2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/cacheflush.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
47 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
49 module_param_named(index
, hdmi_card_index
, int, 0444);
50 MODULE_PARM_DESC(index
,
51 "Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id
, hdmi_card_id
, charp
, 0444);
54 "ID string for INTEL Intel HDMI Audio controller.");
57 * ELD SA bits in the CEA Speaker Allocation data block
59 static const int eld_speaker_allocation_bits
[] = {
67 /* the following are not defined in ELD yet */
72 * This is an ordered list!
74 * The preceding ones have better chances to be selected by
75 * hdmi_channel_allocation().
77 static struct cea_channel_speaker_allocation channel_allocations
[] = {
78 /* channel: 7 6 5 4 3 2 1 0 */
79 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
81 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
83 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
85 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
87 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
89 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
91 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
93 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
95 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
97 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
98 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
99 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
100 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
101 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
102 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
103 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
104 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
105 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
106 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
107 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
108 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
109 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
110 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
111 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
112 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
113 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
114 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
115 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
116 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
117 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
118 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
119 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
122 static const struct channel_map_table map_tables
[] = {
123 { SNDRV_CHMAP_FL
, 0x00, FL
},
124 { SNDRV_CHMAP_FR
, 0x01, FR
},
125 { SNDRV_CHMAP_RL
, 0x04, RL
},
126 { SNDRV_CHMAP_RR
, 0x05, RR
},
127 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
128 { SNDRV_CHMAP_FC
, 0x03, FC
},
129 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
130 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware
= {
136 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
137 SNDRV_PCM_INFO_MMAP
|
138 SNDRV_PCM_INFO_MMAP_VALID
|
139 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
140 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
141 SNDRV_PCM_FMTBIT_S24_LE
|
142 SNDRV_PCM_FMTBIT_S32_LE
),
143 .rates
= SNDRV_PCM_RATE_32000
|
144 SNDRV_PCM_RATE_44100
|
145 SNDRV_PCM_RATE_48000
|
146 SNDRV_PCM_RATE_88200
|
147 SNDRV_PCM_RATE_96000
|
148 SNDRV_PCM_RATE_176400
|
149 SNDRV_PCM_RATE_192000
,
150 .rate_min
= HAD_MIN_RATE
,
151 .rate_max
= HAD_MAX_RATE
,
152 .channels_min
= HAD_MIN_CHANNEL
,
153 .channels_max
= HAD_MAX_CHANNEL
,
154 .buffer_bytes_max
= HAD_MAX_BUFFER
,
155 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
156 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
157 .periods_min
= HAD_MIN_PERIODS
,
158 .periods_max
= HAD_MAX_PERIODS
,
159 .fifo_size
= HAD_FIFO_SIZE
,
162 /* Get the active PCM substream;
163 * Call had_substream_put() for unreferecing.
164 * Don't call this inside had_spinlock, as it takes by itself
166 static struct snd_pcm_substream
*
167 had_substream_get(struct snd_intelhad
*intelhaddata
)
169 struct snd_pcm_substream
*substream
;
172 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
173 substream
= intelhaddata
->stream_info
.substream
;
175 intelhaddata
->stream_info
.substream_refcount
++;
176 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
180 /* Unref the active PCM substream;
181 * Don't call this inside had_spinlock, as it takes by itself
183 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
187 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
188 intelhaddata
->stream_info
.substream_refcount
--;
189 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
192 /* Register access functions */
193 static u32
had_read_register_raw(struct snd_intelhad
*ctx
, u32 reg
)
195 return ioread32(ctx
->mmio_start
+ ctx
->had_config_offset
+ reg
);
198 static void had_write_register_raw(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
200 iowrite32(val
, ctx
->mmio_start
+ ctx
->had_config_offset
+ reg
);
203 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
208 *val
= had_read_register_raw(ctx
, reg
);
211 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
214 had_write_register_raw(ctx
, reg
, val
);
218 * enable / disable audio configuration
220 * The normal read/modify should not directly be used on VLV2 for
221 * updating AUD_CONFIG register.
223 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
224 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
225 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
226 * register. This field should be 1xy binary for configuration with 6 or
227 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
228 * causes the "channels" field to be updated as 0xy binary resulting in
229 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
230 * appropriate value when doing read-modify of AUD_CONFIG register.
