2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
39 struct xhci_segment
*seg
;
42 seg
= kzalloc(sizeof *seg
, flags
);
45 xhci_dbg(xhci
, "Allocating priv segment structure at %p\n", seg
);
47 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
52 xhci_dbg(xhci
, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg
->trbs
, (unsigned long long)dma
);
55 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
62 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
67 xhci_dbg(xhci
, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg
->trbs
, (unsigned long long)seg
->dma
);
69 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
72 xhci_dbg(xhci
, "Freeing priv segment structure at %p\n", seg
);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
84 struct xhci_segment
*next
, bool link_trbs
)
92 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
= next
->dma
;
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val
= prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
;
96 val
&= ~TRB_TYPE_BITMASK
;
97 val
|= TRB_TYPE(TRB_LINK
);
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci
))
101 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= val
;
103 xhci_dbg(xhci
, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev
->dma
,
105 (unsigned long long)next
->dma
);
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
111 struct xhci_segment
*seg
;
112 struct xhci_segment
*first_seg
;
114 if (!ring
|| !ring
->first_seg
)
116 first_seg
= ring
->first_seg
;
117 seg
= first_seg
->next
;
118 xhci_dbg(xhci
, "Freeing ring at %p\n", ring
);
119 while (seg
!= first_seg
) {
120 struct xhci_segment
*next
= seg
->next
;
121 xhci_segment_free(xhci
, seg
);
124 xhci_segment_free(xhci
, first_seg
);
125 ring
->first_seg
= NULL
;
129 static void xhci_initialize_ring_info(struct xhci_ring
*ring
)
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring
->enqueue
= ring
->first_seg
->trbs
;
133 ring
->enq_seg
= ring
->first_seg
;
134 ring
->dequeue
= ring
->enqueue
;
135 ring
->deq_seg
= ring
->first_seg
;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 ring
->cycle_state
= 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring
->enq_updates
= 0;
143 ring
->deq_updates
= 0;
147 * Create a new ring with zero or more segments.
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
153 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
154 unsigned int num_segs
, bool link_trbs
, gfp_t flags
)
156 struct xhci_ring
*ring
;
157 struct xhci_segment
*prev
;
159 ring
= kzalloc(sizeof *(ring
), flags
);
160 xhci_dbg(xhci
, "Allocating ring at %p\n", ring
);
164 INIT_LIST_HEAD(&ring
->td_list
);
168 ring
->first_seg
= xhci_segment_alloc(xhci
, flags
);
169 if (!ring
->first_seg
)
173 prev
= ring
->first_seg
;
174 while (num_segs
> 0) {
175 struct xhci_segment
*next
;
177 next
= xhci_segment_alloc(xhci
, flags
);
180 xhci_link_segments(xhci
, prev
, next
, link_trbs
);
185 xhci_link_segments(xhci
, prev
, ring
->first_seg
, link_trbs
);
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
|= (LINK_TOGGLE
);
190 xhci_dbg(xhci
, "Wrote link toggle flag to"
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev
, (unsigned long long)prev
->dma
);
194 xhci_initialize_ring_info(ring
);
198 xhci_ring_free(xhci
, ring
);
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
203 struct xhci_virt_device
*virt_dev
,
204 unsigned int ep_index
)
208 rings_cached
= virt_dev
->num_rings_cached
;
209 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
210 virt_dev
->num_rings_cached
++;
211 rings_cached
= virt_dev
->num_rings_cached
;
212 virt_dev
->ring_cache
[rings_cached
] =
213 virt_dev
->eps
[ep_index
].ring
;
214 xhci_dbg(xhci
, "Cached old ring, "
215 "%d ring%s cached\n",
217 (rings_cached
> 1) ? "s" : "");
219 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
220 xhci_dbg(xhci
, "Ring cache full (%d rings), "
222 virt_dev
->num_rings_cached
);
224 virt_dev
->eps
[ep_index
].ring
= NULL
;
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
230 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
231 struct xhci_ring
*ring
)
233 struct xhci_segment
*seg
= ring
->first_seg
;
236 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci
, seg
, seg
->next
, 1);
240 } while (seg
