x86/mm/pat: Don't report PAT on CPUs that don't support it
[linux/fpc-iii.git] / drivers / block / zram / zram_drv.c
blob0c09d42561081ebb393398ae21a6900283d8f007
1 /*
2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
36 #include "zram_drv.h"
38 static DEFINE_IDR(zram_index_idr);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex);
42 static int zram_major;
43 static const char *default_compressor = "lzo";
45 /* Module params (documentation at end) */
46 static unsigned int num_devices = 1;
48 static inline bool init_done(struct zram *zram)
50 return zram->disksize;
53 static inline struct zram *dev_to_zram(struct device *dev)
55 return (struct zram *)dev_to_disk(dev)->private_data;
58 /* flag operations require table entry bit_spin_lock() being held */
59 static int zram_test_flag(struct zram_meta *meta, u32 index,
60 enum zram_pageflags flag)
62 return meta->table[index].value & BIT(flag);
65 static void zram_set_flag(struct zram_meta *meta, u32 index,
66 enum zram_pageflags flag)
68 meta->table[index].value |= BIT(flag);
71 static void zram_clear_flag(struct zram_meta *meta, u32 index,
72 enum zram_pageflags flag)
74 meta->table[index].value &= ~BIT(flag);
77 static inline void zram_set_element(struct zram_meta *meta, u32 index,
78 unsigned long element)
80 meta->table[index].element = element;
83 static inline void zram_clear_element(struct zram_meta *meta, u32 index)
85 meta->table[index].element = 0;
88 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
90 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
93 static void zram_set_obj_size(struct zram_meta *meta,
94 u32 index, size_t size)
96 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
98 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
101 static inline bool is_partial_io(struct bio_vec *bvec)
103 return bvec->bv_len != PAGE_SIZE;
106 static void zram_revalidate_disk(struct zram *zram)
108 revalidate_disk(zram->disk);
109 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
110 zram->disk->queue->backing_dev_info->capabilities |=
111 BDI_CAP_STABLE_WRITES;
115 * Check if request is within bounds and aligned on zram logical blocks.
117 static inline bool valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
120 u64 end, bound;
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return false;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return false;
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return false;
134 /* I/O request is valid */
135 return true;
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
145 static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
148 unsigned long old_max, cur_max;
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
160 static inline void zram_fill_page(char *ptr, unsigned long len,
161 unsigned long value)
163 int i;
164 unsigned long *page = (unsigned long *)ptr;
166 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
168 if (likely(value == 0)) {
169 memset(ptr, 0, len);
170 } else {
171 for (i = 0; i < len / sizeof(*page); i++)
172 page[i] = value;
176 static bool page_same_filled(void *ptr, unsigned long *element)
178 unsigned int pos;
179 unsigned long *page;
181 page = (unsigned long *)ptr;
183 for (pos = 0; pos < PAGE_SIZE / sizeof(*page) - 1; pos++) {
184 if (page[pos] != page[pos + 1])
185 return false;
188 *element = page[pos];
190 return true;
193 static void handle_same_page(struct bio_vec *bvec, unsigned long element)
195 struct page *page = bvec->bv_page;
196 void *user_mem;
198 user_mem = kmap_atomic(page);
199 zram_fill_page(user_mem + bvec->bv_offset, bvec->bv_len, element);
200 kunmap_atomic(user_mem);
202 flush_dcache_page(page);
205 static ssize_t initstate_show(struct device *dev,
206 struct device_attribute *attr, char *buf)
208 u32 val;
209 struct zram *zram = dev_to_zram(dev);
211 down_read(&zram->init_lock);
212 val = init_done(zram);
213 up_read(&zram->init_lock);
215 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
218 static ssize_t disksize_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
221 struct zram *zram = dev_to_zram(dev);
223 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
226 static ssize_t mem_limit_store(struct device *dev,
227 struct device_attribute *attr, const char *buf, size_t len)
229 u64 limit;
230 char *tmp;
231 struct zram *zram = dev_to_zram(dev);
233 limit = memparse(buf, &tmp);
234 if (buf == tmp) /* no chars parsed, invalid input */
235 return -EINVAL;
237 down_write(&zram->init_lock);
238 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
239 up_write(&zram->init_lock);
241 return len;
244 static ssize_t mem_used_max_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t len)
247 int err;
248 unsigned long val;
249 struct zram *zram = dev_to_zram(dev);
251 err = kstrtoul(buf, 10, &val);
252 if (err || val != 0)
253 return -EINVAL;
255 down_read(&zram->init_lock);
256 if (init_done(zram)) {
257 struct zram_meta *meta = zram->meta;
258 atomic_long_set(&zram->stats.max_used_pages,
259 zs_get_total_pages(meta->mem_pool));
261 up_read(&zram->init_lock);
263 return len;
267 * We switched to per-cpu streams and this attr is not needed anymore.
