2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
11 int sched_rr_timeslice
= RR_TIMESLICE
;
12 int sysctl_sched_rr_timeslice
= (MSEC_PER_SEC
/ HZ
) * RR_TIMESLICE
;
14 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
16 struct rt_bandwidth def_rt_bandwidth
;
18 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
20 struct rt_bandwidth
*rt_b
=
21 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
25 raw_spin_lock(&rt_b
->rt_runtime_lock
);
27 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
31 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
32 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
33 raw_spin_lock(&rt_b
->rt_runtime_lock
);
36 rt_b
->rt_period_active
= 0;
37 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
39 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
42 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
44 rt_b
->rt_period
= ns_to_ktime(period
);
45 rt_b
->rt_runtime
= runtime
;
47 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
49 hrtimer_init(&rt_b
->rt_period_timer
,
50 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
51 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
54 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
56 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
59 raw_spin_lock(&rt_b
->rt_runtime_lock
);
60 if (!rt_b
->rt_period_active
) {
61 rt_b
->rt_period_active
= 1;
63 * SCHED_DEADLINE updates the bandwidth, as a run away
64 * RT task with a DL task could hog a CPU. But DL does
65 * not reset the period. If a deadline task was running
66 * without an RT task running, it can cause RT tasks to
67 * throttle when they start up. Kick the timer right away
68 * to update the period.
70 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
71 hrtimer_start_expires(&rt_b
->rt_period_timer
, HRTIMER_MODE_ABS_PINNED
);
73 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
76 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
77 static void push_irq_work_func(struct irq_work
*work
);
80 void init_rt_rq(struct rt_rq
*rt_rq
)
82 struct rt_prio_array
*array
;
85 array
= &rt_rq
->active
;
86 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
87 INIT_LIST_HEAD(array
->queue
+ i
);
88 __clear_bit(i
, array
->bitmap
);
90 /* delimiter for bitsearch: */
91 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
93 #if defined CONFIG_SMP
94 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
95 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
96 rt_rq
->rt_nr_migratory
= 0;
97 rt_rq
->overloaded
= 0;
98 plist_head_init(&rt_rq
->pushable_tasks
);
100 #ifdef HAVE_RT_PUSH_IPI
101 rt_rq
->push_flags
= 0;
102 rt_rq
->push_cpu
= nr_cpu_ids
;
103 raw_spin_lock_init(&rt_rq
->push_lock
);
104 init_irq_work(&rt_rq
->push_work
, push_irq_work_func
);
106 #endif /* CONFIG_SMP */
107 /* We start is dequeued state, because no RT tasks are queued */
108 rt_rq
->rt_queued
= 0;
111 rt_rq
->rt_throttled
= 0;
112 rt_rq
->rt_runtime
= 0;
113 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
116 #ifdef CONFIG_RT_GROUP_SCHED
117 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
119 hrtimer_cancel(&rt_b
->rt_period_timer
);
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
124 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
126 #ifdef CONFIG_SCHED_DEBUG
127 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
129 return container_of(rt_se
, struct task_struct
, rt
);
132 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
137 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
142 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
144 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
149 void free_rt_sched_group(struct task_group
*tg
)
154 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
156 for_each_possible_cpu(i
) {
167 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
168 struct sched_rt_entity
*rt_se
, int cpu
,
169 struct sched_rt_entity
*parent
)
171 struct rq
*rq
= cpu_rq(cpu
);
173 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
174 rt_rq
->rt_nr_boosted
= 0;
178 tg
->rt_rq
[cpu
] = rt_rq
;
179 tg
->rt_se
[cpu
] = rt_se
;
185 rt_se
->rt_rq
= &rq
->rt
;
187 rt_se
->rt_rq
= parent
->my_q
;
190 rt_se
->parent
= parent
;
191 INIT_LIST_HEAD(&rt_se
->run_list
);
194 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
197 struct sched_rt_entity
*rt_se
;
200 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
203 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
207 init_rt_bandwidth(&tg
->rt_bandwidth
,
208 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
210 for_each_possible_cpu(i
) {
211 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
212 GFP_KERNEL
, cpu_to_node(i
));
216 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
217 GFP_KERNEL
, cpu_to_node(i
));
222 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
223 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
234 #else /* CONFIG_RT_GROUP_SCHED */
236 #define rt_entity_is_task(rt_se) (1)
238 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
240 return container_of(rt_se
, struct task_struct
, rt
);
243 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
245 return container_of(rt_rq
, struct rq
, rt
);
248 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
250 struct task_struct
*p
= rt_task_of(rt_se
);
255 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
257 struct rq
*rq
= rq_of_rt_se(rt_se
);
262 void free_rt_sched_group(struct task_group
*tg
) { }
264 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
268 #endif /* CONFIG_RT_GROUP_SCHED */
272 static void pull_rt_task(struct rq
*this_rq
);
274 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
276 /* Try to pull RT tasks here if we lower this rq's prio */
277 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
280 static inline int rt_overloaded(struct rq
*rq
)
282 return atomic_read(&rq
->rd
->rto_count
);
285 static inline void rt_set_overload(struct rq
*rq
)
290 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
292 * Make sure the mask is visible before we set
293 * the overload count. That is checked to determine
294 * if we should look at the mask. It would be a shame
295 * if we looked at the mask, but the mask was not
298 * Matched by the barrier in pull_rt_task().
