Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blobc09539bad1ee0ab15c5ad3def5fed46ef68c117f
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return 0;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return 0;
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
59 return seg;
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
86 u32 val;
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
147 * Create a new ring with zero or more segments.
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
159 ring = kzalloc(sizeof *(ring), flags);
160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161 if (!ring)
162 return 0;
164 INIT_LIST_HEAD(&ring->td_list);
165 if (num_segs == 0)
166 return ring;
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
182 prev = next;
183 num_segs--;
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
194 xhci_initialize_ring_info(ring);
195 return ring;
197 fail:
198 xhci_ring_free(xhci, ring);
199 return 0;
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
206 int rings_cached;
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
224 virt_dev->eps[ep_index].ring = NULL;
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
245 INIT_LIST_HEAD(&ring->td_list);
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 int type, gfp_t flags)
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
268 void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 struct xhci_container_ctx *ctx)
271 if (!ctx)
272 return;
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
307 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
308 struct xhci_virt_ep *ep)
310 init_timer(&ep->stop_cmd_timer);
311 ep->stop_cmd_timer.data = (unsigned long) ep;
312 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
313 ep->xhci = xhci;
316 /* All the xhci_tds in the ring's TD list should be freed at this point */
317 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
319 struct xhci_virt_device *dev;
320 int i;
322 /* Slot ID 0 is reserved */
323 if (slot_id == 0 || !xhci->devs[slot_id])
324 return;
326 dev = xhci->devs[slot_id];
327 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
328 if (!dev)
329 return;
331 for (i = 0; i < 31; ++i)
332 if (dev->eps[i].ring)
333 xhci_ring_free(xhci, dev->eps[i].ring);
335 if (dev->ring_cache) {
336 for (i = 0; i < dev->num_rings_cached; i++)
337 xhci_ring_free(xhci, dev->ring_cache[i]);
338 kfree(dev->ring_cache);
341 if (dev->in_ctx)
342 xhci_free_container_ctx(xhci, dev->in_ctx);
343 if (dev->out_ctx)
344 xhci_free_container_ctx(xhci, dev->out_ctx);
346 kfree(xhci->devs[slot_id]);
347 xhci->devs[slot_id] = 0;
350 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
351 struct usb_device *udev, gfp_t flags)
353 struct xhci_virt_device *dev;
354 int i;
356 /* Slot ID 0 is reserved */
357 if (slot_id == 0 || xhci->devs[slot_id]) {
358 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
359 return 0;
362 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
363 if (!xhci->devs[slot_id])
364 return 0;
365 dev = xhci->devs[slot_id];
367 /* Allocate the (output) device context that will be used in the HC. */
368 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
369 if (!dev->out_ctx)
370 goto fail;
372 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
373 (unsigned long long)dev->out_ctx->dma);
375 /* Allocate the (input) device context for address device command */
376 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
377 if (!dev->in_ctx)
378 goto fail;
380 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
381 (unsigned long long)dev->in_ctx->dma);
383 /* Initialize the cancellation list and watchdog timers for each ep */
384 for (i = 0; i < 31; i++) {
385 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
386 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
389 /* Allocate endpoint 0 ring */
390 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
391 if (!dev->eps[0].ring)
392 goto fail;
394 /* Allocate pointers to the ring cache */
395 dev->ring_cache = kzalloc(
396 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
397 flags);
398 if (!dev->ring_cache)
399 goto fail;
400 dev->num_rings_cached = 0;
402 init_completion(&dev->cmd_completion);
403 INIT_LIST_HEAD(&dev->cmd_list);
405 /* Point to output device context in dcbaa. */
406 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
407 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
408 slot_id,
409 &xhci->dcbaa->dev_context_ptrs[slot_id],
410 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
