1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
83 #include <net/checksum.h>
85 #include <asm/div64.h>
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name
[] = "Neterion";
96 static const char s2io_driver_version
[] = DRV_VERSION
;
98 static const int rxd_size
[2] = {32, 48};
99 static const int rxd_count
[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
105 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
106 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
126 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
140 {"tmac_data_octets"},
144 {"tmac_pause_ctrl_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
217 {"new_rd_req_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
222 {"new_wr_req_rtry_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
235 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
254 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
322 {"prc_pcix_err_cnt"},
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
351 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
352 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
353 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
354 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
355 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
356 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
360 * Constants to be programmed into the Xena's registers, to configure
365 static const u64 herc_act_dtx_cfg
[] = {
367 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
369 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
371 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
373 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
375 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
377 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
379 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
381 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
386 static const u64 xena_dtx_cfg
[] = {
388 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
390 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
392 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
394 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
396 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
398 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
403 * Constants for Fixing the MacAddress problem seen mostly on
406 static const u64 fix_mac
[] = {
407 0x0060000000000000ULL
, 0x0060600000000000ULL
,
408 0x0040600000000000ULL
, 0x0000600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0060600000000000ULL
,
412 0x0020600000000000ULL
, 0x0060600000000000ULL
,
413 0x0020600000000000ULL
, 0x0060600000000000ULL
,
414 0x0020600000000000ULL
, 0x0060600000000000ULL
,
415 0x0020600000000000ULL
, 0x0060600000000000ULL
,
416 0x0020600000000000ULL
, 0x0060600000000000ULL
,
417 0x0020600000000000ULL
, 0x0060600000000000ULL
,
418 0x0020600000000000ULL
, 0x0060600000000000ULL
,
419 0x0020600000000000ULL
, 0x0000600000000000ULL
,
420 0x0040600000000000ULL
, 0x0060600000000000ULL
,
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION
);
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
430 S2IO_PARM_INT(rx_ring_num
, 1);
431 S2IO_PARM_INT(multiq
, 0);
432 S2IO_PARM_INT(rx_ring_mode
, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
434 S2IO_PARM_INT(rmac_pause_time
, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
437 S2IO_PARM_INT(shared_splits
, 0);
438 S2IO_PARM_INT(tmac_util_period
, 5);
439 S2IO_PARM_INT(rmac_util_period
, 5);
440 S2IO_PARM_INT(l3l4hdr_size
, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency
, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type
, 2);
447 /* Large receive offload feature */
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
452 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts
, 0);
455 S2IO_PARM_INT(napi
, 1);
456 S2IO_PARM_INT(ufo
, 0);
457 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
459 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
460 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
461 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
462 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
463 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
464 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
466 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
467 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
468 module_param_array(rts_frm_len
, uint
, NULL
, 0);
472 * This table lists all the devices that this driver supports.
474 static const struct pci_device_id s2io_tbl
[] = {
475 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
476 PCI_ANY_ID
, PCI_ANY_ID
},
477 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
478 PCI_ANY_ID
, PCI_ANY_ID
},
479 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
480 PCI_ANY_ID
, PCI_ANY_ID
},
481 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
482 PCI_ANY_ID
, PCI_ANY_ID
},
486 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
488 static const struct pci_error_handlers s2io_err_handler
= {
489 .error_detected
= s2io_io_error_detected
,
490 .slot_reset
= s2io_io_slot_reset
,
491 .resume
= s2io_io_resume
,
494 static struct pci_driver s2io_driver
= {
496 .id_table
= s2io_tbl
,
497 .probe
= s2io_init_nic
,
498 .remove
= s2io_rem_nic
,
499 .err_handler
= &s2io_err_handler
,
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
508 if (!sp
->config
.multiq
) {
511 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
512 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
514 netif_tx_stop_all_queues(sp
->dev
);
517 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
519 if (!sp
->config
.multiq
)
520 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
523 netif_tx_stop_all_queues(sp
->dev
);
526 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
528 if (!sp
->config
.multiq
) {
531 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
532 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
534 netif_tx_start_all_queues(sp
->dev
);
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
539 if (!sp
->config
.multiq
) {
542 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
543 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
545 netif_tx_wake_all_queues(sp
->dev
);
548 static inline void s2io_wake_tx_queue(
549 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
553 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
554 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
555 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
556 if (netif_queue_stopped(fifo
->dev
)) {
557 fifo
->queue_state
= FIFO_QUEUE_START
;
558 netif_wake_queue(fifo
->dev
);
564 * init_shared_mem - Allocation and Initialization of Memory
565 * @nic: Device private variable.
566 * Description: The function allocates all the memory areas shared
567 * between the NIC and the driver. This includes Tx descriptors,
568 * Rx descriptors and the statistics block.
571 static int init_shared_mem(struct s2io_nic
*nic
)
574 void *tmp_v_addr
, *tmp_v_addr_next
;
575 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
576 struct RxD_block
*pre_rxd_blk
= NULL
;
578 int lst_size
, lst_per_page
;
579 struct net_device
*dev
= nic
->dev
;
582 struct config_param
*config
= &nic
->config
;
583 struct mac_info
*mac_control
= &nic
->mac_control
;
584 unsigned long long mem_allocated
= 0;
586 /* Allocation and initialization of TXDLs in FIFOs */
588 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
589 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
591 size
+= tx_cfg
->fifo_len
;
593 if (size
> MAX_AVAILABLE_TXDS
) {
595 "Too many TxDs requested: %d, max supported: %d\n",
596 size
, MAX_AVAILABLE_TXDS
);
601 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
602 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
604 size
= tx_cfg
->fifo_len
;
606 * Legal values are from 2 to 8192
609 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
610 "Valid lengths are 2 through 8192\n",
616 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
617 lst_per_page
= PAGE_SIZE
/ lst_size
;
619 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
620 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
621 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
622 int fifo_len
= tx_cfg
->fifo_len
;
623 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
625 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
626 if (!fifo
->list_info
) {
627 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
630 mem_allocated
+= list_holder_size
;
632 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
633 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
635 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
636 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
638 fifo
->tx_curr_put_info
.offset
= 0;
639 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
640 fifo
->tx_curr_get_info
.offset
= 0;
641 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
644 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
647 for (j
= 0; j
< page_num
; j
++) {
651 tmp_v
= pci_alloc_consistent(nic
->pdev
,
655 "pci_alloc_consistent failed for TxDL\n");
658 /* If we got a zero DMA address(can happen on
659 * certain platforms like PPC), reallocate.
660 * Store virtual address of page we don't want,
664 mac_control
->zerodma_virt_addr
= tmp_v
;
666 "%s: Zero DMA address for TxDL. "
667 "Virtual address %p\n",
669 tmp_v
= pci_alloc_consistent(nic
->pdev
,
673 "pci_alloc_consistent failed for TxDL\n");
676 mem_allocated
+= PAGE_SIZE
;
678 while (k
< lst_per_page
) {
679 int l
= (j
* lst_per_page
) + k
;
680 if (l
== tx_cfg
->fifo_len
)
682 fifo
->list_info
[l
].list_virt_addr
=
683 tmp_v
+ (k
* lst_size
);
684 fifo
->list_info
[l
].list_phy_addr
=
685 tmp_p
+ (k
* lst_size
);
691 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
692 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
693 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
695 size
= tx_cfg
->fifo_len
;
696 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
697 if (!fifo
->ufo_in_band_v
)
699 mem_allocated
+= (size
* sizeof(u64
));
702 /* Allocation and initialization of RXDs in Rings */
704 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
705 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
706 struct ring_info
*ring
= &mac_control
->rings
[i
];
708 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
709 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
710 "multiple of RxDs per Block\n",
714 size
+= rx_cfg
->num_rxd
;
715 ring
->block_count
= rx_cfg
->num_rxd
/
716 (rxd_count
[nic
->rxd_mode
] + 1);
717 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
719 if (nic
->rxd_mode
== RXD_MODE_1
)
720 size
= (size
* (sizeof(struct RxD1
)));
722 size
= (size
* (sizeof(struct RxD3
)));
724 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
725 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
726 struct ring_info
*ring
= &mac_control
->rings
[i
];
728 ring
->rx_curr_get_info
.block_index
= 0;
729 ring
->rx_curr_get_info
.offset
= 0;
730 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
731 ring
->rx_curr_put_info
.block_index
= 0;
732 ring
->rx_curr_put_info
.offset
= 0;
733 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
737 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
738 /* Allocating all the Rx blocks */
739 for (j
= 0; j
< blk_cnt
; j
++) {
740 struct rx_block_info
*rx_blocks
;
743 rx_blocks
= &ring
->rx_blocks
[j
];
744 size
= SIZE_OF_BLOCK
; /* size is always page size */
745 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
747 if (tmp_v_addr
== NULL
) {
749 * In case of failure, free_shared_mem()
750 * is called, which should free any
751 * memory that was alloced till the
754 rx_blocks
->block_virt_addr
= tmp_v_addr
;
757 mem_allocated
+= size
;
758 memset(tmp_v_addr
, 0, size
);
760 size
= sizeof(struct rxd_info
) *
761 rxd_count
[nic
->rxd_mode
];
762 rx_blocks
->block_virt_addr
= tmp_v_addr
;
763 rx_blocks
->block_dma_addr
= tmp_p_addr
;
764 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
765 if (!rx_blocks
->rxds
)
767 mem_allocated
+= size
;
768 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
769 rx_blocks
->rxds
[l
].virt_addr
=
770 rx_blocks
->block_virt_addr
+
771 (rxd_size
[nic
->rxd_mode
] * l
);
772 rx_blocks
->rxds
[l
].dma_addr
=
773 rx_blocks
->block_dma_addr
+
774 (rxd_size
[nic
->rxd_mode
] * l
);
777 /* Interlinking all Rx Blocks */
778 for (j
= 0; j
< blk_cnt
; j
++) {
779 int next
= (j
+ 1) % blk_cnt
;
780 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
781 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
782 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
783 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
785 pre_rxd_blk
= tmp_v_addr
;
786 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
787 (unsigned long)tmp_v_addr_next
;
788 pre_rxd_blk
->pNext_RxD_Blk_physical
=
789 (u64
)tmp_p_addr_next
;
792 if (nic
->rxd_mode
== RXD_MODE_3B
) {
794 * Allocation of Storages for buffer addresses in 2BUFF mode
795 * and the buffers as well.
797 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
798 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
799 struct ring_info
*ring
= &mac_control
->rings
[i
];
801 blk_cnt
= rx_cfg
->num_rxd
/
802 (rxd_count
[nic
->rxd_mode
] + 1);
803 size
= sizeof(struct buffAdd
*) * blk_cnt
;
804 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
807 mem_allocated
+= size
;
808 for (j
= 0; j
< blk_cnt
; j
++) {
811 size
= sizeof(struct buffAdd
) *
812 (rxd_count
[nic
->rxd_mode
] + 1);
813 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
816 mem_allocated
+= size
;
817 while (k
!= rxd_count
[nic
->rxd_mode
]) {
818 ba
= &ring
->ba
[j
][k
];
819 size
= BUF0_LEN
+ ALIGN_SIZE
;
820 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
823 mem_allocated
+= size
;
824 tmp
= (unsigned long)ba
->ba_0_org
;
826 tmp
&= ~((unsigned long)ALIGN_SIZE
);
827 ba
->ba_0
= (void *)tmp
;
829 size
= BUF1_LEN
+ ALIGN_SIZE
;
830 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
833 mem_allocated
+= size
;
834 tmp
= (unsigned long)ba
->ba_1_org
;
836 tmp
&= ~((unsigned long)ALIGN_SIZE
);
837 ba
->ba_1
= (void *)tmp
;
844 /* Allocation and initialization of Statistics block */
845 size
= sizeof(struct stat_block
);
846 mac_control
->stats_mem
=
847 pci_alloc_consistent(nic
->pdev
, size
,
848 &mac_control
->stats_mem_phy
);
850 if (!mac_control
->stats_mem
) {
852 * In case of failure, free_shared_mem() is called, which
853 * should free any memory that was alloced till the
858 mem_allocated
+= size
;
859 mac_control
->stats_mem_sz
= size
;
861 tmp_v_addr
= mac_control
->stats_mem
;
862 mac_control
->stats_info
= tmp_v_addr
;
863 memset(tmp_v_addr
, 0, size
);
864 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
865 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
866 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
871 * free_shared_mem - Free the allocated Memory
872 * @nic: Device private variable.
873 * Description: This function is to free all memory locations allocated by
874 * the init_shared_mem() function and return it to the kernel.
877 static void free_shared_mem(struct s2io_nic
*nic
)
879 int i
, j
, blk_cnt
, size
;
881 dma_addr_t tmp_p_addr
;
882 int lst_size
, lst_per_page
;
883 struct net_device
*dev
;
885 struct config_param
*config
;
886 struct mac_info
*mac_control
;
887 struct stat_block
*stats
;
888 struct swStat
*swstats
;
895 config
= &nic
->config
;
896 mac_control
= &nic
->mac_control
;
897 stats
= mac_control
->stats_info
;
898 swstats
= &stats
->sw_stat
;
900 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
901 lst_per_page
= PAGE_SIZE
/ lst_size
;
903 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
904 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
905 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
907 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
908 for (j
= 0; j
< page_num
; j
++) {
909 int mem_blks
= (j
* lst_per_page
);
910 struct list_info_hold
*fli
;
912 if (!fifo
->list_info
)
915 fli
= &fifo
->list_info
[mem_blks
];
916 if (!fli
->list_virt_addr
)
918 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
921 swstats
->mem_freed
+= PAGE_SIZE
;
923 /* If we got a zero DMA address during allocation,
926 if (mac_control
->zerodma_virt_addr
) {
927 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
928 mac_control
->zerodma_virt_addr
,
931 "%s: Freeing TxDL with zero DMA address. "
932 "Virtual address %p\n",
933 dev
->name
, mac_control
->zerodma_virt_addr
);
934 swstats
->mem_freed
+= PAGE_SIZE
;
936 kfree(fifo
->list_info
);
937 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
938 sizeof(struct list_info_hold
);
941 size
= SIZE_OF_BLOCK
;
942 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
943 struct ring_info
*ring
= &mac_control
->rings
[i
];
945 blk_cnt
= ring
->block_count
;
946 for (j
= 0; j
< blk_cnt
; j
++) {
947 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
948 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
949 if (tmp_v_addr
== NULL
)
951 pci_free_consistent(nic
->pdev
, size
,
952 tmp_v_addr
, tmp_p_addr
);
953 swstats
->mem_freed
+= size
;
954 kfree(ring
->rx_blocks
[j
].rxds
);
955 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
956 rxd_count
[nic
->rxd_mode
];
960 if (nic
->rxd_mode
== RXD_MODE_3B
) {
961 /* Freeing buffer storage addresses in 2BUFF mode. */
962 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
963 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
964 struct ring_info
*ring
= &mac_control
->rings
[i
];
966 blk_cnt
= rx_cfg
->num_rxd
/
967 (rxd_count
[nic
->rxd_mode
] + 1);
968 for (j
= 0; j
< blk_cnt
; j
++) {
972 while (k
!= rxd_count
[nic
->rxd_mode
]) {
973 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
975 swstats
->mem_freed
+=
976 BUF0_LEN
+ ALIGN_SIZE
;
978 swstats
->mem_freed
+=
979 BUF1_LEN
+ ALIGN_SIZE
;
983 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
984 (rxd_count
[nic
->rxd_mode
] + 1);
987 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
992 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
993 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
994 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
996 if (fifo
->ufo_in_band_v
) {
997 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
999 kfree(fifo
->ufo_in_band_v
);
1003 if (mac_control
->stats_mem
) {
1004 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1005 pci_free_consistent(nic
->pdev
,
1006 mac_control
->stats_mem_sz
,
1007 mac_control
->stats_mem
,
1008 mac_control
->stats_mem_phy
);
1013 * s2io_verify_pci_mode -
1016 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1018 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1019 register u64 val64
= 0;
1022 val64
= readq(&bar0
->pci_mode
);
1023 mode
= (u8
)GET_PCI_MODE(val64
);
1025 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1026 return -1; /* Unknown PCI mode */
1030 #define NEC_VENID 0x1033
1031 #define NEC_DEVID 0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1034 struct pci_dev
*tdev
= NULL
;
1035 for_each_pci_dev(tdev
) {
1036 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1037 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1046 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1048 * s2io_print_pci_mode -
1050 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1052 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1053 register u64 val64
= 0;
1055 struct config_param
*config
= &nic
->config
;
1056 const char *pcimode
;
1058 val64
= readq(&bar0
->pci_mode
);
1059 mode
= (u8
)GET_PCI_MODE(val64
);
1061 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1062 return -1; /* Unknown PCI mode */
1064 config
->bus_speed
= bus_speed
[mode
];
1066 if (s2io_on_nec_bridge(nic
->pdev
)) {
1067 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1073 case PCI_MODE_PCI_33
:
1074 pcimode
= "33MHz PCI bus";
1076 case PCI_MODE_PCI_66
:
1077 pcimode
= "66MHz PCI bus";
1079 case PCI_MODE_PCIX_M1_66
:
1080 pcimode
= "66MHz PCIX(M1) bus";
1082 case PCI_MODE_PCIX_M1_100
:
1083 pcimode
= "100MHz PCIX(M1) bus";
1085 case PCI_MODE_PCIX_M1_133
:
1086 pcimode
= "133MHz PCIX(M1) bus";
1088 case PCI_MODE_PCIX_M2_66
:
1089 pcimode
= "133MHz PCIX(M2) bus";
1091 case PCI_MODE_PCIX_M2_100
:
1092 pcimode
= "200MHz PCIX(M2) bus";
1094 case PCI_MODE_PCIX_M2_133
:
1095 pcimode
= "266MHz PCIX(M2) bus";
1098 pcimode
= "unsupported bus!";
1102 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1103 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1109 * init_tti - Initialization transmit traffic interrupt scheme
1110 * @nic: device private variable
1111 * @link: link status (UP/DOWN) used to enable/disable continuous
1112 * transmit interrupts
1113 * Description: The function configures transmit traffic interrupts
1114 * Return Value: SUCCESS on success and
1118 static int init_tti(struct s2io_nic
*nic
, int link
)
1120 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1121 register u64 val64
= 0;
1123 struct config_param
*config
= &nic
->config
;
1125 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1127 * TTI Initialization. Default Tx timer gets us about
1128 * 250 interrupts per sec. Continuous interrupts are enabled
1131 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1132 int count
= (nic
->config
.bus_speed
* 125)/2;
1133 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1135 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1137 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1142 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1143 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1144 writeq(val64
, &bar0
->tti_data1_mem
);
1146 if (nic
->config
.intr_type
== MSI_X
) {
1147 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150 TTI_DATA2_MEM_TX_UFC_D(0x300);
1152 if ((nic
->config
.tx_steering_type
==
1153 TX_DEFAULT_STEERING
) &&
1154 (config
->tx_fifo_num
> 1) &&
1155 (i
>= nic
->udp_fifo_idx
) &&
1156 (i
< (nic
->udp_fifo_idx
+
1157 nic
->total_udp_fifos
)))
1158 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161 TTI_DATA2_MEM_TX_UFC_D(0x120);
1163 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166 TTI_DATA2_MEM_TX_UFC_D(0x80);
1169 writeq(val64
, &bar0
->tti_data2_mem
);
1171 val64
= TTI_CMD_MEM_WE
|
1172 TTI_CMD_MEM_STROBE_NEW_CMD
|
1173 TTI_CMD_MEM_OFFSET(i
);
1174 writeq(val64
, &bar0
->tti_command_mem
);
1176 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1177 TTI_CMD_MEM_STROBE_NEW_CMD
,
1178 S2IO_BIT_RESET
) != SUCCESS
)
1186 * init_nic - Initialization of hardware
1187 * @nic: device private variable
1188 * Description: The function sequentially configures every block
1189 * of the H/W from their reset values.
1190 * Return Value: SUCCESS on success and
1191 * '-1' on failure (endian settings incorrect).
1194 static int init_nic(struct s2io_nic
*nic
)
1196 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1197 struct net_device
*dev
= nic
->dev
;
1198 register u64 val64
= 0;
1203 unsigned long long mem_share
;
1205 struct config_param
*config
= &nic
->config
;
1206 struct mac_info
*mac_control
= &nic
->mac_control
;
1208 /* to set the swapper controle on the card */
1209 if (s2io_set_swapper(nic
)) {
1210 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1215 * Herc requires EOI to be removed from reset before XGXS, so..
1217 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1218 val64
= 0xA500000000ULL
;
1219 writeq(val64
, &bar0
->sw_reset
);
1221 val64
= readq(&bar0
->sw_reset
);
1224 /* Remove XGXS from reset state */
1226 writeq(val64
, &bar0
->sw_reset
);
1228 val64
= readq(&bar0
->sw_reset
);
1230 /* Ensure that it's safe to access registers by checking
1231 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1233 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1234 for (i
= 0; i
< 50; i
++) {
1235 val64
= readq(&bar0
->adapter_status
);
1236 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1244 /* Enable Receiving broadcasts */
1245 add
= &bar0
->mac_cfg
;
1246 val64
= readq(&bar0
->mac_cfg
);
1247 val64
|= MAC_RMAC_BCAST_ENABLE
;
1248 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1249 writel((u32
)val64
, add
);
1250 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1251 writel((u32
) (val64
>> 32), (add
+ 4));
1253 /* Read registers in all blocks */
1254 val64
= readq(&bar0
->mac_int_mask
);
1255 val64
= readq(&bar0
->mc_int_mask
);
1256 val64
= readq(&bar0
->xgxs_int_mask
);
1260 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1262 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1263 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1264 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1265 &bar0
->dtx_control
, UF
);
1267 msleep(1); /* Necessary!! */
1271 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1272 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1273 &bar0
->dtx_control
, UF
);
1274 val64
= readq(&bar0
->dtx_control
);
1279 /* Tx DMA Initialization */
1281 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1282 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1283 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1284 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1286 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1287 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1289 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1290 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1292 if (i
== (config
->tx_fifo_num
- 1)) {
1299 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1304 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1309 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1314 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1325 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1328 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1329 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1331 val64
= readq(&bar0
->tx_fifo_partition_0
);
1332 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1333 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1336 * Initialization of Tx_PA_CONFIG register to ignore packet
1337 * integrity checking.