232 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
235 /* update the cached value */
236 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
237 had_write_register(intelhaddata
, AUD_CONFIG
,
238 intelhaddata
->aud_config
.regval
);
241 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
242 static void had_ack_irqs(struct snd_intelhad
*ctx
)
248 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
249 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
250 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
251 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
254 /* Reset buffer pointers */
255 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
257 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
258 AUD_HDMI_STATUSG_MASK_FUNCRST
);
259 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
263 * initialize audio channel status registers
264 * This function is called in the prepare callback
266 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
267 struct snd_intelhad
*intelhaddata
)
269 union aud_cfg cfg_val
= {.regval
= 0};
270 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
271 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
273 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
274 IEC958_AES0_NONAUDIO
) >> 1;
275 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
276 IEC958_AES3_CON_CLOCK
) >> 4;
277 cfg_val
.regx
.val_bit
= ch_stat0
.regx
.lpcm_id
;
279 switch (substream
->runtime
->rate
) {
280 case AUD_SAMPLE_RATE_32
:
281 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
284 case AUD_SAMPLE_RATE_44_1
:
285 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
287 case AUD_SAMPLE_RATE_48
:
288 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
290 case AUD_SAMPLE_RATE_88_2
:
291 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
293 case AUD_SAMPLE_RATE_96
:
294 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
296 case AUD_SAMPLE_RATE_176_4
:
297 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
299 case AUD_SAMPLE_RATE_192
:
300 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
304 /* control should never come here */
308 had_write_register(intelhaddata
,
309 AUD_CH_STATUS_0
, ch_stat0
.regval
);
311 switch (substream
->runtime
->format
) {
312 case SNDRV_PCM_FORMAT_S16_LE
:
313 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
314 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
316 case SNDRV_PCM_FORMAT_S24_LE
:
317 case SNDRV_PCM_FORMAT_S32_LE
:
318 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
319 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
325 had_write_register(intelhaddata
,
326 AUD_CH_STATUS_1
, ch_stat1
.regval
);
331 * function to initialize audio
332 * registers and buffer confgiuration registers
333 * This function is called in the prepare callback
335 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
336 struct snd_intelhad
*intelhaddata
)
338 union aud_cfg cfg_val
= {.regval
= 0};
339 union aud_buf_config buf_cfg
= {.regval
= 0};
342 had_prog_status_reg(substream
, intelhaddata
);
344 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
345 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
346 buf_cfg
.regx
.aud_delay
= 0;
347 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
349 channels
= substream
->runtime
->channels
;
350 cfg_val
.regx
.num_ch
= channels
- 2;
352 cfg_val
.regx
.layout
= LAYOUT0
;
354 cfg_val
.regx
.layout
= LAYOUT1
;
356 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
357 cfg_val
.regx
.packet_mode
= 1;
359 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
360 cfg_val
.regx
.left_align
= 1;
362 cfg_val
.regx
.val_bit
= 1;
364 /* fix up the DP bits */
365 if (intelhaddata
->dp_output
) {
366 cfg_val
.regx
.dp_modei
= 1;
367 cfg_val
.regx
.set
= 1;
370 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
371 intelhaddata
->aud_config
= cfg_val
;
376 * Compute derived values in channel_allocations[].
378 static void init_channel_allocations(void)
381 struct cea_channel_speaker_allocation
*p
;
383 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
384 p
= channel_allocations
+ i
;
387 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
388 if (p
->speakers
[j
]) {
390 p
->spk_mask
|= p
->speakers
[j
];
396 * The transformation takes two steps:
398 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
399 * spk_mask => (channel_allocations[]) => ai->CA
401 * TODO: it could select the wrong CA from multiple candidates.
403 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
411 * CA defaults to 0 for basic stereo audio
417 * expand ELD's speaker allocation mask
419 * ELD tells the speaker mask in a compact(paired) form,
420 * expand ELD's notions to match the ones used by Audio InfoFrame.
423 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
424 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
425 spk_mask
|= eld_speaker_allocation_bits
[i
];
428 /* search for the first working match in the CA table */
429 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
430 if (channels
== channel_allocations
[i
].channels
&&
431 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
432 channel_allocations
[i
].spk_mask
) {
433 ca
= channel_allocations
[i
].ca_index
;
438 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
443 /* from speaker bit mask to ALSA API channel position */
444 static int spk_to_chmap(int spk
)
446 const struct channel_map_table
*t
= map_tables
;
448 for (; t
->map
; t
++) {
449 if (t
->spk_mask
== spk
)
455 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
459 struct snd_pcm_chmap_elem
*chmap
;
460 u8 eld_high
, eld_high_mask
= 0xF0;
463 kfree(intelhaddata
->chmap
->chmap
);
464 intelhaddata
->chmap
->chmap
= NULL
;
466 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
470 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
471 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
473 /* WA: Fix the max channel supported to 8 */
476 * Sink may support more than 8 channels, if eld_high has more than
477 * one bit set. SOC supports max 8 channels.