412 return 1;
413 fail:
414 xhci_free_virt_device(xhci, slot_id);
415 return 0;
418 /* Setup an xHCI virtual device for a Set Address command */
419 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
421 struct xhci_virt_device *dev;
422 struct xhci_ep_ctx *ep0_ctx;
423 struct usb_device *top_dev;
424 struct xhci_slot_ctx *slot_ctx;
425 struct xhci_input_control_ctx *ctrl_ctx;
427 dev = xhci->devs[udev->slot_id];
428 /* Slot ID 0 is reserved */
429 if (udev->slot_id == 0 || !dev) {
430 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
431 udev->slot_id);
432 return -EINVAL;
434 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
435 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
436 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
438 /* 2) New slot context and endpoint 0 context are valid*/
439 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
441 /* 3) Only the control endpoint is valid - one endpoint context */
442 slot_ctx->dev_info |= LAST_CTX(1);
444 slot_ctx->dev_info |= (u32) udev->route;
445 switch (udev->speed) {
446 case USB_SPEED_SUPER:
447 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
448 break;
449 case USB_SPEED_HIGH:
450 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
451 break;
452 case USB_SPEED_FULL:
453 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
454 break;
455 case USB_SPEED_LOW:
456 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
457 break;
458 case USB_SPEED_WIRELESS:
459 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
460 return -EINVAL;
461 break;
462 default:
463 /* Speed was set earlier, this shouldn't happen. */
464 BUG();
466 /* Find the root hub port this device is under */
467 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
468 top_dev = top_dev->parent)
469 /* Found device below root hub */;
470 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
471 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
473 /* Is this a LS/FS device under a HS hub? */
474 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
475 udev->tt) {
476 slot_ctx->tt_info = udev->tt->hub->slot_id;
477 slot_ctx->tt_info |= udev->ttport << 8;
478 if (udev->tt->multi)
479 slot_ctx->dev_info |= DEV_MTT;
481 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
482 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
484 /* Step 4 - ring already allocated */
485 /* Step 5 */
486 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
488 * XXX: Not sure about wireless USB devices.
490 switch (udev->speed) {
491 case USB_SPEED_SUPER:
492 ep0_ctx->ep_info2 |= MAX_PACKET(512);
493 break;
494 case USB_SPEED_HIGH:
495 /* USB core guesses at a 64-byte max packet first for FS devices */
496 case USB_SPEED_FULL:
497 ep0_ctx->ep_info2 |= MAX_PACKET(64);
498 break;
499 case USB_SPEED_LOW:
500 ep0_ctx->ep_info2 |= MAX_PACKET(8);
501 break;
502 case USB_SPEED_WIRELESS:
503 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
504 return -EINVAL;
505 break;
506 default:
507 /* New speed? */
508 BUG();
510 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
511 ep0_ctx->ep_info2 |= MAX_BURST(0);
512 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
514 ep0_ctx->deq =
515 dev->eps[0].ring->first_seg->dma;
516 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
518 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
520 return 0;
523 /* Return the polling or NAK interval.
525 * The polling interval is expressed in "microframes". If xHCI's Interval field
526 * is set to N, it will service the endpoint every 2^(Interval)*125us.
528 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
529 * is set to 0.
531 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
532 struct usb_host_endpoint *ep)
534 unsigned int interval = 0;
536 switch (udev->speed) {
537 case USB_SPEED_HIGH:
538 /* Max NAK rate */
539 if (usb_endpoint_xfer_control(&ep->desc) ||
540 usb_endpoint_xfer_bulk(&ep->desc))
541 interval = ep->desc.bInterval;
542 /* Fall through - SS and HS isoc/int have same decoding */
543 case USB_SPEED_SUPER:
544 if (usb_endpoint_xfer_int(&ep->desc) ||
545 usb_endpoint_xfer_isoc(&ep->desc)) {
546 if (ep->desc.bInterval == 0)
547 interval = 0;
548 else
549 interval = ep->desc.bInterval - 1;
550 if (interval > 15)
551 interval = 15;
552 if (interval != ep->desc.bInterval + 1)
553 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
554 ep->desc.bEndpointAddress, 1 << interval);
556 break;
557 /* Convert bInterval (in 1-255 frames) to microframes and round down to
558 * nearest power of 2.