301 atomic_inc(&rq
->rd
->rto_count
);
304 static inline void rt_clear_overload(struct rq
*rq
)
309 /* the order here really doesn't matter */
310 atomic_dec(&rq
->rd
->rto_count
);
311 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
314 static void update_rt_migration(struct rt_rq
*rt_rq
)
316 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
317 if (!rt_rq
->overloaded
) {
318 rt_set_overload(rq_of_rt_rq(rt_rq
));
319 rt_rq
->overloaded
= 1;
321 } else if (rt_rq
->overloaded
) {
322 rt_clear_overload(rq_of_rt_rq(rt_rq
));
323 rt_rq
->overloaded
= 0;
327 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
329 struct task_struct
*p
;
331 if (!rt_entity_is_task(rt_se
))
334 p
= rt_task_of(rt_se
);
335 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
337 rt_rq
->rt_nr_total
++;
338 if (p
->nr_cpus_allowed
> 1)
339 rt_rq
->rt_nr_migratory
++;
341 update_rt_migration(rt_rq
);
344 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
346 struct task_struct
*p
;
348 if (!rt_entity_is_task(rt_se
))
351 p
= rt_task_of(rt_se
);
352 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
354 rt_rq
->rt_nr_total
--;
355 if (p
->nr_cpus_allowed
> 1)
356 rt_rq
->rt_nr_migratory
--;
358 update_rt_migration(rt_rq
);
361 static inline int has_pushable_tasks(struct rq
*rq
)
363 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
366 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
367 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
369 static void push_rt_tasks(struct rq
*);
370 static void pull_rt_task(struct rq
*);
372 static inline void queue_push_tasks(struct rq
*rq
)
374 if (!has_pushable_tasks(rq
))
377 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
380 static inline void queue_pull_task(struct rq
*rq
)
382 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
385 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
387 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
388 plist_node_init(&p
->pushable_tasks
, p
->prio
);
389 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
391 /* Update the highest prio pushable task */
392 if (p
->prio
< rq
->rt
.highest_prio
.next
)
393 rq
->rt
.highest_prio
.next
= p
->prio
;
396 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
398 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
400 /* Update the new highest prio pushable task */
401 if (has_pushable_tasks(rq
)) {
402 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
403 struct task_struct
, pushable_tasks
);
404 rq
->rt
.highest_prio
.next
= p
->prio
;
406 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
411 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
415 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
420 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
425 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
429 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
434 static inline void pull_rt_task(struct rq
*this_rq
)
438 static inline void queue_push_tasks(struct rq
*rq
)
441 #endif /* CONFIG_SMP */
443 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
444 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
446 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
451 #ifdef CONFIG_RT_GROUP_SCHED
453 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
458 return rt_rq
->rt_runtime
;
461 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
463 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
466 typedef struct task_group
*rt_rq_iter_t
;
468 static inline struct task_group
*next_task_group(struct task_group
*tg
)
471 tg
= list_entry_rcu(tg
->list
.next
,
472 typeof(struct task_group
), list
);
473 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
475 if (&tg
->list
== &task_groups
)
481 #define for_each_rt_rq(rt_rq, iter, rq) \
482 for (iter = container_of(&task_groups, typeof(*iter), list); \
483 (iter = next_task_group(iter)) && \
484 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
486 #define for_each_sched_rt_entity(rt_se) \
487 for (; rt_se; rt_se = rt_se->parent)
489 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
494 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
495 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
497 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
499 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
500 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
501 struct sched_rt_entity
*rt_se
;
503 int cpu
= cpu_of(rq
);
505 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
507 if (rt_rq
->rt_nr_running
) {
509 enqueue_top_rt_rq(rt_rq
);
510 else if (!on_rt_rq(rt_se
))
511 enqueue_rt_entity(rt_se
, 0);
513 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
518 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
520 struct sched_rt_entity
*rt_se
;
521 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
523 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
526 dequeue_top_rt_rq(rt_rq
);
527 else if (on_rt_rq(rt_se
))
528 dequeue_rt_entity(rt_se
, 0);
531 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
533 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
536 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
538 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
539 struct task_struct
*p
;
542 return !!rt_rq
->rt_nr_boosted
;
544 p
= rt_task_of(rt_se
);
545 return p
->prio
!= p
->normal_prio
;
549 static inline const struct cpumask
*sched_rt_period_mask(void)
551 return this_rq()->rd
->span
;
554 static inline const struct cpumask
*sched_rt_period_mask(void)
556 return cpu_online_mask
;
561 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
563 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
566 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
568 return &rt_rq
->tg
->rt_bandwidth
;
571 #else /* !CONFIG_RT_GROUP_SCHED */
573 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
575 return rt_rq
->rt_runtime
;
578 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
580 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
583 typedef struct rt_rq
*rt_rq_iter_t
;
585 #define for_each_rt_rq(rt_rq, iter, rq) \
586 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
588 #define for_each_sched_rt_entity(rt_se) \
589 for (; rt_se; rt_se = NULL)
591 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
596 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
598 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
600 if (!rt_rq
->rt_nr_running
)
603 enqueue_top_rt_rq(rt_rq
);
607 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
609 dequeue_top_rt_rq(rt_rq
);
612 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
614 return rt_rq
->rt_throttled
;
617 static inline const struct cpumask
*sched_rt_period_mask(void)
619 return cpu_online_mask
;
623 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
625 return &cpu_rq(cpu
)->rt
;
628 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
630 return &def_rt_bandwidth
;
633 #endif /* CONFIG_RT_GROUP_SCHED */
635 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
637 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
639 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
640 rt_rq
->rt_time
< rt_b
->rt_runtime
);
645 * We ran out of runtime, see if we can borrow some from our neighbours.
647 static void do_balance_runtime(struct rt_rq
*rt_rq
)
649 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
650 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
654 weight
= cpumask_weight(rd
->span
);
656 raw_spin_lock(&rt_b
->rt_runtime_lock
);
657 rt_period
= ktime_to_ns(rt_b
->rt_period
);
658 for_each_cpu(i
, rd
->span
) {
659 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
665 raw_spin_lock(&iter
->rt_runtime_lock
);
667 * Either all rqs have inf runtime and there's nothing to steal
668 * or __disable_runtime() below sets a specific rq to inf to
669 * indicate its been disabled and disalow stealing.