1339 val64
= readq(&bar0
->tx_pa_cfg
);
1340 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1341 TX_PA_CFG_IGNORE_SNAP_OUI
|
1342 TX_PA_CFG_IGNORE_LLC_CTRL
|
1343 TX_PA_CFG_IGNORE_L2_ERR
;
1344 writeq(val64
, &bar0
->tx_pa_cfg
);
1346 /* Rx DMA initialization. */
1348 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1349 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1351 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1353 writeq(val64
, &bar0
->rx_queue_priority
);
1356 * Allocating equal share of memory to all the
1360 if (nic
->device_type
& XFRAME_II_DEVICE
)
1365 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1368 mem_share
= (mem_size
/ config
->rx_ring_num
+
1369 mem_size
% config
->rx_ring_num
);
1370 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1373 mem_share
= (mem_size
/ config
->rx_ring_num
);
1374 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1377 mem_share
= (mem_size
/ config
->rx_ring_num
);
1378 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1381 mem_share
= (mem_size
/ config
->rx_ring_num
);
1382 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1385 mem_share
= (mem_size
/ config
->rx_ring_num
);
1386 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1389 mem_share
= (mem_size
/ config
->rx_ring_num
);
1390 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1393 mem_share
= (mem_size
/ config
->rx_ring_num
);
1394 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1397 mem_share
= (mem_size
/ config
->rx_ring_num
);
1398 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1402 writeq(val64
, &bar0
->rx_queue_cfg
);
1405 * Filling Tx round robin registers
1406 * as per the number of FIFOs for equal scheduling priority
1408 switch (config
->tx_fifo_num
) {
1411 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1412 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1413 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1414 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1415 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1418 val64
= 0x0001000100010001ULL
;
1419 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1420 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1421 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1422 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1423 val64
= 0x0001000100000000ULL
;
1424 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1427 val64
= 0x0001020001020001ULL
;
1428 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1429 val64
= 0x0200010200010200ULL
;
1430 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1431 val64
= 0x0102000102000102ULL
;
1432 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1433 val64
= 0x0001020001020001ULL
;
1434 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1435 val64
= 0x0200010200000000ULL
;
1436 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1439 val64
= 0x0001020300010203ULL
;
1440 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1441 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1442 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1443 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1444 val64
= 0x0001020300000000ULL
;
1445 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1448 val64
= 0x0001020304000102ULL
;
1449 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1450 val64
= 0x0304000102030400ULL
;
1451 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1452 val64
= 0x0102030400010203ULL
;
1453 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1454 val64
= 0x0400010203040001ULL
;
1455 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1456 val64
= 0x0203040000000000ULL
;
1457 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1460 val64
= 0x0001020304050001ULL
;
1461 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1462 val64
= 0x0203040500010203ULL
;
1463 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1464 val64
= 0x0405000102030405ULL
;
1465 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1466 val64
= 0x0001020304050001ULL
;
1467 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1468 val64
= 0x0203040500000000ULL
;
1469 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1472 val64
= 0x0001020304050600ULL
;
1473 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1474 val64
= 0x0102030405060001ULL
;
1475 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1476 val64
= 0x0203040506000102ULL
;
1477 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1478 val64
= 0x0304050600010203ULL
;
1479 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1480 val64
= 0x0405060000000000ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1484 val64
= 0x0001020304050607ULL
;
1485 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1486 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1487 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1488 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1489 val64
= 0x0001020300000000ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1494 /* Enable all configured Tx FIFO partitions */
1495 val64
= readq(&bar0
->tx_fifo_partition_0
);
1496 val64
|= (TX_FIFO_PARTITION_EN
);
1497 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1499 /* Filling the Rx round robin registers as per the
1500 * number of Rings and steering based on QoS with
1503 switch (config
->rx_ring_num
) {
1506 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1507 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1508 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1509 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1510 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1512 val64
= 0x8080808080808080ULL
;
1513 writeq(val64
, &bar0
->rts_qos_steering
);
1516 val64
= 0x0001000100010001ULL
;
1517 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1518 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1519 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1520 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1521 val64
= 0x0001000100000000ULL
;
1522 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1524 val64
= 0x8080808040404040ULL
;
1525 writeq(val64
, &bar0
->rts_qos_steering
);
1528 val64
= 0x0001020001020001ULL
;
1529 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1530 val64
= 0x0200010200010200ULL
;
1531 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1532 val64
= 0x0102000102000102ULL
;
1533 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1534 val64
= 0x0001020001020001ULL
;
1535 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1536 val64
= 0x0200010200000000ULL
;
1537 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1539 val64
= 0x8080804040402020ULL
;
1540 writeq(val64
, &bar0
->rts_qos_steering
);
1543 val64
= 0x0001020300010203ULL
;
1544 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1545 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1546 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1547 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1548 val64
= 0x0001020300000000ULL
;
1549 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1551 val64
= 0x8080404020201010ULL
;
1552 writeq(val64
, &bar0
->rts_qos_steering
);
1555 val64
= 0x0001020304000102ULL
;
1556 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1557 val64
= 0x0304000102030400ULL
;
1558 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1559 val64
= 0x0102030400010203ULL
;
1560 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1561 val64
= 0x0400010203040001ULL
;
1562 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1563 val64
= 0x0203040000000000ULL
;
1564 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1566 val64
= 0x8080404020201008ULL
;
1567 writeq(val64
, &bar0
->rts_qos_steering
);
1570 val64
= 0x0001020304050001ULL
;
1571 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1572 val64
= 0x0203040500010203ULL
;
1573 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1574 val64
= 0x0405000102030405ULL
;
1575 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1576 val64
= 0x0001020304050001ULL
;
1577 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1578 val64
= 0x0203040500000000ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1581 val64
= 0x8080404020100804ULL
;
1582 writeq(val64
, &bar0
->rts_qos_steering
);
1585 val64
= 0x0001020304050600ULL
;
1586 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1587 val64
= 0x0102030405060001ULL
;
1588 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1589 val64
= 0x0203040506000102ULL
;
1590 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1591 val64
= 0x0304050600010203ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1593 val64
= 0x0405060000000000ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1596 val64
= 0x8080402010080402ULL
;
1597 writeq(val64
, &bar0
->rts_qos_steering
);
1600 val64
= 0x0001020304050607ULL
;
1601 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1602 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1603 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1604 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1605 val64
= 0x0001020300000000ULL
;
1606 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1608 val64
= 0x8040201008040201ULL
;
1609 writeq(val64
, &bar0
->rts_qos_steering
);
1615 for (i
= 0; i
< 8; i
++)
1616 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1618 /* Set the default rts frame length for the rings configured */
1619 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1620 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1621 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1623 /* Set the frame length for the configured rings
1624 * desired by the user
1626 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1627 /* If rts_frm_len[i] == 0 then it is assumed that user not
1628 * specified frame length steering.
1629 * If the user provides the frame length then program
1630 * the rts_frm_len register for those values or else
1631 * leave it as it is.
1633 if (rts_frm_len
[i
] != 0) {
1634 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1635 &bar0
->rts_frm_len_n
[i
]);
1639 /* Disable differentiated services steering logic */
1640 for (i
= 0; i
< 64; i
++) {
1641 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1643 "%s: rts_ds_steer failed on codepoint %d\n",
1649 /* Program statistics memory */
1650 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1652 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1653 val64
= STAT_BC(0x320);
1654 writeq(val64
, &bar0
->stat_byte_cnt
);
1658 * Initializing the sampling rate for the device to calculate the
1659 * bandwidth utilization.
1661 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1662 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1663 writeq(val64
, &bar0
->mac_link_util
);
1666 * Initializing the Transmit and Receive Traffic Interrupt
1670 /* Initialize TTI */
1671 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1674 /* RTI Initialization */
1675 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1677 * Programmed to generate Apprx 500 Intrs per
1680 int count
= (nic
->config
.bus_speed
* 125)/4;
1681 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1683 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1689 writeq(val64
, &bar0
->rti_data1_mem
);
1691 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693 if (nic
->config
.intr_type
== MSI_X
)
1694 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695 RTI_DATA2_MEM_RX_UFC_D(0x40));
1697 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698 RTI_DATA2_MEM_RX_UFC_D(0x80));
1699 writeq(val64
, &bar0
->rti_data2_mem
);
1701 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1702 val64
= RTI_CMD_MEM_WE
|
1703 RTI_CMD_MEM_STROBE_NEW_CMD
|
1704 RTI_CMD_MEM_OFFSET(i
);
1705 writeq(val64
, &bar0
->rti_command_mem
);
1708 * Once the operation completes, the Strobe bit of the
1709 * command register will be reset. We poll for this
1710 * particular condition. We wait for a maximum of 500ms
1711 * for the operation to complete, if it's not complete
1712 * by then we return error.
1716 val64
= readq(&bar0
->rti_command_mem
);
1717 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1721 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1731 * Initializing proper values as Pause threshold into all
1732 * the 8 Queues on Rx side.
1734 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1735 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1737 /* Disable RMAC PAD STRIPPING */
1738 add
= &bar0
->mac_cfg
;
1739 val64
= readq(&bar0
->mac_cfg
);
1740 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1741 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1742 writel((u32
) (val64
), add
);
1743 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1744 writel((u32
) (val64
>> 32), (add
+ 4));
1745 val64
= readq(&bar0
->mac_cfg
);
1747 /* Enable FCS stripping by adapter */
1748 add
= &bar0
->mac_cfg
;
1749 val64
= readq(&bar0
->mac_cfg
);
1750 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1751 if (nic
->device_type
== XFRAME_II_DEVICE
)
1752 writeq(val64
, &bar0
->mac_cfg
);
1754 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1755 writel((u32
) (val64
), add
);
1756 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1757 writel((u32
) (val64
>> 32), (add
+ 4));
1761 * Set the time value to be inserted in the pause frame
1762 * generated by xena.
1764 val64
= readq(&bar0
->rmac_pause_cfg
);
1765 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1767 writeq(val64
, &bar0
->rmac_pause_cfg
);
1770 * Set the Threshold Limit for Generating the pause frame
1771 * If the amount of data in any Queue exceeds ratio of
1772 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773 * pause frame is generated
1776 for (i
= 0; i
< 4; i
++) {
1777 val64
|= (((u64
)0xFF00 |
1778 nic
->mac_control
.mc_pause_threshold_q0q3
)
1781 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1784 for (i
= 0; i
< 4; i
++) {
1785 val64
|= (((u64
)0xFF00 |
1786 nic
->mac_control
.mc_pause_threshold_q4q7
)
1789 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1792 * TxDMA will stop Read request if the number of read split has
1793 * exceeded the limit pointed by shared_splits
1795 val64
= readq(&bar0
->pic_control
);
1796 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1797 writeq(val64
, &bar0
->pic_control
);
1799 if (nic
->config
.bus_speed
== 266) {
1800 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1801 writeq(0x0, &bar0
->read_retry_delay
);
1802 writeq(0x0, &bar0
->write_retry_delay
);
1806 * Programming the Herc to split every write transaction
1807 * that does not start on an ADB to reduce disconnects.
1809 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1810 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1811 MISC_LINK_STABILITY_PRD(3);
1812 writeq(val64
, &bar0
->misc_control
);
1813 val64
= readq(&bar0
->pic_control2
);
1814 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815 writeq(val64
, &bar0
->pic_control2
);
1817 if (strstr(nic
->product_name
, "CX4")) {
1818 val64
= TMAC_AVG_IPG(0x17);
1819 writeq(val64
, &bar0
->tmac_avg_ipg
);
1824 #define LINK_UP_DOWN_INTERRUPT 1
1825 #define MAC_RMAC_ERR_TIMER 2
1827 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1829 if (nic
->device_type
== XFRAME_II_DEVICE
)
1830 return LINK_UP_DOWN_INTERRUPT
;
1832 return MAC_RMAC_ERR_TIMER
;
1836 * do_s2io_write_bits - update alarm bits in alarm register
1837 * @value: alarm bits
1838 * @flag: interrupt status
1839 * @addr: address value
1840 * Description: update alarm bits in alarm register
1844 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1848 temp64
= readq(addr
);
1850 if (flag
== ENABLE_INTRS
)
1851 temp64
&= ~((u64
)value
);
1853 temp64
|= ((u64
)value
);
1854 writeq(temp64
, addr
);
1857 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1859 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1860 register u64 gen_int_mask
= 0;
1863 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1864 if (mask
& TX_DMA_INTR
) {
1865 gen_int_mask
|= TXDMA_INT_M
;
1867 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1868 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1869 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1870 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1872 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1873 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1874 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1875 &bar0
->pfc_err_mask
);
1877 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1878 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1879 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1881 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1882 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1883 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1884 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1885 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1887 flag
, &bar0
->pcc_err_mask
);
1889 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1890 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1892 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1893 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1894 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1895 flag
, &bar0
->lso_err_mask
);
1897 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1898 flag
, &bar0
->tpa_err_mask
);
1900 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1903 if (mask
& TX_MAC_INTR
) {
1904 gen_int_mask
|= TXMAC_INT_M
;
1905 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1906 &bar0
->mac_int_mask
);
1907 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1908 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1909 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1910 flag
, &bar0
->mac_tmac_err_mask
);
1913 if (mask
& TX_XGXS_INTR
) {
1914 gen_int_mask
|= TXXGXS_INT_M
;
1915 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1916 &bar0
->xgxs_int_mask
);
1917 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1918 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1919 flag
, &bar0
->xgxs_txgxs_err_mask
);
1922 if (mask
& RX_DMA_INTR
) {
1923 gen_int_mask
|= RXDMA_INT_M
;
1924 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1925 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1926 flag
, &bar0
->rxdma_int_mask
);
1927 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1928 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1929 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1930 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1931 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1932 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1933 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1934 &bar0
->prc_pcix_err_mask
);
1935 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1936 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1937 &bar0
->rpa_err_mask
);
1938 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1939 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1940 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1941 RDA_FRM_ECC_SG_ERR
|
1942 RDA_MISC_ERR
|RDA_PCIX_ERR
,
1943 flag
, &bar0
->rda_err_mask
);
1944 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1945 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1946 flag
, &bar0
->rti_err_mask
);
1949 if (mask
& RX_MAC_INTR
) {
1950 gen_int_mask
|= RXMAC_INT_M
;
1951 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1952 &bar0
->mac_int_mask
);
1953 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1954 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1955 RMAC_DOUBLE_ECC_ERR
);
1956 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
1957 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
1958 do_s2io_write_bits(interruptible
,
1959 flag
, &bar0
->mac_rmac_err_mask
);
1962 if (mask
& RX_XGXS_INTR
) {
1963 gen_int_mask
|= RXXGXS_INT_M
;
1964 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1965 &bar0
->xgxs_int_mask
);
1966 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1967 &bar0
->xgxs_rxgxs_err_mask
);
1970 if (mask
& MC_INTR
) {
1971 gen_int_mask
|= MC_INT_M
;
1972 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
1973 flag
, &bar0
->mc_int_mask
);
1974 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1975 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1976 &bar0
->mc_err_mask
);
1978 nic
->general_int_mask
= gen_int_mask
;
1980 /* Remove this line when alarm interrupts are enabled */
1981 nic
->general_int_mask
= 0;
1985 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1986 * @nic: device private variable,
1987 * @mask: A mask indicating which Intr block must be modified and,
1988 * @flag: A flag indicating whether to enable or disable the Intrs.
1989 * Description: This function will either disable or enable the interrupts
1990 * depending on the flag argument. The mask argument can be used to
1991 * enable/disable any Intr block.
1992 * Return Value: NONE.
1995 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1997 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1998 register u64 temp64
= 0, intr_mask
= 0;
2000 intr_mask
= nic
->general_int_mask
;
2002 /* Top level interrupt classification */
2003 /* PIC Interrupts */
2004 if (mask
& TX_PIC_INTR
) {
2005 /* Enable PIC Intrs in the general intr mask register */
2006 intr_mask
|= TXPIC_INT_M
;
2007 if (flag
== ENABLE_INTRS
) {
2009 * If Hercules adapter enable GPIO otherwise
2010 * disable all PCIX, Flash, MDIO, IIC and GPIO
2011 * interrupts for now.
2014 if (s2io_link_fault_indication(nic
) ==
2015 LINK_UP_DOWN_INTERRUPT
) {
2016 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2017 &bar0
->pic_int_mask
);
2018 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2019 &bar0
->gpio_int_mask
);
2021 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2022 } else if (flag
== DISABLE_INTRS
) {
2024 * Disable PIC Intrs in the general
2025 * intr mask register
2027 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2031 /* Tx traffic interrupts */
2032 if (mask
& TX_TRAFFIC_INTR
) {
2033 intr_mask
|= TXTRAFFIC_INT_M
;
2034 if (flag
== ENABLE_INTRS
) {
2036 * Enable all the Tx side interrupts
2037 * writing 0 Enables all 64 TX interrupt levels
2039 writeq(0x0, &bar0
->tx_traffic_mask
);
2040 } else if (flag
== DISABLE_INTRS
) {
2042 * Disable Tx Traffic Intrs in the general intr mask
2045 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2049 /* Rx traffic interrupts */
2050 if (mask
& RX_TRAFFIC_INTR
) {
2051 intr_mask
|= RXTRAFFIC_INT_M
;
2052 if (flag
== ENABLE_INTRS
) {
2053 /* writing 0 Enables all 8 RX interrupt levels */
2054 writeq(0x0, &bar0
->rx_traffic_mask
);
2055 } else if (flag
== DISABLE_INTRS
) {
2057 * Disable Rx Traffic Intrs in the general intr mask
2060 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2064 temp64
= readq(&bar0
->general_int_mask
);
2065 if (flag
== ENABLE_INTRS
)
2066 temp64
&= ~((u64
)intr_mask
);
2068 temp64
= DISABLE_ALL_INTRS
;
2069 writeq(temp64
, &bar0
->general_int_mask
);
2071 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2075 * verify_pcc_quiescent- Checks for PCC quiescent state
2076 * Return: 1 If PCC is quiescence
2077 * 0 If PCC is not quiescence
2079 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2082 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2083 u64 val64
= readq(&bar0
->adapter_status
);
2085 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2087 if (flag
== false) {
2088 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2089 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2092 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2096 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2097 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2098 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2101 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2102 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2110 * verify_xena_quiescence - Checks whether the H/W is ready
2111 * Description: Returns whether the H/W is ready to go or not. Depending
2112 * on whether adapter enable bit was written or not the comparison
2113 * differs and the calling function passes the input argument flag to
2115 * Return: 1 If xena is quiescence
2116 * 0 If Xena is not quiescence
2119 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2122 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2123 u64 val64
= readq(&bar0
->adapter_status
);
2124 mode
= s2io_verify_pci_mode(sp
);
2126 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2127 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2130 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2131 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2134 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2135 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2138 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2139 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2142 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2143 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2146 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2147 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2150 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2151 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2154 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2155 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2160 * In PCI 33 mode, the P_PLL is not used, and therefore,
2161 * the the P_PLL_LOCK bit in the adapter_status register will
2164 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2165 sp
->device_type
== XFRAME_II_DEVICE
&&
2166 mode
!= PCI_MODE_PCI_33
) {
2167 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2170 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2171 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2172 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2179 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2180 * @sp: Pointer to device specifc structure
2182 * New procedure to clear mac address reading problems on Alpha platforms
2186 static void fix_mac_address(struct s2io_nic
*sp
)
2188 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2191 while (fix_mac
[i
] != END_SIGN
) {
2192 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2194 (void) readq(&bar0
->gpio_control
);
2199 * start_nic - Turns the device on
2200 * @nic : device private variable.
2202 * This function actually turns the device on. Before this function is
2203 * called,all Registers are configured from their reset states
2204 * and shared memory is allocated but the NIC is still quiescent. On
2205 * calling this function, the device interrupts are cleared and the NIC is
2206 * literally switched on by writing into the adapter control register.
2208 * SUCCESS on success and -1 on failure.
2211 static int start_nic(struct s2io_nic
*nic
)
2213 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2214 struct net_device
*dev
= nic
->dev
;
2215 register u64 val64
= 0;
2217 struct config_param
*config
= &nic
->config
;
2218 struct mac_info
*mac_control
= &nic
->mac_control
;
2220 /* PRC Initialization and configuration */
2221 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2222 struct ring_info
*ring
= &mac_control
->rings
[i
];
2224 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2225 &bar0
->prc_rxd0_n
[i
]);
2227 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2228 if (nic
->rxd_mode
== RXD_MODE_1
)
2229 val64
|= PRC_CTRL_RC_ENABLED
;
2231 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2232 if (nic
->device_type
== XFRAME_II_DEVICE
)
2233 val64
|= PRC_CTRL_GROUP_READS
;
2234 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2239 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2240 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241 val64
= readq(&bar0
->rx_pa_cfg
);
2242 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2243 writeq(val64
, &bar0
->rx_pa_cfg
);
2246 if (vlan_tag_strip
== 0) {
2247 val64
= readq(&bar0
->rx_pa_cfg
);
2248 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2249 writeq(val64
, &bar0
->rx_pa_cfg
);
2250 nic
->vlan_strip_flag
= 0;
2254 * Enabling MC-RLDRAM. After enabling the device, we timeout
2255 * for around 100ms, which is approximately the time required
2256 * for the device to be ready for operation.
2258 val64
= readq(&bar0
->mc_rldram_mrs
);
2259 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2260 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2261 val64
= readq(&bar0
->mc_rldram_mrs
);
2263 msleep(100); /* Delay by around 100 ms. */
2265 /* Enabling ECC Protection. */
2266 val64
= readq(&bar0
->adapter_control
);
2267 val64
&= ~ADAPTER_ECC_EN
;
2268 writeq(val64
, &bar0
->adapter_control
);
2271 * Verify if the device is ready to be enabled, if so enable
2274 val64
= readq(&bar0
->adapter_status
);
2275 if (!verify_xena_quiescence(nic
)) {
2276 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2277 "Adapter status reads: 0x%llx\n",
2278 dev
->name
, (unsigned long long)val64
);
2283 * With some switches, link might be already up at this point.
2284 * Because of this weird behavior, when we enable laser,
2285 * we may not get link. We need to handle this. We cannot
2286 * figure out which switch is misbehaving. So we are forced to
2287 * make a global change.
2290 /* Enabling Laser. */
2291 val64
= readq(&bar0
->adapter_control
);
2292 val64
|= ADAPTER_EOI_TX_ON
;
2293 writeq(val64
, &bar0
->adapter_control
);
2295 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2297 * Dont see link state interrupts initially on some switches,
2298 * so directly scheduling the link state task here.
2300 schedule_work(&nic
->set_link_task
);
2302 /* SXE-002: Initialize link and activity LED */
2303 subid
= nic
->pdev
->subsystem_device
;
2304 if (((subid
& 0xFF) >= 0x07) &&
2305 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2306 val64
= readq(&bar0
->gpio_control
);
2307 val64
|= 0x0000800000000000ULL
;
2308 writeq(val64
, &bar0
->gpio_control
);
2309 val64
= 0x0411040400000000ULL
;
2310 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2316 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2318 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2319 struct TxD
*txdlp
, int get_off
)
2321 struct s2io_nic
*nic
= fifo_data
->nic
;
2322 struct sk_buff
*skb
;
2327 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2328 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2329 sizeof(u64
), PCI_DMA_TODEVICE
);
2333 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2335 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2338 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2339 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2340 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2343 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2344 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2345 if (!txds
->Buffer_Pointer
)
2347 pci_unmap_page(nic
->pdev
,
2348 (dma_addr_t
)txds
->Buffer_Pointer
,
2349 skb_frag_size(frag
), PCI_DMA_TODEVICE
);
2352 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2357 * free_tx_buffers - Free all queued Tx buffers
2358 * @nic : device private variable.
2360 * Free all queued Tx buffers.
2361 * Return Value: void
2364 static void free_tx_buffers(struct s2io_nic
*nic
)
2366 struct net_device
*dev
= nic
->dev
;
2367 struct sk_buff
*skb
;
2371 struct config_param
*config
= &nic
->config
;
2372 struct mac_info
*mac_control
= &nic
->mac_control
;
2373 struct stat_block
*stats
= mac_control
->stats_info
;
2374 struct swStat
*swstats
= &stats
->sw_stat
;
2376 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2377 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2378 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2379 unsigned long flags
;
2381 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2382 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2383 txdp
= fifo
->list_info
[j
].list_virt_addr
;
2384 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2386 swstats
->mem_freed
+= skb
->truesize
;
2392 "%s: forcibly freeing %d skbs on FIFO%d\n",
2394 fifo
->tx_curr_get_info
.offset
= 0;
2395 fifo
->tx_curr_put_info
.offset
= 0;
2396 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2401 * stop_nic - To stop the nic
2402 * @nic ; device private variable.