478 * Refer eld_speaker_allocation_bits, for sink speaker allocation
481 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
482 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
483 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
484 /* eld_high & (eld_high-1): if more than 1 bit set */
485 /* 0x1F: 7 channels */
486 for (i
= 1; i
< 4; i
++) {
487 high_msb
= eld_high
& (0x80 >> i
);
489 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
496 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
497 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
498 spk_mask
|= eld_speaker_allocation_bits
[i
];
501 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
502 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
503 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
504 chmap
->map
[c
] = spk_to_chmap(
505 channel_allocations
[i
].speakers
[
506 (MAX_SPEAKERS
- 1) - c
]);
508 chmap
->channels
= channel_allocations
[i
].channels
;
509 intelhaddata
->chmap
->chmap
= chmap
;
513 if (i
>= ARRAY_SIZE(channel_allocations
))
518 * ALSA API channel-map control callbacks
520 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
521 struct snd_ctl_elem_info
*uinfo
)
523 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
524 uinfo
->count
= HAD_MAX_CHANNEL
;
525 uinfo
->value
.integer
.min
= 0;
526 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
530 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
531 struct snd_ctl_elem_value
*ucontrol
)
533 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
534 struct snd_intelhad
*intelhaddata
= info
->private_data
;
536 const struct snd_pcm_chmap_elem
*chmap
;
538 memset(ucontrol
->value
.integer
.value
, 0,
539 sizeof(long) * HAD_MAX_CHANNEL
);
540 mutex_lock(&intelhaddata
->mutex
);
541 if (!intelhaddata
->chmap
->chmap
) {
542 mutex_unlock(&intelhaddata
->mutex
);
546 chmap
= intelhaddata
->chmap
->chmap
;
547 for (i
= 0; i
< chmap
->channels
; i
++)
548 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
549 mutex_unlock(&intelhaddata
->mutex
);
554 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
559 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
560 NULL
, 0, (unsigned long)intelhaddata
,
561 &intelhaddata
->chmap
);
565 intelhaddata
->chmap
->private_data
= intelhaddata
;
566 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
567 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
568 intelhaddata
->chmap
->chmap
= NULL
;
573 * Initialize Data Island Packets registers
574 * This function is called in the prepare callback
576 static void had_prog_dip(struct snd_pcm_substream
*substream
,
577 struct snd_intelhad
*intelhaddata
)
580 union aud_ctrl_st ctrl_state
= {.regval
= 0};
581 union aud_info_frame2 frame2
= {.regval
= 0};
582 union aud_info_frame3 frame3
= {.regval
= 0};
588 channels
= substream
->runtime
->channels
;
590 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
592 ca
= had_channel_allocation(intelhaddata
, channels
);
593 if (intelhaddata
->dp_output
) {
594 info_frame
= DP_INFO_FRAME_WORD1
;
595 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
597 info_frame
= HDMI_INFO_FRAME_WORD1
;
598 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
599 frame3
.regx
.chnl_alloc
= ca
;
601 /* Calculte the byte wide checksum for all valid DIP words */
602 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
603 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
604 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
605 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
606 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
607 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
609 frame2
.regx
.chksum
= -(checksum
);
612 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
613 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
614 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
616 /* program remaining DIP words with zero */
617 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
618 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
620 ctrl_state
.regx
.dip_freq
= 1;
621 ctrl_state
.regx
.dip_en_sta
= 1;
622 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
625 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
629 /* Select maud according to DP 1.2 spec */
630 if (link_rate
== DP_2_7_GHZ
) {
631 switch (aud_samp_freq
) {
632 case AUD_SAMPLE_RATE_32
:
633 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
636 case AUD_SAMPLE_RATE_44_1
:
637 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
640 case AUD_SAMPLE_RATE_48
:
641 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
644 case AUD_SAMPLE_RATE_88_2
:
645 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
648 case AUD_SAMPLE_RATE_96
:
649 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
652 case AUD_SAMPLE_RATE_176_4
:
653 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
657 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
664 } else if (link_rate
== DP_1_62_GHZ
) {
665 switch (aud_samp_freq
) {
666 case AUD_SAMPLE_RATE_32
:
667 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
670 case AUD_SAMPLE_RATE_44_1
:
671 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
674 case AUD_SAMPLE_RATE_48
:
675 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
678 case AUD_SAMPLE_RATE_88_2
:
679 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
682 case AUD_SAMPLE_RATE_96
:
683 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
686 case AUD_SAMPLE_RATE_176_4
:
687 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
691 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
705 * Program HDMI audio CTS value
707 * @aud_samp_freq: sampling frequency of audio data
708 * @tmds: sampling frequency of the display data
709 * @link_rate: DP link rate
710 * @n_param: N value, depends on aud_samp_freq
711 * @intelhaddata: substream private data
713 * Program CTS register based on the audio and display sampling frequency
715 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
716 u32 n_param
, struct snd_intelhad
*intelhaddata
)
719 u64 dividend
, divisor
;
721 if (intelhaddata
->dp_output
) {
722 /* Substitute cts_val with Maud according to DP 1.2 spec*/
723 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
725 /* Calculate CTS according to HDMI 1.3a spec*/
726 dividend
= (u64
)tmds
* n_param
*1000;
727 divisor
= 128 * aud_samp_freq
;
728 cts_val
= div64_u64(dividend
, divisor
);
730 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
731 tmds
, n_param
, cts_val
);
732 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
735 static int had_calculate_n_value(u32 aud_samp_freq
)
739 /* Select N according to HDMI 1.3a spec*/
740 switch (aud_samp_freq
) {
741 case AUD_SAMPLE_RATE_32
:
745 case AUD_SAMPLE_RATE_44_1
:
749 case AUD_SAMPLE_RATE_48
:
753 case AUD_SAMPLE_RATE_88_2
:
757 case AUD_SAMPLE_RATE_96
:
761 case AUD_SAMPLE_RATE_176_4
:
777 * Program HDMI audio N value
779 * @aud_samp_freq: sampling frequency of audio data
780 * @n_param: N value, depends on aud_samp_freq
781 * @intelhaddata: substream private data
783 * This function is called in the prepare callback.