671 if (iter
->rt_runtime
== RUNTIME_INF
)
675 * From runqueues with spare time, take 1/n part of their
676 * spare time, but no more than our period.
678 diff
= iter
->rt_runtime
- iter
->rt_time
;
680 diff
= div_u64((u64
)diff
, weight
);
681 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
682 diff
= rt_period
- rt_rq
->rt_runtime
;
683 iter
->rt_runtime
-= diff
;
684 rt_rq
->rt_runtime
+= diff
;
685 if (rt_rq
->rt_runtime
== rt_period
) {
686 raw_spin_unlock(&iter
->rt_runtime_lock
);
691 raw_spin_unlock(&iter
->rt_runtime_lock
);
693 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
697 * Ensure this RQ takes back all the runtime it lend to its neighbours.
699 static void __disable_runtime(struct rq
*rq
)
701 struct root_domain
*rd
= rq
->rd
;
705 if (unlikely(!scheduler_running
))
708 for_each_rt_rq(rt_rq
, iter
, rq
) {
709 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
713 raw_spin_lock(&rt_b
->rt_runtime_lock
);
714 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
716 * Either we're all inf and nobody needs to borrow, or we're
717 * already disabled and thus have nothing to do, or we have
718 * exactly the right amount of runtime to take out.
720 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
721 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
723 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
726 * Calculate the difference between what we started out with
727 * and what we current have, that's the amount of runtime
728 * we lend and now have to reclaim.
730 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
733 * Greedy reclaim, take back as much as we can.
735 for_each_cpu(i
, rd
->span
) {
736 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
740 * Can't reclaim from ourselves or disabled runqueues.
742 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
745 raw_spin_lock(&iter
->rt_runtime_lock
);
747 diff
= min_t(s64
, iter
->rt_runtime
, want
);
748 iter
->rt_runtime
-= diff
;
751 iter
->rt_runtime
-= want
;
754 raw_spin_unlock(&iter
->rt_runtime_lock
);
760 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
762 * We cannot be left wanting - that would mean some runtime
763 * leaked out of the system.
768 * Disable all the borrow logic by pretending we have inf
769 * runtime - in which case borrowing doesn't make sense.
771 rt_rq
->rt_runtime
= RUNTIME_INF
;
772 rt_rq
->rt_throttled
= 0;
773 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
774 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
776 /* Make rt_rq available for pick_next_task() */
777 sched_rt_rq_enqueue(rt_rq
);
781 static void __enable_runtime(struct rq
*rq
)
786 if (unlikely(!scheduler_running
))
790 * Reset each runqueue's bandwidth settings
792 for_each_rt_rq(rt_rq
, iter
, rq
) {
793 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
795 raw_spin_lock(&rt_b
->rt_runtime_lock
);
796 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
797 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
799 rt_rq
->rt_throttled
= 0;
800 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
801 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
805 static void balance_runtime(struct rt_rq
*rt_rq
)
807 if (!sched_feat(RT_RUNTIME_SHARE
))
810 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
811 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
812 do_balance_runtime(rt_rq
);
813 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
816 #else /* !CONFIG_SMP */
817 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
818 #endif /* CONFIG_SMP */
820 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
822 int i
, idle
= 1, throttled
= 0;
823 const struct cpumask
*span
;
825 span
= sched_rt_period_mask();
826 #ifdef CONFIG_RT_GROUP_SCHED
828 * FIXME: isolated CPUs should really leave the root task group,
829 * whether they are isolcpus or were isolated via cpusets, lest
830 * the timer run on a CPU which does not service all runqueues,
831 * potentially leaving other CPUs indefinitely throttled. If
832 * isolation is really required, the user will turn the throttle
833 * off to kill the perturbations it causes anyway. Meanwhile,
834 * this maintains functionality for boot and/or troubleshooting.
836 if (rt_b
== &root_task_group
.rt_bandwidth
)
837 span
= cpu_online_mask
;
839 for_each_cpu(i
, span
) {
841 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
842 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
844 raw_spin_lock(&rq
->lock
);
845 if (rt_rq
->rt_time
) {
848 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
849 if (rt_rq
->rt_throttled
)
850 balance_runtime(rt_rq
);
851 runtime
= rt_rq
->rt_runtime
;
852 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
853 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
854 rt_rq
->rt_throttled
= 0;
858 * When we're idle and a woken (rt) task is
859 * throttled check_preempt_curr() will set
860 * skip_update and the time between the wakeup
861 * and this unthrottle will get accounted as
864 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
865 rq_clock_skip_update(rq
, false);
867 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
869 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
870 } else if (rt_rq
->rt_nr_running
) {
872 if (!rt_rq_throttled(rt_rq
))
875 if (rt_rq
->rt_throttled
)
879 sched_rt_rq_enqueue(rt_rq
);
880 raw_spin_unlock(&rq
->lock
);
883 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
889 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
891 #ifdef CONFIG_RT_GROUP_SCHED
892 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
895 return rt_rq
->highest_prio
.curr
;
898 return rt_task_of(rt_se
)->prio
;
901 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
903 u64 runtime
= sched_rt_runtime(rt_rq
);
905 if (rt_rq
->rt_throttled
)
906 return rt_rq_throttled(rt_rq
);
908 if (runtime
>= sched_rt_period(rt_rq
))
911 balance_runtime(rt_rq
);
912 runtime
= sched_rt_runtime(rt_rq
);
913 if (runtime
== RUNTIME_INF
)
916 if (rt_rq
->rt_time
> runtime
) {
917 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
920 * Don't actually throttle groups that have no runtime assigned
921 * but accrue some time due to boosting.
