1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug
= -1;
57 module_param(debug
, int, 0);
58 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info
*e1000_info_tbl
[] = {
61 [board_82571
] = &e1000_82571_info
,
62 [board_82572
] = &e1000_82572_info
,
63 [board_82573
] = &e1000_82573_info
,
64 [board_82574
] = &e1000_82574_info
,
65 [board_82583
] = &e1000_82583_info
,
66 [board_80003es2lan
] = &e1000_es2_info
,
67 [board_ich8lan
] = &e1000_ich8_info
,
68 [board_ich9lan
] = &e1000_ich9_info
,
69 [board_ich10lan
] = &e1000_ich10_info
,
70 [board_pchlan
] = &e1000_pch_info
,
71 [board_pch2lan
] = &e1000_pch2_info
,
72 [board_pch_lpt
] = &e1000_pch_lpt_info
,
73 [board_pch_spt
] = &e1000_pch_spt_info
,
76 struct e1000_reg_info
{
81 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
82 /* General Registers */
84 {E1000_STATUS
, "STATUS"},
85 {E1000_CTRL_EXT
, "CTRL_EXT"},
87 /* Interrupt Registers */
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
96 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH
, "RDFH"},
101 {E1000_RDFT
, "RDFT"},
102 {E1000_RDFHS
, "RDFHS"},
103 {E1000_RDFTS
, "RDFTS"},
104 {E1000_RDFPC
, "RDFPC"},
107 {E1000_TCTL
, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV
, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV
, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH
, "TDFH"},
118 {E1000_TDFT
, "TDFT"},
119 {E1000_TDFHS
, "TDFHS"},
120 {E1000_TDFTS
, "TDFTS"},
121 {E1000_TDFPC
, "TDFPC"},
123 /* List Terminator */
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
139 s32
__ew32_prepare(struct e1000_hw
*hw
)
141 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
143 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
149 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
151 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
154 writel(val
, hw
->hw_addr
+ reg
);
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
162 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
168 switch (reginfo
->ofs
) {
169 case E1000_RXDCTL(0):
170 for (n
= 0; n
< 2; n
++)
171 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
173 case E1000_TXDCTL(0):
174 for (n
= 0; n
< 2; n
++)
175 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
178 for (n
= 0; n
< 2; n
++)
179 regs
[n
] = __er32(hw
, E1000_TARC(n
));
182 pr_info("%-15s %08x\n",
183 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
187 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
191 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
192 struct e1000_buffer
*bi
)
195 struct e1000_ps_page
*ps_page
;
197 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
198 ps_page
= &bi
->ps_pages
[i
];
201 pr_info("packet dump for ps_page %d:\n", i
);
202 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
203 16, 1, page_address(ps_page
->page
),
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
213 static void e1000e_dump(struct e1000_adapter
*adapter
)
215 struct net_device
*netdev
= adapter
->netdev
;
216 struct e1000_hw
*hw
= &adapter
->hw
;
217 struct e1000_reg_info
*reginfo
;
218 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
219 struct e1000_tx_desc
*tx_desc
;
224 struct e1000_buffer
*buffer_info
;
225 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
226 union e1000_rx_desc_packet_split
*rx_desc_ps
;
227 union e1000_rx_desc_extended
*rx_desc
;
237 if (!netif_msg_hw(adapter
))
240 /* Print netdevice Info */
242 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
243 pr_info("Device Name state trans_start\n");
244 pr_info("%-15s %016lX %016lX\n", netdev
->name
,
245 netdev
->state
, dev_trans_start(netdev
));
248 /* Print Registers */
249 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
252 reginfo
->name
; reginfo
++) {
253 e1000_regdump(hw
, reginfo
);
256 /* Print Tx Ring Summary */
257 if (!netdev
|| !netif_running(netdev
))
260 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
265 (unsigned long long)buffer_info
->dma
,
267 buffer_info
->next_to_watch
,
268 (unsigned long long)buffer_info
->time_stamp
);
271 if (!netif_msg_tx_done(adapter
))
272 goto rx_ring_summary
;
274 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
307 const char *next_desc
;
308 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
309 buffer_info
= &tx_ring
->buffer_info
[i
];
310 u0
= (struct my_u0
*)tx_desc
;
311 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
312 next_desc
= " NTC/U";
313 else if (i
== tx_ring
->next_to_use
)
315 else if (i
== tx_ring
->next_to_clean
)
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0
->b
) & BIT(29)) ? 'l' :
321 ((le64_to_cpu(u0
->b
) & BIT(20)) ? 'd' : 'c')),
323 (unsigned long long)le64_to_cpu(u0
->a
),
324 (unsigned long long)le64_to_cpu(u0
->b
),
325 (unsigned long long)buffer_info
->dma
,
326 buffer_info
->length
, buffer_info
->next_to_watch
,
327 (unsigned long long)buffer_info
->time_stamp
,
328 buffer_info
->skb
, next_desc
);
330 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
331 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
332 16, 1, buffer_info
->skb
->data
,
333 buffer_info
->skb
->len
, true);
336 /* Print Rx Ring Summary */
338 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
344 if (!netif_msg_rx_status(adapter
))
347 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
348 switch (adapter
->rx_ps_pages
) {
352 /* [Extended] Packet Split Receive Descriptor Format
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i
= 0; i
< rx_ring
->count
; i
++) {
378 const char *next_desc
;
379 buffer_info
= &rx_ring
->buffer_info
[i
];
380 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
381 u1
= (struct my_u1
*)rx_desc_ps
;
383 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
385 if (i
== rx_ring
->next_to_use
)
387 else if (i
== rx_ring
->next_to_clean
)
392 if (staterr
& E1000_RXD_STAT_DD
) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 (unsigned long long)le64_to_cpu(u1
->a
),
397 (unsigned long long)le64_to_cpu(u1
->b
),
398 (unsigned long long)le64_to_cpu(u1
->c
),
399 (unsigned long long)le64_to_cpu(u1
->d
),
400 buffer_info
->skb
, next_desc
);
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 (unsigned long long)le64_to_cpu(u1
->a
),
405 (unsigned long long)le64_to_cpu(u1
->b
),
406 (unsigned long long)le64_to_cpu(u1
->c
),
407 (unsigned long long)le64_to_cpu(u1
->d
),
408 (unsigned long long)buffer_info
->dma
,
409 buffer_info
->skb
, next_desc
);
411 if (netif_msg_pktdata(adapter
))
412 e1000e_dump_ps_pages(adapter
,
419 /* Extended Receive Descriptor (Read) Format
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
425 * +-----------------------------------------------------+
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443 for (i
= 0; i
< rx_ring
->count
; i
++) {
444 const char *next_desc
;
446 buffer_info
= &rx_ring
->buffer_info
[i
];
447 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
448 u1
= (struct my_u1
*)rx_desc
;
449 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
451 if (i
== rx_ring
->next_to_use
)
453 else if (i
== rx_ring
->next_to_clean
)
458 if (staterr
& E1000_RXD_STAT_DD
) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 (unsigned long long)le64_to_cpu(u1
->a
),
463 (unsigned long long)le64_to_cpu(u1
->b
),
464 buffer_info
->skb
, next_desc
);
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 (unsigned long long)le64_to_cpu(u1
->a
),
469 (unsigned long long)le64_to_cpu(u1
->b
),
470 (unsigned long long)buffer_info
->dma
,
471 buffer_info
->skb
, next_desc
);
473 if (netif_msg_pktdata(adapter
) &&
475 print_hex_dump(KERN_INFO
, "",
476 DUMP_PREFIX_ADDRESS
, 16,
478 buffer_info
->skb
->data
,
479 adapter
->rx_buffer_len
,
487 * e1000_desc_unused - calculate if we have unused descriptors
489 static int e1000_desc_unused(struct e1000_ring
*ring
)
491 if (ring
->next_to_clean
> ring
->next_to_use
)
492 return ring
->next_to_clean
- ring
->next_to_use
- 1;
494 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
512 struct skb_shared_hwtstamps
*hwtstamps
,
518 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
519 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
520 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
522 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
523 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
536 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
539 struct e1000_hw
*hw
= &adapter
->hw
;
542 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
543 !(status
& E1000_RXDEXT_STATERR_TST
) ||
544 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
554 rxstmp
= (u64
)er32(RXSTMPL
);
555 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
556 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
558 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
568 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
569 struct net_device
*netdev
, struct sk_buff
*skb
,
570 u32 staterr
, __le16 vlan
)
572 u16 tag
= le16_to_cpu(vlan
);
574 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
576 skb
->protocol
= eth_type_trans(skb
, netdev
);
578 if (staterr
& E1000_RXD_STAT_VP
)
579 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
581 napi_gro_receive(&adapter
->napi
, skb
);
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
591 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
594 u16 status
= (u16
)status_err
;
595 u8 errors
= (u8
)(status_err
>> 24);
597 skb_checksum_none_assert(skb
);
599 /* Rx checksum disabled */
600 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
603 /* Ignore Checksum bit is set */
604 if (status
& E1000_RXD_STAT_IXSM
)
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
609 /* let the stack verify checksum errors */
610 adapter
->hw_csum_err
++;
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
620 adapter
->hw_csum_good
++;
623 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
625 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
626 struct e1000_hw
*hw
= &adapter
->hw
;
627 s32 ret_val
= __ew32_prepare(hw
);
629 writel(i
, rx_ring
->tail
);
631 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
632 u32 rctl
= er32(RCTL
);
634 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter
->reset_task
);
640 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
642 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
643 struct e1000_hw
*hw
= &adapter
->hw
;
644 s32 ret_val
= __ew32_prepare(hw
);
646 writel(i
, tx_ring
->tail
);
648 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
649 u32 tctl
= er32(TCTL
);
651 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter
->reset_task
);
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
661 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
662 int cleaned_count
, gfp_t gfp
)
664 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
665 struct net_device
*netdev
= adapter
->netdev
;
666 struct pci_dev
*pdev
= adapter
->pdev
;
667 union e1000_rx_desc_extended
*rx_desc
;
668 struct e1000_buffer
*buffer_info
;
671 unsigned int bufsz
= adapter
->rx_buffer_len
;
673 i
= rx_ring
->next_to_use
;
674 buffer_info
= &rx_ring
->buffer_info
[i
];
676 while (cleaned_count
--) {
677 skb
= buffer_info
->skb
;
683 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
685 /* Better luck next round */
686 adapter
->alloc_rx_buff_failed
++;
690 buffer_info
->skb
= skb
;
692 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
693 adapter
->rx_buffer_len
,
695 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
696 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
697 adapter
->rx_dma_failed
++;
701 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
702 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
704 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
711 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
712 e1000e_update_rdt_wa(rx_ring
, i
);
714 writel(i
, rx_ring
->tail
);
717 if (i
== rx_ring
->count
)
719 buffer_info
= &rx_ring
->buffer_info
[i
];
722 rx_ring
->next_to_use
= i
;
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
730 int cleaned_count
, gfp_t gfp
)
732 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
733 struct net_device
*netdev
= adapter
->netdev
;
734 struct pci_dev
*pdev
= adapter
->pdev
;
735 union e1000_rx_desc_packet_split
*rx_desc
;
736 struct e1000_buffer
*buffer_info
;
737 struct e1000_ps_page
*ps_page
;
741 i
= rx_ring
->next_to_use
;
742 buffer_info
= &rx_ring
->buffer_info
[i
];
744 while (cleaned_count
--) {
745 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
747 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
748 ps_page
= &buffer_info
->ps_pages
[j
];
749 if (j
>= adapter
->rx_ps_pages
) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc
->read
.buffer_addr
[j
+ 1] =
755 if (!ps_page
->page
) {
756 ps_page
->page
= alloc_page(gfp
);
757 if (!ps_page
->page
) {
758 adapter
->alloc_rx_buff_failed
++;
761 ps_page
->dma
= dma_map_page(&pdev
->dev
,
765 if (dma_mapping_error(&pdev
->dev
,
767 dev_err(&adapter
->pdev
->dev
,
768 "Rx DMA page map failed\n");
769 adapter
->rx_dma_failed
++;
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
777 rx_desc
->read
.buffer_addr
[j
+ 1] =
778 cpu_to_le64(ps_page
->dma
);
781 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
785 adapter
->alloc_rx_buff_failed
++;
789 buffer_info
->skb
= skb
;
790 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
791 adapter
->rx_ps_bsize0
,
793 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
794 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
795 adapter
->rx_dma_failed
++;
797 dev_kfree_skb_any(skb
);
798 buffer_info
->skb
= NULL
;
802 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
804 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
811 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
812 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
814 writel(i
<< 1, rx_ring
->tail
);
818 if (i
== rx_ring
->count
)
820 buffer_info
= &rx_ring
->buffer_info
[i
];
824 rx_ring
->next_to_use
= i
;
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
834 int cleaned_count
, gfp_t gfp
)
836 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
837 struct net_device
*netdev
= adapter
->netdev
;
838 struct pci_dev
*pdev
= adapter
->pdev
;
839 union e1000_rx_desc_extended
*rx_desc
;
840 struct e1000_buffer
*buffer_info
;
843 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
845 i
= rx_ring
->next_to_use
;
846 buffer_info
= &rx_ring
->buffer_info
[i
];
848 while (cleaned_count
--) {
849 skb
= buffer_info
->skb
;
855 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
856 if (unlikely(!skb
)) {
857 /* Better luck next round */
858 adapter
->alloc_rx_buff_failed
++;
862 buffer_info
->skb
= skb
;
864 /* allocate a new page if necessary */
865 if (!buffer_info
->page
) {
866 buffer_info
->page
= alloc_page(gfp
);
867 if (unlikely(!buffer_info
->page
)) {
868 adapter
->alloc_rx_buff_failed
++;
873 if (!buffer_info
->dma
) {
874 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
875 buffer_info
->page
, 0,
878 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
879 adapter
->alloc_rx_buff_failed
++;
884 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
885 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
887 if (unlikely(++i
== rx_ring
->count
))
889 buffer_info
= &rx_ring
->buffer_info
[i
];
892 if (likely(rx_ring
->next_to_use
!= i
)) {
893 rx_ring
->next_to_use
= i
;
894 if (unlikely(i
-- == 0))
895 i
= (rx_ring
->count
- 1);
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
903 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
904 e1000e_update_rdt_wa(rx_ring
, i
);
906 writel(i
, rx_ring
->tail
);
910 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
913 if (netdev
->features
& NETIF_F_RXHASH
)
914 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
924 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
927 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
928 struct net_device
*netdev
= adapter
->netdev
;
929 struct pci_dev
*pdev
= adapter
->pdev
;
930 struct e1000_hw
*hw
= &adapter
->hw
;
931 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
932 struct e1000_buffer
*buffer_info
, *next_buffer
;
935 int cleaned_count
= 0;
936 bool cleaned
= false;
937 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
939 i
= rx_ring
->next_to_clean
;
940 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
941 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
942 buffer_info
= &rx_ring
->buffer_info
[i
];
944 while (staterr
& E1000_RXD_STAT_DD
) {
947 if (*work_done
>= work_to_do
)
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952 skb
= buffer_info
->skb
;
953 buffer_info
->skb
= NULL
;
955 prefetch(skb
->data
- NET_IP_ALIGN
);
958 if (i
== rx_ring
->count
)
960 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
963 next_buffer
= &rx_ring
->buffer_info
[i
];
967 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
968 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
969 buffer_info
->dma
= 0;
971 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
979 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
980 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
982 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
986 buffer_info
->skb
= skb
;
987 if (staterr
& E1000_RXD_STAT_EOP
)
988 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
992 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
993 !(netdev
->features
& NETIF_F_RXALL
))) {
995 buffer_info
->skb
= skb
;
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1005 if (netdev
->features
& NETIF_F_RXFCS
)
1006 total_rx_bytes
-= 4;
1011 total_rx_bytes
+= length
;
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1018 if (length
< copybreak
) {
1019 struct sk_buff
*new_skb
=
1020 napi_alloc_skb(&adapter
->napi
, length
);
1022 skb_copy_to_linear_data_offset(new_skb
,
1028 /* save the skb in buffer_info as good */
1029 buffer_info
->skb
= skb
;
1032 /* else just continue with the old one */
1034 /* end copybreak code */
1035 skb_put(skb
, length
);
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter
, staterr
, skb
);
1040 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1042 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1043 rx_desc
->wb
.upper
.vlan
);
1046 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1050 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1055 /* use prefetched values */
1057 buffer_info
= next_buffer
;
1059 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1061 rx_ring
->next_to_clean
= i
;
1063 cleaned_count
= e1000_desc_unused(rx_ring
);
1065 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1067 adapter
->total_rx_bytes
+= total_rx_bytes
;
1068 adapter
->total_rx_packets
+= total_rx_packets
;
1072 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1073 struct e1000_buffer
*buffer_info
)
1075 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1077 if (buffer_info
->dma
) {
1078 if (buffer_info
->mapped_as_page
)
1079 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1080 buffer_info
->length
, DMA_TO_DEVICE
);
1082 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1083 buffer_info
->length
, DMA_TO_DEVICE
);
1084 buffer_info
->dma
= 0;
1086 if (buffer_info
->skb
) {
1087 dev_kfree_skb_any(buffer_info
->skb
);
1088 buffer_info
->skb
= NULL
;
1090 buffer_info
->time_stamp
= 0;
1093 static void e1000_print_hw_hang(struct work_struct
*work
)
1095 struct e1000_adapter
*adapter
= container_of(work
,
1096 struct e1000_adapter
,
1098 struct net_device
*netdev
= adapter
->netdev
;
1099 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1100 unsigned int i
= tx_ring
->next_to_clean
;
1101 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1102 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1103 struct e1000_hw
*hw
= &adapter
->hw
;
1104 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1107 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1110 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1114 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1115 /* execute the writes immediately */
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1120 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1121 /* execute the writes immediately */
1123 adapter
->tx_hang_recheck
= true;
1126 adapter
->tx_hang_recheck
= false;
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1133 /* Real hang detected */
1134 netif_stop_queue(netdev
);
1136 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1137 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1138 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1140 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1152 " next_to_watch.status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1159 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1160 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1161 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1163 e1000e_dump(adapter
);
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1178 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1180 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1182 struct e1000_hw
*hw
= &adapter
->hw
;
1184 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1185 struct skb_shared_hwtstamps shhwtstamps
;
1188 txstmp
= er32(TXSTMPL
);
1189 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1191 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1193 skb_tstamp_tx(adapter
->tx_hwtstamp_skb
, &shhwtstamps
);
1194 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1195 adapter
->tx_hwtstamp_skb
= NULL
;
1196 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1197 + adapter
->tx_timeout_factor
* HZ
)) {
1198 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1199 adapter
->tx_hwtstamp_skb
= NULL
;
1200 adapter
->tx_hwtstamp_timeouts
++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter
->tx_hwtstamp_work
);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1217 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1218 struct net_device
*netdev
= adapter
->netdev
;
1219 struct e1000_hw
*hw
= &adapter
->hw
;
1220 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1221 struct e1000_buffer
*buffer_info
;
1222 unsigned int i
, eop
;
1223 unsigned int count
= 0;
1224 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1225 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1227 i
= tx_ring
->next_to_clean
;
1228 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1229 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1231 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1232 (count
< tx_ring
->count
)) {
1233 bool cleaned
= false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned
; count
++) {
1237 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1238 buffer_info
= &tx_ring
->buffer_info
[i
];
1239 cleaned
= (i
== eop
);
1242 total_tx_packets
+= buffer_info
->segs
;
1243 total_tx_bytes
+= buffer_info
->bytecount
;
1244 if (buffer_info
->skb
) {
1245 bytes_compl
+= buffer_info
->skb
->len
;
1250 e1000_put_txbuf(tx_ring
, buffer_info
);
1251 tx_desc
->upper
.data
= 0;
1254 if (i
== tx_ring
->count
)
1258 if (i
== tx_ring
->next_to_use
)
1260 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1261 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1264 tx_ring
->next_to_clean
= i
;
1266 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count
&& netif_carrier_ok(netdev
) &&
1270 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev
) &&
1277 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1278 netif_wake_queue(netdev
);
1279 ++adapter
->restart_queue
;
1283 if (adapter
->detect_tx_hung
) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter
->detect_tx_hung
= false;
1288 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1289 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1290 + (adapter
->tx_timeout_factor
* HZ
)) &&
1291 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1292 schedule_work(&adapter
->print_hang_task
);
1294 adapter
->tx_hang_recheck
= false;
1296 adapter
->total_tx_bytes
+= total_tx_bytes
;
1297 adapter
->total_tx_packets
+= total_tx_packets
;
1298 return count
< tx_ring