560 case USB_SPEED_FULL:
561 case USB_SPEED_LOW:
562 if (usb_endpoint_xfer_int(&ep->desc) ||
563 usb_endpoint_xfer_isoc(&ep->desc)) {
564 interval = fls(8*ep->desc.bInterval) - 1;
565 if (interval > 10)
566 interval = 10;
567 if (interval < 3)
568 interval = 3;
569 if ((1 << interval) != 8*ep->desc.bInterval)
570 dev_warn(&udev->dev,
571 "ep %#x - rounding interval"
572 " to %d microframes, "
573 "ep desc says %d microframes\n",
574 ep->desc.bEndpointAddress,
575 1 << interval,
576 8*ep->desc.bInterval);
578 break;
579 default:
580 BUG();
582 return EP_INTERVAL(interval);
585 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
586 struct usb_host_endpoint *ep)
588 int in;
589 u32 type;
591 in = usb_endpoint_dir_in(&ep->desc);
592 if (usb_endpoint_xfer_control(&ep->desc)) {
593 type = EP_TYPE(CTRL_EP);
594 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
595 if (in)
596 type = EP_TYPE(BULK_IN_EP);
597 else
598 type = EP_TYPE(BULK_OUT_EP);
599 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
600 if (in)
601 type = EP_TYPE(ISOC_IN_EP);
602 else
603 type = EP_TYPE(ISOC_OUT_EP);
604 } else if (usb_endpoint_xfer_int(&ep->desc)) {
605 if (in)
606 type = EP_TYPE(INT_IN_EP);
607 else
608 type = EP_TYPE(INT_OUT_EP);
609 } else {
610 BUG();
612 return type;
615 int xhci_endpoint_init(struct xhci_hcd *xhci,
616 struct xhci_virt_device *virt_dev,
617 struct usb_device *udev,
618 struct usb_host_endpoint *ep,
619 gfp_t mem_flags)
621 unsigned int ep_index;
622 struct xhci_ep_ctx *ep_ctx;
623 struct xhci_ring *ep_ring;
624 unsigned int max_packet;
625 unsigned int max_burst;
627 ep_index = xhci_get_endpoint_index(&ep->desc);
628 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
630 /* Set up the endpoint ring */
631 virt_dev->eps[ep_index].new_ring =
632 xhci_ring_alloc(xhci, 1, true, mem_flags);
633 if (!virt_dev->eps[ep_index].new_ring) {
634 /* Attempt to use the ring cache */
635 if (virt_dev->num_rings_cached == 0)
636 return -ENOMEM;
637 virt_dev->eps[ep_index].new_ring =
638 virt_dev->ring_cache[virt_dev->num_rings_cached];
639 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
640 virt_dev->num_rings_cached--;
641 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
643 ep_ring = virt_dev->eps[ep_index].new_ring;
644 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
646 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
648 /* FIXME dig Mult and streams info out of ep companion desc */
650 /* Allow 3 retries for everything but isoc;
651 * error count = 0 means infinite retries.
653 if (!usb_endpoint_xfer_isoc(&ep->desc))
654 ep_ctx->ep_info2 = ERROR_COUNT(3);
655 else
656 ep_ctx->ep_info2 = ERROR_COUNT(1);
658 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
660 /* Set the max packet size and max burst */
661 switch (udev->speed) {
662 case USB_SPEED_SUPER:
663 max_packet = ep->desc.wMaxPacketSize;
664 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
665 /* dig out max burst from ep companion desc */
666 if (!ep->ss_ep_comp) {
667 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
668 max_packet = 0;
669 } else {
670 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
672 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
673 break;
674 case USB_SPEED_HIGH:
675 /* bits 11:12 specify the number of additional transaction
676 * opportunities per microframe (USB 2.0, section 9.6.6)
678 if (usb_endpoint_xfer_isoc(&ep->desc) ||
679 usb_endpoint_xfer_int(&ep->desc)) {
680 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
681 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
683 /* Fall through */
684 case USB_SPEED_FULL:
685 case USB_SPEED_LOW:
686 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
687 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
688 break;
689 default:
690 BUG();
692 /* FIXME Debug endpoint context */
693 return 0;
696 void xhci_endpoint_zero(struct xhci_hcd *xhci,
697 struct xhci_virt_device *virt_dev,
698 struct usb_host_endpoint *ep)
700 unsigned int ep_index;
701 struct xhci_ep_ctx *ep_ctx;
703 ep_index = xhci_get_endpoint_index(&ep->desc);
704 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
706 ep_ctx->ep_info = 0;
707 ep_ctx->ep_info2 = 0;
708 ep_ctx->deq = 0;
709 ep_ctx->tx_info = 0;
710 /* Don't free the endpoint ring until the set interface or configuration
711 * request succeeds.
