Merge branch 'mlxsw-fixes'
[linux/fpc-iii.git] / mm / page_alloc.c
blob6903b695ebaef81ef890f4b5e41c749d89dce2e1
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
94 * Array of node states.
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
110 EXPORT_SYMBOL(node_states);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page *page)
132 return page->index;
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 page->index = migratetype;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
181 static void __free_pages_ok(struct page *page, unsigned int order);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
203 #endif
207 EXPORT_SYMBOL(totalram_pages);
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
278 int page_group_by_mobility_disabled __read_mostly;
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 pgdat->first_deferred_pfn = ULONG_MAX;
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
292 return false;
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
300 return false;
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
311 unsigned long max_initialise;
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
330 return true;
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
337 static inline bool early_page_uninitialised(unsigned long pfn)
339 return false;
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
344 return false;
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
351 return true;
353 #endif
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
456 void set_pageblock_migratetype(struct page *page, int migratetype)
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
487 return ret;
490 static int page_is_consistent(struct zone *zone, struct page *page)
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
497 return 1;
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone *zone, struct page *page)
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
509 return 0;
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
514 return 0;
516 #endif
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
540 nr_shown = 0;
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 * Higher-order pages are called "compound pages". They are structured thusly:
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
577 void free_compound_page(struct page *page)
579 __free_pages_ok(page, compound_order(page));
582 void prep_compound_page(struct page *page, unsigned int order)
584 int i;
585 int nr_pages = 1 << order;
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
596 atomic_set(compound_mapcount_ptr(page), -1);
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
606 static int __init early_debug_pagealloc(char *buf)
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 early_param("debug_pagealloc", early_debug_pagealloc);
614 static bool need_debug_guardpage(void)
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
620 return true;
623 static void init_debug_guardpage(void)
625 if (!debug_pagealloc_enabled())
626 return;
628 _debug_guardpage_enabled = true;
631 struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
636 static int __init debug_guardpage_minorder_setup(char *buf)
638 unsigned long res;
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
642 return 0;
644 _debug_guardpage_minorder = res;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 return 0;
648 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
650 static inline void set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
653 struct page_ext *page_ext;
655 if (!debug_guardpage_enabled())
656 return;
658 page_ext = lookup_page_ext(page);
659 if (unlikely(!page_ext))
660 return;
662 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
664 INIT_LIST_HEAD(&page->lru);
665 set_page_private(page, order);
666 /* Guard pages are not available for any usage */
667 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
670 static inline void clear_page_guard(struct zone *zone, struct page *page,
671 unsigned int order, int migratetype)
673 struct page_ext *page_ext;
675 if (!debug_guardpage_enabled())
676 return;
678 page_ext = lookup_page_ext(page);
679 if (unlikely(!page_ext))
680 return;
682 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684 set_page_private(page, 0);
685 if (!is_migrate_isolate(migratetype))
686 __mod_zone_freepage_state(zone, (1 << order), migratetype);
688 #else
689 struct page_ext_operations debug_guardpage_ops = { NULL, };
690 static inline void set_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
692 static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694 #endif
696 static inline void set_page_order(struct page *page, unsigned int order)
698 set_page_private(page, order);
699 __SetPageBuddy(page);
702 static inline void rmv_page_order(struct page *page)
704 __ClearPageBuddy(page);
705 set_page_private(page, 0);
709 * This function checks whether a page is free && is the buddy
710 * we can do coalesce a page and its buddy if
711 * (a) the buddy is not in a hole &&
712 * (b) the buddy is in the buddy system &&
713 * (c) a page and its buddy have the same order &&
714 * (d) a page and its buddy are in the same zone.
716 * For recording whether a page is in the buddy system, we set ->_mapcount
717 * PAGE_BUDDY_MAPCOUNT_VALUE.
718 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719 * serialized by zone->lock.
721 * For recording page's order, we use page_private(page).
723 static inline int page_is_buddy(struct page *page, struct page *buddy,
724 unsigned int order)
726 if (!pfn_valid_within(page_to_pfn(buddy)))
727 return 0;
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735 return 1;
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749 return 1;
751 return 0;
755 * Freeing function for a buddy system allocator.
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with _mapcount
768 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
769 * field.
770 * So when we are allocating or freeing one, we can derive the state of the
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
773 * If a block is freed, and its buddy is also free, then this
774 * triggers coalescing into a block of larger size.
776 * -- nyc
779 static inline void __free_one_page(struct page *page,
780 unsigned long pfn,
781 struct zone *zone, unsigned int order,
782 int migratetype)
784 unsigned long page_idx;
785 unsigned long combined_idx;
786 unsigned long uninitialized_var(buddy_idx);
787 struct page *buddy;
788 unsigned int max_order;
790 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
792 VM_BUG_ON(!zone_is_initialized(zone));
793 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
795 VM_BUG_ON(migratetype == -1);
796 if (likely(!is_migrate_isolate(migratetype)))
797 __mod_zone_freepage_state(zone, 1 << order, migratetype);
799 page_idx = pfn & ((1 << MAX_ORDER) - 1);
801 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
802 VM_BUG_ON_PAGE(bad_range(zone, page), page);
804 continue_merging:
805 while (order < max_order - 1) {
806 buddy_idx = __find_buddy_index(page_idx, order);
807 buddy = page + (buddy_idx - page_idx);
808 if (!page_is_buddy(page, buddy, order))
809 goto done_merging;
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
814 if (page_is_guard(buddy)) {
815 clear_page_guard(zone, buddy, order, migratetype);
816 } else {
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
821 combined_idx = buddy_idx & page_idx;
822 page = page + (combined_idx - page_idx);
823 page_idx = combined_idx;
824 order++;
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
832 * We don't want to hit this code for the more frequent
833 * low-order merging.
835 if (unlikely(has_isolate_pageblock(zone))) {
836 int buddy_mt;
838 buddy_idx = __find_buddy_index(page_idx, order);
839 buddy = page + (buddy_idx - page_idx);
840 buddy_mt = get_pageblock_migratetype(buddy);
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
845 goto done_merging;
847 max_order++;
848 goto continue_merging;
851 done_merging:
852 set_page_order(page, order);
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
862 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
863 struct page *higher_page, *higher_buddy;
864 combined_idx = buddy_idx & page_idx;
865 higher_page = page + (combined_idx - page_idx);
866 buddy_idx = __find_buddy_index(combined_idx, order + 1);
867 higher_buddy = higher_page + (buddy_idx - combined_idx);
868 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 zone->free_area[order].nr_free++;
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
885 static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895 #endif
896 (page->flags & check_flags)))
897 return false;
899 return true;
902 static void free_pages_check_bad(struct page *page)
904 const char *bad_reason;
905 unsigned long bad_flags;
907 bad_reason = NULL;
908 bad_flags = 0;
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 #ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923 #endif
924 bad_page(page, bad_reason, bad_flags);
927 static inline int free_pages_check(struct page *page)
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 int ret = 1;
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping is compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
958 break;
959 case 2:
961 * the second tail page: ->mapping is
962 * page_deferred_list().next -- ignore value.
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
970 break;
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
980 ret = 0;
981 out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
987 static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
990 int bad = 0;
992 VM_BUG_ON_PAGE(PageTail(page), page);
994 trace_mm_page_free(page, order);
995 kmemcheck_free_shadow(page, order);
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1001 if (unlikely(order)) {
1002 bool compound = PageCompound(page);
1003 int i;
1005 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1007 for (i = 1; i < (1 << order); i++) {
1008 if (compound)
1009 bad += free_tail_pages_check(page, page + i);
1010 if (unlikely(free_pages_check(page + i))) {
1011 bad++;
1012 continue;
1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 if (PageAnonHead(page))
1018 page->mapping = NULL;
1019 if (check_free)
1020 bad += free_pages_check(page);
1021 if (bad)
1022 return false;
1024 page_cpupid_reset_last(page);
1025 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 reset_page_owner(page, order);
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page),
1030 PAGE_SIZE << order);
1031 debug_check_no_obj_freed(page_address(page),
1032 PAGE_SIZE << order);
1034 arch_free_page(page, order);
1035 kernel_poison_pages(page, 1 << order, 0);
1036 kernel_map_pages(page, 1 << order, 0);
1037 kasan_free_pages(page, order);
1039 return true;
1042 #ifdef CONFIG_DEBUG_VM
1043 static inline bool free_pcp_prepare(struct page *page)
1045 return free_pages_prepare(page, 0, true);
1048 static inline bool bulkfree_pcp_prepare(struct page *page)
1050 return false;
1052 #else
1053 static bool free_pcp_prepare(struct page *page)
1055 return free_pages_prepare(page, 0, false);
1058 static bool bulkfree_pcp_prepare(struct page *page)
1060 return free_pages_check(page);
1062 #endif /* CONFIG_DEBUG_VM */
1065 * Frees a number of pages from the PCP lists
1066 * Assumes all pages on list are in same zone, and of same order.
1067 * count is the number of pages to free.
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1075 static void free_pcppages_bulk(struct zone *zone, int count,
1076 struct per_cpu_pages *pcp)
1078 int migratetype = 0;
1079 int batch_free = 0;
1080 unsigned long nr_scanned;
1081 bool isolated_pageblocks;
1083 spin_lock(&zone->lock);
1084 isolated_pageblocks = has_isolate_pageblock(zone);
1085 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1086 if (nr_scanned)
1087 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1089 while (count) {
1090 struct page *page;
1091 struct list_head *list;
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
1100 do {
1101 batch_free++;
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
1109 batch_free = count;
1111 do {
1112 int mt; /* migratetype of the to-be-freed page */
1114 page = list_last_entry(list, struct page, lru);
1115 /* must delete as __free_one_page list manipulates */
1116 list_del(&page->lru);
1118 mt = get_pcppage_migratetype(page);
1119 /* MIGRATE_ISOLATE page should not go to pcplists */
1120 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1121 /* Pageblock could have been isolated meanwhile */
1122 if (unlikely(isolated_pageblocks))
1123 mt = get_pageblock_migratetype(page);
1125 if (bulkfree_pcp_prepare(page))
1126 continue;
1128 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1129 trace_mm_page_pcpu_drain(page, 0, mt);
1130 } while (--count && --batch_free && !list_empty(list));
1132 spin_unlock(&zone->lock);
1135 static void free_one_page(struct zone *zone,
1136 struct page *page, unsigned long pfn,
1137 unsigned int order,
1138 int migratetype)
1140 unsigned long nr_scanned;
1141 spin_lock(&zone->lock);
1142 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1143 if (nr_scanned)
1144 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1146 if (unlikely(has_isolate_pageblock(zone) ||
1147 is_migrate_isolate(migratetype))) {
1148 migratetype = get_pfnblock_migratetype(page, pfn);
1150 __free_one_page(page, pfn, zone, order, migratetype);
1151 spin_unlock(&zone->lock);
1154 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1155 unsigned long zone, int nid)
1157 set_page_links(page, zone, nid, pfn);
1158 init_page_count(page);
1159 page_mapcount_reset(page);
1160 page_cpupid_reset_last(page);
1162 INIT_LIST_HEAD(&page->lru);
1163 #ifdef WANT_PAGE_VIRTUAL
1164 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 if (!is_highmem_idx(zone))
1166 set_page_address(page, __va(pfn << PAGE_SHIFT));
1167 #endif
1170 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1171 int nid)
1173 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177 static void init_reserved_page(unsigned long pfn)
1179 pg_data_t *pgdat;
1180 int nid, zid;
1182 if (!early_page_uninitialised(pfn))
1183 return;
1185 nid = early_pfn_to_nid(pfn);
1186 pgdat = NODE_DATA(nid);
1188 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1189 struct zone *zone = &pgdat->node_zones[zid];
1191 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1192 break;
1194 __init_single_pfn(pfn, zid, nid);
1196 #else
1197 static inline void init_reserved_page(unsigned long pfn)
1200 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203 * Initialised pages do not have PageReserved set. This function is
1204 * called for each range allocated by the bootmem allocator and
1205 * marks the pages PageReserved. The remaining valid pages are later
1206 * sent to the buddy page allocator.
1208 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1210 unsigned long start_pfn = PFN_DOWN(start);
1211 unsigned long end_pfn = PFN_UP(end);
1213 for (; start_pfn < end_pfn; start_pfn++) {
1214 if (pfn_valid(start_pfn)) {
1215 struct page *page = pfn_to_page(start_pfn);
1217 init_reserved_page(start_pfn);
1219 /* Avoid false-positive PageTail() */
1220 INIT_LIST_HEAD(&page->lru);
1222 SetPageReserved(page);
1227 static void __free_pages_ok(struct page *page, unsigned int order)
1229 unsigned long flags;
1230 int migratetype;
1231 unsigned long pfn = page_to_pfn(page);
1233 if (!free_pages_prepare(page, order, true))
1234 return;
1236 migratetype = get_pfnblock_migratetype(page, pfn);
1237 local_irq_save(flags);
1238 __count_vm_events(PGFREE, 1 << order);
1239 free_one_page(page_zone(page), page, pfn, order, migratetype);
1240 local_irq_restore(flags);
1243 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1245 unsigned int nr_pages = 1 << order;
1246 struct page *p = page;
1247 unsigned int loop;
1249 prefetchw(p);
1250 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1251 prefetchw(p + 1);
1252 __ClearPageReserved(p);
1253 set_page_count(p, 0);
1255 __ClearPageReserved(p);
1256 set_page_count(p, 0);
1258 page_zone(page)->managed_pages += nr_pages;
1259 set_page_refcounted(page);
1260 __free_pages(page, order);
1263 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1266 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1268 int __meminit early_pfn_to_nid(unsigned long pfn)
1270 static DEFINE_SPINLOCK(early_pfn_lock);
1271 int nid;
1273 spin_lock(&early_pfn_lock);
1274 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1275 if (nid < 0)
1276 nid = 0;
1277 spin_unlock(&early_pfn_lock);
1279 return nid;
1281 #endif
1283 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1285 struct mminit_pfnnid_cache *state)
1287 int nid;
1289 nid = __early_pfn_to_nid(pfn, state);
1290 if (nid >= 0 && nid != node)
1291 return false;
1292 return true;
1295 /* Only safe to use early in boot when initialisation is single-threaded */
1296 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301 #else
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1305 return true;
1307 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1308 struct mminit_pfnnid_cache *state)
1310 return true;
1312 #endif
1315 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1316 unsigned int order)
1318 if (early_page_uninitialised(pfn))
1319 return;
1320 return __free_pages_boot_core(page, order);
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner. The scanners then need to
1327 * use only pfn_valid_within() check for arches that allow holes within
1328 * pageblocks.
1330 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1332 * It's possible on some configurations to have a setup like node0 node1 node0
1333 * i.e. it's possible that all pages within a zones range of pages do not
1334 * belong to a single zone. We assume that a border between node0 and node1
1335 * can occur within a single pageblock, but not a node0 node1 node0
1336 * interleaving within a single pageblock. It is therefore sufficient to check
1337 * the first and last page of a pageblock and avoid checking each individual
1338 * page in a pageblock.
1340 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1341 unsigned long end_pfn, struct zone *zone)
1343 struct page *start_page;
1344 struct page *end_page;
1346 /* end_pfn is one past the range we are checking */
1347 end_pfn--;
1349 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1350 return NULL;
1352 start_page = pfn_to_page(start_pfn);
1354 if (page_zone(start_page) != zone)
1355 return NULL;
1357 end_page = pfn_to_page(end_pfn);
1359 /* This gives a shorter code than deriving page_zone(end_page) */
1360 if (page_zone_id(start_page) != page_zone_id(end_page))
1361 return NULL;
1363 return start_page;
1366 void set_zone_contiguous(struct zone *zone)
1368 unsigned long block_start_pfn = zone->zone_start_pfn;
1369 unsigned long block_end_pfn;
1371 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1372 for (; block_start_pfn < zone_end_pfn(zone);
1373 block_start_pfn = block_end_pfn,
1374 block_end_pfn += pageblock_nr_pages) {
1376 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1378 if (!__pageblock_pfn_to_page(block_start_pfn,
1379 block_end_pfn, zone))
1380 return;
1383 /* We confirm that there is no hole */
1384 zone->contiguous = true;
1387 void clear_zone_contiguous(struct zone *zone)
1389 zone->contiguous = false;
1392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1393 static void __init deferred_free_range(struct page *page,
1394 unsigned long pfn, int nr_pages)
1396 int i;
1398 if (!page)
1399 return;
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages == MAX_ORDER_NR_PAGES &&
1403 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1404 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1405 __free_pages_boot_core(page, MAX_ORDER-1);
1406 return;
1409 for (i = 0; i < nr_pages; i++, page++)
1410 __free_pages_boot_core(page, 0);
1413 /* Completion tracking for deferred_init_memmap() threads */
1414 static atomic_t pgdat_init_n_undone __initdata;
1415 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1417 static inline void __init pgdat_init_report_one_done(void)
1419 if (atomic_dec_and_test(&pgdat_init_n_undone))
1420 complete(&pgdat_init_all_done_comp);
1423 /* Initialise remaining memory on a node */
1424 static int __init deferred_init_memmap(void *data)
1426 pg_data_t *pgdat = data;
1427 int nid = pgdat->node_id;
1428 struct mminit_pfnnid_cache nid_init_state = { };
1429 unsigned long start = jiffies;
1430 unsigned long nr_pages = 0;
1431 unsigned long walk_start, walk_end;
1432 int i, zid;
1433 struct zone *zone;
1434 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1435 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1437 if (first_init_pfn == ULONG_MAX) {
1438 pgdat_init_report_one_done();
1439 return 0;
1442 /* Bind memory initialisation thread to a local node if possible */
1443 if (!cpumask_empty(cpumask))
1444 set_cpus_allowed_ptr(current, cpumask);
1446 /* Sanity check boundaries */
1447 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1448 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1449 pgdat->first_deferred_pfn = ULONG_MAX;
1451 /* Only the highest zone is deferred so find it */
1452 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 zone = pgdat->node_zones + zid;
1454 if (first_init_pfn < zone_end_pfn(zone))
1455 break;
1458 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1459 unsigned long pfn, end_pfn;
1460 struct page *page = NULL;
1461 struct page *free_base_page = NULL;
1462 unsigned long free_base_pfn = 0;
1463 int nr_to_free = 0;
1465 end_pfn = min(walk_end, zone_end_pfn(zone));
1466 pfn = first_init_pfn;
1467 if (pfn < walk_start)
1468 pfn = walk_start;
1469 if (pfn < zone->zone_start_pfn)
1470 pfn = zone->zone_start_pfn;
1472 for (; pfn < end_pfn; pfn++) {
1473 if (!pfn_valid_within(pfn))
1474 goto free_range;
1477 * Ensure pfn_valid is checked every
1478 * MAX_ORDER_NR_PAGES for memory holes
1480 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1481 if (!pfn_valid(pfn)) {
1482 page = NULL;
1483 goto free_range;
1487 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1488 page = NULL;
1489 goto free_range;
1492 /* Minimise pfn page lookups and scheduler checks */
1493 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1494 page++;
1495 } else {
1496 nr_pages += nr_to_free;
1497 deferred_free_range(free_base_page,
1498 free_base_pfn, nr_to_free);
1499 free_base_page = NULL;
1500 free_base_pfn = nr_to_free = 0;
1502 page = pfn_to_page(pfn);
1503 cond_resched();
1506 if (page->flags) {
1507 VM_BUG_ON(page_zone(page) != zone);
1508 goto free_range;
1511 __init_single_page(page, pfn, zid, nid);
1512 if (!free_base_page) {
1513 free_base_page = page;
1514 free_base_pfn = pfn;
1515 nr_to_free = 0;
1517 nr_to_free++;
1519 /* Where possible, batch up pages for a single free */
1520 continue;
1521 free_range:
1522 /* Free the current block of pages to allocator */
1523 nr_pages += nr_to_free;
1524 deferred_free_range(free_base_page, free_base_pfn,
1525 nr_to_free);
1526 free_base_page = NULL;
1527 free_base_pfn = nr_to_free = 0;
1530 first_init_pfn = max(end_pfn, first_init_pfn);
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1536 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1537 jiffies_to_msecs(jiffies - start));
1539 pgdat_init_report_one_done();
1540 return 0;
1542 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1544 void __init page_alloc_init_late(void)
1546 struct zone *zone;
1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1549 int nid;
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1553 for_each_node_state(nid, N_MEMORY) {
1554 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 /* Block until all are initialised */
1558 wait_for_completion(&pgdat_init_all_done_comp);
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
1562 #endif
1564 for_each_populated_zone(zone)
1565 set_zone_contiguous(zone);
1568 #ifdef CONFIG_CMA
1569 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1570 void __init init_cma_reserved_pageblock(struct page *page)
1572 unsigned i = pageblock_nr_pages;
1573 struct page *p = page;
1575 do {
1576 __ClearPageReserved(p);
1577 set_page_count(p, 0);
1578 } while (++p, --i);
1580 set_pageblock_migratetype(page, MIGRATE_CMA);
1582 if (pageblock_order >= MAX_ORDER) {
1583 i = pageblock_nr_pages;
1584 p = page;
1585 do {
1586 set_page_refcounted(p);
1587 __free_pages(p, MAX_ORDER - 1);
1588 p += MAX_ORDER_NR_PAGES;
1589 } while (i -= MAX_ORDER_NR_PAGES);
1590 } else {
1591 set_page_refcounted(page);
1592 __free_pages(page, pageblock_order);
1595 adjust_managed_page_count(page, pageblock_nr_pages);
1597 #endif
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1611 * -- nyc
1613 static inline void expand(struct zone *zone, struct page *page,
1614 int low, int high, struct free_area *area,
1615 int migratetype)
1617 unsigned long size = 1 << high;
1619 while (high > low) {
1620 area--;
1621 high--;
1622 size >>= 1;
1623 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1626 debug_guardpage_enabled() &&
1627 high < debug_guardpage_minorder()) {
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1634 set_page_guard(zone, &page[size], high, migratetype);
1635 continue;
1637 list_add(&page[size].lru, &area->free_list[migratetype]);
1638 area->nr_free++;
1639 set_page_order(&page[size], high);
1643 static void check_new_page_bad(struct page *page)
1645 const char *bad_reason = NULL;
1646 unsigned long bad_flags = 0;
1648 if (unlikely(atomic_read(&page->_mapcount) != -1))
1649 bad_reason = "nonzero mapcount";
1650 if (unlikely(page->mapping != NULL))
1651 bad_reason = "non-NULL mapping";
1652 if (unlikely(page_ref_count(page) != 0))
1653 bad_reason = "nonzero _count";
1654 if (unlikely(page->flags & __PG_HWPOISON)) {
1655 bad_reason = "HWPoisoned (hardware-corrupted)";
1656 bad_flags = __PG_HWPOISON;
1657 /* Don't complain about hwpoisoned pages */
1658 page_mapcount_reset(page); /* remove PageBuddy */
1659 return;
1661 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1662 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1665 #ifdef CONFIG_MEMCG
1666 if (unlikely(page->mem_cgroup))
1667 bad_reason = "page still charged to cgroup";
1668 #endif
1669 bad_page(page, bad_reason, bad_flags);
1673 * This page is about to be returned from the page allocator
1675 static inline int check_new_page(struct page *page)
1677 if (likely(page_expected_state(page,
1678 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1679 return 0;
1681 check_new_page_bad(page);
1682 return 1;
1685 static inline bool free_pages_prezeroed(bool poisoned)
1687 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1688 page_poisoning_enabled() && poisoned;
1691 #ifdef CONFIG_DEBUG_VM
1692 static bool check_pcp_refill(struct page *page)
1694 return false;
1697 static bool check_new_pcp(struct page *page)
1699 return check_new_page(page);
1701 #else
1702 static bool check_pcp_refill(struct page *page)
1704 return check_new_page(page);
1706 static bool check_new_pcp(struct page *page)
1708 return false;
1710 #endif /* CONFIG_DEBUG_VM */
1712 static bool check_new_pages(struct page *page, unsigned int order)
1714 int i;
1715 for (i = 0; i < (1 << order); i++) {
1716 struct page *p = page + i;
1718 if (unlikely(check_new_page(p)))
1719 return true;
1722 return false;
1725 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1726 unsigned int alloc_flags)
1728 int i;
1729 bool poisoned = true;
1731 for (i = 0; i < (1 << order); i++) {
1732 struct page *p = page + i;
1733 if (poisoned)
1734 poisoned &= page_is_poisoned(p);
1737 set_page_private(page, 0);
1738 set_page_refcounted(page);
1740 arch_alloc_page(page, order);
1741 kernel_map_pages(page, 1 << order, 1);
1742 kernel_poison_pages(page, 1 << order, 1);
1743 kasan_alloc_pages(page, order);
1745 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1746 for (i = 0; i < (1 << order); i++)
1747 clear_highpage(page + i);
1749 if (order && (gfp_flags & __GFP_COMP))
1750 prep_compound_page(page, order);
1752 set_page_owner(page, order, gfp_flags);
1755 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1756 * allocate the page. The expectation is that the caller is taking
1757 * steps that will free more memory. The caller should avoid the page
1758 * being used for !PFMEMALLOC purposes.
