Linux 4.2.1
[linux/fpc-iii.git] / fs / btrfs / reada.c
blob0e7beea92b4cc1279def4a3c61a440ec177ef1a0
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
32 #undef DEBUG
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
60 struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
66 struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
69 int err;
70 struct list_head extctl;
71 int refcnt;
72 spinlock_t lock;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
74 int nzones;
75 struct btrfs_device *scheduled_for;
78 struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
88 int ndevs;
89 struct kref refcnt;
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, int level, u64 generation);
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 u64 start, int err)
111 int level = 0;
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
122 if (eb)
123 level = btrfs_header_level(eb);
125 /* find extent */
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
128 if (re)
129 re->refcnt++;
130 spin_unlock(&fs_info->reada_lock);
132 if (!re)
133 return -1;
135 spin_lock(&re->lock);
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
145 if (err == 0) {
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
154 } else {
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
161 nritems = 0;
162 generation = 0;
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
167 u64 n_gen;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
171 btrfs_node_key_to_cpu(eb, &key, i);
172 if (i + 1 < nritems)
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 else
175 next_key = re->top;
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
189 #ifdef DEBUG
190 if (rec->generation != generation) {
191 btrfs_debug(root->fs_info,
192 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
196 #endif
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 reada_add_block(rc, bytenr, &next_key,
201 level - 1, n_gen);
205 * free extctl records
207 while (!list_empty(&list)) {
208 struct reada_control *rc;
209 struct reada_extctl *rec;
211 rec = list_first_entry(&list, struct reada_extctl, list);
212 list_del(&rec->list);
213 rc = rec->rc;
214 kfree(rec);
216 kref_get(&rc->refcnt);
217 if (atomic_dec_and_test(&rc->elems)) {
218 kref_put(&rc->refcnt, reada_control_release);
219 wake_up(&rc->wait);
221 kref_put(&rc->refcnt, reada_control_release);
223 reada_extent_put(fs_info, re); /* one ref for each entry */
225 reada_extent_put(fs_info, re); /* our ref */
226 if (for_dev)
227 atomic_dec(&for_dev->reada_in_flight);
229 return 0;
233 * start is passed separately in case eb in NULL, which may be the case with
234 * failed I/O
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 u64 start, int err)
239 int ret;
241 ret = __readahead_hook(root, eb, start, err);
243 reada_start_machine(root->fs_info);
245 return ret;
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 struct btrfs_device *dev, u64 logical,
250 struct btrfs_bio *bbio)
252 int ret;
253 struct reada_zone *zone;
254 struct btrfs_block_group_cache *cache = NULL;
255 u64 start;
256 u64 end;
257 int i;
259 zone = NULL;
260 spin_lock(&fs_info->reada_lock);
261 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 logical >> PAGE_CACHE_SHIFT, 1);
263 if (ret == 1)
264 kref_get(&zone->refcnt);
265 spin_unlock(&fs_info->reada_lock);
267 if (ret == 1) {
268 if (logical >= zone->start && logical < zone->end)
269 return zone;
270 spin_lock(&fs_info->reada_lock);
271 kref_put(&zone->refcnt, reada_zone_release);
272 spin_unlock(&fs_info->reada_lock);
275 cache = btrfs_lookup_block_group(fs_info, logical);
276 if (!cache)
277 return NULL;
279 start = cache->key.objectid;
280 end = start + cache->key.offset - 1;
281 btrfs_put_block_group(cache);
283 zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 if (!zone)
285 return NULL;
287 zone->start = start;
288 zone->end = end;
289 INIT_LIST_HEAD(&zone->list);
290 spin_lock_init(&zone->lock);
291 zone->locked = 0;