715 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
716 * Useful when you want to change one particular aspect of the endpoint and then
717 * issue a configure endpoint command.
719 void xhci_endpoint_copy(struct xhci_hcd *xhci,
720 struct xhci_container_ctx *in_ctx,
721 struct xhci_container_ctx *out_ctx,
722 unsigned int ep_index)
724 struct xhci_ep_ctx *out_ep_ctx;
725 struct xhci_ep_ctx *in_ep_ctx;
727 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
728 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
730 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
731 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
732 in_ep_ctx->deq = out_ep_ctx->deq;
733 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
736 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
737 * Useful when you want to change one particular aspect of the endpoint and then
738 * issue a configure endpoint command. Only the context entries field matters,
739 * but we'll copy the whole thing anyway.
741 void xhci_slot_copy(struct xhci_hcd *xhci,
742 struct xhci_container_ctx *in_ctx,
743 struct xhci_container_ctx *out_ctx)
745 struct xhci_slot_ctx *in_slot_ctx;
746 struct xhci_slot_ctx *out_slot_ctx;
748 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
749 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
751 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
752 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
753 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
754 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
757 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
758 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
760 int i;
761 struct device *dev = xhci_to_hcd(xhci)->self.controller;
762 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
764 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
766 if (!num_sp)
767 return 0;
769 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
770 if (!xhci->scratchpad)
771 goto fail_sp;
773 xhci->scratchpad->sp_array =
774 pci_alloc_consistent(to_pci_dev(dev),
775 num_sp * sizeof(u64),
776 &xhci->scratchpad->sp_dma);
777 if (!xhci->scratchpad->sp_array)
778 goto fail_sp2;
780 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
781 if (!xhci->scratchpad->sp_buffers)
782 goto fail_sp3;
784 xhci->scratchpad->sp_dma_buffers =
785 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
787 if (!xhci->scratchpad->sp_dma_buffers)
788 goto fail_sp4;
790 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
791 for (i = 0; i < num_sp; i++) {
792 dma_addr_t dma;
793 void *buf = pci_alloc_consistent(to_pci_dev(dev),
794 xhci->page_size, &dma);
795 if (!buf)
796 goto fail_sp5;
798 xhci->scratchpad->sp_array[i] = dma;
799 xhci->scratchpad->sp_buffers[i] = buf;
800 xhci->scratchpad->sp_dma_buffers[i] = dma;
803 return 0;
805 fail_sp5:
806 for (i = i - 1; i >= 0; i--) {
807 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
808 xhci->scratchpad->sp_buffers[i],
809 xhci->scratchpad->sp_dma_buffers[i]);
811 kfree(xhci->scratchpad->sp_dma_buffers);
813 fail_sp4:
814 kfree(xhci->scratchpad->sp_buffers);
816 fail_sp3:
817 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
818 xhci->scratchpad->sp_array,
819 xhci->scratchpad->sp_dma);
821 fail_sp2:
822 kfree(xhci->scratchpad);
823 xhci->scratchpad = NULL;
825 fail_sp:
826 return -ENOMEM;
829 static void scratchpad_free(struct xhci_hcd *xhci)
831 int num_sp;
832 int i;
833 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
835 if (!xhci->scratchpad)
836 return;
838 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
840 for (i = 0; i < num_sp; i++) {
841 pci_free_consistent(pdev, xhci->page_size,
842 xhci->scratchpad->sp_buffers[i],
843 xhci->scratchpad->sp_dma_buffers[i]);
845 kfree(xhci->scratchpad->sp_dma_buffers);
846 kfree(xhci->scratchpad->sp_buffers);
847 pci_free_consistent(pdev, num_sp * sizeof(u64),
848 xhci->scratchpad->sp_array,
849 xhci->scratchpad->sp_dma);
850 kfree(xhci->scratchpad);
851 xhci->scratchpad = NULL;
854 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
855 bool allocate_in_ctx, bool allocate_completion,
856 gfp_t mem_flags)
858 struct xhci_command *command;
860 command = kzalloc(sizeof(*command), mem_flags);
861 if (!command)
862 return NULL;
864 if (allocate_in_ctx) {
865 command->in_ctx =
866 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