2404 * This function does exactly the opposite of what the start_nic()
2405 * function does. This function is called to stop the device.
2410 static void stop_nic(struct s2io_nic
*nic
)
2412 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2413 register u64 val64
= 0;
2416 /* Disable all interrupts */
2417 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2418 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2419 interruptible
|= TX_PIC_INTR
;
2420 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2422 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423 val64
= readq(&bar0
->adapter_control
);
2424 val64
&= ~(ADAPTER_CNTL_EN
);
2425 writeq(val64
, &bar0
->adapter_control
);
2429 * fill_rx_buffers - Allocates the Rx side skbs
2430 * @ring_info: per ring structure
2431 * @from_card_up: If this is true, we will map the buffer to get
2432 * the dma address for buf0 and buf1 to give it to the card.
2433 * Else we will sync the already mapped buffer to give it to the card.
2435 * The function allocates Rx side skbs and puts the physical
2436 * address of these buffers into the RxD buffer pointers, so that the NIC
2437 * can DMA the received frame into these locations.
2438 * The NIC supports 3 receive modes, viz
2440 * 2. three buffer and
2441 * 3. Five buffer modes.
2442 * Each mode defines how many fragments the received frame will be split
2443 * up into by the NIC. The frame is split into L3 header, L4 Header,
2444 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445 * is split into 3 fragments. As of now only single buffer mode is
2448 * SUCCESS on success or an appropriate -ve value on failure.
2450 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2453 struct sk_buff
*skb
;
2455 int off
, size
, block_no
, block_no1
;
2460 struct RxD_t
*first_rxdp
= NULL
;
2461 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2465 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2467 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2469 block_no1
= ring
->rx_curr_get_info
.block_index
;
2470 while (alloc_tab
< alloc_cnt
) {
2471 block_no
= ring
->rx_curr_put_info
.block_index
;
2473 off
= ring
->rx_curr_put_info
.offset
;
2475 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2477 rxd_index
= off
+ 1;
2479 rxd_index
+= (block_no
* ring
->rxd_count
);
2481 if ((block_no
== block_no1
) &&
2482 (off
== ring
->rx_curr_get_info
.offset
) &&
2483 (rxdp
->Host_Control
)) {
2484 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2488 if (off
&& (off
== ring
->rxd_count
)) {
2489 ring
->rx_curr_put_info
.block_index
++;
2490 if (ring
->rx_curr_put_info
.block_index
==
2492 ring
->rx_curr_put_info
.block_index
= 0;
2493 block_no
= ring
->rx_curr_put_info
.block_index
;
2495 ring
->rx_curr_put_info
.offset
= off
;
2496 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2497 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2498 ring
->dev
->name
, rxdp
);
2502 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2503 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2504 (rxdp
->Control_2
& s2BIT(0)))) {
2505 ring
->rx_curr_put_info
.offset
= off
;
2508 /* calculate size of skb based on ring mode */
2510 HEADER_ETHERNET_II_802_3_SIZE
+
2511 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2512 if (ring
->rxd_mode
== RXD_MODE_1
)
2513 size
+= NET_IP_ALIGN
;
2515 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2518 skb
= netdev_alloc_skb(nic
->dev
, size
);
2520 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2524 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2526 swstats
->mem_alloc_fail_cnt
++;
2530 swstats
->mem_allocated
+= skb
->truesize
;
2532 if (ring
->rxd_mode
== RXD_MODE_1
) {
2533 /* 1 buffer mode - normal operation mode */
2534 rxdp1
= (struct RxD1
*)rxdp
;
2535 memset(rxdp
, 0, sizeof(struct RxD1
));
2536 skb_reserve(skb
, NET_IP_ALIGN
);
2537 rxdp1
->Buffer0_ptr
=
2538 pci_map_single(ring
->pdev
, skb
->data
,
2539 size
- NET_IP_ALIGN
,
2540 PCI_DMA_FROMDEVICE
);
2541 if (pci_dma_mapping_error(nic
->pdev
,
2542 rxdp1
->Buffer0_ptr
))
2543 goto pci_map_failed
;
2546 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2547 rxdp
->Host_Control
= (unsigned long)skb
;
2548 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2551 * 2 buffer mode provides 128
2552 * byte aligned receive buffers.
2555 rxdp3
= (struct RxD3
*)rxdp
;
2556 /* save buffer pointers to avoid frequent dma mapping */
2557 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2558 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2559 memset(rxdp
, 0, sizeof(struct RxD3
));
2560 /* restore the buffer pointers for dma sync*/
2561 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2562 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2564 ba
= &ring
->ba
[block_no
][off
];
2565 skb_reserve(skb
, BUF0_LEN
);
2566 tmp
= (u64
)(unsigned long)skb
->data
;
2569 skb
->data
= (void *) (unsigned long)tmp
;
2570 skb_reset_tail_pointer(skb
);
2573 rxdp3
->Buffer0_ptr
=
2574 pci_map_single(ring
->pdev
, ba
->ba_0
,
2576 PCI_DMA_FROMDEVICE
);
2577 if (pci_dma_mapping_error(nic
->pdev
,
2578 rxdp3
->Buffer0_ptr
))
2579 goto pci_map_failed
;
2581 pci_dma_sync_single_for_device(ring
->pdev
,
2582 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2584 PCI_DMA_FROMDEVICE
);
2586 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2587 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2588 /* Two buffer mode */
2591 * Buffer2 will have L3/L4 header plus
2594 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2597 PCI_DMA_FROMDEVICE
);
2599 if (pci_dma_mapping_error(nic
->pdev
,
2600 rxdp3
->Buffer2_ptr
))
2601 goto pci_map_failed
;
2604 rxdp3
->Buffer1_ptr
=
2605 pci_map_single(ring
->pdev
,
2608 PCI_DMA_FROMDEVICE
);
2610 if (pci_dma_mapping_error(nic
->pdev
,
2611 rxdp3
->Buffer1_ptr
)) {
2612 pci_unmap_single(ring
->pdev
,
2613 (dma_addr_t
)(unsigned long)
2616 PCI_DMA_FROMDEVICE
);
2617 goto pci_map_failed
;
2620 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2621 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2624 rxdp
->Control_2
|= s2BIT(0);
2625 rxdp
->Host_Control
= (unsigned long) (skb
);
2627 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2628 rxdp
->Control_1
|= RXD_OWN_XENA
;
2630 if (off
== (ring
->rxd_count
+ 1))
2632 ring
->rx_curr_put_info
.offset
= off
;
2634 rxdp
->Control_2
|= SET_RXD_MARKER
;
2635 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2638 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2642 ring
->rx_bufs_left
+= 1;
2647 /* Transfer ownership of first descriptor to adapter just before
2648 * exiting. Before that, use memory barrier so that ownership
2649 * and other fields are seen by adapter correctly.
2653 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2659 swstats
->pci_map_fail_cnt
++;
2660 swstats
->mem_freed
+= skb
->truesize
;
2661 dev_kfree_skb_irq(skb
);
2665 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2667 struct net_device
*dev
= sp
->dev
;
2669 struct sk_buff
*skb
;
2673 struct mac_info
*mac_control
= &sp
->mac_control
;
2674 struct stat_block
*stats
= mac_control
->stats_info
;
2675 struct swStat
*swstats
= &stats
->sw_stat
;
2677 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2678 rxdp
= mac_control
->rings
[ring_no
].
2679 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2680 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2683 if (sp
->rxd_mode
== RXD_MODE_1
) {
2684 rxdp1
= (struct RxD1
*)rxdp
;
2685 pci_unmap_single(sp
->pdev
,
2686 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2688 HEADER_ETHERNET_II_802_3_SIZE
+
2689 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2690 PCI_DMA_FROMDEVICE
);
2691 memset(rxdp
, 0, sizeof(struct RxD1
));
2692 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2693 rxdp3
= (struct RxD3
*)rxdp
;
2694 pci_unmap_single(sp
->pdev
,
2695 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2697 PCI_DMA_FROMDEVICE
);
2698 pci_unmap_single(sp
->pdev
,
2699 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2701 PCI_DMA_FROMDEVICE
);
2702 pci_unmap_single(sp
->pdev
,
2703 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2705 PCI_DMA_FROMDEVICE
);
2706 memset(rxdp
, 0, sizeof(struct RxD3
));
2708 swstats
->mem_freed
+= skb
->truesize
;
2710 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2715 * free_rx_buffers - Frees all Rx buffers
2716 * @sp: device private variable.
2718 * This function will free all Rx buffers allocated by host.
2723 static void free_rx_buffers(struct s2io_nic
*sp
)
2725 struct net_device
*dev
= sp
->dev
;
2726 int i
, blk
= 0, buf_cnt
= 0;
2727 struct config_param
*config
= &sp
->config
;
2728 struct mac_info
*mac_control
= &sp
->mac_control
;
2730 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2731 struct ring_info
*ring
= &mac_control
->rings
[i
];
2733 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2734 free_rxd_blk(sp
, i
, blk
);
2736 ring
->rx_curr_put_info
.block_index
= 0;
2737 ring
->rx_curr_get_info
.block_index
= 0;
2738 ring
->rx_curr_put_info
.offset
= 0;
2739 ring
->rx_curr_get_info
.offset
= 0;
2740 ring
->rx_bufs_left
= 0;
2741 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742 dev
->name
, buf_cnt
, i
);
2746 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2748 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2749 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2756 * s2io_poll - Rx interrupt handler for NAPI support
2757 * @napi : pointer to the napi structure.
2758 * @budget : The number of packets that were budgeted to be processed
2759 * during one pass through the 'Poll" function.
2761 * Comes into picture only if NAPI support has been incorporated. It does
2762 * the same thing that rx_intr_handler does, but not in a interrupt context
2763 * also It will process only a given number of packets.
2765 * 0 on success and 1 if there are No Rx packets to be processed.
2768 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2770 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2771 struct net_device
*dev
= ring
->dev
;
2772 int pkts_processed
= 0;
2773 u8 __iomem
*addr
= NULL
;
2775 struct s2io_nic
*nic
= netdev_priv(dev
);
2776 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2777 int budget_org
= budget
;
2779 if (unlikely(!is_s2io_card_up(nic
)))
2782 pkts_processed
= rx_intr_handler(ring
, budget
);
2783 s2io_chk_rx_buffers(nic
, ring
);
2785 if (pkts_processed
< budget_org
) {
2786 napi_complete_done(napi
, pkts_processed
);
2787 /*Re Enable MSI-Rx Vector*/
2788 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2789 addr
+= 7 - ring
->ring_no
;
2790 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2794 return pkts_processed
;
2797 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2799 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2800 int pkts_processed
= 0;
2801 int ring_pkts_processed
, i
;
2802 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2803 int budget_org
= budget
;
2804 struct config_param
*config
= &nic
->config
;
2805 struct mac_info
*mac_control
= &nic
->mac_control
;
2807 if (unlikely(!is_s2io_card_up(nic
)))
2810 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2811 struct ring_info
*ring
= &mac_control
->rings
[i
];
2812 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2813 s2io_chk_rx_buffers(nic
, ring
);
2814 pkts_processed
+= ring_pkts_processed
;
2815 budget
-= ring_pkts_processed
;
2819 if (pkts_processed
< budget_org
) {
2820 napi_complete_done(napi
, pkts_processed
);
2821 /* Re enable the Rx interrupts for the ring */
2822 writeq(0, &bar0
->rx_traffic_mask
);
2823 readl(&bar0
->rx_traffic_mask
);
2825 return pkts_processed
;
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2830 * s2io_netpoll - netpoll event handler entry point
2831 * @dev : pointer to the device structure.
2833 * This function will be called by upper layer to check for events on the
2834 * interface in situations where interrupts are disabled. It is used for
2835 * specific in-kernel networking tasks, such as remote consoles and kernel
2836 * debugging over the network (example netdump in RedHat).
2838 static void s2io_netpoll(struct net_device
*dev
)
2840 struct s2io_nic
*nic
= netdev_priv(dev
);
2841 const int irq
= nic
->pdev
->irq
;
2842 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2843 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2845 struct config_param
*config
= &nic
->config
;
2846 struct mac_info
*mac_control
= &nic
->mac_control
;
2848 if (pci_channel_offline(nic
->pdev
))
2853 writeq(val64
, &bar0
->rx_traffic_int
);
2854 writeq(val64
, &bar0
->tx_traffic_int
);
2856 /* we need to free up the transmitted skbufs or else netpoll will
2857 * run out of skbs and will fail and eventually netpoll application such
2858 * as netdump will fail.
2860 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2861 tx_intr_handler(&mac_control
->fifos
[i
]);
2863 /* check for received packet and indicate up to network */
2864 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2865 struct ring_info
*ring
= &mac_control
->rings
[i
];
2867 rx_intr_handler(ring
, 0);
2870 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2871 struct ring_info
*ring
= &mac_control
->rings
[i
];
2873 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2875 "%s: Out of memory in Rx Netpoll!!\n",
2885 * rx_intr_handler - Rx interrupt handler
2886 * @ring_info: per ring structure.
2887 * @budget: budget for napi processing.
2889 * If the interrupt is because of a received frame or if the
2890 * receive ring contains fresh as yet un-processed frames,this function is
2891 * called. It picks out the RxD at which place the last Rx processing had
2892 * stopped and sends the skb to the OSM's Rx handler and then increments
2895 * No. of napi packets processed.
2897 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2899 int get_block
, put_block
;
2900 struct rx_curr_get_info get_info
, put_info
;
2902 struct sk_buff
*skb
;
2903 int pkt_cnt
= 0, napi_pkts
= 0;
2911 get_info
= ring_data
->rx_curr_get_info
;
2912 get_block
= get_info
.block_index
;
2913 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2914 put_block
= put_info
.block_index
;
2915 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2917 while (RXD_IS_UP2DT(rxdp
)) {
2919 * If your are next to put index then it's
2920 * FIFO full condition
2922 if ((get_block
== put_block
) &&
2923 (get_info
.offset
+ 1) == put_info
.offset
) {
2924 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2925 ring_data
->dev
->name
);
2928 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2930 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2931 ring_data
->dev
->name
);
2934 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2935 rxdp1
= (struct RxD1
*)rxdp
;
2936 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2939 HEADER_ETHERNET_II_802_3_SIZE
+
2942 PCI_DMA_FROMDEVICE
);
2943 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2944 rxdp3
= (struct RxD3
*)rxdp
;
2945 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
2946 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2948 PCI_DMA_FROMDEVICE
);
2949 pci_unmap_single(ring_data
->pdev
,
2950 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2952 PCI_DMA_FROMDEVICE
);
2954 prefetch(skb
->data
);
2955 rx_osm_handler(ring_data
, rxdp
);
2957 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2958 rxdp
= ring_data
->rx_blocks
[get_block
].
2959 rxds
[get_info
.offset
].virt_addr
;
2960 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
2961 get_info
.offset
= 0;
2962 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2964 if (get_block
== ring_data
->block_count
)
2966 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2967 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2970 if (ring_data
->nic
->config
.napi
) {
2977 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2980 if (ring_data
->lro
) {
2981 /* Clear all LRO sessions before exiting */
2982 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
2983 struct lro
*lro
= &ring_data
->lro0_n
[i
];
2985 update_L3L4_header(ring_data
->nic
, lro
);
2986 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
2987 clear_lro_session(lro
);
2995 * tx_intr_handler - Transmit interrupt handler
2996 * @nic : device private variable
2998 * If an interrupt was raised to indicate DMA complete of the
2999 * Tx packet, this function is called. It identifies the last TxD
3000 * whose buffer was freed and frees all skbs whose data have already
3001 * DMA'ed into the NICs internal memory.
3006 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3008 struct s2io_nic
*nic
= fifo_data
->nic
;
3009 struct tx_curr_get_info get_info
, put_info
;
3010 struct sk_buff
*skb
= NULL
;
3013 unsigned long flags
= 0;
3015 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3016 struct swStat
*swstats
= &stats
->sw_stat
;
3018 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3021 get_info
= fifo_data
->tx_curr_get_info
;
3022 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3023 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3024 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3025 (get_info
.offset
!= put_info
.offset
) &&
3026 (txdlp
->Host_Control
)) {
3027 /* Check for TxD errors */
3028 if (txdlp
->Control_1
& TXD_T_CODE
) {
3029 unsigned long long err
;
3030 err
= txdlp
->Control_1
& TXD_T_CODE
;
3032 swstats
->parity_err_cnt
++;
3035 /* update t_code statistics */
3036 err_mask
= err
>> 48;
3039 swstats
->tx_buf_abort_cnt
++;
3043 swstats
->tx_desc_abort_cnt
++;
3047 swstats
->tx_parity_err_cnt
++;
3051 swstats
->tx_link_loss_cnt
++;
3055 swstats
->tx_list_proc_err_cnt
++;
3060 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3062 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3063 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3069 /* Updating the statistics block */
3070 swstats
->mem_freed
+= skb
->truesize
;
3071 dev_kfree_skb_irq(skb
);
3074 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3075 get_info
.offset
= 0;
3076 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3077 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3080 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3082 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3086 * s2io_mdio_write - Function to write in to MDIO registers
3087 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088 * @addr : address value
3089 * @value : data value
3090 * @dev : pointer to net_device structure
3092 * This function is used to write values to the MDIO registers
3095 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3096 struct net_device
*dev
)
3099 struct s2io_nic
*sp
= netdev_priv(dev
);
3100 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3102 /* address transaction */
3103 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3104 MDIO_MMD_DEV_ADDR(mmd_type
) |
3105 MDIO_MMS_PRT_ADDR(0x0);
3106 writeq(val64
, &bar0
->mdio_control
);
3107 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3108 writeq(val64
, &bar0
->mdio_control
);
3111 /* Data transaction */
3112 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3113 MDIO_MMD_DEV_ADDR(mmd_type
) |
3114 MDIO_MMS_PRT_ADDR(0x0) |
3115 MDIO_MDIO_DATA(value
) |
3116 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3117 writeq(val64
, &bar0
->mdio_control
);
3118 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3119 writeq(val64
, &bar0
->mdio_control
);
3122 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3123 MDIO_MMD_DEV_ADDR(mmd_type
) |
3124 MDIO_MMS_PRT_ADDR(0x0) |
3125 MDIO_OP(MDIO_OP_READ_TRANS
);
3126 writeq(val64
, &bar0
->mdio_control
);
3127 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3128 writeq(val64
, &bar0
->mdio_control
);
3133 * s2io_mdio_read - Function to write in to MDIO registers
3134 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135 * @addr : address value
3136 * @dev : pointer to net_device structure
3138 * This function is used to read values to the MDIO registers
3141 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3145 struct s2io_nic
*sp
= netdev_priv(dev
);
3146 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3148 /* address transaction */
3149 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3150 | MDIO_MMD_DEV_ADDR(mmd_type
)
3151 | MDIO_MMS_PRT_ADDR(0x0));
3152 writeq(val64
, &bar0
->mdio_control
);
3153 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3154 writeq(val64
, &bar0
->mdio_control
);
3157 /* Data transaction */
3158 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3159 MDIO_MMD_DEV_ADDR(mmd_type
) |
3160 MDIO_MMS_PRT_ADDR(0x0) |
3161 MDIO_OP(MDIO_OP_READ_TRANS
);
3162 writeq(val64
, &bar0
->mdio_control
);
3163 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3164 writeq(val64
, &bar0
->mdio_control
);
3167 /* Read the value from regs */
3168 rval64
= readq(&bar0
->mdio_control
);
3169 rval64
= rval64
& 0xFFFF0000;
3170 rval64
= rval64
>> 16;
3175 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176 * @counter : counter value to be updated
3177 * @flag : flag to indicate the status
3178 * @type : counter type
3180 * This function is to check the status of the xpak counters value
3184 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3190 for (i
= 0; i
< index
; i
++)
3194 *counter
= *counter
+ 1;
3195 val64
= *regs_stat
& mask
;
3196 val64
= val64
>> (index
* 0x2);
3202 "Take Xframe NIC out of service.\n");
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3208 "Take Xframe NIC out of service.\n");
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3214 "Take Xframe NIC out of service.\n");
3216 "Excessive laser output power may saturate far-end receiver.\n");
3220 "Incorrect XPAK Alarm type\n");
3224 val64
= val64
<< (index
* 0x2);
3225 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3228 *regs_stat
= *regs_stat
& (~mask
);
3233 * s2io_updt_xpak_counter - Function to update the xpak counters
3234 * @dev : pointer to net_device struct
3236 * This function is to upate the status of the xpak counters value
3239 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3247 struct s2io_nic
*sp
= netdev_priv(dev
);
3248 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3249 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3251 /* Check the communication with the MDIO slave */
3254 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3255 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3257 "ERR: MDIO slave access failed - Returned %llx\n",
3258 (unsigned long long)val64
);
3262 /* Check for the expected value of control reg 1 */
3263 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3264 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3265 "Returned: %llx- Expected: 0x%x\n",
3266 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3270 /* Loading the DOM register to MDIO register */
3272 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3273 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3275 /* Reading the Alarm flags */
3278 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3280 flag
= CHECKBIT(val64
, 0x7);
3282 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3283 &xstats
->xpak_regs_stat
,
3286 if (CHECKBIT(val64
, 0x6))
3287 xstats
->alarm_transceiver_temp_low
++;
3289 flag
= CHECKBIT(val64
, 0x3);
3291 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3292 &xstats
->xpak_regs_stat
,
3295 if (CHECKBIT(val64
, 0x2))
3296 xstats
->alarm_laser_bias_current_low
++;
3298 flag
= CHECKBIT(val64
, 0x1);
3300 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3301 &xstats
->xpak_regs_stat
,
3304 if (CHECKBIT(val64
, 0x0))
3305 xstats
->alarm_laser_output_power_low
++;
3307 /* Reading the Warning flags */
3310 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3312 if (CHECKBIT(val64
, 0x7))
3313 xstats
->warn_transceiver_temp_high
++;
3315 if (CHECKBIT(val64
, 0x6))
3316 xstats
->warn_transceiver_temp_low
++;
3318 if (CHECKBIT(val64
, 0x3))
3319 xstats
->warn_laser_bias_current_high
++;
3321 if (CHECKBIT(val64
, 0x2))
3322 xstats
->warn_laser_bias_current_low
++;
3324 if (CHECKBIT(val64
, 0x1))
3325 xstats
->warn_laser_output_power_high
++;
3327 if (CHECKBIT(val64
, 0x0))
3328 xstats
->warn_laser_output_power_low
++;
3332 * wait_for_cmd_complete - waits for a command to complete.
3333 * @sp : private member of the device structure, which is a pointer to the
3334 * s2io_nic structure.
3335 * Description: Function that waits for a command to Write into RMAC
3336 * ADDR DATA registers to be completed and returns either success or
3337 * error depending on whether the command was complete or not.
3339 * SUCCESS on success and FAILURE on failure.
3342 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3345 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3348 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3352 val64
= readq(addr
);
3353 if (bit_state
== S2IO_BIT_RESET
) {
3354 if (!(val64
& busy_bit
)) {
3359 if (val64
& busy_bit
) {
3376 * check_pci_device_id - Checks if the device id is supported
3378 * Description: Function to check if the pci device id is supported by driver.
