
;
2198 pl022
->phybase
= adev
->res
.start
;
2199 pl022
->virtbase
= devm_ioremap(dev
, adev
->res
.start
,
2200 resource_size(&adev
->res
));
2201 if (pl022
->virtbase
== NULL
) {
2203 goto err_no_ioremap
;
2205 dev_info(&adev
->dev
, "mapped registers from %pa to %p\n",
2206 &adev
->res
.start
, pl022
->virtbase
);
2208 pl022
->clk
= devm_clk_get(&adev
->dev
, NULL
);
2209 if (IS_ERR(pl022
->clk
)) {
2210 status
= PTR_ERR(pl022
->clk
);
2211 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2215 status
= clk_prepare_enable(pl022
->clk
);
2217 dev_err(&adev
->dev
, "could not enable SSP/SPI bus clock\n");
2221 /* Initialize transfer pump */
2222 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
2223 (unsigned long)pl022
);
2226 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2227 SSP_CR1(pl022
->virtbase
));
2228 load_ssp_default_config(pl022
);
2230 status
= devm_request_irq(dev
, adev
->irq
[0], pl022_interrupt_handler
,
2233 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2237 /* Get DMA channels, try autoconfiguration first */
2238 status
= pl022_dma_autoprobe(pl022
);
2240 /* If that failed, use channels from platform_info */
2242 platform_info
->enable_dma
= 1;
2243 else if (platform_info
->enable_dma
) {
2244 status
= pl022_dma_probe(pl022
);
2246 platform_info
->enable_dma
= 0;
2249 /* Register with the SPI framework */
2250 amba_set_drvdata(adev
, pl022
);
2251 status
= devm_spi_register_master(&adev
->dev
, master
);
2254 "probe - problem registering spi master\n");
2255 goto err_spi_register
;
2257 dev_dbg(dev
, "probe succeeded\n");
2259 /* let runtime pm put suspend */
2260 if (platform_info
->autosuspend_delay
> 0) {
2261 dev_info(&adev
->dev
,
2262 "will use autosuspend for runtime pm, delay %dms\n",
2263 platform_info
->autosuspend_delay
);
2264 pm_runtime_set_autosuspend_delay(dev
,
2265 platform_info
->autosuspend_delay
);
2266 pm_runtime_use_autosuspend(dev
);
2268 pm_runtime_put(dev
);
2273 if (platform_info
->enable_dma
)
2274 pl022_dma_remove(pl022
);
2276 clk_disable_unprepare(pl022
->clk
);
2280 amba_release_regions(adev
);
2284 spi_master_put(master
);
2289 pl022_remove(struct amba_device
*adev
)
2291 struct pl022
*pl022
= amba_get_drvdata(adev
);
2297 * undo pm_runtime_put() in probe. I assume that we're not
2298 * accessing the primecell here.
2300 pm_runtime_get_noresume(&adev
->dev
);
2302 load_ssp_default_config(pl022
);
2303 if (pl022
->master_info
->enable_dma
)
2304 pl022_dma_remove(pl022
);
2306 clk_disable_unprepare(pl022
->clk
);
2307 amba_release_regions(adev
);
2308 tasklet_disable(&pl022
->pump_transfers
);
2312 #ifdef CONFIG_PM_SLEEP
2313 static int pl022_suspend(struct device
*dev
)
2315 struct pl022
*pl022
= dev_get_drvdata(dev
);
2318 ret
= spi_master_suspend(pl022
->master
);
2320 dev_warn(dev
, "cannot suspend master\n");
2324 ret
= pm_runtime_force_suspend(dev
);
2326 spi_master_resume(pl022
->master
);
2330 pinctrl_pm_select_sleep_state(dev
);
2332 dev_dbg(dev
, "suspended\n");
2336 static int pl022_resume(struct device
*dev
)
2338 struct pl022
*pl022
= dev_get_drvdata(dev
);
2341 ret
= pm_runtime_force_resume(dev
);
2343 dev_err(dev
, "problem resuming\n");
2345 /* Start the queue running */
2346 ret
= spi_master_resume(pl022
->master
);
2348 dev_err(dev
, "problem starting queue (%d)\n", ret
);
2350 dev_dbg(dev
, "resumed\n");
2357 static int pl022_runtime_suspend(struct device
*dev
)
2359 struct pl022
*pl022
= dev_get_drvdata(dev
);
2361 clk_disable_unprepare(pl022
->clk
);
2362 pinctrl_pm_select_idle_state(dev
);
2367 static int pl022_runtime_resume(struct device
*dev
)
2369 struct pl022
*pl022
= dev_get_drvdata(dev
);
2371 pinctrl_pm_select_default_state(dev
);
2372 clk_prepare_enable(pl022
->clk
);
2378 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2379 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2380 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2383 static struct vendor_data vendor_arm
= {
2387 .extended_cr
= false,
2390 .internal_cs_ctrl
= false,
2393 static struct vendor_data vendor_st
= {
2397 .extended_cr
= true,
2400 .internal_cs_ctrl
= false,
2403 static struct vendor_data vendor_st_pl023
= {
2407 .extended_cr
= true,
2410 .internal_cs_ctrl
= false,
2413 static struct vendor_data vendor_lsi
= {
2417 .extended_cr
= false,
2420 .internal_cs_ctrl
= true,
2423 static struct amba_id pl022_ids
[] = {
2426 * ARM PL022 variant, this has a 16bit wide
2427 * and 8 locations deep TX/RX FIFO
2431 .data
= &vendor_arm
,
2435 * ST Micro derivative, this has 32bit wide
2436 * and 32 locations deep TX/RX FIFO
2444 * ST-Ericsson derivative "PL023" (this is not
2445 * an official ARM number), this is a PL022 SSP block
2446 * stripped to SPI mode only, it has 32bit wide
2447 * and 32 locations deep TX/RX FIFO but no extended
2452 .data
= &vendor_st_pl023
,
2456 * PL022 variant that has a chip select control register whih
2457 * allows control of 5 output signals nCS[0:4].
2461 .data
= &vendor_lsi
,
2466 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2468 static struct amba_driver pl022_driver
= {
2470 .name
= "ssp-pl022",
2471 .pm
= &pl022_dev_pm_ops
,
2473 .id_table
= pl022_ids
,
2474 .probe
= pl022_probe
,
2475 .remove
= pl022_remove
,
2478 static int __init
pl022_init(void)
2480 return amba_driver_register(&pl022_driver
);
2482 subsys_initcall(pl022_init
);
2484 static void __exit
pl022_exit(void)
2486 amba_driver_unregister(&pl022_driver
);
2488 module_exit(pl022_exit
);
2490 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2491 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2492 MODULE_LICENSE("GPL");