268 * However, we will keep it around for some time, because:
269 * a) we may revert per-cpu streams in the future
270 * b) it's visible to user space and we need to follow our 2 years
271 * retirement rule; but we already have a number of 'soon to be
272 * altered' attrs, so max_comp_streams need to wait for the next
273 * layoff cycle.
275 static ssize_t max_comp_streams_show(struct device *dev,
276 struct device_attribute *attr, char *buf)
278 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
281 static ssize_t max_comp_streams_store(struct device *dev,
282 struct device_attribute *attr, const char *buf, size_t len)
284 return len;
287 static ssize_t comp_algorithm_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
290 size_t sz;
291 struct zram *zram = dev_to_zram(dev);
293 down_read(&zram->init_lock);
294 sz = zcomp_available_show(zram->compressor, buf);
295 up_read(&zram->init_lock);
297 return sz;
300 static ssize_t comp_algorithm_store(struct device *dev,
301 struct device_attribute *attr, const char *buf, size_t len)
303 struct zram *zram = dev_to_zram(dev);
304 char compressor[CRYPTO_MAX_ALG_NAME];
305 size_t sz;
307 strlcpy(compressor, buf, sizeof(compressor));
308 /* ignore trailing newline */
309 sz = strlen(compressor);
310 if (sz > 0 && compressor[sz - 1] == '\n')
311 compressor[sz - 1] = 0x00;
313 if (!zcomp_available_algorithm(compressor))
314 return -EINVAL;
316 down_write(&zram->init_lock);
317 if (init_done(zram)) {
318 up_write(&zram->init_lock);
319 pr_info("Can't change algorithm for initialized device\n");
320 return -EBUSY;
323 strlcpy(zram->compressor, compressor, sizeof(compressor));
324 up_write(&zram->init_lock);
325 return len;
328 static ssize_t compact_store(struct device *dev,
329 struct device_attribute *attr, const char *buf, size_t len)
331 struct zram *zram = dev_to_zram(dev);
332 struct zram_meta *meta;
334 down_read(&zram->init_lock);
335 if (!init_done(zram)) {
336 up_read(&zram->init_lock);
337 return -EINVAL;
340 meta = zram->meta;
341 zs_compact(meta->mem_pool);
342 up_read(&zram->init_lock);
344 return len;
347 static ssize_t io_stat_show(struct device *dev,
348 struct device_attribute *attr, char *buf)
350 struct zram *zram = dev_to_zram(dev);
351 ssize_t ret;
353 down_read(&zram->init_lock);
354 ret = scnprintf(buf, PAGE_SIZE,
355 "%8llu %8llu %8llu %8llu\n",
356 (u64)atomic64_read(&zram->stats.failed_reads),
357 (u64)atomic64_read(&zram->stats.failed_writes),
358 (u64)atomic64_read(&zram->stats.invalid_io),
359 (u64)atomic64_read(&zram->stats.notify_free));
360 up_read(&zram->init_lock);
362 return ret;
365 static ssize_t mm_stat_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
368 struct zram *zram = dev_to_zram(dev);
369 struct zs_pool_stats pool_stats;
370 u64 orig_size, mem_used = 0;
371 long max_used;
372 ssize_t ret;
374 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
376 down_read(&zram->init_lock);
377 if (init_done(zram)) {
378 mem_used = zs_get_total_pages(zram->meta->mem_pool);
379 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
382 orig_size = atomic64_read(&zram->stats.pages_stored);
383 max_used = atomic_long_read(&zram->stats.max_used_pages);
385 ret = scnprintf(buf, PAGE_SIZE,
386 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
387 orig_size << PAGE_SHIFT,
388 (u64)atomic64_read(&zram->stats.compr_data_size),
389 mem_used << PAGE_SHIFT,
390 zram->limit_pages << PAGE_SHIFT,
391 max_used << PAGE_SHIFT,
392 (u64)atomic64_read(&zram->stats.same_pages),
393 pool_stats.pages_compacted);
394 up_read(&zram->init_lock);
396 return ret;
399 static ssize_t debug_stat_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
402 int version = 1;
403 struct zram *zram = dev_to_zram(dev);
404 ssize_t ret;
406 down_read(&zram->init_lock);
407 ret = scnprintf(buf, PAGE_SIZE,
408 "version: %d\n%8llu\n",
409 version,
410 (u64)atomic64_read(&zram->stats.writestall));
411 up_read(&zram->init_lock);
413 return ret;
416 static DEVICE_ATTR_RO(io_stat);
417 static DEVICE_ATTR_RO(mm_stat);
418 static DEVICE_ATTR_RO(debug_stat);
420 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
422 size_t num_pages = disksize >> PAGE_SHIFT;
423 size_t index;
425 /* Free all pages that are still in this zram device */
426 for (index = 0; index < num_pages; index++) {
427 unsigned long handle = meta->table[index].handle;
429 * No memory is allocated for same element filled pages.