3379 * Return value: Actual device id if supported else PCI_ANY_ID
3381 static u16
check_pci_device_id(u16 id
)
3384 case PCI_DEVICE_ID_HERC_WIN
:
3385 case PCI_DEVICE_ID_HERC_UNI
:
3386 return XFRAME_II_DEVICE
;
3387 case PCI_DEVICE_ID_S2IO_UNI
:
3388 case PCI_DEVICE_ID_S2IO_WIN
:
3389 return XFRAME_I_DEVICE
;
3396 * s2io_reset - Resets the card.
3397 * @sp : private member of the device structure.
3398 * Description: Function to Reset the card. This function then also
3399 * restores the previously saved PCI configuration space registers as
3400 * the card reset also resets the configuration space.
3405 static void s2io_reset(struct s2io_nic
*sp
)
3407 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3412 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3413 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3414 struct stat_block
*stats
;
3415 struct swStat
*swstats
;
3417 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3418 __func__
, pci_name(sp
->pdev
));
3420 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3423 val64
= SW_RESET_ALL
;
3424 writeq(val64
, &bar0
->sw_reset
);
3425 if (strstr(sp
->product_name
, "CX4"))
3428 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3430 /* Restore the PCI state saved during initialization. */
3431 pci_restore_state(sp
->pdev
);
3432 pci_save_state(sp
->pdev
);
3433 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3434 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3439 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3440 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3442 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3446 /* Set swapper to enable I/O register access */
3447 s2io_set_swapper(sp
);
3449 /* restore mac_addr entries */
3450 do_s2io_restore_unicast_mc(sp
);
3452 /* Restore the MSIX table entries from local variables */
3453 restore_xmsi_data(sp
);
3455 /* Clear certain PCI/PCI-X fields after reset */
3456 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3457 /* Clear "detected parity error" bit */
3458 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3460 /* Clearing PCIX Ecc status register */
3461 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3463 /* Clearing PCI_STATUS error reflected here */
3464 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3467 /* Reset device statistics maintained by OS */
3468 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3470 stats
= sp
->mac_control
.stats_info
;
3471 swstats
= &stats
->sw_stat
;
3473 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3474 up_cnt
= swstats
->link_up_cnt
;
3475 down_cnt
= swstats
->link_down_cnt
;
3476 up_time
= swstats
->link_up_time
;
3477 down_time
= swstats
->link_down_time
;
3478 reset_cnt
= swstats
->soft_reset_cnt
;
3479 mem_alloc_cnt
= swstats
->mem_allocated
;
3480 mem_free_cnt
= swstats
->mem_freed
;
3481 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3483 memset(stats
, 0, sizeof(struct stat_block
));
3485 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486 swstats
->link_up_cnt
= up_cnt
;
3487 swstats
->link_down_cnt
= down_cnt
;
3488 swstats
->link_up_time
= up_time
;
3489 swstats
->link_down_time
= down_time
;
3490 swstats
->soft_reset_cnt
= reset_cnt
;
3491 swstats
->mem_allocated
= mem_alloc_cnt
;
3492 swstats
->mem_freed
= mem_free_cnt
;
3493 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3495 /* SXE-002: Configure link and activity LED to turn it off */
3496 subid
= sp
->pdev
->subsystem_device
;
3497 if (((subid
& 0xFF) >= 0x07) &&
3498 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3499 val64
= readq(&bar0
->gpio_control
);
3500 val64
|= 0x0000800000000000ULL
;
3501 writeq(val64
, &bar0
->gpio_control
);
3502 val64
= 0x0411040400000000ULL
;
3503 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3507 * Clear spurious ECC interrupts that would have occurred on
3508 * XFRAME II cards after reset.
3510 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3511 val64
= readq(&bar0
->pcc_err_reg
);
3512 writeq(val64
, &bar0
->pcc_err_reg
);
3515 sp
->device_enabled_once
= false;
3519 * s2io_set_swapper - to set the swapper controle on the card
3520 * @sp : private member of the device structure,
3521 * pointer to the s2io_nic structure.
3522 * Description: Function to set the swapper control on the card
3523 * correctly depending on the 'endianness' of the system.
3525 * SUCCESS on success and FAILURE on failure.
3528 static int s2io_set_swapper(struct s2io_nic
*sp
)
3530 struct net_device
*dev
= sp
->dev
;
3531 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3532 u64 val64
, valt
, valr
;
3535 * Set proper endian settings and verify the same by reading
3536 * the PIF Feed-back register.
3539 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3540 if (val64
!= 0x0123456789ABCDEFULL
) {
3542 static const u64 value
[] = {
3543 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3544 0x8100008181000081ULL
, /* FE=1, SE=0 */
3545 0x4200004242000042ULL
, /* FE=0, SE=1 */
3550 writeq(value
[i
], &bar0
->swapper_ctrl
);
3551 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3552 if (val64
== 0x0123456789ABCDEFULL
)
3557 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3558 "feedback read %llx\n",
3559 dev
->name
, (unsigned long long)val64
);
3564 valr
= readq(&bar0
->swapper_ctrl
);
3567 valt
= 0x0123456789ABCDEFULL
;
3568 writeq(valt
, &bar0
->xmsi_address
);
3569 val64
= readq(&bar0
->xmsi_address
);
3571 if (val64
!= valt
) {
3573 static const u64 value
[] = {
3574 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3575 0x0081810000818100ULL
, /* FE=1, SE=0 */
3576 0x0042420000424200ULL
, /* FE=0, SE=1 */
3581 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3582 writeq(valt
, &bar0
->xmsi_address
);
3583 val64
= readq(&bar0
->xmsi_address
);
3589 unsigned long long x
= val64
;
3591 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3595 val64
= readq(&bar0
->swapper_ctrl
);
3596 val64
&= 0xFFFF000000000000ULL
;
3600 * The device by default set to a big endian format, so a
3601 * big endian driver need not set anything.
3603 val64
|= (SWAPPER_CTRL_TXP_FE
|
3604 SWAPPER_CTRL_TXP_SE
|
3605 SWAPPER_CTRL_TXD_R_FE
|
3606 SWAPPER_CTRL_TXD_W_FE
|
3607 SWAPPER_CTRL_TXF_R_FE
|
3608 SWAPPER_CTRL_RXD_R_FE
|
3609 SWAPPER_CTRL_RXD_W_FE
|
3610 SWAPPER_CTRL_RXF_W_FE
|
3611 SWAPPER_CTRL_XMSI_FE
|
3612 SWAPPER_CTRL_STATS_FE
|
3613 SWAPPER_CTRL_STATS_SE
);
3614 if (sp
->config
.intr_type
== INTA
)
3615 val64
|= SWAPPER_CTRL_XMSI_SE
;
3616 writeq(val64
, &bar0
->swapper_ctrl
);
3619 * Initially we enable all bits to make it accessible by the
3620 * driver, then we selectively enable only those bits that
3623 val64
|= (SWAPPER_CTRL_TXP_FE
|
3624 SWAPPER_CTRL_TXP_SE
|
3625 SWAPPER_CTRL_TXD_R_FE
|
3626 SWAPPER_CTRL_TXD_R_SE
|
3627 SWAPPER_CTRL_TXD_W_FE
|
3628 SWAPPER_CTRL_TXD_W_SE
|
3629 SWAPPER_CTRL_TXF_R_FE
|
3630 SWAPPER_CTRL_RXD_R_FE
|
3631 SWAPPER_CTRL_RXD_R_SE
|
3632 SWAPPER_CTRL_RXD_W_FE
|
3633 SWAPPER_CTRL_RXD_W_SE
|
3634 SWAPPER_CTRL_RXF_W_FE
|
3635 SWAPPER_CTRL_XMSI_FE
|
3636 SWAPPER_CTRL_STATS_FE
|
3637 SWAPPER_CTRL_STATS_SE
);
3638 if (sp
->config
.intr_type
== INTA
)
3639 val64
|= SWAPPER_CTRL_XMSI_SE
;
3640 writeq(val64
, &bar0
->swapper_ctrl
);
3642 val64
= readq(&bar0
->swapper_ctrl
);
3645 * Verifying if endian settings are accurate by reading a
3646 * feedback register.
3648 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3649 if (val64
!= 0x0123456789ABCDEFULL
) {
3650 /* Endian settings are incorrect, calls for another dekko. */
3652 "%s: Endian settings are wrong, feedback read %llx\n",
3653 dev
->name
, (unsigned long long)val64
);
3660 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3662 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3664 int ret
= 0, cnt
= 0;
3667 val64
= readq(&bar0
->xmsi_access
);
3668 if (!(val64
& s2BIT(15)))
3674 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3681 static void restore_xmsi_data(struct s2io_nic
*nic
)
3683 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3687 if (nic
->device_type
== XFRAME_I_DEVICE
)
3690 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3691 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3692 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3693 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3694 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3695 writeq(val64
, &bar0
->xmsi_access
);
3696 if (wait_for_msix_trans(nic
, msix_index
)) {
3697 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3698 __func__
, msix_index
);
3704 static void store_xmsi_data(struct s2io_nic
*nic
)
3706 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3707 u64 val64
, addr
, data
;
3710 if (nic
->device_type
== XFRAME_I_DEVICE
)
3713 /* Store and display */
3714 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3715 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3716 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3717 writeq(val64
, &bar0
->xmsi_access
);
3718 if (wait_for_msix_trans(nic
, msix_index
)) {
3719 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3720 __func__
, msix_index
);
3723 addr
= readq(&bar0
->xmsi_address
);
3724 data
= readq(&bar0
->xmsi_data
);
3726 nic
->msix_info
[i
].addr
= addr
;
3727 nic
->msix_info
[i
].data
= data
;
3732 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3734 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3736 u16 msi_control
; /* Temp variable */
3737 int ret
, i
, j
, msix_indx
= 1;
3739 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3740 struct swStat
*swstats
= &stats
->sw_stat
;
3742 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3743 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3744 if (!nic
->entries
) {
3745 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3747 swstats
->mem_alloc_fail_cnt
++;
3750 swstats
->mem_allocated
+= size
;
3752 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3753 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3754 if (!nic
->s2io_entries
) {
3755 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3757 swstats
->mem_alloc_fail_cnt
++;
3758 kfree(nic
->entries
);
3760 += (nic
->num_entries
* sizeof(struct msix_entry
));
3763 swstats
->mem_allocated
+= size
;
3765 nic
->entries
[0].entry
= 0;
3766 nic
->s2io_entries
[0].entry
= 0;
3767 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3768 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3769 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3771 for (i
= 1; i
< nic
->num_entries
; i
++) {
3772 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3773 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3774 nic
->s2io_entries
[i
].arg
= NULL
;
3775 nic
->s2io_entries
[i
].in_use
= 0;
3778 rx_mat
= readq(&bar0
->rx_mat
);
3779 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3780 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3781 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3782 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3783 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3786 writeq(rx_mat
, &bar0
->rx_mat
);
3787 readq(&bar0
->rx_mat
);
3789 ret
= pci_enable_msix_range(nic
->pdev
, nic
->entries
,
3790 nic
->num_entries
, nic
->num_entries
);
3791 /* We fail init if error or we get less vectors than min required */
3793 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3794 kfree(nic
->entries
);
3795 swstats
->mem_freed
+= nic
->num_entries
*
3796 sizeof(struct msix_entry
);
3797 kfree(nic
->s2io_entries
);
3798 swstats
->mem_freed
+= nic
->num_entries
*
3799 sizeof(struct s2io_msix_entry
);
3800 nic
->entries
= NULL
;
3801 nic
->s2io_entries
= NULL
;
3806 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807 * in the herc NIC. (Temp change, needs to be removed later)
3809 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3810 msi_control
|= 0x1; /* Enable MSI */
3811 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3819 struct s2io_nic
*sp
= dev_id
;
3821 sp
->msi_detected
= 1;
3822 wake_up(&sp
->msi_wait
);
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic
*sp
)
3830 struct pci_dev
*pdev
= sp
->pdev
;
3831 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3835 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3838 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3839 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3843 init_waitqueue_head(&sp
->msi_wait
);
3844 sp
->msi_detected
= 0;
3846 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3847 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3848 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3849 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3850 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3852 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3854 if (!sp
->msi_detected
) {
3855 /* MSI(X) test failed, go back to INTx mode */
3856 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3857 "using MSI(X) during test\n",
3858 sp
->dev
->name
, pci_name(pdev
));
3863 free_irq(sp
->entries
[1].vector
, sp
);
3865 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3870 static void remove_msix_isr(struct s2io_nic
*sp
)
3875 for (i
= 0; i
< sp
->num_entries
; i
++) {
3876 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3877 int vector
= sp
->entries
[i
].vector
;
3878 void *arg
= sp
->s2io_entries
[i
].arg
;
3879 free_irq(vector
, arg
);
3884 kfree(sp
->s2io_entries
);
3886 sp
->s2io_entries
= NULL
;
3888 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3889 msi_control
&= 0xFFFE; /* Disable MSI */
3890 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3892 pci_disable_msix(sp
->pdev
);
3895 static void remove_inta_isr(struct s2io_nic
*sp
)
3897 free_irq(sp
->pdev
->irq
, sp
->dev
);
3900 /* ********************************************************* *
3901 * Functions defined below concern the OS part of the driver *
3902 * ********************************************************* */
3905 * s2io_open - open entry point of the driver
3906 * @dev : pointer to the device structure.
3908 * This function is the open entry point of the driver. It mainly calls a
3909 * function to allocate Rx buffers and inserts them into the buffer
3910 * descriptors and then enables the Rx part of the NIC.
3912 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3916 static int s2io_open(struct net_device
*dev
)
3918 struct s2io_nic
*sp
= netdev_priv(dev
);
3919 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3923 * Make sure you have link off by default every time
3924 * Nic is initialized
3926 netif_carrier_off(dev
);
3927 sp
->last_link_state
= 0;
3929 /* Initialize H/W and enable interrupts */
3930 err
= s2io_card_up(sp
);
3932 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3934 goto hw_init_failed
;
3937 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3938 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3941 goto hw_init_failed
;
3943 s2io_start_all_tx_queue(sp
);
3947 if (sp
->config
.intr_type
== MSI_X
) {
3950 swstats
->mem_freed
+= sp
->num_entries
*
3951 sizeof(struct msix_entry
);
3953 if (sp
->s2io_entries
) {
3954 kfree(sp
->s2io_entries
);
3955 swstats
->mem_freed
+= sp
->num_entries
*
3956 sizeof(struct s2io_msix_entry
);
3963 * s2io_close -close entry point of the driver
3964 * @dev : device pointer.
3966 * This is the stop entry point of the driver. It needs to undo exactly
3967 * whatever was done by the open entry point,thus it's usually referred to
3968 * as the close function.Among other things this function mainly stops the
3969 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3971 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3975 static int s2io_close(struct net_device
*dev
)
3977 struct s2io_nic
*sp
= netdev_priv(dev
);
3978 struct config_param
*config
= &sp
->config
;
3982 /* Return if the device is already closed *
3983 * Can happen when s2io_card_up failed in change_mtu *
3985 if (!is_s2io_card_up(sp
))
3988 s2io_stop_all_tx_queue(sp
);
3989 /* delete all populated mac entries */
3990 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3991 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3992 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3993 do_s2io_delete_unicast_mc(sp
, tmp64
);
4002 * s2io_xmit - Tx entry point of te driver
4003 * @skb : the socket buffer containing the Tx data.
4004 * @dev : device pointer.
4006 * This function is the Tx entry point of the driver. S2IO NIC supports
4007 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4008 * NOTE: when device can't queue the pkt,just the trans_start variable will
4011 * 0 on success & 1 on failure.
4014 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4016 struct s2io_nic
*sp
= netdev_priv(dev
);
4017 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4020 struct TxFIFO_element __iomem
*tx_fifo
;
4021 unsigned long flags
= 0;
4023 struct fifo_info
*fifo
= NULL
;
4025 int enable_per_list_interrupt
= 0;
4026 struct config_param
*config
= &sp
->config
;
4027 struct mac_info
*mac_control
= &sp
->mac_control
;
4028 struct stat_block
*stats
= mac_control
->stats_info
;
4029 struct swStat
*swstats
= &stats
->sw_stat
;
4031 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4033 if (unlikely(skb
->len
<= 0)) {
4034 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4035 dev_kfree_skb_any(skb
);
4036 return NETDEV_TX_OK
;
4039 if (!is_s2io_card_up(sp
)) {
4040 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4042 dev_kfree_skb_any(skb
);
4043 return NETDEV_TX_OK
;
4047 if (skb_vlan_tag_present(skb
))
4048 vlan_tag
= skb_vlan_tag_get(skb
);
4049 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4050 if (skb
->protocol
== htons(ETH_P_IP
)) {
4055 if (!ip_is_fragment(ip
)) {
4056 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4059 if (ip
->protocol
== IPPROTO_TCP
) {
4060 queue_len
= sp
->total_tcp_fifos
;
4061 queue
= (ntohs(th
->source
) +
4063 sp
->fifo_selector
[queue_len
- 1];
4064 if (queue
>= queue_len
)
4065 queue
= queue_len
- 1;
4066 } else if (ip
->protocol
== IPPROTO_UDP
) {
4067 queue_len
= sp
->total_udp_fifos
;
4068 queue
= (ntohs(th
->source
) +
4070 sp
->fifo_selector
[queue_len
- 1];
4071 if (queue
>= queue_len
)
4072 queue
= queue_len
- 1;
4073 queue
+= sp
->udp_fifo_idx
;
4074 if (skb
->len
> 1024)
4075 enable_per_list_interrupt
= 1;
4079 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4080 /* get fifo number based on skb->priority value */
4081 queue
= config
->fifo_mapping
4082 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4083 fifo
= &mac_control
->fifos
[queue
];
4085 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4087 if (sp
->config
.multiq
) {
4088 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4089 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4090 return NETDEV_TX_BUSY
;
4092 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4093 if (netif_queue_stopped(dev
)) {
4094 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4095 return NETDEV_TX_BUSY
;
4099 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4100 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4101 txdp
= fifo
->list_info
[put_off
].list_virt_addr
;
4103 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4104 /* Avoid "put" pointer going beyond "get" pointer */
4105 if (txdp
->Host_Control
||
4106 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4107 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4108 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4109 dev_kfree_skb_any(skb
);
4110 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4111 return NETDEV_TX_OK
;
4114 offload_type
= s2io_offload_type(skb
);
4115 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4116 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4117 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4119 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4120 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4124 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4125 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4126 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4127 if (enable_per_list_interrupt
)
4128 if (put_off
& (queue_len
>> 5))
4129 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4131 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4132 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4135 frg_len
= skb_headlen(skb
);
4136 if (offload_type
== SKB_GSO_UDP
) {
4139 ufo_size
= s2io_udp_mss(skb
);
4141 txdp
->Control_1
|= TXD_UFO_EN
;
4142 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4143 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4145 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4146 fifo
->ufo_in_band_v
[put_off
] =
4147 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4149 fifo
->ufo_in_band_v
[put_off
] =
4150 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4152 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4153 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4154 fifo
->ufo_in_band_v
,
4157 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4158 goto pci_map_failed
;
4162 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4163 frg_len
, PCI_DMA_TODEVICE
);
4164 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4165 goto pci_map_failed
;
4167 txdp
->Host_Control
= (unsigned long)skb
;
4168 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4169 if (offload_type
== SKB_GSO_UDP
)
4170 txdp
->Control_1
|= TXD_UFO_EN
;
4172 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4173 /* For fragmented SKB. */
4174 for (i
= 0; i
< frg_cnt
; i
++) {
4175 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4176 /* A '0' length fragment will be ignored */
4177 if (!skb_frag_size(frag
))
4180 txdp
->Buffer_Pointer
= (u64
)skb_frag_dma_map(&sp
->pdev
->dev
,
4182 skb_frag_size(frag
),
4184 txdp
->Control_1
= TXD_BUFFER0_SIZE(skb_frag_size(frag
));
4185 if (offload_type
== SKB_GSO_UDP
)
4186 txdp
->Control_1
|= TXD_UFO_EN
;
4188 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4190 if (offload_type
== SKB_GSO_UDP
)
4191 frg_cnt
++; /* as Txd0 was used for inband header */
4193 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4194 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4195 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4197 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4200 val64
|= TX_FIFO_SPECIAL_FUNC
;
4202 writeq(val64
, &tx_fifo
->List_Control
);
4207 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4209 fifo
->tx_curr_put_info
.offset
= put_off
;
4211 /* Avoid "put" pointer going beyond "get" pointer */
4212 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4213 swstats
->fifo_full_cnt
++;
4215 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4217 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4219 swstats
->mem_allocated
+= skb
->truesize
;
4220 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4222 if (sp
->config
.intr_type
== MSI_X
)
4223 tx_intr_handler(fifo
);
4225 return NETDEV_TX_OK
;
4228 swstats
->pci_map_fail_cnt
++;
4229 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4230 swstats
->mem_freed
+= skb
->truesize
;
4231 dev_kfree_skb_any(skb
);
4232 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4233 return NETDEV_TX_OK
;
4237 s2io_alarm_handle(unsigned long data
)
4239 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4240 struct net_device
*dev
= sp
->dev
;
4242 s2io_handle_errors(dev
);
4243 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4246 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4248 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4249 struct s2io_nic
*sp
= ring
->nic
;
4250 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4252 if (unlikely(!is_s2io_card_up(sp
)))
4255 if (sp
->config
.napi
) {
4256 u8 __iomem
*addr
= NULL
;
4259 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4260 addr
+= (7 - ring
->ring_no
);
4261 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4264 napi_schedule(&ring
->napi
);
4266 rx_intr_handler(ring
, 0);
4267 s2io_chk_rx_buffers(sp
, ring
);
4273 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4276 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4277 struct s2io_nic
*sp
= fifos
->nic
;
4278 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4279 struct config_param
*config
= &sp
->config
;
4282 if (unlikely(!is_s2io_card_up(sp
)))
4285 reason
= readq(&bar0
->general_int_status
);
4286 if (unlikely(reason
== S2IO_MINUS_ONE
))
4287 /* Nothing much can be done. Get out */
4290 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4291 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4293 if (reason
& GEN_INTR_TXPIC
)
4294 s2io_txpic_intr_handle(sp
);
4296 if (reason
& GEN_INTR_TXTRAFFIC
)
4297 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4299 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4300 tx_intr_handler(&fifos
[i
]);
4302 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4303 readl(&bar0
->general_int_status
);
4306 /* The interrupt was not raised by us */
4310 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4312 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4315 val64
= readq(&bar0
->pic_int_status
);
4316 if (val64
& PIC_INT_GPIO
) {
4317 val64
= readq(&bar0
->gpio_int_reg
);
4318 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4319 (val64
& GPIO_INT_REG_LINK_UP
)) {
4321 * This is unstable state so clear both up/down
4322 * interrupt and adapter to re-evaluate the link state.
