2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/cpuhotplug.h>
38 static DEFINE_IDR(zram_index_idr
);
39 /* idr index must be protected */
40 static DEFINE_MUTEX(zram_index_mutex
);
42 static int zram_major
;
43 static const char *default_compressor
= "lzo";
45 /* Module params (documentation at end) */
46 static unsigned int num_devices
= 1;
48 static inline bool init_done(struct zram
*zram
)
50 return zram
->disksize
;
53 static inline struct zram
*dev_to_zram(struct device
*dev
)
55 return (struct zram
*)dev_to_disk(dev
)->private_data
;
58 /* flag operations require table entry bit_spin_lock() being held */
59 static int zram_test_flag(struct zram_meta
*meta
, u32 index
,
60 enum zram_pageflags flag
)
62 return meta
->table
[index
].value
& BIT(flag
);
65 static void zram_set_flag(struct zram_meta
*meta
, u32 index
,
66 enum zram_pageflags flag
)
68 meta
->table
[index
].value
|= BIT(flag
);
71 static void zram_clear_flag(struct zram_meta
*meta
, u32 index
,
72 enum zram_pageflags flag
)
74 meta
->table
[index
].value
&= ~BIT(flag
);
77 static inline void zram_set_element(struct zram_meta
*meta
, u32 index
,
78 unsigned long element
)
80 meta
->table
[index
].element
= element
;
83 static inline void zram_clear_element(struct zram_meta
*meta
, u32 index
)
85 meta
->table
[index
].element
= 0;
88 static size_t zram_get_obj_size(struct zram_meta
*meta
, u32 index
)
90 return meta
->table
[index
].value
& (BIT(ZRAM_FLAG_SHIFT
) - 1);
93 static void zram_set_obj_size(struct zram_meta
*meta
,
94 u32 index
, size_t size
)
96 unsigned long flags
= meta
->table
[index
].value
>> ZRAM_FLAG_SHIFT
;
98 meta
->table
[index
].value
= (flags
<< ZRAM_FLAG_SHIFT
) | size
;
101 static inline bool is_partial_io(struct bio_vec
*bvec
)
103 return bvec
->bv_len
!= PAGE_SIZE
;
106 static void zram_revalidate_disk(struct zram
*zram
)
108 revalidate_disk(zram
->disk
);
109 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
110 zram
->disk
->queue
->backing_dev_info
->capabilities
|=
111 BDI_CAP_STABLE_WRITES
;
115 * Check if request is within bounds and aligned on zram logical blocks.
117 static inline bool valid_io_request(struct zram
*zram
,
118 sector_t start
, unsigned int size
)
122 /* unaligned request */
123 if (unlikely(start
& (ZRAM_SECTOR_PER_LOGICAL_BLOCK
- 1)))
125 if (unlikely(size
& (ZRAM_LOGICAL_BLOCK_SIZE
- 1)))
128 end
= start
+ (size
>> SECTOR_SHIFT
);
129 bound
= zram
->disksize
>> SECTOR_SHIFT
;
130 /* out of range range */
131 if (unlikely(start
>= bound
|| end
> bound
|| start
> end
))
134 /* I/O request is valid */
138 static void update_position(u32
*index
, int *offset
, struct bio_vec
*bvec
)
140 if (*offset
+ bvec
->bv_len
>= PAGE_SIZE
)
142 *offset
= (*offset
+ bvec
->bv_len
) % PAGE_SIZE
;
145 static inline void update_used_max(struct zram
*zram
,
146 const unsigned long pages
)
148 unsigned long old_max
, cur_max
;
150 old_max
= atomic_long_read(&zram
->stats
.max_used_pages
);
155 old_max
= atomic_long_cmpxchg(
156 &zram
->stats
.max_used_pages
, cur_max
, pages
);
157 } while (old_max
!= cur_max
);
160 static inline void zram_fill_page(char *ptr
, unsigned long len
,
164 unsigned long *page
= (unsigned long *)ptr
;
166 WARN_ON_ONCE(!IS_ALIGNED(len
, sizeof(unsigned long)));
168 if (likely(value
== 0)) {
171 for (i
= 0; i
< len
/ sizeof(*page
); i
++)
176 static bool page_same_filled(void *ptr
, unsigned long *element
)
181 page
= (unsigned long *)ptr
;
183 for (pos
= 0; pos
< PAGE_SIZE
/ sizeof(*page
) - 1; pos
++) {
184 if (page
[pos
] != page