430 * Simply clear same page flag.
432 if (!handle || zram_test_flag(meta, index, ZRAM_SAME))
433 continue;
435 zs_free(meta->mem_pool, handle);
438 zs_destroy_pool(meta->mem_pool);
439 vfree(meta->table);
440 kfree(meta);
443 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
445 size_t num_pages;
446 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
448 if (!meta)
449 return NULL;
451 num_pages = disksize >> PAGE_SHIFT;
452 meta->table = vzalloc(num_pages * sizeof(*meta->table));
453 if (!meta->table) {
454 pr_err("Error allocating zram address table\n");
455 goto out_error;
458 meta->mem_pool = zs_create_pool(pool_name);
459 if (!meta->mem_pool) {
460 pr_err("Error creating memory pool\n");
461 goto out_error;
464 return meta;
466 out_error:
467 vfree(meta->table);
468 kfree(meta);
469 return NULL;
473 * To protect concurrent access to the same index entry,
474 * caller should hold this table index entry's bit_spinlock to
475 * indicate this index entry is accessing.
477 static void zram_free_page(struct zram *zram, size_t index)
479 struct zram_meta *meta = zram->meta;
480 unsigned long handle = meta->table[index].handle;
483 * No memory is allocated for same element filled pages.
484 * Simply clear same page flag.
486 if (zram_test_flag(meta, index, ZRAM_SAME)) {
487 zram_clear_flag(meta, index, ZRAM_SAME);
488 zram_clear_element(meta, index);
489 atomic64_dec(&zram->stats.same_pages);
490 return;
493 if (!handle)
494 return;
496 zs_free(meta->mem_pool, handle);
498 atomic64_sub(zram_get_obj_size(meta, index),
499 &zram->stats.compr_data_size);
500 atomic64_dec(&zram->stats.pages_stored);
502 meta->table[index].handle = 0;
503 zram_set_obj_size(meta, index, 0);
506 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
508 int ret = 0;
509 unsigned char *cmem;
510 struct zram_meta *meta = zram->meta;
511 unsigned long handle;
512 unsigned int size;
514 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
515 handle = meta->table[index].handle;
516 size = zram_get_obj_size(meta, index);
518 if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) {
519 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
520 zram_fill_page(mem, PAGE_SIZE, meta->table[index].element);
521 return 0;
524 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
525 if (size == PAGE_SIZE) {
526 memcpy(mem, cmem, PAGE_SIZE);
527 } else {
528 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
530 ret = zcomp_decompress(zstrm, cmem, size, mem);
531 zcomp_stream_put(zram->comp);
533 zs_unmap_object(meta->mem_pool, handle);
534 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
536 /* Should NEVER happen. Return bio error if it does. */
537 if (unlikely(ret)) {
538 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
539 return ret;
542 return 0;
545 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
546 u32 index, int offset)
548 int ret;
549 struct page *page;
550 unsigned char *user_mem, *uncmem = NULL;
551 struct zram_meta *meta = zram->meta;
552 page = bvec->bv_page;
554 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
555 if (unlikely(!meta->table[index].handle) ||
556 zram_test_flag(meta, index, ZRAM_SAME)) {
557 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
558 handle_same_page(bvec, meta->table[index].element);
559 return 0;
561 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
563 if (is_partial_io(bvec))
564 /* Use a temporary buffer to decompress the page */
565 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
567 user_mem = kmap_atomic(page);
568 if (!is_partial_io(bvec))
569 uncmem = user_mem;
571 if (!uncmem) {
572 pr_err("Unable to allocate temp memory\n");
573 ret = -ENOMEM;
574 goto out_cleanup;
577 ret = zram_decompress_page(zram, uncmem, index);
578 /* Should NEVER happen. Return bio error if it does. */
579 if (unlikely(ret))
580 goto out_cleanup;
582 if (is_partial_io(bvec))
583 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
584 bvec->bv_len);
586 flush_dcache_page(page);
587 ret = 0;
588 out_cleanup:
589 kunmap_atomic(user_mem);
590 if (is_partial_io(bvec))
591 kfree(uncmem);
592 return ret;
595 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
596 int offset)
598 int ret = 0;
599 unsigned int clen;
600 unsigned long handle = 0;
601 struct page *page;
602 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
603 struct zram_meta *meta = zram->meta;
604 struct zcomp_strm *zstrm = NULL;
605 unsigned long alloced_pages;
606 unsigned long element;
608 page = bvec->bv_page;
609 if (is_partial_io(bvec)) {
611 * This is a partial IO. We need to read the full page
612 * before to write the changes.