->count
;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1311 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1312 struct e1000_hw
*hw
= &adapter
->hw
;
1313 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1314 struct net_device
*netdev
= adapter
->netdev
;
1315 struct pci_dev
*pdev
= adapter
->pdev
;
1316 struct e1000_buffer
*buffer_info
, *next_buffer
;
1317 struct e1000_ps_page
*ps_page
;
1318 struct sk_buff
*skb
;
1320 u32 length
, staterr
;
1321 int cleaned_count
= 0;
1322 bool cleaned
= false;
1323 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1325 i
= rx_ring
->next_to_clean
;
1326 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1327 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1328 buffer_info
= &rx_ring
->buffer_info
[i
];
1330 while (staterr
& E1000_RXD_STAT_DD
) {
1331 if (*work_done
>= work_to_do
)
1334 skb
= buffer_info
->skb
;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1337 /* in the packet split case this is header only */
1338 prefetch(skb
->data
- NET_IP_ALIGN
);
1341 if (i
== rx_ring
->count
)
1343 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1346 next_buffer
= &rx_ring
->buffer_info
[i
];
1350 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1351 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1352 buffer_info
->dma
= 0;
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr
& E1000_RXD_STAT_EOP
))
1356 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1358 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb
);
1361 if (staterr
& E1000_RXD_STAT_EOP
)
1362 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1366 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1367 !(netdev
->features
& NETIF_F_RXALL
))) {
1368 dev_kfree_skb_irq(skb
);
1372 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb
);
1381 skb_put(skb
, length
);
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1387 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1394 if (l1
&& (l1
<= copybreak
) &&
1395 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1398 ps_page
= &buffer_info
->ps_pages
[0];
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1404 dma_sync_single_for_cpu(&pdev
->dev
,
1408 vaddr
= kmap_atomic(ps_page
->page
);
1409 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1410 kunmap_atomic(vaddr
);
1411 dma_sync_single_for_device(&pdev
->dev
,
1416 /* remove the CRC */
1417 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1418 if (!(netdev
->features
& NETIF_F_RXFCS
))
1427 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1428 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1432 ps_page
= &buffer_info
->ps_pages
[j
];
1433 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1436 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1437 ps_page
->page
= NULL
;
1439 skb
->data_len
+= length
;
1440 skb
->truesize
+= PAGE_SIZE
;
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1446 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1447 if (!(netdev
->features
& NETIF_F_RXFCS
))
1448 pskb_trim(skb
, skb
->len
- 4);
1452 total_rx_bytes
+= skb
->len
;
1455 e1000_rx_checksum(adapter
, staterr
, skb
);
1457 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1459 if (rx_desc
->wb
.upper
.header_status
&
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1461 adapter
->rx_hdr_split
++;
1463 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1464 rx_desc
->wb
.middle
.vlan
);
1467 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1468 buffer_info
->skb
= NULL
;
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1472 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1477 /* use prefetched values */
1479 buffer_info
= next_buffer
;
1481 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1483 rx_ring
->next_to_clean
= i
;
1485 cleaned_count
= e1000_desc_unused(rx_ring
);
1487 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1489 adapter
->total_rx_bytes
+= total_rx_bytes
;
1490 adapter
->total_rx_packets
+= total_rx_packets
;
1495 * e1000_consume_page - helper function
1497 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1502 skb
->data_len
+= length
;
1503 skb
->truesize
+= PAGE_SIZE
;
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1516 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1517 struct net_device
*netdev
= adapter
->netdev
;
1518 struct pci_dev
*pdev
= adapter
->pdev
;
1519 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1520 struct e1000_buffer
*buffer_info
, *next_buffer
;
1521 u32 length
, staterr
;
1523 int cleaned_count
= 0;
1524 bool cleaned
= false;
1525 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1526 struct skb_shared_info
*shinfo
;
1528 i
= rx_ring
->next_to_clean
;
1529 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1530 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1531 buffer_info
= &rx_ring
->buffer_info
[i
];
1533 while (staterr
& E1000_RXD_STAT_DD
) {
1534 struct sk_buff
*skb
;
1536 if (*work_done
>= work_to_do
)
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1541 skb
= buffer_info
->skb
;
1542 buffer_info
->skb
= NULL
;
1545 if (i
== rx_ring
->count
)
1547 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1550 next_buffer
= &rx_ring
->buffer_info
[i
];
1554 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1556 buffer_info
->dma
= 0;
1558 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1562 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1563 !(netdev
->features
& NETIF_F_RXALL
)))) {
1564 /* recycle both page and skb */
1565 buffer_info
->skb
= skb
;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring
->rx_skb_top
)
1568 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1569 rx_ring
->rx_skb_top
= NULL
;
1572 #define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1574 /* this descriptor is only the beginning (or middle) */
1576 /* this is the beginning of a chain */
1578 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1581 /* this is the middle of a chain */
1582 shinfo
= skb_shinfo(rxtop
);
1583 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1584 buffer_info
->page
, 0,
1586 /* re-use the skb, only consumed the page */
1587 buffer_info
->skb
= skb
;
1589 e1000_consume_page(buffer_info
, rxtop
, length
);
1593 /* end of the chain */
1594 shinfo
= skb_shinfo(rxtop
);
1595 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1596 buffer_info
->page
, 0,
1598 /* re-use the current skb, we only consumed the
1601 buffer_info
->skb
= skb
;
1604 e1000_consume_page(buffer_info
, skb
, length
);
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1609 if (length
<= copybreak
&&
1610 skb_tailroom(skb
) >= length
) {
1612 vaddr
= kmap_atomic(buffer_info
->page
);
1613 memcpy(skb_tail_pointer(skb
), vaddr
,
1615 kunmap_atomic(vaddr
);
1616 /* re-use the page, so don't erase
1619 skb_put(skb
, length
);
1621 skb_fill_page_desc(skb
, 0,
1622 buffer_info
->page
, 0,
1624 e1000_consume_page(buffer_info
, skb
,
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter
, staterr
, skb
);
1633 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes
+= skb
->len
;
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb
);
1646 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1647 rx_desc
->wb
.upper
.vlan
);
1650 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1654 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1659 /* use prefetched values */
1661 buffer_info
= next_buffer
;
1663 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1665 rx_ring
->next_to_clean
= i
;
1667 cleaned_count
= e1000_desc_unused(rx_ring
);
1669 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1671 adapter
->total_rx_bytes
+= total_rx_bytes
;
1672 adapter
->total_rx_packets
+= total_rx_packets
;
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1680 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1682 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1683 struct e1000_buffer
*buffer_info
;
1684 struct e1000_ps_page
*ps_page
;
1685 struct pci_dev
*pdev
= adapter
->pdev
;
1688 /* Free all the Rx ring sk_buffs */
1689 for (i
= 0; i
< rx_ring
->count
; i
++) {
1690 buffer_info
= &rx_ring
->buffer_info
[i
];
1691 if (buffer_info
->dma
) {
1692 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1693 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1694 adapter
->rx_buffer_len
,
1696 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1697 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1698 PAGE_SIZE
, DMA_FROM_DEVICE
);
1699 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1700 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1701 adapter
->rx_ps_bsize0
,
1703 buffer_info
->dma
= 0;
1706 if (buffer_info
->page
) {
1707 put_page(buffer_info
->page
);
1708 buffer_info
->page
= NULL
;
1711 if (buffer_info
->skb
) {
1712 dev_kfree_skb(buffer_info
->skb
);
1713 buffer_info
->skb
= NULL
;
1716 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1717 ps_page
= &buffer_info
->ps_pages
[j
];
1720 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1723 put_page(ps_page
->page
);
1724 ps_page
->page
= NULL
;
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring
->rx_skb_top
) {
1730 dev_kfree_skb(rx_ring
->rx_skb_top
);
1731 rx_ring
->rx_skb_top
= NULL
;
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1737 rx_ring
->next_to_clean
= 0;
1738 rx_ring
->next_to_use
= 0;
1739 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1742 static void e1000e_downshift_workaround(struct work_struct
*work
)
1744 struct e1000_adapter
*adapter
= container_of(work
,
1745 struct e1000_adapter
,
1748 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1751 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1759 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1761 struct net_device
*netdev
= data
;
1762 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1763 struct e1000_hw
*hw
= &adapter
->hw
;
1764 u32 icr
= er32(ICR
);
1766 /* read ICR disables interrupts using IAM */
1767 if (icr
& E1000_ICR_LSC
) {
1768 hw
->mac
.get_link_status
= true;
1769 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770 * disconnect (LSC) before accessing any PHY registers
1772 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1773 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1774 schedule_work(&adapter
->downshift_task
);
1776 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777 * link down event; disable receives here in the ISR and reset
1778 * adapter in watchdog
1780 if (netif_carrier_ok(netdev
) &&
1781 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1782 /* disable receives */
1783 u32 rctl
= er32(RCTL
);
1785 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1786 adapter
->flags
|= FLAG_RESTART_NOW
;
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1790 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1793 /* Reset on uncorrectable ECC error */
1794 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1795 (hw
->mac
.type
== e1000_pch_spt
))) {
1796 u32 pbeccsts
= er32(PBECCSTS
);
1798 adapter
->corr_errors
+=
1799 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1800 adapter
->uncorr_errors
+=
1801 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1802 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1804 /* Do the reset outside of interrupt context */
1805 schedule_work(&adapter
->reset_task
);
1807 /* return immediately since reset is imminent */
1811 if (napi_schedule_prep(&adapter
->napi
)) {
1812 adapter
->total_tx_bytes
= 0;
1813 adapter
->total_tx_packets
= 0;
1814 adapter
->total_rx_bytes
= 0;
1815 adapter
->total_rx_packets
= 0;
1816 __napi_schedule(&adapter
->napi
);
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1827 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1829 struct net_device
*netdev
= data
;
1830 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1831 struct e1000_hw
*hw
= &adapter
->hw
;
1832 u32 rctl
, icr
= er32(ICR
);
1834 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1835 return IRQ_NONE
; /* Not our interrupt */
1837 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838 * not set, then the adapter didn't send an interrupt
1840 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1843 /* Interrupt Auto-Mask...upon reading ICR,
1844 * interrupts are masked. No need for the
1848 if (icr
& E1000_ICR_LSC
) {
1849 hw
->mac
.get_link_status
= true;
1850 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851 * disconnect (LSC) before accessing any PHY registers
1853 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1854 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1855 schedule_work(&adapter
->downshift_task
);
1857 /* 80003ES2LAN workaround--
1858 * For packet buffer work-around on link down event;
1859 * disable receives here in the ISR and
1860 * reset adapter in watchdog
1862 if (netif_carrier_ok(netdev
) &&
1863 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1864 /* disable receives */
1866 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1867 adapter
->flags
|= FLAG_RESTART_NOW
;
1869 /* guard against interrupt when we're going down */
1870 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1871 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1874 /* Reset on uncorrectable ECC error */
1875 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1876 (hw
->mac
.type
== e1000_pch_spt
))) {
1877 u32 pbeccsts
= er32(PBECCSTS
);
1879 adapter
->corr_errors
+=
1880 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1881 adapter
->uncorr_errors
+=
1882 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1883 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1885 /* Do the reset outside of interrupt context */
1886 schedule_work(&adapter
->reset_task
);
1888 /* return immediately since reset is imminent */
1892 if (napi_schedule_prep(&adapter
->napi
)) {
1893 adapter
->total_tx_bytes
= 0;
1894 adapter
->total_tx_packets
= 0;
1895 adapter
->total_rx_bytes
= 0;
1896 adapter
->total_rx_packets
= 0;
1897 __napi_schedule(&adapter
->napi
);
1903 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1905 struct net_device
*netdev
= data
;
1906 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1907 struct e1000_hw
*hw
= &adapter
->hw
;
1909 hw
->mac
.get_link_status
= true;
1911 /* guard against interrupt when we're going down */
1912 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
1913 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1914 ew32(IMS
, E1000_IMS_OTHER
);
1920 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1922 struct net_device
*netdev
= data
;
1923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1924 struct e1000_hw
*hw
= &adapter
->hw
;
1925 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1927 adapter
->total_tx_bytes
= 0;
1928 adapter
->total_tx_packets
= 0;
1930 if (!e1000_clean_tx_irq(tx_ring
))
1931 /* Ring was not completely cleaned, so fire another interrupt */
1932 ew32(ICS
, tx_ring
->ims_val
);
1934 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1935 ew32(IMS
, adapter
->tx_ring
->ims_val
);
1940 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1942 struct net_device
*netdev
= data
;
1943 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1944 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1946 /* Write the ITR value calculated at the end of the
1947 * previous interrupt.
1949 if (rx_ring
->set_itr
) {
1950 u32 itr
= rx_ring
->itr_val
?
1951 1000000000 / (rx_ring
->itr_val
* 256) : 0;
1953 writel(itr
, rx_ring
->itr_register
);
1954 rx_ring
->set_itr
= 0;
1957 if (napi_schedule_prep(&adapter
->napi
)) {
1958 adapter
->total_rx_bytes
= 0;
1959 adapter
->total_rx_packets
= 0;
1960 __napi_schedule(&adapter
->napi
);
1966 * e1000_configure_msix - Configure MSI-X hardware
1968 * e1000_configure_msix sets up the hardware to properly
1969 * generate MSI-X interrupts.
1971 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1973 struct e1000_hw
*hw
= &adapter
->hw
;
1974 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1975 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1977 u32 ctrl_ext
, ivar
= 0;
1979 adapter
->eiac_mask
= 0;
1981 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982 if (hw
->mac
.type
== e1000_82574
) {
1983 u32 rfctl
= er32(RFCTL
);
1985 rfctl
|= E1000_RFCTL_ACK_DIS
;
1989 /* Configure Rx vector */
1990 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1991 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1992 if (rx_ring
->itr_val
)
1993 writel(1000000000 / (rx_ring
->itr_val
* 256),
1994 rx_ring
->itr_register
);
1996 writel(1, rx_ring
->itr_register
);
1997 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1999 /* Configure Tx vector */
2000 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
2002 if (tx_ring
->itr_val
)
2003 writel(1000000000 / (tx_ring
->itr_val
* 256),
2004 tx_ring
->itr_register
);
2006 writel(1, tx_ring
->itr_register
);
2007 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2008 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2010 /* set vector for Other Causes, e.g. link changes */
2012 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2013 if (rx_ring
->itr_val
)
2014 writel(1000000000 / (rx_ring
->itr_val
* 256),
2015 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2017 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2018 adapter
->eiac_mask
|= E1000_IMS_OTHER
;
2020 /* Cause Tx interrupts on every write back */
2025 /* enable MSI-X PBA support */
2026 ctrl_ext
= er32(CTRL_EXT
) & ~E1000_CTRL_EXT_IAME
;
2027 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
| E1000_CTRL_EXT_EIAME
;
2028 ew32(CTRL_EXT
, ctrl_ext
);
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2034 if (adapter
->msix_entries
) {
2035 pci_disable_msix(adapter
->pdev
);
2036 kfree(adapter
->msix_entries
);
2037 adapter
->msix_entries
= NULL
;
2038 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2039 pci_disable_msi(adapter
->pdev
);
2040 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2047 * Attempt to configure interrupts using the best available
2048 * capabilities of the hardware and kernel.
2050 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2055 switch (adapter
->int_mode
) {
2056 case E1000E_INT_MODE_MSIX
:
2057 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2058 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2059 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2063 if (adapter
->msix_entries
) {
2064 struct e1000_adapter
*a
= adapter
;
2066 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2067 adapter
->msix_entries
[i
].entry
= i
;
2069 err
= pci_enable_msix_range(a
->pdev
,
2076 /* MSI-X failed, so fall through and try MSI */
2077 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2078 e1000e_reset_interrupt_capability(adapter
);
2080 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2082 case E1000E_INT_MODE_MSI
:
2083 if (!pci_enable_msi(adapter
->pdev
)) {
2084 adapter
->flags
|= FLAG_MSI_ENABLED
;
2086 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2087 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2090 case E1000E_INT_MODE_LEGACY
:
2091 /* Don't do anything; this is the system default */
2095 /* store the number of vectors being used */
2096 adapter
->num_vectors
= 1;
2100 * e1000_request_msix - Initialize MSI-X interrupts
2102 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2105 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2107 struct net_device
*netdev
= adapter
->netdev
;
2108 int err
= 0, vector
= 0;
2110 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2111 snprintf(adapter
->rx_ring
->name
,
2112 sizeof(adapter
->rx_ring
->name
) - 1,
2113 "%s-rx-0", netdev
->name
);
2115 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2116 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2117 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2121 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2122 E1000_EITR_82574(vector
);
2123 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2126 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2127 snprintf(adapter
->tx_ring
->name
,
2128 sizeof(adapter
->tx_ring
->name
) - 1,
2129 "%s-tx-0", netdev
->name
);
2131 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2132 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2133 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2137 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2138 E1000_EITR_82574(vector
);
2139 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2142 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2143 e1000_msix_other
, 0, netdev
->name
, netdev
);
2147 e1000_configure_msix(adapter
);
2153 * e1000_request_irq - initialize interrupts
2155 * Attempts to configure interrupts using the best available
2156 * capabilities of the hardware and kernel.
2158 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2160 struct net_device
*netdev
= adapter
->netdev
;
2163 if (adapter
->msix_entries
) {
2164 err
= e1000_request_msix(adapter
);
2167 /* fall back to MSI */
2168 e1000e_reset_interrupt_capability(adapter
);
2169 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2170 e1000e_set_interrupt_capability(adapter
);
2172 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2173 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2174 netdev
->name
, netdev
);
2178 /* fall back to legacy interrupt */
2179 e1000e_reset_interrupt_capability(adapter
);
2180 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2183 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2184 netdev
->name
, netdev
);
2186 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2191 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2193 struct net_device
*netdev
= adapter
->netdev
;
2195 if (adapter
->msix_entries
) {
2198 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2201 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2204 /* Other Causes interrupt vector */
2205 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2209 free_irq(adapter
->pdev
->irq
, netdev
);
2213 * e1000_irq_disable - Mask off interrupt generation on the NIC
2215 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2217 struct e1000_hw
*hw
= &adapter
->hw
;
2220 if (adapter
->msix_entries
)
2221 ew32(EIAC_82574
, 0);
2224 if (adapter
->msix_entries
) {
2227 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2228 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2230 synchronize_irq(adapter
->pdev
->irq
);
2235 * e1000_irq_enable - Enable default interrupt generation settings
2237 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2239 struct e1000_hw
*hw
= &adapter
->hw
;
2241 if (adapter
->msix_entries
) {
2242 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2243 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_LSC
);
2244 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
2245 (hw
->mac
.type
== e1000_pch_spt
)) {
2246 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2248 ew32(IMS
, IMS_ENABLE_MASK
);
2254 * e1000e_get_hw_control - get control of the h/w from f/w
2255 * @adapter: address of board private structure
2257 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258 * For ASF and Pass Through versions of f/w this means that
2259 * the driver is loaded. For AMT version (only with 82573)
2260 * of the f/w this means that the network i/f is open.
2262 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2264 struct e1000_hw
*hw
= &adapter
->hw
;
2268 /* Let firmware know the driver has taken over */
2269 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2271 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2272 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2273 ctrl_ext
= er32(CTRL_EXT
);
2274 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2279 * e1000e_release_hw_control - release control of the h/w to f/w
2280 * @adapter: address of board private structure
2282 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283 * For ASF and Pass Through versions of f/w this means that the
2284 * driver is no longer loaded. For AMT version (only with 82573) i
2285 * of the f/w this means that the network i/f is closed.