[pos
+ 1])
188 *element
= page
[pos
];
193 static void handle_same_page(struct bio_vec
*bvec
, unsigned long element
)
195 struct page
*page
= bvec
->bv_page
;
198 user_mem
= kmap_atomic(page
);
199 zram_fill_page(user_mem
+ bvec
->bv_offset
, bvec
->bv_len
, element
);
200 kunmap_atomic(user_mem
);
202 flush_dcache_page(page
);
205 static ssize_t
initstate_show(struct device
*dev
,
206 struct device_attribute
*attr
, char *buf
)
209 struct zram
*zram
= dev_to_zram(dev
);
211 down_read(&zram
->init_lock
);
212 val
= init_done(zram
);
213 up_read(&zram
->init_lock
);
215 return scnprintf(buf
, PAGE_SIZE
, "%u\n", val
);
218 static ssize_t
disksize_show(struct device
*dev
,
219 struct device_attribute
*attr
, char *buf
)
221 struct zram
*zram
= dev_to_zram(dev
);
223 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", zram
->disksize
);
226 static ssize_t
mem_limit_store(struct device
*dev
,
227 struct device_attribute
*attr
, const char *buf
, size_t len
)
231 struct zram
*zram
= dev_to_zram(dev
);
233 limit
= memparse(buf
, &tmp
);
234 if (buf
== tmp
) /* no chars parsed, invalid input */
237 down_write(&zram
->init_lock
);
238 zram
->limit_pages
= PAGE_ALIGN(limit
) >> PAGE_SHIFT
;
239 up_write(&zram
->init_lock
);
244 static ssize_t
mem_used_max_store(struct device
*dev
,
245 struct device_attribute
*attr
, const char *buf
, size_t len
)
249 struct zram
*zram
= dev_to_zram(dev
);
251 err
= kstrtoul(buf
, 10, &val
);
255 down_read(&zram
->init_lock
);
256 if (init_done(zram
)) {
257 struct zram_meta
*meta
= zram
->meta
;
258 atomic_long_set(&zram
->stats
.max_used_pages
,
259 zs_get_total_pages(meta
->mem_pool
));
261 up_read(&zram
->init_lock
);
267 * We switched to per-cpu streams and this attr is not needed anymore.
268 * However, we will keep it around for some time, because:
269 * a) we may revert per-cpu streams in the future
270 * b) it's visible to user space and we need to follow our 2 years
271 * retirement rule; but we already have a number of 'soon to be
272 * altered' attrs, so max_comp_streams need to wait for the next
275 static ssize_t
max_comp_streams_show(struct device
*dev
,
276 struct device_attribute
*attr
, char *buf
)
278 return scnprintf(buf
, PAGE_SIZE
, "%d\n", num_online_cpus());
281 static ssize_t
max_comp_streams_store(struct device
*dev
,
282 struct device_attribute
*attr
, const char *buf
, size_t len
)
287 static ssize_t
comp_algorithm_show(struct device
*dev
,
288 struct device_attribute
*attr
, char *buf
)
291 struct zram
*zram
= dev_to_zram(dev
);
293 down_read(&zram
->init_lock
);
294 sz
= zcomp_available_show(zram
->compressor
, buf
);
295 up_read(&zram
->init_lock
);
300 static ssize_t
comp_algorithm_store(struct device
*dev
,
301 struct device_attribute
*attr
, const char *buf
, size_t len
)
303 struct zram
*zram
= dev_to_zram(dev
);
304 char compressor
[CRYPTO_MAX_ALG_NAME
];
307 strlcpy(compressor
, buf
, sizeof(compressor
));
308 /* ignore trailing newline */
309 sz
= strlen(compressor
);
310 if (sz
> 0 && compressor
[sz
- 1] == '\n')
311 compressor
[sz
- 1] = 0x00;
313 if (!zcomp_available_algorithm(compressor
))
316 down_write(&zram
->init_lock
);
317 if (init_done(zram
)) {
318 up_write(&zram
->init_lock
);
319 pr_info("Can't change algorithm for initialized device\n");
323 strlcpy(zram
->compressor
, compressor
, sizeof(compressor
));
324 up_write(&zram
->init_lock
);
328 static ssize_t
compact_store(struct device
*dev
,
329 struct device_attribute
*attr
, const char *buf
, size_t len
)
331 struct zram
*zram
