1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
30 #include "workarounds.h"
32 /**************************************************************************
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int ef4_loopback_mode_max
= LOOPBACK_MAX
;
41 const char *const ef4_loopback_mode_names
[] = {
42 [LOOPBACK_NONE
] = "NONE",
43 [LOOPBACK_DATA
] = "DATAPATH",
44 [LOOPBACK_GMAC
] = "GMAC",
45 [LOOPBACK_XGMII
] = "XGMII",
46 [LOOPBACK_XGXS
] = "XGXS",
47 [LOOPBACK_XAUI
] = "XAUI",
48 [LOOPBACK_GMII
] = "GMII",
49 [LOOPBACK_SGMII
] = "SGMII",
50 [LOOPBACK_XGBR
] = "XGBR",
51 [LOOPBACK_XFI
] = "XFI",
52 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
56 [LOOPBACK_GPHY
] = "GPHY",
57 [LOOPBACK_PHYXS
] = "PHYXS",
58 [LOOPBACK_PCS
] = "PCS",
59 [LOOPBACK_PMAPMD
] = "PMA/PMD",
60 [LOOPBACK_XPORT
] = "XPORT",
61 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS
] = "GMII_WS",
66 [LOOPBACK_XFI_WS
] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
71 const unsigned int ef4_reset_type_max
= RESET_TYPE_MAX
;
72 const char *const ef4_reset_type_names
[] = {
73 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
74 [RESET_TYPE_ALL
] = "ALL",
75 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
76 [RESET_TYPE_WORLD
] = "WORLD",
77 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
78 [RESET_TYPE_DATAPATH
] = "DATAPATH",
79 [RESET_TYPE_DISABLE
] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88 * queued onto this work queue. This is not a per-nic work queue, because
89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 static struct workqueue_struct
*reset_workqueue
;
93 /* How often and how many times to poll for a reset while waiting for a
94 * BIST that another function started to complete.
96 #define BIST_WAIT_DELAY_MS 100
97 #define BIST_WAIT_DELAY_COUNT 100
99 /**************************************************************************
101 * Configurable values
103 *************************************************************************/
106 * Use separate channels for TX and RX events
108 * Set this to 1 to use separate channels for TX and RX. It allows us
109 * to control interrupt affinity separately for TX and RX.
111 * This is only used in MSI-X interrupt mode
113 bool ef4_separate_tx_channels
;
114 module_param(ef4_separate_tx_channels
, bool, 0444);
115 MODULE_PARM_DESC(ef4_separate_tx_channels
,
116 "Use separate channels for TX and RX");
118 /* This is the weight assigned to each of the (per-channel) virtual
121 static int napi_weight
= 64;
123 /* This is the time (in jiffies) between invocations of the hardware
125 * On Falcon-based NICs, this will:
126 * - Check the on-board hardware monitor;
127 * - Poll the link state and reconfigure the hardware as necessary.
128 * On Siena-based NICs for power systems with EEH support, this will give EEH a
131 static unsigned int ef4_monitor_interval
= 1 * HZ
;
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
136 * The default for RX should strike a balance between increasing the
137 * round-trip latency and reducing overhead.
139 static unsigned int rx_irq_mod_usec
= 60;
141 /* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
144 * This default is chosen to ensure that a 10G link does not go idle
145 * while a TX queue is stopped after it has become full. A queue is
146 * restarted when it drops below half full. The time this takes (assuming
147 * worst case 3 descriptors per packet and 1024 descriptors) is
148 * 512 / 3 * 1.2 = 205 usec.
150 static unsigned int tx_irq_mod_usec
= 150;
152 /* This is the first interrupt mode to try out of:
157 static unsigned int interrupt_mode
;
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160 * i.e. the number of CPUs among which we may distribute simultaneous
161 * interrupt handling.
163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164 * The default (0) means to assign an interrupt to each core.
166 static unsigned int rss_cpus
;
167 module_param(rss_cpus
, uint
, 0444);
168 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
170 static bool phy_flash_cfg
;
171 module_param(phy_flash_cfg
, bool, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
174 static unsigned irq_adapt_low_thresh
= 8000;
175 module_param(irq_adapt_low_thresh
, uint
, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh
,
177 "Threshold score for reducing IRQ moderation");
179 static unsigned irq_adapt_high_thresh
= 16000;
180 module_param(irq_adapt_high_thresh
, uint
, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh
,
182 "Threshold score for increasing IRQ moderation");
184 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
185 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
186 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
187 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
188 module_param(debug
, uint
, 0);
189 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
191 /**************************************************************************
193 * Utility functions and prototypes
195 *************************************************************************/
197 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
);
198 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
);
199 static void ef4_remove_channel(struct ef4_channel
*channel
);
200 static void ef4_remove_channels(struct ef4_nic
*efx
);
201 static const struct ef4_channel_type ef4_default_channel_type
;
202 static void ef4_remove_port(struct ef4_nic
*efx
);
203 static void ef4_init_napi_channel(struct ef4_channel
*channel
);
204 static void ef4_fini_napi(struct ef4_nic
*efx
);
205 static void ef4_fini_napi_channel(struct ef4_channel
*channel
);
206 static void ef4_fini_struct(struct ef4_nic
*efx
);
207 static void ef4_start_all(struct ef4_nic
*efx
);
208 static void ef4_stop_all(struct ef4_nic
*efx
);
210 #define EF4_ASSERT_RESET_SERIALISED(efx) \
212 if ((efx->state == STATE_READY) || \
213 (efx->state == STATE_RECOVERY) || \
214 (efx->state == STATE_DISABLED)) \
218 static int ef4_check_disabled(struct ef4_nic
*efx
)
220 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
221 netif_err(efx
, drv
, efx
->net_dev
,
222 "device is disabled due to earlier errors\n");
228 /**************************************************************************
230 * Event queue processing
232 *************************************************************************/
234 /* Process channel's event queue
236 * This function is responsible for processing the event queue of a
237 * single channel. The caller must guarantee that this function will
238 * never be concurrently called more than once on the same channel,
239 * though different channels may be being processed concurrently.
241 static int ef4_process_channel(struct ef4_channel
*channel
, int budget
)
243 struct ef4_tx_queue
*tx_queue
;
246 if (unlikely(!channel
->enabled
))
249 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
250 tx_queue
->pkts_compl
= 0;
251 tx_queue
->bytes_compl
= 0;
254 spent
= ef4_nic_process_eventq(channel
, budget
);
255 if (spent
&& ef4_channel_has_rx_queue(channel
)) {
256 struct ef4_rx_queue
*rx_queue
=
257 ef4_channel_get_rx_queue(channel
);
259 ef4_rx_flush_packet(channel
);
260 ef4_fast_push_rx_descriptors(rx_queue
, true);
264 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
265 if (tx_queue
->bytes_compl
) {
266 netdev_tx_completed_queue(tx_queue
->core_txq
,
267 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
276 * NAPI guarantees serialisation of polls of the same device, which
277 * provides the guarantee required by ef4_process_channel().
279 static void ef4_update_irq_mod(struct ef4_nic
*efx
, struct ef4_channel
*channel
)
281 int step
= efx
->irq_mod_step_us
;
283 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
284 if (channel
->irq_moderation_us
> step
) {
285 channel
->irq_moderation_us
-= step
;
286 efx
->type
->push_irq_moderation(channel
);
288 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
289 if (channel
->irq_moderation_us
<
290 efx
->irq_rx_moderation_us
) {
291 channel
->irq_moderation_us
+= step
;
292 efx
->type
->push_irq_moderation(channel
);
296 channel
->irq_count
= 0;
297 channel
->irq_mod_score
= 0;
300 static int ef4_poll(struct napi_struct
*napi
, int budget
)
302 struct ef4_channel
*channel
=
303 container_of(napi
, struct ef4_channel
, napi_str
);
304 struct ef4_nic
*efx
= channel
->efx
;
307 netif_vdbg(efx
, intr
, efx
->net_dev
,
308 "channel %d NAPI poll executing on CPU %d\n",
309 channel
->channel
, raw_smp_processor_id());
311 spent
= ef4_process_channel(channel
, budget
);
313 if (spent
< budget
) {
314 if (ef4_channel_has_rx_queue(channel
) &&
315 efx
->irq_rx_adaptive
&&
316 unlikely(++channel
->irq_count
== 1000)) {
317 ef4_update_irq_mod(efx
, channel
);
320 ef4_filter_rfs_expire(channel
);
322 /* There is no race here; although napi_disable() will
323 * only wait for napi_complete(), this isn't a problem
324 * since ef4_nic_eventq_read_ack() will have no effect if
325 * interrupts have already been disabled.
327 napi_complete_done(napi
, spent
);
328 ef4_nic_eventq_read_ack(channel
);
334 /* Create event queue
335 * Event queue memory allocations are done only once. If the channel
336 * is reset, the memory buffer will be reused; this guards against
337 * errors during channel reset and also simplifies interrupt handling.
339 static int ef4_probe_eventq(struct ef4_channel
*channel
)
341 struct ef4_nic
*efx
= channel
->efx
;
342 unsigned long entries
;
344 netif_dbg(efx
, probe
, efx
->net_dev
,
345 "chan %d create event queue\n", channel
->channel
);
347 /* Build an event queue with room for one event per tx and rx buffer,
348 * plus some extra for link state events and MCDI completions. */
349 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
350 EF4_BUG_ON_PARANOID(entries
> EF4_MAX_EVQ_SIZE
);
351 channel
->eventq_mask
= max(entries
, EF4_MIN_EVQ_SIZE
) - 1;
353 return ef4_nic_probe_eventq(channel
);
356 /* Prepare channel's event queue */
357 static int ef4_init_eventq(struct ef4_channel
*channel
)
359 struct ef4_nic
*efx
= channel
->efx
;
362 EF4_WARN_ON_PARANOID(channel
->eventq_init
);
364 netif_dbg(efx
, drv
, efx
->net_dev
,
365 "chan %d init event queue\n", channel
->channel
);
367 rc
= ef4_nic_init_eventq(channel
);
369 efx
->type
->push_irq_moderation(channel
);
370 channel
->eventq_read_ptr
= 0;
371 channel
->eventq_init
= true;
376 /* Enable event queue processing and NAPI */
377 void ef4_start_eventq(struct ef4_channel
*channel
)
379 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
380 "chan %d start event queue\n", channel
->channel
);
382 /* Make sure the NAPI handler sees the enabled flag set */
383 channel
->enabled
= true;
386 napi_enable(&channel
->napi_str
);
387 ef4_nic_eventq_read_ack(channel
);
390 /* Disable event queue processing and NAPI */
391 void ef4_stop_eventq(struct ef4_channel
*channel
)
393 if (!channel
->enabled
)
396 napi_disable(&channel
->napi_str
);
397 channel
->enabled
= false;
400 static void ef4_fini_eventq(struct ef4_channel
*channel
)
402 if (!channel
->eventq_init
)
405 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
406 "chan %d fini event queue\n", channel
->channel
);
408 ef4_nic_fini_eventq(channel
);
409 channel
->eventq_init
= false;
412 static void ef4_remove_eventq(struct ef4_channel
*channel
)
414 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
415 "chan %d remove event queue\n", channel
->channel
);
417 ef4_nic_remove_eventq(channel
);
420 /**************************************************************************
424 *************************************************************************/
426 /* Allocate and initialise a channel structure. */
427 static struct ef4_channel
*
428 ef4_alloc_channel(struct ef4_nic
*efx
, int i
, struct ef4_channel
*old_channel
)
430 struct ef4_channel
*channel
;
431 struct ef4_rx_queue
*rx_queue
;
432 struct ef4_tx_queue
*tx_queue
;
435 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
440 channel
->channel
= i
;
441 channel
->type
= &ef4_default_channel_type
;
443 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
444 tx_queue
= &channel
->tx_queue
[j
];
446 tx_queue
->queue
= i
* EF4_TXQ_TYPES
+ j
;
447 tx_queue
->channel
= channel
;
450 rx_queue
= &channel
->rx_queue
;
452 setup_timer(&rx_queue
->slow_fill
, ef4_rx_slow_fill
,
453 (unsigned long)rx_queue
);
458 /* Allocate and initialise a channel structure, copying parameters
459 * (but not resources) from an old channel structure.