784 * It programs based on the audio and display sampling frequency
786 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
787 struct snd_intelhad
*intelhaddata
)
791 if (intelhaddata
->dp_output
) {
793 * According to DP specs, Maud and Naud values hold
794 * a relationship, which is stated as:
795 * Maud/Naud = 512 * fs / f_LS_Clk
796 * where, fs is the sampling frequency of the audio stream
797 * and Naud is 32768 for Async clock.
802 n_val
= had_calculate_n_value(aud_samp_freq
);
807 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
813 * PCM ring buffer handling
815 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
816 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
817 * moves at each period elapsed. The below illustrates how it works:
820 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
821 * BD | 0 | 1 | 2 | 3 |
823 * At time=1 (period elapsed)
824 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
825 * BD | 1 | 2 | 3 | 0 |
827 * At time=2 (second period elapsed)
828 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
829 * BD | 2 | 3 | 0 | 1 |
831 * The bd_head field points to the index of the BD to be read. It's also the
832 * position to be filled at next. The pcm_head and the pcm_filled fields
833 * point to the indices of the current position and of the next position to
834 * be filled, respectively. For PCM buffer there are both _head and _filled
835 * because they may be difference when nperiods > 4. For example, in the
836 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
838 * pcm_head (=1) --v v-- pcm_filled (=5)
839 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840 * BD | 1 | 2 | 3 | 0 |
841 * bd_head (=1) --^ ^-- next to fill (= bd_head)
843 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
844 * the hardware skips those BDs in the loop.
846 * An exceptional setup is the case with nperiods=1. Since we have to update
847 * BDs after finishing one BD processing, we'd need at least two BDs, where
848 * both BDs point to the same content, the same address, the same size of the
852 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
853 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
855 /* Set up a buffer descriptor at the "filled" position */
856 static void had_prog_bd(struct snd_pcm_substream
*substream
,
857 struct snd_intelhad
*intelhaddata
)
859 int idx
= intelhaddata
->bd_head
;
860 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
861 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
863 addr
|= AUD_BUF_VALID
;
864 if (!substream
->runtime
->no_period_wakeup
)
865 addr
|= AUD_BUF_INTR_EN
;
866 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
867 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
868 intelhaddata
->period_bytes
);
870 /* advance the indices to the next */
871 intelhaddata
->bd_head
++;
872 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
873 intelhaddata
->pcmbuf_filled
++;
874 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
877 /* invalidate a buffer descriptor with the given index */
878 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
881 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
882 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
885 /* Initial programming of ring buffer */
886 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
887 struct snd_intelhad
*intelhaddata
)
889 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
892 num_periods
= runtime
->periods
;
893 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
894 /* set the minimum 2 BDs for num_periods=1 */
895 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
896 intelhaddata
->period_bytes
=
897 frames_to_bytes(runtime
, runtime
->period_size
);
898 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
900 intelhaddata
->bd_head
= 0;
901 intelhaddata
->pcmbuf_head
= 0;
902 intelhaddata
->pcmbuf_filled
= 0;
904 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
905 if (i
< intelhaddata
->num_bds
)
906 had_prog_bd(substream
, intelhaddata
);
907 else /* invalidate the rest */
908 had_invalidate_bd(intelhaddata
, i
);
911 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
914 /* process a bd, advance to the next */
915 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
916 struct snd_intelhad
*intelhaddata
)
918 int num_periods
= substream
->runtime
->periods
;
920 /* reprogram the next buffer */
921 had_prog_bd(substream
, intelhaddata
);
923 /* proceed to next */
924 intelhaddata
->pcmbuf_head
++;
925 intelhaddata
->pcmbuf_head
%= num_periods
;
928 /* process the current BD(s);
929 * returns the current PCM buffer byte position, or -EPIPE for underrun.
931 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
932 struct snd_intelhad
*intelhaddata
)
938 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
940 /* get the remaining bytes on the buffer */
941 had_read_register(intelhaddata
,
942 AUD_BUF_LEN(intelhaddata
->bd_head
),
944 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
945 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
951 if (len
> 0) /* OK, this is the current buffer */
954 /* len=0 => already empty, check the next buffer */
955 if (++processed
>= intelhaddata
->num_bds
) {
956 len
= -EPIPE
; /* all empty? - report underrun */
959 had_advance_ringbuf(substream
, intelhaddata
);
962 len
= intelhaddata
->period_bytes
- len
;
963 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
965 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
969 /* called from irq handler */
970 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
972 struct snd_pcm_substream
*substream
;
974 substream
= had_substream_get(intelhaddata
);
976 return; /* no stream? - bail out */
978 if (!intelhaddata
->connected
) {
979 snd_pcm_stop_xrun(substream
);
980 goto out
; /* disconnected? - bail out */
983 /* process or stop the stream */
984 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
985 snd_pcm_stop_xrun(substream
);
987 snd_pcm_period_elapsed(substream
);
990 had_substream_put(intelhaddata
);
994 * The interrupt status 'sticky' bits might not be cleared by
995 * setting '1' to that bit once...