2288 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2290 struct e1000_hw
*hw
= &adapter
->hw
;
2294 /* Let firmware taken over control of h/w */
2295 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2297 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2298 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2299 ctrl_ext
= er32(CTRL_EXT
);
2300 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2305 * e1000_alloc_ring_dma - allocate memory for a ring structure
2307 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2308 struct e1000_ring
*ring
)
2310 struct pci_dev
*pdev
= adapter
->pdev
;
2312 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2324 * Return 0 on success, negative on failure
2326 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2328 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2329 int err
= -ENOMEM
, size
;
2331 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2332 tx_ring
->buffer_info
= vzalloc(size
);
2333 if (!tx_ring
->buffer_info
)
2336 /* round up to nearest 4K */
2337 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2338 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2340 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2344 tx_ring
->next_to_use
= 0;
2345 tx_ring
->next_to_clean
= 0;
2349 vfree(tx_ring
->buffer_info
);
2350 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2358 * Returns 0 on success, negative on failure
2360 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2362 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2363 struct e1000_buffer
*buffer_info
;
2364 int i
, size
, desc_len
, err
= -ENOMEM
;
2366 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2367 rx_ring
->buffer_info
= vzalloc(size
);
2368 if (!rx_ring
->buffer_info
)
2371 for (i
= 0; i
< rx_ring
->count
; i
++) {
2372 buffer_info
= &rx_ring
->buffer_info
[i
];
2373 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2374 sizeof(struct e1000_ps_page
),
2376 if (!buffer_info
->ps_pages
)
2380 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2382 /* Round up to nearest 4K */
2383 rx_ring
->size
= rx_ring
->count
* desc_len
;
2384 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2386 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2390 rx_ring
->next_to_clean
= 0;
2391 rx_ring
->next_to_use
= 0;
2392 rx_ring
->rx_skb_top
= NULL
;
2397 for (i
= 0; i
< rx_ring
->count
; i
++) {
2398 buffer_info
= &rx_ring
->buffer_info
[i
];
2399 kfree(buffer_info
->ps_pages
);
2402 vfree(rx_ring
->buffer_info
);
2403 e_err("Unable to allocate memory for the receive descriptor ring\n");
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2411 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2413 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2414 struct e1000_buffer
*buffer_info
;
2418 for (i
= 0; i
< tx_ring
->count
; i
++) {
2419 buffer_info
= &tx_ring
->buffer_info
[i
];
2420 e1000_put_txbuf(tx_ring
, buffer_info
);
2423 netdev_reset_queue(adapter
->netdev
);
2424 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2425 memset(tx_ring
->buffer_info
, 0, size
);
2427 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2429 tx_ring
->next_to_use
= 0;
2430 tx_ring
->next_to_clean
= 0;
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2437 * Free all transmit software resources
2439 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2441 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2442 struct pci_dev
*pdev
= adapter
->pdev
;
2444 e1000_clean_tx_ring(tx_ring
);
2446 vfree(tx_ring
->buffer_info
);
2447 tx_ring
->buffer_info
= NULL
;
2449 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2451 tx_ring
->desc
= NULL
;
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2458 * Free all receive software resources
2460 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2462 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2463 struct pci_dev
*pdev
= adapter
->pdev
;
2466 e1000_clean_rx_ring(rx_ring
);
2468 for (i
= 0; i
< rx_ring
->count
; i
++)
2469 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2471 vfree(rx_ring
->buffer_info
);
2472 rx_ring
->buffer_info
= NULL
;
2474 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2476 rx_ring
->desc
= NULL
;
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @adapter: pointer to adapter
2482 * @itr_setting: current adapter->itr
2483 * @packets: the number of packets during this measurement interval
2484 * @bytes: the number of bytes during this measurement interval
2486 * Stores a new ITR value based on packets and byte
2487 * counts during the last interrupt. The advantage of per interrupt
2488 * computation is faster updates and more accurate ITR for the current
2489 * traffic pattern. Constants in this function were computed
2490 * based on theoretical maximum wire speed and thresholds were set based
2491 * on testing data as well as attempting to minimize response time
2492 * while increasing bulk throughput. This functionality is controlled
2493 * by the InterruptThrottleRate module parameter.
2495 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2497 unsigned int retval
= itr_setting
;
2502 switch (itr_setting
) {
2503 case lowest_latency
:
2504 /* handle TSO and jumbo frames */
2505 if (bytes
/ packets
> 8000)
2506 retval
= bulk_latency
;
2507 else if ((packets
< 5) && (bytes
> 512))
2508 retval
= low_latency
;
2510 case low_latency
: /* 50 usec aka 20000 ints/s */
2511 if (bytes
> 10000) {
2512 /* this if handles the TSO accounting */
2513 if (bytes
/ packets
> 8000)
2514 retval
= bulk_latency
;
2515 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2516 retval
= bulk_latency
;
2517 else if ((packets
> 35))
2518 retval
= lowest_latency
;
2519 } else if (bytes
/ packets
> 2000) {
2520 retval
= bulk_latency
;
2521 } else if (packets
<= 2 && bytes
< 512) {
2522 retval
= lowest_latency
;
2525 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2526 if (bytes
> 25000) {
2528 retval
= low_latency
;
2529 } else if (bytes
< 6000) {
2530 retval
= low_latency
;
2538 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2541 u32 new_itr
= adapter
->itr
;
2543 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2544 if (adapter
->link_speed
!= SPEED_1000
) {
2550 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2555 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2556 adapter
->total_tx_packets
,
2557 adapter
->total_tx_bytes
);
2558 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2560 adapter
->tx_itr
= low_latency
;
2562 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2563 adapter
->total_rx_packets
,
2564 adapter
->total_rx_bytes
);
2565 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2567 adapter
->rx_itr
= low_latency
;
2569 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2571 /* counts and packets in update_itr are dependent on these numbers */
2572 switch (current_itr
) {
2573 case lowest_latency
:
2577 new_itr
= 20000; /* aka hwitr = ~200 */
2587 if (new_itr
!= adapter
->itr
) {
2588 /* this attempts to bias the interrupt rate towards Bulk
2589 * by adding intermediate steps when interrupt rate is
2592 new_itr
= new_itr
> adapter
->itr
?
2593 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2594 adapter
->itr
= new_itr
;
2595 adapter
->rx_ring
->itr_val
= new_itr
;
2596 if (adapter
->msix_entries
)
2597 adapter
->rx_ring
->set_itr
= 1;
2599 e1000e_write_itr(adapter
, new_itr
);
2604 * e1000e_write_itr - write the ITR value to the appropriate registers
2605 * @adapter: address of board private structure
2606 * @itr: new ITR value to program
2608 * e1000e_write_itr determines if the adapter is in MSI-X mode
2609 * and, if so, writes the EITR registers with the ITR value.
2610 * Otherwise, it writes the ITR value into the ITR register.
2612 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2614 struct e1000_hw
*hw
= &adapter
->hw
;
2615 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2617 if (adapter
->msix_entries
) {
2620 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2621 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2628 * e1000_alloc_queues - Allocate memory for all rings
2629 * @adapter: board private structure to initialize
2631 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2633 int size
= sizeof(struct e1000_ring
);
2635 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2636 if (!adapter
->tx_ring
)
2638 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2639 adapter
->tx_ring
->adapter
= adapter
;
2641 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2642 if (!adapter
->rx_ring
)
2644 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2645 adapter
->rx_ring
->adapter
= adapter
;
2649 e_err("Unable to allocate memory for queues\n");
2650 kfree(adapter
->rx_ring
);
2651 kfree(adapter
->tx_ring
);
2656 * e1000e_poll - NAPI Rx polling callback
2657 * @napi: struct associated with this polling callback
2658 * @weight: number of packets driver is allowed to process this poll
2660 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2662 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2664 struct e1000_hw
*hw
= &adapter
->hw
;
2665 struct net_device
*poll_dev
= adapter
->netdev
;
2666 int tx_cleaned
= 1, work_done
= 0;
2668 adapter
= netdev_priv(poll_dev
);
2670 if (!adapter
->msix_entries
||
2671 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2672 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2674 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2679 /* If weight not fully consumed, exit the polling mode */
2680 if (work_done
< weight
) {
2681 if (adapter
->itr_setting
& 3)
2682 e1000_set_itr(adapter
);
2683 napi_complete_done(napi
, work_done
);
2684 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2685 if (adapter
->msix_entries
)
2686 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2688 e1000_irq_enable(adapter
);
2695 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2696 __always_unused __be16 proto
, u16 vid
)
2698 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2699 struct e1000_hw
*hw
= &adapter
->hw
;
2702 /* don't update vlan cookie if already programmed */
2703 if ((adapter
->hw
.mng_cookie
.status
&
2704 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2705 (vid
== adapter
->mng_vlan_id
))
2708 /* add VID to filter table */
2709 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2710 index
= (vid
>> 5) & 0x7F;
2711 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2712 vfta
|= BIT((vid
& 0x1F));
2713 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2716 set_bit(vid
, adapter
->active_vlans
);
2721 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2722 __always_unused __be16 proto
, u16 vid
)
2724 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2725 struct e1000_hw
*hw
= &adapter
->hw
;
2728 if ((adapter
->hw
.mng_cookie
.status
&
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2730 (vid
== adapter
->mng_vlan_id
)) {
2731 /* release control to f/w */
2732 e1000e_release_hw_control(adapter
);
2736 /* remove VID from filter table */
2737 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2738 index
= (vid
>> 5) & 0x7F;
2739 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2740 vfta
&= ~BIT((vid
& 0x1F));
2741 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2744 clear_bit(vid
, adapter
->active_vlans
);
2750 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751 * @adapter: board private structure to initialize
2753 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2755 struct net_device
*netdev
= adapter
->netdev
;
2756 struct e1000_hw
*hw
= &adapter
->hw
;
2759 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2760 /* disable VLAN receive filtering */
2762 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2765 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2766 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2767 adapter
->mng_vlan_id
);
2768 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2774 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775 * @adapter: board private structure to initialize
2777 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2779 struct e1000_hw
*hw
= &adapter
->hw
;
2782 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2783 /* enable VLAN receive filtering */
2785 rctl
|= E1000_RCTL_VFE
;
2786 rctl
&= ~E1000_RCTL_CFIEN
;
2792 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2795 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2797 struct e1000_hw
*hw
= &adapter
->hw
;
2800 /* disable VLAN tag insert/strip */
2802 ctrl
&= ~E1000_CTRL_VME
;
2807 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2810 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2812 struct e1000_hw
*hw
= &adapter
->hw
;
2815 /* enable VLAN tag insert/strip */
2817 ctrl
|= E1000_CTRL_VME
;
2821 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2823 struct net_device
*netdev
= adapter
->netdev
;
2824 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2825 u16 old_vid
= adapter
->mng_vlan_id
;
2827 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2828 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2829 adapter
->mng_vlan_id
= vid
;
2832 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2833 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2836 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2840 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2842 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2843 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2846 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2848 struct e1000_hw
*hw
= &adapter
->hw
;
2849 u32 manc
, manc2h
, mdef
, i
, j
;
2851 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2856 /* enable receiving management packets to the host. this will probably
2857 * generate destination unreachable messages from the host OS, but
2858 * the packets will be handled on SMBUS
2860 manc
|= E1000_MANC_EN_MNG2HOST
;
2861 manc2h
= er32(MANC2H
);
2863 switch (hw
->mac
.type
) {
2865 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2869 /* Check if IPMI pass-through decision filter already exists;
2872 for (i
= 0, j
= 0; i
< 8; i
++) {
2873 mdef
= er32(MDEF(i
));
2875 /* Ignore filters with anything other than IPMI ports */
2876 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2879 /* Enable this decision filter in MANC2H */
2886 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2889 /* Create new decision filter in an empty filter */
2890 for (i
= 0, j
= 0; i
< 8; i
++)
2891 if (er32(MDEF(i
)) == 0) {
2892 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2893 E1000_MDEF_PORT_664
));
2900 e_warn("Unable to create IPMI pass-through filter\n");
2904 ew32(MANC2H
, manc2h
);
2909 * e1000_configure_tx - Configure Transmit Unit after Reset
2910 * @adapter: board private structure
2912 * Configure the Tx unit of the MAC after a reset.
2914 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2916 struct e1000_hw
*hw
= &adapter
->hw
;
2917 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2919 u32 tdlen
, tctl
, tarc
;
2921 /* Setup the HW Tx Head and Tail descriptor pointers */
2922 tdba
= tx_ring
->dma
;
2923 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2924 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2925 ew32(TDBAH(0), (tdba
>> 32));
2926 ew32(TDLEN(0), tdlen
);
2929 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2930 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2932 writel(0, tx_ring
->head
);
2933 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2934 e1000e_update_tdt_wa(tx_ring
, 0);
2936 writel(0, tx_ring
->tail
);
2938 /* Set the Tx Interrupt Delay register */
2939 ew32(TIDV
, adapter
->tx_int_delay
);
2940 /* Tx irq moderation */
2941 ew32(TADV
, adapter
->tx_abs_int_delay
);
2943 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2944 u32 txdctl
= er32(TXDCTL(0));
2946 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2947 E1000_TXDCTL_WTHRESH
);
2948 /* set up some performance related parameters to encourage the
2949 * hardware to use the bus more efficiently in bursts, depends
2950 * on the tx_int_delay to be enabled,
2951 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952 * hthresh = 1 ==> prefetch when one or more available
2953 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954 * BEWARE: this seems to work but should be considered first if
2955 * there are Tx hangs or other Tx related bugs
2957 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2958 ew32(TXDCTL(0), txdctl
);
2960 /* erratum work around: set txdctl the same for both queues */
2961 ew32(TXDCTL(1), er32(TXDCTL(0)));
2963 /* Program the Transmit Control Register */
2965 tctl
&= ~E1000_TCTL_CT
;
2966 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2967 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2969 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2970 tarc
= er32(TARC(0));
2971 /* set the speed mode bit, we'll clear it if we're not at
2972 * gigabit link later
2974 #define SPEED_MODE_BIT BIT(21)
2975 tarc
|= SPEED_MODE_BIT
;
2976 ew32(TARC(0), tarc
);
2979 /* errata: program both queues to unweighted RR */
2980 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2981 tarc
= er32(TARC(0));
2983 ew32(TARC(0), tarc
);
2984 tarc
= er32(TARC(1));
2986 ew32(TARC(1), tarc
);
2989 /* Setup Transmit Descriptor Settings for eop descriptor */
2990 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2992 /* only set IDE if we are delaying interrupts using the timers */
2993 if (adapter
->tx_int_delay
)
2994 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2996 /* enable Report Status bit */
2997 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
3001 hw
->mac
.ops
.config_collision_dist(hw
);
3003 /* SPT Si errata workaround to avoid data corruption */
3004 if (hw
->mac
.type
== e1000_pch_spt
) {
3007 reg_val
= er32(IOSFPC
);
3008 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3009 ew32(IOSFPC
, reg_val
);
3011 reg_val
= er32(TARC(0));
3012 reg_val
|= E1000_TARC0_CB_MULTIQ_3_REQ
;
3013 ew32(TARC(0), reg_val
);
3018 * e1000_setup_rctl - configure the receive control registers
3019 * @adapter: Board private structure
3021 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3025 struct e1000_hw
*hw
= &adapter
->hw
;
3029 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3030 * If jumbo frames not set, program related MAC/PHY registers
3033 if (hw
->mac
.type
>= e1000_pch2lan
) {
3036 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3037 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3039 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3042 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 /* Program MC offset vector base */
3047 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3048 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3049 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3050 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3052 /* Do not Store bad packets */
3053 rctl
&= ~E1000_RCTL_SBP
;
3055 /* Enable Long Packet receive */
3056 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3057 rctl
&= ~E1000_RCTL_LPE
;
3059 rctl
|= E1000_RCTL_LPE
;
3061 /* Some systems expect that the CRC is included in SMBUS traffic. The
3062 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063 * host memory when this is enabled
3065 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3066 rctl
|= E1000_RCTL_SECRC
;
3068 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3072 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3075 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3077 e1e_rphy(hw
, 22, &phy_data
);
3079 phy_data
|= BIT(14);
3080 e1e_wphy(hw
, 0x10, 0x2823);
3081 e1e_wphy(hw
, 0x11, 0x0003);
3082 e1e_wphy(hw
, 22, phy_data
);
3085 /* Setup buffer sizes */
3086 rctl
&= ~E1000_RCTL_SZ_4096
;
3087 rctl
|= E1000_RCTL_BSEX
;
3088 switch (adapter
->rx_buffer_len
) {
3091 rctl
|= E1000_RCTL_SZ_2048
;
3092 rctl
&= ~E1000_RCTL_BSEX
;
3095 rctl
|= E1000_RCTL_SZ_4096
;
3098 rctl
|= E1000_RCTL_SZ_8192
;
3101 rctl
|= E1000_RCTL_SZ_16384
;
3105 /* Enable Extended Status in all Receive Descriptors */
3106 rfctl
= er32(RFCTL
);
3107 rfctl
|= E1000_RFCTL_EXTEN
;
3110 /* 82571 and greater support packet-split where the protocol
3111 * header is placed in skb->data and the packet data is
3112 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113 * In the case of a non-split, skb->data is linearly filled,
3114 * followed by the page buffers. Therefore, skb->data is
3115 * sized to hold the largest protocol header.
3117 * allocations using alloc_page take too long for regular MTU
3118 * so only enable packet split for jumbo frames
3120 * Using pages when the page size is greater than 16k wastes
3121 * a lot of memory, since we allocate 3 pages at all times
3124 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3125 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3126 adapter
->rx_ps_pages
= pages
;
3128 adapter
->rx_ps_pages
= 0;
3130 if (adapter
->rx_ps_pages
) {
3133 /* Enable Packet split descriptors */
3134 rctl
|= E1000_RCTL_DTYP_PS
;
3136 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3138 switch (adapter
->rx_ps_pages
) {
3140 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3143 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3146 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3150 ew32(PSRCTL
, psrctl
);
3153 /* This is useful for sniffing bad packets. */
3154 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3155 /* UPE and MPE will be handled by normal PROMISC logic
3156 * in e1000e_set_rx_mode
3158 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3159 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3160 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3162 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3163 E1000_RCTL_DPF
| /* Allow filtered pause */
3164 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3165 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166 * and that breaks VLANs.
3171 /* just started the receive unit, no need to restart */
3172 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3176 * e1000_configure_rx - Configure Receive Unit after Reset
3177 * @adapter: board private structure
3179 * Configure the Rx unit of the MAC after a reset.
3181 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3183 struct e1000_hw
*hw
= &adapter
->hw
;
3184 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3186 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3188 if (adapter
->rx_ps_pages
) {
3189 /* this is a 32 byte descriptor */
3190 rdlen
= rx_ring
->count
*
3191 sizeof(union e1000_rx_desc_packet_split
);
3192 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3193 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3194 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3195 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3196 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3197 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3199 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3200 adapter
->clean_rx
= e1000_clean_rx_irq
;
3201 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3204 /* disable receives while setting up the descriptors */
3206 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3207 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3209 usleep_range(10000, 20000);
3211 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3212 /* set the writeback threshold (only takes effect if the RDTR
3213 * is set). set GRAN=1 and write back up to 0x4 worth, and
3214 * enable prefetching of 0x20 Rx descriptors
3220 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3221 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3223 /* override the delay timers for enabling bursting, only if
3224 * the value was not set by the user via module options
3226 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3227 adapter
->rx_int_delay
= BURST_RDTR
;
3228 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3229 adapter
->rx_abs_int_delay
= BURST_RADV
;
3232 /* set the Receive Delay Timer Register */
3233 ew32(RDTR
, adapter
->rx_int_delay
);
3235 /* irq moderation */
3236 ew32(RADV
, adapter
->rx_abs_int_delay
);
3237 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3238 e1000e_write_itr(adapter
, adapter
->itr
);
3240 ctrl_ext
= er32(CTRL_EXT
);
3241 /* Auto-Mask interrupts upon ICR access */
3242 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3243 ew32(IAM
, 0xffffffff);
3244 ew32(CTRL_EXT
, ctrl_ext
);
3247 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3248 * the Base and Length of the Rx Descriptor Ring
3250 rdba
= rx_ring
->dma
;
3251 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3252 ew32(RDBAH(0), (rdba
>> 32));
3253 ew32(RDLEN(0), rdlen
);
3256 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3257 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3259 writel(0, rx_ring
->head
);
3260 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3261 e1000e_update_rdt_wa(rx_ring
, 0);
3263 writel(0, rx_ring
->tail
);
3265 /* Enable Receive Checksum Offload for TCP and UDP */
3266 rxcsum
= er32(RXCSUM
);
3267 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3268 rxcsum
|= E1000_RXCSUM_TUOFL
;
3270 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3271 ew32(RXCSUM
, rxcsum
);
3273 /* With jumbo frames, excessive C-state transition latencies result
3274 * in dropped transactions.