461 static struct ef4_channel
*
462 ef4_copy_channel(const struct ef4_channel
*old_channel
)
464 struct ef4_channel
*channel
;
465 struct ef4_rx_queue
*rx_queue
;
466 struct ef4_tx_queue
*tx_queue
;
469 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
473 *channel
= *old_channel
;
475 channel
->napi_dev
= NULL
;
476 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
477 channel
->napi_str
.napi_id
= 0;
478 channel
->napi_str
.state
= 0;
479 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
481 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
482 tx_queue
= &channel
->tx_queue
[j
];
483 if (tx_queue
->channel
)
484 tx_queue
->channel
= channel
;
485 tx_queue
->buffer
= NULL
;
486 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
489 rx_queue
= &channel
->rx_queue
;
490 rx_queue
->buffer
= NULL
;
491 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
492 setup_timer(&rx_queue
->slow_fill
, ef4_rx_slow_fill
,
493 (unsigned long)rx_queue
);
498 static int ef4_probe_channel(struct ef4_channel
*channel
)
500 struct ef4_tx_queue
*tx_queue
;
501 struct ef4_rx_queue
*rx_queue
;
504 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
505 "creating channel %d\n", channel
->channel
);
507 rc
= channel
->type
->pre_probe(channel
);
511 rc
= ef4_probe_eventq(channel
);
515 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
516 rc
= ef4_probe_tx_queue(tx_queue
);
521 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
522 rc
= ef4_probe_rx_queue(rx_queue
);
530 ef4_remove_channel(channel
);
535 ef4_get_channel_name(struct ef4_channel
*channel
, char *buf
, size_t len
)
537 struct ef4_nic
*efx
= channel
->efx
;
541 number
= channel
->channel
;
542 if (efx
->tx_channel_offset
== 0) {
544 } else if (channel
->channel
< efx
->tx_channel_offset
) {
548 number
-= efx
->tx_channel_offset
;
550 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
553 static void ef4_set_channel_names(struct ef4_nic
*efx
)
555 struct ef4_channel
*channel
;
557 ef4_for_each_channel(channel
, efx
)
558 channel
->type
->get_name(channel
,
559 efx
->msi_context
[channel
->channel
].name
,
560 sizeof(efx
->msi_context
[0].name
));
563 static int ef4_probe_channels(struct ef4_nic
*efx
)
565 struct ef4_channel
*channel
;
568 /* Restart special buffer allocation */
569 efx
->next_buffer_table
= 0;
571 /* Probe channels in reverse, so that any 'extra' channels
572 * use the start of the buffer table. This allows the traffic
573 * channels to be resized without moving them or wasting the
574 * entries before them.
576 ef4_for_each_channel_rev(channel
, efx
) {
577 rc
= ef4_probe_channel(channel
);
579 netif_err(efx
, probe
, efx
->net_dev
,
580 "failed to create channel %d\n",
585 ef4_set_channel_names(efx
);
590 ef4_remove_channels(efx
);
594 /* Channels are shutdown and reinitialised whilst the NIC is running
595 * to propagate configuration changes (mtu, checksum offload), or
596 * to clear hardware error conditions
598 static void ef4_start_datapath(struct ef4_nic
*efx
)
600 netdev_features_t old_features
= efx
->net_dev
->features
;
601 bool old_rx_scatter
= efx
->rx_scatter
;
602 struct ef4_tx_queue
*tx_queue
;
603 struct ef4_rx_queue
*rx_queue
;
604 struct ef4_channel
*channel
;
607 /* Calculate the rx buffer allocation parameters required to
608 * support the current MTU, including padding for header
609 * alignment and overruns.
611 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
612 EF4_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
613 efx
->type
->rx_buffer_padding
);
614 rx_buf_len
= (sizeof(struct ef4_rx_page_state
) +
615 efx
->rx_ip_align
+ efx
->rx_dma_len
);
616 if (rx_buf_len
<= PAGE_SIZE
) {
617 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
618 efx
->rx_buffer_order
= 0;
619 } else if (efx
->type
->can_rx_scatter
) {
620 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
621 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state
) +
622 2 * ALIGN(NET_IP_ALIGN
+ EF4_RX_USR_BUF_SIZE
,
623 EF4_RX_BUF_ALIGNMENT
) >
625 efx
->rx_scatter
= true;
626 efx
->rx_dma_len
= EF4_RX_USR_BUF_SIZE
;
627 efx
->rx_buffer_order
= 0;
629 efx
->rx_scatter
= false;
630 efx
->rx_buffer_order
= get_order(rx_buf_len
);
633 ef4_rx_config_page_split(efx
);
634 if (efx
->rx_buffer_order
)
635 netif_dbg(efx
, drv
, efx
->net_dev
,
636 "RX buf len=%u; page order=%u batch=%u\n",
637 efx
->rx_dma_len
, efx
->rx_buffer_order
,
638 efx
->rx_pages_per_batch
);
640 netif_dbg(efx
, drv
, efx
->net_dev
,
641 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
642 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
643 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
645 /* Restore previously fixed features in hw_features and remove
646 * features which are fixed now
648 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
649 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
650 efx
->net_dev
->features
|= efx
->fixed_features
;
651 if (efx
->net_dev
->features
!= old_features
)
652 netdev_features_change(efx
->net_dev
);
654 /* RX filters may also have scatter-enabled flags */
655 if (efx
->rx_scatter
!= old_rx_scatter
)
656 efx
->type
->filter_update_rx_scatter(efx
);
658 /* We must keep at least one descriptor in a TX ring empty.
659 * We could avoid this when the queue size does not exactly
660 * match the hardware ring size, but it's not that important.
661 * Therefore we stop the queue when one more skb might fill
662 * the ring completely. We wake it when half way back to
665 efx
->txq_stop_thresh
= efx
->txq_entries
- ef4_tx_max_skb_descs(efx
);
666 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
668 /* Initialise the channels */
669 ef4_for_each_channel(channel
, efx
) {
670 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
671 ef4_init_tx_queue(tx_queue
);
672 atomic_inc(&efx
->active_queues
);
675 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
676 ef4_init_rx_queue(rx_queue
);
677 atomic_inc(&efx
->active_queues
);
678 ef4_stop_eventq(channel
);
679 ef4_fast_push_rx_descriptors(rx_queue
, false);
680 ef4_start_eventq(channel
);
683 WARN_ON(channel
->rx_pkt_n_frags
);
686 if (netif_device_present(efx
->net_dev
))
687 netif_tx_wake_all_queues(efx
->net_dev
);
690 static void ef4_stop_datapath(struct ef4_nic
*efx
)
692 struct ef4_channel
*channel
;
693 struct ef4_tx_queue
*tx_queue
;
694 struct ef4_rx_queue
*rx_queue
;
697 EF4_ASSERT_RESET_SERIALISED(efx
);
698 BUG_ON(efx
->port_enabled
);
701 ef4_for_each_channel(channel
, efx
) {
702 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
703 rx_queue
->refill_enabled
= false;
706 ef4_for_each_channel(channel
, efx
) {
707 /* RX packet processing is pipelined, so wait for the
708 * NAPI handler to complete. At least event queue 0
709 * might be kept active by non-data events, so don't
710 * use napi_synchronize() but actually disable NAPI
713 if (ef4_channel_has_rx_queue(channel
)) {
714 ef4_stop_eventq(channel
);
715 ef4_start_eventq(channel
);
719 rc
= efx
->type
->fini_dmaq(efx
);
720 if (rc
&& EF4_WORKAROUND_7803(efx
)) {
721 /* Schedule a reset to recover from the flush failure. The
722 * descriptor caches reference memory we're about to free,
723 * but falcon_reconfigure_mac_wrapper() won't reconnect
724 * the MACs because of the pending reset.
726 netif_err(efx
, drv
, efx
->net_dev
,
727 "Resetting to recover from flush failure\n");
728 ef4_schedule_reset(efx
, RESET_TYPE_ALL
);
730 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
732 netif_dbg(efx
, drv
, efx
->net_dev
,
733 "successfully flushed all queues\n");
736 ef4_for_each_channel(channel
, efx
) {
737 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
738 ef4_fini_rx_queue(rx_queue
);
739 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
740 ef4_fini_tx_queue(tx_queue
);
744 static void ef4_remove_channel(struct ef4_channel
*channel
)
746 struct ef4_tx_queue
*tx_queue
;
747 struct ef4_rx_queue
*rx_queue
;
749 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
750 "destroy chan %d\n", channel
->channel
);
752 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
753 ef4_remove_rx_queue(rx_queue
);
754 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
755 ef4_remove_tx_queue(tx_queue
);
756 ef4_remove_eventq(channel
);
757 channel
->type
->post_remove(channel
);
760 static void ef4_remove_channels(struct ef4_nic
*efx
)
762 struct ef4_channel
*channel
;
764 ef4_for_each_channel(channel
, efx
)
765 ef4_remove_channel(channel
);
769 ef4_realloc_channels(struct ef4_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
771 struct ef4_channel
*other_channel
[EF4_MAX_CHANNELS
], *channel
;
772 u32 old_rxq_entries
, old_txq_entries
;
773 unsigned i
, next_buffer_table
= 0;
776 rc
= ef4_check_disabled(efx
);
780 /* Not all channels should be reallocated. We must avoid
781 * reallocating their buffer table entries.
