2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock
);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node
);
78 EXPORT_PER_CPU_SYMBOL(numa_node
);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 int _node_numa_mem_
[MAX_NUMNODES
];
94 * Array of node states.
96 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
97 [N_POSSIBLE
] = NODE_MASK_ALL
,
98 [N_ONLINE
] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY
] = { { [0] = 1UL } },
107 [N_CPU
] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states
);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock
);
115 unsigned long totalram_pages __read_mostly
;
116 unsigned long totalreserve_pages __read_mostly
;
117 unsigned long totalcma_pages __read_mostly
;
119 int percpu_pagelist_fraction
;
120 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page
*page
)
135 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
137 page
->index
= migratetype
;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask
;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex
));
155 if (saved_gfp_mask
) {
156 gfp_allowed_mask
= saved_gfp_mask
;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex
));
164 WARN_ON(saved_gfp_mask
);
165 saved_gfp_mask
= gfp_allowed_mask
;
166 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly
;
181 static void __free_pages_ok(struct page
*page
, unsigned int order
);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 EXPORT_SYMBOL(totalram_pages
);
209 static char * const zone_names
[MAX_NR_ZONES
] = {
210 #ifdef CONFIG_ZONE_DMA
213 #ifdef CONFIG_ZONE_DMA32
217 #ifdef CONFIG_HIGHMEM
221 #ifdef CONFIG_ZONE_DEVICE
226 char * const migratetype_names
[MIGRATE_TYPES
] = {
234 #ifdef CONFIG_MEMORY_ISOLATION
239 compound_page_dtor
* const compound_page_dtors
[] = {
242 #ifdef CONFIG_HUGETLB_PAGE
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
250 int min_free_kbytes
= 1024;
251 int user_min_free_kbytes
= -1;
252 int watermark_scale_factor
= 10;
254 static unsigned long __meminitdata nr_kernel_pages
;
255 static unsigned long __meminitdata nr_all_pages
;
256 static unsigned long __meminitdata dma_reserve
;
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
261 static unsigned long __initdata required_kernelcore
;
262 static unsigned long __initdata required_movablecore
;
263 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
264 static bool mirrored_kernelcore
;
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 EXPORT_SYMBOL(movable_zone
);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
272 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
273 int nr_online_nodes __read_mostly
= 1;
274 EXPORT_SYMBOL(nr_node_ids
);
275 EXPORT_SYMBOL(nr_online_nodes
);
278 int page_group_by_mobility_disabled __read_mostly
;
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
283 pgdat
->first_deferred_pfn
= ULONG_MAX
;
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
289 if (pfn
>= NODE_DATA(early_pfn_to_nid(pfn
))->first_deferred_pfn
)
295 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
297 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
307 static inline bool update_defer_init(pg_data_t
*pgdat
,
308 unsigned long pfn
, unsigned long zone_end
,
309 unsigned long *nr_initialised
)
311 unsigned long max_initialise
;
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end
< pgdat_end_pfn(pgdat
))
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
320 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
321 (pgdat
->node_spanned_pages
>> 8));
324 if ((*nr_initialised
> max_initialise
) &&
325 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
326 pgdat
->first_deferred_pfn
= pfn
;
333 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
337 static inline bool early_page_uninitialised(unsigned long pfn
)
342 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
347 static inline bool update_defer_init(pg_data_t
*pgdat
,
348 unsigned long pfn
, unsigned long zone_end
,
349 unsigned long *nr_initialised
)
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn
)->pageblock_flags
;
362 return page_zone(page
)->pageblock_flags
;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
368 #ifdef CONFIG_SPARSEMEM
369 pfn
&= (PAGES_PER_SECTION
-1);
370 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
372 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
373 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
388 unsigned long end_bitidx
,
391 unsigned long *bitmap
;
392 unsigned long bitidx
, word_bitidx
;
395 bitmap
= get_pageblock_bitmap(page
, pfn
);
396 bitidx
= pfn_to_bitidx(page
, pfn
);
397 word_bitidx
= bitidx
/ BITS_PER_LONG
;
398 bitidx
&= (BITS_PER_LONG
-1);
400 word
= bitmap
[word_bitidx
];
401 bitidx
+= end_bitidx
;
402 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
405 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
406 unsigned long end_bitidx
,
409 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
412 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
414 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
427 unsigned long end_bitidx
,
430 unsigned long *bitmap
;
431 unsigned long bitidx
, word_bitidx
;
432 unsigned long old_word
, word
;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
436 bitmap
= get_pageblock_bitmap(page
, pfn
);
437 bitidx
= pfn_to_bitidx(page
, pfn
);
438 word_bitidx
= bitidx
/ BITS_PER_LONG
;
439 bitidx
&= (BITS_PER_LONG
-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
443 bitidx
+= end_bitidx
;
444 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
445 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
447 word
= READ_ONCE(bitmap
[word_bitidx
]);
449 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
450 if (word
== old_word
)
456 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
458 if (unlikely(page_group_by_mobility_disabled
&&
459 migratetype
< MIGRATE_PCPTYPES
))
460 migratetype
= MIGRATE_UNMOVABLE
;
462 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
463 PB_migrate
, PB_migrate_end
);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
471 unsigned long pfn
= page_to_pfn(page
);
472 unsigned long sp
, start_pfn
;
475 seq
= zone_span_seqbegin(zone
);
476 start_pfn
= zone
->zone_start_pfn
;
477 sp
= zone
->spanned_pages
;
478 if (!zone_spans_pfn(zone
, pfn
))
480 } while (zone_span_seqretry(zone
, seq
));
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn
, zone_to_nid(zone
), zone
->name
,
485 start_pfn
, start_pfn
+ sp
);
490 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
492 if (!pfn_valid_within(page_to_pfn(page
)))
494 if (zone
!= page_zone(page
))
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone
*zone
, struct page
*page
)
504 if (page_outside_zone_boundaries(zone
, page
))
506 if (!page_is_consistent(zone
, page
))
512 static inline int bad_range(struct zone
*zone
, struct page
*page
)
518 static void bad_page(struct page
*page
, const char *reason
,
519 unsigned long bad_flags
)
521 static unsigned long resume
;
522 static unsigned long nr_shown
;
523 static unsigned long nr_unshown
;
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
529 if (nr_shown
== 60) {
530 if (time_before(jiffies
, resume
)) {
536 "BUG: Bad page state: %lu messages suppressed\n",
543 resume
= jiffies
+ 60 * HZ
;
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current
->comm
, page_to_pfn(page
));
547 __dump_page(page
, reason
);
548 bad_flags
&= page
->flags
;
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags
, &bad_flags
);
552 dump_page_owner(page
);
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page
); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
563 * Higher-order pages are called "compound pages". They are structured thusly:
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
577 void free_compound_page(struct page
*page
)
579 __free_pages_ok(page
, compound_order(page
));
582 void prep_compound_page(struct page
*page
, unsigned int order
)
585 int nr_pages
= 1 << order
;
587 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
588 set_compound_order(page
, order
);
590 for (i
= 1; i
< nr_pages
; i
++) {
591 struct page
*p
= page
+ i
;
592 set_page_count(p
, 0);
593 p
->mapping
= TAIL_MAPPING
;
594 set_compound_head(p
, page
);
596 atomic_set(compound_mapcount_ptr(page
), -1);
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder
;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
604 bool _debug_guardpage_enabled __read_mostly
;
606 static int __init
early_debug_pagealloc(char *buf
)
610 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
612 early_param("debug_pagealloc", early_debug_pagealloc
);
614 static bool need_debug_guardpage(void)
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
623 static void init_debug_guardpage(void)
625 if (!debug_pagealloc_enabled())
628 _debug_guardpage_enabled
= true;
631 struct page_ext_operations debug_guardpage_ops
= {
632 .need
= need_debug_guardpage
,
633 .init
= init_debug_guardpage
,
636 static int __init
debug_guardpage_minorder_setup(char *buf
)
640 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
644 _debug_guardpage_minorder
= res
;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
648 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
650 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
651 unsigned int order
, int migratetype
)
653 struct page_ext
*page_ext
;
655 if (!debug_guardpage_enabled())
658 page_ext
= lookup_page_ext(page
);
659 if (unlikely(!page_ext
))
662 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
664 INIT_LIST_HEAD(&page
->lru
);
665 set_page_private(page
, order
);
666 /* Guard pages are not available for any usage */
667 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
670 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
671 unsigned int order
, int migratetype
)
673 struct page_ext
*page_ext
;
675 if (!debug_guardpage_enabled())
678 page_ext
= lookup_page_ext(page
);
679 if (unlikely(!page_ext
))
682 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
684 set_page_private(page
, 0);
685 if (!is_migrate_isolate(migratetype
))
686 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
689 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
690 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
691 unsigned int order
, int migratetype
) {}
692 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
693 unsigned int order
, int migratetype
) {}
696 static inline void set_page_order(struct page
*page
, unsigned int order
)
698 set_page_private(page
, order
);
699 __SetPageBuddy(page
);
702 static inline void rmv_page_order(struct page
*page
)
704 __ClearPageBuddy(page
);
705 set_page_private(page
, 0);
709 * This function checks whether a page is free && is the buddy
710 * we can do coalesce a page and its buddy if
711 * (a) the buddy is not in a hole &&
712 * (b) the buddy is in the buddy system &&
713 * (c) a page and its buddy have the same order &&
714 * (d) a page and its buddy are in the same zone.
716 * For recording whether a page is in the buddy system, we set ->_mapcount
717 * PAGE_BUDDY_MAPCOUNT_VALUE.
718 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719 * serialized by zone->lock.
721 * For recording page's order, we use page_private(page).
723 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
726 if (!pfn_valid_within(page_to_pfn(buddy
)))
729 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
730 if (page_zone_id(page
) != page_zone_id(buddy
))
733 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
738 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
744 if (page_zone_id(page
) != page_zone_id(buddy
))
747 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
755 * Freeing function for a buddy system allocator.
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with _mapcount
768 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770 * So when we are allocating or freeing one, we can derive the state of the
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
773 * If a block is freed, and its buddy is also free, then this
774 * triggers coalescing into a block of larger size.
779 static inline void __free_one_page(struct page
*page
,
781 struct zone
*zone
, unsigned int order
,
784 unsigned long page_idx
;
785 unsigned long combined_idx
;
786 unsigned long uninitialized_var(buddy_idx
);
788 unsigned int max_order
;
790 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
792 VM_BUG_ON(!zone_is_initialized(zone
));
793 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
795 VM_BUG_ON(migratetype
== -1);
796 if (likely(!is_migrate_isolate(migratetype
)))
797 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
799 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
801 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
802 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
805 while (order
< max_order
- 1) {
806 buddy_idx
= __find_buddy_index(page_idx
, order
);
807 buddy
= page
+ (buddy_idx
- page_idx
);
808 if (!page_is_buddy(page
, buddy
, order
))
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
814 if (page_is_guard(buddy
)) {
815 clear_page_guard(zone
, buddy
, order
, migratetype
);
817 list_del(&buddy
->lru
);
818 zone
->free_area
[order
].nr_free
--;
819 rmv_page_order(buddy
);
821 combined_idx
= buddy_idx
& page_idx
;
822 page
= page
+ (combined_idx
- page_idx
);
823 page_idx
= combined_idx
;
826 if (max_order
< MAX_ORDER
) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
832 * We don't want to hit this code for the more frequent
835 if (unlikely(has_isolate_pageblock(zone
))) {
838 buddy_idx
= __find_buddy_index(page_idx
, order
);
839 buddy
= page
+ (buddy_idx
- page_idx
);
840 buddy_mt
= get_pageblock_migratetype(buddy
);
842 if (migratetype
!= buddy_mt
843 && (is_migrate_isolate(migratetype
) ||
844 is_migrate_isolate(buddy_mt
)))
848 goto continue_merging
;
852 set_page_order(page
, order
);
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
862 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
863 struct page
*higher_page
, *higher_buddy
;
864 combined_idx
= buddy_idx
& page_idx
;
865 higher_page
= page
+ (combined_idx
- page_idx
);
866 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
867 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
868 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
869 list_add_tail(&page
->lru
,
870 &zone
->free_area
[order
].free_list
[migratetype
]);
875 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
877 zone
->free_area
[order
].nr_free
++;
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
885 static inline bool page_expected_state(struct page
*page
,
886 unsigned long check_flags
)
888 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
891 if (unlikely((unsigned long)page
->mapping
|
892 page_ref_count(page
) |
894 (unsigned long)page
->mem_cgroup
|
896 (page
->flags
& check_flags
)))
902 static void free_pages_check_bad(struct page
*page
)
904 const char *bad_reason
;
905 unsigned long bad_flags
;
910 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
911 bad_reason
= "nonzero mapcount";
912 if (unlikely(page
->mapping
!= NULL
))
913 bad_reason
= "non-NULL mapping";
914 if (unlikely(page_ref_count(page
) != 0))
915 bad_reason
= "nonzero _refcount";
916 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
917 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
921 if (unlikely(page
->mem_cgroup
))
922 bad_reason
= "page still charged to cgroup";
924 bad_page(page
, bad_reason
, bad_flags
);
927 static inline int free_pages_check(struct page
*page
)
929 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page
);
937 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
947 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
951 switch (page
- head_page
) {
953 /* the first tail page: ->mapping is compound_mapcount() */
954 if (unlikely(compound_mapcount(page
))) {
955 bad_page(page
, "nonzero compound_mapcount", 0);
961 * the second tail page: ->mapping is
962 * page_deferred_list().next -- ignore value.
966 if (page
->mapping
!= TAIL_MAPPING
) {
967 bad_page(page
, "corrupted mapping in tail page", 0);
972 if (unlikely(!PageTail(page
))) {
973 bad_page(page
, "PageTail not set", 0);
976 if (unlikely(compound_head(page
) != head_page
)) {
977 bad_page(page
, "compound_head not consistent", 0);
982 page
->mapping
= NULL
;
983 clear_compound_head(page
);
987 static __always_inline
bool free_pages_prepare(struct page
*page
,
988 unsigned int order
, bool check_free
)
992 VM_BUG_ON_PAGE(PageTail(page
), page
);
994 trace_mm_page_free(page
, order
);
995 kmemcheck_free_shadow(page
, order
);
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1001 if (unlikely(order
)) {
1002 bool compound
= PageCompound(page
);
1005 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1007 for (i
= 1; i
< (1 << order
); i
++) {
1009 bad
+= free_tail_pages_check(page
, page
+ i
);
1010 if (unlikely(free_pages_check(page
+ i
))) {
1014 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1017 if (PageAnonHead(page
))
1018 page
->mapping
= NULL
;
1020 bad
+= free_pages_check(page
);
1024 page_cpupid_reset_last(page
);
1025 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1026 reset_page_owner(page
, order
);
1028 if (!PageHighMem(page
)) {
1029 debug_check_no_locks_freed(page_address(page
),
1030 PAGE_SIZE
<< order
);
1031 debug_check_no_obj_freed(page_address(page
),
1032 PAGE_SIZE
<< order
);
1034 arch_free_page(page
, order
);
1035 kernel_poison_pages(page
, 1 << order
, 0);
1036 kernel_map_pages(page
, 1 << order
, 0);
1037 kasan_free_pages(page
, order
);
1042 #ifdef CONFIG_DEBUG_VM
1043 static inline bool free_pcp_prepare(struct page
*page
)
1045 return free_pages_prepare(page
, 0, true);
1048 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1053 static bool free_pcp_prepare(struct page
*page
)
1055 return free_pages_prepare(page
, 0, false);
1058 static bool bulkfree_pcp_prepare(struct page
*page
)
1060 return free_pages_check(page
);
1062 #endif /* CONFIG_DEBUG_VM */
1065 * Frees a number of pages from the PCP lists
1066 * Assumes all pages on list are in same zone, and of same order.
1067 * count is the number of pages to free.
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1075 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1076 struct per_cpu_pages
*pcp
)
1078 int migratetype
= 0;
1080 unsigned long nr_scanned
;
1081 bool isolated_pageblocks
;
1083 spin_lock(&zone
->lock
);
1084 isolated_pageblocks
= has_isolate_pageblock(zone
);
1085 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
1087 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
1091 struct list_head
*list
;
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1102 if (++migratetype
== MIGRATE_PCPTYPES
)
1104 list
= &pcp
->lists
[migratetype
];
1105 } while (list_empty(list
));
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free
== MIGRATE_PCPTYPES
)
1112 int mt
; /* migratetype of the to-be-freed page */
1114 page
= list_last_entry(list
, struct page
, lru
);
1115 /* must delete as __free_one_page list manipulates */
1116 list_del(&page
->lru
);
1118 mt
= get_pcppage_migratetype(page
);
1119 /* MIGRATE_ISOLATE page should not go to pcplists */
1120 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1121 /* Pageblock could have been isolated meanwhile */
1122 if (unlikely(isolated_pageblocks
))
1123 mt
= get_pageblock_migratetype(page
);
1125 if (bulkfree_pcp_prepare(page
))
1128 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1129 trace_mm_page_pcpu_drain(page
, 0, mt
);
1130 } while (--count
&& --batch_free
&& !list_empty(list
));
1132 spin_unlock(&zone
->lock
);
1135 static void free_one_page(struct zone
*zone
,
1136 struct page
*page
, unsigned long pfn
,
1140 unsigned long nr_scanned
;
1141 spin_lock(&zone
->lock
);
1142 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
1144 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
1146 if (unlikely(has_isolate_pageblock(zone
) ||
1147 is_migrate_isolate(migratetype
))) {
1148 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1150 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1151 spin_unlock(&zone
->lock
);
1154 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1155 unsigned long zone
, int nid
)
1157 set_page_links(page
, zone
, nid
, pfn
);
1158 init_page_count(page
);
1159 page_mapcount_reset(page
);
1160 page_cpupid_reset_last(page
);
1162 INIT_LIST_HEAD(&page
->lru
);
1163 #ifdef WANT_PAGE_VIRTUAL
1164 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 if (!is_highmem_idx(zone
))
1166 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1170 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1173 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177 static void init_reserved_page(unsigned long pfn
)
1182 if (!early_page_uninitialised(pfn
))
1185 nid
= early_pfn_to_nid(pfn
);
1186 pgdat
= NODE_DATA(nid
);
1188 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1189 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1191 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1194 __init_single_pfn(pfn
, zid
, nid
);
1197 static inline void init_reserved_page(unsigned long pfn
)
1200 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203 * Initialised pages do not have PageReserved set. This function is
1204 * called for each range allocated by the bootmem allocator and
1205 * marks the pages PageReserved. The remaining valid pages are later
1206 * sent to the buddy page allocator.
1208 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1210 unsigned long start_pfn
= PFN_DOWN(start
);
1211 unsigned long end_pfn
= PFN_UP(end
);
1213 for (; start_pfn
< end_pfn
; start_pfn
++) {
1214 if (pfn_valid(start_pfn
)) {
1215 struct page
*page
= pfn_to_page(start_pfn
);
1217 init_reserved_page(start_pfn
);
1219 /* Avoid false-positive PageTail() */
1220 INIT_LIST_HEAD(&page
->lru
);
1222 SetPageReserved(page
);
1227 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1229 unsigned long flags
;
1231 unsigned long pfn
= page_to_pfn(page
);
1233 if (!free_pages_prepare(page
, order
, true))
1236 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1237 local_irq_save(flags
);
1238 __count_vm_events(PGFREE
, 1 << order
);
1239 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1240 local_irq_restore(flags
);
1243 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1245 unsigned int nr_pages
= 1 << order
;
1246 struct page
*p
= page
;
1250 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1252 __ClearPageReserved(p
);
1253 set_page_count(p
, 0);
1255 __ClearPageReserved(p
);
1256 set_page_count(p
, 0);
1258 page_zone(page
)->managed_pages
+= nr_pages
;
1259 set_page_refcounted(page
);
1260 __free_pages(page
, order
);
1263 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1266 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1268 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1270 static DEFINE_SPINLOCK(early_pfn_lock
);
1273 spin_lock(&early_pfn_lock
);
1274 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1277 spin_unlock(&early_pfn_lock
);
1283 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1285 struct mminit_pfnnid_cache
*state
)
1289 nid
= __early_pfn_to_nid(pfn
, state
);
1290 if (nid
>= 0 && nid
!= node
)
1295 /* Only safe to use early in boot when initialisation is single-threaded */
1296 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1298 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1303 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1307 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1308 struct mminit_pfnnid_cache
*state
)
1315 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1318 if (early_page_uninitialised(pfn
))
1320 return __free_pages_boot_core(page
, order
);
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner. The scanners then need to
1327 * use only pfn_valid_within() check for arches that allow holes within
1330 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1332 * It's possible on some configurations to have a setup like node0 node1 node0
1333 * i.e. it's possible that all pages within a zones range of pages do not
1334 * belong to a single zone. We assume that a border between node0 and node1
1335 * can occur within a single pageblock, but not a node0 node1 node0
1336 * interleaving within a single pageblock. It is therefore sufficient to check
1337 * the first and last page of a pageblock and avoid checking each individual
1338 * page in a pageblock.
