4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/cputhreads.h>
31 #include <asm/sparsemem.h>
34 #include <asm/cputhreads.h>
35 #include <asm/topology.h>
36 #include <asm/firmware.h>
38 #include <asm/hvcall.h>
39 #include <asm/setup.h>
42 static int numa_enabled
= 1;
44 static char *cmdline __initdata
;
46 static int numa_debug
;
47 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
49 int numa_cpu_lookup_table
[NR_CPUS
];
50 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
51 struct pglist_data
*node_data
[MAX_NUMNODES
];
53 EXPORT_SYMBOL(numa_cpu_lookup_table
);
54 EXPORT_SYMBOL(node_to_cpumask_map
);
55 EXPORT_SYMBOL(node_data
);
57 static int min_common_depth
;
58 static int n_mem_addr_cells
, n_mem_size_cells
;
59 static int form1_affinity
;
61 #define MAX_DISTANCE_REF_POINTS 4
62 static int distance_ref_points_depth
;
63 static const __be32
*distance_ref_points
;
64 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
70 * Note: cpumask_of_node() is not valid until after this is done.
72 static void __init
setup_node_to_cpumask_map(void)
76 /* setup nr_node_ids if not done yet */
77 if (nr_node_ids
== MAX_NUMNODES
)
80 /* allocate the map */
81 for (node
= 0; node
< nr_node_ids
; node
++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
88 static int __init
fake_numa_create_new_node(unsigned long end_pfn
,
91 unsigned long long mem
;
93 static unsigned int fake_nid
;
94 static unsigned long long curr_boundary
;
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
110 mem
= memparse(p
, &p
);
114 if (mem
< curr_boundary
)
119 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
121 * Skip commas and spaces
123 while (*p
== ',' || *p
== ' ' || *p
== '\t')
129 dbg("created new fake_node with id %d\n", fake_nid
);
136 * get_node_active_region - Return active region containing pfn
137 * Active range returned is empty if none found.
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
141 static void __init
get_node_active_region(unsigned long pfn
,
142 struct node_active_region
*node_ar
)
144 unsigned long start_pfn
, end_pfn
;
147 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
148 if (pfn
>= start_pfn
&& pfn
< end_pfn
) {
150 node_ar
->start_pfn
= start_pfn
;
151 node_ar
->end_pfn
= end_pfn
;
157 static void reset_numa_cpu_lookup_table(void)
161 for_each_possible_cpu(cpu
)
162 numa_cpu_lookup_table
[cpu
] = -1;
165 static void update_numa_cpu_lookup_table(unsigned int cpu
, int node
)
167 numa_cpu_lookup_table
[cpu
] = node
;
170 static void map_cpu_to_node(int cpu
, int node
)
172 update_numa_cpu_lookup_table(cpu
, node
);
174 dbg("adding cpu %d to node %d\n", cpu
, node
);
176 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
177 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
180 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
181 static void unmap_cpu_from_node(unsigned long cpu
)
183 int node
= numa_cpu_lookup_table
[cpu
];
185 dbg("removing cpu %lu from node %d\n", cpu
, node
);
187 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
188 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
190 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
194 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
196 /* must hold reference to node during call */
197 static const __be32
*of_get_associativity(struct device_node
*dev
)
199 return of_get_property(dev
, "ibm,associativity", NULL
);
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
207 static const __be32
*of_get_usable_memory(struct device_node
*memory
)
211 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
212 if (!prop
|| len
< sizeof(unsigned int))
217 int __node_distance(int a
, int b
)
220 int distance
= LOCAL_DISTANCE
;
223 return ((a
== b
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
);
225 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
226 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
229 /* Double the distance for each NUMA level */
236 static void initialize_distance_lookup_table(int nid
,
237 const __be32
*associativity
)
244 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
247 entry
= &associativity
[be32_to_cpu(distance_ref_points
[i
])];
248 distance_lookup_table
[nid
][i
] = of_read_number(entry
, 1);
252 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
255 static int associativity_to_nid(const __be32
*associativity
)
259 if (min_common_depth
== -1)
262 if (of_read_number(associativity
, 1) >= min_common_depth
)
263 nid
= of_read_number(&associativity
[min_common_depth
], 1);
265 /* POWER4 LPAR uses 0xffff as invalid node */
266 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
270 of_read_number(associativity
, 1) >= distance_ref_points_depth
)
271 initialize_distance_lookup_table(nid
, associativity
);
277 /* Returns the nid associated with the given device tree node,
278 * or -1 if not found.
280 static int of_node_to_nid_single(struct device_node
*device
)
285 tmp
= of_get_associativity(device
);
287 nid
= associativity_to_nid(tmp
);
291 /* Walk the device tree upwards, looking for an associativity id */
292 int of_node_to_nid(struct device_node
*device
)
294 struct device_node
*tmp
;
299 nid
= of_node_to_nid_single(device
);
304 device
= of_get_parent(tmp
);
311 EXPORT_SYMBOL_GPL(of_node_to_nid
);
313 static int __init
find_min_common_depth(void)
316 struct device_node
*root
;
318 if (firmware_has_feature(FW_FEATURE_OPAL
))
319 root
= of_find_node_by_path("/ibm,opal");
321 root
= of_find_node_by_path("/rtas");
323 root
= of_find_node_by_path("/");
326 * This property is a set of 32-bit integers, each representing
327 * an index into the ibm,associativity nodes.
329 * With form 0 affinity the first integer is for an SMP configuration
330 * (should be all 0's) and the second is for a normal NUMA
331 * configuration. We have only one level of NUMA.