783 ef4_for_each_channel(channel
, efx
) {
784 struct ef4_rx_queue
*rx_queue
;
785 struct ef4_tx_queue
*tx_queue
;
787 if (channel
->type
->copy
)
789 next_buffer_table
= max(next_buffer_table
,
790 channel
->eventq
.index
+
791 channel
->eventq
.entries
);
792 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
793 next_buffer_table
= max(next_buffer_table
,
794 rx_queue
->rxd
.index
+
795 rx_queue
->rxd
.entries
);
796 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
797 next_buffer_table
= max(next_buffer_table
,
798 tx_queue
->txd
.index
+
799 tx_queue
->txd
.entries
);
802 ef4_device_detach_sync(efx
);
804 ef4_soft_disable_interrupts(efx
);
806 /* Clone channels (where possible) */
807 memset(other_channel
, 0, sizeof(other_channel
));
808 for (i
= 0; i
< efx
->n_channels
; i
++) {
809 channel
= efx
->channel
[i
];
810 if (channel
->type
->copy
)
811 channel
= channel
->type
->copy(channel
);
816 other_channel
[i
] = channel
;
819 /* Swap entry counts and channel pointers */
820 old_rxq_entries
= efx
->rxq_entries
;
821 old_txq_entries
= efx
->txq_entries
;
822 efx
->rxq_entries
= rxq_entries
;
823 efx
->txq_entries
= txq_entries
;
824 for (i
= 0; i
< efx
->n_channels
; i
++) {
825 channel
= efx
->channel
[i
];
826 efx
->channel
[i
] = other_channel
[i
];
827 other_channel
[i
] = channel
;
830 /* Restart buffer table allocation */
831 efx
->next_buffer_table
= next_buffer_table
;
833 for (i
= 0; i
< efx
->n_channels
; i
++) {
834 channel
= efx
->channel
[i
];
835 if (!channel
->type
->copy
)
837 rc
= ef4_probe_channel(channel
);
840 ef4_init_napi_channel(efx
->channel
[i
]);
844 /* Destroy unused channel structures */
845 for (i
= 0; i
< efx
->n_channels
; i
++) {
846 channel
= other_channel
[i
];
847 if (channel
&& channel
->type
->copy
) {
848 ef4_fini_napi_channel(channel
);
849 ef4_remove_channel(channel
);
854 rc2
= ef4_soft_enable_interrupts(efx
);
857 netif_err(efx
, drv
, efx
->net_dev
,
858 "unable to restart interrupts on channel reallocation\n");
859 ef4_schedule_reset(efx
, RESET_TYPE_DISABLE
);
862 netif_device_attach(efx
->net_dev
);
868 efx
->rxq_entries
= old_rxq_entries
;
869 efx
->txq_entries
= old_txq_entries
;
870 for (i
= 0; i
< efx
->n_channels
; i
++) {
871 channel
= efx
->channel
[i
];
872 efx
->channel
[i
] = other_channel
[i
];
873 other_channel
[i
] = channel
;
878 void ef4_schedule_slow_fill(struct ef4_rx_queue
*rx_queue
)
880 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
883 static const struct ef4_channel_type ef4_default_channel_type
= {
884 .pre_probe
= ef4_channel_dummy_op_int
,
885 .post_remove
= ef4_channel_dummy_op_void
,
886 .get_name
= ef4_get_channel_name
,
887 .copy
= ef4_copy_channel
,
888 .keep_eventq
= false,
891 int ef4_channel_dummy_op_int(struct ef4_channel
*channel
)
896 void ef4_channel_dummy_op_void(struct ef4_channel
*channel
)
900 /**************************************************************************
904 **************************************************************************/
906 /* This ensures that the kernel is kept informed (via
907 * netif_carrier_on/off) of the link status, and also maintains the
908 * link status's stop on the port's TX queue.
910 void ef4_link_status_changed(struct ef4_nic
*efx
)
912 struct ef4_link_state
*link_state
= &efx
->link_state
;
914 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
915 * that no events are triggered between unregister_netdev() and the
916 * driver unloading. A more general condition is that NETDEV_CHANGE
917 * can only be generated between NETDEV_UP and NETDEV_DOWN */
918 if (!netif_running(efx
->net_dev
))
921 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
922 efx
->n_link_state_changes
++;
925 netif_carrier_on(efx
->net_dev
);
927 netif_carrier_off(efx
->net_dev
);
930 /* Status message for kernel log */
932 netif_info(efx
, link
, efx
->net_dev
,
933 "link up at %uMbps %s-duplex (MTU %d)\n",
934 link_state
->speed
, link_state
->fd
? "full" : "half",
937 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
940 void ef4_link_set_advertising(struct ef4_nic
*efx
, u32 advertising
)
942 efx
->link_advertising
= advertising
;
944 if (advertising
& ADVERTISED_Pause
)
945 efx
->wanted_fc
|= (EF4_FC_TX
| EF4_FC_RX
);
947 efx
->wanted_fc
&= ~(EF4_FC_TX
| EF4_FC_RX
);
948 if (advertising
& ADVERTISED_Asym_Pause
)
949 efx
->wanted_fc
^= EF4_FC_TX
;
953 void ef4_link_set_wanted_fc(struct ef4_nic
*efx
, u8 wanted_fc
)
955 efx
->wanted_fc
= wanted_fc
;
956 if (efx
->link_advertising
) {
957 if (wanted_fc
& EF4_FC_RX
)
958 efx
->link_advertising
|= (ADVERTISED_Pause
|
959 ADVERTISED_Asym_Pause
);
961 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
962 ADVERTISED_Asym_Pause
);
963 if (wanted_fc
& EF4_FC_TX
)
964 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
968 static void ef4_fini_port(struct ef4_nic
*efx
);
970 /* We assume that efx->type->reconfigure_mac will always try to sync RX
971 * filters and therefore needs to read-lock the filter table against freeing
973 void ef4_mac_reconfigure(struct ef4_nic
*efx
)
975 down_read(&efx
->filter_sem
);
976 efx
->type
->reconfigure_mac(efx
);
977 up_read(&efx
->filter_sem
);
980 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
981 * the MAC appropriately. All other PHY configuration changes are pushed
982 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
983 * through ef4_monitor().
985 * Callers must hold the mac_lock
987 int __ef4_reconfigure_port(struct ef4_nic
*efx
)
989 enum ef4_phy_mode phy_mode
;
992 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
994 /* Disable PHY transmit in mac level loopbacks */
995 phy_mode
= efx
->phy_mode
;
996 if (LOOPBACK_INTERNAL(efx
))
997 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
999 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
1001 rc
= efx
->type
->reconfigure_port(efx
);
1004 efx
->phy_mode
= phy_mode
;
1009 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1011 int ef4_reconfigure_port(struct ef4_nic
*efx
)
1015 EF4_ASSERT_RESET_SERIALISED(efx
);
1017 mutex_lock(&efx
->mac_lock
);
1018 rc
= __ef4_reconfigure_port(efx
);
1019 mutex_unlock(&efx
->mac_lock
);
1024 /* Asynchronous work item for changing MAC promiscuity and multicast
1025 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1027 static void ef4_mac_work(struct work_struct
*data
)
1029 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, mac_work
);
1031 mutex_lock(&efx
->mac_lock
);
1032 if (efx
->port_enabled
)
1033 ef4_mac_reconfigure(efx
);
1034 mutex_unlock(&efx
->mac_lock
);
1037 static int ef4_probe_port(struct ef4_nic
*efx
)
1041 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1044 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1046 /* Connect up MAC/PHY operations table */
1047 rc
= efx
->type
->probe_port(efx
);
1051 /* Initialise MAC address to permanent address */
1052 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1057 static int ef4_init_port(struct ef4_nic
*efx
)
1061 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1063 mutex_lock(&efx
->mac_lock
);
1065 rc
= efx
->phy_op
->init(efx
);
1069 efx
->port_initialized
= true;
1071 /* Reconfigure the MAC before creating dma queues (required for
1072 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1073 ef4_mac_reconfigure(efx
);
1075 /* Ensure the PHY advertises the correct flow control settings */
1076 rc
= efx
->phy_op
->reconfigure(efx
);
1077 if (rc
&& rc
!= -EPERM
)
1080 mutex_unlock(&efx
->mac_lock
);
1084 efx
->phy_op
->fini(efx
);
1086 mutex_unlock(&efx
->mac_lock
);
1090 static void ef4_start_port(struct ef4_nic
*efx
)
1092 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1093 BUG_ON(efx
->port_enabled
);
1095 mutex_lock(&efx
->mac_lock
);
1096 efx
->port_enabled
= true;
1098 /* Ensure MAC ingress/egress is enabled */
1099 ef4_mac_reconfigure(efx
);
1101 mutex_unlock(&efx
->mac_lock
);
1104 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1105 * and the async self-test, wait for them to finish and prevent them
1106 * being scheduled again. This doesn't cover online resets, which
1107 * should only be cancelled when removing the device.