1340 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1341 unsigned long end_pfn
, struct zone
*zone
)
1343 struct page
*start_page
;
1344 struct page
*end_page
;
1346 /* end_pfn is one past the range we are checking */
1349 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1352 start_page
= pfn_to_page(start_pfn
);
1354 if (page_zone(start_page
) != zone
)
1357 end_page
= pfn_to_page(end_pfn
);
1359 /* This gives a shorter code than deriving page_zone(end_page) */
1360 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1366 void set_zone_contiguous(struct zone
*zone
)
1368 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1369 unsigned long block_end_pfn
;
1371 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1372 for (; block_start_pfn
< zone_end_pfn(zone
);
1373 block_start_pfn
= block_end_pfn
,
1374 block_end_pfn
+= pageblock_nr_pages
) {
1376 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1378 if (!__pageblock_pfn_to_page(block_start_pfn
,
1379 block_end_pfn
, zone
))
1383 /* We confirm that there is no hole */
1384 zone
->contiguous
= true;
1387 void clear_zone_contiguous(struct zone
*zone
)
1389 zone
->contiguous
= false;
1392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1393 static void __init
deferred_free_range(struct page
*page
,
1394 unsigned long pfn
, int nr_pages
)
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1403 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1404 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1405 __free_pages_boot_core(page
, MAX_ORDER
-1);
1409 for (i
= 0; i
< nr_pages
; i
++, page
++)
1410 __free_pages_boot_core(page
, 0);
1413 /* Completion tracking for deferred_init_memmap() threads */
1414 static atomic_t pgdat_init_n_undone __initdata
;
1415 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1417 static inline void __init
pgdat_init_report_one_done(void)
1419 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1420 complete(&pgdat_init_all_done_comp
);
1423 /* Initialise remaining memory on a node */
1424 static int __init
deferred_init_memmap(void *data
)
1426 pg_data_t
*pgdat
= data
;
1427 int nid
= pgdat
->node_id
;
1428 struct mminit_pfnnid_cache nid_init_state
= { };
1429 unsigned long start
= jiffies
;
1430 unsigned long nr_pages
= 0;
1431 unsigned long walk_start
, walk_end
;
1434 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1435 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1437 if (first_init_pfn
== ULONG_MAX
) {
1438 pgdat_init_report_one_done();
1442 /* Bind memory initialisation thread to a local node if possible */
1443 if (!cpumask_empty(cpumask
))
1444 set_cpus_allowed_ptr(current
, cpumask
);
1446 /* Sanity check boundaries */
1447 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1448 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1449 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1451 /* Only the highest zone is deferred so find it */
1452 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1453 zone
= pgdat
->node_zones
+ zid
;
1454 if (first_init_pfn
< zone_end_pfn(zone
))
1458 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1459 unsigned long pfn
, end_pfn
;
1460 struct page
*page
= NULL
;
1461 struct page
*free_base_page
= NULL
;
1462 unsigned long free_base_pfn
= 0;
1465 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1466 pfn
= first_init_pfn
;
1467 if (pfn
< walk_start
)
1469 if (pfn
< zone
->zone_start_pfn
)
1470 pfn
= zone
->zone_start_pfn
;
1472 for (; pfn
< end_pfn
; pfn
++) {
1473 if (!pfn_valid_within(pfn
))
1477 * Ensure pfn_valid is checked every
1478 * MAX_ORDER_NR_PAGES for memory holes
1480 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1481 if (!pfn_valid(pfn
)) {
1487 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1492 /* Minimise pfn page lookups and scheduler checks */
1493 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1496 nr_pages
+= nr_to_free
;
1497 deferred_free_range(free_base_page
,
1498 free_base_pfn
, nr_to_free
);
1499 free_base_page
= NULL
;
1500 free_base_pfn
= nr_to_free
= 0;
1502 page
= pfn_to_page(pfn
);
1507 VM_BUG_ON(page_zone(page
) != zone
);
1511 __init_single_page(page
, pfn
, zid
, nid
);
1512 if (!free_base_page
) {
1513 free_base_page
= page
;
1514 free_base_pfn
= pfn
;
1519 /* Where possible, batch up pages for a single free */
1522 /* Free the current block of pages to allocator */
1523 nr_pages
+= nr_to_free
;
1524 deferred_free_range(free_base_page
, free_base_pfn
,
1526 free_base_page
= NULL
;
1527 free_base_pfn
= nr_to_free
= 0;
1530 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1536 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1537 jiffies_to_msecs(jiffies
- start
));
1539 pgdat_init_report_one_done();
1542 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1544 void __init
page_alloc_init_late(void)
1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1553 for_each_node_state(nid
, N_MEMORY
) {
1554 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1557 /* Block until all are initialised */
1558 wait_for_completion(&pgdat_init_all_done_comp
);
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
1564 for_each_populated_zone(zone
)
1565 set_zone_contiguous(zone
);
1569 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1570 void __init
init_cma_reserved_pageblock(struct page
*page
)
1572 unsigned i
= pageblock_nr_pages
;
1573 struct page
*p
= page
;
1576 __ClearPageReserved(p
);
1577 set_page_count(p
, 0);
1580 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1582 if (pageblock_order
>= MAX_ORDER
) {
1583 i
= pageblock_nr_pages
;
1586 set_page_refcounted(p
);
1587 __free_pages(p
, MAX_ORDER
- 1);
1588 p
+= MAX_ORDER_NR_PAGES
;
1589 } while (i
-= MAX_ORDER_NR_PAGES
);
1591 set_page_refcounted(page
);
1592 __free_pages(page
, pageblock_order
);
1595 adjust_managed_page_count(page
, pageblock_nr_pages
);
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1613 static inline void expand(struct zone
*zone
, struct page
*page
,
1614 int low
, int high
, struct free_area
*area
,
1617 unsigned long size
= 1 << high
;
1619 while (high
> low
) {
1623 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1626 debug_guardpage_enabled() &&
1627 high
< debug_guardpage_minorder()) {
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1634 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1637 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1639 set_page_order(&page
[size
], high
);
1643 static void check_new_page_bad(struct page
*page
)
1645 const char *bad_reason
= NULL
;
1646 unsigned long bad_flags
= 0;
1648 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1649 bad_reason
= "nonzero mapcount";
1650 if (unlikely(page
->mapping
!= NULL
))
1651 bad_reason
= "non-NULL mapping";
1652 if (unlikely(page_ref_count(page
) != 0))
1653 bad_reason
= "nonzero _count";
1654 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1655 bad_reason
= "HWPoisoned (hardware-corrupted)";
1656 bad_flags
= __PG_HWPOISON
;
1657 /* Don't complain about hwpoisoned pages */
1658 page_mapcount_reset(page
); /* remove PageBuddy */
1661 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1662 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1666 if (unlikely(page
->mem_cgroup
))
1667 bad_reason
= "page still charged to cgroup";
1669 bad_page(page
, bad_reason
, bad_flags
);
1673 * This page is about to be returned from the page allocator
1675 static inline int check_new_page(struct page
*page
)
1677 if (likely(page_expected_state(page
,
1678 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1681 check_new_page_bad(page
);
1685 static inline bool free_pages_prezeroed(bool poisoned
)
1687 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1688 page_poisoning_enabled() && poisoned
;
1691 #ifdef CONFIG_DEBUG_VM
1692 static bool check_pcp_refill(struct page
*page
)
1697 static bool check_new_pcp(struct page
*page
)
1699 return check_new_page(page
);
1702 static bool check_pcp_refill(struct page
*page
)
1704 return check_new_page(page
);
1706 static bool check_new_pcp(struct page
*page
)
1710 #endif /* CONFIG_DEBUG_VM */
1712 static bool check_new_pages(struct page
*page
, unsigned int order
)
1715 for (i
= 0; i
< (1 << order
); i
++) {
1716 struct page
*p
= page
+ i
;
1718 if (unlikely(check_new_page(p
)))
1725 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1726 unsigned int alloc_flags
)
1729 bool poisoned
= true;
1731 for (i
= 0; i
< (1 << order
); i
++) {
1732 struct page
*p
= page
+ i
;
1734 poisoned
&= page_is_poisoned(p
);
1737 set_page_private(page
, 0);
1738 set_page_refcounted(page
);
1740 arch_alloc_page(page
, order
);
1741 kernel_map_pages(page
, 1 << order
, 1);
1742 kernel_poison_pages(page
, 1 << order
, 1);
1743 kasan_alloc_pages(page
, order
);
1745 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1746 for (i
= 0; i
< (1 << order
); i
++)
1747 clear_highpage(page
+ i
);
1749 if (order
&& (gfp_flags
& __GFP_COMP
))
1750 prep_compound_page(page
, order
);
1752 set_page_owner(page
, order
, gfp_flags
);
1755 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1756 * allocate the page. The expectation is that the caller is taking
1757 * steps that will free more memory. The caller should avoid the page
1758 * being used for !PFMEMALLOC purposes.
1760 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1761 set_page_pfmemalloc(page
);
1763 clear_page_pfmemalloc(page
);
1767 * Go through the free lists for the given migratetype and remove
1768 * the smallest available page from the freelists
1771 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1774 unsigned int current_order
;
1775 struct free_area
*area
;
1778 /* Find a page of the appropriate size in the preferred list */
1779 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1780 area
= &(zone
->free_area
[current_order
]);
1781 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1785 list_del(&page
->lru
);
1786 rmv_page_order(page
);
1788 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1789 set_pcppage_migratetype(page
, migratetype
);
1798 * This array describes the order lists are fallen back to when
1799 * the free lists for the desirable migrate type are depleted
1801 static int fallbacks
[MIGRATE_TYPES
][4] = {
1802 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1803 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1804 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1806 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1808 #ifdef CONFIG_MEMORY_ISOLATION
1809 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1814 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1817 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1820 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1821 unsigned int order
) { return NULL
; }
1825 * Move the free pages in a range to the free lists of the requested type.
1826 * Note that start_page and end_pages are not aligned on a pageblock
1827 * boundary. If alignment is required, use move_freepages_block()
1829 int move_freepages(struct zone
*zone
,
1830 struct page
*start_page
, struct page
*end_page
,
1835 int pages_moved
= 0;
1837 #ifndef CONFIG_HOLES_IN_ZONE
1839 * page_zone is not safe to call in this context when
1840 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1841 * anyway as we check zone boundaries in move_freepages_block().
1842 * Remove at a later date when no bug reports exist related to
1843 * grouping pages by mobility
1845 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1848 for (page
= start_page
; page
<= end_page
;) {
1849 /* Make sure we are not inadvertently changing nodes */
1850 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1852 if (!pfn_valid_within(page_to_pfn(page
))) {
1857 if (!PageBuddy(page
)) {
1862 order
= page_order(page
);
1863 list_move(&page
->lru
,
1864 &zone
->free_area
[order
].free_list
[migratetype
]);
1866 pages_moved
+= 1 << order
;
1872 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1875 unsigned long start_pfn
, end_pfn
;
1876 struct page
*start_page
, *end_page
;
1878 start_pfn
= page_to_pfn(page
);
1879 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1880 start_page
= pfn_to_page(start_pfn
);
1881 end_page
= start_page
+ pageblock_nr_pages
- 1;
1882 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1884 /* Do not cross zone boundaries */
1885 if (!zone_spans_pfn(zone
, start_pfn
))
1887 if (!zone_spans_pfn(zone
, end_pfn
))
1890 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1893 static void change_pageblock_range(struct page
*pageblock_page
,
1894 int start_order
, int migratetype
)
1896 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1898 while (nr_pageblocks
--) {
1899 set_pageblock_migratetype(pageblock_page
, migratetype
);
1900 pageblock_page
+= pageblock_nr_pages
;
1905 * When we are falling back to another migratetype during allocation, try to
1906 * steal extra free pages from the same pageblocks to satisfy further
1907 * allocations, instead of polluting multiple pageblocks.
1909 * If we are stealing a relatively large buddy page, it is likely there will
1910 * be more free pages in the pageblock, so try to steal them all. For
1911 * reclaimable and unmovable allocations, we steal regardless of page size,
1912 * as fragmentation caused by those allocations polluting movable pageblocks
1913 * is worse than movable allocations stealing from unmovable and reclaimable
1916 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1919 * Leaving this order check is intended, although there is
1920 * relaxed order check in next check. The reason is that
1921 * we can actually steal whole pageblock if this condition met,
1922 * but, below check doesn't guarantee it and that is just heuristic
1923 * so could be changed anytime.
1925 if (order
>= pageblock_order
)
1928 if (order
>= pageblock_order
/ 2 ||
1929 start_mt
== MIGRATE_RECLAIMABLE
||
1930 start_mt
== MIGRATE_UNMOVABLE
||
1931 page_group_by_mobility_disabled
)
1938 * This function implements actual steal behaviour. If order is large enough,
1939 * we can steal whole pageblock. If not, we first move freepages in this
1940 * pageblock and check whether half of pages are moved or not. If half of
1941 * pages are moved, we can change migratetype of pageblock and permanently
1942 * use it's pages as requested migratetype in the future.
1944 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1947 unsigned int current_order
= page_order(page
);
1950 /* Take ownership for orders >= pageblock_order */
1951 if (current_order
>= pageblock_order
) {
1952 change_pageblock_range(page
, current_order
, start_type
);
1956 pages
= move_freepages_block(zone
, page
, start_type
);
1958 /* Claim the whole block if over half of it is free */
1959 if (pages
>= (1 << (pageblock_order
-1)) ||
1960 page_group_by_mobility_disabled
)
1961 set_pageblock_migratetype(page
, start_type
);
1965 * Check whether there is a suitable fallback freepage with requested order.
1966 * If only_stealable is true, this function returns fallback_mt only if
1967 * we can steal other freepages all together. This would help to reduce
1968 * fragmentation due to mixed migratetype pages in one pageblock.
1970 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1971 int migratetype
, bool only_stealable
, bool *can_steal
)
1976 if (area
->nr_free
== 0)
1981 fallback_mt
= fallbacks
[migratetype
][i
];
1982 if (fallback_mt
== MIGRATE_TYPES
)
1985 if (list_empty(&area
->free_list
[fallback_mt
]))
1988 if (can_steal_fallback(order
, migratetype
))
1991 if (!only_stealable
)
2002 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2003 * there are no empty page blocks that contain a page with a suitable order
2005 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2006 unsigned int alloc_order
)
2009 unsigned long max_managed
, flags
;
2012 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2013 * Check is race-prone but harmless.
2015 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2016 if (zone
->nr_reserved_highatomic
>= max_managed
)
2019 spin_lock_irqsave(&zone
->lock
, flags
);
2021 /* Recheck the nr_reserved_highatomic limit under the lock */
2022 if (zone
->nr_reserved_highatomic
>= max_managed
)
2026 mt
= get_pageblock_migratetype(page
);
2027 if (mt
!= MIGRATE_HIGHATOMIC
&&
2028 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
2029 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2030 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2031 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
2035 spin_unlock_irqrestore(&zone
->lock
, flags
);
2039 * Used when an allocation is about to fail under memory pressure. This
2040 * potentially hurts the reliability of high-order allocations when under
2041 * intense memory pressure but failed atomic allocations should be easier
2042 * to recover from than an OOM.
2044 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
2046 struct zonelist
*zonelist
= ac
->zonelist
;
2047 unsigned long flags
;
2053 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2055 /* Preserve at least one pageblock */
2056 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
2059 spin_lock_irqsave(&zone
->lock
, flags
);
2060 for (order
= 0; order
< MAX_ORDER
; order
++) {
2061 struct free_area
*area
= &(zone
->free_area
[order
]);
2063 page
= list_first_entry_or_null(
2064 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2070 * It should never happen but changes to locking could
2071 * inadvertently allow a per-cpu drain to add pages
2072 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2073 * and watch for underflows.
2075 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
2076 zone
->nr_reserved_highatomic
);
2079 * Convert to ac->migratetype and avoid the normal
2080 * pageblock stealing heuristics. Minimally, the caller
2081 * is doing the work and needs the pages. More
2082 * importantly, if the block was always converted to
2083 * MIGRATE_UNMOVABLE or another type then the number
2084 * of pageblocks that cannot be completely freed
2087 set_pageblock_migratetype(page
, ac
->migratetype
);
2088 move_freepages_block(zone
, page
, ac
->migratetype
);
2089 spin_unlock_irqrestore(&zone
->lock
, flags
);
2092 spin_unlock_irqrestore(&zone
->lock
, flags
);
2096 /* Remove an element from the buddy allocator from the fallback list */
2097 static inline struct page
*
2098 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2100 struct free_area
*area
;
2101 unsigned int current_order
;
2106 /* Find the largest possible block of pages in the other list */
2107 for (current_order
= MAX_ORDER
-1;
2108 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2110 area
= &(zone
->free_area
[current_order
]);
2111 fallback_mt
= find_suitable_fallback(area
, current_order
,
2112 start_migratetype
, false, &can_steal
);
2113 if (fallback_mt
== -1)
2116 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2119 steal_suitable_fallback(zone
, page
, start_migratetype
);
2121 /* Remove the page from the freelists */
2123 list_del(&page
->lru
);
2124 rmv_page_order(page
);
2126 expand(zone
, page
, order
, current_order
, area
,
2129 * The pcppage_migratetype may differ from pageblock's
2130 * migratetype depending on the decisions in
2131 * find_suitable_fallback(). This is OK as long as it does not
2132 * differ for MIGRATE_CMA pageblocks. Those can be used as
2133 * fallback only via special __rmqueue_cma_fallback() function
2135 set_pcppage_migratetype(page
, start_migratetype
);
2137 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2138 start_migratetype
, fallback_mt
);
2147 * Do the hard work of removing an element from the buddy allocator.
2148 * Call me with the zone->lock already held.
2150 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2155 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2156 if (unlikely(!page
)) {
2157 if (migratetype
== MIGRATE_MOVABLE
)
2158 page
= __rmqueue_cma_fallback(zone
, order
);
2161 page
= __rmqueue_fallback(zone
, order
, migratetype
);
2164 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2169 * Obtain a specified number of elements from the buddy allocator, all under
2170 * a single hold of the lock, for efficiency. Add them to the supplied list.
2171 * Returns the number of new pages which were placed at *list.
2173 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2174 unsigned long count
, struct list_head
*list
,
2175 int migratetype
, bool cold
)
2179 spin_lock(&zone
->lock
);
2180 for (i
= 0; i
< count
; ++i
) {
2181 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2182 if (unlikely(page
== NULL
))
2185 if (unlikely(check_pcp_refill(page
)))
2189 * Split buddy pages returned by expand() are received here
2190 * in physical page order. The page is added to the callers and
2191 * list and the list head then moves forward. From the callers
2192 * perspective, the linked list is ordered by page number in
2193 * some conditions. This is useful for IO devices that can
2194 * merge IO requests if the physical pages are ordered
2198 list_add(&page
->lru
, list
);
2200 list_add_tail(&page
->lru
, list
);
2202 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2203 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2206 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2207 spin_unlock(&zone
->lock
);
2213 * Called from the vmstat counter updater to drain pagesets of this
2214 * currently executing processor on remote nodes after they have
2217 * Note that this function must be called with the thread pinned to
2218 * a single processor.
2220 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2222 unsigned long flags
;
2223 int to_drain
, batch
;
2225 local_irq_save(flags
);
2226 batch
= READ_ONCE(pcp
->batch
);
2227 to_drain
= min(pcp
->count
, batch
);
2229 free_pcppages_bulk(zone
, to_drain
, pcp
);
2230 pcp
->count
-= to_drain
;
2232 local_irq_restore(flags
);
2237 * Drain pcplists of the indicated processor and zone.
2239 * The processor must either be the current processor and the
2240 * thread pinned to the current processor or a processor that
2243 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2245 unsigned long flags
;
2246 struct per_cpu_pageset
*pset
;
2247 struct per_cpu_pages
*pcp
;
2249 local_irq_save(flags
);
2250 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2254 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2257 local_irq_restore(flags
);
2261 * Drain pcplists of all zones on the indicated processor.