292 kref_init(&zone->refcnt);
293 zone->elems = 0;
294 zone->device = dev; /* our device always sits at index 0 */
295 for (i = 0; i < bbio->num_stripes; ++i) {
296 /* bounds have already been checked */
297 zone->devs[i] = bbio->stripes[i].dev;
299 zone->ndevs = bbio->num_stripes;
301 spin_lock(&fs_info->reada_lock);
302 ret = radix_tree_insert(&dev->reada_zones,
303 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304 zone);
306 if (ret == -EEXIST) {
307 kfree(zone);
308 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 logical >> PAGE_CACHE_SHIFT, 1);
310 if (ret == 1)
311 kref_get(&zone->refcnt);
313 spin_unlock(&fs_info->reada_lock);
315 return zone;
318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 u64 logical,
320 struct btrfs_key *top, int level)
322 int ret;
323 struct reada_extent *re = NULL;
324 struct reada_extent *re_exist = NULL;
325 struct btrfs_fs_info *fs_info = root->fs_info;
326 struct btrfs_bio *bbio = NULL;
327 struct btrfs_device *dev;
328 struct btrfs_device *prev_dev;
329 u32 blocksize;
330 u64 length;
331 int nzones = 0;
332 int i;
333 unsigned long index = logical >> PAGE_CACHE_SHIFT;
334 int dev_replace_is_ongoing;
336 spin_lock(&fs_info->reada_lock);
337 re = radix_tree_lookup(&fs_info->reada_tree, index);
338 if (re)
339 re->refcnt++;
340 spin_unlock(&fs_info->reada_lock);
342 if (re)
343 return re;
345 re = kzalloc(sizeof(*re), GFP_NOFS);
346 if (!re)
347 return NULL;
349 blocksize = root->nodesize;
350 re->logical = logical;
351 re->top = *top;
352 INIT_LIST_HEAD(&re->extctl);
353 spin_lock_init(&re->lock);
354 re->refcnt = 1;
357 * map block
359 length = blocksize;
360 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
361 &bbio, 0);
362 if (ret || !bbio || length < blocksize)
363 goto error;
365 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366 btrfs_err(root->fs_info,
367 "readahead: more than %d copies not supported",
368 BTRFS_MAX_MIRRORS);
369 goto error;
372 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
373 struct reada_zone *zone;
375 dev = bbio->stripes[nzones].dev;
376 zone = reada_find_zone(fs_info, dev, logical, bbio);
377 if (!zone)
378 break;
380 re->zones[nzones] = zone;
381 spin_lock(&zone->lock);
382 if (!zone->elems)
383 kref_get(&zone->refcnt);
384 ++zone->elems;
385 spin_unlock(&zone->lock);
386 spin_lock(&fs_info->reada_lock);
387 kref_put(&zone->refcnt, reada_zone_release);
388 spin_unlock(&fs_info->reada_lock);
390 re->nzones = nzones;
391 if (nzones == 0) {
392 /* not a single zone found, error and out */
393 goto error;
396 /* insert extent in reada_tree + all per-device trees, all or nothing */
397 btrfs_dev_replace_lock(&fs_info->dev_replace);
398 spin_lock(&fs_info->reada_lock);
399 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
400 if (ret == -EEXIST) {
401 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
402 BUG_ON(!re_exist);
403 re_exist->refcnt++;
404 spin_unlock(&fs_info->reada_lock);
405 btrfs_dev_replace_unlock(&fs_info->dev_replace);
406 goto error;
408 if (ret) {
409 spin_unlock(&fs_info->reada_lock);
410 btrfs_dev_replace_unlock(&fs_info->dev_replace);
411 goto error;
413 prev_dev = NULL;
414 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415 &fs_info->dev_replace);
416 for (i = 0; i < nzones; ++i) {
417 dev = bbio->stripes[i].dev;
418 if (dev == prev_dev) {
420 * in case of DUP, just add the first zone. As both
421 * are on the same device, there's nothing to gain
422 * from adding both.
423 * Also, it wouldn't work, as the tree is per device
424 * and adding would fail with EEXIST
426 continue;
428 if (!dev->bdev) {
430 * cannot read ahead on missing device, but for RAID5/6,
431 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
432 * device for such case.
434 if (nzones > 1)
435 continue;
437 if (dev_replace_is_ongoing &&
438 dev == fs_info->dev_replace.tgtdev) {
440 * as this device is selected for reading only as
441 * a last resort, skip it for read ahead.