1760 if (alloc_flags & ALLOC_NO_WATERMARKS)
1761 set_page_pfmemalloc(page);
1762 else
1763 clear_page_pfmemalloc(page);
1767 * Go through the free lists for the given migratetype and remove
1768 * the smallest available page from the freelists
1770 static inline
1771 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1772 int migratetype)
1774 unsigned int current_order;
1775 struct free_area *area;
1776 struct page *page;
1778 /* Find a page of the appropriate size in the preferred list */
1779 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1780 area = &(zone->free_area[current_order]);
1781 page = list_first_entry_or_null(&area->free_list[migratetype],
1782 struct page, lru);
1783 if (!page)
1784 continue;
1785 list_del(&page->lru);
1786 rmv_page_order(page);
1787 area->nr_free--;
1788 expand(zone, page, order, current_order, area, migratetype);
1789 set_pcppage_migratetype(page, migratetype);
1790 return page;
1793 return NULL;
1798 * This array describes the order lists are fallen back to when
1799 * the free lists for the desirable migrate type are depleted
1801 static int fallbacks[MIGRATE_TYPES][4] = {
1802 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1805 #ifdef CONFIG_CMA
1806 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1807 #endif
1808 #ifdef CONFIG_MEMORY_ISOLATION
1809 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1810 #endif
1813 #ifdef CONFIG_CMA
1814 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1815 unsigned int order)
1817 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819 #else
1820 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order) { return NULL; }
1822 #endif
1825 * Move the free pages in a range to the free lists of the requested type.
1826 * Note that start_page and end_pages are not aligned on a pageblock
1827 * boundary. If alignment is required, use move_freepages_block()
1829 int move_freepages(struct zone *zone,
1830 struct page *start_page, struct page *end_page,
1831 int migratetype)
1833 struct page *page;
1834 unsigned int order;
1835 int pages_moved = 0;
1837 #ifndef CONFIG_HOLES_IN_ZONE
1839 * page_zone is not safe to call in this context when
1840 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1841 * anyway as we check zone boundaries in move_freepages_block().
1842 * Remove at a later date when no bug reports exist related to
1843 * grouping pages by mobility
1845 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1846 #endif
1848 for (page = start_page; page <= end_page;) {
1849 /* Make sure we are not inadvertently changing nodes */
1850 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1852 if (!pfn_valid_within(page_to_pfn(page))) {
1853 page++;
1854 continue;
1857 if (!PageBuddy(page)) {
1858 page++;
1859 continue;
1862 order = page_order(page);
1863 list_move(&page->lru,
1864 &zone->free_area[order].free_list[migratetype]);
1865 page += 1 << order;
1866 pages_moved += 1 << order;
1869 return pages_moved;
1872 int move_freepages_block(struct zone *zone, struct page *page,
1873 int migratetype)
1875 unsigned long start_pfn, end_pfn;
1876 struct page *start_page, *end_page;
1878 start_pfn = page_to_pfn(page);
1879 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1880 start_page = pfn_to_page(start_pfn);
1881 end_page = start_page + pageblock_nr_pages - 1;
1882 end_pfn = start_pfn + pageblock_nr_pages - 1;
1884 /* Do not cross zone boundaries */
1885 if (!zone_spans_pfn(zone, start_pfn))
1886 start_page = page;
1887 if (!zone_spans_pfn(zone, end_pfn))
1888 return 0;
1890 return move_freepages(zone, start_page, end_page, migratetype);
1893 static void change_pageblock_range(struct page *pageblock_page,
1894 int start_order, int migratetype)
1896 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898 while (nr_pageblocks--) {
1899 set_pageblock_migratetype(pageblock_page, migratetype);
1900 pageblock_page += pageblock_nr_pages;
1905 * When we are falling back to another migratetype during allocation, try to
1906 * steal extra free pages from the same pageblocks to satisfy further
1907 * allocations, instead of polluting multiple pageblocks.
1909 * If we are stealing a relatively large buddy page, it is likely there will
1910 * be more free pages in the pageblock, so try to steal them all. For
1911 * reclaimable and unmovable allocations, we steal regardless of page size,
1912 * as fragmentation caused by those allocations polluting movable pageblocks
1913 * is worse than movable allocations stealing from unmovable and reclaimable
1914 * pageblocks.
1916 static bool can_steal_fallback(unsigned int order, int start_mt)
1919 * Leaving this order check is intended, although there is
1920 * relaxed order check in next check. The reason is that
1921 * we can actually steal whole pageblock if this condition met,
1922 * but, below check doesn't guarantee it and that is just heuristic
1923 * so could be changed anytime.
1925 if (order >= pageblock_order)
1926 return true;
1928 if (order >= pageblock_order / 2 ||
1929 start_mt == MIGRATE_RECLAIMABLE ||
1930 start_mt == MIGRATE_UNMOVABLE ||
1931 page_group_by_mobility_disabled)
1932 return true;
1934 return false;
1938 * This function implements actual steal behaviour. If order is large enough,
1939 * we can steal whole pageblock. If not, we first move freepages in this
1940 * pageblock and check whether half of pages are moved or not. If half of
1941 * pages are moved, we can change migratetype of pageblock and permanently
1942 * use it's pages as requested migratetype in the future.
1944 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1945 int start_type)
1947 unsigned int current_order = page_order(page);
1948 int pages;
1950 /* Take ownership for orders >= pageblock_order */
1951 if (current_order >= pageblock_order) {
1952 change_pageblock_range(page, current_order, start_type);
1953 return;
1956 pages = move_freepages_block(zone, page, start_type);
1958 /* Claim the whole block if over half of it is free */
1959 if (pages >= (1 << (pageblock_order-1)) ||
1960 page_group_by_mobility_disabled)
1961 set_pageblock_migratetype(page, start_type);
1965 * Check whether there is a suitable fallback freepage with requested order.
1966 * If only_stealable is true, this function returns fallback_mt only if
1967 * we can steal other freepages all together. This would help to reduce
1968 * fragmentation due to mixed migratetype pages in one pageblock.
1970 int find_suitable_fallback(struct free_area *area, unsigned int order,
1971 int migratetype, bool only_stealable, bool *can_steal)
1973 int i;
1974 int fallback_mt;
1976 if (area->nr_free == 0)
1977 return -1;
1979 *can_steal = false;
1980 for (i = 0;; i++) {
1981 fallback_mt = fallbacks[migratetype][i];
1982 if (fallback_mt == MIGRATE_TYPES)
1983 break;
1985 if (list_empty(&area->free_list[fallback_mt]))
1986 continue;
1988 if (can_steal_fallback(order, migratetype))
1989 *can_steal = true;
1991 if (!only_stealable)
1992 return fallback_mt;
1994 if (*can_steal)
1995 return fallback_mt;
1998 return -1;
2002 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2003 * there are no empty page blocks that contain a page with a suitable order
2005 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2006 unsigned int alloc_order)
2008 int mt;
2009 unsigned long max_managed, flags;
2012 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2013 * Check is race-prone but harmless.
2015 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2016 if (zone->nr_reserved_highatomic >= max_managed)
2017 return;
2019 spin_lock_irqsave(&zone->lock, flags);
2021 /* Recheck the nr_reserved_highatomic limit under the lock */
2022 if (zone->nr_reserved_highatomic >= max_managed)
2023 goto out_unlock;
2025 /* Yoink! */
2026 mt = get_pageblock_migratetype(page);
2027 if (mt != MIGRATE_HIGHATOMIC &&
2028 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2029 zone->nr_reserved_highatomic += pageblock_nr_pages;
2030 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2031 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 out_unlock:
2035 spin_unlock_irqrestore(&zone->lock, flags);
2039 * Used when an allocation is about to fail under memory pressure. This
2040 * potentially hurts the reliability of high-order allocations when under
2041 * intense memory pressure but failed atomic allocations should be easier
2042 * to recover from than an OOM.
2044 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046 struct zonelist *zonelist = ac->zonelist;
2047 unsigned long flags;
2048 struct zoneref *z;
2049 struct zone *zone;
2050 struct page *page;
2051 int order;
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 /* Preserve at least one pageblock */
2056 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2057 continue;
2059 spin_lock_irqsave(&zone->lock, flags);
2060 for (order = 0; order < MAX_ORDER; order++) {
2061 struct free_area *area = &(zone->free_area[order]);
2063 page = list_first_entry_or_null(
2064 &area->free_list[MIGRATE_HIGHATOMIC],
2065 struct page, lru);
2066 if (!page)
2067 continue;
2070 * It should never happen but changes to locking could
2071 * inadvertently allow a per-cpu drain to add pages
2072 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2073 * and watch for underflows.
2075 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2076 zone->nr_reserved_highatomic);
2079 * Convert to ac->migratetype and avoid the normal
2080 * pageblock stealing heuristics. Minimally, the caller
2081 * is doing the work and needs the pages. More
2082 * importantly, if the block was always converted to
2083 * MIGRATE_UNMOVABLE or another type then the number
2084 * of pageblocks that cannot be completely freed
2085 * may increase.
2087 set_pageblock_migratetype(page, ac->migratetype);
2088 move_freepages_block(zone, page, ac->migratetype);
2089 spin_unlock_irqrestore(&zone->lock, flags);
2090 return;
2092 spin_unlock_irqrestore(&zone->lock, flags);
2096 /* Remove an element from the buddy allocator from the fallback list */
2097 static inline struct page *
2098 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2100 struct free_area *area;
2101 unsigned int current_order;
2102 struct page *page;
2103 int fallback_mt;
2104 bool can_steal;
2106 /* Find the largest possible block of pages in the other list */
2107 for (current_order = MAX_ORDER-1;
2108 current_order >= order && current_order <= MAX_ORDER-1;
2109 --current_order) {
2110 area = &(zone->free_area[current_order]);
2111 fallback_mt = find_suitable_fallback(area, current_order,
2112 start_migratetype, false, &can_steal);
2113 if (fallback_mt == -1)
2114 continue;
2116 page = list_first_entry(&area->free_list[fallback_mt],
2117 struct page, lru);
2118 if (can_steal)
2119 steal_suitable_fallback(zone, page, start_migratetype);
2121 /* Remove the page from the freelists */
2122 area->nr_free--;
2123 list_del(&page->lru);
2124 rmv_page_order(page);
2126 expand(zone, page, order, current_order, area,
2127 start_migratetype);
2129 * The pcppage_migratetype may differ from pageblock's
2130 * migratetype depending on the decisions in
2131 * find_suitable_fallback(). This is OK as long as it does not
2132 * differ for MIGRATE_CMA pageblocks. Those can be used as
2133 * fallback only via special __rmqueue_cma_fallback() function
2135 set_pcppage_migratetype(page, start_migratetype);
2137 trace_mm_page_alloc_extfrag(page, order, current_order,
2138 start_migratetype, fallback_mt);
2140 return page;
2143 return NULL;
2147 * Do the hard work of removing an element from the buddy allocator.
2148 * Call me with the zone->lock already held.
2150 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2151 int migratetype)
2153 struct page *page;
2155 page = __rmqueue_smallest(zone, order, migratetype);
2156 if (unlikely(!page)) {
2157 if (migratetype == MIGRATE_MOVABLE)
2158 page = __rmqueue_cma_fallback(zone, order);
2160 if (!page)
2161 page = __rmqueue_fallback(zone, order, migratetype);
2164 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2165 return page;
2169 * Obtain a specified number of elements from the buddy allocator, all under
2170 * a single hold of the lock, for efficiency. Add them to the supplied list.
2171 * Returns the number of new pages which were placed at *list.
2173 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2174 unsigned long count, struct list_head *list,
2175 int migratetype, bool cold)
2177 int i;
2179 spin_lock(&zone->lock);
2180 for (i = 0; i < count; ++i) {
2181 struct page *page = __rmqueue(zone, order, migratetype);
2182 if (unlikely(page == NULL))
2183 break;
2185 if (unlikely(check_pcp_refill(page)))
2186 continue;
2189 * Split buddy pages returned by expand() are received here
2190 * in physical page order. The page is added to the callers and
2191 * list and the list head then moves forward. From the callers
2192 * perspective, the linked list is ordered by page number in
2193 * some conditions. This is useful for IO devices that can
2194 * merge IO requests if the physical pages are ordered
2195 * properly.
2197 if (likely(!cold))
2198 list_add(&page->lru, list);
2199 else
2200 list_add_tail(&page->lru, list);
2201 list = &page->lru;
2202 if (is_migrate_cma(get_pcppage_migratetype(page)))
2203 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2204 -(1 << order));
2206 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2207 spin_unlock(&zone->lock);
2208 return i;
2211 #ifdef CONFIG_NUMA
2213 * Called from the vmstat counter updater to drain pagesets of this
2214 * currently executing processor on remote nodes after they have
2215 * expired.
2217 * Note that this function must be called with the thread pinned to
2218 * a single processor.
2220 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2222 unsigned long flags;
2223 int to_drain, batch;
2225 local_irq_save(flags);
2226 batch = READ_ONCE(pcp->batch);
2227 to_drain = min(pcp->count, batch);
2228 if (to_drain > 0) {
2229 free_pcppages_bulk(zone, to_drain, pcp);
2230 pcp->count -= to_drain;
2232 local_irq_restore(flags);
2234 #endif
2237 * Drain pcplists of the indicated processor and zone.
2239 * The processor must either be the current processor and the
2240 * thread pinned to the current processor or a processor that
2241 * is not online.
2243 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2245 unsigned long flags;
2246 struct per_cpu_pageset *pset;
2247 struct per_cpu_pages *pcp;
2249 local_irq_save(flags);
2250 pset = per_cpu_ptr(zone->pageset, cpu);
2252 pcp = &pset->pcp;
2253 if (pcp->count) {
2254 free_pcppages_bulk(zone, pcp->count, pcp);
2255 pcp->count = 0;
2257 local_irq_restore(flags);
2261 * Drain pcplists of all zones on the indicated processor.
2263 * The processor must either be the current processor and the
2264 * thread pinned to the current processor or a processor that
2265 * is not online.
2267 static void drain_pages(unsigned int cpu)
2269 struct zone *zone;
2271 for_each_populated_zone(zone) {
2272 drain_pages_zone(cpu, zone);
2277 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2279 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2280 * the single zone's pages.
2282 void drain_local_pages(struct zone *zone)
2284 int cpu = smp_processor_id();
2286 if (zone)
2287 drain_pages_zone(cpu, zone);
2288 else
2289 drain_pages(cpu);
2293 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 * Note that this code is protected against sending an IPI to an offline
2298 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2299 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2300 * nothing keeps CPUs from showing up after we populated the cpumask and
2301 * before the call to on_each_cpu_mask().
2303 void drain_all_pages(struct zone *zone)
2305 int cpu;
2308 * Allocate in the BSS so we wont require allocation in
2309 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 static cpumask_t cpus_with_pcps;
2314 * We don't care about racing with CPU hotplug event
2315 * as offline notification will cause the notified
2316 * cpu to drain that CPU pcps and on_each_cpu_mask
2317 * disables preemption as part of its processing
2319 for_each_online_cpu(cpu) {
2320 struct per_cpu_pageset *pcp;
2321 struct zone *z;
2322 bool has_pcps = false;
2324 if (zone) {
2325 pcp = per_cpu_ptr(zone->pageset, cpu);
2326 if (pcp->pcp.count)
2327 has_pcps = true;
2328 } else {
2329 for_each_populated_zone(z) {
2330 pcp = per_cpu_ptr(z->pageset, cpu);
2331 if (pcp->pcp.count) {
2332 has_pcps = true;
2333 break;
2338 if (has_pcps)
2339 cpumask_set_cpu(cpu, &cpus_with_pcps);
2340 else
2341 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2344 zone, 1);
2347 #ifdef CONFIG_HIBERNATION
2349 void mark_free_pages(struct zone *zone)
2351 unsigned long pfn, max_zone_pfn;
2352 unsigned long flags;
2353 unsigned int order, t;
2354 struct page *page;
2356 if (zone_is_empty(zone))
2357 return;
2359 spin_lock_irqsave(&zone->lock, flags);
2361 max_zone_pfn = zone_end_pfn(zone);
2362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2363 if (pfn_valid(pfn)) {
2364 page = pfn_to_page(pfn);
2366 if (page_zone(page) != zone)
2367 continue;
2369 if (!swsusp_page_is_forbidden(page))
2370 swsusp_unset_page_free(page);
2373 for_each_migratetype_order(order, t) {
2374 list_for_each_entry(page,
2375 &zone->free_area[order].free_list[t], lru) {
2376 unsigned long i;
2378 pfn = page_to_pfn(page);
2379 for (i = 0; i < (1UL << order); i++)
2380 swsusp_set_page_free(pfn_to_page(pfn + i));
2383 spin_unlock_irqrestore(&zone->lock, flags);
2385 #endif /* CONFIG_PM */
2388 * Free a 0-order page
2389 * cold == true ? free a cold page : free a hot page
2391 void free_hot_cold_page(struct page *page, bool cold)
2393 struct zone *zone = page_zone(page);
2394 struct per_cpu_pages *pcp;
2395 unsigned long flags;
2396 unsigned long pfn = page_to_pfn(page);
2397 int migratetype;
2399 if (!free_pcp_prepare(page))
2400 return;
2402 migratetype = get_pfnblock_migratetype(page, pfn);
2403 set_pcppage_migratetype(page, migratetype);
2404 local_irq_save(flags);
2405 __count_vm_event(PGFREE);
2408 * We only track unmovable, reclaimable and movable on pcp lists.
2409 * Free ISOLATE pages back to the allocator because they are being
2410 * offlined but treat RESERVE as movable pages so we can get those
2411 * areas back if necessary. Otherwise, we may have to free
2412 * excessively into the page allocator
2414 if (migratetype >= MIGRATE_PCPTYPES) {
2415 if (unlikely(is_migrate_isolate(migratetype))) {
2416 free_one_page(zone, page, pfn, 0, migratetype);
2417 goto out;
2419 migratetype = MIGRATE_MOVABLE;
2422 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2423 if (!cold)
2424 list_add(&page->lru, &pcp->lists[migratetype]);
2425 else
2426 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2427 pcp->count++;
2428 if (pcp->count >= pcp->high) {
2429 unsigned long batch = READ_ONCE(pcp->batch);
2430 free_pcppages_bulk(zone, batch, pcp);
2431 pcp->count -= batch;
2434 out:
2435 local_irq_restore(flags);
2439 * Free a list of 0-order pages
2441 void free_hot_cold_page_list(struct list_head *list, bool cold)
2443 struct page *page, *next;
2445 list_for_each_entry_safe(page, next, list, lru) {
2446 trace_mm_page_free_batched(page, cold);
2447 free_hot_cold_page(page, cold);
2452 * split_page takes a non-compound higher-order page, and splits it into
2453 * n (1<<order) sub-pages: page[0..n]
2454 * Each sub-page must be freed individually.
2456 * Note: this is probably too low level an operation for use in drivers.
2457 * Please consult with lkml before using this in your driver.
2459 void split_page(struct page *page, unsigned int order)
2461 int i;
2462 gfp_t gfp_mask;
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
2467 #ifdef CONFIG_KMEMCHECK
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474 #endif
2476 gfp_mask = get_page_owner_gfp(page);
2477 set_page_owner(page, 0, gfp_mask);
2478 for (i = 1; i < (1 << order); i++) {
2479 set_page_refcounted(page + i);
2480 set_page_owner(page + i, 0, gfp_mask);
2483 EXPORT_SYMBOL_GPL(split_page);
2485 int __isolate_free_page(struct page *page, unsigned int order)
2487 unsigned long watermark;
2488 struct zone *zone;
2489 int mt;
2491 BUG_ON(!PageBuddy(page));
2493 zone = page_zone(page);
2494 mt = get_pageblock_migratetype(page);
2496 if (!is_migrate_isolate(mt)) {
2497 /* Obey watermarks as if the page was being allocated */
2498 watermark = low_wmark_pages(zone) + (1 << order);
2499 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2500 return 0;
2502 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2505 /* Remove page from free list */
2506 list_del(&page->lru);
2507 zone->free_area[order].nr_free--;
2508 rmv_page_order(page);
2510 set_page_owner(page, order, __GFP_MOVABLE);
2512 /* Set the pageblock if the isolated page is at least a pageblock */
2513 if (order >= pageblock_order - 1) {
2514 struct page *endpage = page + (1 << order) - 1;
2515 for (; page < endpage; page += pageblock_nr_pages) {
2516 int mt = get_pageblock_migratetype(page);
2517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2518 set_pageblock_migratetype(page,
2519 MIGRATE_MOVABLE);
2524 return 1UL << order;
2528 * Similar to split_page except the page is already free. As this is only
2529 * being used for migration, the migratetype of the block also changes.
2530 * As this is called with interrupts disabled, the caller is responsible
2531 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2532 * are enabled.
2534 * Note: this is probably too low level an operation for use in drivers.
2535 * Please consult with lkml before using this in your driver.