= dev_to_zram(dev
);
332 struct zram_meta
*meta
;
334 down_read(&zram
->init_lock
);
335 if (!init_done(zram
)) {
336 up_read(&zram
->init_lock
);
341 zs_compact(meta
->mem_pool
);
342 up_read(&zram
->init_lock
);
347 static ssize_t
io_stat_show(struct device
*dev
,
348 struct device_attribute
*attr
, char *buf
)
350 struct zram
*zram
= dev_to_zram(dev
);
353 down_read(&zram
->init_lock
);
354 ret
= scnprintf(buf
, PAGE_SIZE
,
355 "%8llu %8llu %8llu %8llu\n",
356 (u64
)atomic64_read(&zram
->stats
.failed_reads
),
357 (u64
)atomic64_read(&zram
->stats
.failed_writes
),
358 (u64
)atomic64_read(&zram
->stats
.invalid_io
),
359 (u64
)atomic64_read(&zram
->stats
.notify_free
));
360 up_read(&zram
->init_lock
);
365 static ssize_t
mm_stat_show(struct device
*dev
,
366 struct device_attribute
*attr
, char *buf
)
368 struct zram
*zram
= dev_to_zram(dev
);
369 struct zs_pool_stats pool_stats
;
370 u64 orig_size
, mem_used
= 0;
374 memset(&pool_stats
, 0x00, sizeof(struct zs_pool_stats
));
376 down_read(&zram
->init_lock
);
377 if (init_done(zram
)) {
378 mem_used
= zs_get_total_pages(zram
->meta
->mem_pool
);
379 zs_pool_stats(zram
->meta
->mem_pool
, &pool_stats
);
382 orig_size
= atomic64_read(&zram
->stats
.pages_stored
);
383 max_used
= atomic_long_read(&zram
->stats
.max_used_pages
);
385 ret
= scnprintf(buf
, PAGE_SIZE
,
386 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
387 orig_size
<< PAGE_SHIFT
,
388 (u64
)atomic64_read(&zram
->stats
.compr_data_size
),
389 mem_used
<< PAGE_SHIFT
,
390 zram
->limit_pages
<< PAGE_SHIFT
,
391 max_used
<< PAGE_SHIFT
,
392 (u64
)atomic64_read(&zram
->stats
.same_pages
),
393 pool_stats
.pages_compacted
);
394 up_read(&zram
->init_lock
);
399 static ssize_t
debug_stat_show(struct device
*dev
,
400 struct device_attribute
*attr
, char *buf
)
403 struct zram
*zram
= dev_to_zram(dev
);
406 down_read(&zram
->init_lock
);
407 ret
= scnprintf(buf
, PAGE_SIZE
,
408 "version: %d\n%8llu\n",
410 (u64
)atomic64_read(&zram
->stats
.writestall
));
411 up_read(&zram
->init_lock
);
416 static DEVICE_ATTR_RO(io_stat
);
417 static DEVICE_ATTR_RO(mm_stat
);
418 static DEVICE_ATTR_RO(debug_stat
);
420 static void zram_meta_free(struct zram_meta
*meta
, u64 disksize
)
422 size_t num_pages
= disksize
>> PAGE_SHIFT
;
425 /* Free all pages that are still in this zram device */
426 for (index
= 0; index
< num_pages
; index
++) {
427 unsigned long handle
= meta
->table
[index
].handle
;
429 * No memory is allocated for same element filled pages.
430 * Simply clear same page flag.
432 if (!handle
|| zram_test_flag(meta
, index
, ZRAM_SAME
))
435 zs_free(meta
->mem_pool
, handle
);
438 zs_destroy_pool(meta
->mem_pool
);
443 static struct zram_meta
*zram_meta_alloc(char *pool_name
, u64 disksize
)
446 struct zram_meta
*meta
= kmalloc(sizeof(*meta
), GFP_KERNEL
);
451 num_pages
= disksize
>> PAGE_SHIFT
;
452 meta
->table
= vzalloc(num_pages
* sizeof(*meta
->table
));
454 pr_err("Error allocating zram address table\n");
458 meta
->mem_pool
= zs_create_pool(pool_name
);
459 if (!meta
->mem_pool
) {
460 pr_err("Error creating memory pool\n");
473 * To protect concurrent access to the same index entry,
474 * caller should hold this table index entry's bit_spinlock to
475 * indicate this index entry is accessing.
477 static void zram_free_page(struct zram
*zram
, size_t index
)
479 struct zram_meta
*meta
= zram
->meta
;
480 unsigned long handle
= meta
->table
[index
].handle
;
483 * No memory is allocated for same element filled pages.
484 * Simply clear same page flag.