443 continue;
445 prev_dev = dev;
446 ret = radix_tree_insert(&dev->reada_extents, index, re);
447 if (ret) {
448 while (--i >= 0) {
449 dev = bbio->stripes[i].dev;
450 BUG_ON(dev == NULL);
451 /* ignore whether the entry was inserted */
452 radix_tree_delete(&dev->reada_extents, index);
454 BUG_ON(fs_info == NULL);
455 radix_tree_delete(&fs_info->reada_tree, index);
456 spin_unlock(&fs_info->reada_lock);
457 btrfs_dev_replace_unlock(&fs_info->dev_replace);
458 goto error;
461 spin_unlock(&fs_info->reada_lock);
462 btrfs_dev_replace_unlock(&fs_info->dev_replace);
464 btrfs_put_bbio(bbio);
465 return re;
467 error:
468 while (nzones) {
469 struct reada_zone *zone;
471 --nzones;
472 zone = re->zones[nzones];
473 kref_get(&zone->refcnt);
474 spin_lock(&zone->lock);
475 --zone->elems;
476 if (zone->elems == 0) {
478 * no fs_info->reada_lock needed, as this can't be
479 * the last ref
481 kref_put(&zone->refcnt, reada_zone_release);
483 spin_unlock(&zone->lock);
485 spin_lock(&fs_info->reada_lock);
486 kref_put(&zone->refcnt, reada_zone_release);
487 spin_unlock(&fs_info->reada_lock);
489 btrfs_put_bbio(bbio);
490 kfree(re);
491 return re_exist;
494 static void reada_extent_put(struct btrfs_fs_info *fs_info,
495 struct reada_extent *re)
497 int i;
498 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
500 spin_lock(&fs_info->reada_lock);
501 if (--re->refcnt) {
502 spin_unlock(&fs_info->reada_lock);
503 return;
506 radix_tree_delete(&fs_info->reada_tree, index);
507 for (i = 0; i < re->nzones; ++i) {
508 struct reada_zone *zone = re->zones[i];
510 radix_tree_delete(&zone->device->reada_extents, index);
513 spin_unlock(&fs_info->reada_lock);
515 for (i = 0; i < re->nzones; ++i) {
516 struct reada_zone *zone = re->zones[i];
518 kref_get(&zone->refcnt);
519 spin_lock(&zone->lock);
520 --zone->elems;
521 if (zone->elems == 0) {
522 /* no fs_info->reada_lock needed, as this can't be
523 * the last ref */
524 kref_put(&zone->refcnt, reada_zone_release);
526 spin_unlock(&zone->lock);
528 spin_lock(&fs_info->reada_lock);
529 kref_put(&zone->refcnt, reada_zone_release);
530 spin_unlock(&fs_info->reada_lock);
532 if (re->scheduled_for)
533 atomic_dec(&re->scheduled_for->reada_in_flight);
535 kfree(re);
538 static void reada_zone_release(struct kref *kref)
540 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
542 radix_tree_delete(&zone->device->reada_zones,
543 zone->end >> PAGE_CACHE_SHIFT);
545 kfree(zone);
548 static void reada_control_release(struct kref *kref)
550 struct reada_control *rc = container_of(kref, struct reada_control,
551 refcnt);
553 kfree(rc);
556 static int reada_add_block(struct reada_control *rc, u64 logical,
557 struct btrfs_key *top, int level, u64 generation)
559 struct btrfs_root *root = rc->root;
560 struct reada_extent *re;
561 struct reada_extctl *rec;
563 re = reada_find_extent(root, logical, top, level); /* takes one ref */
564 if (!re)
565 return -1;
567 rec = kzalloc(sizeof(*rec), GFP_NOFS);
568 if (!rec) {
569 reada_extent_put(root->fs_info, re);
570 return -1;
573 rec->rc = rc;
574 rec->generation = generation;
575 atomic_inc(&rc->elems);
577 spin_lock(&re->lock);
578 list_add_tail(&rec->list, &re->extctl);
579 spin_unlock(&re->lock);
581 /* leave the ref on the extent */
583 return 0;
587 * called with fs_info->reada_lock held
589 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
591 int i;
592 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
594 for (i = 0; i < zone->ndevs; ++i) {
595 struct reada_zone *peer;
596 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
597 if (peer && peer->device != zone->device)
598 peer->locked = lock;
603 * called with fs_info->reada_lock held
605 static int reada_pick_zone(struct btrfs_device *dev)
607 struct reada_zone *top_zone = NULL;
608 struct reada_zone *top_locked_zone = NULL;
609 u64 top_elems = 0;
610 u64 top_locked_elems = 0;
611 unsigned long index = 0;
612 int ret;
614 if (dev->reada_curr_zone) {
615 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
616 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
617 dev->reada_curr_zone = NULL;
619 /* pick the zone with the most elements */
620 while (1) {
621 struct reada_zone *zone;
623 ret = radix_tree_gang_lookup(&dev->reada_zones,
624 (void **)&zone, index, 1);
625 if (ret == 0)
626 break;
627 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
628 if (zone->locked) {
629 if (zone->elems > top_locked_elems) {
630 top_locked_elems = zone->elems;
631 top_locked_zone = zone;
633 } else {
634 if (zone->elems > top_elems) {
635 top_elems = zone->elems;
636 top_zone = zone;
640 if (top_zone)
641 dev->reada_curr_zone = top_zone;
642 else if (top_locked_zone)
643 dev->reada_curr_zone = top_locked_zone;
644 else
645 return 0;
647 dev->reada_next = dev->reada_curr_zone->start;
648 kref_get(&dev->reada_curr_zone->refcnt);
649 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
651 return 1;
654 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
655 struct btrfs_device *dev)