2537 int split_free_page(struct page *page)
2539 unsigned int order;
2540 int nr_pages;
2542 order = page_order(page);
2544 nr_pages = __isolate_free_page(page, order);
2545 if (!nr_pages)
2546 return 0;
2548 /* Split into individual pages */
2549 set_page_refcounted(page);
2550 split_page(page, order);
2551 return nr_pages;
2555 * Update NUMA hit/miss statistics
2557 * Must be called with interrupts disabled.
2559 * When __GFP_OTHER_NODE is set assume the node of the preferred
2560 * zone is the local node. This is useful for daemons who allocate
2561 * memory on behalf of other processes.
2563 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2564 gfp_t flags)
2566 #ifdef CONFIG_NUMA
2567 int local_nid = numa_node_id();
2568 enum zone_stat_item local_stat = NUMA_LOCAL;
2570 if (unlikely(flags & __GFP_OTHER_NODE)) {
2571 local_stat = NUMA_OTHER;
2572 local_nid = preferred_zone->node;
2575 if (z->node == local_nid) {
2576 __inc_zone_state(z, NUMA_HIT);
2577 __inc_zone_state(z, local_stat);
2578 } else {
2579 __inc_zone_state(z, NUMA_MISS);
2580 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2582 #endif
2586 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2588 static inline
2589 struct page *buffered_rmqueue(struct zone *preferred_zone,
2590 struct zone *zone, unsigned int order,
2591 gfp_t gfp_flags, unsigned int alloc_flags,
2592 int migratetype)
2594 unsigned long flags;
2595 struct page *page;
2596 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2598 if (likely(order == 0)) {
2599 struct per_cpu_pages *pcp;
2600 struct list_head *list;
2602 local_irq_save(flags);
2603 do {
2604 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2605 list = &pcp->lists[migratetype];
2606 if (list_empty(list)) {
2607 pcp->count += rmqueue_bulk(zone, 0,
2608 pcp->batch, list,
2609 migratetype, cold);
2610 if (unlikely(list_empty(list)))
2611 goto failed;
2614 if (cold)
2615 page = list_last_entry(list, struct page, lru);
2616 else
2617 page = list_first_entry(list, struct page, lru);
2619 __dec_zone_state(zone, NR_ALLOC_BATCH);
2620 list_del(&page->lru);
2621 pcp->count--;
2623 } while (check_new_pcp(page));
2624 } else {
2626 * We most definitely don't want callers attempting to
2627 * allocate greater than order-1 page units with __GFP_NOFAIL.
2629 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2630 spin_lock_irqsave(&zone->lock, flags);
2632 do {
2633 page = NULL;
2634 if (alloc_flags & ALLOC_HARDER) {
2635 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2636 if (page)
2637 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2639 if (!page)
2640 page = __rmqueue(zone, order, migratetype);
2641 } while (page && check_new_pages(page, order));
2642 spin_unlock(&zone->lock);
2643 if (!page)
2644 goto failed;
2645 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2646 __mod_zone_freepage_state(zone, -(1 << order),
2647 get_pcppage_migratetype(page));
2650 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2651 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2652 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2654 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2655 zone_statistics(preferred_zone, zone, gfp_flags);
2656 local_irq_restore(flags);
2658 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2659 return page;
2661 failed:
2662 local_irq_restore(flags);
2663 return NULL;
2666 #ifdef CONFIG_FAIL_PAGE_ALLOC
2668 static struct {
2669 struct fault_attr attr;
2671 bool ignore_gfp_highmem;
2672 bool ignore_gfp_reclaim;
2673 u32 min_order;
2674 } fail_page_alloc = {
2675 .attr = FAULT_ATTR_INITIALIZER,
2676 .ignore_gfp_reclaim = true,
2677 .ignore_gfp_highmem = true,
2678 .min_order = 1,
2681 static int __init setup_fail_page_alloc(char *str)
2683 return setup_fault_attr(&fail_page_alloc.attr, str);
2685 __setup("fail_page_alloc=", setup_fail_page_alloc);
2687 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2689 if (order < fail_page_alloc.min_order)
2690 return false;
2691 if (gfp_mask & __GFP_NOFAIL)
2692 return false;
2693 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2694 return false;
2695 if (fail_page_alloc.ignore_gfp_reclaim &&
2696 (gfp_mask & __GFP_DIRECT_RECLAIM))
2697 return false;
2699 return should_fail(&fail_page_alloc.attr, 1 << order);
2702 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2704 static int __init fail_page_alloc_debugfs(void)
2706 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2707 struct dentry *dir;
2709 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2710 &fail_page_alloc.attr);
2711 if (IS_ERR(dir))
2712 return PTR_ERR(dir);
2714 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2715 &fail_page_alloc.ignore_gfp_reclaim))
2716 goto fail;
2717 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2718 &fail_page_alloc.ignore_gfp_highmem))
2719 goto fail;
2720 if (!debugfs_create_u32("min-order", mode, dir,
2721 &fail_page_alloc.min_order))
2722 goto fail;
2724 return 0;
2725 fail:
2726 debugfs_remove_recursive(dir);
2728 return -ENOMEM;
2731 late_initcall(fail_page_alloc_debugfs);
2733 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2735 #else /* CONFIG_FAIL_PAGE_ALLOC */
2737 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2739 return false;
2742 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2745 * Return true if free base pages are above 'mark'. For high-order checks it
2746 * will return true of the order-0 watermark is reached and there is at least
2747 * one free page of a suitable size. Checking now avoids taking the zone lock
2748 * to check in the allocation paths if no pages are free.
2750 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2751 int classzone_idx, unsigned int alloc_flags,
2752 long free_pages)
2754 long min = mark;
2755 int o;
2756 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2758 /* free_pages may go negative - that's OK */
2759 free_pages -= (1 << order) - 1;
2761 if (alloc_flags & ALLOC_HIGH)
2762 min -= min / 2;
2765 * If the caller does not have rights to ALLOC_HARDER then subtract
2766 * the high-atomic reserves. This will over-estimate the size of the
2767 * atomic reserve but it avoids a search.
2769 if (likely(!alloc_harder))
2770 free_pages -= z->nr_reserved_highatomic;
2771 else
2772 min -= min / 4;
2774 #ifdef CONFIG_CMA
2775 /* If allocation can't use CMA areas don't use free CMA pages */
2776 if (!(alloc_flags & ALLOC_CMA))
2777 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2778 #endif
2781 * Check watermarks for an order-0 allocation request. If these
2782 * are not met, then a high-order request also cannot go ahead
2783 * even if a suitable page happened to be free.
2785 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2786 return false;
2788 /* If this is an order-0 request then the watermark is fine */
2789 if (!order)
2790 return true;
2792 /* For a high-order request, check at least one suitable page is free */
2793 for (o = order; o < MAX_ORDER; o++) {
2794 struct free_area *area = &z->free_area[o];
2795 int mt;
2797 if (!area->nr_free)
2798 continue;
2800 if (alloc_harder)
2801 return true;
2803 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2804 if (!list_empty(&area->free_list[mt]))
2805 return true;
2808 #ifdef CONFIG_CMA
2809 if ((alloc_flags & ALLOC_CMA) &&
2810 !list_empty(&area->free_list[MIGRATE_CMA])) {
2811 return true;
2813 #endif
2815 return false;
2818 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2819 int classzone_idx, unsigned int alloc_flags)
2821 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2822 zone_page_state(z, NR_FREE_PAGES));
2825 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2826 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2828 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2829 long cma_pages = 0;
2831 #ifdef CONFIG_CMA
2832 /* If allocation can't use CMA areas don't use free CMA pages */
2833 if (!(alloc_flags & ALLOC_CMA))
2834 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2835 #endif
2838 * Fast check for order-0 only. If this fails then the reserves
2839 * need to be calculated. There is a corner case where the check
2840 * passes but only the high-order atomic reserve are free. If
2841 * the caller is !atomic then it'll uselessly search the free
2842 * list. That corner case is then slower but it is harmless.
2844 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2845 return true;
2847 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2848 free_pages);
2851 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2852 unsigned long mark, int classzone_idx)
2854 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2856 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2857 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2859 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2860 free_pages);
2863 #ifdef CONFIG_NUMA
2864 static bool zone_local(struct zone *local_zone, struct zone *zone)
2866 return local_zone->node == zone->node;
2869 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2871 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2872 RECLAIM_DISTANCE;
2874 #else /* CONFIG_NUMA */
2875 static bool zone_local(struct zone *local_zone, struct zone *zone)
2877 return true;
2880 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2882 return true;
2884 #endif /* CONFIG_NUMA */
2886 static void reset_alloc_batches(struct zone *preferred_zone)
2888 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2890 do {
2891 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2892 high_wmark_pages(zone) - low_wmark_pages(zone) -
2893 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2894 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2895 } while (zone++ != preferred_zone);
2899 * get_page_from_freelist goes through the zonelist trying to allocate
2900 * a page.
2902 static struct page *
2903 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 const struct alloc_context *ac)
2906 struct zoneref *z = ac->preferred_zoneref;
2907 struct zone *zone;
2908 bool fair_skipped = false;
2909 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2911 zonelist_scan:
2913 * Scan zonelist, looking for a zone with enough free.
2914 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2916 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2917 ac->nodemask) {
2918 struct page *page;
2919 unsigned long mark;
2921 if (cpusets_enabled() &&
2922 (alloc_flags & ALLOC_CPUSET) &&
2923 !__cpuset_zone_allowed(zone, gfp_mask))
2924 continue;
2926 * Distribute pages in proportion to the individual
2927 * zone size to ensure fair page aging. The zone a
2928 * page was allocated in should have no effect on the
2929 * time the page has in memory before being reclaimed.
2931 if (apply_fair) {
2932 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2933 fair_skipped = true;
2934 continue;
2936 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2937 if (fair_skipped)
2938 goto reset_fair;
2939 apply_fair = false;
2943 * When allocating a page cache page for writing, we
2944 * want to get it from a zone that is within its dirty
2945 * limit, such that no single zone holds more than its
2946 * proportional share of globally allowed dirty pages.
2947 * The dirty limits take into account the zone's
2948 * lowmem reserves and high watermark so that kswapd
2949 * should be able to balance it without having to
2950 * write pages from its LRU list.
2952 * This may look like it could increase pressure on
2953 * lower zones by failing allocations in higher zones
2954 * before they are full. But the pages that do spill
2955 * over are limited as the lower zones are protected
2956 * by this very same mechanism. It should not become
2957 * a practical burden to them.
2959 * XXX: For now, allow allocations to potentially
2960 * exceed the per-zone dirty limit in the slowpath
2961 * (spread_dirty_pages unset) before going into reclaim,
2962 * which is important when on a NUMA setup the allowed
2963 * zones are together not big enough to reach the
2964 * global limit. The proper fix for these situations
2965 * will require awareness of zones in the
2966 * dirty-throttling and the flusher threads.
2968 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2969 continue;
2971 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2972 if (!zone_watermark_fast(zone, order, mark,
2973 ac_classzone_idx(ac), alloc_flags)) {
2974 int ret;
2976 /* Checked here to keep the fast path fast */
2977 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2978 if (alloc_flags & ALLOC_NO_WATERMARKS)
2979 goto try_this_zone;
2981 if (zone_reclaim_mode == 0 ||
2982 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2983 continue;
2985 ret = zone_reclaim(zone, gfp_mask, order);
2986 switch (ret) {
2987 case ZONE_RECLAIM_NOSCAN:
2988 /* did not scan */
2989 continue;
2990 case ZONE_RECLAIM_FULL:
2991 /* scanned but unreclaimable */
2992 continue;
2993 default:
2994 /* did we reclaim enough */
2995 if (zone_watermark_ok(zone, order, mark,
2996 ac_classzone_idx(ac), alloc_flags))
2997 goto try_this_zone;
2999 continue;
3003 try_this_zone:
3004 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3005 gfp_mask, alloc_flags, ac->migratetype);
3006 if (page) {
3007 prep_new_page(page, order, gfp_mask, alloc_flags);
3010 * If this is a high-order atomic allocation then check
3011 * if the pageblock should be reserved for the future
3013 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3014 reserve_highatomic_pageblock(page, zone, order);
3016 return page;
3021 * The first pass makes sure allocations are spread fairly within the
3022 * local node. However, the local node might have free pages left
3023 * after the fairness batches are exhausted, and remote zones haven't
3024 * even been considered yet. Try once more without fairness, and
3025 * include remote zones now, before entering the slowpath and waking
3026 * kswapd: prefer spilling to a remote zone over swapping locally.
3028 if (fair_skipped) {
3029 reset_fair:
3030 apply_fair = false;
3031 fair_skipped = false;
3032 reset_alloc_batches(ac->preferred_zoneref->zone);
3033 z = ac->preferred_zoneref;
3034 goto zonelist_scan;
3037 return NULL;
3041 * Large machines with many possible nodes should not always dump per-node
3042 * meminfo in irq context.
3044 static inline bool should_suppress_show_mem(void)
3046 bool ret = false;
3048 #if NODES_SHIFT > 8
3049 ret = in_interrupt();
3050 #endif
3051 return ret;
3054 static DEFINE_RATELIMIT_STATE(nopage_rs,
3055 DEFAULT_RATELIMIT_INTERVAL,
3056 DEFAULT_RATELIMIT_BURST);
3058 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3060 unsigned int filter = SHOW_MEM_FILTER_NODES;
3062 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3063 debug_guardpage_minorder() > 0)
3064 return;
3067 * This documents exceptions given to allocations in certain
3068 * contexts that are allowed to allocate outside current's set
3069 * of allowed nodes.
3071 if (!(gfp_mask & __GFP_NOMEMALLOC))
3072 if (test_thread_flag(TIF_MEMDIE) ||
3073 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3074 filter &= ~SHOW_MEM_FILTER_NODES;
3075 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
3078 if (fmt) {
3079 struct va_format vaf;
3080 va_list args;
3082 va_start(args, fmt);
3084 vaf.fmt = fmt;
3085 vaf.va = &args;
3087 pr_warn("%pV", &vaf);
3089 va_end(args);
3092 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3093 current->comm, order, gfp_mask, &gfp_mask);
3094 dump_stack();
3095 if (!should_suppress_show_mem())
3096 show_mem(filter);
3099 static inline struct page *
3100 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3101 const struct alloc_context *ac, unsigned long *did_some_progress)
3103 struct oom_control oc = {
3104 .zonelist = ac->zonelist,
3105 .nodemask = ac->nodemask,
3106 .gfp_mask = gfp_mask,
3107 .order = order,
3109 struct page *page;
3111 *did_some_progress = 0;
3114 * Acquire the oom lock. If that fails, somebody else is
3115 * making progress for us.
3117 if (!mutex_trylock(&oom_lock)) {
3118 *did_some_progress = 1;
3119 schedule_timeout_uninterruptible(1);
3120 return NULL;
3124 * Go through the zonelist yet one more time, keep very high watermark
3125 * here, this is only to catch a parallel oom killing, we must fail if
3126 * we're still under heavy pressure.
3128 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3129 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3130 if (page)
3131 goto out;
3133 if (!(gfp_mask & __GFP_NOFAIL)) {
3134 /* Coredumps can quickly deplete all memory reserves */
3135 if (current->flags & PF_DUMPCORE)
3136 goto out;
3137 /* The OOM killer will not help higher order allocs */
3138 if (order > PAGE_ALLOC_COSTLY_ORDER)
3139 goto out;
3140 /* The OOM killer does not needlessly kill tasks for lowmem */
3141 if (ac->high_zoneidx < ZONE_NORMAL)
3142 goto out;
3143 if (pm_suspended_storage())
3144 goto out;
3146 * XXX: GFP_NOFS allocations should rather fail than rely on
3147 * other request to make a forward progress.
3148 * We are in an unfortunate situation where out_of_memory cannot
3149 * do much for this context but let's try it to at least get
3150 * access to memory reserved if the current task is killed (see
3151 * out_of_memory). Once filesystems are ready to handle allocation
3152 * failures more gracefully we should just bail out here.
3155 /* The OOM killer may not free memory on a specific node */
3156 if (gfp_mask & __GFP_THISNODE)
3157 goto out;
3159 /* Exhausted what can be done so it's blamo time */
3160 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3161 *did_some_progress = 1;
3163 if (gfp_mask & __GFP_NOFAIL) {
3164 page = get_page_from_freelist(gfp_mask, order,
3165 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3167 * fallback to ignore cpuset restriction if our nodes
3168 * are depleted
3170 if (!page)
3171 page = get_page_from_freelist(gfp_mask, order,
3172 ALLOC_NO_WATERMARKS, ac);
3175 out:
3176 mutex_unlock(&oom_lock);
3177 return page;
3182 * Maximum number of compaction retries wit a progress before OOM
3183 * killer is consider as the only way to move forward.
3185 #define MAX_COMPACT_RETRIES 16
3187 #ifdef CONFIG_COMPACTION
3188 /* Try memory compaction for high-order allocations before reclaim */
3189 static struct page *
3190 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3191 unsigned int alloc_flags, const struct alloc_context *ac,
3192 enum migrate_mode mode, enum compact_result *compact_result)
3194 struct page *page;
3195 int contended_compaction;
3197 if (!order)
3198 return NULL;
3200 current->flags |= PF_MEMALLOC;
3201 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3202 mode, &contended_compaction);
3203 current->flags &= ~PF_MEMALLOC;
3205 if (*compact_result <= COMPACT_INACTIVE)
3206 return NULL;
3209 * At least in one zone compaction wasn't deferred or skipped, so let's
3210 * count a compaction stall
3212 count_vm_event(COMPACTSTALL);
3214 page = get_page_from_freelist(gfp_mask, order,
3215 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3217 if (page) {
3218 struct zone *zone = page_zone(page);
3220 zone->compact_blockskip_flush = false;
3221 compaction_defer_reset(zone, order, true);
3222 count_vm_event(COMPACTSUCCESS);
3223 return page;
3227 * It's bad if compaction run occurs and fails. The most likely reason
3228 * is that pages exist, but not enough to satisfy watermarks.
3230 count_vm_event(COMPACTFAIL);
3233 * In all zones where compaction was attempted (and not
3234 * deferred or skipped), lock contention has been detected.
3235 * For THP allocation we do not want to disrupt the others
3236 * so we fallback to base pages instead.
3238 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3239 *compact_result = COMPACT_CONTENDED;
3242 * If compaction was aborted due to need_resched(), we do not
3243 * want to further increase allocation latency, unless it is
3244 * khugepaged trying to collapse.
3246 if (contended_compaction == COMPACT_CONTENDED_SCHED
3247 && !(current->flags & PF_KTHREAD))
3248 *compact_result = COMPACT_CONTENDED;
3250 cond_resched();
3252 return NULL;
3255 static inline bool
3256 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3257 enum compact_result compact_result, enum migrate_mode *migrate_mode,
3258 int compaction_retries)
3260 int max_retries = MAX_COMPACT_RETRIES;
3262 if (!order)
3263 return false;
3266 * compaction considers all the zone as desperately out of memory
3267 * so it doesn't really make much sense to retry except when the
3268 * failure could be caused by weak migration mode.
3270 if (compaction_failed(compact_result)) {
3271 if (*migrate_mode == MIGRATE_ASYNC) {
3272 *migrate_mode = MIGRATE_SYNC_LIGHT;
3273 return true;
3275 return false;
3279 * make sure the compaction wasn't deferred or didn't bail out early
3280 * due to locks contention before we declare that we should give up.
3281 * But do not retry if the given zonelist is not suitable for
3282 * compaction.
3284 if (compaction_withdrawn(compact_result))
3285 return compaction_zonelist_suitable(ac, order, alloc_flags);
3288 * !costly requests are much more important than __GFP_REPEAT
3289 * costly ones because they are de facto nofail and invoke OOM
3290 * killer to move on while costly can fail and users are ready
3291 * to cope with that. 1/4 retries is rather arbitrary but we
3292 * would need much more detailed feedback from compaction to
3293 * make a better decision.
3295 if (order > PAGE_ALLOC_COSTLY_ORDER)
3296 max_retries /= 4;
3297 if (compaction_retries <= max_retries)
3298 return true;
3300 return false;
3302 #else
3303 static inline struct page *
3304 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3305 unsigned int alloc_flags, const struct alloc_context *ac,
3306 enum migrate_mode mode, enum compact_result *compact_result)
3308 *compact_result = COMPACT_SKIPPED;
3309 return NULL;
3312 static inline bool
3313 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3314 enum compact_result compact_result,
3315 enum migrate_mode *migrate_mode,
3316 int compaction_retries)
3318 struct zone *zone;
3319 struct zoneref *z;
3321 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3322 return false;
3325 * There are setups with compaction disabled which would prefer to loop
3326 * inside the allocator rather than hit the oom killer prematurely.
3327 * Let's give them a good hope and keep retrying while the order-0
3328 * watermarks are OK.
3330 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3331 ac->nodemask) {
3332 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3333 ac_classzone_idx(ac), alloc_flags))
3334 return true;
3336 return false;
3338 #endif /* CONFIG_COMPACTION */
3340 /* Perform direct synchronous page reclaim */
3341 static int
3342 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3343 const struct alloc_context *ac)
3345 struct reclaim_state reclaim_state;
3346 int progress;
3348 cond_resched();
3350 /* We now go into synchronous reclaim */
3351 cpuset_memory_pressure_bump();
3352 current->flags |= PF_MEMALLOC;
3353 lockdep_set_current_reclaim_state(gfp_mask);
3354 reclaim_state.reclaimed_slab = 0;
3355 current->reclaim_state = &reclaim_state;
3357 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3358 ac->nodemask);
3360 current->reclaim_state = NULL;
3361 lockdep_clear_current_reclaim_state();
3362 current->flags &= ~PF_MEMALLOC;
3364 cond_resched();
3366 return progress;
3369 /* The really slow allocator path where we enter direct reclaim */
3370 static inline struct page *
3371 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3372 unsigned int alloc_flags, const struct alloc_context *ac,
3373 unsigned long *did_some_progress)
3375 struct page *page = NULL;
3376 bool drained = false;
3378 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3379 if (unlikely(!(*did_some_progress)))
3380 return NULL;
3382 retry:
3383 page = get_page_from_freelist(gfp_mask, order,
3384 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3387 * If an allocation failed after direct reclaim, it could be because
3388 * pages are pinned on the per-cpu lists or in high alloc reserves.
3389 * Shrink them them and try again
3391 if (!page && !drained) {
3392 unreserve_highatomic_pageblock(ac);
3393 drain_all_pages(NULL);
3394 drained = true;
3395 goto retry;
3398 return page;
3401 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3403 struct zoneref *z;
3404 struct zone *zone;
3406 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3407 ac->high_zoneidx, ac->nodemask)
3408 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3411 static inline unsigned int
3412 gfp_to_alloc_flags(gfp_t gfp_mask)
3414 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3416 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3417 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3420 * The caller may dip into page reserves a bit more if the caller
3421 * cannot run direct reclaim, or if the caller has realtime scheduling
3422 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3423 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3425 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3427 if (gfp_mask & __GFP_ATOMIC) {
3429 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3430 * if it can't schedule.