486 if (zram_test_flag(meta
, index
, ZRAM_SAME
)) {
487 zram_clear_flag(meta
, index
, ZRAM_SAME
);
488 zram_clear_element(meta
, index
);
489 atomic64_dec(&zram
->stats
.same_pages
);
496 zs_free(meta
->mem_pool
, handle
);
498 atomic64_sub(zram_get_obj_size(meta
, index
),
499 &zram
->stats
.compr_data_size
);
500 atomic64_dec(&zram
->stats
.pages_stored
);
502 meta
->table
[index
].handle
= 0;
503 zram_set_obj_size(meta
, index
, 0);
506 static int zram_decompress_page(struct zram
*zram
, char *mem
, u32 index
)
510 struct zram_meta
*meta
= zram
->meta
;
511 unsigned long handle
;
514 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
515 handle
= meta
->table
[index
].handle
;
516 size
= zram_get_obj_size(meta
, index
);
518 if (!handle
|| zram_test_flag(meta
, index
, ZRAM_SAME
)) {
519 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
520 zram_fill_page(mem
, PAGE_SIZE
, meta
->table
[index
].element
);
524 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_RO
);
525 if (size
== PAGE_SIZE
) {
526 memcpy(mem
, cmem
, PAGE_SIZE
);
528 struct zcomp_strm
*zstrm
= zcomp_stream_get(zram
->comp
);
530 ret
= zcomp_decompress(zstrm
, cmem
, size
, mem
);
531 zcomp_stream_put(zram
->comp
);
533 zs_unmap_object(meta
->mem_pool
, handle
);
534 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
536 /* Should NEVER happen. Return bio error if it does. */
538 pr_err("Decompression failed! err=%d, page=%u\n", ret
, index
);
545 static int zram_bvec_read(struct zram
*zram
, struct bio_vec
*bvec
,
546 u32 index
, int offset
)
550 unsigned char *user_mem
, *uncmem
= NULL
;
551 struct zram_meta
*meta
= zram
->meta
;
552 page
= bvec
->bv_page
;
554 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
555 if (unlikely(!meta
->table
[index
].handle
) ||
556 zram_test_flag(meta
, index
, ZRAM_SAME
)) {
557 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
558 handle_same_page(bvec
, meta
->table
[index
].element
);
561 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
563 if (is_partial_io(bvec
))
564 /* Use a temporary buffer to decompress the page */
565 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
567 user_mem
= kmap_atomic(page
);
568 if (!is_partial_io(bvec
))
572 pr_err("Unable to allocate temp memory\n");
577 ret
= zram_decompress_page(zram
, uncmem
, index
);
578 /* Should NEVER happen. Return bio error if it does. */
582 if (is_partial_io(bvec
))
583 memcpy(user_mem
+ bvec
->bv_offset
, uncmem
+ offset
,
586 flush_dcache_page(page
);
589 kunmap_atomic(user_mem
);
590 if (is_partial_io(bvec
))
595 static int zram_bvec_write(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
600 unsigned long handle
= 0;
602 unsigned char *user_mem
, *cmem
, *src
, *uncmem
= NULL
;
603 struct zram_meta
*meta
= zram
->meta
;
604 struct zcomp_strm
*zstrm
= NULL
;
605 unsigned long alloced_pages
;
606 unsigned long element
;
608 page
= bvec
->bv_page
;
609 if (is_partial_io(bvec
)) {
611 * This is a partial IO. We need to read the full page
612 * before to write the changes.
614 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
619 ret
= zram_decompress_page(zram
, uncmem
, index
);
625 user_mem
= kmap_atomic(page
);
626 if (is_partial_io(bvec
)) {
627 memcpy(uncmem
+ offset
, user_mem
+ bvec
->bv_offset
,
629 kunmap_atomic(user_mem
);
635 if (page_same_filled(uncmem
, &element
)) {
637 kunmap_atomic(user_mem
);
638 /* Free memory associated with this sector now. */
639 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
640 zram_free_page(zram
, index
);
641 zram_set_flag(meta
, index
, ZRAM_SAME
);
642 zram_set_element(meta
, index
, element
);
643 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
645 atomic64_inc(&zram
->stats
.same_pages
);
650 zstrm
= zcomp_stream_get(zram
->comp
);
651 ret
= zcomp_compress(zstrm
, uncmem
, &clen
);
652 if (!is_partial_io(bvec
)) {
653 kunmap_atomic(user_mem
);
659 pr_err("Compression failed! err=%d\n", ret
);
664 if (unlikely(clen
> max_zpage_size
)) {
666 if (is_partial_io(bvec
))
671 * handle allocation has 2 paths:
672 * a) fast path is executed with preemption disabled (for
673 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
674 * since we can't sleep;
675 * b) slow path enables preemption and attempts to allocate
676 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
677 * put per-cpu compression stream and, thus, to re-do
678 * the compression once handle is allocated.
680 * if we have a 'non-null' handle here then we are coming
681 * from the slow path and handle has already been allocated.
684 handle
= zs_malloc(meta
->mem_pool
, clen
,
685 __GFP_KSWAPD_RECLAIM
|
690 zcomp_stream_put(zram
->comp
);
693 atomic64_inc(&zram
->stats
.writestall
);
695 handle
= zs_malloc(meta
->mem_pool
, clen
,
696 GFP_NOIO
| __GFP_HIGHMEM
|
701 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
707 alloced_pages
= zs_get_total_pages(meta
->mem_pool
);
708 update_used_max(zram
, alloced_pages
);
710 if (zram
->limit_pages
&& alloced_pages
> zram
->limit_pages
) {
711 zs_free(meta
->mem_pool
, handle
);
716 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_WO
);
718 if ((clen
== PAGE_SIZE
) && !is_partial_io(bvec
)) {
719 src
= kmap_atomic(page
);
720 memcpy(cmem
, src
, PAGE_SIZE
);
723 memcpy(cmem
, src
, clen
);
726 zcomp_stream_put(zram
->comp
);
728 zs_unmap_object(meta
->mem_pool
, handle
);
731 * Free memory associated with this sector
732 * before overwriting unused sectors.