3276 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3278 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3279 adapter
->max_frame_size
) * 8 / 1000;
3281 if (adapter
->flags
& FLAG_IS_ICH
) {
3282 u32 rxdctl
= er32(RXDCTL(0));
3284 ew32(RXDCTL(0), rxdctl
| 0x3);
3287 pm_qos_update_request(&adapter
->pm_qos_req
, lat
);
3289 pm_qos_update_request(&adapter
->pm_qos_req
,
3290 PM_QOS_DEFAULT_VALUE
);
3293 /* Enable Receives */
3298 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3299 * @netdev: network interface device structure
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 * 0 on no addresses written
3304 * X on writing X addresses to MTA
3306 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3308 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3309 struct e1000_hw
*hw
= &adapter
->hw
;
3310 struct netdev_hw_addr
*ha
;
3314 if (netdev_mc_empty(netdev
)) {
3315 /* nothing to program, so clear mc list */
3316 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3320 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3324 /* update_mc_addr_list expects a packed array of only addresses. */
3326 netdev_for_each_mc_addr(ha
, netdev
)
3327 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3329 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3332 return netdev_mc_count(netdev
);
3336 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3337 * @netdev: network interface device structure
3339 * Writes unicast address list to the RAR table.
3340 * Returns: -ENOMEM on failure/insufficient address space
3341 * 0 on no addresses written
3342 * X on writing X addresses to the RAR table
3344 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3346 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3347 struct e1000_hw
*hw
= &adapter
->hw
;
3348 unsigned int rar_entries
;
3351 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3353 /* save a rar entry for our hardware address */
3356 /* save a rar entry for the LAA workaround */
3357 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3360 /* return ENOMEM indicating insufficient memory for addresses */
3361 if (netdev_uc_count(netdev
) > rar_entries
)
3364 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3365 struct netdev_hw_addr
*ha
;
3367 /* write the addresses in reverse order to avoid write
3370 netdev_for_each_uc_addr(ha
, netdev
) {
3375 ret_val
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3382 /* zero out the remaining RAR entries not used above */
3383 for (; rar_entries
> 0; rar_entries
--) {
3384 ew32(RAH(rar_entries
), 0);
3385 ew32(RAL(rar_entries
), 0);
3393 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3394 * @netdev: network interface device structure
3396 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3397 * address list or the network interface flags are updated. This routine is
3398 * responsible for configuring the hardware for proper unicast, multicast,
3399 * promiscuous mode, and all-multi behavior.
3401 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3403 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3404 struct e1000_hw
*hw
= &adapter
->hw
;
3407 if (pm_runtime_suspended(netdev
->dev
.parent
))
3410 /* Check for Promiscuous and All Multicast modes */
3413 /* clear the affected bits */
3414 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3416 if (netdev
->flags
& IFF_PROMISC
) {
3417 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3418 /* Do not hardware filter VLANs in promisc mode */
3419 e1000e_vlan_filter_disable(adapter
);
3423 if (netdev
->flags
& IFF_ALLMULTI
) {
3424 rctl
|= E1000_RCTL_MPE
;
3426 /* Write addresses to the MTA, if the attempt fails
3427 * then we should just turn on promiscuous mode so
3428 * that we can at least receive multicast traffic
3430 count
= e1000e_write_mc_addr_list(netdev
);
3432 rctl
|= E1000_RCTL_MPE
;
3434 e1000e_vlan_filter_enable(adapter
);
3435 /* Write addresses to available RAR registers, if there is not
3436 * sufficient space to store all the addresses then enable
3437 * unicast promiscuous mode
3439 count
= e1000e_write_uc_addr_list(netdev
);
3441 rctl
|= E1000_RCTL_UPE
;
3446 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3447 e1000e_vlan_strip_enable(adapter
);
3449 e1000e_vlan_strip_disable(adapter
);
3452 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3454 struct e1000_hw
*hw
= &adapter
->hw
;
3459 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3460 for (i
= 0; i
< 10; i
++)
3461 ew32(RSSRK(i
), rss_key
[i
]);
3463 /* Direct all traffic to queue 0 */
3464 for (i
= 0; i
< 32; i
++)
3467 /* Disable raw packet checksumming so that RSS hash is placed in
3468 * descriptor on writeback.
3470 rxcsum
= er32(RXCSUM
);
3471 rxcsum
|= E1000_RXCSUM_PCSD
;
3473 ew32(RXCSUM
, rxcsum
);
3475 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3476 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3477 E1000_MRQC_RSS_FIELD_IPV6
|
3478 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3479 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3485 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3486 * @adapter: board private structure
3487 * @timinca: pointer to returned time increment attributes
3489 * Get attributes for incrementing the System Time Register SYSTIML/H at
3490 * the default base frequency, and set the cyclecounter shift value.
3492 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3494 struct e1000_hw
*hw
= &adapter
->hw
;
3495 u32 incvalue
, incperiod
, shift
;
3497 /* Make sure clock is enabled on I217/I218/I219 before checking
3500 if (((hw
->mac
.type
== e1000_pch_lpt
) ||
3501 (hw
->mac
.type
== e1000_pch_spt
)) &&
3502 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3503 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3504 u32 fextnvm7
= er32(FEXTNVM7
);
3506 if (!(fextnvm7
& BIT(0))) {
3507 ew32(FEXTNVM7
, fextnvm7
| BIT(0));
3512 switch (hw
->mac
.type
) {
3515 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3516 /* Stable 96MHz frequency */
3517 incperiod
= INCPERIOD_96MHz
;
3518 incvalue
= INCVALUE_96MHz
;
3519 shift
= INCVALUE_SHIFT_96MHz
;
3520 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHz
;
3522 /* Stable 25MHz frequency */
3523 incperiod
= INCPERIOD_25MHz
;
3524 incvalue
= INCVALUE_25MHz
;
3525 shift
= INCVALUE_SHIFT_25MHz
;
3526 adapter
->cc
.shift
= shift
;
3530 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3531 /* Stable 24MHz frequency */
3532 incperiod
= INCPERIOD_24MHz
;
3533 incvalue
= INCVALUE_24MHz
;
3534 shift
= INCVALUE_SHIFT_24MHz
;
3535 adapter
->cc
.shift
= shift
;
3541 /* Stable 25MHz frequency */
3542 incperiod
= INCPERIOD_25MHz
;
3543 incvalue
= INCVALUE_25MHz
;
3544 shift
= INCVALUE_SHIFT_25MHz
;
3545 adapter
->cc
.shift
= shift
;
3551 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3552 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3558 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3559 * @adapter: board private structure
3561 * Outgoing time stamping can be enabled and disabled. Play nice and
3562 * disable it when requested, although it shouldn't cause any overhead
3563 * when no packet needs it. At most one packet in the queue may be
3564 * marked for time stamping, otherwise it would be impossible to tell
3565 * for sure to which packet the hardware time stamp belongs.
3567 * Incoming time stamping has to be configured via the hardware filters.
3568 * Not all combinations are supported, in particular event type has to be
3569 * specified. Matching the kind of event packet is not supported, with the
3570 * exception of "all V2 events regardless of level 2 or 4".
3572 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3573 struct hwtstamp_config
*config
)
3575 struct e1000_hw
*hw
= &adapter
->hw
;
3576 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3577 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3584 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3587 /* flags reserved for future extensions - must be zero */
3591 switch (config
->tx_type
) {
3592 case HWTSTAMP_TX_OFF
:
3595 case HWTSTAMP_TX_ON
:
3601 switch (config
->rx_filter
) {
3602 case HWTSTAMP_FILTER_NONE
:
3605 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3606 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3607 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3610 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3611 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3612 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3615 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3616 /* Also time stamps V2 L2 Path Delay Request/Response */
3617 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3618 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3621 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3622 /* Also time stamps V2 L2 Path Delay Request/Response. */
3623 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3624 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3627 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3628 /* Hardware cannot filter just V2 L4 Sync messages;
3629 * fall-through to V2 (both L2 and L4) Sync.
3631 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3632 /* Also time stamps V2 Path Delay Request/Response. */
3633 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3634 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3638 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3639 /* Hardware cannot filter just V2 L4 Delay Request messages;
3640 * fall-through to V2 (both L2 and L4) Delay Request.
3642 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3643 /* Also time stamps V2 Path Delay Request/Response. */
3644 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3645 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3649 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3650 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3651 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3652 * fall-through to all V2 (both L2 and L4) Events.
3654 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3655 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3656 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3660 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3661 /* For V1, the hardware can only filter Sync messages or
3662 * Delay Request messages but not both so fall-through to
3663 * time stamp all packets.
3665 case HWTSTAMP_FILTER_ALL
:
3668 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3669 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3675 adapter
->hwtstamp_config
= *config
;
3677 /* enable/disable Tx h/w time stamping */
3678 regval
= er32(TSYNCTXCTL
);
3679 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3680 regval
|= tsync_tx_ctl
;
3681 ew32(TSYNCTXCTL
, regval
);
3682 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3683 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3684 e_err("Timesync Tx Control register not set as expected\n");
3688 /* enable/disable Rx h/w time stamping */
3689 regval
= er32(TSYNCRXCTL
);
3690 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3691 regval
|= tsync_rx_ctl
;
3692 ew32(TSYNCRXCTL
, regval
);
3693 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3694 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3695 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3696 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3697 e_err("Timesync Rx Control register not set as expected\n");
3701 /* L2: define ethertype filter for time stamped packets */
3703 rxmtrl
|= ETH_P_1588
;
3705 /* define which PTP packets get time stamped */
3706 ew32(RXMTRL
, rxmtrl
);
3708 /* Filter by destination port */
3710 rxudp
= PTP_EV_PORT
;
3711 cpu_to_be16s(&rxudp
);
3717 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3725 * e1000_configure - configure the hardware for Rx and Tx
3726 * @adapter: private board structure
3728 static void e1000_configure(struct e1000_adapter
*adapter
)
3730 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3732 e1000e_set_rx_mode(adapter
->netdev
);
3734 e1000_restore_vlan(adapter
);
3735 e1000_init_manageability_pt(adapter
);
3737 e1000_configure_tx(adapter
);
3739 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3740 e1000e_setup_rss_hash(adapter
);
3741 e1000_setup_rctl(adapter
);
3742 e1000_configure_rx(adapter
);
3743 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3747 * e1000e_power_up_phy - restore link in case the phy was powered down
3748 * @adapter: address of board private structure
3750 * The phy may be powered down to save power and turn off link when the
3751 * driver is unloaded and wake on lan is not enabled (among others)
3752 * *** this routine MUST be followed by a call to e1000e_reset ***
3754 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3756 if (adapter
->hw
.phy
.ops
.power_up
)
3757 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3759 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3763 * e1000_power_down_phy - Power down the PHY
3765 * Power down the PHY so no link is implied when interface is down.
3766 * The PHY cannot be powered down if management or WoL is active.
3768 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3770 if (adapter
->hw
.phy
.ops
.power_down
)
3771 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3775 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3777 * We want to clear all pending descriptors from the TX ring.
3778 * zeroing happens when the HW reads the regs. We assign the ring itself as
3779 * the data of the next descriptor. We don't care about the data we are about
3782 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3784 struct e1000_hw
*hw
= &adapter
->hw
;
3785 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3786 struct e1000_tx_desc
*tx_desc
= NULL
;
3787 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3791 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3793 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3794 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3795 tx_desc
->buffer_addr
= tx_ring
->dma
;
3797 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3798 tx_desc
->upper
.data
= 0;
3799 /* flush descriptors to memory before notifying the HW */
3801 tx_ring
->next_to_use
++;
3802 if (tx_ring
->next_to_use
== tx_ring
->count
)
3803 tx_ring
->next_to_use
= 0;
3804 ew32(TDT(0), tx_ring
->next_to_use
);
3806 usleep_range(200, 250);
3810 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3812 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3814 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3817 struct e1000_hw
*hw
= &adapter
->hw
;
3820 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3822 usleep_range(100, 150);
3824 rxdctl
= er32(RXDCTL(0));
3825 /* zero the lower 14 bits (prefetch and host thresholds) */
3826 rxdctl
&= 0xffffc000;
3828 /* update thresholds: prefetch threshold to 31, host threshold to 1
3829 * and make sure the granularity is "descriptors" and not "cache lines"
3831 rxdctl
|= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3833 ew32(RXDCTL(0), rxdctl
);
3834 /* momentarily enable the RX ring for the changes to take effect */
3835 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3837 usleep_range(100, 150);
3838 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3842 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3844 * In i219, the descriptor rings must be emptied before resetting the HW
3845 * or before changing the device state to D3 during runtime (runtime PM).
3847 * Failure to do this will cause the HW to enter a unit hang state which can
3848 * only be released by PCI reset on the device
3852 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3855 u32 fext_nvm11
, tdlen
;
3856 struct e1000_hw
*hw
= &adapter
->hw
;
3858 /* First, disable MULR fix in FEXTNVM11 */
3859 fext_nvm11
= er32(FEXTNVM11
);
3860 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3861 ew32(FEXTNVM11
, fext_nvm11
);
3862 /* do nothing if we're not in faulty state, or if the queue is empty */
3863 tdlen
= er32(TDLEN(0));
3864 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3866 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3868 e1000_flush_tx_ring(adapter
);
3869 /* recheck, maybe the fault is caused by the rx ring */
3870 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3872 if (hang_state
& FLUSH_DESC_REQUIRED
)
3873 e1000_flush_rx_ring(adapter
);
3877 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3878 * @adapter: board private structure
3880 * When the MAC is reset, all hardware bits for timesync will be reset to the
3881 * default values. This function will restore the settings last in place.
3882 * Since the clock SYSTIME registers are reset, we will simply restore the
3883 * cyclecounter to the kernel real clock time.
3885 static void e1000e_systim_reset(struct e1000_adapter
*adapter
)
3887 struct ptp_clock_info
*info
= &adapter
->ptp_clock_info
;
3888 struct e1000_hw
*hw
= &adapter
->hw
;
3889 unsigned long flags
;
3893 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3896 if (info
->adjfreq
) {
3897 /* restore the previous ptp frequency delta */
3898 ret_val
= info
->adjfreq(info
, adapter
->ptp_delta
);
3900 /* set the default base frequency if no adjustment possible */
3901 ret_val
= e1000e_get_base_timinca(adapter
, &timinca
);
3903 ew32(TIMINCA
, timinca
);
3907 dev_warn(&adapter
->pdev
->dev
,
3908 "Failed to restore TIMINCA clock rate delta: %d\n",
3913 /* reset the systim ns time counter */
3914 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
3915 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3916 ktime_to_ns(ktime_get_real()));
3917 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
3919 /* restore the previous hwtstamp configuration settings */
3920 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
3924 * e1000e_reset - bring the hardware into a known good state
3926 * This function boots the hardware and enables some settings that
3927 * require a configuration cycle of the hardware - those cannot be
3928 * set/changed during runtime. After reset the device needs to be
3929 * properly configured for Rx, Tx etc.
3931 void e1000e_reset(struct e1000_adapter
*adapter
)
3933 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3934 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3935 struct e1000_hw
*hw
= &adapter
->hw
;
3936 u32 tx_space
, min_tx_space
, min_rx_space
;
3937 u32 pba
= adapter
->pba
;
3940 /* reset Packet Buffer Allocation to default */
3943 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3944 /* To maintain wire speed transmits, the Tx FIFO should be
3945 * large enough to accommodate two full transmit packets,
3946 * rounded up to the next 1KB and expressed in KB. Likewise,
3947 * the Rx FIFO should be large enough to accommodate at least
3948 * one full receive packet and is similarly rounded up and
3952 /* upper 16 bits has Tx packet buffer allocation size in KB */
3953 tx_space
= pba
>> 16;
3954 /* lower 16 bits has Rx packet buffer allocation size in KB */
3956 /* the Tx fifo also stores 16 bytes of information about the Tx
3957 * but don't include ethernet FCS because hardware appends it
3959 min_tx_space
= (adapter
->max_frame_size
+
3960 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3961 min_tx_space
= ALIGN(min_tx_space
, 1024);
3962 min_tx_space
>>= 10;
3963 /* software strips receive CRC, so leave room for it */
3964 min_rx_space
= adapter
->max_frame_size
;
3965 min_rx_space
= ALIGN(min_rx_space
, 1024);
3966 min_rx_space
>>= 10;
3968 /* If current Tx allocation is less than the min Tx FIFO size,
3969 * and the min Tx FIFO size is less than the current Rx FIFO
3970 * allocation, take space away from current Rx allocation
3972 if ((tx_space
< min_tx_space
) &&
3973 ((min_tx_space
- tx_space
) < pba
)) {
3974 pba
-= min_tx_space
- tx_space
;
3976 /* if short on Rx space, Rx wins and must trump Tx
3979 if (pba
< min_rx_space
)
3986 /* flow control settings
3988 * The high water mark must be low enough to fit one full frame
3989 * (or the size used for early receive) above it in the Rx FIFO.
3990 * Set it to the lower of:
3991 * - 90% of the Rx FIFO size, and
3992 * - the full Rx FIFO size minus one full frame
3994 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3995 fc
->pause_time
= 0xFFFF;
3997 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3998 fc
->send_xon
= true;
3999 fc
->current_mode
= fc
->requested_mode
;
4001 switch (hw
->mac
.type
) {
4003 case e1000_ich10lan
:
4004 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4007 fc
->high_water
= 0x2800;
4008 fc
->low_water
= fc
->high_water
- 8;
4013 hwm
= min(((pba
<< 10) * 9 / 10),
4014 ((pba
<< 10) - adapter
->max_frame_size
));
4016 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
4017 fc
->low_water
= fc
->high_water
- 8;
4020 /* Workaround PCH LOM adapter hangs with certain network
4021 * loads. If hangs persist, try disabling Tx flow control.
4023 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4024 fc
->high_water
= 0x3500;
4025 fc
->low_water
= 0x1500;
4027 fc
->high_water
= 0x5000;
4028 fc
->low_water
= 0x3000;
4030 fc
->refresh_time
= 0x1000;
4035 fc
->refresh_time
= 0x0400;
4037 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4038 fc
->high_water
= 0x05C20;
4039 fc
->low_water
= 0x05048;
4040 fc
->pause_time
= 0x0650;
4046 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4047 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4051 /* Alignment of Tx data is on an arbitrary byte boundary with the
4052 * maximum size per Tx descriptor limited only to the transmit
4053 * allocation of the packet buffer minus 96 bytes with an upper
4054 * limit of 24KB due to receive synchronization limitations.
4056 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4059 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4060 * fit in receive buffer.