1109 static void ef4_stop_port(struct ef4_nic
*efx
)
1111 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1113 EF4_ASSERT_RESET_SERIALISED(efx
);
1115 mutex_lock(&efx
->mac_lock
);
1116 efx
->port_enabled
= false;
1117 mutex_unlock(&efx
->mac_lock
);
1119 /* Serialise against ef4_set_multicast_list() */
1120 netif_addr_lock_bh(efx
->net_dev
);
1121 netif_addr_unlock_bh(efx
->net_dev
);
1123 cancel_delayed_work_sync(&efx
->monitor_work
);
1124 ef4_selftest_async_cancel(efx
);
1125 cancel_work_sync(&efx
->mac_work
);
1128 static void ef4_fini_port(struct ef4_nic
*efx
)
1130 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1132 if (!efx
->port_initialized
)
1135 efx
->phy_op
->fini(efx
);
1136 efx
->port_initialized
= false;
1138 efx
->link_state
.up
= false;
1139 ef4_link_status_changed(efx
);
1142 static void ef4_remove_port(struct ef4_nic
*efx
)
1144 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1146 efx
->type
->remove_port(efx
);
1149 /**************************************************************************
1153 **************************************************************************/
1155 static LIST_HEAD(ef4_primary_list
);
1156 static LIST_HEAD(ef4_unassociated_list
);
1158 static bool ef4_same_controller(struct ef4_nic
*left
, struct ef4_nic
*right
)
1160 return left
->type
== right
->type
&&
1161 left
->vpd_sn
&& right
->vpd_sn
&&
1162 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1165 static void ef4_associate(struct ef4_nic
*efx
)
1167 struct ef4_nic
*other
, *next
;
1169 if (efx
->primary
== efx
) {
1170 /* Adding primary function; look for secondaries */
1172 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1173 list_add_tail(&efx
->node
, &ef4_primary_list
);
1175 list_for_each_entry_safe(other
, next
, &ef4_unassociated_list
,
1177 if (ef4_same_controller(efx
, other
)) {
1178 list_del(&other
->node
);
1179 netif_dbg(other
, probe
, other
->net_dev
,
1180 "moving to secondary list of %s %s\n",
1181 pci_name(efx
->pci_dev
),
1182 efx
->net_dev
->name
);
1183 list_add_tail(&other
->node
,
1184 &efx
->secondary_list
);
1185 other
->primary
= efx
;
1189 /* Adding secondary function; look for primary */
1191 list_for_each_entry(other
, &ef4_primary_list
, node
) {
1192 if (ef4_same_controller(efx
, other
)) {
1193 netif_dbg(efx
, probe
, efx
->net_dev
,
1194 "adding to secondary list of %s %s\n",
1195 pci_name(other
->pci_dev
),
1196 other
->net_dev
->name
);
1197 list_add_tail(&efx
->node
,
1198 &other
->secondary_list
);
1199 efx
->primary
= other
;
1204 netif_dbg(efx
, probe
, efx
->net_dev
,
1205 "adding to unassociated list\n");
1206 list_add_tail(&efx
->node
, &ef4_unassociated_list
);
1210 static void ef4_dissociate(struct ef4_nic
*efx
)
1212 struct ef4_nic
*other
, *next
;
1214 list_del(&efx
->node
);
1215 efx
->primary
= NULL
;
1217 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1218 list_del(&other
->node
);
1219 netif_dbg(other
, probe
, other
->net_dev
,
1220 "moving to unassociated list\n");
1221 list_add_tail(&other
->node
, &ef4_unassociated_list
);
1222 other
->primary
= NULL
;
1226 /* This configures the PCI device to enable I/O and DMA. */
1227 static int ef4_init_io(struct ef4_nic
*efx
)
1229 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1230 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1231 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1234 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1236 bar
= efx
->type
->mem_bar
;
1238 rc
= pci_enable_device(pci_dev
);
1240 netif_err(efx
, probe
, efx
->net_dev
,
1241 "failed to enable PCI device\n");
1245 pci_set_master(pci_dev
);
1247 /* Set the PCI DMA mask. Try all possibilities from our
1248 * genuine mask down to 32 bits, because some architectures
1249 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1250 * masks event though they reject 46 bit masks.
1252 while (dma_mask
> 0x7fffffffUL
) {
1253 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1259 netif_err(efx
, probe
, efx
->net_dev
,
1260 "could not find a suitable DMA mask\n");
1263 netif_dbg(efx
, probe
, efx
->net_dev
,
1264 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1266 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1267 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1269 netif_err(efx
, probe
, efx
->net_dev
,
1270 "request for memory BAR failed\n");
1274 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1275 if (!efx
->membase
) {
1276 netif_err(efx
, probe
, efx
->net_dev
,
1277 "could not map memory BAR at %llx+%x\n",
1278 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1282 netif_dbg(efx
, probe
, efx
->net_dev
,
1283 "memory BAR at %llx+%x (virtual %p)\n",
1284 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1290 pci_release_region(efx
->pci_dev
, bar
);
1292 efx
->membase_phys
= 0;
1294 pci_disable_device(efx
->pci_dev
);
1299 static void ef4_fini_io(struct ef4_nic
*efx
)
1303 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1306 iounmap(efx
->membase
);
1307 efx
->membase
= NULL
;
1310 if (efx
->membase_phys
) {
1311 bar
= efx
->type
->mem_bar
;
1312 pci_release_region(efx
->pci_dev
, bar
);
1313 efx
->membase_phys
= 0;
1316 /* Don't disable bus-mastering if VFs are assigned */
1317 if (!pci_vfs_assigned(efx
->pci_dev
))
1318 pci_disable_device(efx
->pci_dev
);
1321 void ef4_set_default_rx_indir_table(struct ef4_nic
*efx
)
1325 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1326 efx
->rx_indir_table
[i
] =
1327 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1330 static unsigned int ef4_wanted_parallelism(struct ef4_nic
*efx
)
1332 cpumask_var_t thread_mask
;
1339 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1340 netif_warn(efx
, probe
, efx
->net_dev
,
1341 "RSS disabled due to allocation failure\n");
1346 for_each_online_cpu(cpu
) {
1347 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1349 cpumask_or(thread_mask
, thread_mask
,
1350 topology_sibling_cpumask(cpu
));
1354 free_cpumask_var(thread_mask
);
1357 if (count
> EF4_MAX_RX_QUEUES
) {
1358 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
1359 "Reducing number of rx queues from %u to %u.\n",
1360 count
, EF4_MAX_RX_QUEUES
);
1361 count
= EF4_MAX_RX_QUEUES
;
1367 /* Probe the number and type of interrupts we are able to obtain, and
1368 * the resulting numbers of channels and RX queues.
1370 static int ef4_probe_interrupts(struct ef4_nic
*efx
)
1372 unsigned int extra_channels
= 0;
1376 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++)
1377 if (efx
->extra_channel_type
[i
])
1380 if (efx
->interrupt_mode
== EF4_INT_MODE_MSIX
) {
1381 struct msix_entry xentries
[EF4_MAX_CHANNELS
];
1382 unsigned int n_channels
;
1384 n_channels
= ef4_wanted_parallelism(efx
);
1385 if (ef4_separate_tx_channels
)
1387 n_channels
+= extra_channels
;
1388 n_channels
= min(n_channels
, efx
->max_channels
);
1390 for (i
= 0; i
< n_channels
; i
++)
1391 xentries
[i
].entry
= i
;
1392 rc
= pci_enable_msix_range(efx
->pci_dev
,
1393 xentries
, 1, n_channels
);
1395 /* Fall back to single channel MSI */
1396 efx
->interrupt_mode
= EF4_INT_MODE_MSI
;
1397 netif_err(efx
, drv
, efx
->net_dev
,
1398 "could not enable MSI-X\n");
1399 } else if (rc
< n_channels
) {
1400 netif_err(efx
, drv
, efx
->net_dev
,
1401 "WARNING: Insufficient MSI-X vectors"
1402 " available (%d < %u).\n", rc
, n_channels
);
1403 netif_err(efx
, drv
, efx
->net_dev
,
1404 "WARNING: Performance may be reduced.\n");
1409 efx
->n_channels
= n_channels
;
1410 if (n_channels
> extra_channels
)
1411 n_channels
-= extra_channels
;
1412 if (ef4_separate_tx_channels
) {
1413 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1415 efx
->max_tx_channels
);
1416 efx
->n_rx_channels
= max(n_channels
-
1420 efx
->n_tx_channels
= min(n_channels
,
1421 efx
->max_tx_channels
);
1422 efx
->n_rx_channels
= n_channels
;
1424 for (i
= 0; i
< efx
->n_channels
; i
++)
1425 ef4_get_channel(efx
, i
)->irq
=
1430 /* Try single interrupt MSI */
1431 if (efx
->interrupt_mode
== EF4_INT_MODE_MSI
) {
1432 efx
->n_channels
= 1;
1433 efx
->n_rx_channels
= 1;
1434 efx
->n_tx_channels
= 1;
1435 rc
= pci_enable_msi(efx
->pci_dev
);
1437 ef4_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1439 netif_err(efx
, drv
, efx
->net_dev
,
1440 "could not enable MSI\n");
1441 efx
->interrupt_mode
= EF4_INT_MODE_LEGACY
;
1445 /* Assume legacy interrupts */
1446 if (efx
->interrupt_mode
== EF4_INT_MODE_LEGACY
) {
1447 efx
->n_channels
= 1 + (ef4_separate_tx_channels
? 1 : 0);
1448 efx
->n_rx_channels
= 1;
1449 efx
->n_tx_channels
= 1;
1450 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1453 /* Assign extra channels if possible */
1454 j
= efx
->n_channels
;
1455 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++) {
1456 if (!efx
->extra_channel_type
[i
])
1458 if (efx
->interrupt_mode
!= EF4_INT_MODE_MSIX
||
1459 efx
->n_channels
<= extra_channels
) {
1460 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1463 ef4_get_channel(efx
, j
)->type
=
1464 efx
->extra_channel_type
[i
];
1468 efx
->rss_spread
= efx
->n_rx_channels
;
1473 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
)
1475 struct ef4_channel
*channel
, *end_channel
;
1478 BUG_ON(efx
->state
== STATE_DISABLED
);
1480 efx
->irq_soft_enabled
= true;
1483 ef4_for_each_channel(channel
, efx
) {
1484 if (!channel
->type
->keep_eventq
) {
1485 rc
= ef4_init_eventq(channel
);
1489 ef4_start_eventq(channel
);
1494 end_channel
= channel
;
1495 ef4_for_each_channel(channel
, efx
) {
1496 if (channel
== end_channel
)
1498 ef4_stop_eventq(channel
);
1499 if (!channel
->type
->keep_eventq
)
1500 ef4_fini_eventq(channel
);
1506 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
)
1508 struct ef4_channel
*channel
;
1510 if (efx
->state
== STATE_DISABLED
)
1513 efx
->irq_soft_enabled
= false;
1516 if (efx
->legacy_irq
)
1517 synchronize_irq(efx
->legacy_irq
);
1519 ef4_for_each_channel(channel
, efx
) {
1521 synchronize_irq(channel
->irq
);
1523 ef4_stop_eventq(channel
);
1524 if (!channel
->type
->keep_eventq
)
1525 ef4_fini_eventq(channel
);
1529 static int ef4_enable_interrupts(struct ef4_nic
*efx
)
1531 struct ef4_channel
*channel
, *end_channel
;
1534 BUG_ON(efx
->state
== STATE_DISABLED
);
1536 if (efx
->eeh_disabled_legacy_irq
) {
1537 enable_irq(efx
->legacy_irq
);
1538 efx
->eeh_disabled_legacy_irq
= false;
1541 efx
->type
->irq_enable_master(efx
);
1543 ef4_for_each_channel(channel
, efx
) {
1544 if (channel
->type
->keep_eventq
) {
1545 rc
= ef4_init_eventq(channel
);
1551 rc
= ef4_soft_enable_interrupts(efx
);
1558 end_channel
= channel
;
1559 ef4_for_each_channel(channel
, efx
) {
1560 if (channel
== end_channel
)
1562 if (channel
->type
->keep_eventq
)
1563 ef4_fini_eventq(channel
);
1566 efx
->type
->irq_disable_non_ev(efx
);
1571 static void ef4_disable_interrupts(struct ef4_nic
*efx
)
1573 struct ef4_channel
*channel
;
1575 ef4_soft_disable_interrupts(efx
);
1577 ef4_for_each_channel(channel
, efx
) {
1578 if (channel
->type
->keep_eventq
)
1579 ef4_fini_eventq(channel
);
1582 efx
->type
->irq_disable_non_ev(efx
);
1585 static void ef4_remove_interrupts(struct ef4_nic
*efx
)
1587 struct ef4_channel
*channel
;
1589 /* Remove MSI/MSI-X interrupts */
1590 ef4_for_each_channel(channel
, efx
)
1592 pci_disable_msi(efx
->pci_dev
);
1593 pci_disable_msix(efx
->pci_dev
);
1595 /* Remove legacy interrupt */
1596 efx
->legacy_irq
= 0;
1599 static void ef4_set_channels(struct ef4_nic
*efx
)
1601 struct ef4_channel
*channel
;
1602 struct ef4_tx_queue
*tx_queue
;
1604 efx
->tx_channel_offset
=
1605 ef4_separate_tx_channels
?