923 if (likely(rt_b
->rt_runtime
)) {
924 rt_rq
->rt_throttled
= 1;
925 printk_deferred_once("sched: RT throttling activated\n");
928 * In case we did anyway, make it go away,
929 * replenishment is a joke, since it will replenish us
935 if (rt_rq_throttled(rt_rq
)) {
936 sched_rt_rq_dequeue(rt_rq
);
945 * Update the current task's runtime statistics. Skip current tasks that
946 * are not in our scheduling class.
948 static void update_curr_rt(struct rq
*rq
)
950 struct task_struct
*curr
= rq
->curr
;
951 struct sched_rt_entity
*rt_se
= &curr
->rt
;
954 if (curr
->sched_class
!= &rt_sched_class
)
957 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
958 if (unlikely((s64
)delta_exec
<= 0))
961 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
962 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_RT
);
964 schedstat_set(curr
->se
.statistics
.exec_max
,
965 max(curr
->se
.statistics
.exec_max
, delta_exec
));
967 curr
->se
.sum_exec_runtime
+= delta_exec
;
968 account_group_exec_runtime(curr
, delta_exec
);
970 curr
->se
.exec_start
= rq_clock_task(rq
);
971 cpuacct_charge(curr
, delta_exec
);
973 sched_rt_avg_update(rq
, delta_exec
);
975 if (!rt_bandwidth_enabled())
978 for_each_sched_rt_entity(rt_se
) {
979 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
981 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
982 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
983 rt_rq
->rt_time
+= delta_exec
;
984 if (sched_rt_runtime_exceeded(rt_rq
))
986 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
992 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
994 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
996 BUG_ON(&rq
->rt
!= rt_rq
);
998 if (!rt_rq
->rt_queued
)
1001 BUG_ON(!rq
->nr_running
);
1003 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1004 rt_rq
->rt_queued
= 0;
1008 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1010 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1012 BUG_ON(&rq
->rt
!= rt_rq
);
1014 if (rt_rq
->rt_queued
)
1016 if (rt_rq_throttled(rt_rq
) || !rt_rq
->rt_nr_running
)
1019 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1020 rt_rq
->rt_queued
= 1;
1023 #if defined CONFIG_SMP
1026 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1028 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1030 #ifdef CONFIG_RT_GROUP_SCHED
1032 * Change rq's cpupri only if rt_rq is the top queue.
1034 if (&rq
->rt
!= rt_rq
)
1037 if (rq
->online
&& prio
< prev_prio
)
1038 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1042 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1044 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1046 #ifdef CONFIG_RT_GROUP_SCHED
1048 * Change rq's cpupri only if rt_rq is the top queue.
1050 if (&rq
->rt
!= rt_rq
)
1053 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1054 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1057 #else /* CONFIG_SMP */
1060 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1062 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1064 #endif /* CONFIG_SMP */
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1068 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1070 int prev_prio
= rt_rq
->highest_prio
.curr
;
1072 if (prio
< prev_prio
)
1073 rt_rq
->highest_prio
.curr
= prio
;
1075 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1079 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1081 int prev_prio
= rt_rq
->highest_prio
.curr
;
1083 if (rt_rq
->rt_nr_running
) {
1085 WARN_ON(prio
< prev_prio
);
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
1091 if (prio
== prev_prio
) {
1092 struct rt_prio_array
*array
= &rt_rq
->active
;
1094 rt_rq
->highest_prio
.curr
=
1095 sched_find_first_bit(array
->bitmap
);
1099 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1101 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1106 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1107 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1111 #ifdef CONFIG_RT_GROUP_SCHED
1114 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1116 if (rt_se_boosted(rt_se
))
1117 rt_rq
->rt_nr_boosted
++;
1120 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1124 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1126 if (rt_se_boosted(rt_se
))
1127 rt_rq
->rt_nr_boosted
--;
1129 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1132 #else /* CONFIG_RT_GROUP_SCHED */
1135 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1137 start_rt_bandwidth(&def_rt_bandwidth
);
1141 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1146 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1148 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1151 return group_rq
->rt_nr_running
;
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1159 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1160 struct task_struct
*tsk
;
1163 return group_rq
->rr_nr_running
;
1165 tsk
= rt_task_of(rt_se
);
1167 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1171 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1173 int prio
= rt_se_prio(rt_se
);
1175 WARN_ON(!rt_prio(prio
));
1176 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1177 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1179 inc_rt_prio(rt_rq
, prio
);
1180 inc_rt_migration(rt_se
, rt_rq
);
1181 inc_rt_group(rt_se
, rt_rq
);
1185 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1188 WARN_ON(!rt_rq
->rt_nr_running
);
1189 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1190 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1192 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1193 dec_rt_migration(rt_se
, rt_rq
);
1194 dec_rt_group(rt_se
, rt_rq
);
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1200 * assumes ENQUEUE/DEQUEUE flags match
1202 static inline bool move_entity(unsigned int flags
)
1204 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1210 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1212 list_del_init(&rt_se
->run_list
);