3432 if (!(gfp_mask & __GFP_NOMEMALLOC))
3433 alloc_flags |= ALLOC_HARDER;
3435 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3436 * comment for __cpuset_node_allowed().
3438 alloc_flags &= ~ALLOC_CPUSET;
3439 } else if (unlikely(rt_task(current)) && !in_interrupt())
3440 alloc_flags |= ALLOC_HARDER;
3442 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3443 if (gfp_mask & __GFP_MEMALLOC)
3444 alloc_flags |= ALLOC_NO_WATERMARKS;
3445 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3446 alloc_flags |= ALLOC_NO_WATERMARKS;
3447 else if (!in_interrupt() &&
3448 ((current->flags & PF_MEMALLOC) ||
3449 unlikely(test_thread_flag(TIF_MEMDIE))))
3450 alloc_flags |= ALLOC_NO_WATERMARKS;
3452 #ifdef CONFIG_CMA
3453 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3454 alloc_flags |= ALLOC_CMA;
3455 #endif
3456 return alloc_flags;
3459 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3461 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3464 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3466 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3470 * Maximum number of reclaim retries without any progress before OOM killer
3471 * is consider as the only way to move forward.
3473 #define MAX_RECLAIM_RETRIES 16
3476 * Checks whether it makes sense to retry the reclaim to make a forward progress
3477 * for the given allocation request.
3478 * The reclaim feedback represented by did_some_progress (any progress during
3479 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3480 * any progress in a row) is considered as well as the reclaimable pages on the
3481 * applicable zone list (with a backoff mechanism which is a function of
3482 * no_progress_loops).
3484 * Returns true if a retry is viable or false to enter the oom path.
3486 static inline bool
3487 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3488 struct alloc_context *ac, int alloc_flags,
3489 bool did_some_progress, int no_progress_loops)
3491 struct zone *zone;
3492 struct zoneref *z;
3495 * Make sure we converge to OOM if we cannot make any progress
3496 * several times in the row.
3498 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3499 return false;
3502 * Keep reclaiming pages while there is a chance this will lead somewhere.
3503 * If none of the target zones can satisfy our allocation request even
3504 * if all reclaimable pages are considered then we are screwed and have
3505 * to go OOM.
3507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3508 ac->nodemask) {
3509 unsigned long available;
3510 unsigned long reclaimable;
3512 available = reclaimable = zone_reclaimable_pages(zone);
3513 available -= DIV_ROUND_UP(no_progress_loops * available,
3514 MAX_RECLAIM_RETRIES);
3515 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3518 * Would the allocation succeed if we reclaimed the whole
3519 * available?
3521 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3522 ac_classzone_idx(ac), alloc_flags, available)) {
3524 * If we didn't make any progress and have a lot of
3525 * dirty + writeback pages then we should wait for
3526 * an IO to complete to slow down the reclaim and
3527 * prevent from pre mature OOM
3529 if (!did_some_progress) {
3530 unsigned long writeback;
3531 unsigned long dirty;
3533 writeback = zone_page_state_snapshot(zone,
3534 NR_WRITEBACK);
3535 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3537 if (2*(writeback + dirty) > reclaimable) {
3538 congestion_wait(BLK_RW_ASYNC, HZ/10);
3539 return true;
3544 * Memory allocation/reclaim might be called from a WQ
3545 * context and the current implementation of the WQ
3546 * concurrency control doesn't recognize that
3547 * a particular WQ is congested if the worker thread is
3548 * looping without ever sleeping. Therefore we have to
3549 * do a short sleep here rather than calling
3550 * cond_resched().
3552 if (current->flags & PF_WQ_WORKER)
3553 schedule_timeout_uninterruptible(1);
3554 else
3555 cond_resched();
3557 return true;
3561 return false;
3564 static inline struct page *
3565 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3566 struct alloc_context *ac)
3568 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3569 struct page *page = NULL;
3570 unsigned int alloc_flags;
3571 unsigned long did_some_progress;
3572 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3573 enum compact_result compact_result;
3574 int compaction_retries = 0;
3575 int no_progress_loops = 0;
3578 * In the slowpath, we sanity check order to avoid ever trying to
3579 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3580 * be using allocators in order of preference for an area that is
3581 * too large.
3583 if (order >= MAX_ORDER) {
3584 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3585 return NULL;
3589 * We also sanity check to catch abuse of atomic reserves being used by
3590 * callers that are not in atomic context.
3592 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3593 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3594 gfp_mask &= ~__GFP_ATOMIC;
3596 retry:
3597 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3598 wake_all_kswapds(order, ac);
3601 * OK, we're below the kswapd watermark and have kicked background
3602 * reclaim. Now things get more complex, so set up alloc_flags according
3603 * to how we want to proceed.
3605 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3608 * Reset the zonelist iterators if memory policies can be ignored.
3609 * These allocations are high priority and system rather than user
3610 * orientated.
3612 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3613 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3614 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3615 ac->high_zoneidx, ac->nodemask);
3618 /* This is the last chance, in general, before the goto nopage. */
3619 page = get_page_from_freelist(gfp_mask, order,
3620 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3621 if (page)
3622 goto got_pg;
3624 /* Allocate without watermarks if the context allows */
3625 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3626 page = get_page_from_freelist(gfp_mask, order,
3627 ALLOC_NO_WATERMARKS, ac);
3628 if (page)
3629 goto got_pg;
3632 /* Caller is not willing to reclaim, we can't balance anything */
3633 if (!can_direct_reclaim) {
3635 * All existing users of the __GFP_NOFAIL are blockable, so warn
3636 * of any new users that actually allow this type of allocation
3637 * to fail.
3639 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3640 goto nopage;
3643 /* Avoid recursion of direct reclaim */
3644 if (current->flags & PF_MEMALLOC) {
3646 * __GFP_NOFAIL request from this context is rather bizarre
3647 * because we cannot reclaim anything and only can loop waiting
3648 * for somebody to do a work for us.
3650 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3651 cond_resched();
3652 goto retry;
3654 goto nopage;
3657 /* Avoid allocations with no watermarks from looping endlessly */
3658 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3659 goto nopage;
3662 * Try direct compaction. The first pass is asynchronous. Subsequent
3663 * attempts after direct reclaim are synchronous
3665 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3666 migration_mode,
3667 &compact_result);
3668 if (page)
3669 goto got_pg;
3671 /* Checks for THP-specific high-order allocations */
3672 if (is_thp_gfp_mask(gfp_mask)) {
3674 * If compaction is deferred for high-order allocations, it is
3675 * because sync compaction recently failed. If this is the case
3676 * and the caller requested a THP allocation, we do not want
3677 * to heavily disrupt the system, so we fail the allocation
3678 * instead of entering direct reclaim.
3680 if (compact_result == COMPACT_DEFERRED)
3681 goto nopage;
3684 * Compaction is contended so rather back off than cause
3685 * excessive stalls.
3687 if(compact_result == COMPACT_CONTENDED)
3688 goto nopage;
3691 if (order && compaction_made_progress(compact_result))
3692 compaction_retries++;
3694 /* Try direct reclaim and then allocating */
3695 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3696 &did_some_progress);
3697 if (page)
3698 goto got_pg;
3700 /* Do not loop if specifically requested */
3701 if (gfp_mask & __GFP_NORETRY)
3702 goto noretry;
3705 * Do not retry costly high order allocations unless they are
3706 * __GFP_REPEAT
3708 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3709 goto noretry;
3712 * Costly allocations might have made a progress but this doesn't mean
3713 * their order will become available due to high fragmentation so
3714 * always increment the no progress counter for them
3716 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3717 no_progress_loops = 0;
3718 else
3719 no_progress_loops++;
3721 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3722 did_some_progress > 0, no_progress_loops))
3723 goto retry;
3726 * It doesn't make any sense to retry for the compaction if the order-0
3727 * reclaim is not able to make any progress because the current
3728 * implementation of the compaction depends on the sufficient amount
3729 * of free memory (see __compaction_suitable)
3731 if (did_some_progress > 0 &&
3732 should_compact_retry(ac, order, alloc_flags,
3733 compact_result, &migration_mode,
3734 compaction_retries))
3735 goto retry;
3737 /* Reclaim has failed us, start killing things */
3738 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3739 if (page)
3740 goto got_pg;
3742 /* Retry as long as the OOM killer is making progress */
3743 if (did_some_progress) {
3744 no_progress_loops = 0;
3745 goto retry;
3748 noretry:
3750 * High-order allocations do not necessarily loop after direct reclaim
3751 * and reclaim/compaction depends on compaction being called after
3752 * reclaim so call directly if necessary.
3753 * It can become very expensive to allocate transparent hugepages at
3754 * fault, so use asynchronous memory compaction for THP unless it is
3755 * khugepaged trying to collapse. All other requests should tolerate
3756 * at least light sync migration.
3758 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3759 migration_mode = MIGRATE_ASYNC;
3760 else
3761 migration_mode = MIGRATE_SYNC_LIGHT;
3762 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3763 ac, migration_mode,
3764 &compact_result);
3765 if (page)
3766 goto got_pg;
3767 nopage:
3768 warn_alloc_failed(gfp_mask, order, NULL);
3769 got_pg:
3770 return page;
3774 * This is the 'heart' of the zoned buddy allocator.
3776 struct page *
3777 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3778 struct zonelist *zonelist, nodemask_t *nodemask)
3780 struct page *page;
3781 unsigned int cpuset_mems_cookie;
3782 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3783 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3784 struct alloc_context ac = {
3785 .high_zoneidx = gfp_zone(gfp_mask),
3786 .zonelist = zonelist,
3787 .nodemask = nodemask,
3788 .migratetype = gfpflags_to_migratetype(gfp_mask),
3791 if (cpusets_enabled()) {
3792 alloc_mask |= __GFP_HARDWALL;
3793 alloc_flags |= ALLOC_CPUSET;
3794 if (!ac.nodemask)
3795 ac.nodemask = &cpuset_current_mems_allowed;
3798 gfp_mask &= gfp_allowed_mask;
3800 lockdep_trace_alloc(gfp_mask);
3802 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3804 if (should_fail_alloc_page(gfp_mask, order))
3805 return NULL;
3808 * Check the zones suitable for the gfp_mask contain at least one
3809 * valid zone. It's possible to have an empty zonelist as a result
3810 * of __GFP_THISNODE and a memoryless node
3812 if (unlikely(!zonelist->_zonerefs->zone))
3813 return NULL;
3815 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3816 alloc_flags |= ALLOC_CMA;
3818 retry_cpuset:
3819 cpuset_mems_cookie = read_mems_allowed_begin();
3821 /* Dirty zone balancing only done in the fast path */
3822 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3825 * The preferred zone is used for statistics but crucially it is
3826 * also used as the starting point for the zonelist iterator. It
3827 * may get reset for allocations that ignore memory policies.
3829 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3830 ac.high_zoneidx, ac.nodemask);
3831 if (!ac.preferred_zoneref) {
3832 page = NULL;
3833 goto no_zone;
3836 /* First allocation attempt */
3837 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3838 if (likely(page))
3839 goto out;
3842 * Runtime PM, block IO and its error handling path can deadlock
3843 * because I/O on the device might not complete.
3845 alloc_mask = memalloc_noio_flags(gfp_mask);
3846 ac.spread_dirty_pages = false;
3849 * Restore the original nodemask if it was potentially replaced with
3850 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3852 if (cpusets_enabled())
3853 ac.nodemask = nodemask;
3854 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3856 no_zone:
3858 * When updating a task's mems_allowed, it is possible to race with
3859 * parallel threads in such a way that an allocation can fail while
3860 * the mask is being updated. If a page allocation is about to fail,
3861 * check if the cpuset changed during allocation and if so, retry.
3863 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3864 alloc_mask = gfp_mask;
3865 goto retry_cpuset;
3868 out:
3869 if (kmemcheck_enabled && page)
3870 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3872 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3874 return page;
3876 EXPORT_SYMBOL(__alloc_pages_nodemask);
3879 * Common helper functions.
3881 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3883 struct page *page;
3886 * __get_free_pages() returns a 32-bit address, which cannot represent
3887 * a highmem page
3889 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3891 page = alloc_pages(gfp_mask, order);
3892 if (!page)
3893 return 0;
3894 return (unsigned long) page_address(page);
3896 EXPORT_SYMBOL(__get_free_pages);
3898 unsigned long get_zeroed_page(gfp_t gfp_mask)
3900 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3902 EXPORT_SYMBOL(get_zeroed_page);
3904 void __free_pages(struct page *page, unsigned int order)
3906 if (put_page_testzero(page)) {
3907 if (order == 0)
3908 free_hot_cold_page(page, false);
3909 else
3910 __free_pages_ok(page, order);
3914 EXPORT_SYMBOL(__free_pages);
3916 void free_pages(unsigned long addr, unsigned int order)
3918 if (addr != 0) {
3919 VM_BUG_ON(!virt_addr_valid((void *)addr));
3920 __free_pages(virt_to_page((void *)addr), order);
3924 EXPORT_SYMBOL(free_pages);
3927 * Page Fragment:
3928 * An arbitrary-length arbitrary-offset area of memory which resides
3929 * within a 0 or higher order page. Multiple fragments within that page
3930 * are individually refcounted, in the page's reference counter.
3932 * The page_frag functions below provide a simple allocation framework for
3933 * page fragments. This is used by the network stack and network device
3934 * drivers to provide a backing region of memory for use as either an
3935 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3937 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3938 gfp_t gfp_mask)
3940 struct page *page = NULL;
3941 gfp_t gfp = gfp_mask;
3943 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3944 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3945 __GFP_NOMEMALLOC;
3946 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3947 PAGE_FRAG_CACHE_MAX_ORDER);
3948 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3949 #endif
3950 if (unlikely(!page))
3951 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3953 nc->va = page ? page_address(page) : NULL;
3955 return page;
3958 void *__alloc_page_frag(struct page_frag_cache *nc,
3959 unsigned int fragsz, gfp_t gfp_mask)
3961 unsigned int size = PAGE_SIZE;
3962 struct page *page;
3963 int offset;
3965 if (unlikely(!nc->va)) {
3966 refill:
3967 page = __page_frag_refill(nc, gfp_mask);
3968 if (!page)
3969 return NULL;
3971 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3972 /* if size can vary use size else just use PAGE_SIZE */
3973 size = nc->size;
3974 #endif
3975 /* Even if we own the page, we do not use atomic_set().
3976 * This would break get_page_unless_zero() users.
3978 page_ref_add(page, size - 1);
3980 /* reset page count bias and offset to start of new frag */
3981 nc->pfmemalloc = page_is_pfmemalloc(page);
3982 nc->pagecnt_bias = size;
3983 nc->offset = size;
3986 offset = nc->offset - fragsz;
3987 if (unlikely(offset < 0)) {
3988 page = virt_to_page(nc->va);
3990 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3991 goto refill;
3993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3994 /* if size can vary use size else just use PAGE_SIZE */
3995 size = nc->size;
3996 #endif
3997 /* OK, page count is 0, we can safely set it */
3998 set_page_count(page, size);
4000 /* reset page count bias and offset to start of new frag */
4001 nc->pagecnt_bias = size;
4002 offset = size - fragsz;
4005 nc->pagecnt_bias--;
4006 nc->offset = offset;
4008 return nc->va + offset;
4010 EXPORT_SYMBOL(__alloc_page_frag);
4013 * Frees a page fragment allocated out of either a compound or order 0 page.
4015 void __free_page_frag(void *addr)
4017 struct page *page = virt_to_head_page(addr);
4019 if (unlikely(put_page_testzero(page)))
4020 __free_pages_ok(page, compound_order(page));
4022 EXPORT_SYMBOL(__free_page_frag);
4025 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4026 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4027 * equivalent to alloc_pages.
4029 * It should be used when the caller would like to use kmalloc, but since the
4030 * allocation is large, it has to fall back to the page allocator.
4032 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4034 struct page *page;
4036 page = alloc_pages(gfp_mask, order);
4037 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4038 __free_pages(page, order);
4039 page = NULL;
4041 return page;
4044 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4046 struct page *page;
4048 page = alloc_pages_node(nid, gfp_mask, order);
4049 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4050 __free_pages(page, order);
4051 page = NULL;
4053 return page;
4057 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4058 * alloc_kmem_pages.
4060 void __free_kmem_pages(struct page *page, unsigned int order)
4062 memcg_kmem_uncharge(page, order);
4063 __free_pages(page, order);
4066 void free_kmem_pages(unsigned long addr, unsigned int order)
4068 if (addr != 0) {
4069 VM_BUG_ON(!virt_addr_valid((void *)addr));
4070 __free_kmem_pages(virt_to_page((void *)addr), order);
4074 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4075 size_t size)
4077 if (addr) {
4078 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4079 unsigned long used = addr + PAGE_ALIGN(size);
4081 split_page(virt_to_page((void *)addr), order);
4082 while (used < alloc_end) {
4083 free_page(used);
4084 used += PAGE_SIZE;
4087 return (void *)addr;
4091 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4092 * @size: the number of bytes to allocate
4093 * @gfp_mask: GFP flags for the allocation
4095 * This function is similar to alloc_pages(), except that it allocates the
4096 * minimum number of pages to satisfy the request. alloc_pages() can only
4097 * allocate memory in power-of-two pages.
4099 * This function is also limited by MAX_ORDER.
4101 * Memory allocated by this function must be released by free_pages_exact().
4103 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4105 unsigned int order = get_order(size);
4106 unsigned long addr;
4108 addr = __get_free_pages(gfp_mask, order);
4109 return make_alloc_exact(addr, order, size);
4111 EXPORT_SYMBOL(alloc_pages_exact);
4114 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4115 * pages on a node.
4116 * @nid: the preferred node ID where memory should be allocated
4117 * @size: the number of bytes to allocate
4118 * @gfp_mask: GFP flags for the allocation
4120 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4121 * back.
4123 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4125 unsigned int order = get_order(size);
4126 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4127 if (!p)
4128 return NULL;
4129 return make_alloc_exact((unsigned long)page_address(p), order, size);
4133 * free_pages_exact - release memory allocated via alloc_pages_exact()
4134 * @virt: the value returned by alloc_pages_exact.
4135 * @size: size of allocation, same value as passed to alloc_pages_exact().
4137 * Release the memory allocated by a previous call to alloc_pages_exact.
4139 void free_pages_exact(void *virt, size_t size)
4141 unsigned long addr = (unsigned long)virt;
4142 unsigned long end = addr + PAGE_ALIGN(size);
4144 while (addr < end) {
4145 free_page(addr);
4146 addr += PAGE_SIZE;
4149 EXPORT_SYMBOL(free_pages_exact);
4152 * nr_free_zone_pages - count number of pages beyond high watermark
4153 * @offset: The zone index of the highest zone
4155 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4156 * high watermark within all zones at or below a given zone index. For each
4157 * zone, the number of pages is calculated as:
4158 * managed_pages - high_pages
4160 static unsigned long nr_free_zone_pages(int offset)
4162 struct zoneref *z;
4163 struct zone *zone;
4165 /* Just pick one node, since fallback list is circular */
4166 unsigned long sum = 0;
4168 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4170 for_each_zone_zonelist(zone, z, zonelist, offset) {
4171 unsigned long size = zone->managed_pages;
4172 unsigned long high = high_wmark_pages(zone);
4173 if (size > high)
4174 sum += size - high;
4177 return sum;
4181 * nr_free_buffer_pages - count number of pages beyond high watermark
4183 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4184 * watermark within ZONE_DMA and ZONE_NORMAL.
4186 unsigned long nr_free_buffer_pages(void)
4188 return nr_free_zone_pages(gfp_zone(GFP_USER));
4190 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4193 * nr_free_pagecache_pages - count number of pages beyond high watermark
4195 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4196 * high watermark within all zones.
4198 unsigned long nr_free_pagecache_pages(void)
4200 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4203 static inline void show_node(struct zone *zone)
4205 if (IS_ENABLED(CONFIG_NUMA))
4206 printk("Node %d ", zone_to_nid(zone));
4209 long si_mem_available(void)
4211 long available;
4212 unsigned long pagecache;
4213 unsigned long wmark_low = 0;
4214 unsigned long pages[NR_LRU_LISTS];
4215 struct zone *zone;
4216 int lru;
4218 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4219 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4221 for_each_zone(zone)
4222 wmark_low += zone->watermark[WMARK_LOW];
4225 * Estimate the amount of memory available for userspace allocations,
4226 * without causing swapping.
4228 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4231 * Not all the page cache can be freed, otherwise the system will
4232 * start swapping. Assume at least half of the page cache, or the
4233 * low watermark worth of cache, needs to stay.
4235 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4236 pagecache -= min(pagecache / 2, wmark_low);
4237 available += pagecache;
4240 * Part of the reclaimable slab consists of items that are in use,
4241 * and cannot be freed. Cap this estimate at the low watermark.
4243 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4244 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4246 if (available < 0)
4247 available = 0;
4248 return available;
4250 EXPORT_SYMBOL_GPL(si_mem_available);
4252 void si_meminfo(struct sysinfo *val)
4254 val->totalram = totalram_pages;
4255 val->sharedram = global_page_state(NR_SHMEM);
4256 val->freeram = global_page_state(NR_FREE_PAGES);
4257 val->bufferram = nr_blockdev_pages();
4258 val->totalhigh = totalhigh_pages;
4259 val->freehigh = nr_free_highpages();
4260 val->mem_unit = PAGE_SIZE;
4263 EXPORT_SYMBOL(si_meminfo);
4265 #ifdef CONFIG_NUMA
4266 void si_meminfo_node(struct sysinfo *val, int nid)
4268 int zone_type; /* needs to be signed */
4269 unsigned long managed_pages = 0;
4270 unsigned long managed_highpages = 0;
4271 unsigned long free_highpages = 0;
4272 pg_data_t *pgdat = NODE_DATA(nid);
4274 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4275 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4276 val->totalram = managed_pages;
4277 val->sharedram = node_page_state(nid, NR_SHMEM);
4278 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4279 #ifdef CONFIG_HIGHMEM
4280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4281 struct zone *zone = &pgdat->node_zones[zone_type];
4283 if (is_highmem(zone)) {
4284 managed_highpages += zone->managed_pages;
4285 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4288 val->totalhigh = managed_highpages;
4289 val->freehigh = free_highpages;
4290 #else
4291 val->totalhigh = managed_highpages;
4292 val->freehigh = free_highpages;
4293 #endif
4294 val->mem_unit = PAGE_SIZE;
4296 #endif
4299 * Determine whether the node should be displayed or not, depending on whether
4300 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4302 bool skip_free_areas_node(unsigned int flags, int nid)
4304 bool ret = false;
4305 unsigned int cpuset_mems_cookie;
4307 if (!(flags & SHOW_MEM_FILTER_NODES))
4308 goto out;
4310 do {
4311 cpuset_mems_cookie = read_mems_allowed_begin();
4312 ret = !node_isset(nid, cpuset_current_mems_allowed);
4313 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4314 out:
4315 return ret;
4318 #define K(x) ((x) << (PAGE_SHIFT-10))
4320 static void show_migration_types(unsigned char type)
4322 static const char types[MIGRATE_TYPES] = {
4323 [MIGRATE_UNMOVABLE] = 'U',
4324 [MIGRATE_MOVABLE] = 'M',
4325 [MIGRATE_RECLAIMABLE] = 'E',
4326 [MIGRATE_HIGHATOMIC] = 'H',
4327 #ifdef CONFIG_CMA
4328 [MIGRATE_CMA] = 'C',
4329 #endif
4330 #ifdef CONFIG_MEMORY_ISOLATION
4331 [MIGRATE_ISOLATE] = 'I',
4332 #endif
4334 char tmp[MIGRATE_TYPES + 1];
4335 char *p = tmp;
4336 int i;
4338 for (i = 0; i < MIGRATE_TYPES; i++) {
4339 if (type & (1 << i))
4340 *p++ = types[i];
4343 *p = '\0';
4344 printk("(%s) ", tmp);
4348 * Show free area list (used inside shift_scroll-lock stuff)
4349 * We also calculate the percentage fragmentation. We do this by counting the
4350 * memory on each free list with the exception of the first item on the list.