1606 efx
->n_channels
- efx
->n_tx_channels
: 0;
1608 /* We need to mark which channels really have RX and TX
1609 * queues, and adjust the TX queue numbers if we have separate
1610 * RX-only and TX-only channels.
1612 ef4_for_each_channel(channel
, efx
) {
1613 if (channel
->channel
< efx
->n_rx_channels
)
1614 channel
->rx_queue
.core_index
= channel
->channel
;
1616 channel
->rx_queue
.core_index
= -1;
1618 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
1619 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1624 static int ef4_probe_nic(struct ef4_nic
*efx
)
1628 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1630 /* Carry out hardware-type specific initialisation */
1631 rc
= efx
->type
->probe(efx
);
1636 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1637 netif_err(efx
, drv
, efx
->net_dev
,
1638 "Insufficient resources to allocate"
1644 /* Determine the number of channels and queues by trying
1645 * to hook in MSI-X interrupts.
1647 rc
= ef4_probe_interrupts(efx
);
1651 ef4_set_channels(efx
);
1653 /* dimension_resources can fail with EAGAIN */
1654 rc
= efx
->type
->dimension_resources(efx
);
1655 if (rc
!= 0 && rc
!= -EAGAIN
)
1659 /* try again with new max_channels */
1660 ef4_remove_interrupts(efx
);
1662 } while (rc
== -EAGAIN
);
1664 if (efx
->n_channels
> 1)
1665 netdev_rss_key_fill(&efx
->rx_hash_key
,
1666 sizeof(efx
->rx_hash_key
));
1667 ef4_set_default_rx_indir_table(efx
);
1669 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1670 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1672 /* Initialise the interrupt moderation settings */
1673 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1674 ef4_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1680 ef4_remove_interrupts(efx
);
1682 efx
->type
->remove(efx
);
1686 static void ef4_remove_nic(struct ef4_nic
*efx
)
1688 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1690 ef4_remove_interrupts(efx
);
1691 efx
->type
->remove(efx
);
1694 static int ef4_probe_filters(struct ef4_nic
*efx
)
1698 spin_lock_init(&efx
->filter_lock
);
1699 init_rwsem(&efx
->filter_sem
);
1700 mutex_lock(&efx
->mac_lock
);
1701 down_write(&efx
->filter_sem
);
1702 rc
= efx
->type
->filter_table_probe(efx
);
1706 #ifdef CONFIG_RFS_ACCEL
1707 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1708 struct ef4_channel
*channel
;
1711 ef4_for_each_channel(channel
, efx
) {
1712 channel
->rps_flow_id
=
1713 kcalloc(efx
->type
->max_rx_ip_filters
,
1714 sizeof(*channel
->rps_flow_id
),
1716 if (!channel
->rps_flow_id
)
1720 i
< efx
->type
->max_rx_ip_filters
;
1722 channel
->rps_flow_id
[i
] =
1723 RPS_FLOW_ID_INVALID
;
1727 ef4_for_each_channel(channel
, efx
)
1728 kfree(channel
->rps_flow_id
);
1729 efx
->type
->filter_table_remove(efx
);
1734 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1738 up_write(&efx
->filter_sem
);
1739 mutex_unlock(&efx
->mac_lock
);
1743 static void ef4_remove_filters(struct ef4_nic
*efx
)
1745 #ifdef CONFIG_RFS_ACCEL
1746 struct ef4_channel
*channel
;
1748 ef4_for_each_channel(channel
, efx
)
1749 kfree(channel
->rps_flow_id
);
1751 down_write(&efx
->filter_sem
);
1752 efx
->type
->filter_table_remove(efx
);
1753 up_write(&efx
->filter_sem
);
1756 static void ef4_restore_filters(struct ef4_nic
*efx
)
1758 down_read(&efx
->filter_sem
);
1759 efx
->type
->filter_table_restore(efx
);
1760 up_read(&efx
->filter_sem
);
1763 /**************************************************************************
1765 * NIC startup/shutdown
1767 *************************************************************************/
1769 static int ef4_probe_all(struct ef4_nic
*efx
)
1773 rc
= ef4_probe_nic(efx
);
1775 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1779 rc
= ef4_probe_port(efx
);
1781 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1785 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_RXQ_MIN_ENT
);
1786 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_TXQ_MIN_ENT(efx
))) {
1790 efx
->rxq_entries
= efx
->txq_entries
= EF4_DEFAULT_DMAQ_SIZE
;
1792 rc
= ef4_probe_filters(efx
);
1794 netif_err(efx
, probe
, efx
->net_dev
,
1795 "failed to create filter tables\n");
1799 rc
= ef4_probe_channels(efx
);
1806 ef4_remove_filters(efx
);
1809 ef4_remove_port(efx
);
1811 ef4_remove_nic(efx
);
1816 /* If the interface is supposed to be running but is not, start
1817 * the hardware and software data path, regular activity for the port
1818 * (MAC statistics, link polling, etc.) and schedule the port to be
1819 * reconfigured. Interrupts must already be enabled. This function
1820 * is safe to call multiple times, so long as the NIC is not disabled.
1821 * Requires the RTNL lock.
1823 static void ef4_start_all(struct ef4_nic
*efx
)
1825 EF4_ASSERT_RESET_SERIALISED(efx
);
1826 BUG_ON(efx
->state
== STATE_DISABLED
);
1828 /* Check that it is appropriate to restart the interface. All
1829 * of these flags are safe to read under just the rtnl lock */
1830 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1834 ef4_start_port(efx
);
1835 ef4_start_datapath(efx
);
1837 /* Start the hardware monitor if there is one */
1838 if (efx
->type
->monitor
!= NULL
)
1839 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1840 ef4_monitor_interval
);
1842 efx
->type
->start_stats(efx
);
1843 efx
->type
->pull_stats(efx
);
1844 spin_lock_bh(&efx
->stats_lock
);
1845 efx
->type
->update_stats(efx
, NULL
, NULL
);
1846 spin_unlock_bh(&efx
->stats_lock
);
1849 /* Quiesce the hardware and software data path, and regular activity
1850 * for the port without bringing the link down. Safe to call multiple
1851 * times with the NIC in almost any state, but interrupts should be
1852 * enabled. Requires the RTNL lock.
1854 static void ef4_stop_all(struct ef4_nic
*efx
)
1856 EF4_ASSERT_RESET_SERIALISED(efx
);
1858 /* port_enabled can be read safely under the rtnl lock */
1859 if (!efx
->port_enabled
)
1862 /* update stats before we go down so we can accurately count
1865 efx
->type
->pull_stats(efx
);
1866 spin_lock_bh(&efx
->stats_lock
);
1867 efx
->type
->update_stats(efx
, NULL
, NULL
);
1868 spin_unlock_bh(&efx
->stats_lock
);
1869 efx
->type
->stop_stats(efx
);
1872 /* Stop the kernel transmit interface. This is only valid if
1873 * the device is stopped or detached; otherwise the watchdog
1874 * may fire immediately.
1876 WARN_ON(netif_running(efx
->net_dev
) &&
1877 netif_device_present(efx
->net_dev
));
1878 netif_tx_disable(efx
->net_dev
);
1880 ef4_stop_datapath(efx
);
1883 static void ef4_remove_all(struct ef4_nic
*efx
)
1885 ef4_remove_channels(efx
);
1886 ef4_remove_filters(efx
);
1887 ef4_remove_port(efx
);
1888 ef4_remove_nic(efx
);
1891 /**************************************************************************
1893 * Interrupt moderation
1895 **************************************************************************/
1896 unsigned int ef4_usecs_to_ticks(struct ef4_nic
*efx
, unsigned int usecs
)
1900 if (usecs
* 1000 < efx
->timer_quantum_ns
)
1901 return 1; /* never round down to 0 */
1902 return usecs
* 1000 / efx
->timer_quantum_ns
;
1905 unsigned int ef4_ticks_to_usecs(struct ef4_nic
*efx
, unsigned int ticks
)
1907 /* We must round up when converting ticks to microseconds
1908 * because we round down when converting the other way.
1910 return DIV_ROUND_UP(ticks
* efx
->timer_quantum_ns
, 1000);
1913 /* Set interrupt moderation parameters */
1914 int ef4_init_irq_moderation(struct ef4_nic
*efx
, unsigned int tx_usecs
,
1915 unsigned int rx_usecs
, bool rx_adaptive
,
1916 bool rx_may_override_tx
)
1918 struct ef4_channel
*channel
;
1919 unsigned int timer_max_us
;
1921 EF4_ASSERT_RESET_SERIALISED(efx
);
1923 timer_max_us
= efx
->timer_max_ns
/ 1000;
1925 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
1928 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
1929 !rx_may_override_tx
) {
1930 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1931 "RX and TX IRQ moderation must be equal\n");
1935 efx
->irq_rx_adaptive
= rx_adaptive
;
1936 efx
->irq_rx_moderation_us
= rx_usecs
;
1937 ef4_for_each_channel(channel
, efx
) {
1938 if (ef4_channel_has_rx_queue(channel
))
1939 channel
->irq_moderation_us
= rx_usecs
;
1940 else if (ef4_channel_has_tx_queues(channel
))
1941 channel
->irq_moderation_us
= tx_usecs
;
1947 void ef4_get_irq_moderation(struct ef4_nic
*efx
, unsigned int *tx_usecs
,
1948 unsigned int *rx_usecs
, bool *rx_adaptive
)
1950 *rx_adaptive
= efx
->irq_rx_adaptive
;
1951 *rx_usecs
= efx
->irq_rx_moderation_us
;
1953 /* If channels are shared between RX and TX, so is IRQ
1954 * moderation. Otherwise, IRQ moderation is the same for all
1955 * TX channels and is not adaptive.
1957 if (efx
->tx_channel_offset
== 0) {
1958 *tx_usecs
= *rx_usecs
;
1960 struct ef4_channel
*tx_channel
;
1962 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
1963 *tx_usecs
= tx_channel
->irq_moderation_us
;
1967 /**************************************************************************
1971 **************************************************************************/
1973 /* Run periodically off the general workqueue */
1974 static void ef4_monitor(struct work_struct
*data
)
1976 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
,
1979 netif_vdbg(efx
, timer
, efx
->net_dev
,
1980 "hardware monitor executing on CPU %d\n",
1981 raw_smp_processor_id());
1982 BUG_ON(efx
->type
->monitor
== NULL
);
1984 /* If the mac_lock is already held then it is likely a port
1985 * reconfiguration is already in place, which will likely do
1986 * most of the work of monitor() anyway. */
1987 if (mutex_trylock(&efx
->mac_lock
)) {
1988 if (efx
->port_enabled
)
1989 efx
->type
->monitor(efx
);
1990 mutex_unlock(&efx
->mac_lock
);
1993 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1994 ef4_monitor_interval
);
1997 /**************************************************************************
2001 *************************************************************************/
2004 * Context: process, rtnl_lock() held.