!= ring
->first_seg
);
241 xhci_initialize_ring_info(ring
);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
245 INIT_LIST_HEAD(&ring
->td_list
);
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250 struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
251 int type
, gfp_t flags
)
253 struct xhci_container_ctx
*ctx
= kzalloc(sizeof(*ctx
), flags
);
257 BUG_ON((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
));
259 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
260 if (type
== XHCI_CTX_TYPE_INPUT
)
261 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
263 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
264 memset(ctx
->bytes
, 0, ctx
->size
);
268 void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
269 struct xhci_container_ctx
*ctx
)
273 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
277 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
278 struct xhci_container_ctx
*ctx
)
280 BUG_ON(ctx
->type
!= XHCI_CTX_TYPE_INPUT
);
281 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
284 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
285 struct xhci_container_ctx
*ctx
)
287 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
288 return (struct xhci_slot_ctx
*)ctx
->bytes
;
290 return (struct xhci_slot_ctx
*)
291 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
294 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
295 struct xhci_container_ctx
*ctx
,
296 unsigned int ep_index
)
298 /* increment ep index by offset of start of ep ctx array */
300 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
303 return (struct xhci_ep_ctx
*)
304 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
307 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
308 struct xhci_virt_ep
*ep
)
310 init_timer(&ep
->stop_cmd_timer
);
311 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
312 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
316 /* All the xhci_tds in the ring's TD list should be freed at this point */
317 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
319 struct xhci_virt_device
*dev
;
322 /* Slot ID 0 is reserved */
323 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
326 dev
= xhci
->devs
[slot_id
];
327 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
331 for (i
= 0; i
< 31; ++i
)
332 if (dev
->eps
[i
].ring
)
333 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
335 if (dev
->ring_cache
) {
336 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
337 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
338 kfree(dev
->ring_cache
);
342 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
344 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
346 kfree(xhci
->devs
[slot_id
]);
347 xhci
->devs
[slot_id
] = 0;
350 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
351 struct usb_device
*udev
, gfp_t flags
)
353 struct xhci_virt_device
*dev
;
356 /* Slot ID 0 is reserved */
357 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
358 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
362 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
363 if (!xhci
->devs
[slot_id
])
365 dev
= xhci
->devs
[slot_id
];
367 /* Allocate the (output) device context that will be used in the HC. */
368 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
372 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
373 (unsigned long long)dev
->out_ctx
->dma
);
375 /* Allocate the (input) device context for address device command */
376 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
380 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
381 (unsigned long long)dev
->in_ctx
->dma
);
383 /* Initialize the cancellation list and watchdog timers for each ep */
384 for (i
= 0; i
< 31; i
++) {
385 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
386 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
389 /* Allocate endpoint 0 ring */
390 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
391 if (!dev
->eps
[0].ring
)
394 /* Allocate pointers to the ring cache */
395 dev
->ring_cache
= kzalloc(
396 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
398 if (!dev
->ring_cache
)
400 dev
->num_rings_cached
= 0;
402 init_completion(&dev
->cmd_completion
);
403 INIT_LIST_HEAD(&dev
->cmd_list
);