4324 val64
|= GPIO_INT_REG_LINK_DOWN
;
4325 val64
|= GPIO_INT_REG_LINK_UP
;
4326 writeq(val64
, &bar0
->gpio_int_reg
);
4327 val64
= readq(&bar0
->gpio_int_mask
);
4328 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4329 GPIO_INT_MASK_LINK_DOWN
);
4330 writeq(val64
, &bar0
->gpio_int_mask
);
4331 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4332 val64
= readq(&bar0
->adapter_status
);
4333 /* Enable Adapter */
4334 val64
= readq(&bar0
->adapter_control
);
4335 val64
|= ADAPTER_CNTL_EN
;
4336 writeq(val64
, &bar0
->adapter_control
);
4337 val64
|= ADAPTER_LED_ON
;
4338 writeq(val64
, &bar0
->adapter_control
);
4339 if (!sp
->device_enabled_once
)
4340 sp
->device_enabled_once
= 1;
4342 s2io_link(sp
, LINK_UP
);
4344 * unmask link down interrupt and mask link-up
4347 val64
= readq(&bar0
->gpio_int_mask
);
4348 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4349 val64
|= GPIO_INT_MASK_LINK_UP
;
4350 writeq(val64
, &bar0
->gpio_int_mask
);
4352 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4353 val64
= readq(&bar0
->adapter_status
);
4354 s2io_link(sp
, LINK_DOWN
);
4355 /* Link is down so unmaks link up interrupt */
4356 val64
= readq(&bar0
->gpio_int_mask
);
4357 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4358 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4359 writeq(val64
, &bar0
->gpio_int_mask
);
4362 val64
= readq(&bar0
->adapter_control
);
4363 val64
= val64
& (~ADAPTER_LED_ON
);
4364 writeq(val64
, &bar0
->adapter_control
);
4367 val64
= readq(&bar0
->gpio_int_mask
);
4371 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4372 * @value: alarm bits
4373 * @addr: address value
4374 * @cnt: counter variable
4375 * Description: Check for alarm and increment the counter
4377 * 1 - if alarm bit set
4378 * 0 - if alarm bit is not set
4380 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4381 unsigned long long *cnt
)
4384 val64
= readq(addr
);
4385 if (val64
& value
) {
4386 writeq(val64
, addr
);
4395 * s2io_handle_errors - Xframe error indication handler
4396 * @nic: device private variable
4397 * Description: Handle alarms such as loss of link, single or
4398 * double ECC errors, critical and serious errors.
4402 static void s2io_handle_errors(void *dev_id
)
4404 struct net_device
*dev
= (struct net_device
*)dev_id
;
4405 struct s2io_nic
*sp
= netdev_priv(dev
);
4406 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4407 u64 temp64
= 0, val64
= 0;
4410 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4411 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4413 if (!is_s2io_card_up(sp
))
4416 if (pci_channel_offline(sp
->pdev
))
4419 memset(&sw_stat
->ring_full_cnt
, 0,
4420 sizeof(sw_stat
->ring_full_cnt
));
4422 /* Handling the XPAK counters update */
4423 if (stats
->xpak_timer_count
< 72000) {
4424 /* waiting for an hour */
4425 stats
->xpak_timer_count
++;
4427 s2io_updt_xpak_counter(dev
);
4428 /* reset the count to zero */
4429 stats
->xpak_timer_count
= 0;
4432 /* Handling link status change error Intr */
4433 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4434 val64
= readq(&bar0
->mac_rmac_err_reg
);
4435 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4436 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4437 schedule_work(&sp
->set_link_task
);
4440 /* In case of a serious error, the device will be Reset. */
4441 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4442 &sw_stat
->serious_err_cnt
))
4445 /* Check for data parity error */
4446 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4447 &sw_stat
->parity_err_cnt
))
4450 /* Check for ring full counter */
4451 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4452 val64
= readq(&bar0
->ring_bump_counter1
);
4453 for (i
= 0; i
< 4; i
++) {
4454 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4455 temp64
>>= 64 - ((i
+1)*16);
4456 sw_stat
->ring_full_cnt
[i
] += temp64
;
4459 val64
= readq(&bar0
->ring_bump_counter2
);
4460 for (i
= 0; i
< 4; i
++) {
4461 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4462 temp64
>>= 64 - ((i
+1)*16);
4463 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4467 val64
= readq(&bar0
->txdma_int_status
);
4468 /*check for pfc_err*/
4469 if (val64
& TXDMA_PFC_INT
) {
4470 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4471 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4474 &sw_stat
->pfc_err_cnt
))
4476 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4478 &sw_stat
->pfc_err_cnt
);
4481 /*check for tda_err*/
4482 if (val64
& TXDMA_TDA_INT
) {
4483 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4487 &sw_stat
->tda_err_cnt
))
4489 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4491 &sw_stat
->tda_err_cnt
);
4493 /*check for pcc_err*/
4494 if (val64
& TXDMA_PCC_INT
) {
4495 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4496 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4497 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4498 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4501 &sw_stat
->pcc_err_cnt
))
4503 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4505 &sw_stat
->pcc_err_cnt
);
4508 /*check for tti_err*/
4509 if (val64
& TXDMA_TTI_INT
) {
4510 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4512 &sw_stat
->tti_err_cnt
))
4514 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4516 &sw_stat
->tti_err_cnt
);
4519 /*check for lso_err*/
4520 if (val64
& TXDMA_LSO_INT
) {
4521 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4522 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4524 &sw_stat
->lso_err_cnt
))
4526 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4528 &sw_stat
->lso_err_cnt
);
4531 /*check for tpa_err*/
4532 if (val64
& TXDMA_TPA_INT
) {
4533 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4535 &sw_stat
->tpa_err_cnt
))
4537 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4539 &sw_stat
->tpa_err_cnt
);
4542 /*check for sm_err*/
4543 if (val64
& TXDMA_SM_INT
) {
4544 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4546 &sw_stat
->sm_err_cnt
))
4550 val64
= readq(&bar0
->mac_int_status
);
4551 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4552 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4553 &bar0
->mac_tmac_err_reg
,
4554 &sw_stat
->mac_tmac_err_cnt
))
4556 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4557 TMAC_DESC_ECC_SG_ERR
|
4558 TMAC_DESC_ECC_DB_ERR
,
4559 &bar0
->mac_tmac_err_reg
,
4560 &sw_stat
->mac_tmac_err_cnt
);
4563 val64
= readq(&bar0
->xgxs_int_status
);
4564 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4565 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4566 &bar0
->xgxs_txgxs_err_reg
,
4567 &sw_stat
->xgxs_txgxs_err_cnt
))
4569 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4570 &bar0
->xgxs_txgxs_err_reg
,
4571 &sw_stat
->xgxs_txgxs_err_cnt
);
4574 val64
= readq(&bar0
->rxdma_int_status
);
4575 if (val64
& RXDMA_INT_RC_INT_M
) {
4576 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4578 RC_PRCn_SM_ERR_ALARM
|
4579 RC_FTC_SM_ERR_ALARM
,
4581 &sw_stat
->rc_err_cnt
))
4583 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4585 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4586 &sw_stat
->rc_err_cnt
);
4587 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4590 &bar0
->prc_pcix_err_reg
,
4591 &sw_stat
->prc_pcix_err_cnt
))
4593 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4596 &bar0
->prc_pcix_err_reg
,
4597 &sw_stat
->prc_pcix_err_cnt
);
4600 if (val64
& RXDMA_INT_RPA_INT_M
) {
4601 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4603 &sw_stat
->rpa_err_cnt
))
4605 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4607 &sw_stat
->rpa_err_cnt
);
4610 if (val64
& RXDMA_INT_RDA_INT_M
) {
4611 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4612 RDA_FRM_ECC_DB_N_AERR
|
4615 RDA_RXD_ECC_DB_SERR
,
4617 &sw_stat
->rda_err_cnt
))
4619 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4620 RDA_FRM_ECC_SG_ERR
|
4624 &sw_stat
->rda_err_cnt
);
4627 if (val64
& RXDMA_INT_RTI_INT_M
) {
4628 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4630 &sw_stat
->rti_err_cnt
))
4632 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4634 &sw_stat
->rti_err_cnt
);
4637 val64
= readq(&bar0
->mac_int_status
);
4638 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4639 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4640 &bar0
->mac_rmac_err_reg
,
4641 &sw_stat
->mac_rmac_err_cnt
))
4643 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4644 RMAC_SINGLE_ECC_ERR
|
4645 RMAC_DOUBLE_ECC_ERR
,
4646 &bar0
->mac_rmac_err_reg
,
4647 &sw_stat
->mac_rmac_err_cnt
);
4650 val64
= readq(&bar0
->xgxs_int_status
);
4651 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4652 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4653 &bar0
->xgxs_rxgxs_err_reg
,
4654 &sw_stat
->xgxs_rxgxs_err_cnt
))
4658 val64
= readq(&bar0
->mc_int_status
);
4659 if (val64
& MC_INT_STATUS_MC_INT
) {
4660 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4662 &sw_stat
->mc_err_cnt
))
4665 /* Handling Ecc errors */
4666 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4667 writeq(val64
, &bar0
->mc_err_reg
);
4668 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4669 sw_stat
->double_ecc_errs
++;
4670 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4672 * Reset XframeI only if critical error
4675 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4676 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4680 sw_stat
->single_ecc_errs
++;
4686 s2io_stop_all_tx_queue(sp
);
4687 schedule_work(&sp
->rst_timer_task
);
4688 sw_stat
->soft_reset_cnt
++;
4692 * s2io_isr - ISR handler of the device .
4693 * @irq: the irq of the device.
4694 * @dev_id: a void pointer to the dev structure of the NIC.
4695 * Description: This function is the ISR handler of the device. It
4696 * identifies the reason for the interrupt and calls the relevant
4697 * service routines. As a contongency measure, this ISR allocates the
4698 * recv buffers, if their numbers are below the panic value which is
4699 * presently set to 25% of the original number of rcv buffers allocated.
4701 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4702 * IRQ_NONE: will be returned if interrupt is not from our device
4704 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4706 struct net_device
*dev
= (struct net_device
*)dev_id
;
4707 struct s2io_nic
*sp
= netdev_priv(dev
);
4708 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4711 struct mac_info
*mac_control
;
4712 struct config_param
*config
;
4714 /* Pretend we handled any irq's from a disconnected card */
4715 if (pci_channel_offline(sp
->pdev
))
4718 if (!is_s2io_card_up(sp
))
4721 config
= &sp
->config
;
4722 mac_control
= &sp
->mac_control
;
4725 * Identify the cause for interrupt and call the appropriate
4726 * interrupt handler. Causes for the interrupt could be;
4731 reason
= readq(&bar0
->general_int_status
);
4733 if (unlikely(reason
== S2IO_MINUS_ONE
))
4734 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4737 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4738 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4741 if (reason
& GEN_INTR_RXTRAFFIC
) {
4742 napi_schedule(&sp
->napi
);
4743 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4744 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4745 readl(&bar0
->rx_traffic_int
);
4749 * rx_traffic_int reg is an R1 register, writing all 1's
4750 * will ensure that the actual interrupt causing bit
4751 * get's cleared and hence a read can be avoided.
4753 if (reason
& GEN_INTR_RXTRAFFIC
)
4754 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4756 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4757 struct ring_info
*ring
= &mac_control
->rings
[i
];
4759 rx_intr_handler(ring
, 0);
4764 * tx_traffic_int reg is an R1 register, writing all 1's
4765 * will ensure that the actual interrupt causing bit get's
4766 * cleared and hence a read can be avoided.
4768 if (reason
& GEN_INTR_TXTRAFFIC
)
4769 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4771 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4772 tx_intr_handler(&mac_control
->fifos
[i
]);
4774 if (reason
& GEN_INTR_TXPIC
)
4775 s2io_txpic_intr_handle(sp
);
4778 * Reallocate the buffers from the interrupt handler itself.
4780 if (!config
->napi
) {
4781 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4782 struct ring_info
*ring
= &mac_control
->rings
[i
];
4784 s2io_chk_rx_buffers(sp
, ring
);
4787 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4788 readl(&bar0
->general_int_status
);
4792 } else if (!reason
) {
4793 /* The interrupt was not raised by us */
4803 static void s2io_updt_stats(struct s2io_nic
*sp
)
4805 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4809 if (is_s2io_card_up(sp
)) {
4810 /* Apprx 30us on a 133 MHz bus */
4811 val64
= SET_UPDT_CLICKS(10) |
4812 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4813 writeq(val64
, &bar0
->stat_cfg
);
4816 val64
= readq(&bar0
->stat_cfg
);
4817 if (!(val64
& s2BIT(0)))
4821 break; /* Updt failed */
4827 * s2io_get_stats - Updates the device statistics structure.
4828 * @dev : pointer to the device structure.
4830 * This function updates the device statistics structure in the s2io_nic
4831 * structure and returns a pointer to the same.
4833 * pointer to the updated net_device_stats structure.
4835 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4837 struct s2io_nic
*sp
= netdev_priv(dev
);
4838 struct mac_info
*mac_control
= &sp
->mac_control
;
4839 struct stat_block
*stats
= mac_control
->stats_info
;
4842 /* Configure Stats for immediate updt */
4843 s2io_updt_stats(sp
);
4845 /* A device reset will cause the on-adapter statistics to be zero'ed.
4846 * This can be done while running by changing the MTU. To prevent the
4847 * system from having the stats zero'ed, the driver keeps a copy of the
4848 * last update to the system (which is also zero'ed on reset). This
4849 * enables the driver to accurately know the delta between the last
4850 * update and the current update.
4852 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4853 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4854 sp
->stats
.rx_packets
+= delta
;
4855 dev
->stats
.rx_packets
+= delta
;
4857 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4858 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4859 sp
->stats
.tx_packets
+= delta
;
4860 dev
->stats
.tx_packets
+= delta
;
4862 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4863 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4864 sp
->stats
.rx_bytes
+= delta
;
4865 dev
->stats
.rx_bytes
+= delta
;
4867 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4868 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4869 sp
->stats
.tx_bytes
+= delta
;
4870 dev
->stats
.tx_bytes
+= delta
;
4872 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4873 sp
->stats
.rx_errors
+= delta
;
4874 dev
->stats
.rx_errors
+= delta
;
4876 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4877 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4878 sp
->stats
.tx_errors
+= delta
;
4879 dev
->stats
.tx_errors
+= delta
;
4881 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4882 sp
->stats
.rx_dropped
+= delta
;
4883 dev
->stats
.rx_dropped
+= delta
;
4885 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4886 sp
->stats
.tx_dropped
+= delta
;
4887 dev
->stats
.tx_dropped
+= delta
;
4889 /* The adapter MAC interprets pause frames as multicast packets, but
4890 * does not pass them up. This erroneously increases the multicast
4891 * packet count and needs to be deducted when the multicast frame count
4894 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4895 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4896 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4897 delta
-= sp
->stats
.multicast
;
4898 sp
->stats
.multicast
+= delta
;
4899 dev
->stats
.multicast
+= delta
;
4901 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4902 le32_to_cpu(stats
->rmac_usized_frms
)) +
4903 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4904 sp
->stats
.rx_length_errors
+= delta
;
4905 dev
->stats
.rx_length_errors
+= delta
;
4907 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4908 sp
->stats
.rx_crc_errors
+= delta
;
4909 dev
->stats
.rx_crc_errors
+= delta
;
4915 * s2io_set_multicast - entry point for multicast address enable/disable.
4916 * @dev : pointer to the device structure
4918 * This function is a driver entry point which gets called by the kernel
4919 * whenever multicast addresses must be enabled/disabled. This also gets
4920 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4921 * determine, if multicast address must be enabled or if promiscuous mode
4922 * is to be disabled etc.
4927 static void s2io_set_multicast(struct net_device
*dev
)
4930 struct netdev_hw_addr
*ha
;
4931 struct s2io_nic
*sp
= netdev_priv(dev
);
4932 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4933 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4935 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4937 struct config_param
*config
= &sp
->config
;
4939 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4940 /* Enable all Multicast addresses */
4941 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4942 &bar0
->rmac_addr_data0_mem
);
4943 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4944 &bar0
->rmac_addr_data1_mem
);
4945 val64
= RMAC_ADDR_CMD_MEM_WE
|
4946 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4947 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4948 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4949 /* Wait till command completes */
4950 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4951 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4955 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4956 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4957 /* Disable all Multicast addresses */
4958 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4959 &bar0
->rmac_addr_data0_mem
);
4960 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4961 &bar0
->rmac_addr_data1_mem
);
4962 val64
= RMAC_ADDR_CMD_MEM_WE
|
4963 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4964 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4965 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4966 /* Wait till command completes */
4967 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4968 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4972 sp
->all_multi_pos
= 0;
4975 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4976 /* Put the NIC into promiscuous mode */
4977 add
= &bar0
->mac_cfg
;
4978 val64
= readq(&bar0
->mac_cfg
);
4979 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4981 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4982 writel((u32
)val64
, add
);
4983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4984 writel((u32
) (val64
>> 32), (add
+ 4));
4986 if (vlan_tag_strip
!= 1) {
4987 val64
= readq(&bar0
->rx_pa_cfg
);
4988 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4989 writeq(val64
, &bar0
->rx_pa_cfg
);
4990 sp
->vlan_strip_flag
= 0;
4993 val64
= readq(&bar0
->mac_cfg
);
4994 sp
->promisc_flg
= 1;
4995 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4997 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4998 /* Remove the NIC from promiscuous mode */
4999 add
= &bar0
->mac_cfg
;
5000 val64
= readq(&bar0
->mac_cfg
);
5001 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5004 writel((u32
)val64
, add
);
5005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5006 writel((u32
) (val64
>> 32), (add
+ 4));
5008 if (vlan_tag_strip
!= 0) {
5009 val64
= readq(&bar0
->rx_pa_cfg
);
5010 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5011 writeq(val64
, &bar0
->rx_pa_cfg
);
5012 sp
->vlan_strip_flag
= 1;
5015 val64
= readq(&bar0
->mac_cfg
);
5016 sp
->promisc_flg
= 0;
5017 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5020 /* Update individual M_CAST address list */
5021 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5022 if (netdev_mc_count(dev
) >
5023 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5025 "%s: No more Rx filters can be added - "
5026 "please enable ALL_MULTI instead\n",
5031 prev_cnt
= sp
->mc_addr_count
;
5032 sp
->mc_addr_count
= netdev_mc_count(dev
);
5034 /* Clear out the previous list of Mc in the H/W. */
5035 for (i
= 0; i
< prev_cnt
; i
++) {
5036 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5037 &bar0
->rmac_addr_data0_mem
);
5038 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5039 &bar0
->rmac_addr_data1_mem
);
5040 val64
= RMAC_ADDR_CMD_MEM_WE
|
5041 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5042 RMAC_ADDR_CMD_MEM_OFFSET
5043 (config
->mc_start_offset
+ i
);
5044 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5046 /* Wait for command completes */
5047 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5048 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5051 "%s: Adding Multicasts failed\n",
5057 /* Create the new Rx filter list and update the same in H/W. */
5059 netdev_for_each_mc_addr(ha
, dev
) {
5061 for (j
= 0; j
< ETH_ALEN
; j
++) {
5062 mac_addr
|= ha
->addr
[j
];
5066 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5067 &bar0
->rmac_addr_data0_mem
);
5068 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5069 &bar0
->rmac_addr_data1_mem
);
5070 val64
= RMAC_ADDR_CMD_MEM_WE
|
5071 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5072 RMAC_ADDR_CMD_MEM_OFFSET
5073 (i
+ config
->mc_start_offset
);
5074 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5076 /* Wait for command completes */
5077 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5078 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5081 "%s: Adding Multicasts failed\n",
5090 /* read from CAM unicast & multicast addresses and store it in
5091 * def_mac_addr structure
5093 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5097 struct config_param
*config
= &sp
->config
;
5099 /* store unicast & multicast mac addresses */
5100 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5101 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5102 /* if read fails disable the entry */
5103 if (mac_addr
== FAILURE
)
5104 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5105 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5109 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5110 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5113 struct config_param
*config
= &sp
->config
;
5114 /* restore unicast mac address */
5115 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5116 do_s2io_prog_unicast(sp
->dev
,
5117 sp
->def_mac_addr
[offset
].mac_addr
);
5119 /* restore multicast mac address */
5120 for (offset
= config
->mc_start_offset
;
5121 offset
< config
->max_mc_addr
; offset
++)
5122 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5125 /* add a multicast MAC address to CAM */
5126 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5130 struct config_param
*config
= &sp
->config
;
5132 for (i
= 0; i
< ETH_ALEN
; i
++) {
5134 mac_addr
|= addr
[i
];
5136 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5139 /* check if the multicast mac already preset in CAM */
5140 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5142 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5143 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5146 if (tmp64
== mac_addr
)
5149 if (i
== config
->max_mc_addr
) {
5151 "CAM full no space left for multicast MAC\n");
5154 /* Update the internal structure with this new mac address */
5155 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5157 return do_s2io_add_mac(sp
, mac_addr
, i
);
5160 /* add MAC address to CAM */
5161 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5164 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5166 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5167 &bar0
->rmac_addr_data0_mem
);
5169 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5170 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5171 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5173 /* Wait till command completes */
5174 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5175 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5177 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5182 /* deletes a specified unicast/multicast mac entry from CAM */
5183 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5186 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5187 struct config_param
*config
= &sp
->config
;
5190 offset
< config
->max_mc_addr
; offset
++) {
5191 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5192 if (tmp64
== addr
) {
5193 /* disable the entry by writing 0xffffffffffffULL */
5194 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5196 /* store the new mac list from CAM */
5197 do_s2io_store_unicast_mc(sp
);
5201 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5202 (unsigned long long)addr
);
5206 /* read mac entries from CAM */
5207 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5209 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5210 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5213 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5214 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5215 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5217 /* Wait till command completes */
5218 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5219 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5221 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5224 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5230 * s2io_set_mac_addr - driver entry point
5233 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5235 struct sockaddr
*addr
= p
;
5237 if (!is_valid_ether_addr(addr
->sa_data
))
5238 return -EADDRNOTAVAIL
;
5240 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5242 /* store the MAC address in CAM */
5243 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5246 * do_s2io_prog_unicast - Programs the Xframe mac address
5247 * @dev : pointer to the device structure.
5248 * @addr: a uchar pointer to the new mac address which is to be set.
5249 * Description : This procedure will program the Xframe to receive
5250 * frames with new Mac Address
5251 * Return value: SUCCESS on success and an appropriate (-)ve integer
5252 * as defined in errno.h file on failure.
5255 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5257 struct s2io_nic
*sp
= netdev_priv(dev
);
5258 register u64 mac_addr
= 0, perm_addr
= 0;
5261 struct config_param
*config
= &sp
->config
;
5264 * Set the new MAC address as the new unicast filter and reflect this
5265 * change on the device address registered with the OS. It will be
5268 for (i
= 0; i
< ETH_ALEN
; i
++) {
5270 mac_addr
|= addr
[i
];
5272 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5275 /* check if the dev_addr is different than perm_addr */
5276 if (mac_addr
== perm_addr
)
5279 /* check if the mac already preset in CAM */
5280 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5281 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5282 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5285 if (tmp64
== mac_addr
) {
5287 "MAC addr:0x%llx already present in CAM\n",
5288 (unsigned long long)mac_addr
);
5292 if (i
== config
->max_mac_addr
) {
5293 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5296 /* Update the internal structure with this new mac address */
5297 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5299 return do_s2io_add_mac(sp
, mac_addr
, i
);
5303 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5304 * @sp : private member of the device structure, which is a pointer to the
5305 * s2io_nic structure.
5306 * @cmd: pointer to the structure with parameters given by ethtool to set
5309 * The function sets different link parameters provided by the user onto
5316 s2io_ethtool_set_link_ksettings(struct net_device
*dev
,
5317 const struct ethtool_link_ksettings
*cmd
)
5319 struct s2io_nic
*sp
= netdev_priv(dev
);
5320 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) ||
5321 (cmd
->base
.speed
!= SPEED_10000
) ||
5322 (cmd
->base
.duplex
!= DUPLEX_FULL
))
5325 s2io_close(sp
->dev
);
5333 * s2io_ethtol_get_link_ksettings - Return link specific information.