4352 * Bits in @filter:
4353 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4354 * cpuset.
4356 void show_free_areas(unsigned int filter)
4358 unsigned long free_pcp = 0;
4359 int cpu;
4360 struct zone *zone;
4362 for_each_populated_zone(zone) {
4363 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4364 continue;
4366 for_each_online_cpu(cpu)
4367 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4370 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4371 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4372 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4373 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4374 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4375 " free:%lu free_pcp:%lu free_cma:%lu\n",
4376 global_page_state(NR_ACTIVE_ANON),
4377 global_page_state(NR_INACTIVE_ANON),
4378 global_page_state(NR_ISOLATED_ANON),
4379 global_page_state(NR_ACTIVE_FILE),
4380 global_page_state(NR_INACTIVE_FILE),
4381 global_page_state(NR_ISOLATED_FILE),
4382 global_page_state(NR_UNEVICTABLE),
4383 global_page_state(NR_FILE_DIRTY),
4384 global_page_state(NR_WRITEBACK),
4385 global_page_state(NR_UNSTABLE_NFS),
4386 global_page_state(NR_SLAB_RECLAIMABLE),
4387 global_page_state(NR_SLAB_UNRECLAIMABLE),
4388 global_page_state(NR_FILE_MAPPED),
4389 global_page_state(NR_SHMEM),
4390 global_page_state(NR_PAGETABLE),
4391 global_page_state(NR_BOUNCE),
4392 global_page_state(NR_FREE_PAGES),
4393 free_pcp,
4394 global_page_state(NR_FREE_CMA_PAGES));
4396 for_each_populated_zone(zone) {
4397 int i;
4399 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4400 continue;
4402 free_pcp = 0;
4403 for_each_online_cpu(cpu)
4404 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4406 show_node(zone);
4407 printk("%s"
4408 " free:%lukB"
4409 " min:%lukB"
4410 " low:%lukB"
4411 " high:%lukB"
4412 " active_anon:%lukB"
4413 " inactive_anon:%lukB"
4414 " active_file:%lukB"
4415 " inactive_file:%lukB"
4416 " unevictable:%lukB"
4417 " isolated(anon):%lukB"
4418 " isolated(file):%lukB"
4419 " present:%lukB"
4420 " managed:%lukB"
4421 " mlocked:%lukB"
4422 " dirty:%lukB"
4423 " writeback:%lukB"
4424 " mapped:%lukB"
4425 " shmem:%lukB"
4426 " slab_reclaimable:%lukB"
4427 " slab_unreclaimable:%lukB"
4428 " kernel_stack:%lukB"
4429 " pagetables:%lukB"
4430 " unstable:%lukB"
4431 " bounce:%lukB"
4432 " free_pcp:%lukB"
4433 " local_pcp:%ukB"
4434 " free_cma:%lukB"
4435 " writeback_tmp:%lukB"
4436 " pages_scanned:%lu"
4437 " all_unreclaimable? %s"
4438 "\n",
4439 zone->name,
4440 K(zone_page_state(zone, NR_FREE_PAGES)),
4441 K(min_wmark_pages(zone)),
4442 K(low_wmark_pages(zone)),
4443 K(high_wmark_pages(zone)),
4444 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4445 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4446 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4447 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4448 K(zone_page_state(zone, NR_UNEVICTABLE)),
4449 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4450 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4451 K(zone->present_pages),
4452 K(zone->managed_pages),
4453 K(zone_page_state(zone, NR_MLOCK)),
4454 K(zone_page_state(zone, NR_FILE_DIRTY)),
4455 K(zone_page_state(zone, NR_WRITEBACK)),
4456 K(zone_page_state(zone, NR_FILE_MAPPED)),
4457 K(zone_page_state(zone, NR_SHMEM)),
4458 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4459 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4460 zone_page_state(zone, NR_KERNEL_STACK) *
4461 THREAD_SIZE / 1024,
4462 K(zone_page_state(zone, NR_PAGETABLE)),
4463 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4464 K(zone_page_state(zone, NR_BOUNCE)),
4465 K(free_pcp),
4466 K(this_cpu_read(zone->pageset->pcp.count)),
4467 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4468 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4469 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4470 (!zone_reclaimable(zone) ? "yes" : "no")
4472 printk("lowmem_reserve[]:");
4473 for (i = 0; i < MAX_NR_ZONES; i++)
4474 printk(" %ld", zone->lowmem_reserve[i]);
4475 printk("\n");
4478 for_each_populated_zone(zone) {
4479 unsigned int order;
4480 unsigned long nr[MAX_ORDER], flags, total = 0;
4481 unsigned char types[MAX_ORDER];
4483 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4484 continue;
4485 show_node(zone);
4486 printk("%s: ", zone->name);
4488 spin_lock_irqsave(&zone->lock, flags);
4489 for (order = 0; order < MAX_ORDER; order++) {
4490 struct free_area *area = &zone->free_area[order];
4491 int type;
4493 nr[order] = area->nr_free;
4494 total += nr[order] << order;
4496 types[order] = 0;
4497 for (type = 0; type < MIGRATE_TYPES; type++) {
4498 if (!list_empty(&area->free_list[type]))
4499 types[order] |= 1 << type;
4502 spin_unlock_irqrestore(&zone->lock, flags);
4503 for (order = 0; order < MAX_ORDER; order++) {
4504 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4505 if (nr[order])
4506 show_migration_types(types[order]);
4508 printk("= %lukB\n", K(total));
4511 hugetlb_show_meminfo();
4513 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4515 show_swap_cache_info();
4518 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4520 zoneref->zone = zone;
4521 zoneref->zone_idx = zone_idx(zone);
4525 * Builds allocation fallback zone lists.
4527 * Add all populated zones of a node to the zonelist.
4529 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4530 int nr_zones)
4532 struct zone *zone;
4533 enum zone_type zone_type = MAX_NR_ZONES;
4535 do {
4536 zone_type--;
4537 zone = pgdat->node_zones + zone_type;
4538 if (populated_zone(zone)) {
4539 zoneref_set_zone(zone,
4540 &zonelist->_zonerefs[nr_zones++]);
4541 check_highest_zone(zone_type);
4543 } while (zone_type);
4545 return nr_zones;
4550 * zonelist_order:
4551 * 0 = automatic detection of better ordering.
4552 * 1 = order by ([node] distance, -zonetype)
4553 * 2 = order by (-zonetype, [node] distance)
4555 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4556 * the same zonelist. So only NUMA can configure this param.
4558 #define ZONELIST_ORDER_DEFAULT 0
4559 #define ZONELIST_ORDER_NODE 1
4560 #define ZONELIST_ORDER_ZONE 2
4562 /* zonelist order in the kernel.
4563 * set_zonelist_order() will set this to NODE or ZONE.
4565 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4566 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4569 #ifdef CONFIG_NUMA
4570 /* The value user specified ....changed by config */
4571 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4572 /* string for sysctl */
4573 #define NUMA_ZONELIST_ORDER_LEN 16
4574 char numa_zonelist_order[16] = "default";
4577 * interface for configure zonelist ordering.
4578 * command line option "numa_zonelist_order"
4579 * = "[dD]efault - default, automatic configuration.
4580 * = "[nN]ode - order by node locality, then by zone within node
4581 * = "[zZ]one - order by zone, then by locality within zone
4584 static int __parse_numa_zonelist_order(char *s)
4586 if (*s == 'd' || *s == 'D') {
4587 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4588 } else if (*s == 'n' || *s == 'N') {
4589 user_zonelist_order = ZONELIST_ORDER_NODE;
4590 } else if (*s == 'z' || *s == 'Z') {
4591 user_zonelist_order = ZONELIST_ORDER_ZONE;
4592 } else {
4593 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4594 return -EINVAL;
4596 return 0;
4599 static __init int setup_numa_zonelist_order(char *s)
4601 int ret;
4603 if (!s)
4604 return 0;
4606 ret = __parse_numa_zonelist_order(s);
4607 if (ret == 0)
4608 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4610 return ret;
4612 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4615 * sysctl handler for numa_zonelist_order
4617 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4618 void __user *buffer, size_t *length,
4619 loff_t *ppos)
4621 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4622 int ret;
4623 static DEFINE_MUTEX(zl_order_mutex);
4625 mutex_lock(&zl_order_mutex);
4626 if (write) {
4627 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4628 ret = -EINVAL;
4629 goto out;
4631 strcpy(saved_string, (char *)table->data);
4633 ret = proc_dostring(table, write, buffer, length, ppos);
4634 if (ret)
4635 goto out;
4636 if (write) {
4637 int oldval = user_zonelist_order;
4639 ret = __parse_numa_zonelist_order((char *)table->data);
4640 if (ret) {
4642 * bogus value. restore saved string
4644 strncpy((char *)table->data, saved_string,
4645 NUMA_ZONELIST_ORDER_LEN);
4646 user_zonelist_order = oldval;
4647 } else if (oldval != user_zonelist_order) {
4648 mutex_lock(&zonelists_mutex);
4649 build_all_zonelists(NULL, NULL);
4650 mutex_unlock(&zonelists_mutex);
4653 out:
4654 mutex_unlock(&zl_order_mutex);
4655 return ret;
4659 #define MAX_NODE_LOAD (nr_online_nodes)
4660 static int node_load[MAX_NUMNODES];
4663 * find_next_best_node - find the next node that should appear in a given node's fallback list
4664 * @node: node whose fallback list we're appending
4665 * @used_node_mask: nodemask_t of already used nodes
4667 * We use a number of factors to determine which is the next node that should
4668 * appear on a given node's fallback list. The node should not have appeared
4669 * already in @node's fallback list, and it should be the next closest node
4670 * according to the distance array (which contains arbitrary distance values
4671 * from each node to each node in the system), and should also prefer nodes
4672 * with no CPUs, since presumably they'll have very little allocation pressure
4673 * on them otherwise.
4674 * It returns -1 if no node is found.
4676 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4678 int n, val;
4679 int min_val = INT_MAX;
4680 int best_node = NUMA_NO_NODE;
4681 const struct cpumask *tmp = cpumask_of_node(0);
4683 /* Use the local node if we haven't already */
4684 if (!node_isset(node, *used_node_mask)) {
4685 node_set(node, *used_node_mask);
4686 return node;
4689 for_each_node_state(n, N_MEMORY) {
4691 /* Don't want a node to appear more than once */
4692 if (node_isset(n, *used_node_mask))
4693 continue;
4695 /* Use the distance array to find the distance */
4696 val = node_distance(node, n);
4698 /* Penalize nodes under us ("prefer the next node") */
4699 val += (n < node);
4701 /* Give preference to headless and unused nodes */
4702 tmp = cpumask_of_node(n);
4703 if (!cpumask_empty(tmp))
4704 val += PENALTY_FOR_NODE_WITH_CPUS;
4706 /* Slight preference for less loaded node */
4707 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4708 val += node_load[n];
4710 if (val < min_val) {
4711 min_val = val;
4712 best_node = n;
4716 if (best_node >= 0)
4717 node_set(best_node, *used_node_mask);
4719 return best_node;
4724 * Build zonelists ordered by node and zones within node.
4725 * This results in maximum locality--normal zone overflows into local
4726 * DMA zone, if any--but risks exhausting DMA zone.
4728 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4730 int j;
4731 struct zonelist *zonelist;
4733 zonelist = &pgdat->node_zonelists[0];
4734 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4736 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4737 zonelist->_zonerefs[j].zone = NULL;
4738 zonelist->_zonerefs[j].zone_idx = 0;
4742 * Build gfp_thisnode zonelists
4744 static void build_thisnode_zonelists(pg_data_t *pgdat)
4746 int j;
4747 struct zonelist *zonelist;
4749 zonelist = &pgdat->node_zonelists[1];
4750 j = build_zonelists_node(pgdat, zonelist, 0);
4751 zonelist->_zonerefs[j].zone = NULL;
4752 zonelist->_zonerefs[j].zone_idx = 0;
4756 * Build zonelists ordered by zone and nodes within zones.
4757 * This results in conserving DMA zone[s] until all Normal memory is
4758 * exhausted, but results in overflowing to remote node while memory
4759 * may still exist in local DMA zone.
4761 static int node_order[MAX_NUMNODES];
4763 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4765 int pos, j, node;
4766 int zone_type; /* needs to be signed */
4767 struct zone *z;
4768 struct zonelist *zonelist;
4770 zonelist = &pgdat->node_zonelists[0];
4771 pos = 0;
4772 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4773 for (j = 0; j < nr_nodes; j++) {
4774 node = node_order[j];
4775 z = &NODE_DATA(node)->node_zones[zone_type];
4776 if (populated_zone(z)) {
4777 zoneref_set_zone(z,
4778 &zonelist->_zonerefs[pos++]);
4779 check_highest_zone(zone_type);
4783 zonelist->_zonerefs[pos].zone = NULL;
4784 zonelist->_zonerefs[pos].zone_idx = 0;
4787 #if defined(CONFIG_64BIT)
4789 * Devices that require DMA32/DMA are relatively rare and do not justify a
4790 * penalty to every machine in case the specialised case applies. Default
4791 * to Node-ordering on 64-bit NUMA machines
4793 static int default_zonelist_order(void)
4795 return ZONELIST_ORDER_NODE;
4797 #else
4799 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4800 * by the kernel. If processes running on node 0 deplete the low memory zone
4801 * then reclaim will occur more frequency increasing stalls and potentially
4802 * be easier to OOM if a large percentage of the zone is under writeback or
4803 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4804 * Hence, default to zone ordering on 32-bit.
4806 static int default_zonelist_order(void)
4808 return ZONELIST_ORDER_ZONE;
4810 #endif /* CONFIG_64BIT */
4812 static void set_zonelist_order(void)
4814 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4815 current_zonelist_order = default_zonelist_order();
4816 else
4817 current_zonelist_order = user_zonelist_order;
4820 static void build_zonelists(pg_data_t *pgdat)
4822 int i, node, load;
4823 nodemask_t used_mask;
4824 int local_node, prev_node;
4825 struct zonelist *zonelist;
4826 unsigned int order = current_zonelist_order;
4828 /* initialize zonelists */
4829 for (i = 0; i < MAX_ZONELISTS; i++) {
4830 zonelist = pgdat->node_zonelists + i;
4831 zonelist->_zonerefs[0].zone = NULL;
4832 zonelist->_zonerefs[0].zone_idx = 0;
4835 /* NUMA-aware ordering of nodes */
4836 local_node = pgdat->node_id;
4837 load = nr_online_nodes;
4838 prev_node = local_node;
4839 nodes_clear(used_mask);
4841 memset(node_order, 0, sizeof(node_order));
4842 i = 0;
4844 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4846 * We don't want to pressure a particular node.
4847 * So adding penalty to the first node in same
4848 * distance group to make it round-robin.
4850 if (node_distance(local_node, node) !=
4851 node_distance(local_node, prev_node))
4852 node_load[node] = load;
4854 prev_node = node;
4855 load--;
4856 if (order == ZONELIST_ORDER_NODE)
4857 build_zonelists_in_node_order(pgdat, node);
4858 else
4859 node_order[i++] = node; /* remember order */
4862 if (order == ZONELIST_ORDER_ZONE) {
4863 /* calculate node order -- i.e., DMA last! */
4864 build_zonelists_in_zone_order(pgdat, i);
4867 build_thisnode_zonelists(pgdat);
4870 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4872 * Return node id of node used for "local" allocations.
4873 * I.e., first node id of first zone in arg node's generic zonelist.
4874 * Used for initializing percpu 'numa_mem', which is used primarily
4875 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4877 int local_memory_node(int node)
4879 struct zoneref *z;
4881 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4882 gfp_zone(GFP_KERNEL),
4883 NULL);
4884 return z->zone->node;
4886 #endif
4888 #else /* CONFIG_NUMA */
4890 static void set_zonelist_order(void)
4892 current_zonelist_order = ZONELIST_ORDER_ZONE;
4895 static void build_zonelists(pg_data_t *pgdat)
4897 int node, local_node;
4898 enum zone_type j;
4899 struct zonelist *zonelist;
4901 local_node = pgdat->node_id;
4903 zonelist = &pgdat->node_zonelists[0];
4904 j = build_zonelists_node(pgdat, zonelist, 0);
4907 * Now we build the zonelist so that it contains the zones
4908 * of all the other nodes.
4909 * We don't want to pressure a particular node, so when
4910 * building the zones for node N, we make sure that the
4911 * zones coming right after the local ones are those from
4912 * node N+1 (modulo N)
4914 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4915 if (!node_online(node))
4916 continue;
4917 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4919 for (node = 0; node < local_node; node++) {
4920 if (!node_online(node))
4921 continue;
4922 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4925 zonelist->_zonerefs[j].zone = NULL;
4926 zonelist->_zonerefs[j].zone_idx = 0;
4929 #endif /* CONFIG_NUMA */
4932 * Boot pageset table. One per cpu which is going to be used for all
4933 * zones and all nodes. The parameters will be set in such a way
4934 * that an item put on a list will immediately be handed over to
4935 * the buddy list. This is safe since pageset manipulation is done
4936 * with interrupts disabled.
4938 * The boot_pagesets must be kept even after bootup is complete for
4939 * unused processors and/or zones. They do play a role for bootstrapping
4940 * hotplugged processors.
4942 * zoneinfo_show() and maybe other functions do
4943 * not check if the processor is online before following the pageset pointer.
4944 * Other parts of the kernel may not check if the zone is available.
4946 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4947 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4948 static void setup_zone_pageset(struct zone *zone);
4951 * Global mutex to protect against size modification of zonelists
4952 * as well as to serialize pageset setup for the new populated zone.
4954 DEFINE_MUTEX(zonelists_mutex);
4956 /* return values int ....just for stop_machine() */
4957 static int __build_all_zonelists(void *data)
4959 int nid;
4960 int cpu;
4961 pg_data_t *self = data;
4963 #ifdef CONFIG_NUMA
4964 memset(node_load, 0, sizeof(node_load));
4965 #endif
4967 if (self && !node_online(self->node_id)) {
4968 build_zonelists(self);
4971 for_each_online_node(nid) {
4972 pg_data_t *pgdat = NODE_DATA(nid);
4974 build_zonelists(pgdat);
4978 * Initialize the boot_pagesets that are going to be used
4979 * for bootstrapping processors. The real pagesets for
4980 * each zone will be allocated later when the per cpu
4981 * allocator is available.
4983 * boot_pagesets are used also for bootstrapping offline
4984 * cpus if the system is already booted because the pagesets
4985 * are needed to initialize allocators on a specific cpu too.
4986 * F.e. the percpu allocator needs the page allocator which
4987 * needs the percpu allocator in order to allocate its pagesets
4988 * (a chicken-egg dilemma).
4990 for_each_possible_cpu(cpu) {
4991 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4993 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4995 * We now know the "local memory node" for each node--
4996 * i.e., the node of the first zone in the generic zonelist.
4997 * Set up numa_mem percpu variable for on-line cpus. During
4998 * boot, only the boot cpu should be on-line; we'll init the
4999 * secondary cpus' numa_mem as they come on-line. During
5000 * node/memory hotplug, we'll fixup all on-line cpus.
5002 if (cpu_online(cpu))
5003 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5004 #endif
5007 return 0;
5010 static noinline void __init
5011 build_all_zonelists_init(void)
5013 __build_all_zonelists(NULL);
5014 mminit_verify_zonelist();
5015 cpuset_init_current_mems_allowed();
5019 * Called with zonelists_mutex held always
5020 * unless system_state == SYSTEM_BOOTING.
5022 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5023 * [we're only called with non-NULL zone through __meminit paths] and
5024 * (2) call of __init annotated helper build_all_zonelists_init
5025 * [protected by SYSTEM_BOOTING].
5027 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5029 set_zonelist_order();
5031 if (system_state == SYSTEM_BOOTING) {
5032 build_all_zonelists_init();
5033 } else {
5034 #ifdef CONFIG_MEMORY_HOTPLUG
5035 if (zone)
5036 setup_zone_pageset(zone);
5037 #endif
5038 /* we have to stop all cpus to guarantee there is no user
5039 of zonelist */
5040 stop_machine(__build_all_zonelists, pgdat, NULL);
5041 /* cpuset refresh routine should be here */
5043 vm_total_pages = nr_free_pagecache_pages();
5045 * Disable grouping by mobility if the number of pages in the
5046 * system is too low to allow the mechanism to work. It would be
5047 * more accurate, but expensive to check per-zone. This check is
5048 * made on memory-hotadd so a system can start with mobility
5049 * disabled and enable it later
5051 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5052 page_group_by_mobility_disabled = 1;
5053 else
5054 page_group_by_mobility_disabled = 0;
5056 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5057 nr_online_nodes,
5058 zonelist_order_name[current_zonelist_order],
5059 page_group_by_mobility_disabled ? "off" : "on",
5060 vm_total_pages);
5061 #ifdef CONFIG_NUMA
5062 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5063 #endif
5067 * Helper functions to size the waitqueue hash table.
5068 * Essentially these want to choose hash table sizes sufficiently
5069 * large so that collisions trying to wait on pages are rare.
5070 * But in fact, the number of active page waitqueues on typical
5071 * systems is ridiculously low, less than 200. So this is even
5072 * conservative, even though it seems large.
5074 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5075 * waitqueues, i.e. the size of the waitq table given the number of pages.
5077 #define PAGES_PER_WAITQUEUE 256
5079 #ifndef CONFIG_MEMORY_HOTPLUG
5080 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5082 unsigned long size = 1;
5084 pages /= PAGES_PER_WAITQUEUE;
5086 while (size < pages)
5087 size <<= 1;
5090 * Once we have dozens or even hundreds of threads sleeping
5091 * on IO we've got bigger problems than wait queue collision.
5092 * Limit the size of the wait table to a reasonable size.
5094 size = min(size, 4096UL);
5096 return max(size, 4UL);
5098 #else
5100 * A zone's size might be changed by hot-add, so it is not possible to determine
5101 * a suitable size for its wait_table. So we use the maximum size now.