2263 * The processor must either be the current processor and the
2264 * thread pinned to the current processor or a processor that
2267 static void drain_pages(unsigned int cpu
)
2271 for_each_populated_zone(zone
) {
2272 drain_pages_zone(cpu
, zone
);
2277 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2279 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2280 * the single zone's pages.
2282 void drain_local_pages(struct zone
*zone
)
2284 int cpu
= smp_processor_id();
2287 drain_pages_zone(cpu
, zone
);
2293 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 * Note that this code is protected against sending an IPI to an offline
2298 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2299 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2300 * nothing keeps CPUs from showing up after we populated the cpumask and
2301 * before the call to on_each_cpu_mask().
2303 void drain_all_pages(struct zone
*zone
)
2308 * Allocate in the BSS so we wont require allocation in
2309 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 static cpumask_t cpus_with_pcps
;
2314 * We don't care about racing with CPU hotplug event
2315 * as offline notification will cause the notified
2316 * cpu to drain that CPU pcps and on_each_cpu_mask
2317 * disables preemption as part of its processing
2319 for_each_online_cpu(cpu
) {
2320 struct per_cpu_pageset
*pcp
;
2322 bool has_pcps
= false;
2325 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2329 for_each_populated_zone(z
) {
2330 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2331 if (pcp
->pcp
.count
) {
2339 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2341 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2343 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2347 #ifdef CONFIG_HIBERNATION
2349 void mark_free_pages(struct zone
*zone
)
2351 unsigned long pfn
, max_zone_pfn
;
2352 unsigned long flags
;
2353 unsigned int order
, t
;
2356 if (zone_is_empty(zone
))
2359 spin_lock_irqsave(&zone
->lock
, flags
);
2361 max_zone_pfn
= zone_end_pfn(zone
);
2362 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2363 if (pfn_valid(pfn
)) {
2364 page
= pfn_to_page(pfn
);
2366 if (page_zone(page
) != zone
)
2369 if (!swsusp_page_is_forbidden(page
))
2370 swsusp_unset_page_free(page
);
2373 for_each_migratetype_order(order
, t
) {
2374 list_for_each_entry(page
,
2375 &zone
->free_area
[order
].free_list
[t
], lru
) {
2378 pfn
= page_to_pfn(page
);
2379 for (i
= 0; i
< (1UL << order
); i
++)
2380 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2383 spin_unlock_irqrestore(&zone
->lock
, flags
);
2385 #endif /* CONFIG_PM */
2388 * Free a 0-order page
2389 * cold == true ? free a cold page : free a hot page
2391 void free_hot_cold_page(struct page
*page
, bool cold
)
2393 struct zone
*zone
= page_zone(page
);
2394 struct per_cpu_pages
*pcp
;
2395 unsigned long flags
;
2396 unsigned long pfn
= page_to_pfn(page
);
2399 if (!free_pcp_prepare(page
))
2402 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2403 set_pcppage_migratetype(page
, migratetype
);
2404 local_irq_save(flags
);
2405 __count_vm_event(PGFREE
);
2408 * We only track unmovable, reclaimable and movable on pcp lists.
2409 * Free ISOLATE pages back to the allocator because they are being
2410 * offlined but treat RESERVE as movable pages so we can get those
2411 * areas back if necessary. Otherwise, we may have to free
2412 * excessively into the page allocator
2414 if (migratetype
>= MIGRATE_PCPTYPES
) {
2415 if (unlikely(is_migrate_isolate(migratetype
))) {
2416 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2419 migratetype
= MIGRATE_MOVABLE
;
2422 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2424 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2426 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2428 if (pcp
->count
>= pcp
->high
) {
2429 unsigned long batch
= READ_ONCE(pcp
->batch
);
2430 free_pcppages_bulk(zone
, batch
, pcp
);
2431 pcp
->count
-= batch
;
2435 local_irq_restore(flags
);
2439 * Free a list of 0-order pages
2441 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2443 struct page
*page
, *next
;
2445 list_for_each_entry_safe(page
, next
, list
, lru
) {
2446 trace_mm_page_free_batched(page
, cold
);
2447 free_hot_cold_page(page
, cold
);
2452 * split_page takes a non-compound higher-order page, and splits it into
2453 * n (1<<order) sub-pages: page[0..n]
2454 * Each sub-page must be freed individually.
2456 * Note: this is probably too low level an operation for use in drivers.
2457 * Please consult with lkml before using this in your driver.
2459 void split_page(struct page
*page
, unsigned int order
)
2464 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2465 VM_BUG_ON_PAGE(!page_count(page
), page
);
2467 #ifdef CONFIG_KMEMCHECK
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2472 if (kmemcheck_page_is_tracked(page
))
2473 split_page(virt_to_page(page
[0].shadow
), order
);
2476 gfp_mask
= get_page_owner_gfp(page
);
2477 set_page_owner(page
, 0, gfp_mask
);
2478 for (i
= 1; i
< (1 << order
); i
++) {
2479 set_page_refcounted(page
+ i
);
2480 set_page_owner(page
+ i
, 0, gfp_mask
);
2483 EXPORT_SYMBOL_GPL(split_page
);
2485 int __isolate_free_page(struct page
*page
, unsigned int order
)
2487 unsigned long watermark
;
2491 BUG_ON(!PageBuddy(page
));
2493 zone
= page_zone(page
);
2494 mt
= get_pageblock_migratetype(page
);
2496 if (!is_migrate_isolate(mt
)) {
2497 /* Obey watermarks as if the page was being allocated */
2498 watermark
= low_wmark_pages(zone
) + (1 << order
);
2499 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2502 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2505 /* Remove page from free list */
2506 list_del(&page
->lru
);
2507 zone
->free_area
[order
].nr_free
--;
2508 rmv_page_order(page
);
2510 set_page_owner(page
, order
, __GFP_MOVABLE
);
2512 /* Set the pageblock if the isolated page is at least a pageblock */
2513 if (order
>= pageblock_order
- 1) {
2514 struct page
*endpage
= page
+ (1 << order
) - 1;
2515 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2516 int mt
= get_pageblock_migratetype(page
);
2517 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2518 set_pageblock_migratetype(page
,
2524 return 1UL << order
;
2528 * Similar to split_page except the page is already free. As this is only
2529 * being used for migration, the migratetype of the block also changes.
2530 * As this is called with interrupts disabled, the caller is responsible
2531 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2534 * Note: this is probably too low level an operation for use in drivers.
2535 * Please consult with lkml before using this in your driver.
2537 int split_free_page(struct page
*page
)
2542 order
= page_order(page
);
2544 nr_pages
= __isolate_free_page(page
, order
);
2548 /* Split into individual pages */
2549 set_page_refcounted(page
);
2550 split_page(page
, order
);
2555 * Update NUMA hit/miss statistics
2557 * Must be called with interrupts disabled.
2559 * When __GFP_OTHER_NODE is set assume the node of the preferred
2560 * zone is the local node. This is useful for daemons who allocate
2561 * memory on behalf of other processes.
2563 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2567 int local_nid
= numa_node_id();
2568 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2570 if (unlikely(flags
& __GFP_OTHER_NODE
)) {
2571 local_stat
= NUMA_OTHER
;
2572 local_nid
= preferred_zone
->node
;
2575 if (z
->node
== local_nid
) {
2576 __inc_zone_state(z
, NUMA_HIT
);
2577 __inc_zone_state(z
, local_stat
);
2579 __inc_zone_state(z
, NUMA_MISS
);
2580 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2586 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2589 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2590 struct zone
*zone
, unsigned int order
,
2591 gfp_t gfp_flags
, unsigned int alloc_flags
,
2594 unsigned long flags
;
2596 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2598 if (likely(order
== 0)) {
2599 struct per_cpu_pages
*pcp
;
2600 struct list_head
*list
;
2602 local_irq_save(flags
);
2604 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2605 list
= &pcp
->lists
[migratetype
];
2606 if (list_empty(list
)) {
2607 pcp
->count
+= rmqueue_bulk(zone
, 0,
2610 if (unlikely(list_empty(list
)))
2615 page
= list_last_entry(list
, struct page
, lru
);
2617 page
= list_first_entry(list
, struct page
, lru
);
2619 __dec_zone_state(zone
, NR_ALLOC_BATCH
);
2620 list_del(&page
->lru
);
2623 } while (check_new_pcp(page
));
2626 * We most definitely don't want callers attempting to
2627 * allocate greater than order-1 page units with __GFP_NOFAIL.
2629 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2630 spin_lock_irqsave(&zone
->lock
, flags
);
2634 if (alloc_flags
& ALLOC_HARDER
) {
2635 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2637 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2640 page
= __rmqueue(zone
, order
, migratetype
);
2641 } while (page
&& check_new_pages(page
, order
));
2642 spin_unlock(&zone
->lock
);
2645 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2646 __mod_zone_freepage_state(zone
, -(1 << order
),
2647 get_pcppage_migratetype(page
));
2650 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2651 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2652 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2654 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2655 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2656 local_irq_restore(flags
);
2658 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2662 local_irq_restore(flags
);
2666 #ifdef CONFIG_FAIL_PAGE_ALLOC
2669 struct fault_attr attr
;
2671 bool ignore_gfp_highmem
;
2672 bool ignore_gfp_reclaim
;
2674 } fail_page_alloc
= {
2675 .attr
= FAULT_ATTR_INITIALIZER
,
2676 .ignore_gfp_reclaim
= true,
2677 .ignore_gfp_highmem
= true,
2681 static int __init
setup_fail_page_alloc(char *str
)
2683 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2685 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2687 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2689 if (order
< fail_page_alloc
.min_order
)
2691 if (gfp_mask
& __GFP_NOFAIL
)
2693 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2695 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2696 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2699 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2702 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2704 static int __init
fail_page_alloc_debugfs(void)
2706 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2709 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2710 &fail_page_alloc
.attr
);
2712 return PTR_ERR(dir
);
2714 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2715 &fail_page_alloc
.ignore_gfp_reclaim
))
2717 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2718 &fail_page_alloc
.ignore_gfp_highmem
))
2720 if (!debugfs_create_u32("min-order", mode
, dir
,
2721 &fail_page_alloc
.min_order
))
2726 debugfs_remove_recursive(dir
);
2731 late_initcall(fail_page_alloc_debugfs
);
2733 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2735 #else /* CONFIG_FAIL_PAGE_ALLOC */
2737 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2742 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2745 * Return true if free base pages are above 'mark'. For high-order checks it
2746 * will return true of the order-0 watermark is reached and there is at least
2747 * one free page of a suitable size. Checking now avoids taking the zone lock
2748 * to check in the allocation paths if no pages are free.
2750 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2751 int classzone_idx
, unsigned int alloc_flags
,
2756 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2758 /* free_pages may go negative - that's OK */
2759 free_pages
-= (1 << order
) - 1;
2761 if (alloc_flags
& ALLOC_HIGH
)
2765 * If the caller does not have rights to ALLOC_HARDER then subtract
2766 * the high-atomic reserves. This will over-estimate the size of the
2767 * atomic reserve but it avoids a search.
2769 if (likely(!alloc_harder
))
2770 free_pages
-= z
->nr_reserved_highatomic
;
2775 /* If allocation can't use CMA areas don't use free CMA pages */
2776 if (!(alloc_flags
& ALLOC_CMA
))
2777 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2781 * Check watermarks for an order-0 allocation request. If these
2782 * are not met, then a high-order request also cannot go ahead
2783 * even if a suitable page happened to be free.
2785 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2788 /* If this is an order-0 request then the watermark is fine */
2792 /* For a high-order request, check at least one suitable page is free */
2793 for (o
= order
; o
< MAX_ORDER
; o
++) {
2794 struct free_area
*area
= &z
->free_area
[o
];
2803 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2804 if (!list_empty(&area
->free_list
[mt
]))
2809 if ((alloc_flags
& ALLOC_CMA
) &&
2810 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2818 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2819 int classzone_idx
, unsigned int alloc_flags
)
2821 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2822 zone_page_state(z
, NR_FREE_PAGES
));
2825 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2826 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2828 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2832 /* If allocation can't use CMA areas don't use free CMA pages */
2833 if (!(alloc_flags
& ALLOC_CMA
))
2834 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2838 * Fast check for order-0 only. If this fails then the reserves
2839 * need to be calculated. There is a corner case where the check
2840 * passes but only the high-order atomic reserve are free. If
2841 * the caller is !atomic then it'll uselessly search the free
2842 * list. That corner case is then slower but it is harmless.
2844 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2847 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2851 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2852 unsigned long mark
, int classzone_idx
)
2854 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2856 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2857 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2859 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2864 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2866 return local_zone
->node
== zone
->node
;
2869 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2871 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2874 #else /* CONFIG_NUMA */
2875 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2880 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2884 #endif /* CONFIG_NUMA */
2886 static void reset_alloc_batches(struct zone
*preferred_zone
)
2888 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2891 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2892 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2893 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2894 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2895 } while (zone
++ != preferred_zone
);
2899 * get_page_from_freelist goes through the zonelist trying to allocate
2902 static struct page
*
2903 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2904 const struct alloc_context
*ac
)
2906 struct zoneref
*z
= ac
->preferred_zoneref
;
2908 bool fair_skipped
= false;
2909 bool apply_fair
= (alloc_flags
& ALLOC_FAIR
);
2913 * Scan zonelist, looking for a zone with enough free.
2914 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2916 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2921 if (cpusets_enabled() &&
2922 (alloc_flags
& ALLOC_CPUSET
) &&
2923 !__cpuset_zone_allowed(zone
, gfp_mask
))
2926 * Distribute pages in proportion to the individual
2927 * zone size to ensure fair page aging. The zone a
2928 * page was allocated in should have no effect on the
2929 * time the page has in memory before being reclaimed.
2932 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2933 fair_skipped
= true;
2936 if (!zone_local(ac
->preferred_zoneref
->zone
, zone
)) {
2943 * When allocating a page cache page for writing, we
2944 * want to get it from a zone that is within its dirty
2945 * limit, such that no single zone holds more than its
2946 * proportional share of globally allowed dirty pages.
2947 * The dirty limits take into account the zone's
2948 * lowmem reserves and high watermark so that kswapd
2949 * should be able to balance it without having to
2950 * write pages from its LRU list.
2952 * This may look like it could increase pressure on
2953 * lower zones by failing allocations in higher zones
2954 * before they are full. But the pages that do spill
2955 * over are limited as the lower zones are protected
2956 * by this very same mechanism. It should not become
2957 * a practical burden to them.
2959 * XXX: For now, allow allocations to potentially
2960 * exceed the per-zone dirty limit in the slowpath
2961 * (spread_dirty_pages unset) before going into reclaim,
2962 * which is important when on a NUMA setup the allowed
2963 * zones are together not big enough to reach the
2964 * global limit. The proper fix for these situations
2965 * will require awareness of zones in the
2966 * dirty-throttling and the flusher threads.
2968 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2971 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2972 if (!zone_watermark_fast(zone
, order
, mark
,
2973 ac_classzone_idx(ac
), alloc_flags
)) {
2976 /* Checked here to keep the fast path fast */
2977 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2978 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2981 if (zone_reclaim_mode
== 0 ||
2982 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
2985 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2987 case ZONE_RECLAIM_NOSCAN
:
2990 case ZONE_RECLAIM_FULL
:
2991 /* scanned but unreclaimable */
2994 /* did we reclaim enough */
2995 if (zone_watermark_ok(zone
, order
, mark
,
2996 ac_classzone_idx(ac
), alloc_flags
))
3004 page
= buffered_rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3005 gfp_mask
, alloc_flags
, ac
->migratetype
);
3007 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3010 * If this is a high-order atomic allocation then check
3011 * if the pageblock should be reserved for the future
3013 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3014 reserve_highatomic_pageblock(page
, zone
, order
);
3021 * The first pass makes sure allocations are spread fairly within the
3022 * local node. However, the local node might have free pages left
3023 * after the fairness batches are exhausted, and remote zones haven't
3024 * even been considered yet. Try once more without fairness, and
3025 * include remote zones now, before entering the slowpath and waking
3026 * kswapd: prefer spilling to a remote zone over swapping locally.
3031 fair_skipped
= false;
3032 reset_alloc_batches(ac
->preferred_zoneref
->zone
);
3033 z
= ac
->preferred_zoneref
;
3041 * Large machines with many possible nodes should not always dump per-node
3042 * meminfo in irq context.
3044 static inline bool should_suppress_show_mem(void)
3049 ret
= in_interrupt();
3054 static DEFINE_RATELIMIT_STATE(nopage_rs
,
3055 DEFAULT_RATELIMIT_INTERVAL
,
3056 DEFAULT_RATELIMIT_BURST
);
3058 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
3060 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3062 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
3063 debug_guardpage_minorder() > 0)
3067 * This documents exceptions given to allocations in certain
3068 * contexts that are allowed to allocate outside current's set
3071 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3072 if (test_thread_flag(TIF_MEMDIE
) ||
3073 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3074 filter
&= ~SHOW_MEM_FILTER_NODES
;
3075 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3076 filter
&= ~SHOW_MEM_FILTER_NODES
;
3079 struct va_format vaf
;
3082 va_start(args
, fmt
);
3087 pr_warn("%pV", &vaf
);
3092 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3093 current
->comm
, order
, gfp_mask
, &gfp_mask
);
3095 if (!should_suppress_show_mem())
3099 static inline struct page
*
3100 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3101 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3103 struct oom_control oc
= {
3104 .zonelist
= ac
->zonelist
,
3105 .nodemask
= ac
->nodemask
,
3106 .gfp_mask
= gfp_mask
,
3111 *did_some_progress
= 0;
3114 * Acquire the oom lock. If that fails, somebody else is
3115 * making progress for us.
3117 if (!mutex_trylock(&oom_lock
)) {
3118 *did_some_progress
= 1;
3119 schedule_timeout_uninterruptible(1);
3124 * Go through the zonelist yet one more time, keep very high watermark
3125 * here, this is only to catch a parallel oom killing, we must fail if
3126 * we're still under heavy pressure.
3128 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3129 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3133 if (!(gfp_mask
& __GFP_NOFAIL
)) {
3134 /* Coredumps can quickly deplete all memory reserves */
3135 if (current
->flags
& PF_DUMPCORE
)
3137 /* The OOM killer will not help higher order allocs */
3138 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3140 /* The OOM killer does not needlessly kill tasks for lowmem */
3141 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3143 if (pm_suspended_storage())
3146 * XXX: GFP_NOFS allocations should rather fail than rely on
3147 * other request to make a forward progress.
3148 * We are in an unfortunate situation where out_of_memory cannot
3149 * do much for this context but let's try it to at least get
3150 * access to memory reserved if the current task is killed (see
3151 * out_of_memory). Once filesystems are ready to handle allocation
3152 * failures more gracefully we should just bail out here.
3155 /* The OOM killer may not free memory on a specific node */
3156 if (gfp_mask
& __GFP_THISNODE
)
3159 /* Exhausted what can be done so it's blamo time */
3160 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3161 *did_some_progress
= 1;
3163 if (gfp_mask
& __GFP_NOFAIL
) {
3164 page
= get_page_from_freelist(gfp_mask
, order
,
3165 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
3167 * fallback to ignore cpuset restriction if our nodes
3171 page
= get_page_from_freelist(gfp_mask
, order
,
3172 ALLOC_NO_WATERMARKS
, ac
);
3176 mutex_unlock(&oom_lock
);
3182 * Maximum number of compaction retries wit a progress before OOM
3183 * killer is consider as the only way to move forward.
3185 #define MAX_COMPACT_RETRIES 16
3187 #ifdef CONFIG_COMPACTION
3188 /* Try memory compaction for high-order allocations before reclaim */
3189 static struct page
*
3190 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3191 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3192 enum migrate_mode mode
, enum compact_result
*compact_result
)
3195 int contended_compaction
;
3200 current
->flags
|= PF_MEMALLOC
;
3201 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3202 mode
, &contended_compaction
);
3203 current
->flags
&= ~PF_MEMALLOC
;
3205 if (*compact_result
<= COMPACT_INACTIVE
)
3209 * At least in one zone compaction wasn't deferred or skipped, so let's
3210 * count a compaction stall
3212 count_vm_event(COMPACTSTALL
);
3214 page
= get_page_from_freelist(gfp_mask
, order
,
3215 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3218 struct zone
*zone
= page_zone(page
);
3220 zone
->compact_blockskip_flush
= false;
3221 compaction_defer_reset(zone
, order
, true);
3222 count_vm_event(COMPACTSUCCESS
);
3227 * It's bad if compaction run occurs and fails. The most likely reason
3228 * is that pages exist, but not enough to satisfy watermarks.