997 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1002 for (i
= 0; i
< 100; i
++) {
1003 /* clear bit30, 31 AUD_HDMI_STATUS */
1004 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1005 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1009 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1011 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1014 /* Perform some reset procedure but only when need_reset is set;
1015 * this is called from prepare or hw_free callbacks once after trigger STOP
1016 * or underrun has been processed in order to settle down the h/w state.
1018 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1020 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1023 /* Reset buffer pointers */
1024 had_reset_audio(intelhaddata
);
1025 wait_clear_underrun_bit(intelhaddata
);
1026 intelhaddata
->need_reset
= false;
1029 /* called from irq handler */
1030 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1032 struct snd_pcm_substream
*substream
;
1034 /* Report UNDERRUN error to above layers */
1035 substream
= had_substream_get(intelhaddata
);
1037 snd_pcm_stop_xrun(substream
);
1038 had_substream_put(intelhaddata
);
1040 intelhaddata
->need_reset
= true;
1044 * ALSA PCM open callback
1046 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1048 struct snd_intelhad
*intelhaddata
;
1049 struct snd_pcm_runtime
*runtime
;
1052 intelhaddata
= snd_pcm_substream_chip(substream
);
1053 runtime
= substream
->runtime
;
1055 pm_runtime_get_sync(intelhaddata
->dev
);
1057 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1058 runtime
->hw
= had_pcm_hardware
;
1060 retval
= snd_pcm_hw_constraint_integer(runtime
,
1061 SNDRV_PCM_HW_PARAM_PERIODS
);
1065 /* Make sure, that the period size is always aligned
1068 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1069 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1073 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1077 /* expose PCM substream */
1078 spin_lock_irq(&intelhaddata
->had_spinlock
);
1079 intelhaddata
->stream_info
.substream
= substream
;
1080 intelhaddata
->stream_info
.substream_refcount
++;
1081 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1085 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1086 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1091 * ALSA PCM close callback
1093 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1095 struct snd_intelhad
*intelhaddata
;
1097 intelhaddata
= snd_pcm_substream_chip(substream
);
1099 /* unreference and sync with the pending PCM accesses */
1100 spin_lock_irq(&intelhaddata
->had_spinlock
);
1101 intelhaddata
->stream_info
.substream
= NULL
;
1102 intelhaddata
->stream_info
.substream_refcount
--;
1103 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1104 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1106 spin_lock_irq(&intelhaddata
->had_spinlock
);
1108 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1110 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1111 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1116 * ALSA PCM hw_params callback
1118 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1119 struct snd_pcm_hw_params
*hw_params
)
1121 struct snd_intelhad
*intelhaddata
;
1123 int pages
, buf_size
, retval
;
1125 intelhaddata
= snd_pcm_substream_chip(substream
);
1126 buf_size
= params_buffer_bytes(hw_params
);
1127 retval
= snd_pcm_lib_malloc_pages(substream
, buf_size
);
1130 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1131 __func__
, buf_size
);
1132 /* mark the pages as uncached region */
1133 addr
= (unsigned long) substream
->runtime
->dma_area
;
1134 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1135 retval
= set_memory_uc(addr
, pages
);
1137 dev_err(intelhaddata
->dev
, "set_memory_uc failed.Error:%d\n",
1141 memset(substream
->runtime
->dma_area
, 0, buf_size
);
1147 * ALSA PCM hw_free callback
1149 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1151 struct snd_intelhad
*intelhaddata
;
1155 intelhaddata
= snd_pcm_substream_chip(substream
);
1156 had_do_reset(intelhaddata
);
1158 /* mark back the pages as cached/writeback region before the free */
1159 if (substream
->runtime
->dma_area
!= NULL
) {
1160 addr
= (unsigned long) substream
->runtime
->dma_area
;
1161 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) /
1163 set_memory_wb(addr
, pages
);
1164 return snd_pcm_lib_free_pages(substream
);
1170 * ALSA PCM trigger callback
1172 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1175 struct snd_intelhad
*intelhaddata
;
1177 intelhaddata
= snd_pcm_substream_chip(substream
);
1179 spin_lock(&intelhaddata
->had_spinlock
);
1181 case SNDRV_PCM_TRIGGER_START
:
1182 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1183 case SNDRV_PCM_TRIGGER_RESUME
:
1185 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1186 had_enable_audio(intelhaddata
, true);
1189 case SNDRV_PCM_TRIGGER_STOP
:
1190 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1192 had_enable_audio(intelhaddata
, false);
1193 intelhaddata
->need_reset
= true;
1199 spin_unlock(&intelhaddata
->had_spinlock
);
1204 * ALSA PCM prepare callback
1206 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1209 u32 disp_samp_freq
, n_param
;
1211 struct snd_intelhad
*intelhaddata
;
1212 struct snd_pcm_runtime
*runtime
;
1214 intelhaddata
= snd_pcm_substream_chip(substream
);
1215 runtime
= substream
->runtime
;
1217 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1218 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1219 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1220 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1221 (int)snd_pcm_lib_buffer_bytes(substream