867 mem_flags);
868 if (!command->in_ctx) {
869 kfree(command);
870 return NULL;
874 if (allocate_completion) {
875 command->completion =
876 kzalloc(sizeof(struct completion), mem_flags);
877 if (!command->completion) {
878 xhci_free_container_ctx(xhci, command->in_ctx);
879 kfree(command);
880 return NULL;
882 init_completion(command->completion);
885 command->status = 0;
886 INIT_LIST_HEAD(&command->cmd_list);
887 return command;
890 void xhci_free_command(struct xhci_hcd *xhci,
891 struct xhci_command *command)
893 xhci_free_container_ctx(xhci,
894 command->in_ctx);
895 kfree(command->completion);
896 kfree(command);
899 void xhci_mem_cleanup(struct xhci_hcd *xhci)
901 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
902 int size;
903 int i;
905 /* Free the Event Ring Segment Table and the actual Event Ring */
906 if (xhci->ir_set) {
907 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
908 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
909 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
911 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
912 if (xhci->erst.entries)
913 pci_free_consistent(pdev, size,
914 xhci->erst.entries, xhci->erst.erst_dma_addr);
915 xhci->erst.entries = NULL;
916 xhci_dbg(xhci, "Freed ERST\n");
917 if (xhci->event_ring)
918 xhci_ring_free(xhci, xhci->event_ring);
919 xhci->event_ring = NULL;
920 xhci_dbg(xhci, "Freed event ring\n");
922 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
923 if (xhci->cmd_ring)
924 xhci_ring_free(xhci, xhci->cmd_ring);
925 xhci->cmd_ring = NULL;
926 xhci_dbg(xhci, "Freed command ring\n");
928 for (i = 1; i < MAX_HC_SLOTS; ++i)
929 xhci_free_virt_device(xhci, i);
931 if (xhci->segment_pool)
932 dma_pool_destroy(xhci->segment_pool);
933 xhci->segment_pool = NULL;
934 xhci_dbg(xhci, "Freed segment pool\n");
936 if (xhci->device_pool)
937 dma_pool_destroy(xhci->device_pool);
938 xhci->device_pool = NULL;
939 xhci_dbg(xhci, "Freed device context pool\n");
941 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
942 if (xhci->dcbaa)
943 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
944 xhci->dcbaa, xhci->dcbaa->dma);
945 xhci->dcbaa = NULL;
947 scratchpad_free(xhci);
948 xhci->page_size = 0;
949 xhci->page_shift = 0;
952 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
953 struct xhci_segment *input_seg,
954 union xhci_trb *start_trb,
955 union xhci_trb *end_trb,
956 dma_addr_t input_dma,
957 struct xhci_segment *result_seg,
958 char *test_name, int test_number)
960 unsigned long long start_dma;
961 unsigned long long end_dma;
962 struct xhci_segment *seg;
964 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
965 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
967 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
968 if (seg != result_seg) {
969 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
970 test_name, test_number);
971 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
972 "input DMA 0x%llx\n",
973 input_seg,
974 (unsigned long long) input_dma);
975 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
976 "ending TRB %p (0x%llx DMA)\n",
977 start_trb, start_dma,
978 end_trb, end_dma);
979 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
980 result_seg, seg);
981 return -1;
983 return 0;
986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
987 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
989 struct {
990 dma_addr_t input_dma;
991 struct xhci_segment *result_seg;
992 } simple_test_vector [] = {
993 /* A zeroed DMA field should fail */
994 { 0, NULL },
995 /* One TRB before the ring start should fail */
996 { xhci->event_ring->first_seg->dma - 16, NULL },
997 /* One byte before the ring start should fail */
998 { xhci->event_ring->first_seg->dma - 1, NULL },
999 /* Starting TRB should succeed */
1000 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1001 /* Ending TRB should succeed */
1002 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1003 xhci->event_ring->first_seg },
1004 /* One byte after the ring end should fail */
1005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1006 /* One TRB after the ring end should fail */
1007 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1008 /* An address of all ones should fail */
1009 { (dma_addr_t) (~0), NULL },
1011 struct {
1012 struct xhci_segment *input_seg;
1013 union xhci_trb *start_trb;