1214 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1215 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1220 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1222 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1223 struct rt_prio_array
*array
= &rt_rq
->active
;
1224 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1225 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1233 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1235 __delist_rt_entity(rt_se
, array
);
1239 if (move_entity(flags
)) {
1240 WARN_ON_ONCE(rt_se
->on_list
);
1241 if (flags
& ENQUEUE_HEAD
)
1242 list_add(&rt_se
->run_list
, queue
);
1244 list_add_tail(&rt_se
->run_list
, queue
);
1246 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1251 inc_rt_tasks(rt_se
, rt_rq
);
1254 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1256 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1257 struct rt_prio_array
*array
= &rt_rq
->active
;
1259 if (move_entity(flags
)) {
1260 WARN_ON_ONCE(!rt_se
->on_list
);
1261 __delist_rt_entity(rt_se
, array
);
1265 dec_rt_tasks(rt_se
, rt_rq
);
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
1272 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1274 struct sched_rt_entity
*back
= NULL
;
1276 for_each_sched_rt_entity(rt_se
) {
1281 dequeue_top_rt_rq(rt_rq_of_se(back
));
1283 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1284 if (on_rt_rq(rt_se
))
1285 __dequeue_rt_entity(rt_se
, flags
);
1289 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1291 struct rq
*rq
= rq_of_rt_se(rt_se
);
1293 dequeue_rt_stack(rt_se
, flags
);
1294 for_each_sched_rt_entity(rt_se
)
1295 __enqueue_rt_entity(rt_se
, flags
);
1296 enqueue_top_rt_rq(&rq
->rt
);
1299 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1301 struct rq
*rq
= rq_of_rt_se(rt_se
);
1303 dequeue_rt_stack(rt_se
, flags
);
1305 for_each_sched_rt_entity(rt_se
) {
1306 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1308 if (rt_rq
&& rt_rq
->rt_nr_running
)
1309 __enqueue_rt_entity(rt_se
, flags
);
1311 enqueue_top_rt_rq(&rq
->rt
);
1315 * Adding/removing a task to/from a priority array:
1318 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1320 struct sched_rt_entity
*rt_se
= &p
->rt
;
1322 if (flags
& ENQUEUE_WAKEUP
)
1325 enqueue_rt_entity(rt_se
, flags
);
1327 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1328 enqueue_pushable_task(rq
, p
);
1331 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1333 struct sched_rt_entity
*rt_se
= &p
->rt
;
1336 dequeue_rt_entity(rt_se
, flags
);
1338 dequeue_pushable_task(rq
, p
);
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
1346 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1348 if (on_rt_rq(rt_se
)) {
1349 struct rt_prio_array
*array
= &rt_rq
->active
;
1350 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1353 list_move(&rt_se
->run_list
, queue
);
1355 list_move_tail(&rt_se
->run_list
, queue
);
1359 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1361 struct sched_rt_entity
*rt_se
= &p
->rt
;
1362 struct rt_rq
*rt_rq
;
1364 for_each_sched_rt_entity(rt_se
) {
1365 rt_rq
= rt_rq_of_se(rt_se
);
1366 requeue_rt_entity(rt_rq
, rt_se
, head
);
1370 static void yield_task_rt(struct rq
*rq
)
1372 requeue_task_rt(rq
, rq
->curr
, 0);
1376 static int find_lowest_rq(struct task_struct
*task
);
1379 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1381 struct task_struct
*curr
;
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1391 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1394 * If the current task on @p's runqueue is an RT task, then
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1407 * For equal prio tasks, we just let the scheduler sort it out.
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
1415 if (curr
&& unlikely(rt_task(curr
)) &&
1416 (curr
->nr_cpus_allowed
< 2 ||
1417 curr
->prio
<= p
->prio
)) {
1418 int target
= find_lowest_rq(p
);
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1425 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1434 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1440 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1441 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1448 if (p
->nr_cpus_allowed
!= 1
1449 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1457 requeue_task_rt(rq
, p
, 1);
1461 #endif /* CONFIG_SMP */
1464 * Preempt the current task with a newly woken task if needed:
1466 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1468 if (p
->prio
< rq
->curr
->prio
) {
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1486 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1487 check_preempt_equal_prio(rq
, p
);
1491 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1492 struct rt_rq
*rt_rq
)
1494 struct rt_prio_array
*array
= &rt_rq
->active
;
1495 struct sched_rt_entity
*next
= NULL
;
1496 struct list_head
*queue
;
1499 idx
= sched_find_first_bit(array
->bitmap
);
1500 BUG_ON(idx
>= MAX_RT_PRIO
);
1502 queue
= array
->queue
+ idx
;
1503 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1508 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1510 struct sched_rt_entity
*rt_se
;
1511 struct task_struct
*p
;
1512 struct rt_rq
*rt_rq
= &rq
->rt
;
1515 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1517 rt_rq
= group_rt_rq(rt_se
);
1520 p
= rt_task_of(rt_se
);
1521 p
->se
.exec_start
= rq_clock_task(rq
);
1526 static struct task_struct
*
1527 pick_next_task_rt(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
1529 struct task_struct
*p
;
1530 struct rt_rq
*rt_rq
= &rq
->rt
;
1532 if (need_pull_rt_task(rq
, prev
)) {
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1539 rq_unpin_lock(rq
, rf
);
1541 rq_repin_lock(rq
, rf
);
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
1547 if (unlikely((rq
->stop
&& task_on_rq_queued(rq
->stop
)) ||
1548 rq
->dl
.dl_nr_running
))
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1556 if (prev
->sched_class
== &rt_sched_class
)
1559 if (!rt_rq
->rt_queued
)
1562 put_prev_task(rq
, prev
);
1564 p
= _pick_next_task_rt(rq
);