));
1222 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1223 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1225 had_do_reset(intelhaddata
);
1227 /* Get N value in KHz */
1228 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1230 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1232 dev_err(intelhaddata
->dev
,
1233 "programming N value failed %#x\n", retval
);
1237 if (intelhaddata
->dp_output
)
1238 link_rate
= intelhaddata
->link_rate
;
1240 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1241 n_param
, intelhaddata
);
1243 had_prog_dip(substream
, intelhaddata
);
1245 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1247 /* Prog buffer address */
1248 had_init_ringbuf(substream
, intelhaddata
);
1251 * Program channel mapping in following order:
1252 * FL, FR, C, LFE, RL, RR
1255 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1262 * ALSA PCM pointer callback
1264 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1266 struct snd_intelhad
*intelhaddata
;
1269 intelhaddata
= snd_pcm_substream_chip(substream
);
1271 if (!intelhaddata
->connected
)
1272 return SNDRV_PCM_POS_XRUN
;
1274 len
= had_process_ringbuf(substream
, intelhaddata
);
1276 return SNDRV_PCM_POS_XRUN
;
1277 len
= bytes_to_frames(substream
->runtime
, len
);
1278 /* wrapping may happen when periods=1 */
1279 len
%= substream
->runtime
->buffer_size
;
1284 * ALSA PCM mmap callback
1286 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1287 struct vm_area_struct
*vma
)
1289 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1290 return remap_pfn_range(vma
, vma
->vm_start
,
1291 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1292 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1298 static const struct snd_pcm_ops had_pcm_ops
= {
1299 .open
= had_pcm_open
,
1300 .close
= had_pcm_close
,
1301 .ioctl
= snd_pcm_lib_ioctl
,
1302 .hw_params
= had_pcm_hw_params
,
1303 .hw_free
= had_pcm_hw_free
,
1304 .prepare
= had_pcm_prepare
,
1305 .trigger
= had_pcm_trigger
,
1306 .pointer
= had_pcm_pointer
,
1307 .mmap
= had_pcm_mmap
,
1310 /* process mode change of the running stream; called in mutex */
1311 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1313 struct snd_pcm_substream
*substream
;
1315 u32 disp_samp_freq
, n_param
;
1318 substream
= had_substream_get(intelhaddata
);
1323 had_enable_audio(intelhaddata
, false);
1325 /* Update CTS value */
1326 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1328 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1330 dev_err(intelhaddata
->dev
,
1331 "programming N value failed %#x\n", retval
);
1335 if (intelhaddata
->dp_output
)
1336 link_rate
= intelhaddata
->link_rate
;
1338 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1339 n_param
, intelhaddata
);
1342 had_enable_audio(intelhaddata
, true);
1345 had_substream_put(intelhaddata
);
1349 /* process hot plug, called from wq with mutex locked */
1350 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1352 struct snd_pcm_substream
*substream
;
1354 spin_lock_irq(&intelhaddata
->had_spinlock
);
1355 if (intelhaddata
->connected
) {
1356 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1357 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1361 intelhaddata
->connected
= true;
1362 dev_dbg(intelhaddata
->dev
,
1363 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1364 __func__
, __LINE__
);
1365 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1367 had_build_channel_allocation_map(intelhaddata
);
1369 /* Report to above ALSA layer */
1370 substream
= had_substream_get(intelhaddata
);
1372 snd_pcm_stop_xrun(substream
);
1373 had_substream_put(intelhaddata
);
1376 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1379 /* process hot unplug, called from wq with mutex locked */
1380 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1382 struct snd_pcm_substream
*substream
;
1384 spin_lock_irq(&intelhaddata
->had_spinlock
);
1385 if (!intelhaddata
->connected
) {
1386 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1387 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1393 had_enable_audio(intelhaddata
, false);
1395 intelhaddata
->connected
= false;
1396 dev_dbg(intelhaddata
->dev
,
1397 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1398 __func__
, __LINE__
);
1399 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1401 kfree(intelhaddata
->chmap
->chmap
);
1402 intelhaddata
->chmap
->chmap
= NULL
;
1404 /* Report to above ALSA layer */
1405 substream
= had_substream_get(intelhaddata
);
1407 snd_pcm_stop_xrun(substream
);
1408 had_substream_put(intelhaddata
);
1411 snd_jack_report(intelhaddata
->jack
, 0);
1415 * ALSA iec958 and ELD controls
1418 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1419 struct snd_ctl_elem_info
*uinfo
)
1421 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1426 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1427 struct snd_ctl_elem_value
*ucontrol
)
1429 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1431 mutex_lock(&intelhaddata
->mutex
);
1432 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1433 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1434 ucontrol
->value
.iec958
.status
[2] =
1435 (intelhaddata
->aes_bits
>> 16) & 0xff;
1436 ucontrol
->value
.iec958
.status
[3] =
1437 (intelhaddata
->aes_bits
>> 24) & 0xff;
1438 mutex_unlock(&intelhaddata
->mutex
);
1442 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1443 struct snd_ctl_elem_value
*ucontrol
)
1445 ucontrol
->value
.iec958
.status
[0] = 0xff;
1446 ucontrol
->value
.iec958
.status