3230 count_vm_event(COMPACTFAIL
);
3233 * In all zones where compaction was attempted (and not
3234 * deferred or skipped), lock contention has been detected.
3235 * For THP allocation we do not want to disrupt the others
3236 * so we fallback to base pages instead.
3238 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3239 *compact_result
= COMPACT_CONTENDED
;
3242 * If compaction was aborted due to need_resched(), we do not
3243 * want to further increase allocation latency, unless it is
3244 * khugepaged trying to collapse.
3246 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3247 && !(current
->flags
& PF_KTHREAD
))
3248 *compact_result
= COMPACT_CONTENDED
;
3256 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3257 enum compact_result compact_result
, enum migrate_mode
*migrate_mode
,
3258 int compaction_retries
)
3260 int max_retries
= MAX_COMPACT_RETRIES
;
3266 * compaction considers all the zone as desperately out of memory
3267 * so it doesn't really make much sense to retry except when the
3268 * failure could be caused by weak migration mode.
3270 if (compaction_failed(compact_result
)) {
3271 if (*migrate_mode
== MIGRATE_ASYNC
) {
3272 *migrate_mode
= MIGRATE_SYNC_LIGHT
;
3279 * make sure the compaction wasn't deferred or didn't bail out early
3280 * due to locks contention before we declare that we should give up.
3281 * But do not retry if the given zonelist is not suitable for
3284 if (compaction_withdrawn(compact_result
))
3285 return compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3288 * !costly requests are much more important than __GFP_REPEAT
3289 * costly ones because they are de facto nofail and invoke OOM
3290 * killer to move on while costly can fail and users are ready
3291 * to cope with that. 1/4 retries is rather arbitrary but we
3292 * would need much more detailed feedback from compaction to
3293 * make a better decision.
3295 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3297 if (compaction_retries
<= max_retries
)
3303 static inline struct page
*
3304 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3305 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3306 enum migrate_mode mode
, enum compact_result
*compact_result
)
3308 *compact_result
= COMPACT_SKIPPED
;
3313 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3314 enum compact_result compact_result
,
3315 enum migrate_mode
*migrate_mode
,
3316 int compaction_retries
)
3321 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3325 * There are setups with compaction disabled which would prefer to loop
3326 * inside the allocator rather than hit the oom killer prematurely.
3327 * Let's give them a good hope and keep retrying while the order-0
3328 * watermarks are OK.
3330 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3332 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3333 ac_classzone_idx(ac
), alloc_flags
))
3338 #endif /* CONFIG_COMPACTION */
3340 /* Perform direct synchronous page reclaim */
3342 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3343 const struct alloc_context
*ac
)
3345 struct reclaim_state reclaim_state
;
3350 /* We now go into synchronous reclaim */
3351 cpuset_memory_pressure_bump();
3352 current
->flags
|= PF_MEMALLOC
;
3353 lockdep_set_current_reclaim_state(gfp_mask
);
3354 reclaim_state
.reclaimed_slab
= 0;
3355 current
->reclaim_state
= &reclaim_state
;
3357 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3360 current
->reclaim_state
= NULL
;
3361 lockdep_clear_current_reclaim_state();
3362 current
->flags
&= ~PF_MEMALLOC
;
3369 /* The really slow allocator path where we enter direct reclaim */
3370 static inline struct page
*
3371 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3372 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3373 unsigned long *did_some_progress
)
3375 struct page
*page
= NULL
;
3376 bool drained
= false;
3378 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3379 if (unlikely(!(*did_some_progress
)))
3383 page
= get_page_from_freelist(gfp_mask
, order
,
3384 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3387 * If an allocation failed after direct reclaim, it could be because
3388 * pages are pinned on the per-cpu lists or in high alloc reserves.
3389 * Shrink them them and try again
3391 if (!page
&& !drained
) {
3392 unreserve_highatomic_pageblock(ac
);
3393 drain_all_pages(NULL
);
3401 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3406 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3407 ac
->high_zoneidx
, ac
->nodemask
)
3408 wakeup_kswapd(zone
, order
, ac_classzone_idx(ac
));
3411 static inline unsigned int
3412 gfp_to_alloc_flags(gfp_t gfp_mask
)
3414 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3416 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3417 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3420 * The caller may dip into page reserves a bit more if the caller
3421 * cannot run direct reclaim, or if the caller has realtime scheduling
3422 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3423 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3425 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3427 if (gfp_mask
& __GFP_ATOMIC
) {
3429 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3430 * if it can't schedule.
3432 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3433 alloc_flags
|= ALLOC_HARDER
;
3435 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3436 * comment for __cpuset_node_allowed().
3438 alloc_flags
&= ~ALLOC_CPUSET
;
3439 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3440 alloc_flags
|= ALLOC_HARDER
;
3442 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
3443 if (gfp_mask
& __GFP_MEMALLOC
)
3444 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3445 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3446 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3447 else if (!in_interrupt() &&
3448 ((current
->flags
& PF_MEMALLOC
) ||
3449 unlikely(test_thread_flag(TIF_MEMDIE
))))
3450 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3453 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3454 alloc_flags
|= ALLOC_CMA
;
3459 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3461 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
3464 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
3466 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
3470 * Maximum number of reclaim retries without any progress before OOM killer
3471 * is consider as the only way to move forward.
3473 #define MAX_RECLAIM_RETRIES 16
3476 * Checks whether it makes sense to retry the reclaim to make a forward progress
3477 * for the given allocation request.
3478 * The reclaim feedback represented by did_some_progress (any progress during
3479 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3480 * any progress in a row) is considered as well as the reclaimable pages on the
3481 * applicable zone list (with a backoff mechanism which is a function of
3482 * no_progress_loops).
3484 * Returns true if a retry is viable or false to enter the oom path.
3487 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3488 struct alloc_context
*ac
, int alloc_flags
,
3489 bool did_some_progress
, int no_progress_loops
)
3495 * Make sure we converge to OOM if we cannot make any progress
3496 * several times in the row.
3498 if (no_progress_loops
> MAX_RECLAIM_RETRIES
)
3502 * Keep reclaiming pages while there is a chance this will lead somewhere.
3503 * If none of the target zones can satisfy our allocation request even
3504 * if all reclaimable pages are considered then we are screwed and have
3507 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3509 unsigned long available
;
3510 unsigned long reclaimable
;
3512 available
= reclaimable
= zone_reclaimable_pages(zone
);
3513 available
-= DIV_ROUND_UP(no_progress_loops
* available
,
3514 MAX_RECLAIM_RETRIES
);
3515 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3518 * Would the allocation succeed if we reclaimed the whole
3521 if (__zone_watermark_ok(zone
, order
, min_wmark_pages(zone
),
3522 ac_classzone_idx(ac
), alloc_flags
, available
)) {
3524 * If we didn't make any progress and have a lot of
3525 * dirty + writeback pages then we should wait for
3526 * an IO to complete to slow down the reclaim and
3527 * prevent from pre mature OOM
3529 if (!did_some_progress
) {
3530 unsigned long writeback
;
3531 unsigned long dirty
;
3533 writeback
= zone_page_state_snapshot(zone
,
3535 dirty
= zone_page_state_snapshot(zone
, NR_FILE_DIRTY
);
3537 if (2*(writeback
+ dirty
) > reclaimable
) {
3538 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3544 * Memory allocation/reclaim might be called from a WQ
3545 * context and the current implementation of the WQ
3546 * concurrency control doesn't recognize that
3547 * a particular WQ is congested if the worker thread is
3548 * looping without ever sleeping. Therefore we have to
3549 * do a short sleep here rather than calling
3552 if (current
->flags
& PF_WQ_WORKER
)
3553 schedule_timeout_uninterruptible(1);
3564 static inline struct page
*
3565 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3566 struct alloc_context
*ac
)
3568 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3569 struct page
*page
= NULL
;
3570 unsigned int alloc_flags
;
3571 unsigned long did_some_progress
;
3572 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
3573 enum compact_result compact_result
;
3574 int compaction_retries
= 0;
3575 int no_progress_loops
= 0;
3578 * In the slowpath, we sanity check order to avoid ever trying to
3579 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3580 * be using allocators in order of preference for an area that is
3583 if (order
>= MAX_ORDER
) {
3584 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3589 * We also sanity check to catch abuse of atomic reserves being used by
3590 * callers that are not in atomic context.
3592 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3593 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3594 gfp_mask
&= ~__GFP_ATOMIC
;
3597 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3598 wake_all_kswapds(order
, ac
);
3601 * OK, we're below the kswapd watermark and have kicked background
3602 * reclaim. Now things get more complex, so set up alloc_flags according
3603 * to how we want to proceed.
3605 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3608 * Reset the zonelist iterators if memory policies can be ignored.
3609 * These allocations are high priority and system rather than user
3612 if ((alloc_flags
& ALLOC_NO_WATERMARKS
) || !(alloc_flags
& ALLOC_CPUSET
)) {
3613 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3614 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3615 ac
->high_zoneidx
, ac
->nodemask
);
3618 /* This is the last chance, in general, before the goto nopage. */
3619 page
= get_page_from_freelist(gfp_mask
, order
,
3620 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3624 /* Allocate without watermarks if the context allows */
3625 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3626 page
= get_page_from_freelist(gfp_mask
, order
,
3627 ALLOC_NO_WATERMARKS
, ac
);
3632 /* Caller is not willing to reclaim, we can't balance anything */
3633 if (!can_direct_reclaim
) {
3635 * All existing users of the __GFP_NOFAIL are blockable, so warn
3636 * of any new users that actually allow this type of allocation
3639 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3643 /* Avoid recursion of direct reclaim */
3644 if (current
->flags
& PF_MEMALLOC
) {
3646 * __GFP_NOFAIL request from this context is rather bizarre
3647 * because we cannot reclaim anything and only can loop waiting
3648 * for somebody to do a work for us.
3650 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3657 /* Avoid allocations with no watermarks from looping endlessly */
3658 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3662 * Try direct compaction. The first pass is asynchronous. Subsequent
3663 * attempts after direct reclaim are synchronous
3665 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3671 /* Checks for THP-specific high-order allocations */
3672 if (is_thp_gfp_mask(gfp_mask
)) {
3674 * If compaction is deferred for high-order allocations, it is
3675 * because sync compaction recently failed. If this is the case
3676 * and the caller requested a THP allocation, we do not want
3677 * to heavily disrupt the system, so we fail the allocation
3678 * instead of entering direct reclaim.
3680 if (compact_result
== COMPACT_DEFERRED
)
3684 * Compaction is contended so rather back off than cause
3687 if(compact_result
== COMPACT_CONTENDED
)
3691 if (order
&& compaction_made_progress(compact_result
))
3692 compaction_retries
++;
3694 /* Try direct reclaim and then allocating */
3695 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3696 &did_some_progress
);
3700 /* Do not loop if specifically requested */
3701 if (gfp_mask
& __GFP_NORETRY
)
3705 * Do not retry costly high order allocations unless they are
3708 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_REPEAT
))
3712 * Costly allocations might have made a progress but this doesn't mean
3713 * their order will become available due to high fragmentation so
3714 * always increment the no progress counter for them
3716 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3717 no_progress_loops
= 0;
3719 no_progress_loops
++;
3721 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3722 did_some_progress
> 0, no_progress_loops
))
3726 * It doesn't make any sense to retry for the compaction if the order-0
3727 * reclaim is not able to make any progress because the current
3728 * implementation of the compaction depends on the sufficient amount
3729 * of free memory (see __compaction_suitable)
3731 if (did_some_progress
> 0 &&
3732 should_compact_retry(ac
, order
, alloc_flags
,
3733 compact_result
, &migration_mode
,
3734 compaction_retries
))
3737 /* Reclaim has failed us, start killing things */
3738 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3742 /* Retry as long as the OOM killer is making progress */
3743 if (did_some_progress
) {
3744 no_progress_loops
= 0;
3750 * High-order allocations do not necessarily loop after direct reclaim
3751 * and reclaim/compaction depends on compaction being called after
3752 * reclaim so call directly if necessary.
3753 * It can become very expensive to allocate transparent hugepages at
3754 * fault, so use asynchronous memory compaction for THP unless it is
3755 * khugepaged trying to collapse. All other requests should tolerate
3756 * at least light sync migration.
3758 if (is_thp_gfp_mask(gfp_mask
) && !(current
->flags
& PF_KTHREAD
))
3759 migration_mode
= MIGRATE_ASYNC
;
3761 migration_mode
= MIGRATE_SYNC_LIGHT
;
3762 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3768 warn_alloc_failed(gfp_mask
, order
, NULL
);
3774 * This is the 'heart' of the zoned buddy allocator.
3777 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3778 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3781 unsigned int cpuset_mems_cookie
;
3782 unsigned int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_FAIR
;
3783 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3784 struct alloc_context ac
= {
3785 .high_zoneidx
= gfp_zone(gfp_mask
),
3786 .zonelist
= zonelist
,
3787 .nodemask
= nodemask
,
3788 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3791 if (cpusets_enabled()) {
3792 alloc_mask
|= __GFP_HARDWALL
;
3793 alloc_flags
|= ALLOC_CPUSET
;
3795 ac
.nodemask
= &cpuset_current_mems_allowed
;
3798 gfp_mask
&= gfp_allowed_mask
;
3800 lockdep_trace_alloc(gfp_mask
);
3802 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3804 if (should_fail_alloc_page(gfp_mask
, order
))
3808 * Check the zones suitable for the gfp_mask contain at least one
3809 * valid zone. It's possible to have an empty zonelist as a result
3810 * of __GFP_THISNODE and a memoryless node
3812 if (unlikely(!zonelist
->_zonerefs
->zone
))
3815 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3816 alloc_flags
|= ALLOC_CMA
;
3819 cpuset_mems_cookie
= read_mems_allowed_begin();
3821 /* Dirty zone balancing only done in the fast path */
3822 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3825 * The preferred zone is used for statistics but crucially it is
3826 * also used as the starting point for the zonelist iterator. It
3827 * may get reset for allocations that ignore memory policies.
3829 ac
.preferred_zoneref
= first_zones_zonelist(ac
.zonelist
,
3830 ac
.high_zoneidx
, ac
.nodemask
);
3831 if (!ac
.preferred_zoneref
) {
3836 /* First allocation attempt */
3837 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3842 * Runtime PM, block IO and its error handling path can deadlock
3843 * because I/O on the device might not complete.
3845 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3846 ac
.spread_dirty_pages
= false;
3849 * Restore the original nodemask if it was potentially replaced with
3850 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3852 if (cpusets_enabled())
3853 ac
.nodemask
= nodemask
;
3854 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3858 * When updating a task's mems_allowed, it is possible to race with
3859 * parallel threads in such a way that an allocation can fail while
3860 * the mask is being updated. If a page allocation is about to fail,
3861 * check if the cpuset changed during allocation and if so, retry.
3863 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
))) {
3864 alloc_mask
= gfp_mask
;
3869 if (kmemcheck_enabled
&& page
)
3870 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3872 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3876 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3879 * Common helper functions.
3881 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3886 * __get_free_pages() returns a 32-bit address, which cannot represent
3889 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3891 page
= alloc_pages(gfp_mask
, order
);
3894 return (unsigned long) page_address(page
);
3896 EXPORT_SYMBOL(__get_free_pages
);
3898 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3900 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3902 EXPORT_SYMBOL(get_zeroed_page
);
3904 void __free_pages(struct page
*page
, unsigned int order
)
3906 if (put_page_testzero(page
)) {
3908 free_hot_cold_page(page
, false);
3910 __free_pages_ok(page
, order
);
3914 EXPORT_SYMBOL(__free_pages
);
3916 void free_pages(unsigned long addr
, unsigned int order
)
3919 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3920 __free_pages(virt_to_page((void *)addr
), order
);
3924 EXPORT_SYMBOL(free_pages
);
3928 * An arbitrary-length arbitrary-offset area of memory which resides
3929 * within a 0 or higher order page. Multiple fragments within that page
3930 * are individually refcounted, in the page's reference counter.
3932 * The page_frag functions below provide a simple allocation framework for
3933 * page fragments. This is used by the network stack and network device
3934 * drivers to provide a backing region of memory for use as either an
3935 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3937 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3940 struct page
*page
= NULL
;
3941 gfp_t gfp
= gfp_mask
;
3943 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3944 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3946 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3947 PAGE_FRAG_CACHE_MAX_ORDER
);
3948 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3950 if (unlikely(!page
))
3951 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3953 nc
->va
= page
? page_address(page
) : NULL
;
3958 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3959 unsigned int fragsz
, gfp_t gfp_mask
)
3961 unsigned int size
= PAGE_SIZE
;
3965 if (unlikely(!nc
->va
)) {
3967 page
= __page_frag_refill(nc
, gfp_mask
);
3971 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3972 /* if size can vary use size else just use PAGE_SIZE */
3975 /* Even if we own the page, we do not use atomic_set().
3976 * This would break get_page_unless_zero() users.
3978 page_ref_add(page
, size
- 1);
3980 /* reset page count bias and offset to start of new frag */
3981 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3982 nc
->pagecnt_bias
= size
;
3986 offset
= nc
->offset
- fragsz
;
3987 if (unlikely(offset
< 0)) {
3988 page
= virt_to_page(nc
->va
);
3990 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3994 /* if size can vary use size else just use PAGE_SIZE */
3997 /* OK, page count is 0, we can safely set it */
3998 set_page_count(page
, size
);
4000 /* reset page count bias and offset to start of new frag */
4001 nc
->pagecnt_bias
= size
;
4002 offset
= size
- fragsz
;
4006 nc
->offset
= offset
;
4008 return nc
->va
+ offset
;
4010 EXPORT_SYMBOL(__alloc_page_frag
);
4013 * Frees a page fragment allocated out of either a compound or order 0 page.
4015 void __free_page_frag(void *addr
)
4017 struct page
*page
= virt_to_head_page(addr
);
4019 if (unlikely(put_page_testzero(page
)))
4020 __free_pages_ok(page
, compound_order(page
));
4022 EXPORT_SYMBOL(__free_page_frag
);
4025 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4026 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4027 * equivalent to alloc_pages.
4029 * It should be used when the caller would like to use kmalloc, but since the
4030 * allocation is large, it has to fall back to the page allocator.
4032 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
4036 page
= alloc_pages(gfp_mask
, order
);
4037 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
4038 __free_pages(page
, order
);
4044 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
4048 page
= alloc_pages_node(nid
, gfp_mask
, order
);
4049 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
4050 __free_pages(page
, order
);
4057 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4060 void __free_kmem_pages(struct page
*page
, unsigned int order
)
4062 memcg_kmem_uncharge(page
, order
);
4063 __free_pages(page
, order
);
4066 void free_kmem_pages(unsigned long addr
, unsigned int order
)
4069 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4070 __free_kmem_pages(virt_to_page((void *)addr
), order
);
4074 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4078 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4079 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4081 split_page(virt_to_page((void *)addr
), order
);
4082 while (used
< alloc_end
) {
4087 return (void *)addr
;
4091 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4092 * @size: the number of bytes to allocate
4093 * @gfp_mask: GFP flags for the allocation
4095 * This function is similar to alloc_pages(), except that it allocates the
4096 * minimum number of pages to satisfy the request. alloc_pages() can only
4097 * allocate memory in power-of-two pages.
4099 * This function is also limited by MAX_ORDER.
4101 * Memory allocated by this function must be released by free_pages_exact().
4103 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4105 unsigned int order
= get_order(size
);
4108 addr
= __get_free_pages(gfp_mask
, order
);
4109 return make_alloc_exact(addr
, order
, size
);
4111 EXPORT_SYMBOL(alloc_pages_exact
);
4114 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4116 * @nid: the preferred node ID where memory should be allocated
4117 * @size: the number of bytes to allocate
4118 * @gfp_mask: GFP flags for the allocation
4120 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4123 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4125 unsigned int order
= get_order(size
);
4126 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4129 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4133 * free_pages_exact - release memory allocated via alloc_pages_exact()
4134 * @virt: the value returned by alloc_pages_exact.
4135 * @size: size of allocation, same value as passed to alloc_pages_exact().
4137 * Release the memory allocated by a previous call to alloc_pages_exact.