1014 union xhci_trb *end_trb;
1015 dma_addr_t input_dma;
1016 struct xhci_segment *result_seg;
1017 } complex_test_vector [] = {
1018 /* Test feeding a valid DMA address from a different ring */
1019 { .input_seg = xhci->event_ring->first_seg,
1020 .start_trb = xhci->event_ring->first_seg->trbs,
1021 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1022 .input_dma = xhci->cmd_ring->first_seg->dma,
1023 .result_seg = NULL,
1025 /* Test feeding a valid end TRB from a different ring */
1026 { .input_seg = xhci->event_ring->first_seg,
1027 .start_trb = xhci->event_ring->first_seg->trbs,
1028 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1029 .input_dma = xhci->cmd_ring->first_seg->dma,
1030 .result_seg = NULL,
1032 /* Test feeding a valid start and end TRB from a different ring */
1033 { .input_seg = xhci->event_ring->first_seg,
1034 .start_trb = xhci->cmd_ring->first_seg->trbs,
1035 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1036 .input_dma = xhci->cmd_ring->first_seg->dma,
1037 .result_seg = NULL,
1039 /* TRB in this ring, but after this TD */
1040 { .input_seg = xhci->event_ring->first_seg,
1041 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1042 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1043 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1044 .result_seg = NULL,
1046 /* TRB in this ring, but before this TD */
1047 { .input_seg = xhci->event_ring->first_seg,
1048 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1049 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1050 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1051 .result_seg = NULL,
1053 /* TRB in this ring, but after this wrapped TD */
1054 { .input_seg = xhci->event_ring->first_seg,
1055 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1056 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1057 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1058 .result_seg = NULL,
1060 /* TRB in this ring, but before this wrapped TD */
1061 { .input_seg = xhci->event_ring->first_seg,
1062 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1063 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1064 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1065 .result_seg = NULL,
1067 /* TRB not in this ring, and we have a wrapped TD */
1068 { .input_seg = xhci->event_ring->first_seg,
1069 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1070 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1071 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1072 .result_seg = NULL,
1076 unsigned int num_tests;
1077 int i, ret;
1079 num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1080 for (i = 0; i < num_tests; i++) {
1081 ret = xhci_test_trb_in_td(xhci,
1082 xhci->event_ring->first_seg,
1083 xhci->event_ring->first_seg->trbs,
1084 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1085 simple_test_vector[i].input_dma,
1086 simple_test_vector[i].result_seg,
1087 "Simple", i);
1088 if (ret < 0)
1089 return ret;
1092 num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1093 for (i = 0; i < num_tests; i++) {
1094 ret = xhci_test_trb_in_td(xhci,
1095 complex_test_vector[i].input_seg,
1096 complex_test_vector[i].start_trb,
1097 complex_test_vector[i].end_trb,
1098 complex_test_vector[i].input_dma,
1099 complex_test_vector[i].result_seg,
1100 "Complex", i);
1101 if (ret < 0)
1102 return ret;
1104 xhci_dbg(xhci, "TRB math tests passed.\n");
1105 return 0;
1109 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1111 dma_addr_t dma;
1112 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1113 unsigned int val, val2;
1114 u64 val_64;
1115 struct xhci_segment *seg;
1116 u32 page_size;
1117 int i;
1119 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1120 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1121 for (i = 0; i < 16; i++) {
1122 if ((0x1 & page_size) != 0)
1123 break;
1124 page_size = page_size >> 1;
1126 if (i < 16)
1127 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1128 else
1129 xhci_warn(xhci, "WARN: no supported page size\n");
1130 /* Use 4K pages, since that's common and the minimum the HC supports */
1131 xhci->page_shift = 12;
1132 xhci->page_size = 1 << xhci->page_shift;
1133 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1136 * Program the Number of Device Slots Enabled field in the CONFIG
1137 * register with the max value of slots the HC can handle.