734 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
735 zram_free_page(zram
, index
);
737 meta
->table
[index
].handle
= handle
;
738 zram_set_obj_size(meta
, index
, clen
);
739 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
742 atomic64_add(clen
, &zram
->stats
.compr_data_size
);
743 atomic64_inc(&zram
->stats
.pages_stored
);
746 zcomp_stream_put(zram
->comp
);
747 if (is_partial_io(bvec
))
753 * zram_bio_discard - handler on discard request
754 * @index: physical block index in PAGE_SIZE units
755 * @offset: byte offset within physical block
757 static void zram_bio_discard(struct zram
*zram
, u32 index
,
758 int offset
, struct bio
*bio
)
760 size_t n
= bio
->bi_iter
.bi_size
;
761 struct zram_meta
*meta
= zram
->meta
;
764 * zram manages data in physical block size units. Because logical block
765 * size isn't identical with physical block size on some arch, we
766 * could get a discard request pointing to a specific offset within a
767 * certain physical block. Although we can handle this request by
768 * reading that physiclal block and decompressing and partially zeroing
769 * and re-compressing and then re-storing it, this isn't reasonable
770 * because our intent with a discard request is to save memory. So
771 * skipping this logical block is appropriate here.
774 if (n
<= (PAGE_SIZE
- offset
))
777 n
-= (PAGE_SIZE
- offset
);
781 while (n
>= PAGE_SIZE
) {
782 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
783 zram_free_page(zram
, index
);
784 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
785 atomic64_inc(&zram
->stats
.notify_free
);
791 static int zram_bvec_rw(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
792 int offset
, bool is_write
)
794 unsigned long start_time
= jiffies
;
795 int rw_acct
= is_write
? REQ_OP_WRITE
: REQ_OP_READ
;
798 generic_start_io_acct(rw_acct
, bvec
->bv_len
>> SECTOR_SHIFT
,
802 atomic64_inc(&zram
->stats
.num_reads
);
803 ret
= zram_bvec_read(zram
, bvec
, index
, offset
);
805 atomic64_inc(&zram
->stats
.num_writes
);
806 ret
= zram_bvec_write(zram
, bvec
, index
, offset
);
809 generic_end_io_acct(rw_acct
, &zram
->disk
->part0
, start_time
);
813 atomic64_inc(&zram
->stats
.failed_reads
);
815 atomic64_inc(&zram
->stats
.failed_writes
);
821 static void __zram_make_request(struct zram
*zram
, struct bio
*bio
)
826 struct bvec_iter iter
;
828 index
= bio
->bi_iter
.bi_sector
>> SECTORS_PER_PAGE_SHIFT
;
829 offset
= (bio
->bi_iter
.bi_sector
&
830 (SECTORS_PER_PAGE
- 1)) << SECTOR_SHIFT
;
832 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
)) {
833 zram_bio_discard(zram
, index
, offset
, bio
);
838 bio_for_each_segment(bvec
, bio
, iter
) {
839 int max_transfer_size
= PAGE_SIZE
- offset
;
841 if (bvec
.bv_len
> max_transfer_size
) {
843 * zram_bvec_rw() can only make operation on a single
844 * zram page. Split the bio vector.
848 bv
.bv_page
= bvec
.bv_page
;
849 bv
.bv_len
= max_transfer_size
;
850 bv
.bv_offset
= bvec
.bv_offset
;
852 if (zram_bvec_rw(zram
, &bv
, index
, offset
,
853 op_is_write(bio_op(bio
))) < 0)
856 bv
.bv_len
= bvec
.bv_len
- max_transfer_size
;
857 bv
.bv_offset
+= max_transfer_size
;
858 if (zram_bvec_rw(zram
, &bv
, index
+ 1, 0,
859 op_is_write(bio_op(bio
))) < 0)
862 if (zram_bvec_rw(zram
, &bvec
, index
, offset
,
863 op_is_write(bio_op(bio
))) < 0)
866 update_position(&index
, &offset
, &bvec
);
877 * Handler function for all zram I/O requests.