4062 if (adapter
->itr_setting
& 0x3) {
4063 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4064 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4065 dev_info(&adapter
->pdev
->dev
,
4066 "Interrupt Throttle Rate off\n");
4067 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4068 e1000e_write_itr(adapter
, 0);
4070 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4071 dev_info(&adapter
->pdev
->dev
,
4072 "Interrupt Throttle Rate on\n");
4073 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4074 adapter
->itr
= 20000;
4075 e1000e_write_itr(adapter
, adapter
->itr
);
4079 if (hw
->mac
.type
== e1000_pch_spt
)
4080 e1000_flush_desc_rings(adapter
);
4081 /* Allow time for pending master requests to run */
4082 mac
->ops
.reset_hw(hw
);
4084 /* For parts with AMT enabled, let the firmware know
4085 * that the network interface is in control
4087 if (adapter
->flags
& FLAG_HAS_AMT
)
4088 e1000e_get_hw_control(adapter
);
4092 if (mac
->ops
.init_hw(hw
))
4093 e_err("Hardware Error\n");
4095 e1000_update_mng_vlan(adapter
);
4097 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4098 ew32(VET
, ETH_P_8021Q
);
4100 e1000e_reset_adaptive(hw
);
4102 /* restore systim and hwtstamp settings */
4103 e1000e_systim_reset(adapter
);
4105 /* Set EEE advertisement as appropriate */
4106 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4110 switch (hw
->phy
.type
) {
4111 case e1000_phy_82579
:
4112 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4114 case e1000_phy_i217
:
4115 adv_addr
= I217_EEE_ADVERTISEMENT
;
4118 dev_err(&adapter
->pdev
->dev
,
4119 "Invalid PHY type setting EEE advertisement\n");
4123 ret_val
= hw
->phy
.ops
.acquire(hw
);
4125 dev_err(&adapter
->pdev
->dev
,
4126 "EEE advertisement - unable to acquire PHY\n");
4130 e1000_write_emi_reg_locked(hw
, adv_addr
,
4131 hw
->dev_spec
.ich8lan
.eee_disable
?
4132 0 : adapter
->eee_advert
);
4134 hw
->phy
.ops
.release(hw
);
4137 if (!netif_running(adapter
->netdev
) &&
4138 !test_bit(__E1000_TESTING
, &adapter
->state
))
4139 e1000_power_down_phy(adapter
);
4141 e1000_get_phy_info(hw
);
4143 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4144 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4146 /* speed up time to link by disabling smart power down, ignore
4147 * the return value of this function because there is nothing
4148 * different we would do if it failed
4150 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4151 phy_data
&= ~IGP02E1000_PM_SPD
;
4152 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4154 if (hw
->mac
.type
== e1000_pch_spt
&& adapter
->int_mode
== 0) {
4157 /* Fextnvm7 @ 0xe4[2] = 1 */
4158 reg
= er32(FEXTNVM7
);
4159 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4160 ew32(FEXTNVM7
, reg
);
4161 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4162 reg
= er32(FEXTNVM9
);
4163 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4164 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4165 ew32(FEXTNVM9
, reg
);
4171 * e1000e_trigger_lsc - trigger an LSC interrupt
4174 * Fire a link status change interrupt to start the watchdog.
4176 static void e1000e_trigger_lsc(struct e1000_adapter
*adapter
)
4178 struct e1000_hw
*hw
= &adapter
->hw
;
4180 if (adapter
->msix_entries
)
4181 ew32(ICS
, E1000_ICS_OTHER
);
4183 ew32(ICS
, E1000_ICS_LSC
);
4186 void e1000e_up(struct e1000_adapter
*adapter
)
4188 /* hardware has been reset, we need to reload some things */
4189 e1000_configure(adapter
);
4191 clear_bit(__E1000_DOWN
, &adapter
->state
);
4193 if (adapter
->msix_entries
)
4194 e1000_configure_msix(adapter
);
4195 e1000_irq_enable(adapter
);
4197 netif_start_queue(adapter
->netdev
);
4199 e1000e_trigger_lsc(adapter
);
4202 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4204 struct e1000_hw
*hw
= &adapter
->hw
;
4206 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4209 /* flush pending descriptor writebacks to memory */
4210 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4211 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4213 /* execute the writes immediately */
4216 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4217 * write is successful
4219 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4220 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4222 /* execute the writes immediately */
4226 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4229 * e1000e_down - quiesce the device and optionally reset the hardware
4230 * @adapter: board private structure
4231 * @reset: boolean flag to reset the hardware or not
4233 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4235 struct net_device
*netdev
= adapter
->netdev
;
4236 struct e1000_hw
*hw
= &adapter
->hw
;
4239 /* signal that we're down so the interrupt handler does not
4240 * reschedule our watchdog timer
4242 set_bit(__E1000_DOWN
, &adapter
->state
);
4244 netif_carrier_off(netdev
);
4246 /* disable receives in the hardware */
4248 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4249 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4250 /* flush and sleep below */
4252 netif_stop_queue(netdev
);
4254 /* disable transmits in the hardware */
4256 tctl
&= ~E1000_TCTL_EN
;
4259 /* flush both disables and wait for them to finish */
4261 usleep_range(10000, 20000);
4263 e1000_irq_disable(adapter
);
4265 napi_synchronize(&adapter
->napi
);
4267 del_timer_sync(&adapter
->watchdog_timer
);
4268 del_timer_sync(&adapter
->phy_info_timer
);
4270 spin_lock(&adapter
->stats64_lock
);
4271 e1000e_update_stats(adapter
);
4272 spin_unlock(&adapter
->stats64_lock
);
4274 e1000e_flush_descriptors(adapter
);
4276 adapter
->link_speed
= 0;
4277 adapter
->link_duplex
= 0;
4279 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4280 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4281 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4282 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4283 e_dbg("failed to disable jumbo frame workaround mode\n");
4285 if (!pci_channel_offline(adapter
->pdev
)) {
4287 e1000e_reset(adapter
);
4288 else if (hw
->mac
.type
== e1000_pch_spt
)
4289 e1000_flush_desc_rings(adapter
);
4291 e1000_clean_tx_ring(adapter
->tx_ring
);
4292 e1000_clean_rx_ring(adapter
->rx_ring
);
4295 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4298 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4299 usleep_range(1000, 2000);
4300 e1000e_down(adapter
, true);
4302 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4306 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4307 * @hw: pointer to the HW structure
4308 * @systim: time value read, sanitized and returned
4310 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4311 * check to see that the time is incrementing at a reasonable
4312 * rate and is a multiple of incvalue.
4314 static u64
e1000e_sanitize_systim(struct e1000_hw
*hw
, u64 systim
)
4316 u64 time_delta
, rem
, temp
;
4321 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4322 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4323 /* latch SYSTIMH on read of SYSTIML */
4324 systim_next
= (u64
)er32(SYSTIML
);
4325 systim_next
|= (u64
)er32(SYSTIMH
) << 32;
4327 time_delta
= systim_next
- systim
;
4329 /* VMWare users have seen incvalue of zero, don't div / 0 */
4330 rem
= incvalue
? do_div(temp
, incvalue
) : (time_delta
!= 0);
4332 systim
= systim_next
;
4334 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) && (rem
== 0))
4342 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4343 * @cc: cyclecounter structure
4345 static u64
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4347 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4349 struct e1000_hw
*hw
= &adapter
->hw
;
4350 u32 systimel
, systimeh
;
4352 /* SYSTIMH latching upon SYSTIML read does not work well.
4353 * This means that if SYSTIML overflows after we read it but before
4354 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4355 * will experience a huge non linear increment in the systime value
4356 * to fix that we test for overflow and if true, we re-read systime.
4358 systimel
= er32(SYSTIML
);
4359 systimeh
= er32(SYSTIMH
);
4360 /* Is systimel is so large that overflow is possible? */
4361 if (systimel
>= (u32
)0xffffffff - E1000_TIMINCA_INCVALUE_MASK
) {
4362 u32 systimel_2
= er32(SYSTIML
);
4363 if (systimel
> systimel_2
) {
4364 /* There was an overflow, read again SYSTIMH, and use
4367 systimeh
= er32(SYSTIMH
);
4368 systimel
= systimel_2
;
4371 systim
= (u64
)systimel
;
4372 systim
|= (u64
)systimeh
<< 32;
4374 if (adapter
->flags2
& FLAG2_CHECK_SYSTIM_OVERFLOW
)
4375 systim
= e1000e_sanitize_systim(hw
, systim
);
4381 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4382 * @adapter: board private structure to initialize
4384 * e1000_sw_init initializes the Adapter private data structure.
4385 * Fields are initialized based on PCI device information and
4386 * OS network device settings (MTU size).
4388 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4390 struct net_device
*netdev
= adapter
->netdev
;
4392 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4393 adapter
->rx_ps_bsize0
= 128;
4394 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4395 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4396 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4397 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4399 spin_lock_init(&adapter
->stats64_lock
);
4401 e1000e_set_interrupt_capability(adapter
);
4403 if (e1000_alloc_queues(adapter
))
4406 /* Setup hardware time stamping cyclecounter */
4407 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4408 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4409 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4410 adapter
->cc
.mult
= 1;
4411 /* cc.shift set in e1000e_get_base_tininca() */
4413 spin_lock_init(&adapter
->systim_lock
);
4414 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4417 /* Explicitly disable IRQ since the NIC can be in any state. */
4418 e1000_irq_disable(adapter
);
4420 set_bit(__E1000_DOWN
, &adapter
->state
);
4425 * e1000_intr_msi_test - Interrupt Handler
4426 * @irq: interrupt number
4427 * @data: pointer to a network interface device structure
4429 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4431 struct net_device
*netdev
= data
;
4432 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4433 struct e1000_hw
*hw
= &adapter
->hw
;
4434 u32 icr
= er32(ICR
);
4436 e_dbg("icr is %08X\n", icr
);
4437 if (icr
& E1000_ICR_RXSEQ
) {
4438 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4439 /* Force memory writes to complete before acknowledging the
4440 * interrupt is handled.
4449 * e1000_test_msi_interrupt - Returns 0 for successful test
4450 * @adapter: board private struct
4452 * code flow taken from tg3.c
4454 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4456 struct net_device
*netdev
= adapter
->netdev
;
4457 struct e1000_hw
*hw
= &adapter
->hw
;
4460 /* poll_enable hasn't been called yet, so don't need disable */
4461 /* clear any pending events */
4464 /* free the real vector and request a test handler */
4465 e1000_free_irq(adapter
);
4466 e1000e_reset_interrupt_capability(adapter
);
4468 /* Assume that the test fails, if it succeeds then the test
4469 * MSI irq handler will unset this flag
4471 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4473 err
= pci_enable_msi(adapter
->pdev
);
4475 goto msi_test_failed
;
4477 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4478 netdev
->name
, netdev
);
4480 pci_disable_msi(adapter
->pdev
);
4481 goto msi_test_failed
;
4484 /* Force memory writes to complete before enabling and firing an
4489 e1000_irq_enable(adapter
);
4491 /* fire an unusual interrupt on the test handler */
4492 ew32(ICS
, E1000_ICS_RXSEQ
);
4496 e1000_irq_disable(adapter
);
4498 rmb(); /* read flags after interrupt has been fired */
4500 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4501 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4502 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4504 e_dbg("MSI interrupt test succeeded!\n");
4507 free_irq(adapter
->pdev
->irq
, netdev
);
4508 pci_disable_msi(adapter
->pdev
);
4511 e1000e_set_interrupt_capability(adapter
);
4512 return e1000_request_irq(adapter
);
4516 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4517 * @adapter: board private struct
4519 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4521 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4526 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4529 /* disable SERR in case the MSI write causes a master abort */
4530 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4531 if (pci_cmd
& PCI_COMMAND_SERR
)
4532 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4533 pci_cmd
& ~PCI_COMMAND_SERR
);
4535 err
= e1000_test_msi_interrupt(adapter
);
4537 /* re-enable SERR */
4538 if (pci_cmd
& PCI_COMMAND_SERR
) {
4539 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4540 pci_cmd
|= PCI_COMMAND_SERR
;
4541 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4548 * e1000e_open - Called when a network interface is made active
4549 * @netdev: network interface device structure
4551 * Returns 0 on success, negative value on failure
4553 * The open entry point is called when a network interface is made
4554 * active by the system (IFF_UP). At this point all resources needed
4555 * for transmit and receive operations are allocated, the interrupt
4556 * handler is registered with the OS, the watchdog timer is started,
4557 * and the stack is notified that the interface is ready.
4559 int e1000e_open(struct net_device
*netdev
)
4561 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4562 struct e1000_hw
*hw
= &adapter
->hw
;
4563 struct pci_dev
*pdev
= adapter
->pdev
;
4566 /* disallow open during test */
4567 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4570 pm_runtime_get_sync(&pdev
->dev
);
4572 netif_carrier_off(netdev
);
4574 /* allocate transmit descriptors */
4575 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4579 /* allocate receive descriptors */
4580 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4584 /* If AMT is enabled, let the firmware know that the network
4585 * interface is now open and reset the part to a known state.
4587 if (adapter
->flags
& FLAG_HAS_AMT
) {
4588 e1000e_get_hw_control(adapter
);
4589 e1000e_reset(adapter
);
4592 e1000e_power_up_phy(adapter
);
4594 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4595 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4596 e1000_update_mng_vlan(adapter
);
4598 /* DMA latency requirement to workaround jumbo issue */
4599 pm_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4600 PM_QOS_DEFAULT_VALUE
);
4602 /* before we allocate an interrupt, we must be ready to handle it.
4603 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4604 * as soon as we call pci_request_irq, so we have to setup our
4605 * clean_rx handler before we do so.
4607 e1000_configure(adapter
);
4609 err
= e1000_request_irq(adapter
);
4613 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4614 * ignore e1000e MSI messages, which means we need to test our MSI
4617 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4618 err
= e1000_test_msi(adapter
);
4620 e_err("Interrupt allocation failed\n");
4625 /* From here on the code is the same as e1000e_up() */
4626 clear_bit(__E1000_DOWN
, &adapter
->state
);
4628 napi_enable(&adapter
->napi
);
4630 e1000_irq_enable(adapter
);
4632 adapter
->tx_hang_recheck
= false;
4633 netif_start_queue(netdev
);
4635 hw
->mac
.get_link_status
= true;
4636 pm_runtime_put(&pdev
->dev
);
4638 e1000e_trigger_lsc(adapter
);
4643 pm_qos_remove_request(&adapter
->pm_qos_req
);
4644 e1000e_release_hw_control(adapter
);
4645 e1000_power_down_phy(adapter
);
4646 e1000e_free_rx_resources(adapter
->rx_ring
);
4648 e1000e_free_tx_resources(adapter
->tx_ring
);
4650 e1000e_reset(adapter
);
4651 pm_runtime_put_sync(&pdev
->dev
);
4657 * e1000e_close - Disables a network interface
4658 * @netdev: network interface device structure
4660 * Returns 0, this is not allowed to fail
4662 * The close entry point is called when an interface is de-activated
4663 * by the OS. The hardware is still under the drivers control, but
4664 * needs to be disabled. A global MAC reset is issued to stop the
4665 * hardware, and all transmit and receive resources are freed.
4667 int e1000e_close(struct net_device
*netdev
)
4669 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4670 struct pci_dev
*pdev
= adapter
->pdev
;
4671 int count
= E1000_CHECK_RESET_COUNT
;
4673 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4674 usleep_range(10000, 20000);
4676 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4678 pm_runtime_get_sync(&pdev
->dev
);
4680 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4681 e1000e_down(adapter
, true);
4682 e1000_free_irq(adapter
);
4684 /* Link status message must follow this format */
4685 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4688 napi_disable(&adapter
->napi
);
4690 e1000e_free_tx_resources(adapter
->tx_ring
);
4691 e1000e_free_rx_resources(adapter
->rx_ring
);
4693 /* kill manageability vlan ID if supported, but not if a vlan with
4694 * the same ID is registered on the host OS (let 8021q kill it)
4696 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4697 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4698 adapter
->mng_vlan_id
);
4700 /* If AMT is enabled, let the firmware know that the network
4701 * interface is now closed
4703 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4704 !test_bit(__E1000_TESTING
, &adapter
->state
))
4705 e1000e_release_hw_control(adapter
);
4707 pm_qos_remove_request(&adapter
->pm_qos_req
);
4709 pm_runtime_put_sync(&pdev
->dev
);
4715 * e1000_set_mac - Change the Ethernet Address of the NIC
4716 * @netdev: network interface device structure
4717 * @p: pointer to an address structure
4719 * Returns 0 on success, negative on failure
4721 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4723 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4724 struct e1000_hw
*hw
= &adapter
->hw
;
4725 struct sockaddr
*addr
= p
;
4727 if (!is_valid_ether_addr(addr
->sa_data
))
4728 return -EADDRNOTAVAIL
;
4730 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4731 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4733 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4735 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4736 /* activate the work around */
4737 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4739 /* Hold a copy of the LAA in RAR[14] This is done so that
4740 * between the time RAR[0] gets clobbered and the time it
4741 * gets fixed (in e1000_watchdog), the actual LAA is in one
4742 * of the RARs and no incoming packets directed to this port
4743 * are dropped. Eventually the LAA will be in RAR[0] and
4746 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4747 adapter
->hw
.mac
.rar_entry_count
- 1);
4754 * e1000e_update_phy_task - work thread to update phy
4755 * @work: pointer to our work struct
4757 * this worker thread exists because we must acquire a
4758 * semaphore to read the phy, which we could msleep while
4759 * waiting for it, and we can't msleep in a timer.
4761 static void e1000e_update_phy_task(struct work_struct
*work
)
4763 struct e1000_adapter
*adapter
= container_of(work
,
4764 struct e1000_adapter
,
4766 struct e1000_hw
*hw
= &adapter
->hw
;
4768 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4771 e1000_get_phy_info(hw
);
4773 /* Enable EEE on 82579 after link up */
4774 if (hw
->phy
.type
>= e1000_phy_82579
)
4775 e1000_set_eee_pchlan(hw
);
4779 * e1000_update_phy_info - timre call-back to update PHY info
4780 * @data: pointer to adapter cast into an unsigned long
4782 * Need to wait a few seconds after link up to get diagnostic information from
4785 static void e1000_update_phy_info(unsigned long data
)
4787 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
4789 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4792 schedule_work(&adapter
->update_phy_task
);
4796 * e1000e_update_phy_stats - Update the PHY statistics counters
4797 * @adapter: board private structure
4799 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4801 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4803 struct e1000_hw
*hw
= &adapter
->hw
;
4807 ret_val
= hw
->phy
.ops
.acquire(hw
);
4811 /* A page set is expensive so check if already on desired page.
4812 * If not, set to the page with the PHY status registers.
4815 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4819 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4820 ret_val
= hw
->phy
.ops
.set_page(hw
,
4821 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4826 /* Single Collision Count */
4827 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4828 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4830 adapter
->stats
.scc
+= phy_data
;
4832 /* Excessive Collision Count */
4833 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4834 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4836 adapter
->stats
.ecol
+= phy_data
;
4838 /* Multiple Collision Count */
4839 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4840 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4842 adapter
->stats
.mcc
+= phy_data
;
4844 /* Late Collision Count */
4845 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4846 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4848 adapter
->stats
.latecol
+= phy_data
;
4850 /* Collision Count - also used for adaptive IFS */
4851 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4852 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4854 hw
->mac
.collision_delta
= phy_data
;
4857 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4858 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4860 adapter
->stats
.dc
+= phy_data
;
4862 /* Transmit with no CRS */
4863 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4864 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4866 adapter
->stats
.tncrs
+= phy_data
;
4869 hw
->phy
.ops
.release(hw
);
4873 * e1000e_update_stats - Update the board statistics counters
4874 * @adapter: board private structure
4876 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4878 struct net_device
*netdev
= adapter
->netdev
;
4879 struct e1000_hw
*hw
= &adapter
->hw
;
4880 struct pci_dev
*pdev
= adapter
->pdev
;
4882 /* Prevent stats update while adapter is being reset, or if the pci
4883 * connection is down.