614 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
615 if (!uncmem) {
616 ret = -ENOMEM;
617 goto out;
619 ret = zram_decompress_page(zram, uncmem, index);
620 if (ret)
621 goto out;
624 compress_again:
625 user_mem = kmap_atomic(page);
626 if (is_partial_io(bvec)) {
627 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
628 bvec->bv_len);
629 kunmap_atomic(user_mem);
630 user_mem = NULL;
631 } else {
632 uncmem = user_mem;
635 if (page_same_filled(uncmem, &element)) {
636 if (user_mem)
637 kunmap_atomic(user_mem);
638 /* Free memory associated with this sector now. */
639 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
640 zram_free_page(zram, index);
641 zram_set_flag(meta, index, ZRAM_SAME);
642 zram_set_element(meta, index, element);
643 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
645 atomic64_inc(&zram->stats.same_pages);
646 ret = 0;
647 goto out;
650 zstrm = zcomp_stream_get(zram->comp);
651 ret = zcomp_compress(zstrm, uncmem, &clen);
652 if (!is_partial_io(bvec)) {
653 kunmap_atomic(user_mem);
654 user_mem = NULL;
655 uncmem = NULL;
658 if (unlikely(ret)) {
659 pr_err("Compression failed! err=%d\n", ret);
660 goto out;
663 src = zstrm->buffer;
664 if (unlikely(clen > max_zpage_size)) {
665 clen = PAGE_SIZE;
666 if (is_partial_io(bvec))
667 src = uncmem;
671 * handle allocation has 2 paths:
672 * a) fast path is executed with preemption disabled (for
673 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
674 * since we can't sleep;
675 * b) slow path enables preemption and attempts to allocate
676 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
677 * put per-cpu compression stream and, thus, to re-do
678 * the compression once handle is allocated.
680 * if we have a 'non-null' handle here then we are coming
681 * from the slow path and handle has already been allocated.
683 if (!handle)
684 handle = zs_malloc(meta->mem_pool, clen,
685 __GFP_KSWAPD_RECLAIM |
686 __GFP_NOWARN |
687 __GFP_HIGHMEM |
688 __GFP_MOVABLE);
689 if (!handle) {
690 zcomp_stream_put(zram->comp);
691 zstrm = NULL;
693 atomic64_inc(&zram->stats.writestall);
695 handle = zs_malloc(meta->mem_pool, clen,
696 GFP_NOIO | __GFP_HIGHMEM |
697 __GFP_MOVABLE);
698 if (handle)
699 goto compress_again;
701 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
702 index, clen);
703 ret = -ENOMEM;
704 goto out;
707 alloced_pages = zs_get_total_pages(meta->mem_pool);
708 update_used_max(zram, alloced_pages);
710 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
711 zs_free(meta->mem_pool, handle);
712 ret = -ENOMEM;
713 goto out;
716 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
718 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
719 src = kmap_atomic(page);
720 memcpy(cmem, src, PAGE_SIZE);
721 kunmap_atomic(src);
722 } else {
723 memcpy(cmem, src, clen);
726 zcomp_stream_put(zram->comp);
727 zstrm = NULL;
728 zs_unmap_object(meta->mem_pool, handle);
731 * Free memory associated with this sector
732 * before overwriting unused sectors.
734 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
735 zram_free_page(zram, index);
737 meta->table[index].handle = handle;
738 zram_set_obj_size(meta, index, clen);
739 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
741 /* Update stats */
742 atomic64_add(clen, &zram->stats.compr_data_size);
743 atomic64_inc(&zram->stats.pages_stored);
744 out:
745 if (zstrm)
746 zcomp_stream_put(zram->comp);
747 if (is_partial_io(bvec))
748 kfree(uncmem);
749 return ret;
753 * zram_bio_discard - handler on discard request
754 * @index: physical block index in PAGE_SIZE units
755 * @offset: byte offset within physical block
757 static void zram_bio_discard(struct zram *zram, u32 index,
758 int offset, struct bio *bio)
760 size_t n = bio->bi_iter.bi_size;
761 struct zram_meta *meta = zram->meta;
764 * zram manages data in physical block size units. Because logical block
765 * size isn't identical with physical block size on some arch, we
766 * could get a discard request pointing to a specific offset within a
767 * certain physical block. Although we can handle this request by
768 * reading that physiclal block and decompressing and partially zeroing
769 * and re-compressing and then re-storing it, this isn't reasonable
770 * because our intent with a discard request is to save memory. So
771 * skipping this logical block is appropriate here.