2006 static int ef4_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2008 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2009 struct mii_ioctl_data
*data
= if_mii(ifr
);
2011 /* Convert phy_id from older PRTAD/DEVAD format */
2012 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2013 (data
->phy_id
& 0xfc00) == 0x0400)
2014 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2016 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2019 /**************************************************************************
2023 **************************************************************************/
2025 static void ef4_init_napi_channel(struct ef4_channel
*channel
)
2027 struct ef4_nic
*efx
= channel
->efx
;
2029 channel
->napi_dev
= efx
->net_dev
;
2030 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2031 ef4_poll
, napi_weight
);
2034 static void ef4_init_napi(struct ef4_nic
*efx
)
2036 struct ef4_channel
*channel
;
2038 ef4_for_each_channel(channel
, efx
)
2039 ef4_init_napi_channel(channel
);
2042 static void ef4_fini_napi_channel(struct ef4_channel
*channel
)
2044 if (channel
->napi_dev
)
2045 netif_napi_del(&channel
->napi_str
);
2047 channel
->napi_dev
= NULL
;
2050 static void ef4_fini_napi(struct ef4_nic
*efx
)
2052 struct ef4_channel
*channel
;
2054 ef4_for_each_channel(channel
, efx
)
2055 ef4_fini_napi_channel(channel
);
2058 /**************************************************************************
2060 * Kernel netpoll interface
2062 *************************************************************************/
2064 #ifdef CONFIG_NET_POLL_CONTROLLER
2066 /* Although in the common case interrupts will be disabled, this is not
2067 * guaranteed. However, all our work happens inside the NAPI callback,
2068 * so no locking is required.
2070 static void ef4_netpoll(struct net_device
*net_dev
)
2072 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2073 struct ef4_channel
*channel
;
2075 ef4_for_each_channel(channel
, efx
)
2076 ef4_schedule_channel(channel
);
2081 /**************************************************************************
2083 * Kernel net device interface
2085 *************************************************************************/
2087 /* Context: process, rtnl_lock() held. */
2088 int ef4_net_open(struct net_device
*net_dev
)
2090 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2093 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2094 raw_smp_processor_id());
2096 rc
= ef4_check_disabled(efx
);
2099 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2102 /* Notify the kernel of the link state polled during driver load,
2103 * before the monitor starts running */
2104 ef4_link_status_changed(efx
);
2107 ef4_selftest_async_start(efx
);
2111 /* Context: process, rtnl_lock() held.
2112 * Note that the kernel will ignore our return code; this method
2113 * should really be a void.
2115 int ef4_net_stop(struct net_device
*net_dev
)
2117 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2119 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2120 raw_smp_processor_id());
2122 /* Stop the device and flush all the channels */
2128 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2129 static void ef4_net_stats(struct net_device
*net_dev
,
2130 struct rtnl_link_stats64
*stats
)
2132 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2134 spin_lock_bh(&efx
->stats_lock
);
2135 efx
->type
->update_stats(efx
, NULL
, stats
);
2136 spin_unlock_bh(&efx
->stats_lock
);
2139 /* Context: netif_tx_lock held, BHs disabled. */
2140 static void ef4_watchdog(struct net_device
*net_dev
)
2142 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2144 netif_err(efx
, tx_err
, efx
->net_dev
,
2145 "TX stuck with port_enabled=%d: resetting channels\n",
2148 ef4_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2152 /* Context: process, rtnl_lock() held. */
2153 static int ef4_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2155 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2158 rc
= ef4_check_disabled(efx
);
2162 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2164 ef4_device_detach_sync(efx
);
2167 mutex_lock(&efx
->mac_lock
);
2168 net_dev
->mtu
= new_mtu
;
2169 ef4_mac_reconfigure(efx
);
2170 mutex_unlock(&efx
->mac_lock
);
2173 netif_device_attach(efx
->net_dev
);
2177 static int ef4_set_mac_address(struct net_device
*net_dev
, void *data
)
2179 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2180 struct sockaddr
*addr
= data
;
2181 u8
*new_addr
= addr
->sa_data
;
2185 if (!is_valid_ether_addr(new_addr
)) {
2186 netif_err(efx
, drv
, efx
->net_dev
,
2187 "invalid ethernet MAC address requested: %pM\n",
2189 return -EADDRNOTAVAIL
;
2192 /* save old address */
2193 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2194 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2195 if (efx
->type
->set_mac_address
) {
2196 rc
= efx
->type
->set_mac_address(efx
);
2198 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2203 /* Reconfigure the MAC */
2204 mutex_lock(&efx
->mac_lock
);
2205 ef4_mac_reconfigure(efx
);
2206 mutex_unlock(&efx
->mac_lock
);
2211 /* Context: netif_addr_lock held, BHs disabled. */
2212 static void ef4_set_rx_mode(struct net_device
*net_dev
)
2214 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2216 if (efx
->port_enabled
)
2217 queue_work(efx
->workqueue
, &efx
->mac_work
);
2218 /* Otherwise ef4_start_port() will do this */
2221 static int ef4_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2223 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2226 /* If disabling RX n-tuple filtering, clear existing filters */
2227 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2228 rc
= efx
->type
->filter_clear_rx(efx
, EF4_FILTER_PRI_MANUAL
);
2233 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2234 if ((net_dev
->features
^ data
) & NETIF_F_HW_VLAN_CTAG_FILTER
) {
2235 /* ef4_set_rx_mode() will schedule MAC work to update filters
2236 * when a new features are finally set in net_dev.
2238 ef4_set_rx_mode(net_dev
);
2244 static const struct net_device_ops ef4_netdev_ops
= {
2245 .ndo_open
= ef4_net_open
,
2246 .ndo_stop
= ef4_net_stop
,
2247 .ndo_get_stats64
= ef4_net_stats
,
2248 .ndo_tx_timeout
= ef4_watchdog
,
2249 .ndo_start_xmit
= ef4_hard_start_xmit
,
2250 .ndo_validate_addr
= eth_validate_addr
,
2251 .ndo_do_ioctl
= ef4_ioctl
,
2252 .ndo_change_mtu
= ef4_change_mtu
,
2253 .ndo_set_mac_address
= ef4_set_mac_address
,
2254 .ndo_set_rx_mode
= ef4_set_rx_mode
,
2255 .ndo_set_features
= ef4_set_features
,
2256 #ifdef CONFIG_NET_POLL_CONTROLLER
2257 .ndo_poll_controller
= ef4_netpoll
,
2259 .ndo_setup_tc
= ef4_setup_tc
,
2260 #ifdef CONFIG_RFS_ACCEL
2261 .ndo_rx_flow_steer
= ef4_filter_rfs
,
2265 static void ef4_update_name(struct ef4_nic
*efx
)
2267 strcpy(efx
->name
, efx
->net_dev
->name
);
2268 ef4_mtd_rename(efx
);
2269 ef4_set_channel_names(efx
);
2272 static int ef4_netdev_event(struct notifier_block
*this,
2273 unsigned long event
, void *ptr
)
2275 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2277 if ((net_dev
->netdev_ops
== &ef4_netdev_ops
) &&
2278 event
== NETDEV_CHANGENAME
)
2279 ef4_update_name(netdev_priv(net_dev
));
2284 static struct notifier_block ef4_netdev_notifier
= {
2285 .notifier_call
= ef4_netdev_event
,
2289 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2291 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2292 return sprintf(buf
, "%d\n", efx
->phy_type
);
2294 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2296 static int ef4_register_netdev(struct ef4_nic
*efx
)
2298 struct net_device
*net_dev
= efx
->net_dev
;
2299 struct ef4_channel
*channel
;
2302 net_dev
->watchdog_timeo
= 5 * HZ
;
2303 net_dev
->irq
= efx
->pci_dev
->irq
;
2304 net_dev
->netdev_ops
= &ef4_netdev_ops
;
2305 net_dev
->ethtool_ops
= &ef4_ethtool_ops
;
2306 net_dev
->gso_max_segs
= EF4_TSO_MAX_SEGS
;
2307 net_dev
->min_mtu
= EF4_MIN_MTU
;
2308 net_dev
->max_mtu
= EF4_MAX_MTU
;
2312 /* Enable resets to be scheduled and check whether any were
2313 * already requested. If so, the NIC is probably hosed so we
2316 efx
->state
= STATE_READY
;
2317 smp_mb(); /* ensure we change state before checking reset_pending */
2318 if (efx
->reset_pending
) {
2319 netif_err(efx
, probe
, efx
->net_dev
,
2320 "aborting probe due to scheduled reset\n");
2325 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2328 ef4_update_name(efx
);
2330 /* Always start with carrier off; PHY events will detect the link */
2331 netif_carrier_off(net_dev
);
2333 rc
= register_netdevice(net_dev
);
2337 ef4_for_each_channel(channel
, efx
) {
2338 struct ef4_tx_queue
*tx_queue
;
2339 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
2340 ef4_init_tx_queue_core_txq(tx_queue
);
2347 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2349 netif_err(efx
, drv
, efx
->net_dev
,
2350 "failed to init net dev attributes\n");
2351 goto fail_registered
;
2357 ef4_dissociate(efx
);
2358 unregister_netdevice(net_dev
);
2360 efx
->state
= STATE_UNINIT
;
2362 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2366 static void ef4_unregister_netdev(struct ef4_nic
*efx
)
2371 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2373 if (ef4_dev_registered(efx
)) {
2374 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2375 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2376 unregister_netdev(efx
->net_dev
);
2380 /**************************************************************************
2382 * Device reset and suspend
2384 **************************************************************************/
2386 /* Tears down the entire software state and most of the hardware state
2388 void ef4_reset_down(struct ef4_nic
*efx
, enum reset_type method
)
2390 EF4_ASSERT_RESET_SERIALISED(efx
);
2393 ef4_disable_interrupts(efx
);
2395 mutex_lock(&efx
->mac_lock
);
2396 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2397 method
!= RESET_TYPE_DATAPATH
)
2398 efx
->phy_op
->fini(efx
);
2399 efx
->type
->fini(efx
);
2402 /* This function will always ensure that the locks acquired in
2403 * ef4_reset_down() are released. A failure return code indicates
2404 * that we were unable to reinitialise the hardware, and the
2405 * driver should be disabled. If ok is false, then the rx and tx
2406 * engines are not restarted, pending a RESET_DISABLE. */
2407 int ef4_reset_up(struct ef4_nic
*efx
, enum reset_type method
, bool ok
)
2411 EF4_ASSERT_RESET_SERIALISED(efx
);
2413 /* Ensure that SRAM is initialised even if we're disabling the device */
2414 rc
= efx
->type
->init(efx
);
2416 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2423 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2424 method
!= RESET_TYPE_DATAPATH
) {
2425 rc
= efx
->phy_op
->init(efx
);
2428 rc
= efx
->phy_op
->reconfigure(efx
);
2429 if (rc
&& rc
!= -EPERM
)
2430 netif_err(efx
, drv
, efx
->net_dev
,
2431 "could not restore PHY settings\n");
2434 rc
= ef4_enable_interrupts(efx
);
2438 down_read(&efx
->filter_sem
);
2439 ef4_restore_filters(efx
);
2440 up_read(&efx
->filter_sem
);
2442 mutex_unlock(&efx
->mac_lock
);
2449 efx
->port_initialized
= false;
2451 mutex_unlock(&efx
->mac_lock
);
2456 /* Reset the NIC using the specified method. Note that the reset may
2457 * fail, in which case the card will be left in an unusable state.