4885 if (adapter
->link_speed
== 0)
4887 if (pci_channel_offline(pdev
))
4890 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4891 adapter
->stats
.gprc
+= er32(GPRC
);
4892 adapter
->stats
.gorc
+= er32(GORCL
);
4893 er32(GORCH
); /* Clear gorc */
4894 adapter
->stats
.bprc
+= er32(BPRC
);
4895 adapter
->stats
.mprc
+= er32(MPRC
);
4896 adapter
->stats
.roc
+= er32(ROC
);
4898 adapter
->stats
.mpc
+= er32(MPC
);
4900 /* Half-duplex statistics */
4901 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4902 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4903 e1000e_update_phy_stats(adapter
);
4905 adapter
->stats
.scc
+= er32(SCC
);
4906 adapter
->stats
.ecol
+= er32(ECOL
);
4907 adapter
->stats
.mcc
+= er32(MCC
);
4908 adapter
->stats
.latecol
+= er32(LATECOL
);
4909 adapter
->stats
.dc
+= er32(DC
);
4911 hw
->mac
.collision_delta
= er32(COLC
);
4913 if ((hw
->mac
.type
!= e1000_82574
) &&
4914 (hw
->mac
.type
!= e1000_82583
))
4915 adapter
->stats
.tncrs
+= er32(TNCRS
);
4917 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4920 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4921 adapter
->stats
.xontxc
+= er32(XONTXC
);
4922 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4923 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4924 adapter
->stats
.gptc
+= er32(GPTC
);
4925 adapter
->stats
.gotc
+= er32(GOTCL
);
4926 er32(GOTCH
); /* Clear gotc */
4927 adapter
->stats
.rnbc
+= er32(RNBC
);
4928 adapter
->stats
.ruc
+= er32(RUC
);
4930 adapter
->stats
.mptc
+= er32(MPTC
);
4931 adapter
->stats
.bptc
+= er32(BPTC
);
4933 /* used for adaptive IFS */
4935 hw
->mac
.tx_packet_delta
= er32(TPT
);
4936 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4938 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4939 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4940 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4941 adapter
->stats
.tsctc
+= er32(TSCTC
);
4942 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4944 /* Fill out the OS statistics structure */
4945 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4946 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4950 /* RLEC on some newer hardware can be incorrect so build
4951 * our own version based on RUC and ROC
4953 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4954 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4955 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
4956 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4958 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4959 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4960 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4963 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
4964 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4965 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4966 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4968 /* Tx Dropped needs to be maintained elsewhere */
4970 /* Management Stats */
4971 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4972 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4973 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4975 /* Correctable ECC Errors */
4976 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
4977 (hw
->mac
.type
== e1000_pch_spt
)) {
4978 u32 pbeccsts
= er32(PBECCSTS
);
4980 adapter
->corr_errors
+=
4981 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
4982 adapter
->uncorr_errors
+=
4983 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
4984 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
4989 * e1000_phy_read_status - Update the PHY register status snapshot
4990 * @adapter: board private structure
4992 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4994 struct e1000_hw
*hw
= &adapter
->hw
;
4995 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4997 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
4998 (er32(STATUS
) & E1000_STATUS_LU
) &&
4999 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
5002 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
5003 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
5004 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
5005 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
5006 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
5007 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
5008 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
5009 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
5011 e_warn("Error reading PHY register\n");
5013 /* Do not read PHY registers if link is not up
5014 * Set values to typical power-on defaults
5016 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
5017 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
5018 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
5020 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
5021 ADVERTISE_ALL
| ADVERTISE_CSMA
);
5023 phy
->expansion
= EXPANSION_ENABLENPAGE
;
5024 phy
->ctrl1000
= ADVERTISE_1000FULL
;
5026 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
5030 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
5032 struct e1000_hw
*hw
= &adapter
->hw
;
5033 u32 ctrl
= er32(CTRL
);
5035 /* Link status message must follow this format for user tools */
5036 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5037 adapter
->netdev
->name
, adapter
->link_speed
,
5038 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
5039 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
5040 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
5041 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
5044 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
5046 struct e1000_hw
*hw
= &adapter
->hw
;
5047 bool link_active
= false;
5050 /* get_link_status is set on LSC (link status) interrupt or
5051 * Rx sequence error interrupt. get_link_status will stay
5052 * false until the check_for_link establishes link
5053 * for copper adapters ONLY
5055 switch (hw
->phy
.media_type
) {
5056 case e1000_media_type_copper
:
5057 if (hw
->mac
.get_link_status
) {
5058 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5059 link_active
= !hw
->mac
.get_link_status
;
5064 case e1000_media_type_fiber
:
5065 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5066 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5068 case e1000_media_type_internal_serdes
:
5069 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5070 link_active
= adapter
->hw
.mac
.serdes_has_link
;
5073 case e1000_media_type_unknown
:
5077 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5078 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5079 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5080 e_info("Gigabit has been disabled, downgrading speed\n");
5086 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5088 /* make sure the receive unit is started */
5089 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5090 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5091 struct e1000_hw
*hw
= &adapter
->hw
;
5092 u32 rctl
= er32(RCTL
);
5094 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5095 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5099 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5101 struct e1000_hw
*hw
= &adapter
->hw
;
5103 /* With 82574 controllers, PHY needs to be checked periodically
5104 * for hung state and reset, if two calls return true
5106 if (e1000_check_phy_82574(hw
))
5107 adapter
->phy_hang_count
++;
5109 adapter
->phy_hang_count
= 0;
5111 if (adapter
->phy_hang_count
> 1) {
5112 adapter
->phy_hang_count
= 0;
5113 e_dbg("PHY appears hung - resetting\n");
5114 schedule_work(&adapter
->reset_task
);
5119 * e1000_watchdog - Timer Call-back
5120 * @data: pointer to adapter cast into an unsigned long
5122 static void e1000_watchdog(unsigned long data
)
5124 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
5126 /* Do the rest outside of interrupt context */
5127 schedule_work(&adapter
->watchdog_task
);
5129 /* TODO: make this use queue_delayed_work() */
5132 static void e1000_watchdog_task(struct work_struct
*work
)
5134 struct e1000_adapter
*adapter
= container_of(work
,
5135 struct e1000_adapter
,
5137 struct net_device
*netdev
= adapter
->netdev
;
5138 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5139 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5140 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5141 struct e1000_hw
*hw
= &adapter
->hw
;
5144 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5147 link
= e1000e_has_link(adapter
);
5148 if ((netif_carrier_ok(netdev
)) && link
) {
5149 /* Cancel scheduled suspend requests. */
5150 pm_runtime_resume(netdev
->dev
.parent
);
5152 e1000e_enable_receives(adapter
);
5156 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5157 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5158 e1000_update_mng_vlan(adapter
);
5161 if (!netif_carrier_ok(netdev
)) {
5164 /* Cancel scheduled suspend requests. */
5165 pm_runtime_resume(netdev
->dev
.parent
);
5167 /* update snapshot of PHY registers on LSC */
5168 e1000_phy_read_status(adapter
);
5169 mac
->ops
.get_link_up_info(&adapter
->hw
,
5170 &adapter
->link_speed
,
5171 &adapter
->link_duplex
);
5172 e1000_print_link_info(adapter
);
5174 /* check if SmartSpeed worked */
5175 e1000e_check_downshift(hw
);
5176 if (phy
->speed_downgraded
)
5178 "Link Speed was downgraded by SmartSpeed\n");
5180 /* On supported PHYs, check for duplex mismatch only
5181 * if link has autonegotiated at 10/100 half
5183 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5184 hw
->phy
.type
== e1000_phy_bm
) &&
5186 (adapter
->link_speed
== SPEED_10
||
5187 adapter
->link_speed
== SPEED_100
) &&
5188 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5191 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5193 if (!(autoneg_exp
& EXPANSION_NWAY
))
5194 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5197 /* adjust timeout factor according to speed/duplex */
5198 adapter
->tx_timeout_factor
= 1;
5199 switch (adapter
->link_speed
) {
5202 adapter
->tx_timeout_factor
= 16;
5206 adapter
->tx_timeout_factor
= 10;
5210 /* workaround: re-program speed mode bit after
5213 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5217 tarc0
= er32(TARC(0));
5218 tarc0
&= ~SPEED_MODE_BIT
;
5219 ew32(TARC(0), tarc0
);
5222 /* disable TSO for pcie and 10/100 speeds, to avoid
5223 * some hardware issues
5225 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
5226 switch (adapter
->link_speed
) {
5229 e_info("10/100 speed: disabling TSO\n");
5230 netdev
->features
&= ~NETIF_F_TSO
;
5231 netdev
->features
&= ~NETIF_F_TSO6
;
5234 netdev
->features
|= NETIF_F_TSO
;
5235 netdev
->features
|= NETIF_F_TSO6
;
5243 /* enable transmits in the hardware, need to do this
5244 * after setting TARC(0)
5247 tctl
|= E1000_TCTL_EN
;
5250 /* Perform any post-link-up configuration before
5251 * reporting link up.
5253 if (phy
->ops
.cfg_on_link_up
)
5254 phy
->ops
.cfg_on_link_up(hw
);
5256 netif_carrier_on(netdev
);
5258 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5259 mod_timer(&adapter
->phy_info_timer
,
5260 round_jiffies(jiffies
+ 2 * HZ
));
5263 if (netif_carrier_ok(netdev
)) {
5264 adapter
->link_speed
= 0;
5265 adapter
->link_duplex
= 0;
5266 /* Link status message must follow this format */
5267 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
5268 netif_carrier_off(netdev
);
5269 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5270 mod_timer(&adapter
->phy_info_timer
,
5271 round_jiffies(jiffies
+ 2 * HZ
));
5273 /* 8000ES2LAN requires a Rx packet buffer work-around
5274 * on link down event; reset the controller to flush
5275 * the Rx packet buffer.
5277 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5278 adapter
->flags
|= FLAG_RESTART_NOW
;
5280 pm_schedule_suspend(netdev
->dev
.parent
,
5286 spin_lock(&adapter
->stats64_lock
);
5287 e1000e_update_stats(adapter
);
5289 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5290 adapter
->tpt_old
= adapter
->stats
.tpt
;
5291 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5292 adapter
->colc_old
= adapter
->stats
.colc
;
5294 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5295 adapter
->gorc_old
= adapter
->stats
.gorc
;
5296 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5297 adapter
->gotc_old
= adapter
->stats
.gotc
;
5298 spin_unlock(&adapter
->stats64_lock
);
5300 /* If the link is lost the controller stops DMA, but
5301 * if there is queued Tx work it cannot be done. So
5302 * reset the controller to flush the Tx packet buffers.
5304 if (!netif_carrier_ok(netdev
) &&
5305 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5306 adapter
->flags
|= FLAG_RESTART_NOW
;
5308 /* If reset is necessary, do it outside of interrupt context. */
5309 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5310 schedule_work(&adapter
->reset_task
);
5311 /* return immediately since reset is imminent */
5315 e1000e_update_adaptive(&adapter
->hw
);
5317 /* Simple mode for Interrupt Throttle Rate (ITR) */
5318 if (adapter
->itr_setting
== 4) {
5319 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5320 * Total asymmetrical Tx or Rx gets ITR=8000;
5321 * everyone else is between 2000-8000.
5323 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5324 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5325 adapter
->gotc
- adapter
->gorc
:
5326 adapter
->gorc
- adapter
->gotc
) / 10000;
5327 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5329 e1000e_write_itr(adapter
, itr
);
5332 /* Cause software interrupt to ensure Rx ring is cleaned */
5333 if (adapter
->msix_entries
)
5334 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5336 ew32(ICS
, E1000_ICS_RXDMT0
);
5338 /* flush pending descriptors to memory before detecting Tx hang */
5339 e1000e_flush_descriptors(adapter
);
5341 /* Force detection of hung controller every watchdog period */
5342 adapter
->detect_tx_hung
= true;
5344 /* With 82571 controllers, LAA may be overwritten due to controller
5345 * reset from the other port. Set the appropriate LAA in RAR[0]
5347 if (e1000e_get_laa_state_82571(hw
))
5348 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5350 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5351 e1000e_check_82574_phy_workaround(adapter
);
5353 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5354 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5355 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5356 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5358 adapter
->rx_hwtstamp_cleared
++;
5360 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5364 /* Reset the timer */
5365 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5366 mod_timer(&adapter
->watchdog_timer
,
5367 round_jiffies(jiffies
+ 2 * HZ
));
5370 #define E1000_TX_FLAGS_CSUM 0x00000001
5371 #define E1000_TX_FLAGS_VLAN 0x00000002
5372 #define E1000_TX_FLAGS_TSO 0x00000004
5373 #define E1000_TX_FLAGS_IPV4 0x00000008
5374 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5375 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5376 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5377 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5379 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5382 struct e1000_context_desc
*context_desc
;
5383 struct e1000_buffer
*buffer_info
;
5387 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5390 if (!skb_is_gso(skb
))
5393 err
= skb_cow_head(skb
, 0);
5397 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5398 mss
= skb_shinfo(skb
)->gso_size
;
5399 if (protocol
== htons(ETH_P_IP
)) {
5400 struct iphdr
*iph
= ip_hdr(skb
);
5403 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5405 cmd_length
= E1000_TXD_CMD_IP
;
5406 ipcse
= skb_transport_offset(skb
) - 1;
5407 } else if (skb_is_gso_v6(skb
)) {
5408 ipv6_hdr(skb
)->payload_len
= 0;
5409 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5410 &ipv6_hdr(skb
)->daddr
,
5414 ipcss
= skb_network_offset(skb
);
5415 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5416 tucss
= skb_transport_offset(skb
);
5417 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5419 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5420 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5422 i
= tx_ring
->next_to_use
;
5423 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5424 buffer_info
= &tx_ring
->buffer_info
[i
];
5426 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5427 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5428 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5429 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5430 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5431 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5432 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5433 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5434 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5436 buffer_info
->time_stamp
= jiffies
;
5437 buffer_info
->next_to_watch
= i
;
5440 if (i
== tx_ring
->count
)
5442 tx_ring
->next_to_use
= i
;
5447 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5450 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5451 struct e1000_context_desc
*context_desc
;
5452 struct e1000_buffer
*buffer_info
;
5455 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5457 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5461 case cpu_to_be16(ETH_P_IP
):
5462 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5463 cmd_len
|= E1000_TXD_CMD_TCP
;
5465 case cpu_to_be16(ETH_P_IPV6
):
5466 /* XXX not handling all IPV6 headers */
5467 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5468 cmd_len
|= E1000_TXD_CMD_TCP
;
5471 if (unlikely(net_ratelimit()))
5472 e_warn("checksum_partial proto=%x!\n",
5473 be16_to_cpu(protocol
));
5477 css
= skb_checksum_start_offset(skb
);
5479 i
= tx_ring
->next_to_use
;
5480 buffer_info
= &tx_ring
->buffer_info
[i
];
5481 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5483 context_desc
->lower_setup
.ip_config
= 0;
5484 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5485 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5486 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5487 context_desc
->tcp_seg_setup
.data
= 0;
5488 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5490 buffer_info
->time_stamp
= jiffies
;
5491 buffer_info
->next_to_watch
= i
;
5494 if (i
== tx_ring
->count
)
5496 tx_ring
->next_to_use
= i
;
5501 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5502 unsigned int first
, unsigned int max_per_txd
,
5503 unsigned int nr_frags
)
5505 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5506 struct pci_dev
*pdev
= adapter
->pdev
;
5507 struct e1000_buffer
*buffer_info
;
5508 unsigned int len
= skb_headlen(skb
);
5509 unsigned int offset
= 0, size
, count
= 0, i
;
5510 unsigned int f
, bytecount
, segs
;
5512 i
= tx_ring
->next_to_use
;
5515 buffer_info
= &tx_ring
->buffer_info
[i
];
5516 size
= min(len
, max_per_txd
);
5518 buffer_info
->length
= size
;
5519 buffer_info
->time_stamp
= jiffies
;
5520 buffer_info
->next_to_watch
= i
;
5521 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5523 size
, DMA_TO_DEVICE
);
5524 buffer_info
->mapped_as_page
= false;
5525 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5534 if (i
== tx_ring
->count
)
5539 for (f
= 0; f
< nr_frags
; f
++) {
5540 const struct skb_frag_struct
*frag
;
5542 frag
= &skb_shinfo(skb
)->frags
[f
];
5543 len
= skb_frag_size(frag
);
5548 if (i
== tx_ring
->count
)
5551 buffer_info
= &tx_ring
->buffer_info
[i
];
5552 size
= min(len
, max_per_txd
);
5554 buffer_info
->length
= size
;
5555 buffer_info
->time_stamp
= jiffies
;
5556 buffer_info
->next_to_watch
= i
;
5557 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5560 buffer_info
->mapped_as_page
= true;
5561 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5570 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5571 /* multiply data chunks by size of headers */
5572 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5574 tx_ring
->buffer_info
[i
].skb
= skb
;
5575 tx_ring
->buffer_info
[i
].segs
= segs
;
5576 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5577 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5582 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5583 buffer_info
->dma
= 0;
5589 i
+= tx_ring
->count
;
5591 buffer_info
= &tx_ring
->buffer_info
[i
];
5592 e1000_put_txbuf(tx_ring
, buffer_info
);
5598 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5600 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5601 struct e1000_tx_desc
*tx_desc
= NULL
;
5602 struct e1000_buffer
*buffer_info
;
5603 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5606 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5607 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5609 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5611 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5612 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5615 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5616 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5617 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5620 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5621 txd_lower
|= E1000_TXD_CMD_VLE
;
5622 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5625 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5626 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5628 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5629 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5630 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5633 i
= tx_ring
->next_to_use
;
5636 buffer_info
= &tx_ring
->buffer_info
[i
];
5637 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5638 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5639 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5640 buffer_info
->length
);
5641 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5644 if (i
== tx_ring
->count
)
5646 } while (--count
> 0);
5648 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5650 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5651 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5652 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5654 /* Force memory writes to complete before letting h/w
5655 * know there are new descriptors to fetch. (Only
5656 * applicable for weak-ordered memory model archs,
5661 tx_ring
->next_to_use
= i
;
5664 #define MINIMUM_DHCP_PACKET_SIZE 282
5665 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5666 struct sk_buff
*skb
)
5668 struct e1000_hw
*hw
= &adapter
->hw
;
5671 if (skb_vlan_tag_present(skb
) &&
5672 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5673 (adapter
->hw
.mng_cookie
.status
&
5674 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5677 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5680 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5684 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5687 if (ip
->protocol
!= IPPROTO_UDP
)
5690 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5691 if (ntohs(udp
->dest
) != 67)
5694 offset
= (u8
*)udp
+ 8 - skb
->data
;
5695 length
= skb
->len
- offset
;
5696 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5702 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5704 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5706 netif_stop_queue(adapter
->netdev
);
5707 /* Herbert's original patch had:
5708 * smp_mb__after_netif_stop_queue();
5709 * but since that doesn't exist yet, just open code it.
5713 /* We need to check again in a case another CPU has just
5714 * made room available.
5716 if (e1000_desc_unused(tx_ring
) < size
)
5720 netif_start_queue(adapter
->netdev
);
5721 ++adapter
->restart_queue
;
5725 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5727 BUG_ON(size
> tx_ring
->count
);
5729 if (e1000_desc_unused(tx_ring
) >= size
)
5731 return __e1000_maybe_stop_tx(tx_ring
, size
);
5734 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5735 struct net_device
*netdev
)
5737 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5738 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5740 unsigned int tx_flags
= 0;
5741 unsigned int len
= skb_headlen(skb
);
5742 unsigned int nr_frags
;
5747 __be16 protocol
= vlan_get_protocol(skb
);
5749 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5750 dev_kfree_skb_any(skb
);
5751 return NETDEV_TX_OK
;
5754 if (skb
->len
<= 0) {
5755 dev_kfree_skb_any(skb
);
5756 return NETDEV_TX_OK
;
5759 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5760 * pad skb in order to meet this minimum size requirement
5762 if (skb_put_padto(skb
, 17))
5763 return NETDEV_TX_OK
;
5765 mss
= skb_shinfo(skb
)->gso_size
;
5769 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5770 * points to just header, pull a few bytes of payload from
5771 * frags into skb->data
5773 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5774 /* we do this workaround for ES2LAN, but it is un-necessary,
5775 * avoiding it could save a lot of cycles
5777 if (skb
->data_len
&& (hdr_len
== len
)) {
5778 unsigned int pull_size
;
5780 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5781 if (!__pskb_pull_tail(skb
, pull_size
)) {
5782 e_err("__pskb_pull_tail failed.\n");
5783 dev_kfree_skb_any(skb
);
5784 return NETDEV_TX_OK
;
5786 len
= skb_headlen(skb
);
5790 /* reserve a descriptor for the offload context */
5791 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5795 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5797 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5798 for (f
= 0; f
< nr_frags
; f
++)
5799 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5800 adapter
->tx_fifo_limit
);
5802 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5803 e1000_transfer_dhcp_info(adapter
, skb
);
5805 /* need: count + 2 desc gap to keep tail from touching
5806 * head, otherwise try next time
5808 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5809 return NETDEV_TX_BUSY
;
5811 if (skb_vlan_tag_present(skb
)) {
5812 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5813 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5814 E1000_TX_FLAGS_VLAN_SHIFT
);
5817 first
= tx_ring
->next_to_use
;
5819 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5821 dev_kfree_skb_any(skb
);
5822 return NETDEV_TX_OK
;
5826 tx_flags
|= E1000_TX_FLAGS_TSO
;
5827 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5828 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5830 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5831 * 82571 hardware supports TSO capabilities for IPv6 as well...