5103 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5105 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5106 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5107 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5109 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5110 * or more by the traditional way. (See above). It equals:
5112 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5113 * ia64(16K page size) : = ( 8G + 4M)byte.
5114 * powerpc (64K page size) : = (32G +16M)byte.
5116 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5118 return 4096UL;
5120 #endif
5123 * This is an integer logarithm so that shifts can be used later
5124 * to extract the more random high bits from the multiplicative
5125 * hash function before the remainder is taken.
5127 static inline unsigned long wait_table_bits(unsigned long size)
5129 return ffz(~size);
5133 * Initially all pages are reserved - free ones are freed
5134 * up by free_all_bootmem() once the early boot process is
5135 * done. Non-atomic initialization, single-pass.
5137 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5138 unsigned long start_pfn, enum memmap_context context)
5140 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5141 unsigned long end_pfn = start_pfn + size;
5142 pg_data_t *pgdat = NODE_DATA(nid);
5143 unsigned long pfn;
5144 unsigned long nr_initialised = 0;
5145 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5146 struct memblock_region *r = NULL, *tmp;
5147 #endif
5149 if (highest_memmap_pfn < end_pfn - 1)
5150 highest_memmap_pfn = end_pfn - 1;
5153 * Honor reservation requested by the driver for this ZONE_DEVICE
5154 * memory
5156 if (altmap && start_pfn == altmap->base_pfn)
5157 start_pfn += altmap->reserve;
5159 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5161 * There can be holes in boot-time mem_map[]s handed to this
5162 * function. They do not exist on hotplugged memory.
5164 if (context != MEMMAP_EARLY)
5165 goto not_early;
5167 if (!early_pfn_valid(pfn))
5168 continue;
5169 if (!early_pfn_in_nid(pfn, nid))
5170 continue;
5171 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5172 break;
5174 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5176 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5177 * from zone_movable_pfn[nid] to end of each node should be
5178 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5180 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5181 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5182 continue;
5185 * Check given memblock attribute by firmware which can affect
5186 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5187 * mirrored, it's an overlapped memmap init. skip it.
5189 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5190 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5191 for_each_memblock(memory, tmp)
5192 if (pfn < memblock_region_memory_end_pfn(tmp))
5193 break;
5194 r = tmp;
5196 if (pfn >= memblock_region_memory_base_pfn(r) &&
5197 memblock_is_mirror(r)) {
5198 /* already initialized as NORMAL */
5199 pfn = memblock_region_memory_end_pfn(r);
5200 continue;
5203 #endif
5205 not_early:
5207 * Mark the block movable so that blocks are reserved for
5208 * movable at startup. This will force kernel allocations
5209 * to reserve their blocks rather than leaking throughout
5210 * the address space during boot when many long-lived
5211 * kernel allocations are made.
5213 * bitmap is created for zone's valid pfn range. but memmap
5214 * can be created for invalid pages (for alignment)
5215 * check here not to call set_pageblock_migratetype() against
5216 * pfn out of zone.
5218 if (!(pfn & (pageblock_nr_pages - 1))) {
5219 struct page *page = pfn_to_page(pfn);
5221 __init_single_page(page, pfn, zone, nid);
5222 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5223 } else {
5224 __init_single_pfn(pfn, zone, nid);
5229 static void __meminit zone_init_free_lists(struct zone *zone)
5231 unsigned int order, t;
5232 for_each_migratetype_order(order, t) {
5233 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5234 zone->free_area[order].nr_free = 0;
5238 #ifndef __HAVE_ARCH_MEMMAP_INIT
5239 #define memmap_init(size, nid, zone, start_pfn) \
5240 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5241 #endif
5243 static int zone_batchsize(struct zone *zone)
5245 #ifdef CONFIG_MMU
5246 int batch;
5249 * The per-cpu-pages pools are set to around 1000th of the
5250 * size of the zone. But no more than 1/2 of a meg.
5252 * OK, so we don't know how big the cache is. So guess.
5254 batch = zone->managed_pages / 1024;
5255 if (batch * PAGE_SIZE > 512 * 1024)
5256 batch = (512 * 1024) / PAGE_SIZE;
5257 batch /= 4; /* We effectively *= 4 below */
5258 if (batch < 1)
5259 batch = 1;
5262 * Clamp the batch to a 2^n - 1 value. Having a power
5263 * of 2 value was found to be more likely to have
5264 * suboptimal cache aliasing properties in some cases.
5266 * For example if 2 tasks are alternately allocating
5267 * batches of pages, one task can end up with a lot
5268 * of pages of one half of the possible page colors
5269 * and the other with pages of the other colors.
5271 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5273 return batch;
5275 #else
5276 /* The deferral and batching of frees should be suppressed under NOMMU
5277 * conditions.
5279 * The problem is that NOMMU needs to be able to allocate large chunks
5280 * of contiguous memory as there's no hardware page translation to
5281 * assemble apparent contiguous memory from discontiguous pages.
5283 * Queueing large contiguous runs of pages for batching, however,
5284 * causes the pages to actually be freed in smaller chunks. As there
5285 * can be a significant delay between the individual batches being
5286 * recycled, this leads to the once large chunks of space being
5287 * fragmented and becoming unavailable for high-order allocations.
5289 return 0;
5290 #endif
5294 * pcp->high and pcp->batch values are related and dependent on one another:
5295 * ->batch must never be higher then ->high.
5296 * The following function updates them in a safe manner without read side
5297 * locking.
5299 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5300 * those fields changing asynchronously (acording the the above rule).
5302 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5303 * outside of boot time (or some other assurance that no concurrent updaters
5304 * exist).
5306 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5307 unsigned long batch)
5309 /* start with a fail safe value for batch */
5310 pcp->batch = 1;
5311 smp_wmb();
5313 /* Update high, then batch, in order */
5314 pcp->high = high;
5315 smp_wmb();
5317 pcp->batch = batch;
5320 /* a companion to pageset_set_high() */
5321 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5323 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5326 static void pageset_init(struct per_cpu_pageset *p)
5328 struct per_cpu_pages *pcp;
5329 int migratetype;
5331 memset(p, 0, sizeof(*p));
5333 pcp = &p->pcp;
5334 pcp->count = 0;
5335 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5336 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5339 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5341 pageset_init(p);
5342 pageset_set_batch(p, batch);
5346 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5347 * to the value high for the pageset p.
5349 static void pageset_set_high(struct per_cpu_pageset *p,
5350 unsigned long high)
5352 unsigned long batch = max(1UL, high / 4);
5353 if ((high / 4) > (PAGE_SHIFT * 8))
5354 batch = PAGE_SHIFT * 8;
5356 pageset_update(&p->pcp, high, batch);
5359 static void pageset_set_high_and_batch(struct zone *zone,
5360 struct per_cpu_pageset *pcp)
5362 if (percpu_pagelist_fraction)
5363 pageset_set_high(pcp,
5364 (zone->managed_pages /
5365 percpu_pagelist_fraction));
5366 else
5367 pageset_set_batch(pcp, zone_batchsize(zone));
5370 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5374 pageset_init(pcp);
5375 pageset_set_high_and_batch(zone, pcp);
5378 static void __meminit setup_zone_pageset(struct zone *zone)
5380 int cpu;
5381 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5382 for_each_possible_cpu(cpu)
5383 zone_pageset_init(zone, cpu);
5387 * Allocate per cpu pagesets and initialize them.
5388 * Before this call only boot pagesets were available.
5390 void __init setup_per_cpu_pageset(void)
5392 struct zone *zone;
5394 for_each_populated_zone(zone)
5395 setup_zone_pageset(zone);
5398 static noinline __init_refok
5399 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5401 int i;
5402 size_t alloc_size;
5405 * The per-page waitqueue mechanism uses hashed waitqueues
5406 * per zone.
5408 zone->wait_table_hash_nr_entries =
5409 wait_table_hash_nr_entries(zone_size_pages);
5410 zone->wait_table_bits =
5411 wait_table_bits(zone->wait_table_hash_nr_entries);
5412 alloc_size = zone->wait_table_hash_nr_entries
5413 * sizeof(wait_queue_head_t);
5415 if (!slab_is_available()) {
5416 zone->wait_table = (wait_queue_head_t *)
5417 memblock_virt_alloc_node_nopanic(
5418 alloc_size, zone->zone_pgdat->node_id);
5419 } else {
5421 * This case means that a zone whose size was 0 gets new memory
5422 * via memory hot-add.
5423 * But it may be the case that a new node was hot-added. In
5424 * this case vmalloc() will not be able to use this new node's
5425 * memory - this wait_table must be initialized to use this new
5426 * node itself as well.
5427 * To use this new node's memory, further consideration will be
5428 * necessary.
5430 zone->wait_table = vmalloc(alloc_size);
5432 if (!zone->wait_table)
5433 return -ENOMEM;
5435 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5436 init_waitqueue_head(zone->wait_table + i);
5438 return 0;
5441 static __meminit void zone_pcp_init(struct zone *zone)
5444 * per cpu subsystem is not up at this point. The following code
5445 * relies on the ability of the linker to provide the
5446 * offset of a (static) per cpu variable into the per cpu area.
5448 zone->pageset = &boot_pageset;
5450 if (populated_zone(zone))
5451 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5452 zone->name, zone->present_pages,
5453 zone_batchsize(zone));
5456 int __meminit init_currently_empty_zone(struct zone *zone,
5457 unsigned long zone_start_pfn,
5458 unsigned long size)
5460 struct pglist_data *pgdat = zone->zone_pgdat;
5461 int ret;
5462 ret = zone_wait_table_init(zone, size);
5463 if (ret)
5464 return ret;
5465 pgdat->nr_zones = zone_idx(zone) + 1;
5467 zone->zone_start_pfn = zone_start_pfn;
5469 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5470 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5471 pgdat->node_id,
5472 (unsigned long)zone_idx(zone),
5473 zone_start_pfn, (zone_start_pfn + size));
5475 zone_init_free_lists(zone);
5477 return 0;
5480 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5481 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5484 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5486 int __meminit __early_pfn_to_nid(unsigned long pfn,
5487 struct mminit_pfnnid_cache *state)
5489 unsigned long start_pfn, end_pfn;
5490 int nid;
5492 if (state->last_start <= pfn && pfn < state->last_end)
5493 return state->last_nid;
5495 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5496 if (nid != -1) {
5497 state->last_start = start_pfn;
5498 state->last_end = end_pfn;
5499 state->last_nid = nid;
5502 return nid;
5504 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5507 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5508 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5509 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5511 * If an architecture guarantees that all ranges registered contain no holes
5512 * and may be freed, this this function may be used instead of calling
5513 * memblock_free_early_nid() manually.
5515 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5517 unsigned long start_pfn, end_pfn;
5518 int i, this_nid;
5520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5521 start_pfn = min(start_pfn, max_low_pfn);
5522 end_pfn = min(end_pfn, max_low_pfn);
5524 if (start_pfn < end_pfn)
5525 memblock_free_early_nid(PFN_PHYS(start_pfn),
5526 (end_pfn - start_pfn) << PAGE_SHIFT,
5527 this_nid);
5532 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5533 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5535 * If an architecture guarantees that all ranges registered contain no holes and may
5536 * be freed, this function may be used instead of calling memory_present() manually.
5538 void __init sparse_memory_present_with_active_regions(int nid)
5540 unsigned long start_pfn, end_pfn;
5541 int i, this_nid;
5543 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5544 memory_present(this_nid, start_pfn, end_pfn);
5548 * get_pfn_range_for_nid - Return the start and end page frames for a node
5549 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5550 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5551 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5553 * It returns the start and end page frame of a node based on information
5554 * provided by memblock_set_node(). If called for a node
5555 * with no available memory, a warning is printed and the start and end
5556 * PFNs will be 0.
5558 void __meminit get_pfn_range_for_nid(unsigned int nid,
5559 unsigned long *start_pfn, unsigned long *end_pfn)
5561 unsigned long this_start_pfn, this_end_pfn;
5562 int i;
5564 *start_pfn = -1UL;
5565 *end_pfn = 0;
5567 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5568 *start_pfn = min(*start_pfn, this_start_pfn);
5569 *end_pfn = max(*end_pfn, this_end_pfn);
5572 if (*start_pfn == -1UL)
5573 *start_pfn = 0;
5577 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5578 * assumption is made that zones within a node are ordered in monotonic
5579 * increasing memory addresses so that the "highest" populated zone is used
5581 static void __init find_usable_zone_for_movable(void)
5583 int zone_index;
5584 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5585 if (zone_index == ZONE_MOVABLE)
5586 continue;
5588 if (arch_zone_highest_possible_pfn[zone_index] >
5589 arch_zone_lowest_possible_pfn[zone_index])
5590 break;
5593 VM_BUG_ON(zone_index == -1);
5594 movable_zone = zone_index;
5598 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5599 * because it is sized independent of architecture. Unlike the other zones,
5600 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5601 * in each node depending on the size of each node and how evenly kernelcore
5602 * is distributed. This helper function adjusts the zone ranges
5603 * provided by the architecture for a given node by using the end of the
5604 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5605 * zones within a node are in order of monotonic increases memory addresses
5607 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5608 unsigned long zone_type,
5609 unsigned long node_start_pfn,
5610 unsigned long node_end_pfn,
5611 unsigned long *zone_start_pfn,
5612 unsigned long *zone_end_pfn)
5614 /* Only adjust if ZONE_MOVABLE is on this node */
5615 if (zone_movable_pfn[nid]) {
5616 /* Size ZONE_MOVABLE */
5617 if (zone_type == ZONE_MOVABLE) {
5618 *zone_start_pfn = zone_movable_pfn[nid];
5619 *zone_end_pfn = min(node_end_pfn,
5620 arch_zone_highest_possible_pfn[movable_zone]);
5622 /* Check if this whole range is within ZONE_MOVABLE */
5623 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5624 *zone_start_pfn = *zone_end_pfn;
5629 * Return the number of pages a zone spans in a node, including holes
5630 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5632 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5633 unsigned long zone_type,
5634 unsigned long node_start_pfn,
5635 unsigned long node_end_pfn,
5636 unsigned long *zone_start_pfn,
5637 unsigned long *zone_end_pfn,
5638 unsigned long *ignored)
5640 /* When hotadd a new node from cpu_up(), the node should be empty */
5641 if (!node_start_pfn && !node_end_pfn)
5642 return 0;
5644 /* Get the start and end of the zone */
5645 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5646 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5647 adjust_zone_range_for_zone_movable(nid, zone_type,
5648 node_start_pfn, node_end_pfn,
5649 zone_start_pfn, zone_end_pfn);
5651 /* Check that this node has pages within the zone's required range */
5652 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5653 return 0;
5655 /* Move the zone boundaries inside the node if necessary */
5656 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5657 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5659 /* Return the spanned pages */
5660 return *zone_end_pfn - *zone_start_pfn;
5664 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5665 * then all holes in the requested range will be accounted for.
5667 unsigned long __meminit __absent_pages_in_range(int nid,
5668 unsigned long range_start_pfn,
5669 unsigned long range_end_pfn)
5671 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5672 unsigned long start_pfn, end_pfn;
5673 int i;
5675 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5676 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5677 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5678 nr_absent -= end_pfn - start_pfn;
5680 return nr_absent;
5684 * absent_pages_in_range - Return number of page frames in holes within a range
5685 * @start_pfn: The start PFN to start searching for holes
5686 * @end_pfn: The end PFN to stop searching for holes
5688 * It returns the number of pages frames in memory holes within a range.
5690 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5691 unsigned long end_pfn)
5693 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696 /* Return the number of page frames in holes in a zone on a node */
5697 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5698 unsigned long zone_type,
5699 unsigned long node_start_pfn,
5700 unsigned long node_end_pfn,
5701 unsigned long *ignored)
5703 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5704 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5705 unsigned long zone_start_pfn, zone_end_pfn;
5706 unsigned long nr_absent;
5708 /* When hotadd a new node from cpu_up(), the node should be empty */
5709 if (!node_start_pfn && !node_end_pfn)
5710 return 0;
5712 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5713 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5715 adjust_zone_range_for_zone_movable(nid, zone_type,
5716 node_start_pfn, node_end_pfn,
5717 &zone_start_pfn, &zone_end_pfn);
5718 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721 * ZONE_MOVABLE handling.
5722 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5723 * and vice versa.
5725 if (zone_movable_pfn[nid]) {
5726 if (mirrored_kernelcore) {
5727 unsigned long start_pfn, end_pfn;
5728 struct memblock_region *r;
5730 for_each_memblock(memory, r) {
5731 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5732 zone_start_pfn, zone_end_pfn);
5733 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5734 zone_start_pfn, zone_end_pfn);
5736 if (zone_type == ZONE_MOVABLE &&
5737 memblock_is_mirror(r))
5738 nr_absent += end_pfn - start_pfn;
5740 if (zone_type == ZONE_NORMAL &&
5741 !memblock_is_mirror(r))
5742 nr_absent += end_pfn - start_pfn;
5744 } else {
5745 if (zone_type == ZONE_NORMAL)
5746 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5750 return nr_absent;
5753 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5754 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5755 unsigned long zone_type,
5756 unsigned long node_start_pfn,
5757 unsigned long node_end_pfn,
5758 unsigned long *zone_start_pfn,
5759 unsigned long *zone_end_pfn,
5760 unsigned long *zones_size)
5762 unsigned int zone;
5764 *zone_start_pfn = node_start_pfn;
5765 for (zone = 0; zone < zone_type; zone++)
5766 *zone_start_pfn += zones_size[zone];
5768 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5770 return zones_size[zone_type];
5773 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5774 unsigned long zone_type,
5775 unsigned long node_start_pfn,
5776 unsigned long node_end_pfn,
5777 unsigned long *zholes_size)
5779 if (!zholes_size)
5780 return 0;
5782 return zholes_size[zone_type];
5785 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5787 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5788 unsigned long node_start_pfn,
5789 unsigned long node_end_pfn,
5790 unsigned long *zones_size,
5791 unsigned long *zholes_size)
5793 unsigned long realtotalpages = 0, totalpages = 0;
5794 enum zone_type i;
5796 for (i = 0; i < MAX_NR_ZONES; i++) {
5797 struct zone *zone = pgdat->node_zones + i;
5798 unsigned long zone_start_pfn, zone_end_pfn;
5799 unsigned long size, real_size;
5801 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5802 node_start_pfn,
5803 node_end_pfn,
5804 &zone_start_pfn,
5805 &zone_end_pfn,
5806 zones_size);
5807 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5808 node_start_pfn, node_end_pfn,
5809 zholes_size);
5810 if (size)
5811 zone->zone_start_pfn = zone_start_pfn;
5812 else
5813 zone->zone_start_pfn = 0;
5814 zone->spanned_pages = size;
5815 zone->present_pages = real_size;
5817 totalpages += size;
5818 realtotalpages += real_size;
5821 pgdat->node_spanned_pages = totalpages;
5822 pgdat->node_present_pages = realtotalpages;
5823 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5824 realtotalpages);
5827 #ifndef CONFIG_SPARSEMEM
5829 * Calculate the size of the zone->blockflags rounded to an unsigned long
5830 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5831 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5832 * round what is now in bits to nearest long in bits, then return it in
5833 * bytes.
5835 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5837 unsigned long usemapsize;
5839 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5840 usemapsize = roundup(zonesize, pageblock_nr_pages);
5841 usemapsize = usemapsize >> pageblock_order;
5842 usemapsize *= NR_PAGEBLOCK_BITS;
5843 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5845 return usemapsize / 8;
5848 static void __init setup_usemap(struct pglist_data *pgdat,
5849 struct zone *zone,
5850 unsigned long zone_start_pfn,
5851 unsigned long zonesize)
5853 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5854 zone->pageblock_flags = NULL;
5855 if (usemapsize)
5856 zone->pageblock_flags =
5857 memblock_virt_alloc_node_nopanic(usemapsize,
5858 pgdat->node_id);
5860 #else
5861 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5862 unsigned long zone_start_pfn, unsigned long zonesize) {}
5863 #endif /* CONFIG_SPARSEMEM */
5865 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5867 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5868 void __paginginit set_pageblock_order(void)
5870 unsigned int order;
5872 /* Check that pageblock_nr_pages has not already been setup */
5873 if (pageblock_order)
5874 return;
5876 if (HPAGE_SHIFT > PAGE_SHIFT)
5877 order = HUGETLB_PAGE_ORDER;
5878 else
5879 order = MAX_ORDER - 1;
5882 * Assume the largest contiguous order of interest is a huge page.
5883 * This value may be variable depending on boot parameters on IA64 and
5884 * powerpc.
5886 pageblock_order = order;
5888 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5891 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5892 * is unused as pageblock_order is set at compile-time. See
5893 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5894 * the kernel config
5896 void __paginginit set_pageblock_order(void)
5900 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5902 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5903 unsigned long present_pages)
5905 unsigned long pages = spanned_pages;
5908 * Provide a more accurate estimation if there are holes within
5909 * the zone and SPARSEMEM is in use. If there are holes within the
5910 * zone, each populated memory region may cost us one or two extra
5911 * memmap pages due to alignment because memmap pages for each
5912 * populated regions may not naturally algined on page boundary.
5913 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5915 if (spanned_pages > present_pages + (present_pages >> 4) &&
5916 IS_ENABLED(CONFIG_SPARSEMEM))
5917 pages = present_pages;
5919 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5923 * Set up the zone data structures:
5924 * - mark all pages reserved
5925 * - mark all memory queues empty
5926 * - clear the memory bitmaps
5928 * NOTE: pgdat should get zeroed by caller.
5930 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5932 enum zone_type j;
5933 int nid = pgdat->node_id;
5934 int ret;
5936 pgdat_resize_init(pgdat);
5937 #ifdef CONFIG_NUMA_BALANCING
5938 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5939 pgdat->numabalancing_migrate_nr_pages = 0;
5940 pgdat->numabalancing_migrate_next_window = jiffies;
5941 #endif
5942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 spin_lock_init(&pgdat->split_queue_lock);
5944 INIT_LIST_HEAD(&pgdat->split_queue);
5945 pgdat->split_queue_len = 0;
5946 #endif
5947 init_waitqueue_head(&pgdat->kswapd_wait);
5948 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5949 #ifdef CONFIG_COMPACTION
5950 init_waitqueue_head(&pgdat->kcompactd_wait);
5951 #endif
5952 pgdat_page_ext_init(pgdat);
5954 for (j = 0; j < MAX_NR_ZONES; j++) {
5955 struct zone *zone = pgdat->node_zones + j;
5956 unsigned long size, realsize, freesize, memmap_pages;
5957 unsigned long zone_start_pfn = zone->zone_start_pfn;
5959 size = zone->spanned_pages;
5960 realsize = freesize = zone->present_pages;
5963 * Adjust freesize so that it accounts for how much memory
5964 * is used by this zone for memmap. This affects the watermark
5965 * and per-cpu initialisations
5967 memmap_pages = calc_memmap_size(size, realsize);
5968 if (!is_highmem_idx(j)) {
5969 if (freesize >= memmap_pages) {
5970 freesize -= memmap_pages;
5971 if (memmap_pages)
5972 printk(KERN_DEBUG
5973 " %s zone: %lu pages used for memmap\n",
5974 zone_names[j], memmap_pages);
5975 } else
5976 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5977 zone_names[j], memmap_pages, freesize);
5980 /* Account for reserved pages */
5981 if (j == 0 && freesize > dma_reserve) {
5982 freesize -= dma_reserve;
5983 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5984 zone_names[0], dma_reserve);
5987 if (!is_highmem_idx(j))
5988 nr_kernel_pages += freesize;
5989 /* Charge for highmem memmap if there are enough kernel pages */
5990 else if (nr_kernel_pages > memmap_pages * 2)
5991 nr_kernel_pages -= memmap_pages;
5992 nr_all_pages += freesize;
5995 * Set an approximate value for lowmem here, it will be adjusted
5996 * when the bootmem allocator frees pages into the buddy system.