773 if (offset) {
774 if (n <= (PAGE_SIZE - offset))
775 return;
777 n -= (PAGE_SIZE - offset);
778 index++;
781 while (n >= PAGE_SIZE) {
782 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
783 zram_free_page(zram, index);
784 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
785 atomic64_inc(&zram->stats.notify_free);
786 index++;
787 n -= PAGE_SIZE;
791 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
792 int offset, bool is_write)
794 unsigned long start_time = jiffies;
795 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
796 int ret;
798 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
799 &zram->disk->part0);
801 if (!is_write) {
802 atomic64_inc(&zram->stats.num_reads);
803 ret = zram_bvec_read(zram, bvec, index, offset);
804 } else {
805 atomic64_inc(&zram->stats.num_writes);
806 ret = zram_bvec_write(zram, bvec, index, offset);
809 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
811 if (unlikely(ret)) {
812 if (!is_write)
813 atomic64_inc(&zram->stats.failed_reads);
814 else
815 atomic64_inc(&zram->stats.failed_writes);
818 return ret;
821 static void __zram_make_request(struct zram *zram, struct bio *bio)
823 int offset;
824 u32 index;
825 struct bio_vec bvec;
826 struct bvec_iter iter;
828 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
829 offset = (bio->bi_iter.bi_sector &
830 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
832 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
833 zram_bio_discard(zram, index, offset, bio);
834 bio_endio(bio);
835 return;
838 bio_for_each_segment(bvec, bio, iter) {
839 int max_transfer_size = PAGE_SIZE - offset;
841 if (bvec.bv_len > max_transfer_size) {
843 * zram_bvec_rw() can only make operation on a single
844 * zram page. Split the bio vector.
846 struct bio_vec bv;
848 bv.bv_page = bvec.bv_page;
849 bv.bv_len = max_transfer_size;
850 bv.bv_offset = bvec.bv_offset;
852 if (zram_bvec_rw(zram, &bv, index, offset,
853 op_is_write(bio_op(bio))) < 0)
854 goto out;
856 bv.bv_len = bvec.bv_len - max_transfer_size;
857 bv.bv_offset += max_transfer_size;
858 if (zram_bvec_rw(zram, &bv, index + 1, 0,
859 op_is_write(bio_op(bio))) < 0)
860 goto out;
861 } else
862 if (zram_bvec_rw(zram, &bvec, index, offset,
863 op_is_write(bio_op(bio))) < 0)
864 goto out;
866 update_position(&index, &offset, &bvec);
869 bio_endio(bio);
870 return;
872 out:
873 bio_io_error(bio);
877 * Handler function for all zram I/O requests.
879 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
881 struct zram *zram = queue->queuedata;
883 blk_queue_split(queue, &bio, queue->bio_split);
885 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
886 bio->bi_iter.bi_size)) {
887 atomic64_inc(&zram->stats.invalid_io);
888 goto error;
891 __zram_make_request(zram, bio);
892 return BLK_QC_T_NONE;
894 error:
895 bio_io_error(bio);
896 return BLK_QC_T_NONE;
899 static void zram_slot_free_notify(struct block_device *bdev,
900 unsigned long index)
902 struct zram *zram;
903 struct zram_meta *meta;
905 zram = bdev->bd_disk->private_data;
906 meta = zram->meta;
908 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
909 zram_free_page(zram, index);
910 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
911 atomic64_inc(&zram->stats.notify_free);
914 static int zram_rw_page(struct block_device *bdev, sector_t sector,
915 struct page *page, bool is_write)
917 int offset, err = -EIO;
918 u32 index;
919 struct zram *zram;
920 struct bio_vec bv;
922 zram = bdev->bd_disk->private_data;
924 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
925 atomic64_inc(&zram->stats.invalid_io);
926 err = -EINVAL;
927 goto out;
930 index = sector >> SECTORS_PER_PAGE_SHIFT;
931 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
933 bv.bv_page = page;
934 bv.bv_len = PAGE_SIZE;
935 bv.bv_offset = 0;
937 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
938 out:
940 * If I/O fails, just return error(ie, non-zero) without
941 * calling page_endio.