405 /* Point to output device context in dcbaa. */
406 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = dev
->out_ctx
->dma
;
407 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
409 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
410 (unsigned long long) xhci
->dcbaa
->dev_context_ptrs
[slot_id
]);
414 xhci_free_virt_device(xhci
, slot_id
);
418 /* Setup an xHCI virtual device for a Set Address command */
419 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
421 struct xhci_virt_device
*dev
;
422 struct xhci_ep_ctx
*ep0_ctx
;
423 struct usb_device
*top_dev
;
424 struct xhci_slot_ctx
*slot_ctx
;
425 struct xhci_input_control_ctx
*ctrl_ctx
;
427 dev
= xhci
->devs
[udev
->slot_id
];
428 /* Slot ID 0 is reserved */
429 if (udev
->slot_id
== 0 || !dev
) {
430 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
434 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
435 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, dev
->in_ctx
);
436 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
438 /* 2) New slot context and endpoint 0 context are valid*/
439 ctrl_ctx
->add_flags
= SLOT_FLAG
| EP0_FLAG
;
441 /* 3) Only the control endpoint is valid - one endpoint context */
442 slot_ctx
->dev_info
|= LAST_CTX(1);
444 slot_ctx
->dev_info
|= (u32
) udev
->route
;
445 switch (udev
->speed
) {
446 case USB_SPEED_SUPER
:
447 slot_ctx
->dev_info
|= (u32
) SLOT_SPEED_SS
;
450 slot_ctx
->dev_info
|= (u32
) SLOT_SPEED_HS
;
453 slot_ctx
->dev_info
|= (u32
) SLOT_SPEED_FS
;
456 slot_ctx
->dev_info
|= (u32
) SLOT_SPEED_LS
;
458 case USB_SPEED_WIRELESS
:
459 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
463 /* Speed was set earlier, this shouldn't happen. */
466 /* Find the root hub port this device is under */
467 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
468 top_dev
= top_dev
->parent
)
469 /* Found device below root hub */;
470 slot_ctx
->dev_info2
|= (u32
) ROOT_HUB_PORT(top_dev
->portnum
);
471 xhci_dbg(xhci
, "Set root hub portnum to %d\n", top_dev
->portnum
);
473 /* Is this a LS/FS device under a HS hub? */
474 if ((udev
->speed
== USB_SPEED_LOW
|| udev
->speed
== USB_SPEED_FULL
) &&
476 slot_ctx
->tt_info
= udev
->tt
->hub
->slot_id
;
477 slot_ctx
->tt_info
|= udev
->ttport
<< 8;
479 slot_ctx
->dev_info
|= DEV_MTT
;
481 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
482 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
484 /* Step 4 - ring already allocated */
486 ep0_ctx
->ep_info2
= EP_TYPE(CTRL_EP
);
488 * XXX: Not sure about wireless USB devices.
490 switch (udev
->speed
) {
491 case USB_SPEED_SUPER
:
492 ep0_ctx
->ep_info2
|= MAX_PACKET(512);
495 /* USB core guesses at a 64-byte max packet first for FS devices */
497 ep0_ctx
->ep_info2
|= MAX_PACKET(64);
500 ep0_ctx
->ep_info2
|= MAX_PACKET(8);
502 case USB_SPEED_WIRELESS
:
503 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
510 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
511 ep0_ctx
->ep_info2
|= MAX_BURST(0);
512 ep0_ctx
->ep_info2
|= ERROR_COUNT(3);
515 dev
->eps
[0].ring
->first_seg
->dma
;
516 ep0_ctx
->deq
|= dev
->eps
[0].ring
->cycle_state
;
518 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
523 /* Return the polling or NAK interval.
525 * The polling interval is expressed in "microframes". If xHCI's Interval field
526 * is set to N, it will service the endpoint every 2^(Interval)*125us.
528 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
531 static inline unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
532 struct usb_host_endpoint
*ep
)
534 unsigned int interval
= 0;
536 switch (udev
->speed
) {
539 if (usb_endpoint_xfer_control(&ep
->desc
) ||
540 usb_endpoint_xfer_bulk(&ep
->desc
))
541 interval
= ep
->desc
.bInterval
;
542 /* Fall through - SS and HS isoc/int have same decoding */
543 case USB_SPEED_SUPER
:
544 if (usb_endpoint_xfer_int(&ep
->desc
) ||
545 usb_endpoint_xfer_isoc(&ep
->desc
)) {
546 if (ep
->desc
.bInterval
== 0)
549 interval
= ep
->desc
.bInterval
- 1;
552 if (interval
!= ep
->desc
.bInterval
+ 1)
553 dev_warn(&udev
->dev
, "ep %#x - rounding interval to %d microframes\n",
554 ep
->desc
.bEndpointAddress
, 1 << interval
);
557 /* Convert bInterval (in 1-255 frames) to microframes and round down to
558 * nearest power of 2.