5832 * no longer assume, we must.
5834 if (protocol
== htons(ETH_P_IP
))
5835 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5837 if (unlikely(skb
->no_fcs
))
5838 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5840 /* if count is 0 then mapping error has occurred */
5841 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5844 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5845 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) &&
5846 !adapter
->tx_hwtstamp_skb
) {
5847 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5848 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5849 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5850 adapter
->tx_hwtstamp_start
= jiffies
;
5851 schedule_work(&adapter
->tx_hwtstamp_work
);
5853 skb_tx_timestamp(skb
);
5856 netdev_sent_queue(netdev
, skb
->len
);
5857 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5858 /* Make sure there is space in the ring for the next send. */
5859 e1000_maybe_stop_tx(tx_ring
,
5861 DIV_ROUND_UP(PAGE_SIZE
,
5862 adapter
->tx_fifo_limit
) + 2));
5864 if (!skb
->xmit_more
||
5865 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5866 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5867 e1000e_update_tdt_wa(tx_ring
,
5868 tx_ring
->next_to_use
);
5870 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5872 /* we need this if more than one processor can write
5873 * to our tail at a time, it synchronizes IO on
5879 dev_kfree_skb_any(skb
);
5880 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5881 tx_ring
->next_to_use
= first
;
5884 return NETDEV_TX_OK
;
5888 * e1000_tx_timeout - Respond to a Tx Hang
5889 * @netdev: network interface device structure
5891 static void e1000_tx_timeout(struct net_device
*netdev
)
5893 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5895 /* Do the reset outside of interrupt context */
5896 adapter
->tx_timeout_count
++;
5897 schedule_work(&adapter
->reset_task
);
5900 static void e1000_reset_task(struct work_struct
*work
)
5902 struct e1000_adapter
*adapter
;
5903 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5905 /* don't run the task if already down */
5906 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5909 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5910 e1000e_dump(adapter
);
5911 e_err("Reset adapter unexpectedly\n");
5913 e1000e_reinit_locked(adapter
);
5917 * e1000_get_stats64 - Get System Network Statistics
5918 * @netdev: network interface device structure
5919 * @stats: rtnl_link_stats64 pointer
5921 * Returns the address of the device statistics structure.
5923 void e1000e_get_stats64(struct net_device
*netdev
,
5924 struct rtnl_link_stats64
*stats
)
5926 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5928 spin_lock(&adapter
->stats64_lock
);
5929 e1000e_update_stats(adapter
);
5930 /* Fill out the OS statistics structure */
5931 stats
->rx_bytes
= adapter
->stats
.gorc
;
5932 stats
->rx_packets
= adapter
->stats
.gprc
;
5933 stats
->tx_bytes
= adapter
->stats
.gotc
;
5934 stats
->tx_packets
= adapter
->stats
.gptc
;
5935 stats
->multicast
= adapter
->stats
.mprc
;
5936 stats
->collisions
= adapter
->stats
.colc
;
5940 /* RLEC on some newer hardware can be incorrect so build
5941 * our own version based on RUC and ROC
5943 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5944 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5945 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5946 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5947 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5948 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5949 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5952 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5953 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5954 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5955 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5957 /* Tx Dropped needs to be maintained elsewhere */
5959 spin_unlock(&adapter
->stats64_lock
);
5963 * e1000_change_mtu - Change the Maximum Transfer Unit
5964 * @netdev: network interface device structure
5965 * @new_mtu: new value for maximum frame size
5967 * Returns 0 on success, negative on failure
5969 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5971 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5972 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
5974 /* Jumbo frame support */
5975 if ((new_mtu
> ETH_DATA_LEN
) &&
5976 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5977 e_err("Jumbo Frames not supported.\n");
5981 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5982 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
5983 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5984 (new_mtu
> ETH_DATA_LEN
)) {
5985 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5989 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5990 usleep_range(1000, 2000);
5991 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5992 adapter
->max_frame_size
= max_frame
;
5993 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5994 netdev
->mtu
= new_mtu
;
5996 pm_runtime_get_sync(netdev
->dev
.parent
);
5998 if (netif_running(netdev
))
5999 e1000e_down(adapter
, true);
6001 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6002 * means we reserve 2 more, this pushes us to allocate from the next
6004 * i.e. RXBUFFER_2048 --> size-4096 slab
6005 * However with the new *_jumbo_rx* routines, jumbo receives will use
6009 if (max_frame
<= 2048)
6010 adapter
->rx_buffer_len
= 2048;
6012 adapter
->rx_buffer_len
= 4096;
6014 /* adjust allocation if LPE protects us, and we aren't using SBP */
6015 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
6016 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
6018 if (netif_running(netdev
))
6021 e1000e_reset(adapter
);
6023 pm_runtime_put_sync(netdev
->dev
.parent
);
6025 clear_bit(__E1000_RESETTING
, &adapter
->state
);
6030 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
6033 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6034 struct mii_ioctl_data
*data
= if_mii(ifr
);
6036 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6041 data
->phy_id
= adapter
->hw
.phy
.addr
;
6044 e1000_phy_read_status(adapter
);
6046 switch (data
->reg_num
& 0x1F) {
6048 data
->val_out
= adapter
->phy_regs
.bmcr
;
6051 data
->val_out
= adapter
->phy_regs
.bmsr
;
6054 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6057 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6060 data
->val_out
= adapter
->phy_regs
.advertise
;
6063 data
->val_out
= adapter
->phy_regs
.lpa
;
6066 data
->val_out
= adapter
->phy_regs
.expansion
;
6069 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6072 data
->val_out
= adapter
->phy_regs
.stat1000
;
6075 data
->val_out
= adapter
->phy_regs
.estatus
;
6089 * e1000e_hwtstamp_ioctl - control hardware time stamping
6090 * @netdev: network interface device structure
6091 * @ifreq: interface request
6093 * Outgoing time stamping can be enabled and disabled. Play nice and
6094 * disable it when requested, although it shouldn't cause any overhead
6095 * when no packet needs it. At most one packet in the queue may be
6096 * marked for time stamping, otherwise it would be impossible to tell
6097 * for sure to which packet the hardware time stamp belongs.
6099 * Incoming time stamping has to be configured via the hardware filters.
6100 * Not all combinations are supported, in particular event type has to be
6101 * specified. Matching the kind of event packet is not supported, with the
6102 * exception of "all V2 events regardless of level 2 or 4".
6104 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6106 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6107 struct hwtstamp_config config
;
6110 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6113 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6117 switch (config
.rx_filter
) {
6118 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6119 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6120 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6121 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6122 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6123 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6124 /* With V2 type filters which specify a Sync or Delay Request,
6125 * Path Delay Request/Response messages are also time stamped
6126 * by hardware so notify the caller the requested packets plus
6127 * some others are time stamped.
6129 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6135 return copy_to_user(ifr
->ifr_data
, &config
,
6136 sizeof(config
)) ? -EFAULT
: 0;
6139 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6141 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6143 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6144 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6147 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6153 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6155 return e1000e_hwtstamp_set(netdev
, ifr
);
6157 return e1000e_hwtstamp_get(netdev
, ifr
);
6163 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6165 struct e1000_hw
*hw
= &adapter
->hw
;
6166 u32 i
, mac_reg
, wuc
;
6167 u16 phy_reg
, wuc_enable
;
6170 /* copy MAC RARs to PHY RARs */
6171 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6173 retval
= hw
->phy
.ops
.acquire(hw
);
6175 e_err("Could not acquire PHY\n");
6179 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6180 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6184 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6185 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6186 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6187 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6188 (u16
)(mac_reg
& 0xFFFF));
6189 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6190 (u16
)((mac_reg
>> 16) & 0xFFFF));
6193 /* configure PHY Rx Control register */
6194 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6195 mac_reg
= er32(RCTL
);
6196 if (mac_reg
& E1000_RCTL_UPE
)
6197 phy_reg
|= BM_RCTL_UPE
;
6198 if (mac_reg
& E1000_RCTL_MPE
)
6199 phy_reg
|= BM_RCTL_MPE
;
6200 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6201 if (mac_reg
& E1000_RCTL_MO_3
)
6202 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
6203 << BM_RCTL_MO_SHIFT
);
6204 if (mac_reg
& E1000_RCTL_BAM
)
6205 phy_reg
|= BM_RCTL_BAM
;
6206 if (mac_reg
& E1000_RCTL_PMCF
)
6207 phy_reg
|= BM_RCTL_PMCF
;
6208 mac_reg
= er32(CTRL
);
6209 if (mac_reg
& E1000_CTRL_RFCE
)
6210 phy_reg
|= BM_RCTL_RFCE
;
6211 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6213 wuc
= E1000_WUC_PME_EN
;
6214 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6215 wuc
|= E1000_WUC_APME
;
6217 /* enable PHY wakeup in MAC register */
6219 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6220 E1000_WUC_PME_STATUS
| wuc
));
6222 /* configure and enable PHY wakeup in PHY registers */
6223 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6224 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6226 /* activate PHY wakeup */
6227 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6228 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6230 e_err("Could not set PHY Host Wakeup bit\n");
6232 hw
->phy
.ops
.release(hw
);
6237 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6239 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6240 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6241 struct e1000_hw
*hw
= &adapter
->hw
;
6244 pm_runtime_get_sync(netdev
->dev
.parent
);
6246 ret_val
= hw
->phy
.ops
.acquire(hw
);
6250 pr_info("EEE TX LPI TIMER: %08X\n",
6251 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6253 hw
->phy
.ops
.release(hw
);
6256 pm_runtime_put_sync(netdev
->dev
.parent
);
6259 static int e1000e_pm_freeze(struct device
*dev
)
6261 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6262 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6264 netif_device_detach(netdev
);
6266 if (netif_running(netdev
)) {
6267 int count
= E1000_CHECK_RESET_COUNT
;
6269 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6270 usleep_range(10000, 20000);
6272 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6274 /* Quiesce the device without resetting the hardware */
6275 e1000e_down(adapter
, false);
6276 e1000_free_irq(adapter
);
6278 e1000e_reset_interrupt_capability(adapter
);
6280 /* Allow time for pending master requests to run */
6281 e1000e_disable_pcie_master(&adapter
->hw
);
6286 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6288 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6289 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6290 struct e1000_hw
*hw
= &adapter
->hw
;
6291 u32 ctrl
, ctrl_ext
, rctl
, status
;
6292 /* Runtime suspend should only enable wakeup for link changes */
6293 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
6296 status
= er32(STATUS
);
6297 if (status
& E1000_STATUS_LU
)
6298 wufc
&= ~E1000_WUFC_LNKC
;
6301 e1000_setup_rctl(adapter
);
6302 e1000e_set_rx_mode(netdev
);
6304 /* turn on all-multi mode if wake on multicast is enabled */
6305 if (wufc
& E1000_WUFC_MC
) {
6307 rctl
|= E1000_RCTL_MPE
;
6312 ctrl
|= E1000_CTRL_ADVD3WUC
;
6313 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6314 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6317 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6318 adapter
->hw
.phy
.media_type
==
6319 e1000_media_type_internal_serdes
) {
6320 /* keep the laser running in D3 */
6321 ctrl_ext
= er32(CTRL_EXT
);
6322 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6323 ew32(CTRL_EXT
, ctrl_ext
);
6327 e1000e_power_up_phy(adapter
);
6329 if (adapter
->flags
& FLAG_IS_ICH
)
6330 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6332 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6333 /* enable wakeup by the PHY */
6334 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6338 /* enable wakeup by the MAC */
6340 ew32(WUC
, E1000_WUC_PME_EN
);
6346 e1000_power_down_phy(adapter
);
6349 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6350 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6351 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
6352 (hw
->mac
.type
== e1000_pch_spt
)) {
6353 if (!(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
)))
6354 /* ULP does not support wake from unicast, multicast
6357 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6363 /* Ensure that the appropriate bits are set in LPI_CTRL
6366 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6367 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6370 retval
= hw
->phy
.ops
.acquire(hw
);
6372 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6375 if (adapter
->eee_advert
&
6376 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6377 I82579_EEE_100_SUPPORTED
)
6378 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6379 if (adapter
->eee_advert
&
6380 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6381 I82579_EEE_1000_SUPPORTED
)
6382 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6384 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6388 hw
->phy
.ops
.release(hw
);
6391 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6392 * would have already happened in close and is redundant.
6394 e1000e_release_hw_control(adapter
);
6396 pci_clear_master(pdev
);
6398 /* The pci-e switch on some quad port adapters will report a
6399 * correctable error when the MAC transitions from D0 to D3. To
6400 * prevent this we need to mask off the correctable errors on the
6401 * downstream port of the pci-e switch.
6403 * We don't have the associated upstream bridge while assigning
6404 * the PCI device into guest. For example, the KVM on power is
6407 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6408 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6414 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6415 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6416 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6418 pci_save_state(pdev
);
6419 pci_prepare_to_sleep(pdev
);
6421 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6428 * __e1000e_disable_aspm - Disable ASPM states
6429 * @pdev: pointer to PCI device struct
6430 * @state: bit-mask of ASPM states to disable
6431 * @locked: indication if this context holds pci_bus_sem locked.
6433 * Some devices *must* have certain ASPM states disabled per hardware errata.
6435 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6437 struct pci_dev
*parent
= pdev
->bus
->self
;
6438 u16 aspm_dis_mask
= 0;
6439 u16 pdev_aspmc
, parent_aspmc
;
6442 case PCIE_LINK_STATE_L0S
:
6443 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6444 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6445 /* fall-through - can't have L1 without L0s */
6446 case PCIE_LINK_STATE_L1
:
6447 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6453 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6454 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6457 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6459 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6462 /* Nothing to do if the ASPM states to be disabled already are */
6463 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6464 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6467 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6468 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6470 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6473 #ifdef CONFIG_PCIEASPM
6475 pci_disable_link_state_locked(pdev
, state
);
6477 pci_disable_link_state(pdev
, state
);
6479 /* Double-check ASPM control. If not disabled by the above, the
6480 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6481 * not enabled); override by writing PCI config space directly.
6483 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6484 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6486 if (!(aspm_dis_mask
& pdev_aspmc
))
6490 /* Both device and parent should have the same ASPM setting.
6491 * Disable ASPM in downstream component first and then upstream.
6493 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6496 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6501 * e1000e_disable_aspm - Disable ASPM states.
6502 * @pdev: pointer to PCI device struct
6503 * @state: bit-mask of ASPM states to disable
6505 * This function acquires the pci_bus_sem!
6506 * Some devices *must* have certain ASPM states disabled per hardware errata.
6508 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6510 __e1000e_disable_aspm(pdev
, state
, 0);
6514 * e1000e_disable_aspm_locked Disable ASPM states.
6515 * @pdev: pointer to PCI device struct
6516 * @state: bit-mask of ASPM states to disable
6518 * This function must be called with pci_bus_sem acquired!
6519 * Some devices *must* have certain ASPM states disabled per hardware errata.
6521 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6523 __e1000e_disable_aspm(pdev
, state
, 1);
6527 static int __e1000_resume(struct pci_dev
*pdev
)
6529 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6530 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6531 struct e1000_hw
*hw
= &adapter
->hw
;
6532 u16 aspm_disable_flag
= 0;
6534 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6535 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6536 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6537 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6538 if (aspm_disable_flag
)
6539 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6541 pci_set_master(pdev
);
6543 if (hw
->mac
.type
>= e1000_pch2lan
)
6544 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6546 e1000e_power_up_phy(adapter
);
6548 /* report the system wakeup cause from S3/S4 */
6549 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6552 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6554 e_info("PHY Wakeup cause - %s\n",
6555 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6556 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6557 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6558 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6559 phy_data
& E1000_WUS_LNKC
?
6560 "Link Status Change" : "other");
6562 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6564 u32 wus
= er32(WUS
);
6567 e_info("MAC Wakeup cause - %s\n",
6568 wus
& E1000_WUS_EX
? "Unicast Packet" :
6569 wus
& E1000_WUS_MC
? "Multicast Packet" :
6570 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6571 wus
& E1000_WUS_MAG
? "Magic Packet" :
6572 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6578 e1000e_reset(adapter
);
6580 e1000_init_manageability_pt(adapter
);
6582 /* If the controller has AMT, do not set DRV_LOAD until the interface
6583 * is up. For all other cases, let the f/w know that the h/w is now
6584 * under the control of the driver.
6586 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6587 e1000e_get_hw_control(adapter
);
6592 #ifdef CONFIG_PM_SLEEP
6593 static int e1000e_pm_thaw(struct device
*dev
)
6595 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6596 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6598 e1000e_set_interrupt_capability(adapter
);
6599 if (netif_running(netdev
)) {
6600 u32 err
= e1000_request_irq(adapter
);
6608 netif_device_attach(netdev
);
6613 static int e1000e_pm_suspend(struct device
*dev
)
6615 struct pci_dev
*pdev
= to_pci_dev(dev
);
6617 e1000e_flush_lpic(pdev
);
6619 e1000e_pm_freeze(dev
);
6621 return __e1000_shutdown(pdev
, false);
6624 static int e1000e_pm_resume(struct device
*dev
)
6626 struct pci_dev
*pdev
= to_pci_dev(dev
);
6629 rc
= __e1000_resume(pdev
);
6633 return e1000e_pm_thaw(dev
);
6635 #endif /* CONFIG_PM_SLEEP */
6637 static int e1000e_pm_runtime_idle(struct device
*dev
)
6639 struct pci_dev
*pdev
= to_pci_dev(dev
);
6640 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6641 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6644 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
6646 if (!e1000e_has_link(adapter
)) {
6647 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
6648 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
6654 static int e1000e_pm_runtime_resume(struct device
*dev
)
6656 struct pci_dev
*pdev
= to_pci_dev(dev
);
6657 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6658 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6661 rc
= __e1000_resume(pdev
);
6665 if (netdev
->flags
& IFF_UP
)
6671 static int e1000e_pm_runtime_suspend(struct device
*dev
)
6673 struct pci_dev
*pdev
= to_pci_dev(dev
);
6674 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6675 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6677 if (netdev
->flags
& IFF_UP
) {
6678 int count
= E1000_CHECK_RESET_COUNT
;
6680 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6681 usleep_range(10000, 20000);
6683 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6685 /* Down the device without resetting the hardware */
6686 e1000e_down(adapter
, false);
6689 if (__e1000_shutdown(pdev
, true)) {
6690 e1000e_pm_runtime_resume(dev
);
6696 #endif /* CONFIG_PM */
6698 static void e1000_shutdown(struct pci_dev
*pdev
)
6700 e1000e_flush_lpic(pdev
);
6702 e1000e_pm_freeze(&pdev
->dev
);
6704 __e1000_shutdown(pdev
, false);
6707 #ifdef CONFIG_NET_POLL_CONTROLLER
6709 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6711 struct net_device
*netdev
= data
;
6712 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6714 if (adapter
->msix_entries
) {
6715 int vector
, msix_irq
;
6718 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6719 disable_irq(msix_irq
);
6720 e1000_intr_msix_rx(msix_irq
, netdev
);
6721 enable_irq(msix_irq
);
6724 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6725 disable_irq(msix_irq
);
6726 e1000_intr_msix_tx(msix_irq
, netdev
);
6727 enable_irq(msix_irq
);
6730 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6731 disable_irq(msix_irq
);
6732 e1000_msix_other(msix_irq
, netdev
);
6733 enable_irq(msix_irq
);
6741 * @netdev: network interface device structure
6743 * Polling 'interrupt' - used by things like netconsole to send skbs
6744 * without having to re-enable interrupts. It's not called while
6745 * the interrupt routine is executing.