1139 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1140 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1141 (unsigned int) val);
1142 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1143 val |= (val2 & ~HCS_SLOTS_MASK);
1144 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1145 (unsigned int) val);
1146 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1149 * Section 5.4.8 - doorbell array must be
1150 * "physically contiguous and 64-byte (cache line) aligned".
1152 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1153 sizeof(*xhci->dcbaa), &dma);
1154 if (!xhci->dcbaa)
1155 goto fail;
1156 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1157 xhci->dcbaa->dma = dma;
1158 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1159 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1160 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1163 * Initialize the ring segment pool. The ring must be a contiguous
1164 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1165 * however, the command ring segment needs 64-byte aligned segments,
1166 * so we pick the greater alignment need.
1168 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1169 SEGMENT_SIZE, 64, xhci->page_size);
1171 /* See Table 46 and Note on Figure 55 */
1172 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1173 2112, 64, xhci->page_size);
1174 if (!xhci->segment_pool || !xhci->device_pool)
1175 goto fail;
1177 /* Set up the command ring to have one segments for now. */
1178 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1179 if (!xhci->cmd_ring)
1180 goto fail;
1181 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1182 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1183 (unsigned long long)xhci->cmd_ring->first_seg->dma);
1185 /* Set the address in the Command Ring Control register */
1186 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1187 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1188 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1189 xhci->cmd_ring->cycle_state;
1190 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1191 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1192 xhci_dbg_cmd_ptrs(xhci);
1194 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1195 val &= DBOFF_MASK;
1196 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1197 " from cap regs base addr\n", val);
1198 xhci->dba = (void *) xhci->cap_regs + val;
1199 xhci_dbg_regs(xhci);
1200 xhci_print_run_regs(xhci);
1201 /* Set ir_set to interrupt register set 0 */
1202 xhci->ir_set = (void *) xhci->run_regs->ir_set;
1205 * Event ring setup: Allocate a normal ring, but also setup
1206 * the event ring segment table (ERST). Section 4.9.3.
1208 xhci_dbg(xhci, "// Allocating event ring\n");
1209 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1210 if (!xhci->event_ring)
1211 goto fail;
1212 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1213 goto fail;
1215 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1216 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1217 if (!xhci->erst.entries)
1218 goto fail;
1219 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1220 (unsigned long long)dma);
1222 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1223 xhci->erst.num_entries = ERST_NUM_SEGS;
1224 xhci->erst.erst_dma_addr = dma;
1225 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1226 xhci->erst.num_entries,
1227 xhci->erst.entries,
1228 (unsigned long long)xhci->erst.erst_dma_addr);
1230 /* set ring base address and size for each segment table entry */
1231 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1232 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1233 entry->seg_addr = seg->dma;
1234 entry->seg_size = TRBS_PER_SEGMENT;
1235 entry->rsvd = 0;
1236 seg = seg->next;
1239 /* set ERST count with the number of entries in the segment table */
1240 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1241 val &= ERST_SIZE_MASK;
1242 val |= ERST_NUM_SEGS;
1243 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1244 val);
1245 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1247 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1248 /* set the segment table base address */
1249 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1250 (unsigned long long)xhci->erst.erst_dma_addr);
1251 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1252 val_64 &= ERST_PTR_MASK;
1253 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1254 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1256 /* Set the event ring dequeue address */
1257 xhci_set_hc_event_deq(xhci);
1258 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1259 xhci_print_ir_set(xhci, xhci->ir_set, 0);
1262 * XXX: Might need to set the Interrupter Moderation Register to
1263 * something other than the default (~1ms minimum between interrupts).
1264 * See section 5.5.1.2.
1266 init_completion(&xhci->addr_dev);
1267 for (i = 0; i < MAX_HC_SLOTS; ++i)
1268 xhci->devs[i] = 0;
1270 if (scratchpad_alloc(xhci, flags))
1271 goto fail;
1273 return 0;
1275 fail:
1276 xhci_warn(xhci, "Couldn't initialize memory\n");
1277 xhci_mem_cleanup(xhci);
1278 return -ENOMEM;