562 if (usb_endpoint_xfer_int(&ep
->desc
) ||
563 usb_endpoint_xfer_isoc(&ep
->desc
)) {
564 interval
= fls(8*ep
->desc
.bInterval
) - 1;
569 if ((1 << interval
) != 8*ep
->desc
.bInterval
)
571 "ep %#x - rounding interval"
572 " to %d microframes, "
573 "ep desc says %d microframes\n",
574 ep
->desc
.bEndpointAddress
,
576 8*ep
->desc
.bInterval
);
582 return EP_INTERVAL(interval
);
585 static inline u32
xhci_get_endpoint_type(struct usb_device
*udev
,
586 struct usb_host_endpoint
*ep
)
591 in
= usb_endpoint_dir_in(&ep
->desc
);
592 if (usb_endpoint_xfer_control(&ep
->desc
)) {
593 type
= EP_TYPE(CTRL_EP
);
594 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
596 type
= EP_TYPE(BULK_IN_EP
);
598 type
= EP_TYPE(BULK_OUT_EP
);
599 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
601 type
= EP_TYPE(ISOC_IN_EP
);
603 type
= EP_TYPE(ISOC_OUT_EP
);
604 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
606 type
= EP_TYPE(INT_IN_EP
);
608 type
= EP_TYPE(INT_OUT_EP
);
615 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
616 struct xhci_virt_device
*virt_dev
,
617 struct usb_device
*udev
,
618 struct usb_host_endpoint
*ep
,
621 unsigned int ep_index
;
622 struct xhci_ep_ctx
*ep_ctx
;
623 struct xhci_ring
*ep_ring
;
624 unsigned int max_packet
;
625 unsigned int max_burst
;
627 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
628 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
630 /* Set up the endpoint ring */
631 virt_dev
->eps
[ep_index
].new_ring
=
632 xhci_ring_alloc(xhci
, 1, true, mem_flags
);
633 if (!virt_dev
->eps
[ep_index
].new_ring
) {
634 /* Attempt to use the ring cache */
635 if (virt_dev
->num_rings_cached
== 0)
637 virt_dev
->eps
[ep_index
].new_ring
=
638 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
639 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
640 virt_dev
->num_rings_cached
--;
641 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
);
643 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
644 ep_ctx
->deq
= ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
;
646 ep_ctx
->ep_info
= xhci_get_endpoint_interval(udev
, ep
);
648 /* FIXME dig Mult and streams info out of ep companion desc */
650 /* Allow 3 retries for everything but isoc;
651 * error count = 0 means infinite retries.
653 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
654 ep_ctx
->ep_info2
= ERROR_COUNT(3);
656 ep_ctx
->ep_info2
= ERROR_COUNT(1);
658 ep_ctx
->ep_info2
|= xhci_get_endpoint_type(udev
, ep
);
660 /* Set the max packet size and max burst */
661 switch (udev
->speed
) {
662 case USB_SPEED_SUPER
:
663 max_packet
= ep
->desc
.wMaxPacketSize
;
664 ep_ctx
->ep_info2
|= MAX_PACKET(max_packet
);
665 /* dig out max burst from ep companion desc */
666 if (!ep
->ss_ep_comp
) {
667 xhci_warn(xhci
, "WARN no SS endpoint companion descriptor.\n");
670 max_packet
= ep
->ss_ep_comp
->desc
.bMaxBurst
;
672 ep_ctx
->ep_info2
|= MAX_BURST(max_packet
);
675 /* bits 11:12 specify the number of additional transaction
676 * opportunities per microframe (USB 2.0, section 9.6.6)
678 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
679 usb_endpoint_xfer_int(&ep
->desc
)) {
680 max_burst
= (ep
->desc
.wMaxPacketSize
& 0x1800) >> 11;
681 ep_ctx
->ep_info2
|= MAX_BURST(max_burst
);
686 max_packet
= ep
->desc
.wMaxPacketSize
& 0x3ff;
687 ep_ctx
->ep_info2
|= MAX_PACKET(max_packet
);
692 /* FIXME Debug endpoint context */
696 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
697 struct xhci_virt_device
*virt_dev
,
698 struct usb_host_endpoint
*ep
)
700 unsigned int ep_index
;
701 struct xhci_ep_ctx
*ep_ctx
;
703 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
704 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
707 ep_ctx
->ep_info2
= 0;
710 /* Don't free the endpoint ring until the set interface or configuration
715 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
716 * Useful when you want to change one particular aspect of the endpoint and then
717 * issue a configure endpoint command.