879 static blk_qc_t
zram_make_request(struct request_queue
*queue
, struct bio
*bio
)
881 struct zram
*zram
= queue
->queuedata
;
883 blk_queue_split(queue
, &bio
, queue
->bio_split
);
885 if (!valid_io_request(zram
, bio
->bi_iter
.bi_sector
,
886 bio
->bi_iter
.bi_size
)) {
887 atomic64_inc(&zram
->stats
.invalid_io
);
891 __zram_make_request(zram
, bio
);
892 return BLK_QC_T_NONE
;
896 return BLK_QC_T_NONE
;
899 static void zram_slot_free_notify(struct block_device
*bdev
,
903 struct zram_meta
*meta
;
905 zram
= bdev
->bd_disk
->private_data
;
908 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
909 zram_free_page(zram
, index
);
910 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
911 atomic64_inc(&zram
->stats
.notify_free
);
914 static int zram_rw_page(struct block_device
*bdev
, sector_t sector
,
915 struct page
*page
, bool is_write
)
917 int offset
, err
= -EIO
;
922 zram
= bdev
->bd_disk
->private_data
;
924 if (!valid_io_request(zram
, sector
, PAGE_SIZE
)) {
925 atomic64_inc(&zram
->stats
.invalid_io
);
930 index
= sector
>> SECTORS_PER_PAGE_SHIFT
;
931 offset
= (sector
& (SECTORS_PER_PAGE
- 1)) << SECTOR_SHIFT
;
934 bv
.bv_len
= PAGE_SIZE
;
937 err
= zram_bvec_rw(zram
, &bv
, index
, offset
, is_write
);
940 * If I/O fails, just return error(ie, non-zero) without
941 * calling page_endio.
942 * It causes resubmit the I/O with bio request by upper functions
943 * of rw_page(e.g., swap_readpage, __swap_writepage) and
944 * bio->bi_end_io does things to handle the error
945 * (e.g., SetPageError, set_page_dirty and extra works).
948 page_endio(page
, is_write
, 0);
952 static void zram_reset_device(struct zram
*zram
)
954 struct zram_meta
*meta
;
958 down_write(&zram
->init_lock
);
960 zram
->limit_pages
= 0;
962 if (!init_done(zram
)) {
963 up_write(&zram
->init_lock
);
969 disksize
= zram
->disksize
;
972 memset(&zram
->stats
, 0, sizeof(zram
->stats
));
975 set_capacity(zram
->disk
, 0);
976 part_stat_set_all(&zram
->disk
->part0
, 0);
978 up_write(&zram
->init_lock
);
979 /* I/O operation under all of CPU are done so let's free */
980 zram_meta_free(meta
, disksize
);
984 static ssize_t
disksize_store(struct device
*dev
,
985 struct device_attribute
*attr
, const char *buf
, size_t len
)
989 struct zram_meta
*meta
;
990 struct zram
*zram
= dev_to_zram(dev
);
993 disksize
= memparse(buf
, NULL
);
997 disksize
= PAGE_ALIGN(disksize
);
998 meta
= zram_meta_alloc(zram
->disk
->disk_name
, disksize
);
1002 comp
= zcomp_create(zram
->compressor
);
1004 pr_err("Cannot initialise %s compressing backend\n",
1006 err
= PTR_ERR(comp
);
1010 down_write(&zram
->init_lock
);
1011 if (init_done(zram
)) {
1012 pr_info("Cannot change disksize for initialized device\n");
1014 goto out_destroy_comp
;
1019 zram
->disksize
= disksize
;
1020 set_capacity(zram
->disk
, zram
->disksize
>> SECTOR_SHIFT
);
1021 zram_revalidate_disk(zram
);
1022 up_write(&zram
->init_lock
);
1027 up_write(&zram
->init_lock
);
1028 zcomp_destroy(comp
);
1030 zram_meta_free(meta
, disksize
);
1034 static ssize_t
reset_store(struct device
*dev
,
1035 struct device_attribute
*attr
, const char *buf
, size_t len
)
1038 unsigned short do_reset
;
1040 struct block_device
*bdev
;
1042 ret
= kstrtou16(buf
, 10, &do_reset
);
1049 zram
= dev_to_zram(dev
);
1050 bdev
= bdget_disk(zram
->disk
, 0);
1054 mutex_lock(&bdev
->bd_mutex
);
1055 /* Do not reset an active device or claimed device */
1056 if (bdev
->bd_openers
|| zram
->claim
) {
1057 mutex_unlock(&bdev
->bd_mutex
);
1062 /* From now on, anyone can't open /dev/zram[0-9] */
1064 mutex_unlock(&bdev
->bd_mutex
);
1066 /* Make sure all the pending I/O are finished */
1068 zram_reset_device(zram
);
1069 zram_revalidate_disk(zram
);
1072 mutex_lock(&bdev
->bd_mutex
);
1073 zram
->claim
= false;
1074 mutex_unlock(&bdev
->bd_mutex
);
1079 static int zram_open(struct block_device
*bdev
, fmode_t mode
)
1084 WARN_ON(!mutex_is_locked(&bdev
->bd_mutex
));
1086 zram
= bdev
->bd_disk
->private_data
;
1087 /* zram was claimed to reset so open request fails */
1094 static const struct block_device_operations zram_devops
= {
1096 .swap_slot_free_notify
= zram_slot_free_notify
,
1097 .rw_page
= zram_rw_page
,
1098 .owner
= THIS_MODULE
1101 static DEVICE_ATTR_WO(compact
);
1102 static DEVICE_ATTR_RW(disksize
);
1103 static DEVICE_ATTR_RO(initstate