4139 void free_pages_exact(void *virt
, size_t size
)
4141 unsigned long addr
= (unsigned long)virt
;
4142 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4144 while (addr
< end
) {
4149 EXPORT_SYMBOL(free_pages_exact
);
4152 * nr_free_zone_pages - count number of pages beyond high watermark
4153 * @offset: The zone index of the highest zone
4155 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4156 * high watermark within all zones at or below a given zone index. For each
4157 * zone, the number of pages is calculated as:
4158 * managed_pages - high_pages
4160 static unsigned long nr_free_zone_pages(int offset
)
4165 /* Just pick one node, since fallback list is circular */
4166 unsigned long sum
= 0;
4168 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4170 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4171 unsigned long size
= zone
->managed_pages
;
4172 unsigned long high
= high_wmark_pages(zone
);
4181 * nr_free_buffer_pages - count number of pages beyond high watermark
4183 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4184 * watermark within ZONE_DMA and ZONE_NORMAL.
4186 unsigned long nr_free_buffer_pages(void)
4188 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4190 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4193 * nr_free_pagecache_pages - count number of pages beyond high watermark
4195 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4196 * high watermark within all zones.
4198 unsigned long nr_free_pagecache_pages(void)
4200 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4203 static inline void show_node(struct zone
*zone
)
4205 if (IS_ENABLED(CONFIG_NUMA
))
4206 printk("Node %d ", zone_to_nid(zone
));
4209 long si_mem_available(void)
4212 unsigned long pagecache
;
4213 unsigned long wmark_low
= 0;
4214 unsigned long pages
[NR_LRU_LISTS
];
4218 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4219 pages
[lru
] = global_page_state(NR_LRU_BASE
+ lru
);
4222 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4225 * Estimate the amount of memory available for userspace allocations,
4226 * without causing swapping.
4228 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4231 * Not all the page cache can be freed, otherwise the system will
4232 * start swapping. Assume at least half of the page cache, or the
4233 * low watermark worth of cache, needs to stay.
4235 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4236 pagecache
-= min(pagecache
/ 2, wmark_low
);
4237 available
+= pagecache
;
4240 * Part of the reclaimable slab consists of items that are in use,
4241 * and cannot be freed. Cap this estimate at the low watermark.
4243 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4244 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4250 EXPORT_SYMBOL_GPL(si_mem_available
);
4252 void si_meminfo(struct sysinfo
*val
)
4254 val
->totalram
= totalram_pages
;
4255 val
->sharedram
= global_page_state(NR_SHMEM
);
4256 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4257 val
->bufferram
= nr_blockdev_pages();
4258 val
->totalhigh
= totalhigh_pages
;
4259 val
->freehigh
= nr_free_highpages();
4260 val
->mem_unit
= PAGE_SIZE
;
4263 EXPORT_SYMBOL(si_meminfo
);
4266 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4268 int zone_type
; /* needs to be signed */
4269 unsigned long managed_pages
= 0;
4270 unsigned long managed_highpages
= 0;
4271 unsigned long free_highpages
= 0;
4272 pg_data_t
*pgdat
= NODE_DATA(nid
);
4274 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4275 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4276 val
->totalram
= managed_pages
;
4277 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
4278 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
4279 #ifdef CONFIG_HIGHMEM
4280 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4281 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4283 if (is_highmem(zone
)) {
4284 managed_highpages
+= zone
->managed_pages
;
4285 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4288 val
->totalhigh
= managed_highpages
;
4289 val
->freehigh
= free_highpages
;
4291 val
->totalhigh
= managed_highpages
;
4292 val
->freehigh
= free_highpages
;
4294 val
->mem_unit
= PAGE_SIZE
;
4299 * Determine whether the node should be displayed or not, depending on whether
4300 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4302 bool skip_free_areas_node(unsigned int flags
, int nid
)
4305 unsigned int cpuset_mems_cookie
;
4307 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4311 cpuset_mems_cookie
= read_mems_allowed_begin();
4312 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
4313 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
4318 #define K(x) ((x) << (PAGE_SHIFT-10))
4320 static void show_migration_types(unsigned char type
)
4322 static const char types
[MIGRATE_TYPES
] = {
4323 [MIGRATE_UNMOVABLE
] = 'U',
4324 [MIGRATE_MOVABLE
] = 'M',
4325 [MIGRATE_RECLAIMABLE
] = 'E',
4326 [MIGRATE_HIGHATOMIC
] = 'H',
4328 [MIGRATE_CMA
] = 'C',
4330 #ifdef CONFIG_MEMORY_ISOLATION
4331 [MIGRATE_ISOLATE
] = 'I',
4334 char tmp
[MIGRATE_TYPES
+ 1];
4338 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4339 if (type
& (1 << i
))
4344 printk("(%s) ", tmp
);
4348 * Show free area list (used inside shift_scroll-lock stuff)
4349 * We also calculate the percentage fragmentation. We do this by counting the
4350 * memory on each free list with the exception of the first item on the list.
4353 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4356 void show_free_areas(unsigned int filter
)
4358 unsigned long free_pcp
= 0;
4362 for_each_populated_zone(zone
) {
4363 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4366 for_each_online_cpu(cpu
)
4367 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4370 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4371 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4372 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4373 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4374 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4375 " free:%lu free_pcp:%lu free_cma:%lu\n",
4376 global_page_state(NR_ACTIVE_ANON
),
4377 global_page_state(NR_INACTIVE_ANON
),
4378 global_page_state(NR_ISOLATED_ANON
),
4379 global_page_state(NR_ACTIVE_FILE
),
4380 global_page_state(NR_INACTIVE_FILE
),
4381 global_page_state(NR_ISOLATED_FILE
),
4382 global_page_state(NR_UNEVICTABLE
),
4383 global_page_state(NR_FILE_DIRTY
),
4384 global_page_state(NR_WRITEBACK
),
4385 global_page_state(NR_UNSTABLE_NFS
),
4386 global_page_state(NR_SLAB_RECLAIMABLE
),
4387 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4388 global_page_state(NR_FILE_MAPPED
),
4389 global_page_state(NR_SHMEM
),
4390 global_page_state(NR_PAGETABLE
),
4391 global_page_state(NR_BOUNCE
),
4392 global_page_state(NR_FREE_PAGES
),
4394 global_page_state(NR_FREE_CMA_PAGES
));
4396 for_each_populated_zone(zone
) {
4399 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4403 for_each_online_cpu(cpu
)
4404 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4412 " active_anon:%lukB"
4413 " inactive_anon:%lukB"
4414 " active_file:%lukB"
4415 " inactive_file:%lukB"
4416 " unevictable:%lukB"
4417 " isolated(anon):%lukB"
4418 " isolated(file):%lukB"
4426 " slab_reclaimable:%lukB"
4427 " slab_unreclaimable:%lukB"
4428 " kernel_stack:%lukB"
4435 " writeback_tmp:%lukB"
4436 " pages_scanned:%lu"
4437 " all_unreclaimable? %s"
4440 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4441 K(min_wmark_pages(zone
)),
4442 K(low_wmark_pages(zone
)),
4443 K(high_wmark_pages(zone
)),
4444 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
4445 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
4446 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
4447 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
4448 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
4449 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
4450 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
4451 K(zone
->present_pages
),
4452 K(zone
->managed_pages
),
4453 K(zone_page_state(zone
, NR_MLOCK
)),
4454 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
4455 K(zone_page_state(zone
, NR_WRITEBACK
)),
4456 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
4457 K(zone_page_state(zone
, NR_SHMEM
)),
4458 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4459 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4460 zone_page_state(zone
, NR_KERNEL_STACK
) *
4462 K(zone_page_state(zone
, NR_PAGETABLE
)),
4463 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
4464 K(zone_page_state(zone
, NR_BOUNCE
)),
4466 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4467 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
4468 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
4469 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
4470 (!zone_reclaimable(zone
) ? "yes" : "no")
4472 printk("lowmem_reserve[]:");
4473 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4474 printk(" %ld", zone
->lowmem_reserve
[i
]);
4478 for_each_populated_zone(zone
) {
4480 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4481 unsigned char types
[MAX_ORDER
];
4483 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4486 printk("%s: ", zone
->name
);
4488 spin_lock_irqsave(&zone
->lock
, flags
);
4489 for (order
= 0; order
< MAX_ORDER
; order
++) {
4490 struct free_area
*area
= &zone
->free_area
[order
];
4493 nr
[order
] = area
->nr_free
;
4494 total
+= nr
[order
] << order
;
4497 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4498 if (!list_empty(&area
->free_list
[type
]))
4499 types
[order
] |= 1 << type
;
4502 spin_unlock_irqrestore(&zone
->lock
, flags
);
4503 for (order
= 0; order
< MAX_ORDER
; order
++) {
4504 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
4506 show_migration_types(types
[order
]);
4508 printk("= %lukB\n", K(total
));
4511 hugetlb_show_meminfo();
4513 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
4515 show_swap_cache_info();
4518 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4520 zoneref
->zone
= zone
;
4521 zoneref
->zone_idx
= zone_idx(zone
);
4525 * Builds allocation fallback zone lists.
4527 * Add all populated zones of a node to the zonelist.
4529 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4533 enum zone_type zone_type
= MAX_NR_ZONES
;
4537 zone
= pgdat
->node_zones
+ zone_type
;
4538 if (populated_zone(zone
)) {
4539 zoneref_set_zone(zone
,
4540 &zonelist
->_zonerefs
[nr_zones
++]);
4541 check_highest_zone(zone_type
);
4543 } while (zone_type
);
4551 * 0 = automatic detection of better ordering.
4552 * 1 = order by ([node] distance, -zonetype)
4553 * 2 = order by (-zonetype, [node] distance)
4555 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4556 * the same zonelist. So only NUMA can configure this param.
4558 #define ZONELIST_ORDER_DEFAULT 0
4559 #define ZONELIST_ORDER_NODE 1
4560 #define ZONELIST_ORDER_ZONE 2
4562 /* zonelist order in the kernel.
4563 * set_zonelist_order() will set this to NODE or ZONE.
4565 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4566 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4570 /* The value user specified ....changed by config */
4571 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4572 /* string for sysctl */
4573 #define NUMA_ZONELIST_ORDER_LEN 16
4574 char numa_zonelist_order
[16] = "default";
4577 * interface for configure zonelist ordering.
4578 * command line option "numa_zonelist_order"
4579 * = "[dD]efault - default, automatic configuration.
4580 * = "[nN]ode - order by node locality, then by zone within node
4581 * = "[zZ]one - order by zone, then by locality within zone
4584 static int __parse_numa_zonelist_order(char *s
)
4586 if (*s
== 'd' || *s
== 'D') {
4587 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4588 } else if (*s
== 'n' || *s
== 'N') {
4589 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4590 } else if (*s
== 'z' || *s
== 'Z') {
4591 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4593 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4599 static __init
int setup_numa_zonelist_order(char *s
)
4606 ret
= __parse_numa_zonelist_order(s
);
4608 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4612 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4615 * sysctl handler for numa_zonelist_order
4617 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4618 void __user
*buffer
, size_t *length
,
4621 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4623 static DEFINE_MUTEX(zl_order_mutex
);
4625 mutex_lock(&zl_order_mutex
);
4627 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4631 strcpy(saved_string
, (char *)table
->data
);
4633 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4637 int oldval
= user_zonelist_order
;
4639 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4642 * bogus value. restore saved string
4644 strncpy((char *)table
->data
, saved_string
,
4645 NUMA_ZONELIST_ORDER_LEN
);
4646 user_zonelist_order
= oldval
;
4647 } else if (oldval
!= user_zonelist_order
) {
4648 mutex_lock(&zonelists_mutex
);
4649 build_all_zonelists(NULL
, NULL
);
4650 mutex_unlock(&zonelists_mutex
);
4654 mutex_unlock(&zl_order_mutex
);
4659 #define MAX_NODE_LOAD (nr_online_nodes)
4660 static int node_load
[MAX_NUMNODES
];
4663 * find_next_best_node - find the next node that should appear in a given node's fallback list
4664 * @node: node whose fallback list we're appending
4665 * @used_node_mask: nodemask_t of already used nodes
4667 * We use a number of factors to determine which is the next node that should
4668 * appear on a given node's fallback list. The node should not have appeared
4669 * already in @node's fallback list, and it should be the next closest node
4670 * according to the distance array (which contains arbitrary distance values
4671 * from each node to each node in the system), and should also prefer nodes
4672 * with no CPUs, since presumably they'll have very little allocation pressure
4673 * on them otherwise.
4674 * It returns -1 if no node is found.
4676 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4679 int min_val
= INT_MAX
;
4680 int best_node
= NUMA_NO_NODE
;
4681 const struct cpumask
*tmp
= cpumask_of_node(0);
4683 /* Use the local node if we haven't already */
4684 if (!node_isset(node
, *used_node_mask
)) {
4685 node_set(node
, *used_node_mask
);
4689 for_each_node_state(n
, N_MEMORY
) {
4691 /* Don't want a node to appear more than once */
4692 if (node_isset(n
, *used_node_mask
))
4695 /* Use the distance array to find the distance */
4696 val
= node_distance(node
, n
);
4698 /* Penalize nodes under us ("prefer the next node") */
4701 /* Give preference to headless and unused nodes */
4702 tmp
= cpumask_of_node(n
);
4703 if (!cpumask_empty(tmp
))
4704 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4706 /* Slight preference for less loaded node */
4707 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4708 val
+= node_load
[n
];
4710 if (val
< min_val
) {
4717 node_set(best_node
, *used_node_mask
);
4724 * Build zonelists ordered by node and zones within node.
4725 * This results in maximum locality--normal zone overflows into local
4726 * DMA zone, if any--but risks exhausting DMA zone.
4728 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4731 struct zonelist
*zonelist
;
4733 zonelist
= &pgdat
->node_zonelists
[0];
4734 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4736 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4737 zonelist
->_zonerefs
[j
].zone
= NULL
;
4738 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4742 * Build gfp_thisnode zonelists
4744 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4747 struct zonelist
*zonelist
;
4749 zonelist
= &pgdat
->node_zonelists
[1];
4750 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4751 zonelist
->_zonerefs
[j
].zone
= NULL
;
4752 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4756 * Build zonelists ordered by zone and nodes within zones.
4757 * This results in conserving DMA zone[s] until all Normal memory is
4758 * exhausted, but results in overflowing to remote node while memory
4759 * may still exist in local DMA zone.
4761 static int node_order
[MAX_NUMNODES
];
4763 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4766 int zone_type
; /* needs to be signed */
4768 struct zonelist
*zonelist
;
4770 zonelist
= &pgdat
->node_zonelists
[0];
4772 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4773 for (j
= 0; j
< nr_nodes
; j
++) {
4774 node
= node_order
[j
];
4775 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4776 if (populated_zone(z
)) {
4778 &zonelist
->_zonerefs
[pos
++]);
4779 check_highest_zone(zone_type
);
4783 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4784 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4787 #if defined(CONFIG_64BIT)
4789 * Devices that require DMA32/DMA are relatively rare and do not justify a
4790 * penalty to every machine in case the specialised case applies. Default
4791 * to Node-ordering on 64-bit NUMA machines
4793 static int default_zonelist_order(void)
4795 return ZONELIST_ORDER_NODE
;
4799 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4800 * by the kernel. If processes running on node 0 deplete the low memory zone
4801 * then reclaim will occur more frequency increasing stalls and potentially
4802 * be easier to OOM if a large percentage of the zone is under writeback or
4803 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4804 * Hence, default to zone ordering on 32-bit.
4806 static int default_zonelist_order(void)
4808 return ZONELIST_ORDER_ZONE
;
4810 #endif /* CONFIG_64BIT */
4812 static void set_zonelist_order(void)
4814 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4815 current_zonelist_order
= default_zonelist_order();
4817 current_zonelist_order
= user_zonelist_order
;
4820 static void build_zonelists(pg_data_t
*pgdat
)
4823 nodemask_t used_mask
;
4824 int local_node
, prev_node
;
4825 struct zonelist
*zonelist
;
4826 unsigned int order
= current_zonelist_order
;
4828 /* initialize zonelists */
4829 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4830 zonelist
= pgdat
->node_zonelists
+ i
;
4831 zonelist
->_zonerefs
[0].zone
= NULL
;
4832 zonelist
->_zonerefs
[0].zone_idx
= 0;
4835 /* NUMA-aware ordering of nodes */
4836 local_node
= pgdat
->node_id
;
4837 load
= nr_online_nodes
;
4838 prev_node
= local_node
;
4839 nodes_clear(used_mask
);
4841 memset(node_order
, 0, sizeof(node_order
));
4844 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4846 * We don't want to pressure a particular node.
4847 * So adding penalty to the first node in same
4848 * distance group to make it round-robin.
4850 if (node_distance(local_node
, node
) !=
4851 node_distance(local_node
, prev_node
))
4852 node_load
[node
] = load
;
4856 if (order
== ZONELIST_ORDER_NODE
)
4857 build_zonelists_in_node_order(pgdat
, node
);
4859 node_order
[i
++] = node
; /* remember order */
4862 if (order
== ZONELIST_ORDER_ZONE
) {
4863 /* calculate node order -- i.e., DMA last! */
4864 build_zonelists_in_zone_order(pgdat
, i
);
4867 build_thisnode_zonelists(pgdat
);
4870 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4872 * Return node id of node used for "local" allocations.
4873 * I.e., first node id of first zone in arg node's generic zonelist.
4874 * Used for initializing percpu 'numa_mem', which is used primarily
4875 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4877 int local_memory_node(int node
)
4881 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4882 gfp_zone(GFP_KERNEL
),
4884 return z
->zone
->node
;
4888 #else /* CONFIG_NUMA */
4890 static void set_zonelist_order(void)
4892 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4895 static void build_zonelists(pg_data_t
*pgdat
)
4897 int node
, local_node
;
4899 struct zonelist
*zonelist
;
4901 local_node
= pgdat
->node_id
;
4903 zonelist
= &pgdat
->node_zonelists
[0];
4904 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4907 * Now we build the zonelist so that it contains the zones
4908 * of all the other nodes.
4909 * We don't want to pressure a particular node, so when
4910 * building the zones for node N, we make sure that the
4911 * zones coming right after the local ones are those from
4912 * node N+1 (modulo N)
4914 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4915 if (!node_online(node
))
4917 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4919 for (node
= 0; node
< local_node
; node
++) {
4920 if (!node_online(node
))
4922 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4925 zonelist
->_zonerefs
[j
].zone
= NULL
;
4926 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4929 #endif /* CONFIG_NUMA */
4932 * Boot pageset table. One per cpu which is going to be used for all
4933 * zones and all nodes. The parameters will be set in such a way
4934 * that an item put on a list will immediately be handed over to
4935 * the buddy list. This is safe since pageset manipulation is done
4936 * with interrupts disabled.
4938 * The boot_pagesets must be kept even after bootup is complete for
4939 * unused processors and/or zones. They do play a role for bootstrapping
4940 * hotplugged processors.
4942 * zoneinfo_show() and maybe other functions do
4943 * not check if the processor is online before following the pageset pointer.
4944 * Other parts of the kernel may not check if the zone is available.
4946 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4947 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4948 static void setup_zone_pageset(struct zone
*zone
);
4951 * Global mutex to protect against size modification of zonelists
4952 * as well as to serialize pageset setup for the new populated zone.
4954 DEFINE_MUTEX(zonelists_mutex
);
4956 /* return values int ....just for stop_machine() */
4957 static int __build_all_zonelists(void *data
)
4961 pg_data_t
*self
= data
;
4964 memset(node_load
, 0, sizeof(node_load
));
4967 if (self
&& !node_online(self
->node_id
)) {
4968 build_zonelists(self
);
4971 for_each_online_node(nid
) {
4972 pg_data_t
*pgdat
= NODE_DATA(nid
);
4974 build_zonelists(pgdat
);
4978 * Initialize the boot_pagesets that are going to be used
4979 * for bootstrapping processors. The real pagesets for
4980 * each zone will be allocated later when the per cpu
4981 * allocator is available.
4983 * boot_pagesets are used also for bootstrapping offline
4984 * cpus if the system is already booted because the pagesets
4985 * are needed to initialize allocators on a specific cpu too.
4986 * F.e. the percpu allocator needs the page allocator which
4987 * needs the percpu allocator in order to allocate its pagesets
4988 * (a chicken-egg dilemma).
4990 for_each_possible_cpu(cpu
) {
4991 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4993 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4995 * We now know the "local memory node" for each node--
4996 * i.e., the node of the first zone in the generic zonelist.
4997 * Set up numa_mem percpu variable for on-line cpus. During
4998 * boot, only the boot cpu should be on-line; we'll init the
4999 * secondary cpus' numa_mem as they come on-line. During
5000 * node/memory hotplug, we'll fixup all on-line cpus.