5997 * And all highmem pages will be managed by the buddy system.
5999 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6000 #ifdef CONFIG_NUMA
6001 zone->node = nid;
6002 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
6003 / 100;
6004 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
6005 #endif
6006 zone->name = zone_names[j];
6007 spin_lock_init(&zone->lock);
6008 spin_lock_init(&zone->lru_lock);
6009 zone_seqlock_init(zone);
6010 zone->zone_pgdat = pgdat;
6011 zone_pcp_init(zone);
6013 /* For bootup, initialized properly in watermark setup */
6014 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6016 lruvec_init(&zone->lruvec);
6017 if (!size)
6018 continue;
6020 set_pageblock_order();
6021 setup_usemap(pgdat, zone, zone_start_pfn, size);
6022 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6023 BUG_ON(ret);
6024 memmap_init(size, nid, j, zone_start_pfn);
6028 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6030 unsigned long __maybe_unused start = 0;
6031 unsigned long __maybe_unused offset = 0;
6033 /* Skip empty nodes */
6034 if (!pgdat->node_spanned_pages)
6035 return;
6037 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6038 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6039 offset = pgdat->node_start_pfn - start;
6040 /* ia64 gets its own node_mem_map, before this, without bootmem */
6041 if (!pgdat->node_mem_map) {
6042 unsigned long size, end;
6043 struct page *map;
6046 * The zone's endpoints aren't required to be MAX_ORDER
6047 * aligned but the node_mem_map endpoints must be in order
6048 * for the buddy allocator to function correctly.
6050 end = pgdat_end_pfn(pgdat);
6051 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6052 size = (end - start) * sizeof(struct page);
6053 map = alloc_remap(pgdat->node_id, size);
6054 if (!map)
6055 map = memblock_virt_alloc_node_nopanic(size,
6056 pgdat->node_id);
6057 pgdat->node_mem_map = map + offset;
6059 #ifndef CONFIG_NEED_MULTIPLE_NODES
6061 * With no DISCONTIG, the global mem_map is just set as node 0's
6063 if (pgdat == NODE_DATA(0)) {
6064 mem_map = NODE_DATA(0)->node_mem_map;
6065 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6066 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6067 mem_map -= offset;
6068 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6070 #endif
6071 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6074 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6075 unsigned long node_start_pfn, unsigned long *zholes_size)
6077 pg_data_t *pgdat = NODE_DATA(nid);
6078 unsigned long start_pfn = 0;
6079 unsigned long end_pfn = 0;
6081 /* pg_data_t should be reset to zero when it's allocated */
6082 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6084 reset_deferred_meminit(pgdat);
6085 pgdat->node_id = nid;
6086 pgdat->node_start_pfn = node_start_pfn;
6087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6088 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6089 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6090 (u64)start_pfn << PAGE_SHIFT,
6091 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6092 #else
6093 start_pfn = node_start_pfn;
6094 #endif
6095 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6096 zones_size, zholes_size);
6098 alloc_node_mem_map(pgdat);
6099 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6100 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6101 nid, (unsigned long)pgdat,
6102 (unsigned long)pgdat->node_mem_map);
6103 #endif
6105 free_area_init_core(pgdat);
6108 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6110 #if MAX_NUMNODES > 1
6112 * Figure out the number of possible node ids.
6114 void __init setup_nr_node_ids(void)
6116 unsigned int highest;
6118 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6119 nr_node_ids = highest + 1;
6121 #endif
6124 * node_map_pfn_alignment - determine the maximum internode alignment
6126 * This function should be called after node map is populated and sorted.
6127 * It calculates the maximum power of two alignment which can distinguish
6128 * all the nodes.
6130 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6131 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6132 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6133 * shifted, 1GiB is enough and this function will indicate so.
6135 * This is used to test whether pfn -> nid mapping of the chosen memory
6136 * model has fine enough granularity to avoid incorrect mapping for the
6137 * populated node map.
6139 * Returns the determined alignment in pfn's. 0 if there is no alignment
6140 * requirement (single node).
6142 unsigned long __init node_map_pfn_alignment(void)
6144 unsigned long accl_mask = 0, last_end = 0;
6145 unsigned long start, end, mask;
6146 int last_nid = -1;
6147 int i, nid;
6149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6150 if (!start || last_nid < 0 || last_nid == nid) {
6151 last_nid = nid;
6152 last_end = end;
6153 continue;
6157 * Start with a mask granular enough to pin-point to the
6158 * start pfn and tick off bits one-by-one until it becomes
6159 * too coarse to separate the current node from the last.
6161 mask = ~((1 << __ffs(start)) - 1);
6162 while (mask && last_end <= (start & (mask << 1)))
6163 mask <<= 1;
6165 /* accumulate all internode masks */
6166 accl_mask |= mask;
6169 /* convert mask to number of pages */
6170 return ~accl_mask + 1;
6173 /* Find the lowest pfn for a node */
6174 static unsigned long __init find_min_pfn_for_node(int nid)
6176 unsigned long min_pfn = ULONG_MAX;
6177 unsigned long start_pfn;
6178 int i;
6180 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6181 min_pfn = min(min_pfn, start_pfn);
6183 if (min_pfn == ULONG_MAX) {
6184 pr_warn("Could not find start_pfn for node %d\n", nid);
6185 return 0;
6188 return min_pfn;
6192 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6194 * It returns the minimum PFN based on information provided via
6195 * memblock_set_node().
6197 unsigned long __init find_min_pfn_with_active_regions(void)
6199 return find_min_pfn_for_node(MAX_NUMNODES);
6203 * early_calculate_totalpages()
6204 * Sum pages in active regions for movable zone.
6205 * Populate N_MEMORY for calculating usable_nodes.
6207 static unsigned long __init early_calculate_totalpages(void)
6209 unsigned long totalpages = 0;
6210 unsigned long start_pfn, end_pfn;
6211 int i, nid;
6213 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6214 unsigned long pages = end_pfn - start_pfn;
6216 totalpages += pages;
6217 if (pages)
6218 node_set_state(nid, N_MEMORY);
6220 return totalpages;
6224 * Find the PFN the Movable zone begins in each node. Kernel memory
6225 * is spread evenly between nodes as long as the nodes have enough
6226 * memory. When they don't, some nodes will have more kernelcore than
6227 * others
6229 static void __init find_zone_movable_pfns_for_nodes(void)
6231 int i, nid;
6232 unsigned long usable_startpfn;
6233 unsigned long kernelcore_node, kernelcore_remaining;
6234 /* save the state before borrow the nodemask */
6235 nodemask_t saved_node_state = node_states[N_MEMORY];
6236 unsigned long totalpages = early_calculate_totalpages();
6237 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6238 struct memblock_region *r;
6240 /* Need to find movable_zone earlier when movable_node is specified. */
6241 find_usable_zone_for_movable();
6244 * If movable_node is specified, ignore kernelcore and movablecore
6245 * options.
6247 if (movable_node_is_enabled()) {
6248 for_each_memblock(memory, r) {
6249 if (!memblock_is_hotpluggable(r))
6250 continue;
6252 nid = r->nid;
6254 usable_startpfn = PFN_DOWN(r->base);
6255 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6256 min(usable_startpfn, zone_movable_pfn[nid]) :
6257 usable_startpfn;
6260 goto out2;
6264 * If kernelcore=mirror is specified, ignore movablecore option
6266 if (mirrored_kernelcore) {
6267 bool mem_below_4gb_not_mirrored = false;
6269 for_each_memblock(memory, r) {
6270 if (memblock_is_mirror(r))
6271 continue;
6273 nid = r->nid;
6275 usable_startpfn = memblock_region_memory_base_pfn(r);
6277 if (usable_startpfn < 0x100000) {
6278 mem_below_4gb_not_mirrored = true;
6279 continue;
6282 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6283 min(usable_startpfn, zone_movable_pfn[nid]) :
6284 usable_startpfn;
6287 if (mem_below_4gb_not_mirrored)
6288 pr_warn("This configuration results in unmirrored kernel memory.");
6290 goto out2;
6294 * If movablecore=nn[KMG] was specified, calculate what size of
6295 * kernelcore that corresponds so that memory usable for
6296 * any allocation type is evenly spread. If both kernelcore
6297 * and movablecore are specified, then the value of kernelcore
6298 * will be used for required_kernelcore if it's greater than
6299 * what movablecore would have allowed.
6301 if (required_movablecore) {
6302 unsigned long corepages;
6305 * Round-up so that ZONE_MOVABLE is at least as large as what
6306 * was requested by the user
6308 required_movablecore =
6309 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6310 required_movablecore = min(totalpages, required_movablecore);
6311 corepages = totalpages - required_movablecore;
6313 required_kernelcore = max(required_kernelcore, corepages);
6317 * If kernelcore was not specified or kernelcore size is larger
6318 * than totalpages, there is no ZONE_MOVABLE.
6320 if (!required_kernelcore || required_kernelcore >= totalpages)
6321 goto out;
6323 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6324 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6326 restart:
6327 /* Spread kernelcore memory as evenly as possible throughout nodes */
6328 kernelcore_node = required_kernelcore / usable_nodes;
6329 for_each_node_state(nid, N_MEMORY) {
6330 unsigned long start_pfn, end_pfn;
6333 * Recalculate kernelcore_node if the division per node
6334 * now exceeds what is necessary to satisfy the requested
6335 * amount of memory for the kernel
6337 if (required_kernelcore < kernelcore_node)
6338 kernelcore_node = required_kernelcore / usable_nodes;
6341 * As the map is walked, we track how much memory is usable
6342 * by the kernel using kernelcore_remaining. When it is
6343 * 0, the rest of the node is usable by ZONE_MOVABLE
6345 kernelcore_remaining = kernelcore_node;
6347 /* Go through each range of PFNs within this node */
6348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6349 unsigned long size_pages;
6351 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6352 if (start_pfn >= end_pfn)
6353 continue;
6355 /* Account for what is only usable for kernelcore */
6356 if (start_pfn < usable_startpfn) {
6357 unsigned long kernel_pages;
6358 kernel_pages = min(end_pfn, usable_startpfn)
6359 - start_pfn;
6361 kernelcore_remaining -= min(kernel_pages,
6362 kernelcore_remaining);
6363 required_kernelcore -= min(kernel_pages,
6364 required_kernelcore);
6366 /* Continue if range is now fully accounted */
6367 if (end_pfn <= usable_startpfn) {
6370 * Push zone_movable_pfn to the end so
6371 * that if we have to rebalance
6372 * kernelcore across nodes, we will
6373 * not double account here
6375 zone_movable_pfn[nid] = end_pfn;
6376 continue;
6378 start_pfn = usable_startpfn;
6382 * The usable PFN range for ZONE_MOVABLE is from
6383 * start_pfn->end_pfn. Calculate size_pages as the
6384 * number of pages used as kernelcore
6386 size_pages = end_pfn - start_pfn;
6387 if (size_pages > kernelcore_remaining)
6388 size_pages = kernelcore_remaining;
6389 zone_movable_pfn[nid] = start_pfn + size_pages;
6392 * Some kernelcore has been met, update counts and
6393 * break if the kernelcore for this node has been
6394 * satisfied
6396 required_kernelcore -= min(required_kernelcore,
6397 size_pages);
6398 kernelcore_remaining -= size_pages;
6399 if (!kernelcore_remaining)
6400 break;
6405 * If there is still required_kernelcore, we do another pass with one
6406 * less node in the count. This will push zone_movable_pfn[nid] further
6407 * along on the nodes that still have memory until kernelcore is
6408 * satisfied
6410 usable_nodes--;
6411 if (usable_nodes && required_kernelcore > usable_nodes)
6412 goto restart;
6414 out2:
6415 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6416 for (nid = 0; nid < MAX_NUMNODES; nid++)
6417 zone_movable_pfn[nid] =
6418 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6420 out:
6421 /* restore the node_state */
6422 node_states[N_MEMORY] = saved_node_state;
6425 /* Any regular or high memory on that node ? */
6426 static void check_for_memory(pg_data_t *pgdat, int nid)
6428 enum zone_type zone_type;
6430 if (N_MEMORY == N_NORMAL_MEMORY)
6431 return;
6433 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6434 struct zone *zone = &pgdat->node_zones[zone_type];
6435 if (populated_zone(zone)) {
6436 node_set_state(nid, N_HIGH_MEMORY);
6437 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6438 zone_type <= ZONE_NORMAL)
6439 node_set_state(nid, N_NORMAL_MEMORY);
6440 break;
6446 * free_area_init_nodes - Initialise all pg_data_t and zone data
6447 * @max_zone_pfn: an array of max PFNs for each zone
6449 * This will call free_area_init_node() for each active node in the system.
6450 * Using the page ranges provided by memblock_set_node(), the size of each
6451 * zone in each node and their holes is calculated. If the maximum PFN
6452 * between two adjacent zones match, it is assumed that the zone is empty.
6453 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6454 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6455 * starts where the previous one ended. For example, ZONE_DMA32 starts
6456 * at arch_max_dma_pfn.
6458 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6460 unsigned long start_pfn, end_pfn;
6461 int i, nid;
6463 /* Record where the zone boundaries are */
6464 memset(arch_zone_lowest_possible_pfn, 0,
6465 sizeof(arch_zone_lowest_possible_pfn));
6466 memset(arch_zone_highest_possible_pfn, 0,
6467 sizeof(arch_zone_highest_possible_pfn));
6468 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6469 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6470 for (i = 1; i < MAX_NR_ZONES; i++) {
6471 if (i == ZONE_MOVABLE)
6472 continue;
6473 arch_zone_lowest_possible_pfn[i] =
6474 arch_zone_highest_possible_pfn[i-1];
6475 arch_zone_highest_possible_pfn[i] =
6476 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6478 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6479 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6481 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6482 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6483 find_zone_movable_pfns_for_nodes();
6485 /* Print out the zone ranges */
6486 pr_info("Zone ranges:\n");
6487 for (i = 0; i < MAX_NR_ZONES; i++) {
6488 if (i == ZONE_MOVABLE)
6489 continue;
6490 pr_info(" %-8s ", zone_names[i]);
6491 if (arch_zone_lowest_possible_pfn[i] ==
6492 arch_zone_highest_possible_pfn[i])
6493 pr_cont("empty\n");
6494 else
6495 pr_cont("[mem %#018Lx-%#018Lx]\n",
6496 (u64)arch_zone_lowest_possible_pfn[i]
6497 << PAGE_SHIFT,
6498 ((u64)arch_zone_highest_possible_pfn[i]
6499 << PAGE_SHIFT) - 1);
6502 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6503 pr_info("Movable zone start for each node\n");
6504 for (i = 0; i < MAX_NUMNODES; i++) {
6505 if (zone_movable_pfn[i])
6506 pr_info(" Node %d: %#018Lx\n", i,
6507 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6510 /* Print out the early node map */
6511 pr_info("Early memory node ranges\n");
6512 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6513 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6514 (u64)start_pfn << PAGE_SHIFT,
6515 ((u64)end_pfn << PAGE_SHIFT) - 1);
6517 /* Initialise every node */
6518 mminit_verify_pageflags_layout();
6519 setup_nr_node_ids();
6520 for_each_online_node(nid) {
6521 pg_data_t *pgdat = NODE_DATA(nid);
6522 free_area_init_node(nid, NULL,
6523 find_min_pfn_for_node(nid), NULL);
6525 /* Any memory on that node */
6526 if (pgdat->node_present_pages)
6527 node_set_state(nid, N_MEMORY);
6528 check_for_memory(pgdat, nid);
6532 static int __init cmdline_parse_core(char *p, unsigned long *core)
6534 unsigned long long coremem;
6535 if (!p)
6536 return -EINVAL;
6538 coremem = memparse(p, &p);
6539 *core = coremem >> PAGE_SHIFT;
6541 /* Paranoid check that UL is enough for the coremem value */
6542 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6544 return 0;
6548 * kernelcore=size sets the amount of memory for use for allocations that
6549 * cannot be reclaimed or migrated.
6551 static int __init cmdline_parse_kernelcore(char *p)
6553 /* parse kernelcore=mirror */
6554 if (parse_option_str(p, "mirror")) {
6555 mirrored_kernelcore = true;
6556 return 0;
6559 return cmdline_parse_core(p, &required_kernelcore);
6563 * movablecore=size sets the amount of memory for use for allocations that
6564 * can be reclaimed or migrated.
6566 static int __init cmdline_parse_movablecore(char *p)
6568 return cmdline_parse_core(p, &required_movablecore);
6571 early_param("kernelcore", cmdline_parse_kernelcore);
6572 early_param("movablecore", cmdline_parse_movablecore);
6574 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6576 void adjust_managed_page_count(struct page *page, long count)
6578 spin_lock(&managed_page_count_lock);
6579 page_zone(page)->managed_pages += count;
6580 totalram_pages += count;
6581 #ifdef CONFIG_HIGHMEM
6582 if (PageHighMem(page))
6583 totalhigh_pages += count;
6584 #endif
6585 spin_unlock(&managed_page_count_lock);
6587 EXPORT_SYMBOL(adjust_managed_page_count);
6589 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6591 void *pos;
6592 unsigned long pages = 0;
6594 start = (void *)PAGE_ALIGN((unsigned long)start);
6595 end = (void *)((unsigned long)end & PAGE_MASK);
6596 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6597 if ((unsigned int)poison <= 0xFF)
6598 memset(pos, poison, PAGE_SIZE);
6599 free_reserved_page(virt_to_page(pos));
6602 if (pages && s)
6603 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6604 s, pages << (PAGE_SHIFT - 10), start, end);
6606 return pages;
6608 EXPORT_SYMBOL(free_reserved_area);
6610 #ifdef CONFIG_HIGHMEM
6611 void free_highmem_page(struct page *page)
6613 __free_reserved_page(page);
6614 totalram_pages++;
6615 page_zone(page)->managed_pages++;
6616 totalhigh_pages++;
6618 #endif
6621 void __init mem_init_print_info(const char *str)
6623 unsigned long physpages, codesize, datasize, rosize, bss_size;
6624 unsigned long init_code_size, init_data_size;
6626 physpages = get_num_physpages();
6627 codesize = _etext - _stext;
6628 datasize = _edata - _sdata;
6629 rosize = __end_rodata - __start_rodata;
6630 bss_size = __bss_stop - __bss_start;
6631 init_data_size = __init_end - __init_begin;
6632 init_code_size = _einittext - _sinittext;
6635 * Detect special cases and adjust section sizes accordingly:
6636 * 1) .init.* may be embedded into .data sections
6637 * 2) .init.text.* may be out of [__init_begin, __init_end],
6638 * please refer to arch/tile/kernel/vmlinux.lds.S.
6639 * 3) .rodata.* may be embedded into .text or .data sections.
6641 #define adj_init_size(start, end, size, pos, adj) \
6642 do { \
6643 if (start <= pos && pos < end && size > adj) \
6644 size -= adj; \
6645 } while (0)
6647 adj_init_size(__init_begin, __init_end, init_data_size,
6648 _sinittext, init_code_size);
6649 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6650 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6651 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6652 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6654 #undef adj_init_size
6656 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6657 #ifdef CONFIG_HIGHMEM
6658 ", %luK highmem"
6659 #endif
6660 "%s%s)\n",
6661 nr_free_pages() << (PAGE_SHIFT - 10),
6662 physpages << (PAGE_SHIFT - 10),
6663 codesize >> 10, datasize >> 10, rosize >> 10,
6664 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6665 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6666 totalcma_pages << (PAGE_SHIFT - 10),
6667 #ifdef CONFIG_HIGHMEM
6668 totalhigh_pages << (PAGE_SHIFT - 10),
6669 #endif
6670 str ? ", " : "", str ? str : "");
6674 * set_dma_reserve - set the specified number of pages reserved in the first zone
6675 * @new_dma_reserve: The number of pages to mark reserved
6677 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6678 * In the DMA zone, a significant percentage may be consumed by kernel image
6679 * and other unfreeable allocations which can skew the watermarks badly. This
6680 * function may optionally be used to account for unfreeable pages in the
6681 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6682 * smaller per-cpu batchsize.
6684 void __init set_dma_reserve(unsigned long new_dma_reserve)
6686 dma_reserve = new_dma_reserve;
6689 void __init free_area_init(unsigned long *zones_size)
6691 free_area_init_node(0, zones_size,
6692 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6695 static int page_alloc_cpu_notify(struct notifier_block *self,
6696 unsigned long action, void *hcpu)
6698 int cpu = (unsigned long)hcpu;
6700 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6701 lru_add_drain_cpu(cpu);
6702 drain_pages(cpu);
6705 * Spill the event counters of the dead processor
6706 * into the current processors event counters.
6707 * This artificially elevates the count of the current
6708 * processor.
6710 vm_events_fold_cpu(cpu);
6713 * Zero the differential counters of the dead processor
6714 * so that the vm statistics are consistent.
6716 * This is only okay since the processor is dead and cannot
6717 * race with what we are doing.
6719 cpu_vm_stats_fold(cpu);
6721 return NOTIFY_OK;
6724 void __init page_alloc_init(void)
6726 hotcpu_notifier(page_alloc_cpu_notify, 0);
6730 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6731 * or min_free_kbytes changes.
6733 static void calculate_totalreserve_pages(void)
6735 struct pglist_data *pgdat;
6736 unsigned long reserve_pages = 0;
6737 enum zone_type i, j;
6739 for_each_online_pgdat(pgdat) {
6740 for (i = 0; i < MAX_NR_ZONES; i++) {
6741 struct zone *zone = pgdat->node_zones + i;
6742 long max = 0;
6744 /* Find valid and maximum lowmem_reserve in the zone */
6745 for (j = i; j < MAX_NR_ZONES; j++) {
6746 if (zone->lowmem_reserve[j] > max)
6747 max = zone->lowmem_reserve[j];
6750 /* we treat the high watermark as reserved pages. */
6751 max += high_wmark_pages(zone);
6753 if (max > zone->managed_pages)
6754 max = zone->managed_pages;
6756 zone->totalreserve_pages = max;
6758 reserve_pages += max;
6761 totalreserve_pages = reserve_pages;
6765 * setup_per_zone_lowmem_reserve - called whenever
6766 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6767 * has a correct pages reserved value, so an adequate number of
6768 * pages are left in the zone after a successful __alloc_pages().