719 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
720 struct xhci_container_ctx
*in_ctx
,
721 struct xhci_container_ctx
*out_ctx
,
722 unsigned int ep_index
)
724 struct xhci_ep_ctx
*out_ep_ctx
;
725 struct xhci_ep_ctx
*in_ep_ctx
;
727 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
728 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
730 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
731 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
732 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
733 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
736 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
737 * Useful when you want to change one particular aspect of the endpoint and then
738 * issue a configure endpoint command. Only the context entries field matters,
739 * but we'll copy the whole thing anyway.
741 void xhci_slot_copy(struct xhci_hcd
*xhci
,
742 struct xhci_container_ctx
*in_ctx
,
743 struct xhci_container_ctx
*out_ctx
)
745 struct xhci_slot_ctx
*in_slot_ctx
;
746 struct xhci_slot_ctx
*out_slot_ctx
;
748 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
749 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
751 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
752 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
753 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
754 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
757 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
758 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
761 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
762 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
764 xhci_dbg(xhci
, "Allocating %d scratchpad buffers\n", num_sp
);
769 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
770 if (!xhci
->scratchpad
)
773 xhci
->scratchpad
->sp_array
=
774 pci_alloc_consistent(to_pci_dev(dev
),
775 num_sp
* sizeof(u64
),
776 &xhci
->scratchpad
->sp_dma
);
777 if (!xhci
->scratchpad
->sp_array
)
780 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
781 if (!xhci
->scratchpad
->sp_buffers
)
784 xhci
->scratchpad
->sp_dma_buffers
=
785 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
787 if (!xhci
->scratchpad
->sp_dma_buffers
)
790 xhci
->dcbaa
->dev_context_ptrs
[0] = xhci
->scratchpad
->sp_dma
;
791 for (i
= 0; i
< num_sp
; i
++) {
793 void *buf
= pci_alloc_consistent(to_pci_dev(dev
),
794 xhci
->page_size
, &dma
);
798 xhci
->scratchpad
->sp_array
[i
] = dma
;
799 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
800 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
806 for (i
= i
- 1; i
>= 0; i
--) {
807 pci_free_consistent(to_pci_dev(dev
), xhci
->page_size
,
808 xhci
->scratchpad
->sp_buffers
[i
],
809 xhci
->scratchpad
->sp_dma_buffers
[i
]);
811 kfree(xhci
->scratchpad
->sp_dma_buffers
);
814 kfree(xhci
->scratchpad
->sp_buffers
);
817 pci_free_consistent(to_pci_dev(dev
), num_sp
* sizeof(u64
),
818 xhci
->scratchpad
->sp_array
,
819 xhci
->scratchpad
->sp_dma
);
822 kfree(xhci
->scratchpad
);
823 xhci
->scratchpad
= NULL
;
829 static void scratchpad_free(struct xhci_hcd
*xhci
)
833 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
835 if (!xhci
->scratchpad
)
838 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
840 for (i
= 0; i
< num_sp
; i
++) {
841 pci_free_consistent(pdev
, xhci
->page_size
,
842 xhci
->scratchpad
->sp_buffers
[i
],
843 xhci
->scratchpad
->sp_dma_buffers
[i
]);
845 kfree(xhci
->scratchpad
->sp_dma_buffers
);
846 kfree(xhci
->scratchpad
->sp_buffers
);
847 pci_free_consistent(pdev
, num_sp
* sizeof(u64
),
848 xhci
->scratchpad
->sp_array
,
849 xhci
->scratchpad
->sp_dma
);
850 kfree(xhci
->scratchpad
);
851 xhci
->scratchpad
= NULL
;
854 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
855 bool allocate_in_ctx
, bool allocate_completion
,
858 struct xhci_command
*command
;
860 command
= kzalloc(sizeof(*command
), mem_flags
);
864 if (allocate_in_ctx
) {
866 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
868 if (!command
->in_ctx
) {
874 if (allocate_completion
) {
875 command
->completion
=
876 kzalloc(sizeof(struct completion
), mem_flags
);
877 if (!command
->completion
) {
878 xhci_free_container_ctx(xhci
, command
->in_ctx
);