657 struct reada_extent *re = NULL;
658 int mirror_num = 0;
659 struct extent_buffer *eb = NULL;
660 u64 logical;
661 int ret;
662 int i;
663 int need_kick = 0;
665 spin_lock(&fs_info->reada_lock);
666 if (dev->reada_curr_zone == NULL) {
667 ret = reada_pick_zone(dev);
668 if (!ret) {
669 spin_unlock(&fs_info->reada_lock);
670 return 0;
674 * FIXME currently we issue the reads one extent at a time. If we have
675 * a contiguous block of extents, we could also coagulate them or use
676 * plugging to speed things up
678 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
679 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
680 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
681 ret = reada_pick_zone(dev);
682 if (!ret) {
683 spin_unlock(&fs_info->reada_lock);
684 return 0;
686 re = NULL;
687 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
688 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
690 if (ret == 0) {
691 spin_unlock(&fs_info->reada_lock);
692 return 0;
694 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
695 re->refcnt++;
697 spin_unlock(&fs_info->reada_lock);
700 * find mirror num
702 for (i = 0; i < re->nzones; ++i) {
703 if (re->zones[i]->device == dev) {
704 mirror_num = i + 1;
705 break;
708 logical = re->logical;
710 spin_lock(&re->lock);
711 if (re->scheduled_for == NULL) {
712 re->scheduled_for = dev;
713 need_kick = 1;
715 spin_unlock(&re->lock);
717 reada_extent_put(fs_info, re);
719 if (!need_kick)
720 return 0;
722 atomic_inc(&dev->reada_in_flight);
723 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
724 mirror_num, &eb);
725 if (ret)
726 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
727 else if (eb)
728 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
730 if (eb)
731 free_extent_buffer(eb);
733 return 1;
737 static void reada_start_machine_worker(struct btrfs_work *work)
739 struct reada_machine_work *rmw;
740 struct btrfs_fs_info *fs_info;
741 int old_ioprio;
743 rmw = container_of(work, struct reada_machine_work, work);
744 fs_info = rmw->fs_info;
746 kfree(rmw);
748 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
749 task_nice_ioprio(current));
750 set_task_ioprio(current, BTRFS_IOPRIO_READA);
751 __reada_start_machine(fs_info);
752 set_task_ioprio(current, old_ioprio);
755 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
757 struct btrfs_device *device;
758 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
759 u64 enqueued;
760 u64 total = 0;
761 int i;
763 do {
764 enqueued = 0;
765 list_for_each_entry(device, &fs_devices->devices, dev_list) {
766 if (atomic_read(&device->reada_in_flight) <
767 MAX_IN_FLIGHT)
768 enqueued += reada_start_machine_dev(fs_info,
769 device);
771 total += enqueued;
772 } while (enqueued && total < 10000);
774 if (enqueued == 0)
775 return;
778 * If everything is already in the cache, this is effectively single
779 * threaded. To a) not hold the caller for too long and b) to utilize
780 * more cores, we broke the loop above after 10000 iterations and now
781 * enqueue to workers to finish it. This will distribute the load to
782 * the cores.
784 for (i = 0; i < 2; ++i)
785 reada_start_machine(fs_info);
788 static void reada_start_machine(struct btrfs_fs_info *fs_info)
790 struct reada_machine_work *rmw;
792 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
793 if (!rmw) {
794 /* FIXME we cannot handle this properly right now */
795 BUG();
797 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
798 reada_start_machine_worker, NULL, NULL);
799 rmw->fs_info = fs_info;
801 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
804 #ifdef DEBUG
805 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
807 struct btrfs_device *device;
808 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
809 unsigned long index;
810 int ret;
811 int i;
812 int j;
813 int cnt;
815 spin_lock(&fs_info->reada_lock);
816 list_for_each_entry(device, &fs_devices->devices, dev_list) {
817 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
818 atomic_read(&device->reada_in_flight));
819 index = 0;
820 while (1) {
821 struct reada_zone *zone;
822 ret = radix_tree_gang_lookup(&device->reada_zones,
823 (void **)&zone, index, 1);
824 if (ret == 0)
825 break;
826 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
827 "%d devs", zone->start, zone->end, zone->elems,
828 zone->locked);
829 for (j = 0; j < zone->ndevs; ++j) {
830 printk(KERN_CONT " %lld",
831 zone->devs[j]->devid);
833 if (device->reada_curr_zone == zone)
834 printk(KERN_CONT " curr off %llu",
835 device->reada_next - zone->start);
836 printk(KERN_CONT "\n");
837 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
839 cnt = 0;
840 index = 0;
841 while (all) {
842 struct reada_extent *re = NULL;
844 ret = radix_tree_gang_lookup(&device->reada_extents,
845 (void **)&re, index, 1);
846 if (ret == 0)
847 break;
848 printk(KERN_DEBUG
849 " re: logical %llu size %u empty %d for %lld",
850 re->logical, fs_info->tree_root->nodesize,
851 list_empty(&re->extctl), re->scheduled_for ?