[1] = 0xff;
1447 ucontrol
->value
.iec958
.status
[2] = 0xff;
1448 ucontrol
->value
.iec958
.status
[3] = 0xff;
1452 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1453 struct snd_ctl_elem_value
*ucontrol
)
1456 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1459 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1460 (ucontrol
->value
.iec958
.status
[1] << 8) |
1461 (ucontrol
->value
.iec958
.status
[2] << 16) |
1462 (ucontrol
->value
.iec958
.status
[3] << 24);
1463 mutex_lock(&intelhaddata
->mutex
);
1464 if (intelhaddata
->aes_bits
!= val
) {
1465 intelhaddata
->aes_bits
= val
;
1468 mutex_unlock(&intelhaddata
->mutex
);
1472 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1473 struct snd_ctl_elem_info
*uinfo
)
1475 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1476 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1480 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1481 struct snd_ctl_elem_value
*ucontrol
)
1483 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1485 mutex_lock(&intelhaddata
->mutex
);
1486 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1487 HDMI_MAX_ELD_BYTES
);
1488 mutex_unlock(&intelhaddata
->mutex
);
1492 static const struct snd_kcontrol_new had_controls
[] = {
1494 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1495 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1496 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1497 .info
= had_iec958_info
, /* shared */
1498 .get
= had_iec958_mask_get
,
1501 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1502 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1503 .info
= had_iec958_info
,
1504 .get
= had_iec958_get
,
1505 .put
= had_iec958_put
,
1508 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1509 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1510 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1512 .info
= had_ctl_eld_info
,
1513 .get
= had_ctl_eld_get
,
1518 * audio interrupt handler
1520 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1522 struct snd_intelhad
*ctx
= dev_id
;
1525 /* use raw register access to ack IRQs even while disconnected */
1526 audio_stat
= had_read_register_raw(ctx
, AUD_HDMI_STATUS
);
1528 if (audio_stat
& HDMI_AUDIO_UNDERRUN
) {
1529 had_write_register_raw(ctx
, AUD_HDMI_STATUS
,
1530 HDMI_AUDIO_UNDERRUN
);
1531 had_process_buffer_underrun(ctx
);
1534 if (audio_stat
& HDMI_AUDIO_BUFFER_DONE
) {
1535 had_write_register_raw(ctx
, AUD_HDMI_STATUS
,
1536 HDMI_AUDIO_BUFFER_DONE
);
1537 had_process_buffer_done(ctx
);
1544 * monitor plug/unplug notification from i915; just kick off the work
1546 static void notify_audio_lpe(struct platform_device
*pdev
)
1548 struct snd_intelhad
*ctx
= platform_get_drvdata(pdev
);
1550 schedule_work(&ctx
->hdmi_audio_wq
);
1553 /* the work to handle monitor hot plug/unplug */
1554 static void had_audio_wq(struct work_struct
*work
)
1556 struct snd_intelhad
*ctx
=
1557 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1558 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1560 pm_runtime_get_sync(ctx
->dev
);
1561 mutex_lock(&ctx
->mutex
);
1562 if (!pdata
->hdmi_connected
) {
1563 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
1565 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1566 had_process_hot_unplug(ctx
);
1568 struct intel_hdmi_lpe_audio_eld
*eld
= &pdata
->eld
;
1570 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1571 __func__
, eld
->port_id
, pdata
->tmds_clock_speed
);
1573 switch (eld
->pipe_id
) {
1575 ctx
->had_config_offset
= AUDIO_HDMI_CONFIG_A
;
1578 ctx
->had_config_offset
= AUDIO_HDMI_CONFIG_B
;
1581 ctx
->had_config_offset
= AUDIO_HDMI_CONFIG_C
;
1584 dev_dbg(ctx
->dev
, "Invalid pipe %d\n",
1589 memcpy(ctx
->eld
, eld
->eld_data
, sizeof(ctx
->eld
));
1591 ctx
->dp_output
= pdata
->dp_output
;
1592 ctx
->tmds_clock_speed
= pdata
->tmds_clock_speed
;
1593 ctx
->link_rate
= pdata
->link_rate
;
1595 had_process_hot_plug(ctx
);
1597 /* Process mode change if stream is active */
1598 had_process_mode_change(ctx
);
1600 mutex_unlock(&ctx
->mutex
);
1601 pm_runtime_mark_last_busy(ctx
->dev
);
1602 pm_runtime_put_autosuspend(ctx
->dev
);
1608 static int had_create_jack(struct snd_intelhad
*ctx
)
1612 err
= snd_jack_new(ctx
->card
, "HDMI/DP", SND_JACK_AVOUT
, &ctx
->jack
,
1616 ctx
->jack
->private_data
= ctx
;
1624 static int hdmi_lpe_audio_runtime_suspend(struct device
*dev
)
1626 struct snd_intelhad
*ctx
= dev_get_drvdata(dev
);
1627 struct snd_pcm_substream
*substream
;
1629 substream
= had_substream_get(ctx
);
1631 snd_pcm_suspend(substream
);
1632 had_substream_put(ctx
);
1638 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1640 struct snd_intelhad
*ctx
= dev_get_drvdata(dev
);
1643 err
= hdmi_lpe_audio_runtime_suspend(dev
);
1645 snd_power_change_state(ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1649 static int hdmi_lpe_audio_runtime_resume(struct device
*dev
)
1651 pm_runtime_mark_last_busy(dev
);
1655 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1657 struct snd_intelhad
*ctx
= dev_get_drvdata(dev
);
1659 hdmi_lpe_audio_runtime_resume(dev
);
1660 snd_power_change_state(ctx
->card
, SNDRV_CTL_POWER_D0
);
1664 /* release resources */
1665 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1667 struct snd_intelhad
*ctx
= card
->private_data
;
1669 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1671 if (ctx
->mmio_start
)
1672 iounmap(ctx
->mmio_start
);
1674 free_irq(ctx
->irq
, ctx
);
1678 * hdmi_lpe_audio_probe - start bridge with i915
1680 * This function is called when the i915 driver creates the
1681 * hdmi-lpe-audio platform device.