);
1104 static DEVICE_ATTR_WO(reset
);
1105 static DEVICE_ATTR_WO(mem_limit
);
1106 static DEVICE_ATTR_WO(mem_used_max
);
1107 static DEVICE_ATTR_RW(max_comp_streams
);
1108 static DEVICE_ATTR_RW(comp_algorithm
);
1110 static struct attribute
*zram_disk_attrs
[] = {
1111 &dev_attr_disksize
.attr
,
1112 &dev_attr_initstate
.attr
,
1113 &dev_attr_reset
.attr
,
1114 &dev_attr_compact
.attr
,
1115 &dev_attr_mem_limit
.attr
,
1116 &dev_attr_mem_used_max
.attr
,
1117 &dev_attr_max_comp_streams
.attr
,
1118 &dev_attr_comp_algorithm
.attr
,
1119 &dev_attr_io_stat
.attr
,
1120 &dev_attr_mm_stat
.attr
,
1121 &dev_attr_debug_stat
.attr
,
1125 static struct attribute_group zram_disk_attr_group
= {
1126 .attrs
= zram_disk_attrs
,
1130 * Allocate and initialize new zram device. the function returns
1131 * '>= 0' device_id upon success, and negative value otherwise.
1133 static int zram_add(void)
1136 struct request_queue
*queue
;
1139 zram
= kzalloc(sizeof(struct zram
), GFP_KERNEL
);
1143 ret
= idr_alloc(&zram_index_idr
, zram
, 0, 0, GFP_KERNEL
);
1148 init_rwsem(&zram
->init_lock
);
1150 queue
= blk_alloc_queue(GFP_KERNEL
);
1152 pr_err("Error allocating disk queue for device %d\n",
1158 blk_queue_make_request(queue
, zram_make_request
);
1160 /* gendisk structure */
1161 zram
->disk
= alloc_disk(1);
1163 pr_err("Error allocating disk structure for device %d\n",
1166 goto out_free_queue
;
1169 zram
->disk
->major
= zram_major
;
1170 zram
->disk
->first_minor
= device_id
;
1171 zram
->disk
->fops
= &zram_devops
;
1172 zram
->disk
->queue
= queue
;
1173 zram
->disk
->queue
->queuedata
= zram
;
1174 zram
->disk
->private_data
= zram
;
1175 snprintf(zram
->disk
->disk_name
, 16, "zram%d", device_id
);
1177 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1178 set_capacity(zram
->disk
, 0);
1179 /* zram devices sort of resembles non-rotational disks */
1180 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, zram
->disk
->queue
);
1181 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, zram
->disk
->queue
);
1183 * To ensure that we always get PAGE_SIZE aligned
1184 * and n*PAGE_SIZED sized I/O requests.
1186 blk_queue_physical_block_size(zram
->disk
->queue
, PAGE_SIZE
);
1187 blk_queue_logical_block_size(zram
->disk
->queue
,
1188 ZRAM_LOGICAL_BLOCK_SIZE
);
1189 blk_queue_io_min(zram
->disk
->queue
, PAGE_SIZE
);
1190 blk_queue_io_opt(zram
->disk
->queue
, PAGE_SIZE
);
1191 zram
->disk
->queue
->limits
.discard_granularity
= PAGE_SIZE
;
1192 zram
->disk
->queue
->limits
.max_sectors
= SECTORS_PER_PAGE
;
1193 zram
->disk
->queue
->limits
.chunk_sectors
= 0;
1194 blk_queue_max_discard_sectors(zram
->disk
->queue
, UINT_MAX
);
1196 * zram_bio_discard() will clear all logical blocks if logical block
1197 * size is identical with physical block size(PAGE_SIZE). But if it is
1198 * different, we will skip discarding some parts of logical blocks in
1199 * the part of the request range which isn't aligned to physical block
1200 * size. So we can't ensure that all discarded logical blocks are
1203 if (ZRAM_LOGICAL_BLOCK_SIZE
== PAGE_SIZE
)
1204 zram
->disk
->queue
->limits
.discard_zeroes_data
= 1;
1206 zram
->disk
->queue
->limits
.discard_zeroes_data
= 0;
1207 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, zram
->disk
->queue
);
1209 add_disk(zram
->disk
);
1211 ret
= sysfs_create_group(&disk_to_dev(zram
->disk
)->kobj
,
1212 &zram_disk_attr_group
);
1214 pr_err("Error creating sysfs group for device %d\n",
1218 strlcpy(zram
->compressor
, default_compressor
, sizeof(zram
->compressor
));
1221 pr_info("Added device: %s\n", zram
->disk
->disk_name
);
1225 del_gendisk(zram
->disk
);
1226 put_disk(zram
->disk
);
1228 blk_cleanup_queue(queue
);
1230 idr_remove(&zram_index_idr
, device_id
);
1236 static int zram_remove(struct zram
*zram
)
1238 struct block_device
*bdev
;
1240 bdev
= bdget_disk(zram
->disk
, 0);
1244 mutex_lock(&bdev
->bd_mutex
);
1245 if (bdev
->bd_openers
|| zram
->claim
) {
1246 mutex_unlock(&bdev
->bd_mutex
);
1252 mutex_unlock(&bdev
->bd_mutex
);
1255 * Remove sysfs first, so no one will perform a disksize
1256 * store while we destroy the devices. This also helps during
1257 * hot_remove -- zram_reset_device() is the last holder of
1258 * ->init_lock, no later/concurrent disksize_store() or any
1259 * other sysfs handlers are possible.