1566 /* The running task is never eligible for pushing */
1567 dequeue_pushable_task(rq
, p
);
1569 queue_push_tasks(rq
);
1574 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1582 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1583 enqueue_pushable_task(rq
, p
);
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1591 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1593 if (!task_running(rq
, p
) &&
1594 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1603 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1605 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1606 struct task_struct
*p
;
1608 if (!has_pushable_tasks(rq
))
1611 plist_for_each_entry(p
, head
, pushable_tasks
) {
1612 if (pick_rt_task(rq
, p
, cpu
))
1619 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1621 static int find_lowest_rq(struct task_struct
*task
)
1623 struct sched_domain
*sd
;
1624 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1625 int this_cpu
= smp_processor_id();
1626 int cpu
= task_cpu(task
);
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask
))
1632 if (task
->nr_cpus_allowed
== 1)
1633 return -1; /* No other targets possible */
1635 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1636 return -1; /* No targets found */
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1646 if (cpumask_test_cpu(cpu
, lowest_mask
))
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1653 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1654 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1657 for_each_domain(cpu
, sd
) {
1658 if (sd
->flags
& SD_WAKE_AFFINE
) {
1662 * "this_cpu" is cheaper to preempt than a
1665 if (this_cpu
!= -1 &&
1666 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1671 best_cpu
= cpumask_first_and(lowest_mask
,
1672 sched_domain_span(sd
));
1673 if (best_cpu
< nr_cpu_ids
) {
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1689 cpu
= cpumask_any(lowest_mask
);
1690 if (cpu
< nr_cpu_ids
)
1695 /* Will lock the rq it finds */
1696 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1698 struct rq
*lowest_rq
= NULL
;
1702 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1703 cpu
= find_lowest_rq(task
);
1705 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1708 lowest_rq
= cpu_rq(cpu
);
1710 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1720 /* if the prio of this runqueue changed, try again */
1721 if (double_lock_balance(rq
, lowest_rq
)) {
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1728 if (unlikely(task_rq(task
) != rq
||
1729 !cpumask_test_cpu(lowest_rq
->cpu
, &task
->cpus_allowed
) ||
1730 task_running(rq
, task
) ||
1732 !task_on_rq_queued(task
))) {
1734 double_unlock_balance(rq
, lowest_rq
);
1740 /* If this rq is still suitable use it. */
1741 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1745 double_unlock_balance(rq
, lowest_rq
);
1752 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1754 struct task_struct
*p
;
1756 if (!has_pushable_tasks(rq
))
1759 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1760 struct task_struct
, pushable_tasks
);
1762 BUG_ON(rq
->cpu
!= task_cpu(p
));
1763 BUG_ON(task_current(rq
, p
));
1764 BUG_ON(p
->nr_cpus_allowed
<= 1);
1766 BUG_ON(!task_on_rq_queued(p
));
1767 BUG_ON(!rt_task(p
));
1773 * If the current CPU has more than one RT task, see if the non
1774 * running task can migrate over to a CPU that is running a task
1775 * of lesser priority.
1777 static int push_rt_task(struct rq
*rq
)
1779 struct task_struct
*next_task
;
1780 struct rq
*lowest_rq
;
1783 if (!rq
->rt
.overloaded
)
1786 next_task
= pick_next_pushable_task(rq
);
1791 if (unlikely(next_task
== rq
->curr
)) {
1797 * It's possible that the next_task slipped in of
1798 * higher priority than current. If that's the case
1799 * just reschedule current.
1801 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1806 /* We might release rq lock */
1807 get_task_struct(next_task
);
1809 /* find_lock_lowest_rq locks the rq if found */
1810 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1812 struct task_struct
*task
;
1814 * find_lock_lowest_rq releases rq->lock
1815 * so it is possible that next_task has migrated.
1817 * We need to make sure that the task is still on the same
1818 * run-queue and is also still the next task eligible for
1821 task
= pick_next_pushable_task(rq
);
1822 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1824 * The task hasn't migrated, and is still the next
1825 * eligible task, but we failed to find a run-queue
1826 * to push it to. Do not retry in this case, since
1827 * other cpus will pull from us when ready.
1833 /* No more tasks, just exit */
1837 * Something has shifted, try again.
1839 put_task_struct(next_task
);
1844 deactivate_task(rq
, next_task
, 0);
1845 set_task_cpu(next_task
, lowest_rq
->cpu
);
1846 activate_task(lowest_rq
, next_task
, 0);
1849 resched_curr(lowest_rq
);
1851 double_unlock_balance(rq
, lowest_rq
);
1854 put_task_struct(next_task
);
1859 static void push_rt_tasks(struct rq
*rq
)
1861 /* push_rt_task will return true if it moved an RT */
1862 while (push_rt_task(rq
))
1866 #ifdef HAVE_RT_PUSH_IPI
1868 * The search for the next cpu always starts at rq->cpu and ends
1869 * when we reach rq->cpu again. It will never return rq->cpu.
1870 * This returns the next cpu to check, or nr_cpu_ids if the loop
1873 * rq->rt.push_cpu holds the last cpu returned by this function,
1874 * or if this is the first instance, it must hold rq->cpu.
1876 static int rto_next_cpu(struct rq
*rq
)
1878 int prev_cpu
= rq
->rt
.push_cpu
;
1881 cpu
= cpumask_next(prev_cpu
, rq
->rd
->rto_mask
);
1884 * If the previous cpu is less than the rq's CPU, then it already
1885 * passed the end of the mask, and has started from the beginning.
1886 * We end if the next CPU is greater or equal to rq's CPU.
1888 if (prev_cpu
< rq
->cpu
) {
1892 } else if (cpu
>= nr_cpu_ids
) {
1894 * We passed the end of the mask, start at the beginning.
1895 * If the result is greater or equal to the rq's CPU, then
1896 * the loop is finished.