882 init_completion(command
->completion
);
886 INIT_LIST_HEAD(&command
->cmd_list
);
890 void xhci_free_command(struct xhci_hcd
*xhci
,
891 struct xhci_command
*command
)
893 xhci_free_container_ctx(xhci
,
895 kfree(command
->completion
);
899 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
901 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
905 /* Free the Event Ring Segment Table and the actual Event Ring */
907 xhci_writel(xhci
, 0, &xhci
->ir_set
->erst_size
);
908 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_base
);
909 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_dequeue
);
911 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
912 if (xhci
->erst
.entries
)
913 pci_free_consistent(pdev
, size
,
914 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
915 xhci
->erst
.entries
= NULL
;
916 xhci_dbg(xhci
, "Freed ERST\n");
917 if (xhci
->event_ring
)
918 xhci_ring_free(xhci
, xhci
->event_ring
);
919 xhci
->event_ring
= NULL
;
920 xhci_dbg(xhci
, "Freed event ring\n");
922 xhci_write_64(xhci
, 0, &xhci
->op_regs
->cmd_ring
);
924 xhci_ring_free(xhci
, xhci
->cmd_ring
);
925 xhci
->cmd_ring
= NULL
;
926 xhci_dbg(xhci
, "Freed command ring\n");
928 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
929 xhci_free_virt_device(xhci
, i
);
931 if (xhci
->segment_pool
)
932 dma_pool_destroy(xhci
->segment_pool
);
933 xhci
->segment_pool
= NULL
;
934 xhci_dbg(xhci
, "Freed segment pool\n");
936 if (xhci
->device_pool
)
937 dma_pool_destroy(xhci
->device_pool
);
938 xhci
->device_pool
= NULL
;
939 xhci_dbg(xhci
, "Freed device context pool\n");
941 xhci_write_64(xhci
, 0, &xhci
->op_regs
->dcbaa_ptr
);
943 pci_free_consistent(pdev
, sizeof(*xhci
->dcbaa
),
944 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
947 scratchpad_free(xhci
);
949 xhci
->page_shift
= 0;
952 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
953 struct xhci_segment
*input_seg
,
954 union xhci_trb
*start_trb
,
955 union xhci_trb
*end_trb
,
956 dma_addr_t input_dma
,
957 struct xhci_segment
*result_seg
,
958 char *test_name
, int test_number
)
960 unsigned long long start_dma
;
961 unsigned long long end_dma
;
962 struct xhci_segment
*seg
;
964 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
965 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
967 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
968 if (seg
!= result_seg
) {
969 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
970 test_name
, test_number
);
971 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
972 "input DMA 0x%llx\n",
974 (unsigned long long) input_dma
);
975 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
976 "ending TRB %p (0x%llx DMA)\n",
977 start_trb
, start_dma
,
979 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
987 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
990 dma_addr_t input_dma
;
991 struct xhci_segment
*result_seg
;
992 } simple_test_vector
[] = {
993 /* A zeroed DMA field should fail */
995 /* One TRB before the ring start should fail */
996 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
997 /* One byte before the ring start should fail */
998 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
999 /* Starting TRB should succeed */
1000 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1001 /* Ending TRB should succeed */
1002 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1003 xhci
->event_ring
->first_seg
},
1004 /* One byte after the ring end should fail */
1005 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1006 /* One TRB after the ring end should fail */
1007 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1008 /* An address of all ones should fail */
1009 { (dma_addr_t
) (~0), NULL
},
1012 struct xhci_segment
*input_seg
;
1013 union xhci_trb
*start_trb
;
1014 union xhci_trb
*end_trb
;
1015 dma_addr_t input_dma
;
1016 struct xhci_segment
*result_seg
;
1017 } complex_test_vector
[] = {
1018 /* Test feeding a valid DMA address from a different ring */
1019 { .input_seg
= xhci
->event_ring
->first_seg
,
1020 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1021 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1022 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1025 /* Test feeding a valid end TRB from a different ring */