6747 static void e1000_netpoll(struct net_device
*netdev
)
6749 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6751 switch (adapter
->int_mode
) {
6752 case E1000E_INT_MODE_MSIX
:
6753 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6755 case E1000E_INT_MODE_MSI
:
6756 if (disable_hardirq(adapter
->pdev
->irq
))
6757 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6758 enable_irq(adapter
->pdev
->irq
);
6760 default: /* E1000E_INT_MODE_LEGACY */
6761 if (disable_hardirq(adapter
->pdev
->irq
))
6762 e1000_intr(adapter
->pdev
->irq
, netdev
);
6763 enable_irq(adapter
->pdev
->irq
);
6770 * e1000_io_error_detected - called when PCI error is detected
6771 * @pdev: Pointer to PCI device
6772 * @state: The current pci connection state
6774 * This function is called after a PCI bus error affecting
6775 * this device has been detected.
6777 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6778 pci_channel_state_t state
)
6780 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6781 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6783 netif_device_detach(netdev
);
6785 if (state
== pci_channel_io_perm_failure
)
6786 return PCI_ERS_RESULT_DISCONNECT
;
6788 if (netif_running(netdev
))
6789 e1000e_down(adapter
, true);
6790 pci_disable_device(pdev
);
6792 /* Request a slot slot reset. */
6793 return PCI_ERS_RESULT_NEED_RESET
;
6797 * e1000_io_slot_reset - called after the pci bus has been reset.
6798 * @pdev: Pointer to PCI device
6800 * Restart the card from scratch, as if from a cold-boot. Implementation
6801 * resembles the first-half of the e1000e_pm_resume routine.
6803 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6805 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6806 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6807 struct e1000_hw
*hw
= &adapter
->hw
;
6808 u16 aspm_disable_flag
= 0;
6810 pci_ers_result_t result
;
6812 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6813 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6814 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6815 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6816 if (aspm_disable_flag
)
6817 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
6819 err
= pci_enable_device_mem(pdev
);
6822 "Cannot re-enable PCI device after reset.\n");
6823 result
= PCI_ERS_RESULT_DISCONNECT
;
6825 pdev
->state_saved
= true;
6826 pci_restore_state(pdev
);
6827 pci_set_master(pdev
);
6829 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6830 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6832 e1000e_reset(adapter
);
6834 result
= PCI_ERS_RESULT_RECOVERED
;
6837 pci_cleanup_aer_uncorrect_error_status(pdev
);
6843 * e1000_io_resume - called when traffic can start flowing again.
6844 * @pdev: Pointer to PCI device
6846 * This callback is called when the error recovery driver tells us that
6847 * its OK to resume normal operation. Implementation resembles the
6848 * second-half of the e1000e_pm_resume routine.
6850 static void e1000_io_resume(struct pci_dev
*pdev
)
6852 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6853 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6855 e1000_init_manageability_pt(adapter
);
6857 if (netif_running(netdev
))
6860 netif_device_attach(netdev
);
6862 /* If the controller has AMT, do not set DRV_LOAD until the interface
6863 * is up. For all other cases, let the f/w know that the h/w is now
6864 * under the control of the driver.
6866 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6867 e1000e_get_hw_control(adapter
);
6870 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6872 struct e1000_hw
*hw
= &adapter
->hw
;
6873 struct net_device
*netdev
= adapter
->netdev
;
6875 u8 pba_str
[E1000_PBANUM_LENGTH
];
6877 /* print bus type/speed/width info */
6878 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6880 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6884 e_info("Intel(R) PRO/%s Network Connection\n",
6885 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6886 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6887 E1000_PBANUM_LENGTH
);
6889 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6890 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6891 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6894 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6896 struct e1000_hw
*hw
= &adapter
->hw
;
6900 if (hw
->mac
.type
!= e1000_82573
)
6903 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6905 if (!ret_val
&& (!(buf
& BIT(0)))) {
6906 /* Deep Smart Power Down (DSPD) */
6907 dev_warn(&adapter
->pdev
->dev
,
6908 "Warning: detected DSPD enabled in EEPROM\n");
6912 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
6913 netdev_features_t features
)
6915 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6916 struct e1000_hw
*hw
= &adapter
->hw
;
6918 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6919 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
6920 features
&= ~NETIF_F_RXFCS
;
6922 /* Since there is no support for separate Rx/Tx vlan accel
6923 * enable/disable make sure Tx flag is always in same state as Rx.
6925 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
6926 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
6928 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
6933 static int e1000_set_features(struct net_device
*netdev
,
6934 netdev_features_t features
)
6936 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6937 netdev_features_t changed
= features
^ netdev
->features
;
6939 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6940 adapter
->flags
|= FLAG_TSO_FORCE
;
6942 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
6943 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6947 if (changed
& NETIF_F_RXFCS
) {
6948 if (features
& NETIF_F_RXFCS
) {
6949 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6951 /* We need to take it back to defaults, which might mean
6952 * stripping is still disabled at the adapter level.
6954 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
6955 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
6957 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6961 netdev
->features
= features
;
6963 if (netif_running(netdev
))
6964 e1000e_reinit_locked(adapter
);
6966 e1000e_reset(adapter
);
6971 static const struct net_device_ops e1000e_netdev_ops
= {
6972 .ndo_open
= e1000e_open
,
6973 .ndo_stop
= e1000e_close
,
6974 .ndo_start_xmit
= e1000_xmit_frame
,
6975 .ndo_get_stats64
= e1000e_get_stats64
,
6976 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6977 .ndo_set_mac_address
= e1000_set_mac
,
6978 .ndo_change_mtu
= e1000_change_mtu
,
6979 .ndo_do_ioctl
= e1000_ioctl
,
6980 .ndo_tx_timeout
= e1000_tx_timeout
,
6981 .ndo_validate_addr
= eth_validate_addr
,
6983 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6984 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6985 #ifdef CONFIG_NET_POLL_CONTROLLER
6986 .ndo_poll_controller
= e1000_netpoll
,
6988 .ndo_set_features
= e1000_set_features
,
6989 .ndo_fix_features
= e1000_fix_features
,
6990 .ndo_features_check
= passthru_features_check
,
6994 * e1000_probe - Device Initialization Routine
6995 * @pdev: PCI device information struct
6996 * @ent: entry in e1000_pci_tbl
6998 * Returns 0 on success, negative on failure
7000 * e1000_probe initializes an adapter identified by a pci_dev structure.
7001 * The OS initialization, configuring of the adapter private structure,
7002 * and a hardware reset occur.
7004 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7006 struct net_device
*netdev
;
7007 struct e1000_adapter
*adapter
;
7008 struct e1000_hw
*hw
;
7009 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
7010 resource_size_t mmio_start
, mmio_len
;
7011 resource_size_t flash_start
, flash_len
;
7012 static int cards_found
;
7013 u16 aspm_disable_flag
= 0;
7014 int bars
, i
, err
, pci_using_dac
;
7015 u16 eeprom_data
= 0;
7016 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
7019 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7020 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7021 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7022 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7023 if (aspm_disable_flag
)
7024 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
7026 err
= pci_enable_device_mem(pdev
);
7031 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
7035 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
7038 "No usable DMA configuration, aborting\n");
7043 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
7044 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
7045 e1000e_driver_name
);
7049 /* AER (Advanced Error Reporting) hooks */
7050 pci_enable_pcie_error_reporting(pdev
);
7052 pci_set_master(pdev
);
7053 /* PCI config space info */
7054 err
= pci_save_state(pdev
);
7056 goto err_alloc_etherdev
;
7059 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7061 goto err_alloc_etherdev
;
7063 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7065 netdev
->irq
= pdev
->irq
;
7067 pci_set_drvdata(pdev
, netdev
);
7068 adapter
= netdev_priv(netdev
);
7070 adapter
->netdev
= netdev
;
7071 adapter
->pdev
= pdev
;
7073 adapter
->pba
= ei
->pba
;
7074 adapter
->flags
= ei
->flags
;
7075 adapter
->flags2
= ei
->flags2
;
7076 adapter
->hw
.adapter
= adapter
;
7077 adapter
->hw
.mac
.type
= ei
->mac
;
7078 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7079 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7081 mmio_start
= pci_resource_start(pdev
, 0);
7082 mmio_len
= pci_resource_len(pdev
, 0);
7085 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7086 if (!adapter
->hw
.hw_addr
)
7089 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7090 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7091 (hw
->mac
.type
< e1000_pch_spt
)) {
7092 flash_start
= pci_resource_start(pdev
, 1);
7093 flash_len
= pci_resource_len(pdev
, 1);
7094 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7095 if (!adapter
->hw
.flash_address
)
7099 /* Set default EEE advertisement */
7100 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7101 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7103 /* construct the net_device struct */
7104 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7105 e1000e_set_ethtool_ops(netdev
);
7106 netdev
->watchdog_timeo
= 5 * HZ
;
7107 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
7108 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7110 netdev
->mem_start
= mmio_start
;
7111 netdev
->mem_end
= mmio_start
+ mmio_len
;
7113 adapter
->bd_number
= cards_found
++;
7115 e1000e_check_options(adapter
);
7117 /* setup adapter struct */
7118 err
= e1000_sw_init(adapter
);
7122 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7123 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7124 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7126 err
= ei
->get_variants(adapter
);
7130 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7131 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7132 (hw
->mac
.type
< e1000_pch_spt
))
7133 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7135 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7137 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7139 /* Copper options */
7140 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7141 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7142 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7143 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7146 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7147 dev_info(&pdev
->dev
,
7148 "PHY reset is blocked due to SOL/IDER session.\n");
7150 /* Set initial default active device features */
7151 netdev
->features
= (NETIF_F_SG
|
7152 NETIF_F_HW_VLAN_CTAG_RX
|
7153 NETIF_F_HW_VLAN_CTAG_TX
|
7160 /* Set user-changeable features (subset of all device features) */
7161 netdev
->hw_features
= netdev
->features
;
7162 netdev
->hw_features
|= NETIF_F_RXFCS
;
7163 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7164 netdev
->hw_features
|= NETIF_F_RXALL
;
7166 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7167 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7169 netdev
->vlan_features
|= (NETIF_F_SG
|
7174 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7176 if (pci_using_dac
) {
7177 netdev
->features
|= NETIF_F_HIGHDMA
;
7178 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7181 /* MTU range: 68 - max_hw_frame_size */
7182 netdev
->min_mtu
= ETH_MIN_MTU
;
7183 netdev
->max_mtu
= adapter
->max_hw_frame_size
-
7184 (VLAN_ETH_HLEN
+ ETH_FCS_LEN
);
7186 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7187 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7189 /* before reading the NVM, reset the controller to
7190 * put the device in a known good starting state
7192 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7194 /* systems with ASPM and others may see the checksum fail on the first
7195 * attempt. Let's give it a few tries
7198 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7201 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7207 e1000_eeprom_checks(adapter
);
7209 /* copy the MAC address */
7210 if (e1000e_read_mac_addr(&adapter
->hw
))
7212 "NVM Read Error while reading MAC address\n");
7214 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
7216 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7217 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7223 init_timer(&adapter
->watchdog_timer
);
7224 adapter
->watchdog_timer
.function
= e1000_watchdog
;
7225 adapter
->watchdog_timer
.data
= (unsigned long)adapter
;
7227 init_timer(&adapter
->phy_info_timer
);
7228 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
7229 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
7231 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7232 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7233 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7234 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7235 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7237 /* Initialize link parameters. User can change them with ethtool */
7238 adapter
->hw
.mac
.autoneg
= 1;
7239 adapter
->fc_autoneg
= true;
7240 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7241 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7242 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7244 /* Initial Wake on LAN setting - If APM wake is enabled in
7245 * the EEPROM, enable the ACPI Magic Packet filter
7247 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7248 /* APME bit in EEPROM is mapped to WUC.APME */
7249 eeprom_data
= er32(WUC
);
7250 eeprom_apme_mask
= E1000_WUC_APME
;
7251 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7252 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7253 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7254 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7255 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7256 (adapter
->hw
.bus
.func
== 1))
7257 ret_val
= e1000_read_nvm(&adapter
->hw
,
7258 NVM_INIT_CONTROL3_PORT_B
,
7261 ret_val
= e1000_read_nvm(&adapter
->hw
,
7262 NVM_INIT_CONTROL3_PORT_A
,
7266 /* fetch WoL from EEPROM */
7268 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val
);
7269 else if (eeprom_data
& eeprom_apme_mask
)
7270 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7272 /* now that we have the eeprom settings, apply the special cases
7273 * where the eeprom may be wrong or the board simply won't support
7274 * wake on lan on a particular port
7276 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7277 adapter
->eeprom_wol
= 0;
7279 /* initialize the wol settings based on the eeprom settings */
7280 adapter
->wol
= adapter
->eeprom_wol
;
7282 /* make sure adapter isn't asleep if manageability is enabled */
7283 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7284 (hw
->mac
.ops
.check_mng_mode(hw
)))
7285 device_wakeup_enable(&pdev
->dev
);
7287 /* save off EEPROM version number */
7288 ret_val
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7291 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val
);
7292 adapter
->eeprom_vers
= 0;
7295 /* init PTP hardware clock */
7296 e1000e_ptp_init(adapter
);
7298 /* reset the hardware with the new settings */
7299 e1000e_reset(adapter
);
7301 /* If the controller has AMT, do not set DRV_LOAD until the interface
7302 * is up. For all other cases, let the f/w know that the h/w is now
7303 * under the control of the driver.
7305 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7306 e1000e_get_hw_control(adapter
);
7308 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7309 err
= register_netdev(netdev
);
7313 /* carrier off reporting is important to ethtool even BEFORE open */
7314 netif_carrier_off(netdev
);
7316 e1000_print_device_info(adapter
);
7318 if (pci_dev_run_wake(pdev
))
7319 pm_runtime_put_noidle(&pdev
->dev
);
7324 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7325 e1000e_release_hw_control(adapter
);
7327 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7328 e1000_phy_hw_reset(&adapter
->hw
);
7330 kfree(adapter
->tx_ring
);
7331 kfree(adapter
->rx_ring
);
7333 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7334 iounmap(adapter
->hw
.flash_address
);
7335 e1000e_reset_interrupt_capability(adapter
);
7337 iounmap(adapter
->hw
.hw_addr
);
7339 free_netdev(netdev
);
7341 pci_release_mem_regions(pdev
);
7344 pci_disable_device(pdev
);
7349 * e1000_remove - Device Removal Routine
7350 * @pdev: PCI device information struct
7352 * e1000_remove is called by the PCI subsystem to alert the driver
7353 * that it should release a PCI device. The could be caused by a
7354 * Hot-Plug event, or because the driver is going to be removed from
7357 static void e1000_remove(struct pci_dev
*pdev
)
7359 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7360 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7361 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
7363 e1000e_ptp_remove(adapter
);
7365 /* The timers may be rescheduled, so explicitly disable them
7366 * from being rescheduled.
7369 set_bit(__E1000_DOWN
, &adapter
->state
);
7370 del_timer_sync(&adapter
->watchdog_timer
);
7371 del_timer_sync(&adapter
->phy_info_timer
);
7373 cancel_work_sync(&adapter
->reset_task
);
7374 cancel_work_sync(&adapter
->watchdog_task
);
7375 cancel_work_sync(&adapter
->downshift_task
);
7376 cancel_work_sync(&adapter
->update_phy_task
);
7377 cancel_work_sync(&adapter
->print_hang_task
);
7379 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7380 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7381 if (adapter
->tx_hwtstamp_skb
) {
7382 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
7383 adapter
->tx_hwtstamp_skb
= NULL
;
7387 /* Don't lie to e1000_close() down the road. */
7389 clear_bit(__E1000_DOWN
, &adapter
->state
);
7390 unregister_netdev(netdev
);
7392 if (pci_dev_run_wake(pdev
))
7393 pm_runtime_get_noresume(&pdev
->dev
);
7395 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7396 * would have already happened in close and is redundant.
7398 e1000e_release_hw_control(adapter
);
7400 e1000e_reset_interrupt_capability(adapter
);
7401 kfree(adapter
->tx_ring
);
7402 kfree(adapter
->rx_ring
);
7404 iounmap(adapter
->hw
.hw_addr
);
7405 if ((adapter
->hw
.flash_address
) &&
7406 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7407 iounmap(adapter
->hw
.flash_address
);
7408 pci_release_mem_regions(pdev
);
7410 free_netdev(netdev
);
7413 pci_disable_pcie_error_reporting(pdev
);
7415 pci_disable_device(pdev
);
7418 /* PCI Error Recovery (ERS) */
7419 static const struct pci_error_handlers e1000_err_handler
= {
7420 .error_detected
= e1000_io_error_detected
,
7421 .slot_reset
= e1000_io_slot_reset
,
7422 .resume
= e1000_io_resume
,
7425 static const struct pci_device_id e1000_pci_tbl
[] = {
7426 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7427 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7428 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7429 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7431 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7432 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7433 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7434 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7435 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7437 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7438 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7439 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7440 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7442 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7443 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7444 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7446 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7447 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7448 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7450 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7451 board_80003es2lan
},
7452 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7453 board_80003es2lan
},
7454 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7455 board_80003es2lan
},
7456 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7457 board_80003es2lan
},
7459 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7460 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7461 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7462 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7463 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7464 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7465 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7466 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7468 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7469 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7470 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7471 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7472 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7473 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7474 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7475 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7476 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7478 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7479 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7480 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7482 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7483 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7484 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7486 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7487 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7488 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7489 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7491 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7492 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7494 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7495 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7496 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7497 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7498 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7499 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7500 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7501 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7502 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7503 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7504 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7505 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7506 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LBG_I219_LM3
), board_pch_spt
},
7507 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM4
), board_pch_spt
},
7508 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V4
), board_pch_spt
},
7509 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM5
), board_pch_spt
},
7510 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V5
), board_pch_spt
},
7512 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7514 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7516 static const struct dev_pm_ops e1000_pm_ops
= {
7517 #ifdef CONFIG_PM_SLEEP
7518 .suspend
= e1000e_pm_suspend
,
7519 .resume
= e1000e_pm_resume
,
7520 .freeze
= e1000e_pm_freeze
,
7521 .thaw
= e1000e_pm_thaw
,
7522 .poweroff
= e1000e_pm_suspend
,
7523 .restore
= e1000e_pm_resume
,
7525 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7526 e1000e_pm_runtime_idle
)
7529 /* PCI Device API Driver */
7530 static struct pci_driver e1000_driver
= {
7531 .name
= e1000e_driver_name
,
7532 .id_table
= e1000_pci_tbl
,
7533 .probe
= e1000_probe
,
7534 .remove
= e1000_remove
,
7536 .pm
= &e1000_pm_ops
,
7538 .shutdown
= e1000_shutdown
,
7539 .err_handler
= &e1000_err_handler
7543 * e1000_init_module - Driver Registration Routine
7545 * e1000_init_module is the first routine called when the driver is
7546 * loaded. All it does is register with the PCI subsystem.
7548 static int __init
e1000_init_module(void)
7550 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7551 e1000e_driver_version
);
7552 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7554 return pci_register_driver(&e1000_driver
);
7556 module_init(e1000_init_module
);
7559 * e1000_exit_module - Driver Exit Cleanup Routine
7561 * e1000_exit_module is called just before the driver is removed
7564 static void __exit
e1000_exit_module(void)
7566 pci_unregister_driver(&e1000_driver
);
7568 module_exit(e1000_exit_module
);
7570 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7571 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7572 MODULE_LICENSE("GPL");
7573 MODULE_VERSION(DRV_VERSION
);