942 * It causes resubmit the I/O with bio request by upper functions
943 * of rw_page(e.g., swap_readpage, __swap_writepage) and
944 * bio->bi_end_io does things to handle the error
945 * (e.g., SetPageError, set_page_dirty and extra works).
947 if (err == 0)
948 page_endio(page, is_write, 0);
949 return err;
952 static void zram_reset_device(struct zram *zram)
954 struct zram_meta *meta;
955 struct zcomp *comp;
956 u64 disksize;
958 down_write(&zram->init_lock);
960 zram->limit_pages = 0;
962 if (!init_done(zram)) {
963 up_write(&zram->init_lock);
964 return;
967 meta = zram->meta;
968 comp = zram->comp;
969 disksize = zram->disksize;
971 /* Reset stats */
972 memset(&zram->stats, 0, sizeof(zram->stats));
973 zram->disksize = 0;
975 set_capacity(zram->disk, 0);
976 part_stat_set_all(&zram->disk->part0, 0);
978 up_write(&zram->init_lock);
979 /* I/O operation under all of CPU are done so let's free */
980 zram_meta_free(meta, disksize);
981 zcomp_destroy(comp);
984 static ssize_t disksize_store(struct device *dev,
985 struct device_attribute *attr, const char *buf, size_t len)
987 u64 disksize;
988 struct zcomp *comp;
989 struct zram_meta *meta;
990 struct zram *zram = dev_to_zram(dev);
991 int err;
993 disksize = memparse(buf, NULL);
994 if (!disksize)
995 return -EINVAL;
997 disksize = PAGE_ALIGN(disksize);
998 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
999 if (!meta)
1000 return -ENOMEM;
1002 comp = zcomp_create(zram->compressor);
1003 if (IS_ERR(comp)) {
1004 pr_err("Cannot initialise %s compressing backend\n",
1005 zram->compressor);
1006 err = PTR_ERR(comp);
1007 goto out_free_meta;
1010 down_write(&zram->init_lock);
1011 if (init_done(zram)) {
1012 pr_info("Cannot change disksize for initialized device\n");
1013 err = -EBUSY;
1014 goto out_destroy_comp;
1017 zram->meta = meta;
1018 zram->comp = comp;
1019 zram->disksize = disksize;
1020 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1021 zram_revalidate_disk(zram);
1022 up_write(&zram->init_lock);
1024 return len;
1026 out_destroy_comp:
1027 up_write(&zram->init_lock);
1028 zcomp_destroy(comp);
1029 out_free_meta:
1030 zram_meta_free(meta, disksize);
1031 return err;
1034 static ssize_t reset_store(struct device *dev,
1035 struct device_attribute *attr, const char *buf, size_t len)
1037 int ret;
1038 unsigned short do_reset;
1039 struct zram *zram;
1040 struct block_device *bdev;
1042 ret = kstrtou16(buf, 10, &do_reset);
1043 if (ret)
1044 return ret;
1046 if (!do_reset)
1047 return -EINVAL;
1049 zram = dev_to_zram(dev);
1050 bdev = bdget_disk(zram->disk, 0);
1051 if (!bdev)
1052 return -ENOMEM;
1054 mutex_lock(&bdev->bd_mutex);
1055 /* Do not reset an active device or claimed device */
1056 if (bdev->bd_openers || zram->claim) {
1057 mutex_unlock(&bdev->bd_mutex);
1058 bdput(bdev);
1059 return -EBUSY;
1062 /* From now on, anyone can't open /dev/zram[0-9] */
1063 zram->claim = true;
1064 mutex_unlock(&bdev->bd_mutex);
1066 /* Make sure all the pending I/O are finished */
1067 fsync_bdev(bdev);
1068 zram_reset_device(zram);
1069 zram_revalidate_disk(zram);
1070 bdput(bdev);
1072 mutex_lock(&bdev->bd_mutex);
1073 zram->claim = false;
1074 mutex_unlock(&bdev->bd_mutex);
1076 return len;
1079 static int zram_open(struct block_device *bdev, fmode_t mode)
1081 int ret = 0;
1082 struct zram *zram;
1084 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1086 zram = bdev->bd_disk->private_data;
1087 /* zram was claimed to reset so open request fails */
1088 if (zram->claim)
1089 ret = -EBUSY;
1091 return ret;
1094 static const struct block_device_operations zram_devops = {
1095 .open = zram_open,
1096 .swap_slot_free_notify = zram_slot_free_notify,
1097 .rw_page = zram_rw_page,
1098 .owner = THIS_MODULE
1101 static DEVICE_ATTR_WO(compact);
1102 static DEVICE_ATTR_RW(disksize);
1103 static DEVICE_ATTR_RO(initstate);
1104 static DEVICE_ATTR_WO(reset);
1105 static DEVICE_ATTR_WO(mem_limit);
1106 static DEVICE_ATTR_WO(mem_used_max);
1107 static DEVICE_ATTR_RW(max_comp_streams);
1108 static DEVICE_ATTR_RW(comp_algorithm);
1110 static struct attribute *zram_disk_attrs[] = {
1111 &dev_attr_disksize.attr,
1112 &dev_attr_initstate.attr,
1113 &dev_attr_reset.attr,
1114 &dev_attr_compact.attr,
1115 &dev_attr_mem_limit.attr,
1116 &dev_attr_mem_used_max.attr,