1683 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1685 struct snd_card
*card
;
1686 struct snd_intelhad
*ctx
;
1687 struct snd_pcm
*pcm
;
1688 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1690 struct resource
*res_mmio
;
1693 pdata
= pdev
->dev
.platform_data
;
1695 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1700 irq
= platform_get_irq(pdev
, 0);
1702 dev_err(&pdev
->dev
, "Could not get irq resource\n");
1706 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1708 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1712 /* create a card instance with ALSA framework */
1713 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1714 THIS_MODULE
, sizeof(*ctx
), &card
);
1718 ctx
= card
->private_data
;
1719 spin_lock_init(&ctx
->had_spinlock
);
1720 mutex_init(&ctx
->mutex
);
1721 ctx
->connected
= false;
1722 ctx
->dev
= &pdev
->dev
;
1724 ctx
->aes_bits
= SNDRV_PCM_DEFAULT_CON_SPDIF
;
1725 strcpy(card
->driver
, INTEL_HAD
);
1726 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1727 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1730 ctx
->tmds_clock_speed
= DIS_SAMPLE_RATE_148_5
;
1731 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1733 card
->private_free
= hdmi_lpe_audio_free
;
1735 /* assume pipe A as default */
1736 ctx
->had_config_offset
= AUDIO_HDMI_CONFIG_A
;
1738 platform_set_drvdata(pdev
, ctx
);
1740 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1741 __func__
, (unsigned int)res_mmio
->start
,
1742 (unsigned int)res_mmio
->end
);
1744 ctx
->mmio_start
= ioremap_nocache(res_mmio
->start
,
1745 (size_t)(resource_size(res_mmio
)));
1746 if (!ctx
->mmio_start
) {
1747 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1752 /* setup interrupt handler */
1753 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1756 dev_err(&pdev
->dev
, "request_irq failed\n");
1762 ret
= snd_pcm_new(card
, INTEL_HAD
, PCM_INDEX
, MAX_PB_STREAMS
,
1763 MAX_CAP_STREAMS
, &pcm
);
1767 /* setup private data which can be retrieved when required */
1768 pcm
->private_data
= ctx
;
1769 pcm
->info_flags
= 0;
1770 strncpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1771 /* setup the ops for playabck */
1772 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1774 /* only 32bit addressable */
1775 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1776 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1778 /* allocate dma pages;
1779 * try to allocate 600k buffer as default which is large enough
1781 snd_pcm_lib_preallocate_pages_for_all(pcm
,
1782 SNDRV_DMA_TYPE_DEV
, NULL
,
1783 HAD_DEFAULT_BUFFER
, HAD_MAX_BUFFER
);
1785 /* create controls */
1786 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1787 ret
= snd_ctl_add(card
, snd_ctl_new1(&had_controls
[i
], ctx
));
1792 init_channel_allocations();
1794 /* Register channel map controls */
1795 ret
= had_register_chmap_ctls(ctx
, pcm
);
1799 ret
= had_create_jack(ctx
);
1803 ret
= snd_card_register(card
);
1807 spin_lock_irq(&pdata
->lpe_audio_slock
);
1808 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1809 pdata
->notify_pending
= false;
1810 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1812 pm_runtime_use_autosuspend(&pdev
->dev
);
1813 pm_runtime_mark_last_busy(&pdev
->dev
);
1814 pm_runtime_set_active(&pdev
->dev
);
1816 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1817 schedule_work(&ctx
->hdmi_audio_wq
);
1822 snd_card_free(card
);
1827 * hdmi_lpe_audio_remove - stop bridge with i915
1829 * This function is called when the platform device is destroyed.
1831 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1833 struct snd_intelhad
*ctx
= platform_get_drvdata(pdev
);
1835 snd_card_free(ctx
->card
);
1839 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1840 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1841 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend
,
1842 hdmi_lpe_audio_runtime_resume
, NULL
)
1845 static struct platform_driver hdmi_lpe_audio_driver
= {
1847 .name
= "hdmi-lpe-audio",
1848 .pm
= &hdmi_lpe_audio_pm
,
1850 .probe
= hdmi_lpe_audio_probe
,
1851 .remove
= hdmi_lpe_audio_remove
,
1854 module_platform_driver(hdmi_lpe_audio_driver
);
1855 MODULE_ALIAS("platform:hdmi_lpe_audio");
1857 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1858 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1859 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1860 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1861 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1862 MODULE_LICENSE("GPL v2");
1863 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");