2459 * Caller must hold the rtnl_lock.
2461 int ef4_reset(struct ef4_nic
*efx
, enum reset_type method
)
2466 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2467 RESET_TYPE(method
));
2469 ef4_device_detach_sync(efx
);
2470 ef4_reset_down(efx
, method
);
2472 rc
= efx
->type
->reset(efx
, method
);
2474 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2478 /* Clear flags for the scopes we covered. We assume the NIC and
2479 * driver are now quiescent so that there is no race here.
2481 if (method
< RESET_TYPE_MAX_METHOD
)
2482 efx
->reset_pending
&= -(1 << (method
+ 1));
2483 else /* it doesn't fit into the well-ordered scope hierarchy */
2484 __clear_bit(method
, &efx
->reset_pending
);
2486 /* Reinitialise bus-mastering, which may have been turned off before
2487 * the reset was scheduled. This is still appropriate, even in the
2488 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2489 * can respond to requests. */
2490 pci_set_master(efx
->pci_dev
);
2493 /* Leave device stopped if necessary */
2495 method
== RESET_TYPE_DISABLE
||
2496 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2497 rc2
= ef4_reset_up(efx
, method
, !disabled
);
2505 dev_close(efx
->net_dev
);
2506 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2507 efx
->state
= STATE_DISABLED
;
2509 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2510 netif_device_attach(efx
->net_dev
);
2515 /* Try recovery mechanisms.
2516 * For now only EEH is supported.
2517 * Returns 0 if the recovery mechanisms are unsuccessful.
2518 * Returns a non-zero value otherwise.
2520 int ef4_try_recovery(struct ef4_nic
*efx
)
2523 /* A PCI error can occur and not be seen by EEH because nothing
2524 * happens on the PCI bus. In this case the driver may fail and
2525 * schedule a 'recover or reset', leading to this recovery handler.
2526 * Manually call the eeh failure check function.
2528 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2529 if (eeh_dev_check_failure(eehdev
)) {
2530 /* The EEH mechanisms will handle the error and reset the
2531 * device if necessary.
2539 /* The worker thread exists so that code that cannot sleep can
2540 * schedule a reset for later.
2542 static void ef4_reset_work(struct work_struct
*data
)
2544 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, reset_work
);
2545 unsigned long pending
;
2546 enum reset_type method
;
2548 pending
= ACCESS_ONCE(efx
->reset_pending
);
2549 method
= fls(pending
) - 1;
2551 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2552 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2553 ef4_try_recovery(efx
))
2561 /* We checked the state in ef4_schedule_reset() but it may
2562 * have changed by now. Now that we have the RTNL lock,
2563 * it cannot change again.
2565 if (efx
->state
== STATE_READY
)
2566 (void)ef4_reset(efx
, method
);
2571 void ef4_schedule_reset(struct ef4_nic
*efx
, enum reset_type type
)
2573 enum reset_type method
;
2575 if (efx
->state
== STATE_RECOVERY
) {
2576 netif_dbg(efx
, drv
, efx
->net_dev
,
2577 "recovering: skip scheduling %s reset\n",
2583 case RESET_TYPE_INVISIBLE
:
2584 case RESET_TYPE_ALL
:
2585 case RESET_TYPE_RECOVER_OR_ALL
:
2586 case RESET_TYPE_WORLD
:
2587 case RESET_TYPE_DISABLE
:
2588 case RESET_TYPE_RECOVER_OR_DISABLE
:
2589 case RESET_TYPE_DATAPATH
:
2591 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2592 RESET_TYPE(method
));
2595 method
= efx
->type
->map_reset_reason(type
);
2596 netif_dbg(efx
, drv
, efx
->net_dev
,
2597 "scheduling %s reset for %s\n",
2598 RESET_TYPE(method
), RESET_TYPE(type
));
2602 set_bit(method
, &efx
->reset_pending
);
2603 smp_mb(); /* ensure we change reset_pending before checking state */
2605 /* If we're not READY then just leave the flags set as the cue
2606 * to abort probing or reschedule the reset later.
2608 if (ACCESS_ONCE(efx
->state
) != STATE_READY
)
2611 queue_work(reset_workqueue
, &efx
->reset_work
);
2614 /**************************************************************************
2616 * List of NICs we support
2618 **************************************************************************/
2620 /* PCI device ID table */
2621 static const struct pci_device_id ef4_pci_table
[] = {
2622 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2623 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2624 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2625 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2626 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2627 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2628 {0} /* end of list */
2631 /**************************************************************************
2633 * Dummy PHY/MAC operations
2635 * Can be used for some unimplemented operations
2636 * Needed so all function pointers are valid and do not have to be tested
2639 **************************************************************************/
2640 int ef4_port_dummy_op_int(struct ef4_nic
*efx
)
2644 void ef4_port_dummy_op_void(struct ef4_nic
*efx
) {}
2646 static bool ef4_port_dummy_op_poll(struct ef4_nic
*efx
)
2651 static const struct ef4_phy_operations ef4_dummy_phy_operations
= {
2652 .init
= ef4_port_dummy_op_int
,
2653 .reconfigure
= ef4_port_dummy_op_int
,
2654 .poll
= ef4_port_dummy_op_poll
,
2655 .fini
= ef4_port_dummy_op_void
,
2658 /**************************************************************************
2662 **************************************************************************/
2664 /* This zeroes out and then fills in the invariants in a struct
2665 * ef4_nic (including all sub-structures).
2667 static int ef4_init_struct(struct ef4_nic
*efx
,
2668 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2672 /* Initialise common structures */
2673 INIT_LIST_HEAD(&efx
->node
);
2674 INIT_LIST_HEAD(&efx
->secondary_list
);
2675 spin_lock_init(&efx
->biu_lock
);
2676 #ifdef CONFIG_SFC_FALCON_MTD
2677 INIT_LIST_HEAD(&efx
->mtd_list
);
2679 INIT_WORK(&efx
->reset_work
, ef4_reset_work
);
2680 INIT_DELAYED_WORK(&efx
->monitor_work
, ef4_monitor
);
2681 INIT_DELAYED_WORK(&efx
->selftest_work
, ef4_selftest_async_work
);
2682 efx
->pci_dev
= pci_dev
;
2683 efx
->msg_enable
= debug
;
2684 efx
->state
= STATE_UNINIT
;
2685 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2687 efx
->net_dev
= net_dev
;
2688 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2690 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2691 efx
->rx_packet_hash_offset
=
2692 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2693 efx
->rx_packet_ts_offset
=
2694 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2695 spin_lock_init(&efx
->stats_lock
);
2696 mutex_init(&efx
->mac_lock
);
2697 efx
->phy_op
= &ef4_dummy_phy_operations
;
2698 efx
->mdio
.dev
= net_dev
;
2699 INIT_WORK(&efx
->mac_work
, ef4_mac_work
);
2700 init_waitqueue_head(&efx
->flush_wq
);
2702 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++) {
2703 efx
->channel
[i
] = ef4_alloc_channel(efx
, i
, NULL
);
2704 if (!efx
->channel
[i
])
2706 efx
->msi_context
[i
].efx
= efx
;
2707 efx
->msi_context
[i
].index
= i
;
2710 /* Higher numbered interrupt modes are less capable! */
2711 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2714 /* Would be good to use the net_dev name, but we're too early */
2715 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2717 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2718 if (!efx
->workqueue
)
2724 ef4_fini_struct(efx
);
2728 static void ef4_fini_struct(struct ef4_nic
*efx
)
2732 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++)
2733 kfree(efx
->channel
[i
]);
2737 if (efx
->workqueue
) {
2738 destroy_workqueue(efx
->workqueue
);
2739 efx
->workqueue
= NULL
;
2743 void ef4_update_sw_stats(struct ef4_nic
*efx
, u64
*stats
)
2745 u64 n_rx_nodesc_trunc
= 0;
2746 struct ef4_channel
*channel
;
2748 ef4_for_each_channel(channel
, efx
)
2749 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2750 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2751 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
2754 /**************************************************************************
2758 **************************************************************************/
2760 /* Main body of final NIC shutdown code
2761 * This is called only at module unload (or hotplug removal).
2763 static void ef4_pci_remove_main(struct ef4_nic
*efx
)
2765 /* Flush reset_work. It can no longer be scheduled since we
2768 BUG_ON(efx
->state
== STATE_READY
);
2769 cancel_work_sync(&efx
->reset_work
);
2771 ef4_disable_interrupts(efx
);
2772 ef4_nic_fini_interrupt(efx
);
2774 efx
->type
->fini(efx
);
2776 ef4_remove_all(efx
);
2779 /* Final NIC shutdown
2780 * This is called only at module unload (or hotplug removal). A PF can call
2781 * this on its VFs to ensure they are unbound first.
2783 static void ef4_pci_remove(struct pci_dev
*pci_dev
)
2785 struct ef4_nic
*efx
;
2787 efx
= pci_get_drvdata(pci_dev
);
2791 /* Mark the NIC as fini, then stop the interface */
2793 ef4_dissociate(efx
);
2794 dev_close(efx
->net_dev
);
2795 ef4_disable_interrupts(efx
);
2796 efx
->state
= STATE_UNINIT
;
2799 ef4_unregister_netdev(efx
);
2801 ef4_mtd_remove(efx
);
2803 ef4_pci_remove_main(efx
);
2806 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2808 ef4_fini_struct(efx
);
2809 free_netdev(efx
->net_dev
);
2811 pci_disable_pcie_error_reporting(pci_dev
);
2814 /* NIC VPD information
2815 * Called during probe to display the part number of the
2816 * installed NIC. VPD is potentially very large but this should
2817 * always appear within the first 512 bytes.