1117 &dev_attr_max_comp_streams.attr,
1118 &dev_attr_comp_algorithm.attr,
1119 &dev_attr_io_stat.attr,
1120 &dev_attr_mm_stat.attr,
1121 &dev_attr_debug_stat.attr,
1122 NULL,
1125 static struct attribute_group zram_disk_attr_group = {
1126 .attrs = zram_disk_attrs,
1130 * Allocate and initialize new zram device. the function returns
1131 * '>= 0' device_id upon success, and negative value otherwise.
1133 static int zram_add(void)
1135 struct zram *zram;
1136 struct request_queue *queue;
1137 int ret, device_id;
1139 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1140 if (!zram)
1141 return -ENOMEM;
1143 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1144 if (ret < 0)
1145 goto out_free_dev;
1146 device_id = ret;
1148 init_rwsem(&zram->init_lock);
1150 queue = blk_alloc_queue(GFP_KERNEL);
1151 if (!queue) {
1152 pr_err("Error allocating disk queue for device %d\n",
1153 device_id);
1154 ret = -ENOMEM;
1155 goto out_free_idr;
1158 blk_queue_make_request(queue, zram_make_request);
1160 /* gendisk structure */
1161 zram->disk = alloc_disk(1);
1162 if (!zram->disk) {
1163 pr_err("Error allocating disk structure for device %d\n",
1164 device_id);
1165 ret = -ENOMEM;
1166 goto out_free_queue;
1169 zram->disk->major = zram_major;
1170 zram->disk->first_minor = device_id;
1171 zram->disk->fops = &zram_devops;
1172 zram->disk->queue = queue;
1173 zram->disk->queue->queuedata = zram;
1174 zram->disk->private_data = zram;
1175 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1177 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1178 set_capacity(zram->disk, 0);
1179 /* zram devices sort of resembles non-rotational disks */
1180 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1181 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1183 * To ensure that we always get PAGE_SIZE aligned
1184 * and n*PAGE_SIZED sized I/O requests.
1186 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1187 blk_queue_logical_block_size(zram->disk->queue,
1188 ZRAM_LOGICAL_BLOCK_SIZE);
1189 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1190 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1191 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1192 zram->disk->queue->limits.max_sectors = SECTORS_PER_PAGE;
1193 zram->disk->queue->limits.chunk_sectors = 0;
1194 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1196 * zram_bio_discard() will clear all logical blocks if logical block
1197 * size is identical with physical block size(PAGE_SIZE). But if it is
1198 * different, we will skip discarding some parts of logical blocks in
1199 * the part of the request range which isn't aligned to physical block
1200 * size. So we can't ensure that all discarded logical blocks are
1201 * zeroed.
1203 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1204 zram->disk->queue->limits.discard_zeroes_data = 1;
1205 else
1206 zram->disk->queue->limits.discard_zeroes_data = 0;
1207 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1209 add_disk(zram->disk);
1211 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1212 &zram_disk_attr_group);
1213 if (ret < 0) {
1214 pr_err("Error creating sysfs group for device %d\n",
1215 device_id);
1216 goto out_free_disk;
1218 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1219 zram->meta = NULL;
1221 pr_info("Added device: %s\n", zram->disk->disk_name);
1222 return device_id;
1224 out_free_disk:
1225 del_gendisk(zram->disk);
1226 put_disk(zram->disk);
1227 out_free_queue:
1228 blk_cleanup_queue(queue);
1229 out_free_idr:
1230 idr_remove(&zram_index_idr, device_id);
1231 out_free_dev:
1232 kfree(zram);
1233 return ret;
1236 static int zram_remove(struct zram *zram)
1238 struct block_device *bdev;
1240 bdev = bdget_disk(zram->disk, 0);
1241 if (!bdev)
1242 return -ENOMEM;
1244 mutex_lock(&bdev->bd_mutex);
1245 if (bdev->bd_openers || zram->claim) {
1246 mutex_unlock(&bdev->bd_mutex);
1247 bdput(bdev);
1248 return -EBUSY;
1251 zram->claim = true;
1252 mutex_unlock(&bdev->bd_mutex);
1255 * Remove sysfs first, so no one will perform a disksize
1256 * store while we destroy the devices. This also helps during
1257 * hot_remove -- zram_reset_device() is the last holder of
1258 * ->init_lock, no later/concurrent disksize_store() or any
1259 * other sysfs handlers are possible.