1026 { .input_seg
= xhci
->event_ring
->first_seg
,
1027 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1028 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1029 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1032 /* Test feeding a valid start and end TRB from a different ring */
1033 { .input_seg
= xhci
->event_ring
->first_seg
,
1034 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1035 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1036 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1039 /* TRB in this ring, but after this TD */
1040 { .input_seg
= xhci
->event_ring
->first_seg
,
1041 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1042 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1043 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1046 /* TRB in this ring, but before this TD */
1047 { .input_seg
= xhci
->event_ring
->first_seg
,
1048 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1049 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1050 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1053 /* TRB in this ring, but after this wrapped TD */
1054 { .input_seg
= xhci
->event_ring
->first_seg
,
1055 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1056 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1057 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1060 /* TRB in this ring, but before this wrapped TD */
1061 { .input_seg
= xhci
->event_ring
->first_seg
,
1062 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1063 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1064 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1067 /* TRB not in this ring, and we have a wrapped TD */
1068 { .input_seg
= xhci
->event_ring
->first_seg
,
1069 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1070 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1071 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1076 unsigned int num_tests
;
1079 num_tests
= sizeof(simple_test_vector
) / sizeof(simple_test_vector
[0]);
1080 for (i
= 0; i
< num_tests
; i
++) {
1081 ret
= xhci_test_trb_in_td(xhci
,
1082 xhci
->event_ring
->first_seg
,
1083 xhci
->event_ring
->first_seg
->trbs
,
1084 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1085 simple_test_vector
[i
].input_dma
,
1086 simple_test_vector
[i
].result_seg
,
1092 num_tests
= sizeof(complex_test_vector
) / sizeof(complex_test_vector
[0]);
1093 for (i
= 0; i
< num_tests
; i
++) {
1094 ret
= xhci_test_trb_in_td(xhci
,
1095 complex_test_vector
[i
].input_seg
,
1096 complex_test_vector
[i
].start_trb
,
1097 complex_test_vector
[i
].end_trb
,
1098 complex_test_vector
[i
].input_dma
,
1099 complex_test_vector
[i
].result_seg
,
1104 xhci_dbg(xhci
, "TRB math tests passed.\n");
1109 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
1112 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1113 unsigned int val
, val2
;
1115 struct xhci_segment
*seg
;
1119 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
1120 xhci_dbg(xhci
, "Supported page size register = 0x%x\n", page_size
);
1121 for (i
= 0; i
< 16; i
++) {
1122 if ((0x1 & page_size
) != 0)
1124 page_size
= page_size
>> 1;
1127 xhci_dbg(xhci
, "Supported page size of %iK\n", (1 << (i
+12)) / 1024);
1129 xhci_warn(xhci
, "WARN: no supported page size\n");
1130 /* Use 4K pages, since that's common and the minimum the HC supports */
1131 xhci
->page_shift
= 12;
1132 xhci
->page_size
= 1 << xhci
->page_shift
;
1133 xhci_dbg(xhci
, "HCD page size set to %iK\n", xhci
->page_size
/ 1024);
1136 * Program the Number of Device Slots Enabled field in the CONFIG
1137 * register with the max value of slots the HC can handle.
1139 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
1140 xhci_dbg(xhci
, "// xHC can handle at most %d device slots.\n",
1141 (unsigned int) val
);
1142 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
1143 val
|= (val2
& ~HCS_SLOTS_MASK
);
1144 xhci_dbg(xhci
, "// Setting Max device slots reg = 0x%x.\n",
1145 (unsigned int) val
);
1146 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
1149 * Section 5.4.8 - doorbell array must be
1150 * "physically contiguous and 64-byte (cache line) aligned".