1898 cpu
= cpumask_first(rq
->rd
->rto_mask
);
1902 rq
->rt
.push_cpu
= cpu
;
1904 /* Return cpu to let the caller know if the loop is finished or not */
1908 static int find_next_push_cpu(struct rq
*rq
)
1914 cpu
= rto_next_cpu(rq
);
1915 if (cpu
>= nr_cpu_ids
)
1917 next_rq
= cpu_rq(cpu
);
1919 /* Make sure the next rq can push to this rq */
1920 if (next_rq
->rt
.highest_prio
.next
< rq
->rt
.highest_prio
.curr
)
1927 #define RT_PUSH_IPI_EXECUTING 1
1928 #define RT_PUSH_IPI_RESTART 2
1930 static void tell_cpu_to_push(struct rq
*rq
)
1934 if (rq
->rt
.push_flags
& RT_PUSH_IPI_EXECUTING
) {
1935 raw_spin_lock(&rq
->rt
.push_lock
);
1936 /* Make sure it's still executing */
1937 if (rq
->rt
.push_flags
& RT_PUSH_IPI_EXECUTING
) {
1939 * Tell the IPI to restart the loop as things have
1940 * changed since it started.
1942 rq
->rt
.push_flags
|= RT_PUSH_IPI_RESTART
;
1943 raw_spin_unlock(&rq
->rt
.push_lock
);
1946 raw_spin_unlock(&rq
->rt
.push_lock
);
1949 /* When here, there's no IPI going around */
1951 rq
->rt
.push_cpu
= rq
->cpu
;
1952 cpu
= find_next_push_cpu(rq
);
1953 if (cpu
>= nr_cpu_ids
)
1956 rq
->rt
.push_flags
= RT_PUSH_IPI_EXECUTING
;
1958 irq_work_queue_on(&rq
->rt
.push_work
, cpu
);
1961 /* Called from hardirq context */
1962 static void try_to_push_tasks(void *arg
)
1964 struct rt_rq
*rt_rq
= arg
;
1965 struct rq
*rq
, *src_rq
;
1969 this_cpu
= rt_rq
->push_cpu
;
1971 /* Paranoid check */
1972 BUG_ON(this_cpu
!= smp_processor_id());
1974 rq
= cpu_rq(this_cpu
);
1975 src_rq
= rq_of_rt_rq(rt_rq
);
1978 if (has_pushable_tasks(rq
)) {
1979 raw_spin_lock(&rq
->lock
);
1981 raw_spin_unlock(&rq
->lock
);
1984 /* Pass the IPI to the next rt overloaded queue */
1985 raw_spin_lock(&rt_rq
->push_lock
);
1987 * If the source queue changed since the IPI went out,
1988 * we need to restart the search from that CPU again.
1990 if (rt_rq
->push_flags
& RT_PUSH_IPI_RESTART
) {
1991 rt_rq
->push_flags
&= ~RT_PUSH_IPI_RESTART
;
1992 rt_rq
->push_cpu
= src_rq
->cpu
;
1995 cpu
= find_next_push_cpu(src_rq
);
1997 if (cpu
>= nr_cpu_ids
)
1998 rt_rq
->push_flags
&= ~RT_PUSH_IPI_EXECUTING
;
1999 raw_spin_unlock(&rt_rq
->push_lock
);
2001 if (cpu
>= nr_cpu_ids
)
2005 * It is possible that a restart caused this CPU to be
2006 * chosen again. Don't bother with an IPI, just see if we
2007 * have more to push.
2009 if (unlikely(cpu
== rq
->cpu
))
2012 /* Try the next RT overloaded CPU */
2013 irq_work_queue_on(&rt_rq
->push_work
, cpu
);
2016 static void push_irq_work_func(struct irq_work
*work
)
2018 struct rt_rq
*rt_rq
= container_of(work
, struct rt_rq
, push_work
);
2020 try_to_push_tasks(rt_rq
);
2022 #endif /* HAVE_RT_PUSH_IPI */
2024 static void pull_rt_task(struct rq
*this_rq
)
2026 int this_cpu
= this_rq
->cpu
, cpu
;
2027 bool resched
= false;
2028 struct task_struct
*p
;
2031 if (likely(!rt_overloaded(this_rq
)))
2035 * Match the barrier from rt_set_overloaded; this guarantees that if we
2036 * see overloaded we must also see the rto_mask bit.
2040 #ifdef HAVE_RT_PUSH_IPI
2041 if (sched_feat(RT_PUSH_IPI
)) {
2042 tell_cpu_to_push(this_rq
);
2047 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2048 if (this_cpu
== cpu
)
2051 src_rq
= cpu_rq(cpu
);
2054 * Don't bother taking the src_rq->lock if the next highest
2055 * task is known to be lower-priority than our current task.
2056 * This may look racy, but if this value is about to go
2057 * logically higher, the src_rq will push this task away.
2058 * And if its going logically lower, we do not care
2060 if (src_rq
->rt
.highest_prio
.next
>=
2061 this_rq
->rt
.highest_prio
.curr
)
2065 * We can potentially drop this_rq's lock in
2066 * double_lock_balance, and another CPU could
2069 double_lock_balance(this_rq
, src_rq
);
2072 * We can pull only a task, which is pushable
2073 * on its rq, and no others.
2075 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2078 * Do we have an RT task that preempts
2079 * the to-be-scheduled task?
2081 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2082 WARN_ON(p
== src_rq
->curr
);
2083 WARN_ON(!task_on_rq_queued(p
));
2086 * There's a chance that p is higher in priority
2087 * than what's currently running on its cpu.