852 re->scheduled_for->devid : -1);
854 for (i = 0; i < re->nzones; ++i) {
855 printk(KERN_CONT " zone %llu-%llu devs",
856 re->zones[i]->start,
857 re->zones[i]->end);
858 for (j = 0; j < re->zones[i]->ndevs; ++j) {
859 printk(KERN_CONT " %lld",
860 re->zones[i]->devs[j]->devid);
863 printk(KERN_CONT "\n");
864 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
865 if (++cnt > 15)
866 break;
870 index = 0;
871 cnt = 0;
872 while (all) {
873 struct reada_extent *re = NULL;
875 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
876 index, 1);
877 if (ret == 0)
878 break;
879 if (!re->scheduled_for) {
880 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
881 continue;
883 printk(KERN_DEBUG
884 "re: logical %llu size %u list empty %d for %lld",
885 re->logical, fs_info->tree_root->nodesize,
886 list_empty(&re->extctl),
887 re->scheduled_for ? re->scheduled_for->devid : -1);
888 for (i = 0; i < re->nzones; ++i) {
889 printk(KERN_CONT " zone %llu-%llu devs",
890 re->zones[i]->start,
891 re->zones[i]->end);
892 for (i = 0; i < re->nzones; ++i) {
893 printk(KERN_CONT " zone %llu-%llu devs",
894 re->zones[i]->start,
895 re->zones[i]->end);
896 for (j = 0; j < re->zones[i]->ndevs; ++j) {
897 printk(KERN_CONT " %lld",
898 re->zones[i]->devs[j]->devid);
902 printk(KERN_CONT "\n");
903 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
905 spin_unlock(&fs_info->reada_lock);
907 #endif
910 * interface
912 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
913 struct btrfs_key *key_start, struct btrfs_key *key_end)
915 struct reada_control *rc;
916 u64 start;
917 u64 generation;
918 int level;
919 struct extent_buffer *node;
920 static struct btrfs_key max_key = {
921 .objectid = (u64)-1,
922 .type = (u8)-1,
923 .offset = (u64)-1
926 rc = kzalloc(sizeof(*rc), GFP_NOFS);
927 if (!rc)
928 return ERR_PTR(-ENOMEM);
930 rc->root = root;
931 rc->key_start = *key_start;
932 rc->key_end = *key_end;
933 atomic_set(&rc->elems, 0);
934 init_waitqueue_head(&rc->wait);
935 kref_init(&rc->refcnt);
936 kref_get(&rc->refcnt); /* one ref for having elements */
938 node = btrfs_root_node(root);
939 start = node->start;
940 level = btrfs_header_level(node);
941 generation = btrfs_header_generation(node);
942 free_extent_buffer(node);
944 if (reada_add_block(rc, start, &max_key, level, generation)) {
945 kfree(rc);
946 return ERR_PTR(-ENOMEM);
949 reada_start_machine(root->fs_info);
951 return rc;
954 #ifdef DEBUG
955 int btrfs_reada_wait(void *handle)
957 struct reada_control *rc = handle;
959 while (atomic_read(&rc->elems)) {
960 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961 5 * HZ);
962 dump_devs(rc->root->fs_info,
963 atomic_read(&rc->elems) < 10 ? 1 : 0);
966 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
968 kref_put(&rc->refcnt, reada_control_release);
970 return 0;
972 #else
973 int btrfs_reada_wait(void *handle)
975 struct reada_control *rc = handle;
977 while (atomic_read(&rc->elems)) {
978 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
981 kref_put(&rc->refcnt, reada_control_release);
983 return 0;
985 #endif
987 void btrfs_reada_detach(void *handle)
989 struct reada_control *rc = handle;
991 kref_put(&rc->refcnt, reada_control_release);