1152 xhci
->dcbaa
= pci_alloc_consistent(to_pci_dev(dev
),
1153 sizeof(*xhci
->dcbaa
), &dma
);
1156 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
1157 xhci
->dcbaa
->dma
= dma
;
1158 xhci_dbg(xhci
, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1159 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
1160 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
1163 * Initialize the ring segment pool. The ring must be a contiguous
1164 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1165 * however, the command ring segment needs 64-byte aligned segments,
1166 * so we pick the greater alignment need.
1168 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
1169 SEGMENT_SIZE
, 64, xhci
->page_size
);
1171 /* See Table 46 and Note on Figure 55 */
1172 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
1173 2112, 64, xhci
->page_size
);
1174 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
1177 /* Set up the command ring to have one segments for now. */
1178 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
1179 if (!xhci
->cmd_ring
)
1181 xhci_dbg(xhci
, "Allocated command ring at %p\n", xhci
->cmd_ring
);
1182 xhci_dbg(xhci
, "First segment DMA is 0x%llx\n",
1183 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
1185 /* Set the address in the Command Ring Control register */
1186 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
1187 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
1188 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
1189 xhci
->cmd_ring
->cycle_state
;
1190 xhci_dbg(xhci
, "// Setting command ring address to 0x%x\n", val
);
1191 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
1192 xhci_dbg_cmd_ptrs(xhci
);
1194 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
1196 xhci_dbg(xhci
, "// Doorbell array is located at offset 0x%x"
1197 " from cap regs base addr\n", val
);
1198 xhci
->dba
= (void *) xhci
->cap_regs
+ val
;
1199 xhci_dbg_regs(xhci
);
1200 xhci_print_run_regs(xhci
);
1201 /* Set ir_set to interrupt register set 0 */
1202 xhci
->ir_set
= (void *) xhci
->run_regs
->ir_set
;
1205 * Event ring setup: Allocate a normal ring, but also setup
1206 * the event ring segment table (ERST). Section 4.9.3.
1208 xhci_dbg(xhci
, "// Allocating event ring\n");
1209 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, false, flags
);
1210 if (!xhci
->event_ring
)
1212 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
1215 xhci
->erst
.entries
= pci_alloc_consistent(to_pci_dev(dev
),
1216 sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
, &dma
);
1217 if (!xhci
->erst
.entries
)
1219 xhci_dbg(xhci
, "// Allocated event ring segment table at 0x%llx\n",
1220 (unsigned long long)dma
);
1222 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
1223 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
1224 xhci
->erst
.erst_dma_addr
= dma
;
1225 xhci_dbg(xhci
, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1226 xhci
->erst
.num_entries
,
1228 (unsigned long long)xhci
->erst
.erst_dma_addr
);
1230 /* set ring base address and size for each segment table entry */
1231 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
1232 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
1233 entry
->seg_addr
= seg
->dma
;
1234 entry
->seg_size
= TRBS_PER_SEGMENT
;
1239 /* set ERST count with the number of entries in the segment table */
1240 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
1241 val
&= ERST_SIZE_MASK
;
1242 val
|= ERST_NUM_SEGS
;
1243 xhci_dbg(xhci
, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1245 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
1247 xhci_dbg(xhci
, "// Set ERST entries to point to event ring.\n");
1248 /* set the segment table base address */
1249 xhci_dbg(xhci
, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1250 (unsigned long long)xhci
->erst
.erst_dma_addr
);
1251 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
1252 val_64
&= ERST_PTR_MASK
;
1253 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
1254 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
1256 /* Set the event ring dequeue address */
1257 xhci_set_hc_event_deq(xhci
);
1258 xhci_dbg(xhci
, "Wrote ERST address to ir_set 0.\n");
1259 xhci_print_ir_set(xhci
, xhci
->ir_set
, 0);
1262 * XXX: Might need to set the Interrupter Moderation Register to
1263 * something other than the default (~1ms minimum between interrupts).
1264 * See section 5.5.1.2.
1266 init_completion(&xhci
->addr_dev
);
1267 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
1270 if (scratchpad_alloc(xhci
, flags
))
1276 xhci_warn(xhci
, "Couldn't initialize memory\n");
1277 xhci_mem_cleanup(xhci
);