5002 if (cpu_online(cpu
))
5003 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5010 static noinline
void __init
5011 build_all_zonelists_init(void)
5013 __build_all_zonelists(NULL
);
5014 mminit_verify_zonelist();
5015 cpuset_init_current_mems_allowed();
5019 * Called with zonelists_mutex held always
5020 * unless system_state == SYSTEM_BOOTING.
5022 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5023 * [we're only called with non-NULL zone through __meminit paths] and
5024 * (2) call of __init annotated helper build_all_zonelists_init
5025 * [protected by SYSTEM_BOOTING].
5027 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5029 set_zonelist_order();
5031 if (system_state
== SYSTEM_BOOTING
) {
5032 build_all_zonelists_init();
5034 #ifdef CONFIG_MEMORY_HOTPLUG
5036 setup_zone_pageset(zone
);
5038 /* we have to stop all cpus to guarantee there is no user
5040 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5041 /* cpuset refresh routine should be here */
5043 vm_total_pages
= nr_free_pagecache_pages();
5045 * Disable grouping by mobility if the number of pages in the
5046 * system is too low to allow the mechanism to work. It would be
5047 * more accurate, but expensive to check per-zone. This check is
5048 * made on memory-hotadd so a system can start with mobility
5049 * disabled and enable it later
5051 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5052 page_group_by_mobility_disabled
= 1;
5054 page_group_by_mobility_disabled
= 0;
5056 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5058 zonelist_order_name
[current_zonelist_order
],
5059 page_group_by_mobility_disabled
? "off" : "on",
5062 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5067 * Helper functions to size the waitqueue hash table.
5068 * Essentially these want to choose hash table sizes sufficiently
5069 * large so that collisions trying to wait on pages are rare.
5070 * But in fact, the number of active page waitqueues on typical
5071 * systems is ridiculously low, less than 200. So this is even
5072 * conservative, even though it seems large.
5074 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5075 * waitqueues, i.e. the size of the waitq table given the number of pages.
5077 #define PAGES_PER_WAITQUEUE 256
5079 #ifndef CONFIG_MEMORY_HOTPLUG
5080 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
5082 unsigned long size
= 1;
5084 pages
/= PAGES_PER_WAITQUEUE
;
5086 while (size
< pages
)
5090 * Once we have dozens or even hundreds of threads sleeping
5091 * on IO we've got bigger problems than wait queue collision.
5092 * Limit the size of the wait table to a reasonable size.
5094 size
= min(size
, 4096UL);
5096 return max(size
, 4UL);
5100 * A zone's size might be changed by hot-add, so it is not possible to determine
5101 * a suitable size for its wait_table. So we use the maximum size now.
5103 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5105 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5106 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5107 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5109 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5110 * or more by the traditional way. (See above). It equals:
5112 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5113 * ia64(16K page size) : = ( 8G + 4M)byte.
5114 * powerpc (64K page size) : = (32G +16M)byte.
5116 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
5123 * This is an integer logarithm so that shifts can be used later
5124 * to extract the more random high bits from the multiplicative
5125 * hash function before the remainder is taken.
5127 static inline unsigned long wait_table_bits(unsigned long size
)
5133 * Initially all pages are reserved - free ones are freed
5134 * up by free_all_bootmem() once the early boot process is
5135 * done. Non-atomic initialization, single-pass.
5137 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5138 unsigned long start_pfn
, enum memmap_context context
)
5140 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5141 unsigned long end_pfn
= start_pfn
+ size
;
5142 pg_data_t
*pgdat
= NODE_DATA(nid
);
5144 unsigned long nr_initialised
= 0;
5145 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5146 struct memblock_region
*r
= NULL
, *tmp
;
5149 if (highest_memmap_pfn
< end_pfn
- 1)
5150 highest_memmap_pfn
= end_pfn
- 1;
5153 * Honor reservation requested by the driver for this ZONE_DEVICE
5156 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5157 start_pfn
+= altmap
->reserve
;
5159 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5161 * There can be holes in boot-time mem_map[]s handed to this
5162 * function. They do not exist on hotplugged memory.
5164 if (context
!= MEMMAP_EARLY
)
5167 if (!early_pfn_valid(pfn
))
5169 if (!early_pfn_in_nid(pfn
, nid
))
5171 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5174 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5176 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5177 * from zone_movable_pfn[nid] to end of each node should be
5178 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5180 if (!mirrored_kernelcore
&& zone_movable_pfn
[nid
])
5181 if (zone
== ZONE_NORMAL
&& pfn
>= zone_movable_pfn
[nid
])
5185 * Check given memblock attribute by firmware which can affect
5186 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5187 * mirrored, it's an overlapped memmap init. skip it.
5189 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5190 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5191 for_each_memblock(memory
, tmp
)
5192 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5196 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5197 memblock_is_mirror(r
)) {
5198 /* already initialized as NORMAL */
5199 pfn
= memblock_region_memory_end_pfn(r
);
5207 * Mark the block movable so that blocks are reserved for
5208 * movable at startup. This will force kernel allocations
5209 * to reserve their blocks rather than leaking throughout
5210 * the address space during boot when many long-lived
5211 * kernel allocations are made.
5213 * bitmap is created for zone's valid pfn range. but memmap
5214 * can be created for invalid pages (for alignment)
5215 * check here not to call set_pageblock_migratetype() against
5218 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5219 struct page
*page
= pfn_to_page(pfn
);
5221 __init_single_page(page
, pfn
, zone
, nid
);
5222 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5224 __init_single_pfn(pfn
, zone
, nid
);
5229 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5231 unsigned int order
, t
;
5232 for_each_migratetype_order(order
, t
) {
5233 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5234 zone
->free_area
[order
].nr_free
= 0;
5238 #ifndef __HAVE_ARCH_MEMMAP_INIT
5239 #define memmap_init(size, nid, zone, start_pfn) \
5240 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5243 static int zone_batchsize(struct zone
*zone
)
5249 * The per-cpu-pages pools are set to around 1000th of the
5250 * size of the zone. But no more than 1/2 of a meg.
5252 * OK, so we don't know how big the cache is. So guess.
5254 batch
= zone
->managed_pages
/ 1024;
5255 if (batch
* PAGE_SIZE
> 512 * 1024)
5256 batch
= (512 * 1024) / PAGE_SIZE
;
5257 batch
/= 4; /* We effectively *= 4 below */
5262 * Clamp the batch to a 2^n - 1 value. Having a power
5263 * of 2 value was found to be more likely to have
5264 * suboptimal cache aliasing properties in some cases.
5266 * For example if 2 tasks are alternately allocating
5267 * batches of pages, one task can end up with a lot
5268 * of pages of one half of the possible page colors
5269 * and the other with pages of the other colors.
5271 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5276 /* The deferral and batching of frees should be suppressed under NOMMU
5279 * The problem is that NOMMU needs to be able to allocate large chunks
5280 * of contiguous memory as there's no hardware page translation to
5281 * assemble apparent contiguous memory from discontiguous pages.
5283 * Queueing large contiguous runs of pages for batching, however,
5284 * causes the pages to actually be freed in smaller chunks. As there
5285 * can be a significant delay between the individual batches being
5286 * recycled, this leads to the once large chunks of space being
5287 * fragmented and becoming unavailable for high-order allocations.
5294 * pcp->high and pcp->batch values are related and dependent on one another:
5295 * ->batch must never be higher then ->high.
5296 * The following function updates them in a safe manner without read side
5299 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5300 * those fields changing asynchronously (acording the the above rule).
5302 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5303 * outside of boot time (or some other assurance that no concurrent updaters
5306 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5307 unsigned long batch
)
5309 /* start with a fail safe value for batch */
5313 /* Update high, then batch, in order */
5320 /* a companion to pageset_set_high() */
5321 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5323 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5326 static void pageset_init(struct per_cpu_pageset
*p
)
5328 struct per_cpu_pages
*pcp
;
5331 memset(p
, 0, sizeof(*p
));
5335 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5336 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5339 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5342 pageset_set_batch(p
, batch
);
5346 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5347 * to the value high for the pageset p.
5349 static void pageset_set_high(struct per_cpu_pageset
*p
,
5352 unsigned long batch
= max(1UL, high
/ 4);
5353 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5354 batch
= PAGE_SHIFT
* 8;
5356 pageset_update(&p
->pcp
, high
, batch
);
5359 static void pageset_set_high_and_batch(struct zone
*zone
,
5360 struct per_cpu_pageset
*pcp
)
5362 if (percpu_pagelist_fraction
)
5363 pageset_set_high(pcp
,
5364 (zone
->managed_pages
/
5365 percpu_pagelist_fraction
));
5367 pageset_set_batch(pcp
, zone_batchsize(zone
));
5370 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5372 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5375 pageset_set_high_and_batch(zone
, pcp
);
5378 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5381 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5382 for_each_possible_cpu(cpu
)
5383 zone_pageset_init(zone
, cpu
);
5387 * Allocate per cpu pagesets and initialize them.
5388 * Before this call only boot pagesets were available.
5390 void __init
setup_per_cpu_pageset(void)
5394 for_each_populated_zone(zone
)
5395 setup_zone_pageset(zone
);
5398 static noinline __init_refok
5399 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
5405 * The per-page waitqueue mechanism uses hashed waitqueues
5408 zone
->wait_table_hash_nr_entries
=
5409 wait_table_hash_nr_entries(zone_size_pages
);
5410 zone
->wait_table_bits
=
5411 wait_table_bits(zone
->wait_table_hash_nr_entries
);
5412 alloc_size
= zone
->wait_table_hash_nr_entries
5413 * sizeof(wait_queue_head_t
);
5415 if (!slab_is_available()) {
5416 zone
->wait_table
= (wait_queue_head_t
*)
5417 memblock_virt_alloc_node_nopanic(
5418 alloc_size
, zone
->zone_pgdat
->node_id
);
5421 * This case means that a zone whose size was 0 gets new memory
5422 * via memory hot-add.
5423 * But it may be the case that a new node was hot-added. In
5424 * this case vmalloc() will not be able to use this new node's
5425 * memory - this wait_table must be initialized to use this new
5426 * node itself as well.
5427 * To use this new node's memory, further consideration will be
5430 zone
->wait_table
= vmalloc(alloc_size
);
5432 if (!zone
->wait_table
)
5435 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
5436 init_waitqueue_head(zone
->wait_table
+ i
);
5441 static __meminit
void zone_pcp_init(struct zone
*zone
)
5444 * per cpu subsystem is not up at this point. The following code
5445 * relies on the ability of the linker to provide the
5446 * offset of a (static) per cpu variable into the per cpu area.
5448 zone
->pageset
= &boot_pageset
;
5450 if (populated_zone(zone
))
5451 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5452 zone
->name
, zone
->present_pages
,
5453 zone_batchsize(zone
));
5456 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5457 unsigned long zone_start_pfn
,
5460 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5462 ret
= zone_wait_table_init(zone
, size
);
5465 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5467 zone
->zone_start_pfn
= zone_start_pfn
;
5469 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5470 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5472 (unsigned long)zone_idx(zone
),
5473 zone_start_pfn
, (zone_start_pfn
+ size
));
5475 zone_init_free_lists(zone
);
5480 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5481 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5484 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5486 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5487 struct mminit_pfnnid_cache
*state
)
5489 unsigned long start_pfn
, end_pfn
;
5492 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5493 return state
->last_nid
;
5495 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5497 state
->last_start
= start_pfn
;
5498 state
->last_end
= end_pfn
;
5499 state
->last_nid
= nid
;
5504 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5507 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5508 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5509 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5511 * If an architecture guarantees that all ranges registered contain no holes
5512 * and may be freed, this this function may be used instead of calling
5513 * memblock_free_early_nid() manually.
5515 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5517 unsigned long start_pfn
, end_pfn
;
5520 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5521 start_pfn
= min(start_pfn
, max_low_pfn
);
5522 end_pfn
= min(end_pfn
, max_low_pfn
);
5524 if (start_pfn
< end_pfn
)
5525 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5526 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5532 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5533 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5535 * If an architecture guarantees that all ranges registered contain no holes and may
5536 * be freed, this function may be used instead of calling memory_present() manually.
5538 void __init
sparse_memory_present_with_active_regions(int nid
)
5540 unsigned long start_pfn
, end_pfn
;
5543 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5544 memory_present(this_nid
, start_pfn
, end_pfn
);
5548 * get_pfn_range_for_nid - Return the start and end page frames for a node
5549 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5550 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5551 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5553 * It returns the start and end page frame of a node based on information
5554 * provided by memblock_set_node(). If called for a node
5555 * with no available memory, a warning is printed and the start and end
5558 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5559 unsigned long *start_pfn
, unsigned long *end_pfn
)
5561 unsigned long this_start_pfn
, this_end_pfn
;
5567 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5568 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5569 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5572 if (*start_pfn
== -1UL)
5577 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5578 * assumption is made that zones within a node are ordered in monotonic
5579 * increasing memory addresses so that the "highest" populated zone is used
5581 static void __init
find_usable_zone_for_movable(void)
5584 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5585 if (zone_index
== ZONE_MOVABLE
)
5588 if (arch_zone_highest_possible_pfn
[zone_index
] >
5589 arch_zone_lowest_possible_pfn
[zone_index
])
5593 VM_BUG_ON(zone_index
== -1);
5594 movable_zone
= zone_index
;
5598 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5599 * because it is sized independent of architecture. Unlike the other zones,
5600 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5601 * in each node depending on the size of each node and how evenly kernelcore
5602 * is distributed. This helper function adjusts the zone ranges
5603 * provided by the architecture for a given node by using the end of the
5604 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5605 * zones within a node are in order of monotonic increases memory addresses
5607 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5608 unsigned long zone_type
,
5609 unsigned long node_start_pfn
,
5610 unsigned long node_end_pfn
,
5611 unsigned long *zone_start_pfn
,
5612 unsigned long *zone_end_pfn
)
5614 /* Only adjust if ZONE_MOVABLE is on this node */
5615 if (zone_movable_pfn
[nid
]) {
5616 /* Size ZONE_MOVABLE */
5617 if (zone_type
== ZONE_MOVABLE
) {
5618 *zone_start_pfn
= zone_movable_pfn
[nid
];
5619 *zone_end_pfn
= min(node_end_pfn
,
5620 arch_zone_highest_possible_pfn
[movable_zone
]);
5622 /* Check if this whole range is within ZONE_MOVABLE */
5623 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5624 *zone_start_pfn
= *zone_end_pfn
;
5629 * Return the number of pages a zone spans in a node, including holes
5630 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5632 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5633 unsigned long zone_type
,
5634 unsigned long node_start_pfn
,
5635 unsigned long node_end_pfn
,
5636 unsigned long *zone_start_pfn
,
5637 unsigned long *zone_end_pfn
,
5638 unsigned long *ignored
)
5640 /* When hotadd a new node from cpu_up(), the node should be empty */
5641 if (!node_start_pfn
&& !node_end_pfn
)
5644 /* Get the start and end of the zone */
5645 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5646 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5647 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5648 node_start_pfn
, node_end_pfn
,
5649 zone_start_pfn
, zone_end_pfn
);
5651 /* Check that this node has pages within the zone's required range */
5652 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5655 /* Move the zone boundaries inside the node if necessary */
5656 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5657 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5659 /* Return the spanned pages */
5660 return *zone_end_pfn
- *zone_start_pfn
;
5664 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5665 * then all holes in the requested range will be accounted for.
5667 unsigned long __meminit
__absent_pages_in_range(int nid
,
5668 unsigned long range_start_pfn
,
5669 unsigned long range_end_pfn
)
5671 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5672 unsigned long start_pfn
, end_pfn
;
5675 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5676 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5677 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5678 nr_absent
-= end_pfn
- start_pfn
;
5684 * absent_pages_in_range - Return number of page frames in holes within a range
5685 * @start_pfn: The start PFN to start searching for holes
5686 * @end_pfn: The end PFN to stop searching for holes
5688 * It returns the number of pages frames in memory holes within a range.
5690 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5691 unsigned long end_pfn
)
5693 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5696 /* Return the number of page frames in holes in a zone on a node */
5697 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5698 unsigned long zone_type
,
5699 unsigned long node_start_pfn
,
5700 unsigned long node_end_pfn
,
5701 unsigned long *ignored
)
5703 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5704 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5705 unsigned long zone_start_pfn
, zone_end_pfn
;
5706 unsigned long nr_absent
;
5708 /* When hotadd a new node from cpu_up(), the node should be empty */
5709 if (!node_start_pfn
&& !node_end_pfn
)
5712 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5713 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5715 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5716 node_start_pfn
, node_end_pfn
,
5717 &zone_start_pfn
, &zone_end_pfn
);
5718 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5721 * ZONE_MOVABLE handling.
5722 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 if (zone_movable_pfn
[nid
]) {
5726 if (mirrored_kernelcore
) {
5727 unsigned long start_pfn
, end_pfn
;
5728 struct memblock_region
*r
;
5730 for_each_memblock(memory
, r
) {
5731 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5732 zone_start_pfn
, zone_end_pfn
);
5733 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5734 zone_start_pfn
, zone_end_pfn
);
5736 if (zone_type
== ZONE_MOVABLE
&&
5737 memblock_is_mirror(r
))
5738 nr_absent
+= end_pfn
- start_pfn
;
5740 if (zone_type
== ZONE_NORMAL
&&
5741 !memblock_is_mirror(r
))
5742 nr_absent
+= end_pfn
- start_pfn
;
5745 if (zone_type
== ZONE_NORMAL
)
5746 nr_absent
+= node_end_pfn
- zone_movable_pfn
[nid
];
5753 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5754 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5755 unsigned long zone_type
,
5756 unsigned long node_start_pfn
,
5757 unsigned long node_end_pfn
,
5758 unsigned long *zone_start_pfn
,
5759 unsigned long *zone_end_pfn
,
5760 unsigned long *zones_size
)
5764 *zone_start_pfn
= node_start_pfn
;
5765 for (zone
= 0; zone
< zone_type
; zone
++)
5766 *zone_start_pfn
+= zones_size
[zone
];
5768 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5770 return zones_size
[zone_type
];
5773 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5774 unsigned long zone_type
,
5775 unsigned long node_start_pfn
,
5776 unsigned long node_end_pfn
,
5777 unsigned long *zholes_size
)
5782 return zholes_size
[zone_type
];
5785 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5787 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5788 unsigned long node_start_pfn
,
5789 unsigned long node_end_pfn
,
5790 unsigned long *zones_size
,
5791 unsigned long *zholes_size
)
5793 unsigned long realtotalpages
= 0, totalpages
= 0;
5796 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5797 struct zone
*zone
= pgdat
->node_zones
+ i
;
5798 unsigned long zone_start_pfn
, zone_end_pfn
;
5799 unsigned long size
, real_size
;
5801 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5807 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5808 node_start_pfn
, node_end_pfn
,
5811 zone
->zone_start_pfn
= zone_start_pfn
;
5813 zone
->zone_start_pfn
= 0;
5814 zone
->spanned_pages
= size
;
5815 zone
->present_pages
= real_size
;
5818 realtotalpages
+= real_size
;
5821 pgdat
->node_spanned_pages
= totalpages
;
5822 pgdat
->node_present_pages
= realtotalpages
;
5823 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5827 #ifndef CONFIG_SPARSEMEM
5829 * Calculate the size of the zone->blockflags rounded to an unsigned long
5830 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5831 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5832 * round what is now in bits to nearest long in bits, then return it in
5835 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5837 unsigned long usemapsize
;
5839 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5840 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5841 usemapsize
= usemapsize
>> pageblock_order
;
5842 usemapsize
*= NR_PAGEBLOCK_BITS
;
5843 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5845 return usemapsize
/ 8;
5848 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5850 unsigned long zone_start_pfn
,
5851 unsigned long zonesize
)
5853 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5854 zone
->pageblock_flags
= NULL
;
5856 zone
->pageblock_flags
=
5857 memblock_virt_alloc_node_nopanic(usemapsize
,
5861 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5862 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5863 #endif /* CONFIG_SPARSEMEM */
5865 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5867 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5868 void __paginginit
set_pageblock_order(void)
5872 /* Check that pageblock_nr_pages has not already been setup */
5873 if (pageblock_order
)
5876 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5877 order
= HUGETLB_PAGE_ORDER
;
5879 order
= MAX_ORDER
- 1;
5882 * Assume the largest contiguous order of interest is a huge page.