2088 * This is just that p is wakeing up and hasn't
2089 * had a chance to schedule. We only pull
2090 * p if it is lower in priority than the
2091 * current task on the run queue
2093 if (p
->prio
< src_rq
->curr
->prio
)
2098 deactivate_task(src_rq
, p
, 0);
2099 set_task_cpu(p
, this_cpu
);
2100 activate_task(this_rq
, p
, 0);
2102 * We continue with the search, just in
2103 * case there's an even higher prio task
2104 * in another runqueue. (low likelihood
2109 double_unlock_balance(this_rq
, src_rq
);
2113 resched_curr(this_rq
);
2117 * If we are not running and we are not going to reschedule soon, we should
2118 * try to push tasks away now
2120 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2122 if (!task_running(rq
, p
) &&
2123 !test_tsk_need_resched(rq
->curr
) &&
2124 p
->nr_cpus_allowed
> 1 &&
2125 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2126 (rq
->curr
->nr_cpus_allowed
< 2 ||
2127 rq
->curr
->prio
<= p
->prio
))
2131 /* Assumes rq->lock is held */
2132 static void rq_online_rt(struct rq
*rq
)
2134 if (rq
->rt
.overloaded
)
2135 rt_set_overload(rq
);
2137 __enable_runtime(rq
);
2139 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2142 /* Assumes rq->lock is held */
2143 static void rq_offline_rt(struct rq
*rq
)
2145 if (rq
->rt
.overloaded
)
2146 rt_clear_overload(rq
);
2148 __disable_runtime(rq
);
2150 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2154 * When switch from the rt queue, we bring ourselves to a position
2155 * that we might want to pull RT tasks from other runqueues.
2157 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2160 * If there are other RT tasks then we will reschedule
2161 * and the scheduling of the other RT tasks will handle
2162 * the balancing. But if we are the last RT task
2163 * we may need to handle the pulling of RT tasks
2166 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2169 queue_pull_task(rq
);
2172 void __init
init_sched_rt_class(void)
2176 for_each_possible_cpu(i
) {
2177 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2178 GFP_KERNEL
, cpu_to_node(i
));
2181 #endif /* CONFIG_SMP */
2184 * When switching a task to RT, we may overload the runqueue
2185 * with RT tasks. In this case we try to push them off to
2188 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2191 * If we are already running, then there's nothing
2192 * that needs to be done. But if we are not running
2193 * we may need to preempt the current running task.
2194 * If that current running task is also an RT task
2195 * then see if we can move to another run queue.
2197 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2199 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
)
2200 queue_push_tasks(rq
);
2201 #endif /* CONFIG_SMP */
2202 if (p
->prio
< rq
->curr
->prio
)
2208 * Priority of the task has changed. This may cause
2209 * us to initiate a push or pull.
2212 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2214 if (!task_on_rq_queued(p
))
2217 if (rq
->curr
== p
) {
2220 * If our priority decreases while running, we
2221 * may need to pull tasks to this runqueue.
2223 if (oldprio
< p
->prio
)
2224 queue_pull_task(rq
);
2227 * If there's a higher priority task waiting to run
2230 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2233 /* For UP simply resched on drop of prio */
2234 if (oldprio
< p
->prio
)
2236 #endif /* CONFIG_SMP */
2239 * This task is not running, but if it is
2240 * greater than the current running task
2243 if (p
->prio
< rq
->curr
->prio
)
2248 #ifdef CONFIG_POSIX_TIMERS
2249 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2251 unsigned long soft
, hard
;
2253 /* max may change after cur was read, this will be fixed next tick */
2254 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2255 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2257 if (soft
!= RLIM_INFINITY
) {
2260 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2262 p
->rt
.watchdog_stamp
= jiffies
;
2265 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2266 if (p
->rt
.timeout
> next
)
2267 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2271 static inline void watchdog(struct rq
*rq
, struct task_struct
*p
) { }
2274 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2276 struct sched_rt_entity
*rt_se
= &p
->rt
;
2283 * RR tasks need a special form of timeslice management.
2284 * FIFO tasks have no timeslices.
2286 if (p
->policy
!= SCHED_RR
)
2289 if (--p
->rt
.time_slice
)
2292 p
->rt
.time_slice
= sched_rr_timeslice
;
2295 * Requeue to the end of queue if we (and all of our ancestors) are not
2296 * the only element on the queue
2298 for_each_sched_rt_entity(rt_se
) {
2299 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2300 requeue_task_rt(rq
, p
, 0);
2307 static void set_curr_task_rt(struct rq
*rq
)
2309 struct task_struct
*p
= rq
->curr
;
2311 p
->se
.exec_start
= rq_clock_task(rq
);
2313 /* The running task is never eligible for pushing */
2314 dequeue_pushable_task(rq
, p
);
2317 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2320 * Time slice is 0 for SCHED_FIFO tasks
2322 if (task
->policy
== SCHED_RR
)
2323 return sched_rr_timeslice
;
2328 const struct sched_class rt_sched_class
= {
2329 .next
= &fair_sched_class
,
2330 .enqueue_task
= enqueue_task_rt
,
2331 .dequeue_task
= dequeue_task_rt
,
2332 .yield_task
= yield_task_rt
,
2334 .check_preempt_curr
= check_preempt_curr_rt
,
2336 .pick_next_task
= pick_next_task_rt
,
2337 .put_prev_task
= put_prev_task_rt
,
2340 .select_task_rq
= select_task_rq_rt
,
2342 .set_cpus_allowed
= set_cpus_allowed_common
,
2343 .rq_online
= rq_online_rt
,
2344 .rq_offline
= rq_offline_rt
,
2345 .task_woken
= task_woken_rt
,
2346 .switched_from
= switched_from_rt
,
2349 .set_curr_task
= set_curr_task_rt
,
2350 .task_tick
= task_tick_rt
,
2352 .get_rr_interval
= get_rr_interval_rt
,
2354 .prio_changed
= prio_changed_rt
,
2355 .switched_to
= switched_to_rt
,
2357 .update_curr
= update_curr_rt
,
2360 #ifdef CONFIG_SCHED_DEBUG
2361 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2363 void print_rt_stats(struct seq_file
*m
, int cpu
)
2366 struct rt_rq
*rt_rq
;
2369 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2370 print_rt_rq(m
, cpu
, rt_rq
);
2373 #endif /* CONFIG_SCHED_DEBUG */