2819 #define SFC_VPD_LEN 512
2820 static void ef4_probe_vpd_strings(struct ef4_nic
*efx
)
2822 struct pci_dev
*dev
= efx
->pci_dev
;
2823 char vpd_data
[SFC_VPD_LEN
];
2825 int ro_start
, ro_size
, i
, j
;
2827 /* Get the vpd data from the device */
2828 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2829 if (vpd_size
<= 0) {
2830 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
2834 /* Get the Read only section */
2835 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
2837 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
2841 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
2843 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2844 if (i
+ j
> vpd_size
)
2847 /* Get the Part number */
2848 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
2850 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
2854 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2855 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2856 if (i
+ j
> vpd_size
) {
2857 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
2861 netif_info(efx
, drv
, efx
->net_dev
,
2862 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
2864 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2866 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
2868 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
2872 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2873 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2874 if (i
+ j
> vpd_size
) {
2875 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
2879 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
2883 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
2887 /* Main body of NIC initialisation
2888 * This is called at module load (or hotplug insertion, theoretically).
2890 static int ef4_pci_probe_main(struct ef4_nic
*efx
)
2894 /* Do start-of-day initialisation */
2895 rc
= ef4_probe_all(efx
);
2901 rc
= efx
->type
->init(efx
);
2903 netif_err(efx
, probe
, efx
->net_dev
,
2904 "failed to initialise NIC\n");
2908 rc
= ef4_init_port(efx
);
2910 netif_err(efx
, probe
, efx
->net_dev
,
2911 "failed to initialise port\n");
2915 rc
= ef4_nic_init_interrupt(efx
);
2918 rc
= ef4_enable_interrupts(efx
);
2925 ef4_nic_fini_interrupt(efx
);
2929 efx
->type
->fini(efx
);
2932 ef4_remove_all(efx
);
2937 /* NIC initialisation
2939 * This is called at module load (or hotplug insertion,
2940 * theoretically). It sets up PCI mappings, resets the NIC,
2941 * sets up and registers the network devices with the kernel and hooks
2942 * the interrupt service routine. It does not prepare the device for
2943 * transmission; this is left to the first time one of the network
2944 * interfaces is brought up (i.e. ef4_net_open).
2946 static int ef4_pci_probe(struct pci_dev
*pci_dev
,
2947 const struct pci_device_id
*entry
)
2949 struct net_device
*net_dev
;
2950 struct ef4_nic
*efx
;
2953 /* Allocate and initialise a struct net_device and struct ef4_nic */
2954 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EF4_MAX_CORE_TX_QUEUES
,
2958 efx
= netdev_priv(net_dev
);
2959 efx
->type
= (const struct ef4_nic_type
*) entry
->driver_data
;
2960 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
2962 pci_set_drvdata(pci_dev
, efx
);
2963 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2964 rc
= ef4_init_struct(efx
, pci_dev
, net_dev
);
2968 netif_info(efx
, probe
, efx
->net_dev
,
2969 "Solarflare NIC detected\n");
2971 ef4_probe_vpd_strings(efx
);
2973 /* Set up basic I/O (BAR mappings etc) */
2974 rc
= ef4_init_io(efx
);
2978 rc
= ef4_pci_probe_main(efx
);
2982 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
2984 /* Mask for features that also apply to VLAN devices */
2985 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
2986 NETIF_F_HIGHDMA
| NETIF_F_RXCSUM
);
2988 net_dev
->hw_features
= net_dev
->features
& ~efx
->fixed_features
;
2990 /* Disable VLAN filtering by default. It may be enforced if
2991 * the feature is fixed (i.e. VLAN filters are required to
2992 * receive VLAN tagged packets due to vPort restrictions).
2994 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
2995 net_dev
->features
|= efx
->fixed_features
;
2997 rc
= ef4_register_netdev(efx
);
3001 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
3003 /* Try to create MTDs, but allow this to fail */
3005 rc
= ef4_mtd_probe(efx
);
3007 if (rc
&& rc
!= -EPERM
)
3008 netif_warn(efx
, probe
, efx
->net_dev
,
3009 "failed to create MTDs (%d)\n", rc
);
3011 rc
= pci_enable_pcie_error_reporting(pci_dev
);
3012 if (rc
&& rc
!= -EINVAL
)
3013 netif_notice(efx
, probe
, efx
->net_dev
,
3014 "PCIE error reporting unavailable (%d).\n",
3020 ef4_pci_remove_main(efx
);
3024 ef4_fini_struct(efx
);
3027 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
3028 free_netdev(net_dev
);
3032 static int ef4_pm_freeze(struct device
*dev
)
3034 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3038 if (efx
->state
!= STATE_DISABLED
) {
3039 efx
->state
= STATE_UNINIT
;
3041 ef4_device_detach_sync(efx
);
3044 ef4_disable_interrupts(efx
);
3052 static int ef4_pm_thaw(struct device
*dev
)
3055 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3059 if (efx
->state
!= STATE_DISABLED
) {
3060 rc
= ef4_enable_interrupts(efx
);
3064 mutex_lock(&efx
->mac_lock
);
3065 efx
->phy_op
->reconfigure(efx
);
3066 mutex_unlock(&efx
->mac_lock
);
3070 netif_device_attach(efx
->net_dev
);
3072 efx
->state
= STATE_READY
;
3074 efx
->type
->resume_wol(efx
);
3079 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3080 queue_work(reset_workqueue
, &efx
->reset_work
);
3090 static int ef4_pm_poweroff(struct device
*dev
)
3092 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3093 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3095 efx
->type
->fini(efx
);
3097 efx
->reset_pending
= 0;
3099 pci_save_state(pci_dev
);
3100 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3103 /* Used for both resume and restore */
3104 static int ef4_pm_resume(struct device
*dev
)
3106 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3107 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3110 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3113 pci_restore_state(pci_dev
);
3114 rc
= pci_enable_device(pci_dev
);
3117 pci_set_master(efx
->pci_dev
);
3118 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3121 rc
= efx
->type
->init(efx
);
3124 rc
= ef4_pm_thaw(dev
);
3128 static int ef4_pm_suspend(struct device
*dev
)
3133 rc
= ef4_pm_poweroff(dev
);
3139 static const struct dev_pm_ops ef4_pm_ops
= {
3140 .suspend
= ef4_pm_suspend
,
3141 .resume
= ef4_pm_resume
,
3142 .freeze
= ef4_pm_freeze
,
3143 .thaw
= ef4_pm_thaw
,
3144 .poweroff
= ef4_pm_poweroff
,
3145 .restore
= ef4_pm_resume
,
3148 /* A PCI error affecting this device was detected.
3149 * At this point MMIO and DMA may be disabled.
3150 * Stop the software path and request a slot reset.
3152 static pci_ers_result_t
ef4_io_error_detected(struct pci_dev
*pdev
,
3153 enum pci_channel_state state
)
3155 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3156 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3158 if (state
== pci_channel_io_perm_failure
)
3159 return PCI_ERS_RESULT_DISCONNECT
;
3163 if (efx
->state
!= STATE_DISABLED
) {
3164 efx
->state
= STATE_RECOVERY
;
3165 efx
->reset_pending
= 0;
3167 ef4_device_detach_sync(efx
);
3170 ef4_disable_interrupts(efx
);
3172 status
= PCI_ERS_RESULT_NEED_RESET
;
3174 /* If the interface is disabled we don't want to do anything
3177 status
= PCI_ERS_RESULT_RECOVERED
;
3182 pci_disable_device(pdev
);
3187 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3188 static pci_ers_result_t
ef4_io_slot_reset(struct pci_dev
*pdev
)
3190 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3191 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3194 if (pci_enable_device(pdev
)) {
3195 netif_err(efx
, hw
, efx
->net_dev
,
3196 "Cannot re-enable PCI device after reset.\n");
3197 status
= PCI_ERS_RESULT_DISCONNECT
;
3200 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3202 netif_err(efx
, hw
, efx
->net_dev
,
3203 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3204 /* Non-fatal error. Continue. */
3210 /* Perform the actual reset and resume I/O operations. */
3211 static void ef4_io_resume(struct pci_dev
*pdev
)
3213 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3218 if (efx
->state
== STATE_DISABLED
)
3221 rc
= ef4_reset(efx
, RESET_TYPE_ALL
);
3223 netif_err(efx
, hw
, efx
->net_dev
,
3224 "ef4_reset failed after PCI error (%d)\n", rc
);
3226 efx
->state
= STATE_READY
;
3227 netif_dbg(efx
, hw
, efx
->net_dev
,
3228 "Done resetting and resuming IO after PCI error.\n");
3235 /* For simplicity and reliability, we always require a slot reset and try to
3236 * reset the hardware when a pci error affecting the device is detected.
3237 * We leave both the link_reset and mmio_enabled callback unimplemented:
3238 * with our request for slot reset the mmio_enabled callback will never be
3239 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3241 static const struct pci_error_handlers ef4_err_handlers
= {
3242 .error_detected
= ef4_io_error_detected
,
3243 .slot_reset
= ef4_io_slot_reset
,
3244 .resume
= ef4_io_resume
,
3247 static struct pci_driver ef4_pci_driver
= {
3248 .name
= KBUILD_MODNAME
,
3249 .id_table
= ef4_pci_table
,
3250 .probe
= ef4_pci_probe
,
3251 .remove
= ef4_pci_remove
,
3252 .driver
.pm
= &ef4_pm_ops
,
3253 .err_handler
= &ef4_err_handlers
,
3256 /**************************************************************************
3258 * Kernel module interface
3260 *************************************************************************/
3262 module_param(interrupt_mode
, uint
, 0444);
3263 MODULE_PARM_DESC(interrupt_mode
,
3264 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3266 static int __init
ef4_init_module(void)
3270 printk(KERN_INFO
"Solarflare Falcon driver v" EF4_DRIVER_VERSION
"\n");
3272 rc
= register_netdevice_notifier(&ef4_netdev_notifier
);
3276 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3277 if (!reset_workqueue
) {
3282 rc
= pci_register_driver(&ef4_pci_driver
);
3289 destroy_workqueue(reset_workqueue
);
3291 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3296 static void __exit
ef4_exit_module(void)
3298 printk(KERN_INFO
"Solarflare Falcon driver unloading\n");
3300 pci_unregister_driver(&ef4_pci_driver
);
3301 destroy_workqueue(reset_workqueue
);
3302 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3306 module_init(ef4_init_module
);
3307 module_exit(ef4_exit_module
);
3309 MODULE_AUTHOR("Solarflare Communications and "
3310 "Michael Brown <mbrown@fensystems.co.uk>");
3311 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3312 MODULE_LICENSE("GPL");
3313 MODULE_DEVICE_TABLE(pci
, ef4_pci_table
);
3314 MODULE_VERSION(EF4_DRIVER_VERSION
);