1261 sysfs_remove_group(&disk_to_dev(zram
->disk
)->kobj
,
1262 &zram_disk_attr_group
);
1264 /* Make sure all the pending I/O are finished */
1266 zram_reset_device(zram
);
1269 pr_info("Removed device: %s\n", zram
->disk
->disk_name
);
1271 blk_cleanup_queue(zram
->disk
->queue
);
1272 del_gendisk(zram
->disk
);
1273 put_disk(zram
->disk
);
1278 /* zram-control sysfs attributes */
1279 static ssize_t
hot_add_show(struct class *class,
1280 struct class_attribute
*attr
,
1285 mutex_lock(&zram_index_mutex
);
1287 mutex_unlock(&zram_index_mutex
);
1291 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ret
);
1294 static ssize_t
hot_remove_store(struct class *class,
1295 struct class_attribute
*attr
,
1302 /* dev_id is gendisk->first_minor, which is `int' */
1303 ret
= kstrtoint(buf
, 10, &dev_id
);
1309 mutex_lock(&zram_index_mutex
);
1311 zram
= idr_find(&zram_index_idr
, dev_id
);
1313 ret
= zram_remove(zram
);
1315 idr_remove(&zram_index_idr
, dev_id
);
1320 mutex_unlock(&zram_index_mutex
);
1321 return ret
? ret
: count
;
1325 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1326 * sense that reading from this file does alter the state of your system -- it
1327 * creates a new un-initialized zram device and returns back this device's
1328 * device_id (or an error code if it fails to create a new device).
1330 static struct class_attribute zram_control_class_attrs
[] = {
1331 __ATTR(hot_add
, 0400, hot_add_show
, NULL
),
1332 __ATTR_WO(hot_remove
),
1336 static struct class zram_control_class
= {
1337 .name
= "zram-control",
1338 .owner
= THIS_MODULE
,
1339 .class_attrs
= zram_control_class_attrs
,
1342 static int zram_remove_cb(int id
, void *ptr
, void *data
)
1348 static void destroy_devices(void)
1350 class_unregister(&zram_control_class
);
1351 idr_for_each(&zram_index_idr
, &zram_remove_cb
, NULL
);
1352 idr_destroy(&zram_index_idr
);
1353 unregister_blkdev(zram_major
, "zram");
1354 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1357 static int __init
zram_init(void)
1361 ret
= cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE
, "block/zram:prepare",
1362 zcomp_cpu_up_prepare
, zcomp_cpu_dead
);
1366 ret
= class_register(&zram_control_class
);
1368 pr_err("Unable to register zram-control class\n");
1369 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1373 zram_major
= register_blkdev(0, "zram");
1374 if (zram_major
<= 0) {
1375 pr_err("Unable to get major number\n");
1376 class_unregister(&zram_control_class
);
1377 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE
);
1381 while (num_devices
!= 0) {
1382 mutex_lock(&zram_index_mutex
);
1384 mutex_unlock(&zram_index_mutex
);
1397 static void __exit
zram_exit(void)
1402 module_init(zram_init
);
1403 module_exit(zram_exit
);
1405 module_param(num_devices
, uint
, 0);
1406 MODULE_PARM_DESC(num_devices
, "Number of pre-created zram devices");
1408 MODULE_LICENSE("Dual BSD/GPL");
1409 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1410 MODULE_DESCRIPTION("Compressed RAM Block Device");