5334 * @sp : private member of the device structure, pointer to the
5335 * s2io_nic structure.
5336 * @cmd : pointer to the structure with parameters given by ethtool
5337 * to return link information.
5339 * Returns link specific information like speed, duplex etc.. to ethtool.
5341 * return 0 on success.
5345 s2io_ethtool_get_link_ksettings(struct net_device
*dev
,
5346 struct ethtool_link_ksettings
*cmd
)
5348 struct s2io_nic
*sp
= netdev_priv(dev
);
5350 ethtool_link_ksettings_zero_link_mode(cmd
, supported
);
5351 ethtool_link_ksettings_add_link_mode(cmd
, supported
, 10000baseT_Full
);
5352 ethtool_link_ksettings_add_link_mode(cmd
, supported
, FIBRE
);
5354 ethtool_link_ksettings_zero_link_mode(cmd
, advertising
);
5355 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, 10000baseT_Full
);
5356 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, FIBRE
);
5358 cmd
->base
.port
= PORT_FIBRE
;
5360 if (netif_carrier_ok(sp
->dev
)) {
5361 cmd
->base
.speed
= SPEED_10000
;
5362 cmd
->base
.duplex
= DUPLEX_FULL
;
5364 cmd
->base
.speed
= SPEED_UNKNOWN
;
5365 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
5368 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
5373 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5374 * @sp : private member of the device structure, which is a pointer to the
5375 * s2io_nic structure.
5376 * @info : pointer to the structure with parameters given by ethtool to
5377 * return driver information.
5379 * Returns driver specefic information like name, version etc.. to ethtool.
5384 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5385 struct ethtool_drvinfo
*info
)
5387 struct s2io_nic
*sp
= netdev_priv(dev
);
5389 strlcpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5390 strlcpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5391 strlcpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5395 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5396 * @sp: private member of the device structure, which is a pointer to the
5397 * s2io_nic structure.
5398 * @regs : pointer to the structure with parameters given by ethtool for
5399 * dumping the registers.
5400 * @reg_space: The input argument into which all the registers are dumped.
5402 * Dumps the entire register space of xFrame NIC into the user given
5408 static void s2io_ethtool_gregs(struct net_device
*dev
,
5409 struct ethtool_regs
*regs
, void *space
)
5413 u8
*reg_space
= (u8
*)space
;
5414 struct s2io_nic
*sp
= netdev_priv(dev
);
5416 regs
->len
= XENA_REG_SPACE
;
5417 regs
->version
= sp
->pdev
->subsystem_device
;
5419 for (i
= 0; i
< regs
->len
; i
+= 8) {
5420 reg
= readq(sp
->bar0
+ i
);
5421 memcpy((reg_space
+ i
), ®
, 8);
5426 * s2io_set_led - control NIC led
5428 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5430 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5431 u16 subid
= sp
->pdev
->subsystem_device
;
5434 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5435 ((subid
& 0xFF) >= 0x07)) {
5436 val64
= readq(&bar0
->gpio_control
);
5438 val64
|= GPIO_CTRL_GPIO_0
;
5440 val64
&= ~GPIO_CTRL_GPIO_0
;
5442 writeq(val64
, &bar0
->gpio_control
);
5444 val64
= readq(&bar0
->adapter_control
);
5446 val64
|= ADAPTER_LED_ON
;
5448 val64
&= ~ADAPTER_LED_ON
;
5450 writeq(val64
, &bar0
->adapter_control
);
5456 * s2io_ethtool_set_led - To physically identify the nic on the system.
5457 * @dev : network device
5458 * @state: led setting
5460 * Description: Used to physically identify the NIC on the system.
5461 * The Link LED will blink for a time specified by the user for
5463 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5464 * identification is possible only if it's link is up.
5467 static int s2io_ethtool_set_led(struct net_device
*dev
,
5468 enum ethtool_phys_id_state state
)
5470 struct s2io_nic
*sp
= netdev_priv(dev
);
5471 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5472 u16 subid
= sp
->pdev
->subsystem_device
;
5474 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5475 u64 val64
= readq(&bar0
->adapter_control
);
5476 if (!(val64
& ADAPTER_CNTL_EN
)) {
5477 pr_err("Adapter Link down, cannot blink LED\n");
5483 case ETHTOOL_ID_ACTIVE
:
5484 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5485 return 1; /* cycle on/off once per second */
5488 s2io_set_led(sp
, true);
5491 case ETHTOOL_ID_OFF
:
5492 s2io_set_led(sp
, false);
5495 case ETHTOOL_ID_INACTIVE
:
5496 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5497 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5503 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5504 struct ethtool_ringparam
*ering
)
5506 struct s2io_nic
*sp
= netdev_priv(dev
);
5507 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5509 if (sp
->rxd_mode
== RXD_MODE_1
) {
5510 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5511 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5513 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5514 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5517 ering
->tx_max_pending
= MAX_TX_DESC
;
5519 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5520 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5521 ering
->rx_pending
= rx_desc_count
;
5522 ering
->rx_jumbo_pending
= rx_desc_count
;
5524 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5525 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5526 ering
->tx_pending
= tx_desc_count
;
5527 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5531 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5532 * @sp : private member of the device structure, which is a pointer to the
5533 * s2io_nic structure.
5534 * @ep : pointer to the structure with pause parameters given by ethtool.
5536 * Returns the Pause frame generation and reception capability of the NIC.
5540 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5541 struct ethtool_pauseparam
*ep
)
5544 struct s2io_nic
*sp
= netdev_priv(dev
);
5545 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5547 val64
= readq(&bar0
->rmac_pause_cfg
);
5548 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5549 ep
->tx_pause
= true;
5550 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5551 ep
->rx_pause
= true;
5552 ep
->autoneg
= false;
5556 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5557 * @sp : private member of the device structure, which is a pointer to the
5558 * s2io_nic structure.
5559 * @ep : pointer to the structure with pause parameters given by ethtool.
5561 * It can be used to set or reset Pause frame generation or reception
5562 * support of the NIC.
5564 * int, returns 0 on Success
5567 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5568 struct ethtool_pauseparam
*ep
)
5571 struct s2io_nic
*sp
= netdev_priv(dev
);
5572 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5574 val64
= readq(&bar0
->rmac_pause_cfg
);
5576 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5578 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5580 val64
|= RMAC_PAUSE_RX_ENABLE
;
5582 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5583 writeq(val64
, &bar0
->rmac_pause_cfg
);
5588 * read_eeprom - reads 4 bytes of data from user given offset.
5589 * @sp : private member of the device structure, which is a pointer to the
5590 * s2io_nic structure.
5591 * @off : offset at which the data must be written
5592 * @data : Its an output parameter where the data read at the given
5595 * Will read 4 bytes of data from the user given offset and return the
5597 * NOTE: Will allow to read only part of the EEPROM visible through the
5600 * -1 on failure and 0 on success.
5603 #define S2IO_DEV_ID 5
5604 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5609 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5611 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5612 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5613 I2C_CONTROL_ADDR(off
) |
5614 I2C_CONTROL_BYTE_CNT(0x3) |
5616 I2C_CONTROL_CNTL_START
;
5617 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5619 while (exit_cnt
< 5) {
5620 val64
= readq(&bar0
->i2c_control
);
5621 if (I2C_CONTROL_CNTL_END(val64
)) {
5622 *data
= I2C_CONTROL_GET_DATA(val64
);
5631 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5632 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5633 SPI_CONTROL_BYTECNT(0x3) |
5634 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5635 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5636 val64
|= SPI_CONTROL_REQ
;
5637 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5638 while (exit_cnt
< 5) {
5639 val64
= readq(&bar0
->spi_control
);
5640 if (val64
& SPI_CONTROL_NACK
) {
5643 } else if (val64
& SPI_CONTROL_DONE
) {
5644 *data
= readq(&bar0
->spi_data
);
5657 * write_eeprom - actually writes the relevant part of the data value.
5658 * @sp : private member of the device structure, which is a pointer to the
5659 * s2io_nic structure.
5660 * @off : offset at which the data must be written
5661 * @data : The data that is to be written
5662 * @cnt : Number of bytes of the data that are actually to be written into
5663 * the Eeprom. (max of 3)
5665 * Actually writes the relevant part of the data value into the Eeprom
5666 * through the I2C bus.
5668 * 0 on success, -1 on failure.
5671 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5673 int exit_cnt
= 0, ret
= -1;
5675 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5677 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5678 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5679 I2C_CONTROL_ADDR(off
) |
5680 I2C_CONTROL_BYTE_CNT(cnt
) |
5681 I2C_CONTROL_SET_DATA((u32
)data
) |
5682 I2C_CONTROL_CNTL_START
;
5683 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5685 while (exit_cnt
< 5) {
5686 val64
= readq(&bar0
->i2c_control
);
5687 if (I2C_CONTROL_CNTL_END(val64
)) {
5688 if (!(val64
& I2C_CONTROL_NACK
))
5697 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5698 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5699 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5701 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5702 SPI_CONTROL_BYTECNT(write_cnt
) |
5703 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5704 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5705 val64
|= SPI_CONTROL_REQ
;
5706 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5707 while (exit_cnt
< 5) {
5708 val64
= readq(&bar0
->spi_control
);
5709 if (val64
& SPI_CONTROL_NACK
) {
5712 } else if (val64
& SPI_CONTROL_DONE
) {
5722 static void s2io_vpd_read(struct s2io_nic
*nic
)
5726 int i
= 0, cnt
, len
, fail
= 0;
5727 int vpd_addr
= 0x80;
5728 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5730 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5731 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5734 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5737 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5739 vpd_data
= kmalloc(256, GFP_KERNEL
);
5741 swstats
->mem_alloc_fail_cnt
++;
5744 swstats
->mem_allocated
+= 256;
5746 for (i
= 0; i
< 256; i
+= 4) {
5747 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5748 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5749 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5750 for (cnt
= 0; cnt
< 5; cnt
++) {
5752 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5757 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5761 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5762 (u32
*)&vpd_data
[i
]);
5766 /* read serial number of adapter */
5767 for (cnt
= 0; cnt
< 252; cnt
++) {
5768 if ((vpd_data
[cnt
] == 'S') &&
5769 (vpd_data
[cnt
+1] == 'N')) {
5770 len
= vpd_data
[cnt
+2];
5771 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5772 memcpy(nic
->serial_num
,
5775 memset(nic
->serial_num
+len
,
5777 VPD_STRING_LEN
-len
);
5784 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5786 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5787 nic
->product_name
[len
] = 0;
5790 swstats
->mem_freed
+= 256;
5794 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5795 * @sp : private member of the device structure, which is a pointer to the
5796 * s2io_nic structure.
5797 * @eeprom : pointer to the user level structure provided by ethtool,
5798 * containing all relevant information.
5799 * @data_buf : user defined value to be written into Eeprom.
5800 * Description: Reads the values stored in the Eeprom at given offset
5801 * for a given length. Stores these values int the input argument data
5802 * buffer 'data_buf' and returns these to the caller (ethtool.)
5807 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5808 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5812 struct s2io_nic
*sp
= netdev_priv(dev
);
5814 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5816 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5817 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5819 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5820 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5821 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5825 memcpy((data_buf
+ i
), &valid
, 4);
5831 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5832 * @sp : private member of the device structure, which is a pointer to the
5833 * s2io_nic structure.
5834 * @eeprom : pointer to the user level structure provided by ethtool,
5835 * containing all relevant information.
5836 * @data_buf ; user defined value to be written into Eeprom.
5838 * Tries to write the user provided value in the Eeprom, at the offset
5839 * given by the user.
5841 * 0 on success, -EFAULT on failure.
5844 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5845 struct ethtool_eeprom
*eeprom
,
5848 int len
= eeprom
->len
, cnt
= 0;
5849 u64 valid
= 0, data
;
5850 struct s2io_nic
*sp
= netdev_priv(dev
);
5852 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5854 "ETHTOOL_WRITE_EEPROM Err: "
5855 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5856 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5862 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5864 valid
= (u32
)(data
<< 24);
5868 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5870 "ETHTOOL_WRITE_EEPROM Err: "
5871 "Cannot write into the specified offset\n");
5882 * s2io_register_test - reads and writes into all clock domains.
5883 * @sp : private member of the device structure, which is a pointer to the
5884 * s2io_nic structure.
5885 * @data : variable that returns the result of each of the test conducted b
5888 * Read and write into all clock domains. The NIC has 3 clock domains,
5889 * see that registers in all the three regions are accessible.
5894 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5896 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5897 u64 val64
= 0, exp_val
;
5900 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5901 if (val64
!= 0x123456789abcdefULL
) {
5903 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5906 val64
= readq(&bar0
->rmac_pause_cfg
);
5907 if (val64
!= 0xc000ffff00000000ULL
) {
5909 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5912 val64
= readq(&bar0
->rx_queue_cfg
);
5913 if (sp
->device_type
== XFRAME_II_DEVICE
)
5914 exp_val
= 0x0404040404040404ULL
;
5916 exp_val
= 0x0808080808080808ULL
;
5917 if (val64
!= exp_val
) {
5919 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5922 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5923 if (val64
!= 0x000000001923141EULL
) {
5925 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5928 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5929 writeq(val64
, &bar0
->xmsi_data
);
5930 val64
= readq(&bar0
->xmsi_data
);
5931 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5933 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5936 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5937 writeq(val64
, &bar0
->xmsi_data
);
5938 val64
= readq(&bar0
->xmsi_data
);
5939 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5941 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5949 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5950 * @sp : private member of the device structure, which is a pointer to the
5951 * s2io_nic structure.
5952 * @data:variable that returns the result of each of the test conducted by
5955 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5961 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5964 u64 ret_data
, org_4F0
, org_7F0
;
5965 u8 saved_4F0
= 0, saved_7F0
= 0;
5966 struct net_device
*dev
= sp
->dev
;
5968 /* Test Write Error at offset 0 */
5969 /* Note that SPI interface allows write access to all areas
5970 * of EEPROM. Hence doing all negative testing only for Xframe I.
5972 if (sp
->device_type
== XFRAME_I_DEVICE
)
5973 if (!write_eeprom(sp
, 0, 0, 3))
5976 /* Save current values at offsets 0x4F0 and 0x7F0 */
5977 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5979 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5982 /* Test Write at offset 4f0 */
5983 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5985 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5988 if (ret_data
!= 0x012345) {
5989 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5990 "Data written %llx Data read %llx\n",
5991 dev
->name
, (unsigned long long)0x12345,
5992 (unsigned long long)ret_data
);
5996 /* Reset the EEPROM data go FFFF */
5997 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5999 /* Test Write Request Error at offset 0x7c */
6000 if (sp
->device_type
== XFRAME_I_DEVICE
)
6001 if (!write_eeprom(sp
, 0x07C, 0, 3))
6004 /* Test Write Request at offset 0x7f0 */
6005 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6007 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6010 if (ret_data
!= 0x012345) {
6011 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6012 "Data written %llx Data read %llx\n",
6013 dev
->name
, (unsigned long long)0x12345,
6014 (unsigned long long)ret_data
);
6018 /* Reset the EEPROM data go FFFF */
6019 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6021 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6022 /* Test Write Error at offset 0x80 */
6023 if (!write_eeprom(sp
, 0x080, 0, 3))
6026 /* Test Write Error at offset 0xfc */
6027 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6030 /* Test Write Error at offset 0x100 */
6031 if (!write_eeprom(sp
, 0x100, 0, 3))
6034 /* Test Write Error at offset 4ec */
6035 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6039 /* Restore values at offsets 0x4F0 and 0x7F0 */
6041 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6043 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6050 * s2io_bist_test - invokes the MemBist test of the card .
6051 * @sp : private member of the device structure, which is a pointer to the
6052 * s2io_nic structure.
6053 * @data:variable that returns the result of each of the test conducted by
6056 * This invokes the MemBist test of the card. We give around
6057 * 2 secs time for the Test to complete. If it's still not complete
6058 * within this peiod, we consider that the test failed.
6060 * 0 on success and -1 on failure.
6063 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6066 int cnt
= 0, ret
= -1;
6068 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6069 bist
|= PCI_BIST_START
;
6070 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6073 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6074 if (!(bist
& PCI_BIST_START
)) {
6075 *data
= (bist
& PCI_BIST_CODE_MASK
);
6087 * s2io_link_test - verifies the link state of the nic
6088 * @sp ; private member of the device structure, which is a pointer to the
6089 * s2io_nic structure.
6090 * @data: variable that returns the result of each of the test conducted by
6093 * The function verifies the link state of the NIC and updates the input
6094 * argument 'data' appropriately.
6099 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6101 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6104 val64
= readq(&bar0
->adapter_status
);
6105 if (!(LINK_IS_UP(val64
)))
6114 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6115 * @sp: private member of the device structure, which is a pointer to the
6116 * s2io_nic structure.
6117 * @data: variable that returns the result of each of the test
6118 * conducted by the driver.
6120 * This is one of the offline test that tests the read and write
6121 * access to the RldRam chip on the NIC.
6126 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6128 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6130 int cnt
, iteration
= 0, test_fail
= 0;
6132 val64
= readq(&bar0
->adapter_control
);
6133 val64
&= ~ADAPTER_ECC_EN
;
6134 writeq(val64
, &bar0
->adapter_control
);
6136 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6137 val64
|= MC_RLDRAM_TEST_MODE
;
6138 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6140 val64
= readq(&bar0
->mc_rldram_mrs
);
6141 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6142 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6144 val64
|= MC_RLDRAM_MRS_ENABLE
;
6145 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6147 while (iteration
< 2) {
6148 val64
= 0x55555555aaaa0000ULL
;
6150 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6151 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6153 val64
= 0xaaaa5a5555550000ULL
;
6155 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6156 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6158 val64
= 0x55aaaaaaaa5a0000ULL
;
6160 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6161 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6163 val64
= (u64
) (0x0000003ffffe0100ULL
);
6164 writeq(val64
, &bar0
->mc_rldram_test_add
);
6166 val64
= MC_RLDRAM_TEST_MODE
|
6167 MC_RLDRAM_TEST_WRITE
|
6169 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6171 for (cnt
= 0; cnt
< 5; cnt
++) {
6172 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6173 if (val64
& MC_RLDRAM_TEST_DONE
)
6181 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6182 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6184 for (cnt
= 0; cnt
< 5; cnt
++) {
6185 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6186 if (val64
& MC_RLDRAM_TEST_DONE
)
6194 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6195 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6203 /* Bring the adapter out of test mode */
6204 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6210 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6211 * @sp : private member of the device structure, which is a pointer to the
6212 * s2io_nic structure.
6213 * @ethtest : pointer to a ethtool command specific structure that will be
6214 * returned to the user.
6215 * @data : variable that returns the result of each of the test
6216 * conducted by the driver.
6218 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6219 * the health of the card.
6224 static void s2io_ethtool_test(struct net_device
*dev
,
6225 struct ethtool_test
*ethtest
,
6228 struct s2io_nic
*sp
= netdev_priv(dev
);
6229 int orig_state
= netif_running(sp
->dev
);
6231 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6232 /* Offline Tests. */
6234 s2io_close(sp
->dev
);
6236 if (s2io_register_test(sp
, &data
[0]))
6237 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6241 if (s2io_rldram_test(sp
, &data
[3]))
6242 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6246 if (s2io_eeprom_test(sp
, &data
[1]))
6247 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6249 if (s2io_bist_test(sp
, &data
[4]))
6250 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6259 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6268 if (s2io_link_test(sp
, &data
[2]))
6269 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6278 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6279 struct ethtool_stats
*estats
,
6283 struct s2io_nic
*sp
= netdev_priv(dev
);
6284 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6285 struct swStat
*swstats
= &stats
->sw_stat
;
6286 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6288 s2io_updt_stats(sp
);
6290 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6291 le32_to_cpu(stats
->tmac_frms
);
6293 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6294 le32_to_cpu(stats
->tmac_data_octets
);
6295 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6297 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6298 le32_to_cpu(stats
->tmac_mcst_frms
);
6300 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6301 le32_to_cpu(stats
->tmac_bcst_frms
);
6302 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6304 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6305 le32_to_cpu(stats
->tmac_ttl_octets
);
6307 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6308 le32_to_cpu(stats
->tmac_ucst_frms
);
6310 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6311 le32_to_cpu(stats
->tmac_nucst_frms
);
6313 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6314 le32_to_cpu(stats
->tmac_any_err_frms
);
6315 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6316 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6318 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6319 le32_to_cpu(stats
->tmac_vld_ip
);
6321 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6322 le32_to_cpu(stats
->tmac_drop_ip
);
6324 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6325 le32_to_cpu(stats
->tmac_icmp
);
6327 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6328 le32_to_cpu(stats
->tmac_rst_tcp
);
6329 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6330 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6331 le32_to_cpu(stats
->tmac_udp
);
6333 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6334 le32_to_cpu(stats
->rmac_vld_frms
);
6336 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6337 le32_to_cpu(stats
->rmac_data_octets
);
6338 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6339 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6341 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6342 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6344 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6345 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6346 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6347 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6348 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6349 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6350 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6352 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6353 le32_to_cpu(stats
->rmac_ttl_octets
);
6355 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6356 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6358 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6359 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6361 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6362 le32_to_cpu(stats
->rmac_discarded_frms
);
6364 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6365 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6366 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6367 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6369 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6370 le32_to_cpu(stats
->rmac_usized_frms
);
6372 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6373 le32_to_cpu(stats
->rmac_osized_frms
);
6375 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6376 le32_to_cpu(stats
->rmac_frag_frms
);
6378 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6379 le32_to_cpu(stats
->rmac_jabber_frms
);
6380 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6381 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6382 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6383 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6384 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6385 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6387 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6388 le32_to_cpu(stats
->rmac_ip
);
6389 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6390 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6392 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6393 le32_to_cpu(stats
->rmac_drop_ip
);
6395 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6396 le32_to_cpu(stats
->rmac_icmp
);
6397 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6399 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6400 le32_to_cpu(stats
->rmac_udp
);
6402 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6403 le32_to_cpu(stats
->rmac_err_drp_udp
);
6404 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6405 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6406 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6407 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6408 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6409 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6412 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6413 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6414 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6415 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6416 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6417 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6418 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6419 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6420 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6422 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6423 le32_to_cpu(stats
->rmac_pause_cnt
);
6424 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6425 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6427 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6428 le32_to_cpu(stats
->rmac_accepted_ip
);
6429 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6430 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6431 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6432 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6433 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6434 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6435 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6436 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6437 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6438 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6439 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6440 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6441 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6442 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6443 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6444 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6445 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6446 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6447 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6449 /* Enhanced statistics exist only for Hercules */
6450 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6452 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6454 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6456 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6457 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6458 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6459 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6460 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6461 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6462 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6463 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6464 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6465 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6466 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6467 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6473 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6474 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6475 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6476 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6477 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6478 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6479 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6480 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6481 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6482 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6483 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6484 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6485 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6486 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6487 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6488 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6489 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6490 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6491 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6492 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6493 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6494 tmp_stats
[i
++] = swstats
->sending_both
;
6495 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6496 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6497 if (swstats
->num_aggregations
) {
6498 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6501 * Since 64-bit divide does not work on all platforms,
6502 * do repeated subtraction.