5883 * This value may be variable depending on boot parameters on IA64 and
5886 pageblock_order
= order
;
5888 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5891 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5892 * is unused as pageblock_order is set at compile-time. See
5893 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5896 void __paginginit
set_pageblock_order(void)
5900 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5902 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5903 unsigned long present_pages
)
5905 unsigned long pages
= spanned_pages
;
5908 * Provide a more accurate estimation if there are holes within
5909 * the zone and SPARSEMEM is in use. If there are holes within the
5910 * zone, each populated memory region may cost us one or two extra
5911 * memmap pages due to alignment because memmap pages for each
5912 * populated regions may not naturally algined on page boundary.
5913 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5915 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5916 IS_ENABLED(CONFIG_SPARSEMEM
))
5917 pages
= present_pages
;
5919 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5923 * Set up the zone data structures:
5924 * - mark all pages reserved
5925 * - mark all memory queues empty
5926 * - clear the memory bitmaps
5928 * NOTE: pgdat should get zeroed by caller.
5930 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5933 int nid
= pgdat
->node_id
;
5936 pgdat_resize_init(pgdat
);
5937 #ifdef CONFIG_NUMA_BALANCING
5938 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5939 pgdat
->numabalancing_migrate_nr_pages
= 0;
5940 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 spin_lock_init(&pgdat
->split_queue_lock
);
5944 INIT_LIST_HEAD(&pgdat
->split_queue
);
5945 pgdat
->split_queue_len
= 0;
5947 init_waitqueue_head(&pgdat
->kswapd_wait
);
5948 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5949 #ifdef CONFIG_COMPACTION
5950 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5952 pgdat_page_ext_init(pgdat
);
5954 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5955 struct zone
*zone
= pgdat
->node_zones
+ j
;
5956 unsigned long size
, realsize
, freesize
, memmap_pages
;
5957 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5959 size
= zone
->spanned_pages
;
5960 realsize
= freesize
= zone
->present_pages
;
5963 * Adjust freesize so that it accounts for how much memory
5964 * is used by this zone for memmap. This affects the watermark
5965 * and per-cpu initialisations
5967 memmap_pages
= calc_memmap_size(size
, realsize
);
5968 if (!is_highmem_idx(j
)) {
5969 if (freesize
>= memmap_pages
) {
5970 freesize
-= memmap_pages
;
5973 " %s zone: %lu pages used for memmap\n",
5974 zone_names
[j
], memmap_pages
);
5976 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5977 zone_names
[j
], memmap_pages
, freesize
);
5980 /* Account for reserved pages */
5981 if (j
== 0 && freesize
> dma_reserve
) {
5982 freesize
-= dma_reserve
;
5983 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5984 zone_names
[0], dma_reserve
);
5987 if (!is_highmem_idx(j
))
5988 nr_kernel_pages
+= freesize
;
5989 /* Charge for highmem memmap if there are enough kernel pages */
5990 else if (nr_kernel_pages
> memmap_pages
* 2)
5991 nr_kernel_pages
-= memmap_pages
;
5992 nr_all_pages
+= freesize
;
5995 * Set an approximate value for lowmem here, it will be adjusted
5996 * when the bootmem allocator frees pages into the buddy system.
5997 * And all highmem pages will be managed by the buddy system.
5999 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6002 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
6004 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
6006 zone
->name
= zone_names
[j
];
6007 spin_lock_init(&zone
->lock
);
6008 spin_lock_init(&zone
->lru_lock
);
6009 zone_seqlock_init(zone
);
6010 zone
->zone_pgdat
= pgdat
;
6011 zone_pcp_init(zone
);
6013 /* For bootup, initialized properly in watermark setup */
6014 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
6016 lruvec_init(&zone
->lruvec
);
6020 set_pageblock_order();
6021 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6022 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6024 memmap_init(size
, nid
, j
, zone_start_pfn
);
6028 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
6030 unsigned long __maybe_unused start
= 0;
6031 unsigned long __maybe_unused offset
= 0;
6033 /* Skip empty nodes */
6034 if (!pgdat
->node_spanned_pages
)
6037 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6038 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6039 offset
= pgdat
->node_start_pfn
- start
;
6040 /* ia64 gets its own node_mem_map, before this, without bootmem */
6041 if (!pgdat
->node_mem_map
) {
6042 unsigned long size
, end
;
6046 * The zone's endpoints aren't required to be MAX_ORDER
6047 * aligned but the node_mem_map endpoints must be in order
6048 * for the buddy allocator to function correctly.
6050 end
= pgdat_end_pfn(pgdat
);
6051 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6052 size
= (end
- start
) * sizeof(struct page
);
6053 map
= alloc_remap(pgdat
->node_id
, size
);
6055 map
= memblock_virt_alloc_node_nopanic(size
,
6057 pgdat
->node_mem_map
= map
+ offset
;
6059 #ifndef CONFIG_NEED_MULTIPLE_NODES
6061 * With no DISCONTIG, the global mem_map is just set as node 0's
6063 if (pgdat
== NODE_DATA(0)) {
6064 mem_map
= NODE_DATA(0)->node_mem_map
;
6065 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6066 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6068 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6071 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6074 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6075 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6077 pg_data_t
*pgdat
= NODE_DATA(nid
);
6078 unsigned long start_pfn
= 0;
6079 unsigned long end_pfn
= 0;
6081 /* pg_data_t should be reset to zero when it's allocated */
6082 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
6084 reset_deferred_meminit(pgdat
);
6085 pgdat
->node_id
= nid
;
6086 pgdat
->node_start_pfn
= node_start_pfn
;
6087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6088 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6089 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6090 (u64
)start_pfn
<< PAGE_SHIFT
,
6091 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6093 start_pfn
= node_start_pfn
;
6095 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6096 zones_size
, zholes_size
);
6098 alloc_node_mem_map(pgdat
);
6099 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6100 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6101 nid
, (unsigned long)pgdat
,
6102 (unsigned long)pgdat
->node_mem_map
);
6105 free_area_init_core(pgdat
);
6108 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6110 #if MAX_NUMNODES > 1
6112 * Figure out the number of possible node ids.
6114 void __init
setup_nr_node_ids(void)
6116 unsigned int highest
;
6118 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6119 nr_node_ids
= highest
+ 1;
6124 * node_map_pfn_alignment - determine the maximum internode alignment
6126 * This function should be called after node map is populated and sorted.
6127 * It calculates the maximum power of two alignment which can distinguish
6130 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6131 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6132 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6133 * shifted, 1GiB is enough and this function will indicate so.
6135 * This is used to test whether pfn -> nid mapping of the chosen memory
6136 * model has fine enough granularity to avoid incorrect mapping for the
6137 * populated node map.
6139 * Returns the determined alignment in pfn's. 0 if there is no alignment
6140 * requirement (single node).
6142 unsigned long __init
node_map_pfn_alignment(void)
6144 unsigned long accl_mask
= 0, last_end
= 0;
6145 unsigned long start
, end
, mask
;
6149 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6150 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6157 * Start with a mask granular enough to pin-point to the
6158 * start pfn and tick off bits one-by-one until it becomes
6159 * too coarse to separate the current node from the last.
6161 mask
= ~((1 << __ffs(start
)) - 1);
6162 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6165 /* accumulate all internode masks */
6169 /* convert mask to number of pages */
6170 return ~accl_mask
+ 1;
6173 /* Find the lowest pfn for a node */
6174 static unsigned long __init
find_min_pfn_for_node(int nid
)
6176 unsigned long min_pfn
= ULONG_MAX
;
6177 unsigned long start_pfn
;
6180 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6181 min_pfn
= min(min_pfn
, start_pfn
);
6183 if (min_pfn
== ULONG_MAX
) {
6184 pr_warn("Could not find start_pfn for node %d\n", nid
);
6192 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6194 * It returns the minimum PFN based on information provided via
6195 * memblock_set_node().
6197 unsigned long __init
find_min_pfn_with_active_regions(void)
6199 return find_min_pfn_for_node(MAX_NUMNODES
);
6203 * early_calculate_totalpages()
6204 * Sum pages in active regions for movable zone.
6205 * Populate N_MEMORY for calculating usable_nodes.
6207 static unsigned long __init
early_calculate_totalpages(void)
6209 unsigned long totalpages
= 0;
6210 unsigned long start_pfn
, end_pfn
;
6213 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6214 unsigned long pages
= end_pfn
- start_pfn
;
6216 totalpages
+= pages
;
6218 node_set_state(nid
, N_MEMORY
);
6224 * Find the PFN the Movable zone begins in each node. Kernel memory
6225 * is spread evenly between nodes as long as the nodes have enough
6226 * memory. When they don't, some nodes will have more kernelcore than
6229 static void __init
find_zone_movable_pfns_for_nodes(void)
6232 unsigned long usable_startpfn
;
6233 unsigned long kernelcore_node
, kernelcore_remaining
;
6234 /* save the state before borrow the nodemask */
6235 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6236 unsigned long totalpages
= early_calculate_totalpages();
6237 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6238 struct memblock_region
*r
;
6240 /* Need to find movable_zone earlier when movable_node is specified. */
6241 find_usable_zone_for_movable();
6244 * If movable_node is specified, ignore kernelcore and movablecore
6247 if (movable_node_is_enabled()) {
6248 for_each_memblock(memory
, r
) {
6249 if (!memblock_is_hotpluggable(r
))
6254 usable_startpfn
= PFN_DOWN(r
->base
);
6255 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6256 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6264 * If kernelcore=mirror is specified, ignore movablecore option
6266 if (mirrored_kernelcore
) {
6267 bool mem_below_4gb_not_mirrored
= false;
6269 for_each_memblock(memory
, r
) {
6270 if (memblock_is_mirror(r
))
6275 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6277 if (usable_startpfn
< 0x100000) {
6278 mem_below_4gb_not_mirrored
= true;
6282 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6283 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6287 if (mem_below_4gb_not_mirrored
)
6288 pr_warn("This configuration results in unmirrored kernel memory.");
6294 * If movablecore=nn[KMG] was specified, calculate what size of
6295 * kernelcore that corresponds so that memory usable for
6296 * any allocation type is evenly spread. If both kernelcore
6297 * and movablecore are specified, then the value of kernelcore
6298 * will be used for required_kernelcore if it's greater than
6299 * what movablecore would have allowed.
6301 if (required_movablecore
) {
6302 unsigned long corepages
;
6305 * Round-up so that ZONE_MOVABLE is at least as large as what
6306 * was requested by the user
6308 required_movablecore
=
6309 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6310 required_movablecore
= min(totalpages
, required_movablecore
);
6311 corepages
= totalpages
- required_movablecore
;
6313 required_kernelcore
= max(required_kernelcore
, corepages
);
6317 * If kernelcore was not specified or kernelcore size is larger
6318 * than totalpages, there is no ZONE_MOVABLE.
6320 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6323 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6324 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6327 /* Spread kernelcore memory as evenly as possible throughout nodes */
6328 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6329 for_each_node_state(nid
, N_MEMORY
) {
6330 unsigned long start_pfn
, end_pfn
;
6333 * Recalculate kernelcore_node if the division per node
6334 * now exceeds what is necessary to satisfy the requested
6335 * amount of memory for the kernel
6337 if (required_kernelcore
< kernelcore_node
)
6338 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6341 * As the map is walked, we track how much memory is usable
6342 * by the kernel using kernelcore_remaining. When it is
6343 * 0, the rest of the node is usable by ZONE_MOVABLE
6345 kernelcore_remaining
= kernelcore_node
;
6347 /* Go through each range of PFNs within this node */
6348 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6349 unsigned long size_pages
;
6351 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6352 if (start_pfn
>= end_pfn
)
6355 /* Account for what is only usable for kernelcore */
6356 if (start_pfn
< usable_startpfn
) {
6357 unsigned long kernel_pages
;
6358 kernel_pages
= min(end_pfn
, usable_startpfn
)
6361 kernelcore_remaining
-= min(kernel_pages
,
6362 kernelcore_remaining
);
6363 required_kernelcore
-= min(kernel_pages
,
6364 required_kernelcore
);
6366 /* Continue if range is now fully accounted */
6367 if (end_pfn
<= usable_startpfn
) {
6370 * Push zone_movable_pfn to the end so
6371 * that if we have to rebalance
6372 * kernelcore across nodes, we will
6373 * not double account here
6375 zone_movable_pfn
[nid
] = end_pfn
;
6378 start_pfn
= usable_startpfn
;
6382 * The usable PFN range for ZONE_MOVABLE is from
6383 * start_pfn->end_pfn. Calculate size_pages as the
6384 * number of pages used as kernelcore
6386 size_pages
= end_pfn
- start_pfn
;
6387 if (size_pages
> kernelcore_remaining
)
6388 size_pages
= kernelcore_remaining
;
6389 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6392 * Some kernelcore has been met, update counts and
6393 * break if the kernelcore for this node has been
6396 required_kernelcore
-= min(required_kernelcore
,
6398 kernelcore_remaining
-= size_pages
;
6399 if (!kernelcore_remaining
)
6405 * If there is still required_kernelcore, we do another pass with one
6406 * less node in the count. This will push zone_movable_pfn[nid] further
6407 * along on the nodes that still have memory until kernelcore is
6411 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6415 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6416 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6417 zone_movable_pfn
[nid
] =
6418 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6421 /* restore the node_state */
6422 node_states
[N_MEMORY
] = saved_node_state
;
6425 /* Any regular or high memory on that node ? */
6426 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6428 enum zone_type zone_type
;
6430 if (N_MEMORY
== N_NORMAL_MEMORY
)
6433 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6434 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6435 if (populated_zone(zone
)) {
6436 node_set_state(nid
, N_HIGH_MEMORY
);
6437 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6438 zone_type
<= ZONE_NORMAL
)
6439 node_set_state(nid
, N_NORMAL_MEMORY
);
6446 * free_area_init_nodes - Initialise all pg_data_t and zone data
6447 * @max_zone_pfn: an array of max PFNs for each zone
6449 * This will call free_area_init_node() for each active node in the system.
6450 * Using the page ranges provided by memblock_set_node(), the size of each
6451 * zone in each node and their holes is calculated. If the maximum PFN
6452 * between two adjacent zones match, it is assumed that the zone is empty.
6453 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6454 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6455 * starts where the previous one ended. For example, ZONE_DMA32 starts
6456 * at arch_max_dma_pfn.
6458 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6460 unsigned long start_pfn
, end_pfn
;
6463 /* Record where the zone boundaries are */
6464 memset(arch_zone_lowest_possible_pfn
, 0,
6465 sizeof(arch_zone_lowest_possible_pfn
));
6466 memset(arch_zone_highest_possible_pfn
, 0,
6467 sizeof(arch_zone_highest_possible_pfn
));
6468 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
6469 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
6470 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
6471 if (i
== ZONE_MOVABLE
)
6473 arch_zone_lowest_possible_pfn
[i
] =
6474 arch_zone_highest_possible_pfn
[i
-1];
6475 arch_zone_highest_possible_pfn
[i
] =
6476 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
6478 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
6479 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
6481 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6482 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6483 find_zone_movable_pfns_for_nodes();
6485 /* Print out the zone ranges */
6486 pr_info("Zone ranges:\n");
6487 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6488 if (i
== ZONE_MOVABLE
)
6490 pr_info(" %-8s ", zone_names
[i
]);
6491 if (arch_zone_lowest_possible_pfn
[i
] ==
6492 arch_zone_highest_possible_pfn
[i
])
6495 pr_cont("[mem %#018Lx-%#018Lx]\n",
6496 (u64
)arch_zone_lowest_possible_pfn
[i
]
6498 ((u64
)arch_zone_highest_possible_pfn
[i
]
6499 << PAGE_SHIFT
) - 1);
6502 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6503 pr_info("Movable zone start for each node\n");
6504 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6505 if (zone_movable_pfn
[i
])
6506 pr_info(" Node %d: %#018Lx\n", i
,
6507 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6510 /* Print out the early node map */
6511 pr_info("Early memory node ranges\n");
6512 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6513 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6514 (u64
)start_pfn
<< PAGE_SHIFT
,
6515 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6517 /* Initialise every node */
6518 mminit_verify_pageflags_layout();
6519 setup_nr_node_ids();
6520 for_each_online_node(nid
) {
6521 pg_data_t
*pgdat
= NODE_DATA(nid
);
6522 free_area_init_node(nid
, NULL
,
6523 find_min_pfn_for_node(nid
), NULL
);
6525 /* Any memory on that node */
6526 if (pgdat
->node_present_pages
)
6527 node_set_state(nid
, N_MEMORY
);
6528 check_for_memory(pgdat
, nid
);
6532 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6534 unsigned long long coremem
;
6538 coremem
= memparse(p
, &p
);
6539 *core
= coremem
>> PAGE_SHIFT
;
6541 /* Paranoid check that UL is enough for the coremem value */
6542 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6548 * kernelcore=size sets the amount of memory for use for allocations that
6549 * cannot be reclaimed or migrated.
6551 static int __init
cmdline_parse_kernelcore(char *p
)
6553 /* parse kernelcore=mirror */
6554 if (parse_option_str(p
, "mirror")) {
6555 mirrored_kernelcore
= true;
6559 return cmdline_parse_core(p
, &required_kernelcore
);
6563 * movablecore=size sets the amount of memory for use for allocations that
6564 * can be reclaimed or migrated.
6566 static int __init
cmdline_parse_movablecore(char *p
)
6568 return cmdline_parse_core(p
, &required_movablecore
);
6571 early_param("kernelcore", cmdline_parse_kernelcore
);
6572 early_param("movablecore", cmdline_parse_movablecore
);
6574 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6576 void adjust_managed_page_count(struct page
*page
, long count
)
6578 spin_lock(&managed_page_count_lock
);
6579 page_zone(page
)->managed_pages
+= count
;
6580 totalram_pages
+= count
;
6581 #ifdef CONFIG_HIGHMEM
6582 if (PageHighMem(page
))
6583 totalhigh_pages
+= count
;
6585 spin_unlock(&managed_page_count_lock
);
6587 EXPORT_SYMBOL(adjust_managed_page_count
);
6589 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6592 unsigned long pages
= 0;
6594 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6595 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6596 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6597 if ((unsigned int)poison
<= 0xFF)
6598 memset(pos
, poison
, PAGE_SIZE
);
6599 free_reserved_page(virt_to_page(pos
));
6603 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6604 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
6608 EXPORT_SYMBOL(free_reserved_area
);
6610 #ifdef CONFIG_HIGHMEM
6611 void free_highmem_page(struct page
*page
)
6613 __free_reserved_page(page
);
6615 page_zone(page
)->managed_pages
++;
6621 void __init
mem_init_print_info(const char *str
)
6623 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6624 unsigned long init_code_size
, init_data_size
;
6626 physpages
= get_num_physpages();
6627 codesize
= _etext
- _stext
;
6628 datasize
= _edata
- _sdata
;
6629 rosize
= __end_rodata
- __start_rodata
;
6630 bss_size
= __bss_stop
- __bss_start
;
6631 init_data_size
= __init_end
- __init_begin
;
6632 init_code_size
= _einittext
- _sinittext
;
6635 * Detect special cases and adjust section sizes accordingly:
6636 * 1) .init.* may be embedded into .data sections
6637 * 2) .init.text.* may be out of [__init_begin, __init_end],
6638 * please refer to arch/tile/kernel/vmlinux.lds.S.
6639 * 3) .rodata.* may be embedded into .text or .data sections.
6641 #define adj_init_size(start, end, size, pos, adj) \
6643 if (start <= pos && pos < end && size > adj) \
6647 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6648 _sinittext
, init_code_size
);
6649 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6650 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6651 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6652 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6654 #undef adj_init_size
6656 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6657 #ifdef CONFIG_HIGHMEM
6661 nr_free_pages() << (PAGE_SHIFT
- 10),
6662 physpages
<< (PAGE_SHIFT
- 10),
6663 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6664 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6665 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6666 totalcma_pages
<< (PAGE_SHIFT
- 10),
6667 #ifdef CONFIG_HIGHMEM
6668 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6670 str
? ", " : "", str
? str
: "");
6674 * set_dma_reserve - set the specified number of pages reserved in the first zone
6675 * @new_dma_reserve: The number of pages to mark reserved
6677 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6678 * In the DMA zone, a significant percentage may be consumed by kernel image
6679 * and other unfreeable allocations which can skew the watermarks badly. This
6680 * function may optionally be used to account for unfreeable pages in the
6681 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6682 * smaller per-cpu batchsize.
6684 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6686 dma_reserve
= new_dma_reserve
;
6689 void __init
free_area_init(unsigned long *zones_size
)
6691 free_area_init_node(0, zones_size
,
6692 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6695 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6696 unsigned long action
, void *hcpu
)
6698 int cpu
= (unsigned long)hcpu
;
6700 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6701 lru_add_drain_cpu(cpu
);
6705 * Spill the event counters of the dead processor
6706 * into the current processors event counters.