6770 static void setup_per_zone_lowmem_reserve(void)
6772 struct pglist_data *pgdat;
6773 enum zone_type j, idx;
6775 for_each_online_pgdat(pgdat) {
6776 for (j = 0; j < MAX_NR_ZONES; j++) {
6777 struct zone *zone = pgdat->node_zones + j;
6778 unsigned long managed_pages = zone->managed_pages;
6780 zone->lowmem_reserve[j] = 0;
6782 idx = j;
6783 while (idx) {
6784 struct zone *lower_zone;
6786 idx--;
6788 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6789 sysctl_lowmem_reserve_ratio[idx] = 1;
6791 lower_zone = pgdat->node_zones + idx;
6792 lower_zone->lowmem_reserve[j] = managed_pages /
6793 sysctl_lowmem_reserve_ratio[idx];
6794 managed_pages += lower_zone->managed_pages;
6799 /* update totalreserve_pages */
6800 calculate_totalreserve_pages();
6803 static void __setup_per_zone_wmarks(void)
6805 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6806 unsigned long lowmem_pages = 0;
6807 struct zone *zone;
6808 unsigned long flags;
6810 /* Calculate total number of !ZONE_HIGHMEM pages */
6811 for_each_zone(zone) {
6812 if (!is_highmem(zone))
6813 lowmem_pages += zone->managed_pages;
6816 for_each_zone(zone) {
6817 u64 tmp;
6819 spin_lock_irqsave(&zone->lock, flags);
6820 tmp = (u64)pages_min * zone->managed_pages;
6821 do_div(tmp, lowmem_pages);
6822 if (is_highmem(zone)) {
6824 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6825 * need highmem pages, so cap pages_min to a small
6826 * value here.
6828 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6829 * deltas control asynch page reclaim, and so should
6830 * not be capped for highmem.
6832 unsigned long min_pages;
6834 min_pages = zone->managed_pages / 1024;
6835 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6836 zone->watermark[WMARK_MIN] = min_pages;
6837 } else {
6839 * If it's a lowmem zone, reserve a number of pages
6840 * proportionate to the zone's size.
6842 zone->watermark[WMARK_MIN] = tmp;
6846 * Set the kswapd watermarks distance according to the
6847 * scale factor in proportion to available memory, but
6848 * ensure a minimum size on small systems.
6850 tmp = max_t(u64, tmp >> 2,
6851 mult_frac(zone->managed_pages,
6852 watermark_scale_factor, 10000));
6854 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6855 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6857 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6858 high_wmark_pages(zone) - low_wmark_pages(zone) -
6859 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6861 spin_unlock_irqrestore(&zone->lock, flags);
6864 /* update totalreserve_pages */
6865 calculate_totalreserve_pages();
6869 * setup_per_zone_wmarks - called when min_free_kbytes changes
6870 * or when memory is hot-{added|removed}
6872 * Ensures that the watermark[min,low,high] values for each zone are set
6873 * correctly with respect to min_free_kbytes.
6875 void setup_per_zone_wmarks(void)
6877 mutex_lock(&zonelists_mutex);
6878 __setup_per_zone_wmarks();
6879 mutex_unlock(&zonelists_mutex);
6883 * Initialise min_free_kbytes.
6885 * For small machines we want it small (128k min). For large machines
6886 * we want it large (64MB max). But it is not linear, because network
6887 * bandwidth does not increase linearly with machine size. We use
6889 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6890 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6892 * which yields
6894 * 16MB: 512k
6895 * 32MB: 724k
6896 * 64MB: 1024k
6897 * 128MB: 1448k
6898 * 256MB: 2048k
6899 * 512MB: 2896k
6900 * 1024MB: 4096k
6901 * 2048MB: 5792k
6902 * 4096MB: 8192k
6903 * 8192MB: 11584k
6904 * 16384MB: 16384k
6906 int __meminit init_per_zone_wmark_min(void)
6908 unsigned long lowmem_kbytes;
6909 int new_min_free_kbytes;
6911 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6912 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6914 if (new_min_free_kbytes > user_min_free_kbytes) {
6915 min_free_kbytes = new_min_free_kbytes;
6916 if (min_free_kbytes < 128)
6917 min_free_kbytes = 128;
6918 if (min_free_kbytes > 65536)
6919 min_free_kbytes = 65536;
6920 } else {
6921 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6922 new_min_free_kbytes, user_min_free_kbytes);
6924 setup_per_zone_wmarks();
6925 refresh_zone_stat_thresholds();
6926 setup_per_zone_lowmem_reserve();
6927 return 0;
6929 core_initcall(init_per_zone_wmark_min)
6932 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6933 * that we can call two helper functions whenever min_free_kbytes
6934 * changes.
6936 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6937 void __user *buffer, size_t *length, loff_t *ppos)
6939 int rc;
6941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6942 if (rc)
6943 return rc;
6945 if (write) {
6946 user_min_free_kbytes = min_free_kbytes;
6947 setup_per_zone_wmarks();
6949 return 0;
6952 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6953 void __user *buffer, size_t *length, loff_t *ppos)
6955 int rc;
6957 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6958 if (rc)
6959 return rc;
6961 if (write)
6962 setup_per_zone_wmarks();
6964 return 0;
6967 #ifdef CONFIG_NUMA
6968 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6969 void __user *buffer, size_t *length, loff_t *ppos)
6971 struct zone *zone;
6972 int rc;
6974 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6975 if (rc)
6976 return rc;
6978 for_each_zone(zone)
6979 zone->min_unmapped_pages = (zone->managed_pages *
6980 sysctl_min_unmapped_ratio) / 100;
6981 return 0;
6984 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6985 void __user *buffer, size_t *length, loff_t *ppos)
6987 struct zone *zone;
6988 int rc;
6990 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6991 if (rc)
6992 return rc;
6994 for_each_zone(zone)
6995 zone->min_slab_pages = (zone->managed_pages *
6996 sysctl_min_slab_ratio) / 100;
6997 return 0;
6999 #endif
7002 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7003 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7004 * whenever sysctl_lowmem_reserve_ratio changes.
7006 * The reserve ratio obviously has absolutely no relation with the
7007 * minimum watermarks. The lowmem reserve ratio can only make sense
7008 * if in function of the boot time zone sizes.
7010 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7011 void __user *buffer, size_t *length, loff_t *ppos)
7013 proc_dointvec_minmax(table, write, buffer, length, ppos);
7014 setup_per_zone_lowmem_reserve();
7015 return 0;
7019 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7020 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7021 * pagelist can have before it gets flushed back to buddy allocator.
7023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7024 void __user *buffer, size_t *length, loff_t *ppos)
7026 struct zone *zone;
7027 int old_percpu_pagelist_fraction;
7028 int ret;
7030 mutex_lock(&pcp_batch_high_lock);
7031 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7033 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7034 if (!write || ret < 0)
7035 goto out;
7037 /* Sanity checking to avoid pcp imbalance */
7038 if (percpu_pagelist_fraction &&
7039 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7040 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7041 ret = -EINVAL;
7042 goto out;
7045 /* No change? */
7046 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7047 goto out;
7049 for_each_populated_zone(zone) {
7050 unsigned int cpu;
7052 for_each_possible_cpu(cpu)
7053 pageset_set_high_and_batch(zone,
7054 per_cpu_ptr(zone->pageset, cpu));
7056 out:
7057 mutex_unlock(&pcp_batch_high_lock);
7058 return ret;
7061 #ifdef CONFIG_NUMA
7062 int hashdist = HASHDIST_DEFAULT;
7064 static int __init set_hashdist(char *str)
7066 if (!str)
7067 return 0;
7068 hashdist = simple_strtoul(str, &str, 0);
7069 return 1;
7071 __setup("hashdist=", set_hashdist);
7072 #endif
7075 * allocate a large system hash table from bootmem
7076 * - it is assumed that the hash table must contain an exact power-of-2
7077 * quantity of entries
7078 * - limit is the number of hash buckets, not the total allocation size
7080 void *__init alloc_large_system_hash(const char *tablename,
7081 unsigned long bucketsize,
7082 unsigned long numentries,
7083 int scale,
7084 int flags,
7085 unsigned int *_hash_shift,
7086 unsigned int *_hash_mask,
7087 unsigned long low_limit,
7088 unsigned long high_limit)
7090 unsigned long long max = high_limit;
7091 unsigned long log2qty, size;
7092 void *table = NULL;
7094 /* allow the kernel cmdline to have a say */
7095 if (!numentries) {
7096 /* round applicable memory size up to nearest megabyte */
7097 numentries = nr_kernel_pages;
7099 /* It isn't necessary when PAGE_SIZE >= 1MB */
7100 if (PAGE_SHIFT < 20)
7101 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7103 /* limit to 1 bucket per 2^scale bytes of low memory */
7104 if (scale > PAGE_SHIFT)
7105 numentries >>= (scale - PAGE_SHIFT);
7106 else
7107 numentries <<= (PAGE_SHIFT - scale);
7109 /* Make sure we've got at least a 0-order allocation.. */
7110 if (unlikely(flags & HASH_SMALL)) {
7111 /* Makes no sense without HASH_EARLY */
7112 WARN_ON(!(flags & HASH_EARLY));
7113 if (!(numentries >> *_hash_shift)) {
7114 numentries = 1UL << *_hash_shift;
7115 BUG_ON(!numentries);
7117 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7118 numentries = PAGE_SIZE / bucketsize;
7120 numentries = roundup_pow_of_two(numentries);
7122 /* limit allocation size to 1/16 total memory by default */
7123 if (max == 0) {
7124 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7125 do_div(max, bucketsize);
7127 max = min(max, 0x80000000ULL);
7129 if (numentries < low_limit)
7130 numentries = low_limit;
7131 if (numentries > max)
7132 numentries = max;
7134 log2qty = ilog2(numentries);
7136 do {
7137 size = bucketsize << log2qty;
7138 if (flags & HASH_EARLY)
7139 table = memblock_virt_alloc_nopanic(size, 0);
7140 else if (hashdist)
7141 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7142 else {
7144 * If bucketsize is not a power-of-two, we may free
7145 * some pages at the end of hash table which
7146 * alloc_pages_exact() automatically does
7148 if (get_order(size) < MAX_ORDER) {
7149 table = alloc_pages_exact(size, GFP_ATOMIC);
7150 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7153 } while (!table && size > PAGE_SIZE && --log2qty);
7155 if (!table)
7156 panic("Failed to allocate %s hash table\n", tablename);
7158 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7159 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7161 if (_hash_shift)
7162 *_hash_shift = log2qty;
7163 if (_hash_mask)
7164 *_hash_mask = (1 << log2qty) - 1;
7166 return table;
7170 * This function checks whether pageblock includes unmovable pages or not.
7171 * If @count is not zero, it is okay to include less @count unmovable pages
7173 * PageLRU check without isolation or lru_lock could race so that
7174 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7175 * expect this function should be exact.
7177 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7178 bool skip_hwpoisoned_pages)
7180 unsigned long pfn, iter, found;
7181 int mt;
7184 * For avoiding noise data, lru_add_drain_all() should be called
7185 * If ZONE_MOVABLE, the zone never contains unmovable pages
7187 if (zone_idx(zone) == ZONE_MOVABLE)
7188 return false;
7189 mt = get_pageblock_migratetype(page);
7190 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7191 return false;
7193 pfn = page_to_pfn(page);
7194 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7195 unsigned long check = pfn + iter;
7197 if (!pfn_valid_within(check))
7198 continue;
7200 page = pfn_to_page(check);
7203 * Hugepages are not in LRU lists, but they're movable.
7204 * We need not scan over tail pages bacause we don't
7205 * handle each tail page individually in migration.
7207 if (PageHuge(page)) {
7208 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7209 continue;
7213 * We can't use page_count without pin a page
7214 * because another CPU can free compound page.
7215 * This check already skips compound tails of THP
7216 * because their page->_refcount is zero at all time.
7218 if (!page_ref_count(page)) {
7219 if (PageBuddy(page))
7220 iter += (1 << page_order(page)) - 1;
7221 continue;
7225 * The HWPoisoned page may be not in buddy system, and
7226 * page_count() is not 0.
7228 if (skip_hwpoisoned_pages && PageHWPoison(page))
7229 continue;
7231 if (!PageLRU(page))
7232 found++;
7234 * If there are RECLAIMABLE pages, we need to check
7235 * it. But now, memory offline itself doesn't call
7236 * shrink_node_slabs() and it still to be fixed.
7239 * If the page is not RAM, page_count()should be 0.
7240 * we don't need more check. This is an _used_ not-movable page.
7242 * The problematic thing here is PG_reserved pages. PG_reserved
7243 * is set to both of a memory hole page and a _used_ kernel
7244 * page at boot.
7246 if (found > count)
7247 return true;
7249 return false;
7252 bool is_pageblock_removable_nolock(struct page *page)
7254 struct zone *zone;
7255 unsigned long pfn;
7258 * We have to be careful here because we are iterating over memory
7259 * sections which are not zone aware so we might end up outside of
7260 * the zone but still within the section.
7261 * We have to take care about the node as well. If the node is offline
7262 * its NODE_DATA will be NULL - see page_zone.
7264 if (!node_online(page_to_nid(page)))
7265 return false;
7267 zone = page_zone(page);
7268 pfn = page_to_pfn(page);
7269 if (!zone_spans_pfn(zone, pfn))
7270 return false;
7272 return !has_unmovable_pages(zone, page, 0, true);
7275 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7277 static unsigned long pfn_max_align_down(unsigned long pfn)
7279 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7280 pageblock_nr_pages) - 1);
7283 static unsigned long pfn_max_align_up(unsigned long pfn)
7285 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7286 pageblock_nr_pages));
7289 /* [start, end) must belong to a single zone. */
7290 static int __alloc_contig_migrate_range(struct compact_control *cc,
7291 unsigned long start, unsigned long end)
7293 /* This function is based on compact_zone() from compaction.c. */
7294 unsigned long nr_reclaimed;
7295 unsigned long pfn = start;
7296 unsigned int tries = 0;
7297 int ret = 0;
7299 migrate_prep();
7301 while (pfn < end || !list_empty(&cc->migratepages)) {
7302 if (fatal_signal_pending(current)) {
7303 ret = -EINTR;
7304 break;
7307 if (list_empty(&cc->migratepages)) {
7308 cc->nr_migratepages = 0;
7309 pfn = isolate_migratepages_range(cc, pfn, end);
7310 if (!pfn) {
7311 ret = -EINTR;
7312 break;
7314 tries = 0;
7315 } else if (++tries == 5) {
7316 ret = ret < 0 ? ret : -EBUSY;
7317 break;
7320 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7321 &cc->migratepages);
7322 cc->nr_migratepages -= nr_reclaimed;
7324 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7325 NULL, 0, cc->mode, MR_CMA);
7327 if (ret < 0) {
7328 putback_movable_pages(&cc->migratepages);
7329 return ret;
7331 return 0;
7335 * alloc_contig_range() -- tries to allocate given range of pages
7336 * @start: start PFN to allocate
7337 * @end: one-past-the-last PFN to allocate
7338 * @migratetype: migratetype of the underlaying pageblocks (either
7339 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7340 * in range must have the same migratetype and it must
7341 * be either of the two.
7343 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7344 * aligned, however it's the caller's responsibility to guarantee that
7345 * we are the only thread that changes migrate type of pageblocks the
7346 * pages fall in.
7348 * The PFN range must belong to a single zone.
7350 * Returns zero on success or negative error code. On success all
7351 * pages which PFN is in [start, end) are allocated for the caller and
7352 * need to be freed with free_contig_range().
7354 int alloc_contig_range(unsigned long start, unsigned long end,
7355 unsigned migratetype)
7357 unsigned long outer_start, outer_end;
7358 unsigned int order;
7359 int ret = 0;
7361 struct compact_control cc = {
7362 .nr_migratepages = 0,
7363 .order = -1,
7364 .zone = page_zone(pfn_to_page(start)),
7365 .mode = MIGRATE_SYNC,
7366 .ignore_skip_hint = true,
7368 INIT_LIST_HEAD(&cc.migratepages);
7371 * What we do here is we mark all pageblocks in range as
7372 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7373 * have different sizes, and due to the way page allocator
7374 * work, we align the range to biggest of the two pages so
7375 * that page allocator won't try to merge buddies from
7376 * different pageblocks and change MIGRATE_ISOLATE to some
7377 * other migration type.
7379 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7380 * migrate the pages from an unaligned range (ie. pages that
7381 * we are interested in). This will put all the pages in
7382 * range back to page allocator as MIGRATE_ISOLATE.
7384 * When this is done, we take the pages in range from page
7385 * allocator removing them from the buddy system. This way
7386 * page allocator will never consider using them.
7388 * This lets us mark the pageblocks back as
7389 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7390 * aligned range but not in the unaligned, original range are
7391 * put back to page allocator so that buddy can use them.
7394 ret = start_isolate_page_range(pfn_max_align_down(start),
7395 pfn_max_align_up(end), migratetype,
7396 false);
7397 if (ret)
7398 return ret;
7401 * In case of -EBUSY, we'd like to know which page causes problem.
7402 * So, just fall through. We will check it in test_pages_isolated().
7404 ret = __alloc_contig_migrate_range(&cc, start, end);
7405 if (ret && ret != -EBUSY)
7406 goto done;
7409 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7410 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7411 * more, all pages in [start, end) are free in page allocator.
7412 * What we are going to do is to allocate all pages from
7413 * [start, end) (that is remove them from page allocator).
7415 * The only problem is that pages at the beginning and at the
7416 * end of interesting range may be not aligned with pages that
7417 * page allocator holds, ie. they can be part of higher order
7418 * pages. Because of this, we reserve the bigger range and
7419 * once this is done free the pages we are not interested in.
7421 * We don't have to hold zone->lock here because the pages are
7422 * isolated thus they won't get removed from buddy.
7425 lru_add_drain_all();
7426 drain_all_pages(cc.zone);
7428 order = 0;
7429 outer_start = start;
7430 while (!PageBuddy(pfn_to_page(outer_start))) {
7431 if (++order >= MAX_ORDER) {
7432 outer_start = start;
7433 break;
7435 outer_start &= ~0UL << order;
7438 if (outer_start != start) {
7439 order = page_order(pfn_to_page(outer_start));
7442 * outer_start page could be small order buddy page and
7443 * it doesn't include start page. Adjust outer_start
7444 * in this case to report failed page properly
7445 * on tracepoint in test_pages_isolated()
7447 if (outer_start + (1UL << order) <= start)
7448 outer_start = start;
7451 /* Make sure the range is really isolated. */
7452 if (test_pages_isolated(outer_start, end, false)) {
7453 pr_info("%s: [%lx, %lx) PFNs busy\n",
7454 __func__, outer_start, end);
7455 ret = -EBUSY;
7456 goto done;
7459 /* Grab isolated pages from freelists. */
7460 outer_end = isolate_freepages_range(&cc, outer_start, end);
7461 if (!outer_end) {
7462 ret = -EBUSY;
7463 goto done;
7466 /* Free head and tail (if any) */
7467 if (start != outer_start)
7468 free_contig_range(outer_start, start - outer_start);
7469 if (end != outer_end)
7470 free_contig_range(end, outer_end - end);
7472 done:
7473 undo_isolate_page_range(pfn_max_align_down(start),
7474 pfn_max_align_up(end), migratetype);
7475 return ret;
7478 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7480 unsigned int count = 0;
7482 for (; nr_pages--; pfn++) {
7483 struct page *page = pfn_to_page(pfn);
7485 count += page_count(page) != 1;
7486 __free_page(page);
7488 WARN(count != 0, "%d pages are still in use!\n", count);
7490 #endif
7492 #ifdef CONFIG_MEMORY_HOTPLUG
7494 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7495 * page high values need to be recalulated.
7497 void __meminit zone_pcp_update(struct zone *zone)
7499 unsigned cpu;
7500 mutex_lock(&pcp_batch_high_lock);
7501 for_each_possible_cpu(cpu)
7502 pageset_set_high_and_batch(zone,
7503 per_cpu_ptr(zone->pageset, cpu));
7504 mutex_unlock(&pcp_batch_high_lock);
7506 #endif
7508 void zone_pcp_reset(struct zone *zone)
7510 unsigned long flags;
7511 int cpu;
7512 struct per_cpu_pageset *pset;
7514 /* avoid races with drain_pages() */
7515 local_irq_save(flags);
7516 if (zone->pageset != &boot_pageset) {
7517 for_each_online_cpu(cpu) {
7518 pset = per_cpu_ptr(zone->pageset, cpu);
7519 drain_zonestat(zone, pset);
7521 free_percpu(zone->pageset);
7522 zone->pageset = &boot_pageset;
7524 local_irq_restore(flags);
7527 #ifdef CONFIG_MEMORY_HOTREMOVE
7529 * All pages in the range must be in a single zone and isolated
7530 * before calling this.
7532 void
7533 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7535 struct page *page;
7536 struct zone *zone;
7537 unsigned int order, i;
7538 unsigned long pfn;
7539 unsigned long flags;
7540 /* find the first valid pfn */
7541 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7542 if (pfn_valid(pfn))
7543 break;
7544 if (pfn == end_pfn)
7545 return;
7546 zone = page_zone(pfn_to_page(pfn));
7547 spin_lock_irqsave(&zone->lock, flags);
7548 pfn = start_pfn;
7549 while (pfn < end_pfn) {
7550 if (!pfn_valid(pfn)) {
7551 pfn++;
7552 continue;
7554 page = pfn_to_page(pfn);
7556 * The HWPoisoned page may be not in buddy system, and
7557 * page_count() is not 0.
7559 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7560 pfn++;
7561 SetPageReserved(page);
7562 continue;
7565 BUG_ON(page_count(page));
7566 BUG_ON(!PageBuddy(page));
7567 order = page_order(page);
7568 #ifdef CONFIG_DEBUG_VM
7569 pr_info("remove from free list %lx %d %lx\n",
7570 pfn, 1 << order, end_pfn);
7571 #endif
7572 list_del(&page->lru);
7573 rmv_page_order(page);
7574 zone->free_area[order].nr_free--;
7575 for (i = 0; i < (1 << order); i++)
7576 SetPageReserved((page+i));
7577 pfn += (1 << order);
7579 spin_unlock_irqrestore(&zone->lock, flags);
7581 #endif
7583 bool is_free_buddy_page(struct page *page)
7585 struct zone *zone = page_zone(page);
7586 unsigned long pfn = page_to_pfn(page);
7587 unsigned long flags;
7588 unsigned int order;
7590 spin_lock_irqsave(&zone->lock, flags);
7591 for (order = 0; order < MAX_ORDER; order++) {
7592 struct page *page_head = page - (pfn & ((1 << order) - 1));
7594 if (PageBuddy(page_head) && page_order(page_head) >= order)
7595 break;
7597 spin_unlock_irqrestore(&zone->lock, flags);
7599 return order < MAX_ORDER;