6504 while (tmp
>= swstats
->num_aggregations
) {
6505 tmp
-= swstats
->num_aggregations
;
6508 tmp_stats
[i
++] = count
;
6511 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6512 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6513 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6514 tmp_stats
[i
++] = swstats
->mem_allocated
;
6515 tmp_stats
[i
++] = swstats
->mem_freed
;
6516 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6517 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6518 tmp_stats
[i
++] = swstats
->link_up_time
;
6519 tmp_stats
[i
++] = swstats
->link_down_time
;
6521 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6522 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6523 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6524 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6525 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6527 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6528 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6529 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6530 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6531 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6532 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6533 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6534 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6535 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6536 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6537 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6538 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6539 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6540 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6541 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6542 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6543 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6544 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6545 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6546 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6547 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6548 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6549 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6550 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6551 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6552 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6555 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6557 return XENA_REG_SPACE
;
6561 static int s2io_get_eeprom_len(struct net_device
*dev
)
6563 return XENA_EEPROM_SPACE
;
6566 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6568 struct s2io_nic
*sp
= netdev_priv(dev
);
6572 return S2IO_TEST_LEN
;
6574 switch (sp
->device_type
) {
6575 case XFRAME_I_DEVICE
:
6576 return XFRAME_I_STAT_LEN
;
6577 case XFRAME_II_DEVICE
:
6578 return XFRAME_II_STAT_LEN
;
6587 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6588 u32 stringset
, u8
*data
)
6591 struct s2io_nic
*sp
= netdev_priv(dev
);
6593 switch (stringset
) {
6595 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6598 stat_size
= sizeof(ethtool_xena_stats_keys
);
6599 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6600 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6601 memcpy(data
+ stat_size
,
6602 ðtool_enhanced_stats_keys
,
6603 sizeof(ethtool_enhanced_stats_keys
));
6604 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6607 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6608 sizeof(ethtool_driver_stats_keys
));
6612 static int s2io_set_features(struct net_device
*dev
, netdev_features_t features
)
6614 struct s2io_nic
*sp
= netdev_priv(dev
);
6615 netdev_features_t changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6617 if (changed
&& netif_running(dev
)) {
6620 s2io_stop_all_tx_queue(sp
);
6622 dev
->features
= features
;
6623 rc
= s2io_card_up(sp
);
6627 s2io_start_all_tx_queue(sp
);
6635 static const struct ethtool_ops netdev_ethtool_ops
= {
6636 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6637 .get_regs_len
= s2io_ethtool_get_regs_len
,
6638 .get_regs
= s2io_ethtool_gregs
,
6639 .get_link
= ethtool_op_get_link
,
6640 .get_eeprom_len
= s2io_get_eeprom_len
,
6641 .get_eeprom
= s2io_ethtool_geeprom
,
6642 .set_eeprom
= s2io_ethtool_seeprom
,
6643 .get_ringparam
= s2io_ethtool_gringparam
,
6644 .get_pauseparam
= s2io_ethtool_getpause_data
,
6645 .set_pauseparam
= s2io_ethtool_setpause_data
,
6646 .self_test
= s2io_ethtool_test
,
6647 .get_strings
= s2io_ethtool_get_strings
,
6648 .set_phys_id
= s2io_ethtool_set_led
,
6649 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6650 .get_sset_count
= s2io_get_sset_count
,
6651 .get_link_ksettings
= s2io_ethtool_get_link_ksettings
,
6652 .set_link_ksettings
= s2io_ethtool_set_link_ksettings
,
6656 * s2io_ioctl - Entry point for the Ioctl
6657 * @dev : Device pointer.
6658 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6659 * a proprietary structure used to pass information to the driver.
6660 * @cmd : This is used to distinguish between the different commands that
6661 * can be passed to the IOCTL functions.
6663 * Currently there are no special functionality supported in IOCTL, hence
6664 * function always return EOPNOTSUPPORTED
6667 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6673 * s2io_change_mtu - entry point to change MTU size for the device.
6674 * @dev : device pointer.
6675 * @new_mtu : the new MTU size for the device.
6676 * Description: A driver entry point to change MTU size for the device.
6677 * Before changing the MTU the device must be stopped.
6679 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6683 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6685 struct s2io_nic
*sp
= netdev_priv(dev
);
6689 if (netif_running(dev
)) {
6690 s2io_stop_all_tx_queue(sp
);
6692 ret
= s2io_card_up(sp
);
6694 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6698 s2io_wake_all_tx_queue(sp
);
6699 } else { /* Device is down */
6700 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6701 u64 val64
= new_mtu
;
6703 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6710 * s2io_set_link - Set the LInk status
6711 * @data: long pointer to device private structue
6712 * Description: Sets the link status for the adapter
6715 static void s2io_set_link(struct work_struct
*work
)
6717 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6719 struct net_device
*dev
= nic
->dev
;
6720 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6726 if (!netif_running(dev
))
6729 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6730 /* The card is being reset, no point doing anything */
6734 subid
= nic
->pdev
->subsystem_device
;
6735 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6737 * Allow a small delay for the NICs self initiated
6738 * cleanup to complete.
6743 val64
= readq(&bar0
->adapter_status
);
6744 if (LINK_IS_UP(val64
)) {
6745 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6746 if (verify_xena_quiescence(nic
)) {
6747 val64
= readq(&bar0
->adapter_control
);
6748 val64
|= ADAPTER_CNTL_EN
;
6749 writeq(val64
, &bar0
->adapter_control
);
6750 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6751 nic
->device_type
, subid
)) {
6752 val64
= readq(&bar0
->gpio_control
);
6753 val64
|= GPIO_CTRL_GPIO_0
;
6754 writeq(val64
, &bar0
->gpio_control
);
6755 val64
= readq(&bar0
->gpio_control
);
6757 val64
|= ADAPTER_LED_ON
;
6758 writeq(val64
, &bar0
->adapter_control
);
6760 nic
->device_enabled_once
= true;
6763 "%s: Error: device is not Quiescent\n",
6765 s2io_stop_all_tx_queue(nic
);
6768 val64
= readq(&bar0
->adapter_control
);
6769 val64
|= ADAPTER_LED_ON
;
6770 writeq(val64
, &bar0
->adapter_control
);
6771 s2io_link(nic
, LINK_UP
);
6773 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6775 val64
= readq(&bar0
->gpio_control
);
6776 val64
&= ~GPIO_CTRL_GPIO_0
;
6777 writeq(val64
, &bar0
->gpio_control
);
6778 val64
= readq(&bar0
->gpio_control
);
6781 val64
= readq(&bar0
->adapter_control
);
6782 val64
= val64
& (~ADAPTER_LED_ON
);
6783 writeq(val64
, &bar0
->adapter_control
);
6784 s2io_link(nic
, LINK_DOWN
);
6786 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6792 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6794 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6795 u64
*temp2
, int size
)
6797 struct net_device
*dev
= sp
->dev
;
6798 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6800 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6801 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6804 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6806 * As Rx frame are not going to be processed,
6807 * using same mapped address for the Rxd
6810 rxdp1
->Buffer0_ptr
= *temp0
;
6812 *skb
= netdev_alloc_skb(dev
, size
);
6815 "%s: Out of memory to allocate %s\n",
6816 dev
->name
, "1 buf mode SKBs");
6817 stats
->mem_alloc_fail_cnt
++;
6820 stats
->mem_allocated
+= (*skb
)->truesize
;
6821 /* storing the mapped addr in a temp variable
6822 * such it will be used for next rxd whose
6823 * Host Control is NULL
6825 rxdp1
->Buffer0_ptr
= *temp0
=
6826 pci_map_single(sp
->pdev
, (*skb
)->data
,
6827 size
- NET_IP_ALIGN
,
6828 PCI_DMA_FROMDEVICE
);
6829 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6830 goto memalloc_failed
;
6831 rxdp
->Host_Control
= (unsigned long) (*skb
);
6833 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6834 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6835 /* Two buffer Mode */
6837 rxdp3
->Buffer2_ptr
= *temp2
;
6838 rxdp3
->Buffer0_ptr
= *temp0
;
6839 rxdp3
->Buffer1_ptr
= *temp1
;
6841 *skb
= netdev_alloc_skb(dev
, size
);
6844 "%s: Out of memory to allocate %s\n",
6847 stats
->mem_alloc_fail_cnt
++;
6850 stats
->mem_allocated
+= (*skb
)->truesize
;
6851 rxdp3
->Buffer2_ptr
= *temp2
=
6852 pci_map_single(sp
->pdev
, (*skb
)->data
,
6854 PCI_DMA_FROMDEVICE
);
6855 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6856 goto memalloc_failed
;
6857 rxdp3
->Buffer0_ptr
= *temp0
=
6858 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6859 PCI_DMA_FROMDEVICE
);
6860 if (pci_dma_mapping_error(sp
->pdev
,
6861 rxdp3
->Buffer0_ptr
)) {
6862 pci_unmap_single(sp
->pdev
,
6863 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6865 PCI_DMA_FROMDEVICE
);
6866 goto memalloc_failed
;
6868 rxdp
->Host_Control
= (unsigned long) (*skb
);
6870 /* Buffer-1 will be dummy buffer not used */
6871 rxdp3
->Buffer1_ptr
= *temp1
=
6872 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6873 PCI_DMA_FROMDEVICE
);
6874 if (pci_dma_mapping_error(sp
->pdev
,
6875 rxdp3
->Buffer1_ptr
)) {
6876 pci_unmap_single(sp
->pdev
,
6877 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6878 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6879 pci_unmap_single(sp
->pdev
,
6880 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6882 PCI_DMA_FROMDEVICE
);
6883 goto memalloc_failed
;
6890 stats
->pci_map_fail_cnt
++;
6891 stats
->mem_freed
+= (*skb
)->truesize
;
6892 dev_kfree_skb(*skb
);
6896 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6899 struct net_device
*dev
= sp
->dev
;
6900 if (sp
->rxd_mode
== RXD_MODE_1
) {
6901 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6902 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6903 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6904 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6905 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6909 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6911 int i
, j
, k
, blk_cnt
= 0, size
;
6912 struct config_param
*config
= &sp
->config
;
6913 struct mac_info
*mac_control
= &sp
->mac_control
;
6914 struct net_device
*dev
= sp
->dev
;
6915 struct RxD_t
*rxdp
= NULL
;
6916 struct sk_buff
*skb
= NULL
;
6917 struct buffAdd
*ba
= NULL
;
6918 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6920 /* Calculate the size based on ring mode */
6921 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6922 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6923 if (sp
->rxd_mode
== RXD_MODE_1
)
6924 size
+= NET_IP_ALIGN
;
6925 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6926 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6928 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6929 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6930 struct ring_info
*ring
= &mac_control
->rings
[i
];
6932 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6934 for (j
= 0; j
< blk_cnt
; j
++) {
6935 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6936 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
6937 if (sp
->rxd_mode
== RXD_MODE_3B
)
6938 ba
= &ring
->ba
[j
][k
];
6939 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
6947 set_rxd_buffer_size(sp
, rxdp
, size
);
6949 /* flip the Ownership bit to Hardware */
6950 rxdp
->Control_1
|= RXD_OWN_XENA
;
6958 static int s2io_add_isr(struct s2io_nic
*sp
)
6961 struct net_device
*dev
= sp
->dev
;
6964 if (sp
->config
.intr_type
== MSI_X
)
6965 ret
= s2io_enable_msi_x(sp
);
6967 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6968 sp
->config
.intr_type
= INTA
;
6972 * Store the values of the MSIX table in
6973 * the struct s2io_nic structure
6975 store_xmsi_data(sp
);
6977 /* After proper initialization of H/W, register ISR */
6978 if (sp
->config
.intr_type
== MSI_X
) {
6979 int i
, msix_rx_cnt
= 0;
6981 for (i
= 0; i
< sp
->num_entries
; i
++) {
6982 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
6983 if (sp
->s2io_entries
[i
].type
==
6985 snprintf(sp
->desc
[i
],
6986 sizeof(sp
->desc
[i
]),
6989 err
= request_irq(sp
->entries
[i
].vector
,
6990 s2io_msix_ring_handle
,
6993 sp
->s2io_entries
[i
].arg
);
6994 } else if (sp
->s2io_entries
[i
].type
==
6996 snprintf(sp
->desc
[i
],
6997 sizeof(sp
->desc
[i
]),
7000 err
= request_irq(sp
->entries
[i
].vector
,
7001 s2io_msix_fifo_handle
,
7004 sp
->s2io_entries
[i
].arg
);
7007 /* if either data or addr is zero print it. */
7008 if (!(sp
->msix_info
[i
].addr
&&
7009 sp
->msix_info
[i
].data
)) {
7011 "%s @Addr:0x%llx Data:0x%llx\n",
7013 (unsigned long long)
7014 sp
->msix_info
[i
].addr
,
7015 (unsigned long long)
7016 ntohl(sp
->msix_info
[i
].data
));
7020 remove_msix_isr(sp
);
7023 "%s:MSI-X-%d registration "
7024 "failed\n", dev
->name
, i
);
7027 "%s: Defaulting to INTA\n",
7029 sp
->config
.intr_type
= INTA
;
7032 sp
->s2io_entries
[i
].in_use
=
7033 MSIX_REGISTERED_SUCCESS
;
7037 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7039 "MSI-X-TX entries enabled through alarm vector\n");
7042 if (sp
->config
.intr_type
== INTA
) {
7043 err
= request_irq(sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7046 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7054 static void s2io_rem_isr(struct s2io_nic
*sp
)
7056 if (sp
->config
.intr_type
== MSI_X
)
7057 remove_msix_isr(sp
);
7059 remove_inta_isr(sp
);
7062 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7065 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7066 register u64 val64
= 0;
7067 struct config_param
*config
;
7068 config
= &sp
->config
;
7070 if (!is_s2io_card_up(sp
))
7073 del_timer_sync(&sp
->alarm_timer
);
7074 /* If s2io_set_link task is executing, wait till it completes. */
7075 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7077 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7080 if (sp
->config
.napi
) {
7082 if (config
->intr_type
== MSI_X
) {
7083 for (; off
< sp
->config
.rx_ring_num
; off
++)
7084 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7087 napi_disable(&sp
->napi
);
7090 /* disable Tx and Rx traffic on the NIC */
7096 /* stop the tx queue, indicate link down */
7097 s2io_link(sp
, LINK_DOWN
);
7099 /* Check if the device is Quiescent and then Reset the NIC */
7101 /* As per the HW requirement we need to replenish the
7102 * receive buffer to avoid the ring bump. Since there is
7103 * no intention of processing the Rx frame at this pointwe are
7104 * just setting the ownership bit of rxd in Each Rx
7105 * ring to HW and set the appropriate buffer size
7106 * based on the ring mode
7108 rxd_owner_bit_reset(sp
);
7110 val64
= readq(&bar0
->adapter_status
);
7111 if (verify_xena_quiescence(sp
)) {
7112 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7119 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7120 "adapter status reads 0x%llx\n",
7121 (unsigned long long)val64
);
7128 /* Free all Tx buffers */
7129 free_tx_buffers(sp
);
7131 /* Free all Rx buffers */
7132 free_rx_buffers(sp
);
7134 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7137 static void s2io_card_down(struct s2io_nic
*sp
)
7139 do_s2io_card_down(sp
, 1);
7142 static int s2io_card_up(struct s2io_nic
*sp
)
7145 struct config_param
*config
;
7146 struct mac_info
*mac_control
;
7147 struct net_device
*dev
= sp
->dev
;
7150 /* Initialize the H/W I/O registers */
7153 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7161 * Initializing the Rx buffers. For now we are considering only 1
7162 * Rx ring and initializing buffers into 30 Rx blocks
7164 config
= &sp
->config
;
7165 mac_control
= &sp
->mac_control
;
7167 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7168 struct ring_info
*ring
= &mac_control
->rings
[i
];
7170 ring
->mtu
= dev
->mtu
;
7171 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7172 ret
= fill_rx_buffers(sp
, ring
, 1);
7174 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7177 free_rx_buffers(sp
);
7180 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7181 ring
->rx_bufs_left
);
7184 /* Initialise napi */
7186 if (config
->intr_type
== MSI_X
) {
7187 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7188 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7190 napi_enable(&sp
->napi
);
7194 /* Maintain the state prior to the open */
7195 if (sp
->promisc_flg
)
7196 sp
->promisc_flg
= 0;
7197 if (sp
->m_cast_flg
) {
7199 sp
->all_multi_pos
= 0;
7202 /* Setting its receive mode */
7203 s2io_set_multicast(dev
);
7205 if (dev
->features
& NETIF_F_LRO
) {
7206 /* Initialize max aggregatable pkts per session based on MTU */
7207 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7208 /* Check if we can use (if specified) user provided value */
7209 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7210 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7213 /* Enable Rx Traffic and interrupts on the NIC */
7214 if (start_nic(sp
)) {
7215 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7217 free_rx_buffers(sp
);
7221 /* Add interrupt service routine */
7222 if (s2io_add_isr(sp
) != 0) {
7223 if (sp
->config
.intr_type
== MSI_X
)
7226 free_rx_buffers(sp
);
7230 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7232 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7234 /* Enable select interrupts */
7235 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7236 if (sp
->config
.intr_type
!= INTA
) {
7237 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7238 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7240 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7241 interruptible
|= TX_PIC_INTR
;
7242 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7249 * s2io_restart_nic - Resets the NIC.
7250 * @data : long pointer to the device private structure
7252 * This function is scheduled to be run by the s2io_tx_watchdog
7253 * function after 0.5 secs to reset the NIC. The idea is to reduce
7254 * the run time of the watch dog routine which is run holding a
7258 static void s2io_restart_nic(struct work_struct
*work
)
7260 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7261 struct net_device
*dev
= sp
->dev
;
7265 if (!netif_running(dev
))
7269 if (s2io_card_up(sp
)) {
7270 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7272 s2io_wake_all_tx_queue(sp
);
7273 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7279 * s2io_tx_watchdog - Watchdog for transmit side.
7280 * @dev : Pointer to net device structure
7282 * This function is triggered if the Tx Queue is stopped
7283 * for a pre-defined amount of time when the Interface is still up.
7284 * If the Interface is jammed in such a situation, the hardware is
7285 * reset (by s2io_close) and restarted again (by s2io_open) to
7286 * overcome any problem that might have been caused in the hardware.
7291 static void s2io_tx_watchdog(struct net_device
*dev
)
7293 struct s2io_nic
*sp
= netdev_priv(dev
);
7294 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7296 if (netif_carrier_ok(dev
)) {
7297 swstats
->watchdog_timer_cnt
++;
7298 schedule_work(&sp
->rst_timer_task
);
7299 swstats
->soft_reset_cnt
++;
7304 * rx_osm_handler - To perform some OS related operations on SKB.
7305 * @sp: private member of the device structure,pointer to s2io_nic structure.
7306 * @skb : the socket buffer pointer.
7307 * @len : length of the packet
7308 * @cksum : FCS checksum of the frame.
7309 * @ring_no : the ring from which this RxD was extracted.
7311 * This function is called by the Rx interrupt serivce routine to perform
7312 * some OS related operations on the SKB before passing it to the upper
7313 * layers. It mainly checks if the checksum is OK, if so adds it to the
7314 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7315 * to the upper layer. If the checksum is wrong, it increments the Rx
7316 * packet error count, frees the SKB and returns error.
7318 * SUCCESS on success and -1 on failure.
7320 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7322 struct s2io_nic
*sp
= ring_data
->nic
;
7323 struct net_device
*dev
= ring_data
->dev
;
7324 struct sk_buff
*skb
= (struct sk_buff
*)
7325 ((unsigned long)rxdp
->Host_Control
);
7326 int ring_no
= ring_data
->ring_no
;
7327 u16 l3_csum
, l4_csum
;
7328 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7329 struct lro
*uninitialized_var(lro
);
7331 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7336 /* Check for parity error */
7338 swstats
->parity_err_cnt
++;
7340 err_mask
= err
>> 48;
7343 swstats
->rx_parity_err_cnt
++;
7347 swstats
->rx_abort_cnt
++;
7351 swstats
->rx_parity_abort_cnt
++;
7355 swstats
->rx_rda_fail_cnt
++;
7359 swstats
->rx_unkn_prot_cnt
++;
7363 swstats
->rx_fcs_err_cnt
++;
7367 swstats
->rx_buf_size_err_cnt
++;
7371 swstats
->rx_rxd_corrupt_cnt
++;
7375 swstats
->rx_unkn_err_cnt
++;
7379 * Drop the packet if bad transfer code. Exception being
7380 * 0x5, which could be due to unsupported IPv6 extension header.
7381 * In this case, we let stack handle the packet.
7382 * Note that in this case, since checksum will be incorrect,
7383 * stack will validate the same.
7385 if (err_mask
!= 0x5) {
7386 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7387 dev
->name
, err_mask
);
7388 dev
->stats
.rx_crc_errors
++;
7392 ring_data
->rx_bufs_left
-= 1;
7393 rxdp
->Host_Control
= 0;
7398 rxdp
->Host_Control
= 0;
7399 if (sp
->rxd_mode
== RXD_MODE_1
) {
7400 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7403 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7404 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7405 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7406 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7407 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7408 unsigned char *buff
= skb_push(skb
, buf0_len
);
7410 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7411 memcpy(buff
, ba
->ba_0
, buf0_len
);
7412 skb_put(skb
, buf2_len
);
7415 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7416 ((!ring_data
->lro
) ||
7417 (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
))) &&
7418 (dev
->features
& NETIF_F_RXCSUM
)) {
7419 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7420 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7421 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7423 * NIC verifies if the Checksum of the received
7424 * frame is Ok or not and accordingly returns
7425 * a flag in the RxD.
7427 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7428 if (ring_data
->lro
) {
7433 ret
= s2io_club_tcp_session(ring_data
,
7438 case 3: /* Begin anew */
7441 case 1: /* Aggregate */
7442 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7444 case 4: /* Flush session */
7445 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7446 queue_rx_frame(lro
->parent
,
7448 clear_lro_session(lro
);
7449 swstats
->flush_max_pkts
++;
7451 case 2: /* Flush both */
7452 lro
->parent
->data_len
= lro
->frags_len
;
7453 swstats
->sending_both
++;
7454 queue_rx_frame(lro
->parent
,
7456 clear_lro_session(lro
);
7458 case 0: /* sessions exceeded */
7459 case -1: /* non-TCP or not L2 aggregatable */
7461 * First pkt in session not
7462 * L3/L4 aggregatable
7467 "%s: Samadhana!!\n",
7474 * Packet with erroneous checksum, let the
7475 * upper layers deal with it.
7477 skb_checksum_none_assert(skb
);
7480 skb_checksum_none_assert(skb
);
7482 swstats
->mem_freed
+= skb
->truesize
;
7484 skb_record_rx_queue(skb
, ring_no
);
7485 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7487 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7492 * s2io_link - stops/starts the Tx queue.
7493 * @sp : private member of the device structure, which is a pointer to the
7494 * s2io_nic structure.
7495 * @link : inidicates whether link is UP/DOWN.
7497 * This function stops/starts the Tx queue depending on whether the link
7498 * status of the NIC is is down or up. This is called by the Alarm
7499 * interrupt handler whenever a link change interrupt comes up.