6707 * This artificially elevates the count of the current
6710 vm_events_fold_cpu(cpu
);
6713 * Zero the differential counters of the dead processor
6714 * so that the vm statistics are consistent.
6716 * This is only okay since the processor is dead and cannot
6717 * race with what we are doing.
6719 cpu_vm_stats_fold(cpu
);
6724 void __init
page_alloc_init(void)
6726 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6730 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6731 * or min_free_kbytes changes.
6733 static void calculate_totalreserve_pages(void)
6735 struct pglist_data
*pgdat
;
6736 unsigned long reserve_pages
= 0;
6737 enum zone_type i
, j
;
6739 for_each_online_pgdat(pgdat
) {
6740 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6741 struct zone
*zone
= pgdat
->node_zones
+ i
;
6744 /* Find valid and maximum lowmem_reserve in the zone */
6745 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6746 if (zone
->lowmem_reserve
[j
] > max
)
6747 max
= zone
->lowmem_reserve
[j
];
6750 /* we treat the high watermark as reserved pages. */
6751 max
+= high_wmark_pages(zone
);
6753 if (max
> zone
->managed_pages
)
6754 max
= zone
->managed_pages
;
6756 zone
->totalreserve_pages
= max
;
6758 reserve_pages
+= max
;
6761 totalreserve_pages
= reserve_pages
;
6765 * setup_per_zone_lowmem_reserve - called whenever
6766 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6767 * has a correct pages reserved value, so an adequate number of
6768 * pages are left in the zone after a successful __alloc_pages().
6770 static void setup_per_zone_lowmem_reserve(void)
6772 struct pglist_data
*pgdat
;
6773 enum zone_type j
, idx
;
6775 for_each_online_pgdat(pgdat
) {
6776 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6777 struct zone
*zone
= pgdat
->node_zones
+ j
;
6778 unsigned long managed_pages
= zone
->managed_pages
;
6780 zone
->lowmem_reserve
[j
] = 0;
6784 struct zone
*lower_zone
;
6788 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6789 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6791 lower_zone
= pgdat
->node_zones
+ idx
;
6792 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6793 sysctl_lowmem_reserve_ratio
[idx
];
6794 managed_pages
+= lower_zone
->managed_pages
;
6799 /* update totalreserve_pages */
6800 calculate_totalreserve_pages();
6803 static void __setup_per_zone_wmarks(void)
6805 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6806 unsigned long lowmem_pages
= 0;
6808 unsigned long flags
;
6810 /* Calculate total number of !ZONE_HIGHMEM pages */
6811 for_each_zone(zone
) {
6812 if (!is_highmem(zone
))
6813 lowmem_pages
+= zone
->managed_pages
;
6816 for_each_zone(zone
) {
6819 spin_lock_irqsave(&zone
->lock
, flags
);
6820 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6821 do_div(tmp
, lowmem_pages
);
6822 if (is_highmem(zone
)) {
6824 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6825 * need highmem pages, so cap pages_min to a small
6828 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6829 * deltas control asynch page reclaim, and so should
6830 * not be capped for highmem.
6832 unsigned long min_pages
;
6834 min_pages
= zone
->managed_pages
/ 1024;
6835 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6836 zone
->watermark
[WMARK_MIN
] = min_pages
;
6839 * If it's a lowmem zone, reserve a number of pages
6840 * proportionate to the zone's size.
6842 zone
->watermark
[WMARK_MIN
] = tmp
;
6846 * Set the kswapd watermarks distance according to the
6847 * scale factor in proportion to available memory, but
6848 * ensure a minimum size on small systems.
6850 tmp
= max_t(u64
, tmp
>> 2,
6851 mult_frac(zone
->managed_pages
,
6852 watermark_scale_factor
, 10000));
6854 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6855 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6857 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6858 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6859 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6861 spin_unlock_irqrestore(&zone
->lock
, flags
);
6864 /* update totalreserve_pages */
6865 calculate_totalreserve_pages();
6869 * setup_per_zone_wmarks - called when min_free_kbytes changes
6870 * or when memory is hot-{added|removed}
6872 * Ensures that the watermark[min,low,high] values for each zone are set
6873 * correctly with respect to min_free_kbytes.
6875 void setup_per_zone_wmarks(void)
6877 mutex_lock(&zonelists_mutex
);
6878 __setup_per_zone_wmarks();
6879 mutex_unlock(&zonelists_mutex
);
6883 * Initialise min_free_kbytes.
6885 * For small machines we want it small (128k min). For large machines
6886 * we want it large (64MB max). But it is not linear, because network
6887 * bandwidth does not increase linearly with machine size. We use
6889 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6890 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6906 int __meminit
init_per_zone_wmark_min(void)
6908 unsigned long lowmem_kbytes
;
6909 int new_min_free_kbytes
;
6911 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6912 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6914 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6915 min_free_kbytes
= new_min_free_kbytes
;
6916 if (min_free_kbytes
< 128)
6917 min_free_kbytes
= 128;
6918 if (min_free_kbytes
> 65536)
6919 min_free_kbytes
= 65536;
6921 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6922 new_min_free_kbytes
, user_min_free_kbytes
);
6924 setup_per_zone_wmarks();
6925 refresh_zone_stat_thresholds();
6926 setup_per_zone_lowmem_reserve();
6929 core_initcall(init_per_zone_wmark_min
)
6932 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6933 * that we can call two helper functions whenever min_free_kbytes
6936 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6937 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6941 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6946 user_min_free_kbytes
= min_free_kbytes
;
6947 setup_per_zone_wmarks();
6952 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6953 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6957 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6962 setup_per_zone_wmarks();
6968 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6969 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6974 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6979 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6980 sysctl_min_unmapped_ratio
) / 100;
6984 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6985 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6990 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6995 zone
->min_slab_pages
= (zone
->managed_pages
*
6996 sysctl_min_slab_ratio
) / 100;
7002 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7003 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7004 * whenever sysctl_lowmem_reserve_ratio changes.
7006 * The reserve ratio obviously has absolutely no relation with the
7007 * minimum watermarks. The lowmem reserve ratio can only make sense
7008 * if in function of the boot time zone sizes.
7010 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7011 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7013 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7014 setup_per_zone_lowmem_reserve();
7019 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7020 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7021 * pagelist can have before it gets flushed back to buddy allocator.
7023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7024 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7027 int old_percpu_pagelist_fraction
;
7030 mutex_lock(&pcp_batch_high_lock
);
7031 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7033 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7034 if (!write
|| ret
< 0)
7037 /* Sanity checking to avoid pcp imbalance */
7038 if (percpu_pagelist_fraction
&&
7039 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7040 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7046 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7049 for_each_populated_zone(zone
) {
7052 for_each_possible_cpu(cpu
)
7053 pageset_set_high_and_batch(zone
,
7054 per_cpu_ptr(zone
->pageset
, cpu
));
7057 mutex_unlock(&pcp_batch_high_lock
);
7062 int hashdist
= HASHDIST_DEFAULT
;
7064 static int __init
set_hashdist(char *str
)
7068 hashdist
= simple_strtoul(str
, &str
, 0);
7071 __setup("hashdist=", set_hashdist
);
7075 * allocate a large system hash table from bootmem
7076 * - it is assumed that the hash table must contain an exact power-of-2
7077 * quantity of entries
7078 * - limit is the number of hash buckets, not the total allocation size
7080 void *__init
alloc_large_system_hash(const char *tablename
,
7081 unsigned long bucketsize
,
7082 unsigned long numentries
,
7085 unsigned int *_hash_shift
,
7086 unsigned int *_hash_mask
,
7087 unsigned long low_limit
,
7088 unsigned long high_limit
)
7090 unsigned long long max
= high_limit
;
7091 unsigned long log2qty
, size
;
7094 /* allow the kernel cmdline to have a say */
7096 /* round applicable memory size up to nearest megabyte */
7097 numentries
= nr_kernel_pages
;
7099 /* It isn't necessary when PAGE_SIZE >= 1MB */
7100 if (PAGE_SHIFT
< 20)
7101 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7103 /* limit to 1 bucket per 2^scale bytes of low memory */
7104 if (scale
> PAGE_SHIFT
)
7105 numentries
>>= (scale
- PAGE_SHIFT
);
7107 numentries
<<= (PAGE_SHIFT
- scale
);
7109 /* Make sure we've got at least a 0-order allocation.. */
7110 if (unlikely(flags
& HASH_SMALL
)) {
7111 /* Makes no sense without HASH_EARLY */
7112 WARN_ON(!(flags
& HASH_EARLY
));
7113 if (!(numentries
>> *_hash_shift
)) {
7114 numentries
= 1UL << *_hash_shift
;
7115 BUG_ON(!numentries
);
7117 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7118 numentries
= PAGE_SIZE
/ bucketsize
;
7120 numentries
= roundup_pow_of_two(numentries
);
7122 /* limit allocation size to 1/16 total memory by default */
7124 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7125 do_div(max
, bucketsize
);
7127 max
= min(max
, 0x80000000ULL
);
7129 if (numentries
< low_limit
)
7130 numentries
= low_limit
;
7131 if (numentries
> max
)
7134 log2qty
= ilog2(numentries
);
7137 size
= bucketsize
<< log2qty
;
7138 if (flags
& HASH_EARLY
)
7139 table
= memblock_virt_alloc_nopanic(size
, 0);
7141 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7144 * If bucketsize is not a power-of-two, we may free
7145 * some pages at the end of hash table which
7146 * alloc_pages_exact() automatically does
7148 if (get_order(size
) < MAX_ORDER
) {
7149 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7150 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7153 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7156 panic("Failed to allocate %s hash table\n", tablename
);
7158 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7159 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7162 *_hash_shift
= log2qty
;
7164 *_hash_mask
= (1 << log2qty
) - 1;
7170 * This function checks whether pageblock includes unmovable pages or not.
7171 * If @count is not zero, it is okay to include less @count unmovable pages
7173 * PageLRU check without isolation or lru_lock could race so that
7174 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7175 * expect this function should be exact.
7177 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7178 bool skip_hwpoisoned_pages
)
7180 unsigned long pfn
, iter
, found
;
7184 * For avoiding noise data, lru_add_drain_all() should be called
7185 * If ZONE_MOVABLE, the zone never contains unmovable pages
7187 if (zone_idx(zone
) == ZONE_MOVABLE
)
7189 mt
= get_pageblock_migratetype(page
);
7190 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7193 pfn
= page_to_pfn(page
);
7194 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7195 unsigned long check
= pfn
+ iter
;
7197 if (!pfn_valid_within(check
))
7200 page
= pfn_to_page(check
);
7203 * Hugepages are not in LRU lists, but they're movable.
7204 * We need not scan over tail pages bacause we don't
7205 * handle each tail page individually in migration.
7207 if (PageHuge(page
)) {
7208 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7213 * We can't use page_count without pin a page
7214 * because another CPU can free compound page.
7215 * This check already skips compound tails of THP
7216 * because their page->_refcount is zero at all time.
7218 if (!page_ref_count(page
)) {
7219 if (PageBuddy(page
))
7220 iter
+= (1 << page_order(page
)) - 1;
7225 * The HWPoisoned page may be not in buddy system, and
7226 * page_count() is not 0.
7228 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7234 * If there are RECLAIMABLE pages, we need to check
7235 * it. But now, memory offline itself doesn't call
7236 * shrink_node_slabs() and it still to be fixed.
7239 * If the page is not RAM, page_count()should be 0.
7240 * we don't need more check. This is an _used_ not-movable page.
7242 * The problematic thing here is PG_reserved pages. PG_reserved
7243 * is set to both of a memory hole page and a _used_ kernel
7252 bool is_pageblock_removable_nolock(struct page
*page
)
7258 * We have to be careful here because we are iterating over memory
7259 * sections which are not zone aware so we might end up outside of
7260 * the zone but still within the section.
7261 * We have to take care about the node as well. If the node is offline
7262 * its NODE_DATA will be NULL - see page_zone.
7264 if (!node_online(page_to_nid(page
)))
7267 zone
= page_zone(page
);
7268 pfn
= page_to_pfn(page
);
7269 if (!zone_spans_pfn(zone
, pfn
))
7272 return !has_unmovable_pages(zone
, page
, 0, true);
7275 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7277 static unsigned long pfn_max_align_down(unsigned long pfn
)
7279 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7280 pageblock_nr_pages
) - 1);
7283 static unsigned long pfn_max_align_up(unsigned long pfn
)
7285 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7286 pageblock_nr_pages
));
7289 /* [start, end) must belong to a single zone. */
7290 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7291 unsigned long start
, unsigned long end
)
7293 /* This function is based on compact_zone() from compaction.c. */
7294 unsigned long nr_reclaimed
;
7295 unsigned long pfn
= start
;
7296 unsigned int tries
= 0;
7301 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7302 if (fatal_signal_pending(current
)) {
7307 if (list_empty(&cc
->migratepages
)) {
7308 cc
->nr_migratepages
= 0;
7309 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7315 } else if (++tries
== 5) {
7316 ret
= ret
< 0 ? ret
: -EBUSY
;
7320 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7322 cc
->nr_migratepages
-= nr_reclaimed
;
7324 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7325 NULL
, 0, cc
->mode
, MR_CMA
);
7328 putback_movable_pages(&cc
->migratepages
);
7335 * alloc_contig_range() -- tries to allocate given range of pages
7336 * @start: start PFN to allocate
7337 * @end: one-past-the-last PFN to allocate
7338 * @migratetype: migratetype of the underlaying pageblocks (either
7339 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7340 * in range must have the same migratetype and it must
7341 * be either of the two.
7343 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7344 * aligned, however it's the caller's responsibility to guarantee that
7345 * we are the only thread that changes migrate type of pageblocks the
7348 * The PFN range must belong to a single zone.
7350 * Returns zero on success or negative error code. On success all
7351 * pages which PFN is in [start, end) are allocated for the caller and
7352 * need to be freed with free_contig_range().
7354 int alloc_contig_range(unsigned long start
, unsigned long end
,
7355 unsigned migratetype
)
7357 unsigned long outer_start
, outer_end
;
7361 struct compact_control cc
= {
7362 .nr_migratepages
= 0,
7364 .zone
= page_zone(pfn_to_page(start
)),
7365 .mode
= MIGRATE_SYNC
,
7366 .ignore_skip_hint
= true,
7368 INIT_LIST_HEAD(&cc
.migratepages
);
7371 * What we do here is we mark all pageblocks in range as
7372 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7373 * have different sizes, and due to the way page allocator
7374 * work, we align the range to biggest of the two pages so
7375 * that page allocator won't try to merge buddies from
7376 * different pageblocks and change MIGRATE_ISOLATE to some
7377 * other migration type.
7379 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7380 * migrate the pages from an unaligned range (ie. pages that
7381 * we are interested in). This will put all the pages in
7382 * range back to page allocator as MIGRATE_ISOLATE.
7384 * When this is done, we take the pages in range from page
7385 * allocator removing them from the buddy system. This way
7386 * page allocator will never consider using them.
7388 * This lets us mark the pageblocks back as
7389 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7390 * aligned range but not in the unaligned, original range are
7391 * put back to page allocator so that buddy can use them.
7394 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7395 pfn_max_align_up(end
), migratetype
,
7401 * In case of -EBUSY, we'd like to know which page causes problem.
7402 * So, just fall through. We will check it in test_pages_isolated().
7404 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7405 if (ret
&& ret
!= -EBUSY
)
7409 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7410 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7411 * more, all pages in [start, end) are free in page allocator.
7412 * What we are going to do is to allocate all pages from
7413 * [start, end) (that is remove them from page allocator).
7415 * The only problem is that pages at the beginning and at the
7416 * end of interesting range may be not aligned with pages that
7417 * page allocator holds, ie. they can be part of higher order
7418 * pages. Because of this, we reserve the bigger range and
7419 * once this is done free the pages we are not interested in.
7421 * We don't have to hold zone->lock here because the pages are
7422 * isolated thus they won't get removed from buddy.
7425 lru_add_drain_all();
7426 drain_all_pages(cc
.zone
);
7429 outer_start
= start
;
7430 while (!PageBuddy(pfn_to_page(outer_start
))) {
7431 if (++order
>= MAX_ORDER
) {
7432 outer_start
= start
;
7435 outer_start
&= ~0UL << order
;
7438 if (outer_start
!= start
) {
7439 order
= page_order(pfn_to_page(outer_start
));
7442 * outer_start page could be small order buddy page and
7443 * it doesn't include start page. Adjust outer_start
7444 * in this case to report failed page properly
7445 * on tracepoint in test_pages_isolated()
7447 if (outer_start
+ (1UL << order
) <= start
)
7448 outer_start
= start
;
7451 /* Make sure the range is really isolated. */
7452 if (test_pages_isolated(outer_start
, end
, false)) {
7453 pr_info("%s: [%lx, %lx) PFNs busy\n",
7454 __func__
, outer_start
, end
);
7459 /* Grab isolated pages from freelists. */
7460 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7466 /* Free head and tail (if any) */
7467 if (start
!= outer_start
)
7468 free_contig_range(outer_start
, start
- outer_start
);
7469 if (end
!= outer_end
)
7470 free_contig_range(end
, outer_end
- end
);
7473 undo_isolate_page_range(pfn_max_align_down(start
),
7474 pfn_max_align_up(end
), migratetype
);
7478 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7480 unsigned int count
= 0;
7482 for (; nr_pages
--; pfn
++) {
7483 struct page
*page
= pfn_to_page(pfn
);
7485 count
+= page_count(page
) != 1;
7488 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7492 #ifdef CONFIG_MEMORY_HOTPLUG
7494 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7495 * page high values need to be recalulated.
7497 void __meminit
zone_pcp_update(struct zone
*zone
)
7500 mutex_lock(&pcp_batch_high_lock
);
7501 for_each_possible_cpu(cpu
)
7502 pageset_set_high_and_batch(zone
,
7503 per_cpu_ptr(zone
->pageset
, cpu
));
7504 mutex_unlock(&pcp_batch_high_lock
);
7508 void zone_pcp_reset(struct zone
*zone
)
7510 unsigned long flags
;
7512 struct per_cpu_pageset
*pset
;
7514 /* avoid races with drain_pages() */
7515 local_irq_save(flags
);
7516 if (zone
->pageset
!= &boot_pageset
) {
7517 for_each_online_cpu(cpu
) {
7518 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7519 drain_zonestat(zone
, pset
);
7521 free_percpu(zone
->pageset
);
7522 zone
->pageset
= &boot_pageset
;
7524 local_irq_restore(flags
);
7527 #ifdef CONFIG_MEMORY_HOTREMOVE
7529 * All pages in the range must be in a single zone and isolated
7530 * before calling this.
7533 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7537 unsigned int order
, i
;
7539 unsigned long flags
;
7540 /* find the first valid pfn */
7541 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7546 zone
= page_zone(pfn_to_page(pfn
));
7547 spin_lock_irqsave(&zone
->lock
, flags
);
7549 while (pfn
< end_pfn
) {
7550 if (!pfn_valid(pfn
)) {
7554 page
= pfn_to_page(pfn
);
7556 * The HWPoisoned page may be not in buddy system, and
7557 * page_count() is not 0.
7559 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7561 SetPageReserved(page
);
7565 BUG_ON(page_count(page
));
7566 BUG_ON(!PageBuddy(page
));
7567 order
= page_order(page
);
7568 #ifdef CONFIG_DEBUG_VM
7569 pr_info("remove from free list %lx %d %lx\n",
7570 pfn
, 1 << order
, end_pfn
);
7572 list_del(&page
->lru
);
7573 rmv_page_order(page
);
7574 zone
->free_area
[order
].nr_free
--;
7575 for (i
= 0; i
< (1 << order
); i
++)
7576 SetPageReserved((page
+i
));
7577 pfn
+= (1 << order
);
7579 spin_unlock_irqrestore(&zone
->lock
, flags
);
7583 bool is_free_buddy_page(struct page
*page
)
7585 struct zone
*zone
= page_zone(page
);
7586 unsigned long pfn
= page_to_pfn(page
);
7587 unsigned long flags
;
7590 spin_lock_irqsave(&zone
->lock
, flags
);
7591 for (order
= 0; order
< MAX_ORDER
; order
++) {
7592 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7594 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7597 spin_unlock_irqrestore(&zone
->lock
, flags
);
7599 return order
< MAX_ORDER
;