1261 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1262 &zram_disk_attr_group);
1264 /* Make sure all the pending I/O are finished */
1265 fsync_bdev(bdev);
1266 zram_reset_device(zram);
1267 bdput(bdev);
1269 pr_info("Removed device: %s\n", zram->disk->disk_name);
1271 blk_cleanup_queue(zram->disk->queue);
1272 del_gendisk(zram->disk);
1273 put_disk(zram->disk);
1274 kfree(zram);
1275 return 0;
1278 /* zram-control sysfs attributes */
1279 static ssize_t hot_add_show(struct class *class,
1280 struct class_attribute *attr,
1281 char *buf)
1283 int ret;
1285 mutex_lock(&zram_index_mutex);
1286 ret = zram_add();
1287 mutex_unlock(&zram_index_mutex);
1289 if (ret < 0)
1290 return ret;
1291 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1294 static ssize_t hot_remove_store(struct class *class,
1295 struct class_attribute *attr,
1296 const char *buf,
1297 size_t count)
1299 struct zram *zram;
1300 int ret, dev_id;
1302 /* dev_id is gendisk->first_minor, which is `int' */
1303 ret = kstrtoint(buf, 10, &dev_id);
1304 if (ret)
1305 return ret;
1306 if (dev_id < 0)
1307 return -EINVAL;
1309 mutex_lock(&zram_index_mutex);
1311 zram = idr_find(&zram_index_idr, dev_id);
1312 if (zram) {
1313 ret = zram_remove(zram);
1314 if (!ret)
1315 idr_remove(&zram_index_idr, dev_id);
1316 } else {
1317 ret = -ENODEV;
1320 mutex_unlock(&zram_index_mutex);
1321 return ret ? ret : count;
1325 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1326 * sense that reading from this file does alter the state of your system -- it
1327 * creates a new un-initialized zram device and returns back this device's
1328 * device_id (or an error code if it fails to create a new device).
1330 static struct class_attribute zram_control_class_attrs[] = {
1331 __ATTR(hot_add, 0400, hot_add_show, NULL),
1332 __ATTR_WO(hot_remove),
1333 __ATTR_NULL,
1336 static struct class zram_control_class = {
1337 .name = "zram-control",
1338 .owner = THIS_MODULE,
1339 .class_attrs = zram_control_class_attrs,
1342 static int zram_remove_cb(int id, void *ptr, void *data)
1344 zram_remove(ptr);
1345 return 0;
1348 static void destroy_devices(void)
1350 class_unregister(&zram_control_class);
1351 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1352 idr_destroy(&zram_index_idr);
1353 unregister_blkdev(zram_major, "zram");
1354 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1357 static int __init zram_init(void)
1359 int ret;
1361 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1362 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1363 if (ret < 0)
1364 return ret;
1366 ret = class_register(&zram_control_class);
1367 if (ret) {
1368 pr_err("Unable to register zram-control class\n");
1369 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1370 return ret;
1373 zram_major = register_blkdev(0, "zram");
1374 if (zram_major <= 0) {
1375 pr_err("Unable to get major number\n");
1376 class_unregister(&zram_control_class);
1377 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1378 return -EBUSY;
1381 while (num_devices != 0) {
1382 mutex_lock(&zram_index_mutex);
1383 ret = zram_add();
1384 mutex_unlock(&zram_index_mutex);
1385 if (ret < 0)
1386 goto out_error;
1387 num_devices--;
1390 return 0;
1392 out_error:
1393 destroy_devices();
1394 return ret;
1397 static void __exit zram_exit(void)
1399 destroy_devices();
1402 module_init(zram_init);
1403 module_exit(zram_exit);
1405 module_param(num_devices, uint, 0);
1406 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1408 MODULE_LICENSE("Dual BSD/GPL");
1409 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1410 MODULE_DESCRIPTION("Compressed RAM Block Device");