7504 static void s2io_link(struct s2io_nic
*sp
, int link
)
7506 struct net_device
*dev
= sp
->dev
;
7507 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7509 if (link
!= sp
->last_link_state
) {
7511 if (link
== LINK_DOWN
) {
7512 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7513 s2io_stop_all_tx_queue(sp
);
7514 netif_carrier_off(dev
);
7515 if (swstats
->link_up_cnt
)
7516 swstats
->link_up_time
=
7517 jiffies
- sp
->start_time
;
7518 swstats
->link_down_cnt
++;
7520 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7521 if (swstats
->link_down_cnt
)
7522 swstats
->link_down_time
=
7523 jiffies
- sp
->start_time
;
7524 swstats
->link_up_cnt
++;
7525 netif_carrier_on(dev
);
7526 s2io_wake_all_tx_queue(sp
);
7529 sp
->last_link_state
= link
;
7530 sp
->start_time
= jiffies
;
7534 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7535 * @sp : private member of the device structure, which is a pointer to the
7536 * s2io_nic structure.
7538 * This function initializes a few of the PCI and PCI-X configuration registers
7539 * with recommended values.
7544 static void s2io_init_pci(struct s2io_nic
*sp
)
7546 u16 pci_cmd
= 0, pcix_cmd
= 0;
7548 /* Enable Data Parity Error Recovery in PCI-X command register. */
7549 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7551 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7553 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7556 /* Set the PErr Response bit in PCI command register. */
7557 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7558 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7559 (pci_cmd
| PCI_COMMAND_PARITY
));
7560 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7563 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7568 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7569 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7570 "(%d) not supported\n", tx_fifo_num
);
7572 if (tx_fifo_num
< 1)
7575 tx_fifo_num
= MAX_TX_FIFOS
;
7577 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7581 *dev_multiq
= multiq
;
7583 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7584 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7586 "Tx steering is not supported with "
7587 "one fifo. Disabling Tx steering.\n");
7588 tx_steering_type
= NO_STEERING
;
7591 if ((tx_steering_type
< NO_STEERING
) ||
7592 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7594 "Requested transmit steering not supported\n");
7595 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7596 tx_steering_type
= NO_STEERING
;
7599 if (rx_ring_num
> MAX_RX_RINGS
) {
7601 "Requested number of rx rings not supported\n");
7602 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7604 rx_ring_num
= MAX_RX_RINGS
;
7607 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7608 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7609 "Defaulting to INTA\n");
7610 *dev_intr_type
= INTA
;
7613 if ((*dev_intr_type
== MSI_X
) &&
7614 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7615 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7616 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7617 "Defaulting to INTA\n");
7618 *dev_intr_type
= INTA
;
7621 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7622 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7623 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7627 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7628 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7629 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7630 "supported\nDefaulting to %d\n",
7631 MAX_RX_BLOCKS_PER_RING
);
7632 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7639 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7640 * or Traffic class respectively.
7641 * @nic: device private variable
7642 * Description: The function configures the receive steering to
7643 * desired receive ring.
7644 * Return Value: SUCCESS on success and
7645 * '-1' on failure (endian settings incorrect).
7647 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7649 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7650 register u64 val64
= 0;
7652 if (ds_codepoint
> 63)
7655 val64
= RTS_DS_MEM_DATA(ring
);
7656 writeq(val64
, &bar0
->rts_ds_mem_data
);
7658 val64
= RTS_DS_MEM_CTRL_WE
|
7659 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7660 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7662 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7664 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7665 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7669 static const struct net_device_ops s2io_netdev_ops
= {
7670 .ndo_open
= s2io_open
,
7671 .ndo_stop
= s2io_close
,
7672 .ndo_get_stats
= s2io_get_stats
,
7673 .ndo_start_xmit
= s2io_xmit
,
7674 .ndo_validate_addr
= eth_validate_addr
,
7675 .ndo_set_rx_mode
= s2io_set_multicast
,
7676 .ndo_do_ioctl
= s2io_ioctl
,
7677 .ndo_set_mac_address
= s2io_set_mac_addr
,
7678 .ndo_change_mtu
= s2io_change_mtu
,
7679 .ndo_set_features
= s2io_set_features
,
7680 .ndo_tx_timeout
= s2io_tx_watchdog
,
7681 #ifdef CONFIG_NET_POLL_CONTROLLER
7682 .ndo_poll_controller
= s2io_netpoll
,
7687 * s2io_init_nic - Initialization of the adapter .
7688 * @pdev : structure containing the PCI related information of the device.
7689 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7691 * The function initializes an adapter identified by the pci_dec structure.
7692 * All OS related initialization including memory and device structure and
7693 * initlaization of the device private variable is done. Also the swapper
7694 * control register is initialized to enable read and write into the I/O
7695 * registers of the device.
7697 * returns 0 on success and negative on failure.
7701 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7703 struct s2io_nic
*sp
;
7704 struct net_device
*dev
;
7706 int dma_flag
= false;
7707 u32 mac_up
, mac_down
;
7708 u64 val64
= 0, tmp64
= 0;
7709 struct XENA_dev_config __iomem
*bar0
= NULL
;
7711 struct config_param
*config
;
7712 struct mac_info
*mac_control
;
7714 u8 dev_intr_type
= intr_type
;
7717 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7721 ret
= pci_enable_device(pdev
);
7724 "%s: pci_enable_device failed\n", __func__
);
7728 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7729 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7731 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7733 "Unable to obtain 64bit DMA "
7734 "for consistent allocations\n");
7735 pci_disable_device(pdev
);
7738 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7739 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7741 pci_disable_device(pdev
);
7744 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7746 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7748 pci_disable_device(pdev
);
7752 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7754 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7756 pci_disable_device(pdev
);
7757 pci_release_regions(pdev
);
7761 pci_set_master(pdev
);
7762 pci_set_drvdata(pdev
, dev
);
7763 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7765 /* Private member variable initialized to s2io NIC structure */
7766 sp
= netdev_priv(dev
);
7769 sp
->high_dma_flag
= dma_flag
;
7770 sp
->device_enabled_once
= false;
7771 if (rx_ring_mode
== 1)
7772 sp
->rxd_mode
= RXD_MODE_1
;
7773 if (rx_ring_mode
== 2)
7774 sp
->rxd_mode
= RXD_MODE_3B
;
7776 sp
->config
.intr_type
= dev_intr_type
;
7778 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7779 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7780 sp
->device_type
= XFRAME_II_DEVICE
;
7782 sp
->device_type
= XFRAME_I_DEVICE
;
7785 /* Initialize some PCI/PCI-X fields of the NIC. */
7789 * Setting the device configuration parameters.
7790 * Most of these parameters can be specified by the user during
7791 * module insertion as they are module loadable parameters. If
7792 * these parameters are not not specified during load time, they
7793 * are initialized with default values.
7795 config
= &sp
->config
;
7796 mac_control
= &sp
->mac_control
;
7798 config
->napi
= napi
;
7799 config
->tx_steering_type
= tx_steering_type
;
7801 /* Tx side parameters. */
7802 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7803 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7805 config
->tx_fifo_num
= tx_fifo_num
;
7807 /* Initialize the fifos used for tx steering */
7808 if (config
->tx_fifo_num
< 5) {
7809 if (config
->tx_fifo_num
== 1)
7810 sp
->total_tcp_fifos
= 1;
7812 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7813 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7814 sp
->total_udp_fifos
= 1;
7815 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7817 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7818 FIFO_OTHER_MAX_NUM
);
7819 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7820 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7821 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7824 config
->multiq
= dev_multiq
;
7825 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7826 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7828 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7829 tx_cfg
->fifo_priority
= i
;
7832 /* mapping the QoS priority to the configured fifos */
7833 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7834 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7836 /* map the hashing selector table to the configured fifos */
7837 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7838 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7841 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7842 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7843 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7845 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7846 if (tx_cfg
->fifo_len
< 65) {
7847 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7851 /* + 2 because one Txd for skb->data and one Txd for UFO */
7852 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7854 /* Rx side parameters. */
7855 config
->rx_ring_num
= rx_ring_num
;
7856 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7857 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7858 struct ring_info
*ring
= &mac_control
->rings
[i
];
7860 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7861 rx_cfg
->ring_priority
= i
;
7862 ring
->rx_bufs_left
= 0;
7863 ring
->rxd_mode
= sp
->rxd_mode
;
7864 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7865 ring
->pdev
= sp
->pdev
;
7866 ring
->dev
= sp
->dev
;
7869 for (i
= 0; i
< rx_ring_num
; i
++) {
7870 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7872 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7873 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7876 /* Setting Mac Control parameters */
7877 mac_control
->rmac_pause_time
= rmac_pause_time
;
7878 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7879 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7882 /* initialize the shared memory used by the NIC and the host */
7883 if (init_shared_mem(sp
)) {
7884 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7886 goto mem_alloc_failed
;
7889 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7891 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7894 goto bar0_remap_failed
;
7897 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7899 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7902 goto bar1_remap_failed
;
7905 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7906 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7907 mac_control
->tx_FIFO_start
[j
] = sp
->bar1
+ (j
* 0x00020000);
7910 /* Driver entry points */
7911 dev
->netdev_ops
= &s2io_netdev_ops
;
7912 dev
->ethtool_ops
= &netdev_ethtool_ops
;
7913 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7914 NETIF_F_TSO
| NETIF_F_TSO6
|
7915 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7916 dev
->features
|= dev
->hw_features
|
7917 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
7918 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7919 dev
->hw_features
|= NETIF_F_UFO
;
7921 dev
->features
|= NETIF_F_UFO
;
7923 if (sp
->high_dma_flag
== true)
7924 dev
->features
|= NETIF_F_HIGHDMA
;
7925 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7926 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7927 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7929 pci_save_state(sp
->pdev
);
7931 /* Setting swapper control on the NIC, for proper reset operation */
7932 if (s2io_set_swapper(sp
)) {
7933 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7936 goto set_swap_failed
;
7939 /* Verify if the Herc works on the slot its placed into */
7940 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7941 mode
= s2io_verify_pci_mode(sp
);
7943 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
7946 goto set_swap_failed
;
7950 if (sp
->config
.intr_type
== MSI_X
) {
7951 sp
->num_entries
= config
->rx_ring_num
+ 1;
7952 ret
= s2io_enable_msi_x(sp
);
7955 ret
= s2io_test_msi(sp
);
7956 /* rollback MSI-X, will re-enable during add_isr() */
7957 remove_msix_isr(sp
);
7962 "MSI-X requested but failed to enable\n");
7963 sp
->config
.intr_type
= INTA
;
7967 if (config
->intr_type
== MSI_X
) {
7968 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7969 struct ring_info
*ring
= &mac_control
->rings
[i
];
7971 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
7974 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
7977 /* Not needed for Herc */
7978 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7980 * Fix for all "FFs" MAC address problems observed on
7983 fix_mac_address(sp
);
7988 * MAC address initialization.
7989 * For now only one mac address will be read and used.
7992 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7993 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7994 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7995 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7996 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
7998 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7999 mac_down
= (u32
)tmp64
;
8000 mac_up
= (u32
) (tmp64
>> 32);
8002 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8003 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8004 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8005 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8006 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8007 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8009 /* Set the factory defined MAC address initially */
8010 dev
->addr_len
= ETH_ALEN
;
8011 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8013 /* initialize number of multicast & unicast MAC entries variables */
8014 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8015 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8016 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8017 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8018 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8019 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8020 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8021 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8024 /* MTU range: 46 - 9600 */
8025 dev
->min_mtu
= MIN_MTU
;
8026 dev
->max_mtu
= S2IO_JUMBO_SIZE
;
8028 /* store mac addresses from CAM to s2io_nic structure */
8029 do_s2io_store_unicast_mc(sp
);
8031 /* Configure MSIX vector for number of rings configured plus one */
8032 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8033 (config
->intr_type
== MSI_X
))
8034 sp
->num_entries
= config
->rx_ring_num
+ 1;
8036 /* Store the values of the MSIX table in the s2io_nic structure */
8037 store_xmsi_data(sp
);
8038 /* reset Nic and bring it to known state */
8042 * Initialize link state flags
8043 * and the card state parameter
8047 /* Initialize spinlocks */
8048 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8049 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8051 spin_lock_init(&fifo
->tx_lock
);
8055 * SXE-002: Configure link and activity LED to init state
8058 subid
= sp
->pdev
->subsystem_device
;
8059 if ((subid
& 0xFF) >= 0x07) {
8060 val64
= readq(&bar0
->gpio_control
);
8061 val64
|= 0x0000800000000000ULL
;
8062 writeq(val64
, &bar0
->gpio_control
);
8063 val64
= 0x0411040400000000ULL
;
8064 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8065 val64
= readq(&bar0
->gpio_control
);
8068 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8070 if (register_netdev(dev
)) {
8071 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8073 goto register_failed
;
8076 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8077 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8078 sp
->product_name
, pdev
->revision
);
8079 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8080 s2io_driver_version
);
8081 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8082 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8083 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8084 mode
= s2io_print_pci_mode(sp
);
8087 unregister_netdev(dev
);
8088 goto set_swap_failed
;
8091 switch (sp
->rxd_mode
) {
8093 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8097 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8102 switch (sp
->config
.napi
) {
8104 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8107 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8111 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8112 sp
->config
.tx_fifo_num
);
8114 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8115 sp
->config
.rx_ring_num
);
8117 switch (sp
->config
.intr_type
) {
8119 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8122 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8125 if (sp
->config
.multiq
) {
8126 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8127 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8129 fifo
->multiq
= config
->multiq
;
8131 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8134 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8137 switch (sp
->config
.tx_steering_type
) {
8139 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8142 case TX_PRIORITY_STEERING
:
8144 "%s: Priority steering enabled for transmit\n",
8147 case TX_DEFAULT_STEERING
:
8149 "%s: Default steering enabled for transmit\n",
8153 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8157 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8159 /* Initialize device name */
8160 snprintf(sp
->name
, sizeof(sp
->name
), "%s Neterion %s", dev
->name
,
8164 sp
->vlan_strip_flag
= 1;
8166 sp
->vlan_strip_flag
= 0;
8169 * Make Link state as off at this point, when the Link change
8170 * interrupt comes the state will be automatically changed to
8173 netif_carrier_off(dev
);
8184 free_shared_mem(sp
);
8185 pci_disable_device(pdev
);
8186 pci_release_regions(pdev
);
8193 * s2io_rem_nic - Free the PCI device
8194 * @pdev: structure containing the PCI related information of the device.
8195 * Description: This function is called by the Pci subsystem to release a
8196 * PCI device and free up all resource held up by the device. This could
8197 * be in response to a Hot plug event or when the driver is to be removed
8201 static void s2io_rem_nic(struct pci_dev
*pdev
)
8203 struct net_device
*dev
= pci_get_drvdata(pdev
);
8204 struct s2io_nic
*sp
;
8207 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8211 sp
= netdev_priv(dev
);
8213 cancel_work_sync(&sp
->rst_timer_task
);
8214 cancel_work_sync(&sp
->set_link_task
);
8216 unregister_netdev(dev
);
8218 free_shared_mem(sp
);
8221 pci_release_regions(pdev
);
8223 pci_disable_device(pdev
);
8226 module_pci_driver(s2io_driver
);
8228 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8229 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8230 struct s2io_nic
*sp
)
8233 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8235 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8237 "%s: Non-TCP frames not supported for LRO\n",
8242 /* Checking for DIX type or DIX type with VLAN */
8243 if ((l2_type
== 0) || (l2_type
== 4)) {
8244 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8246 * If vlan stripping is disabled and the frame is VLAN tagged,
8247 * shift the offset by the VLAN header size bytes.
8249 if ((!sp
->vlan_strip_flag
) &&
8250 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8251 ip_off
+= HEADER_VLAN_SIZE
;
8253 /* LLC, SNAP etc are considered non-mergeable */
8257 *ip
= (struct iphdr
*)(buffer
+ ip_off
);
8258 ip_len
= (u8
)((*ip
)->ihl
);
8260 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8265 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8268 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8269 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8270 (lro
->iph
->daddr
!= ip
->daddr
) ||
8271 (lro
->tcph
->source
!= tcp
->source
) ||
8272 (lro
->tcph
->dest
!= tcp
->dest
))
8277 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8279 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8282 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8283 struct iphdr
*ip
, struct tcphdr
*tcp
,
8284 u32 tcp_pyld_len
, u16 vlan_tag
)
8286 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8290 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8291 lro
->tcp_ack
= tcp
->ack_seq
;
8293 lro
->total_len
= ntohs(ip
->tot_len
);
8295 lro
->vlan_tag
= vlan_tag
;
8297 * Check if we saw TCP timestamp.
8298 * Other consistency checks have already been done.
8300 if (tcp
->doff
== 8) {
8302 ptr
= (__be32
*)(tcp
+1);
8304 lro
->cur_tsval
= ntohl(*(ptr
+1));
8305 lro
->cur_tsecr
= *(ptr
+2);
8310 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8312 struct iphdr
*ip
= lro
->iph
;
8313 struct tcphdr
*tcp
= lro
->tcph
;
8314 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8316 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8318 /* Update L3 header */
8319 csum_replace2(&ip
->check
, ip
->tot_len
, htons(lro
->total_len
));
8320 ip
->tot_len
= htons(lro
->total_len
);
8322 /* Update L4 header */
8323 tcp
->ack_seq
= lro
->tcp_ack
;
8324 tcp
->window
= lro
->window
;
8326 /* Update tsecr field if this session has timestamps enabled */
8328 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8329 *(ptr
+2) = lro
->cur_tsecr
;
8332 /* Update counters required for calculation of
8333 * average no. of packets aggregated.
8335 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8336 swstats
->num_aggregations
++;
8339 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8340 struct tcphdr
*tcp
, u32 l4_pyld
)
8342 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8343 lro
->total_len
+= l4_pyld
;
8344 lro
->frags_len
+= l4_pyld
;
8345 lro
->tcp_next_seq
+= l4_pyld
;
8348 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8349 lro
->tcp_ack
= tcp
->ack_seq
;
8350 lro
->window
= tcp
->window
;
8354 /* Update tsecr and tsval from this packet */
8355 ptr
= (__be32
*)(tcp
+1);
8356 lro
->cur_tsval
= ntohl(*(ptr
+1));
8357 lro
->cur_tsecr
= *(ptr
+ 2);
8361 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8362 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8366 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8368 if (!tcp_pyld_len
) {
8369 /* Runt frame or a pure ack */
8373 if (ip
->ihl
!= 5) /* IP has options */
8376 /* If we see CE codepoint in IP header, packet is not mergeable */
8377 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8380 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8381 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8382 tcp
->syn
|| tcp
->fin
||
8383 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8385 * Currently recognize only the ack control word and
8386 * any other control field being set would result in
8387 * flushing the LRO session
8393 * Allow only one TCP timestamp option. Don't aggregate if
8394 * any other options are detected.
8396 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8399 if (tcp
->doff
== 8) {
8400 ptr
= (u8
*)(tcp
+ 1);
8401 while (*ptr
== TCPOPT_NOP
)
8403 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8406 /* Ensure timestamp value increases monotonically */
8408 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8411 /* timestamp echo reply should be non-zero */
8412 if (*((__be32
*)(ptr
+6)) == 0)
8419 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8420 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8421 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8424 struct tcphdr
*tcph
;
8427 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8429 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8434 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8436 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8437 tcph
= (struct tcphdr
*)*tcp
;
8438 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8439 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8440 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8441 if (l_lro
->in_use
) {
8442 if (check_for_socket_match(l_lro
, ip
, tcph
))
8444 /* Sock pair matched */
8447 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8448 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8449 "expected 0x%x, actual 0x%x\n",
8451 (*lro
)->tcp_next_seq
,
8454 swstats
->outof_sequence_pkts
++;
8459 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8461 ret
= 1; /* Aggregate */
8463 ret
= 2; /* Flush both */
8469 /* Before searching for available LRO objects,
8470 * check if the pkt is L3/L4 aggregatable. If not
8471 * don't create new LRO session. Just send this
8474 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8477 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8478 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8479 if (!(l_lro
->in_use
)) {
8481 ret
= 3; /* Begin anew */
8487 if (ret
== 0) { /* sessions exceeded */
8488 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8496 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8500 update_L3L4_header(sp
, *lro
);
8503 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8504 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8505 update_L3L4_header(sp
, *lro
);
8506 ret
= 4; /* Flush the LRO */
8510 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8517 static void clear_lro_session(struct lro
*lro
)
8519 static u16 lro_struct_size
= sizeof(struct lro
);
8521 memset(lro
, 0, lro_struct_size
);
8524 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8526 struct net_device
*dev
= skb
->dev
;
8527 struct s2io_nic
*sp
= netdev_priv(dev
);
8529 skb
->protocol
= eth_type_trans(skb
, dev
);
8530 if (vlan_tag
&& sp
->vlan_strip_flag
)
8531 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
8532 if (sp
->config
.napi
)
8533 netif_receive_skb(skb
);
8538 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8539 struct sk_buff
*skb
, u32 tcp_len
)
8541 struct sk_buff
*first
= lro
->parent
;
8542 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8544 first
->len
+= tcp_len
;
8545 first
->data_len
= lro
->frags_len
;
8546 skb_pull(skb
, (skb
->len
- tcp_len
));
8547 if (skb_shinfo(first
)->frag_list
)
8548 lro
->last_frag
->next
= skb
;
8550 skb_shinfo(first
)->frag_list
= skb
;
8551 first
->truesize
+= skb
->truesize
;
8552 lro
->last_frag
= skb
;
8553 swstats
->clubbed_frms_cnt
++;
8557 * s2io_io_error_detected - called when PCI error is detected
8558 * @pdev: Pointer to PCI device
8559 * @state: The current pci connection state
8561 * This function is called after a PCI bus error affecting
8562 * this device has been detected.
8564 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8565 pci_channel_state_t state
)
8567 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8568 struct s2io_nic
*sp
= netdev_priv(netdev
);
8570 netif_device_detach(netdev
);
8572 if (state
== pci_channel_io_perm_failure
)
8573 return PCI_ERS_RESULT_DISCONNECT
;
8575 if (netif_running(netdev
)) {
8576 /* Bring down the card, while avoiding PCI I/O */
8577 do_s2io_card_down(sp
, 0);
8579 pci_disable_device(pdev
);
8581 return PCI_ERS_RESULT_NEED_RESET
;
8585 * s2io_io_slot_reset - called after the pci bus has been reset.
8586 * @pdev: Pointer to PCI device
8588 * Restart the card from scratch, as if from a cold-boot.
8589 * At this point, the card has exprienced a hard reset,
8590 * followed by fixups by BIOS, and has its config space
8591 * set up identically to what it was at cold boot.
8593 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8595 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8596 struct s2io_nic
*sp
= netdev_priv(netdev
);
8598 if (pci_enable_device(pdev
)) {
8599 pr_err("Cannot re-enable PCI device after reset.\n");
8600 return PCI_ERS_RESULT_DISCONNECT
;
8603 pci_set_master(pdev
);
8606 return PCI_ERS_RESULT_RECOVERED
;
8610 * s2io_io_resume - called when traffic can start flowing again.
8611 * @pdev: Pointer to PCI device
8613 * This callback is called when the error recovery driver tells
8614 * us that its OK to resume normal operation.
8616 static void s2io_io_resume(struct pci_dev
*pdev
)
8618 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8619 struct s2io_nic
*sp
= netdev_priv(netdev
);
8621 if (netif_running(netdev
)) {
8622 if (s2io_card_up(sp
)) {
8623 pr_err("Can't bring device back up after reset.\n");
8627 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8629 pr_err("Can't restore mac addr after reset.\n");
8634 netif_device_attach(netdev
);
8635 netif_tx_wake_all_queues(netdev
);