333 * With form 1 affinity the first integer is the most significant
334 * NUMA boundary and the following are progressively less significant
335 * boundaries. There can be more than one level of NUMA.
337 distance_ref_points
= of_get_property(root
,
338 "ibm,associativity-reference-points",
339 &distance_ref_points_depth
);
341 if (!distance_ref_points
) {
342 dbg("NUMA: ibm,associativity-reference-points not found.\n");
346 distance_ref_points_depth
/= sizeof(int);
348 if (firmware_has_feature(FW_FEATURE_OPAL
) ||
349 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY
)) {
350 dbg("Using form 1 affinity\n");
354 if (form1_affinity
) {
355 depth
= of_read_number(distance_ref_points
, 1);
357 if (distance_ref_points_depth
< 2) {
358 printk(KERN_WARNING
"NUMA: "
359 "short ibm,associativity-reference-points\n");
363 depth
= of_read_number(&distance_ref_points
[1], 1);
367 * Warn and cap if the hardware supports more than
368 * MAX_DISTANCE_REF_POINTS domains.
370 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
371 printk(KERN_WARNING
"NUMA: distance array capped at "
372 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
373 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
384 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
386 struct device_node
*memory
= NULL
;
388 memory
= of_find_node_by_type(memory
, "memory");
390 panic("numa.c: No memory nodes found!");
392 *n_addr_cells
= of_n_addr_cells(memory
);
393 *n_size_cells
= of_n_size_cells(memory
);
397 static unsigned long read_n_cells(int n
, const __be32
**buf
)
399 unsigned long result
= 0;
402 result
= (result
<< 32) | of_read_number(*buf
, 1);
409 * Read the next memblock list entry from the ibm,dynamic-memory property
410 * and return the information in the provided of_drconf_cell structure.
412 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const __be32
**cellp
)
416 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
419 drmem
->drc_index
= of_read_number(cp
, 1);
420 drmem
->reserved
= of_read_number(&cp
[1], 1);
421 drmem
->aa_index
= of_read_number(&cp
[2], 1);
422 drmem
->flags
= of_read_number(&cp
[3], 1);
428 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
430 * The layout of the ibm,dynamic-memory property is a number N of memblock
431 * list entries followed by N memblock list entries. Each memblock list entry
432 * contains information as laid out in the of_drconf_cell struct above.
434 static int of_get_drconf_memory(struct device_node
*memory
, const __be32
**dm
)
439 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
440 if (!prop
|| len
< sizeof(unsigned int))
443 entries
= of_read_number(prop
++, 1);
445 /* Now that we know the number of entries, revalidate the size
446 * of the property read in to ensure we have everything
448 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
456 * Retrieve and validate the ibm,lmb-size property for drconf memory
457 * from the device tree.
459 static u64
of_get_lmb_size(struct device_node
*memory
)
464 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
465 if (!prop
|| len
< sizeof(unsigned int))
468 return read_n_cells(n_mem_size_cells
, &prop
);
471 struct assoc_arrays
{
474 const __be32
*arrays
;
478 * Retrieve and validate the list of associativity arrays for drconf
479 * memory from the ibm,associativity-lookup-arrays property of the
482 * The layout of the ibm,associativity-lookup-arrays property is a number N
483 * indicating the number of associativity arrays, followed by a number M
484 * indicating the size of each associativity array, followed by a list
485 * of N associativity arrays.
487 static int of_get_assoc_arrays(struct device_node
*memory
,
488 struct assoc_arrays
*aa
)
493 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
494 if (!prop
|| len
< 2 * sizeof(unsigned int))
497 aa
->n_arrays
= of_read_number(prop
++, 1);
498 aa
->array_sz
= of_read_number(prop
++, 1);
500 /* Now that we know the number of arrays and size of each array,
501 * revalidate the size of the property read in.
503 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
511 * This is like of_node_to_nid_single() for memory represented in the
512 * ibm,dynamic-reconfiguration-memory node.
514 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
515 struct assoc_arrays
*aa
)
518 int nid
= default_nid
;
521 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
522 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
523 drmem
->aa_index
< aa
->n_arrays
) {
524 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
525 nid
= of_read_number(&aa
->arrays
[index
], 1);
527 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
535 * Figure out to which domain a cpu belongs and stick it there.
536 * Return the id of the domain used.
538 static int numa_setup_cpu(unsigned long lcpu
)
541 struct device_node
*cpu
;
544 * If a valid cpu-to-node mapping is already available, use it
545 * directly instead of querying the firmware, since it represents
546 * the most recent mapping notified to us by the platform (eg: VPHN).
548 if ((nid
= numa_cpu_lookup_table
[lcpu
]) >= 0) {
549 map_cpu_to_node(lcpu
, nid
);
553 cpu
= of_get_cpu_node(lcpu
, NULL
);
561 nid
= of_node_to_nid_single(cpu
);
563 if (nid
< 0 || !node_online(nid
))
564 nid
= first_online_node
;
566 map_cpu_to_node(lcpu
, nid
);
573 static void verify_cpu_node_mapping(int cpu
, int node
)
575 int base
, sibling
, i
;
577 /* Verify that all the threads in the core belong to the same node */
578 base
= cpu_first_thread_sibling(cpu
);
580 for (i
= 0; i
< threads_per_core
; i
++) {
583 if (sibling
== cpu
|| cpu_is_offline(sibling
))
586 if (cpu_to_node(sibling
) != node
) {
587 WARN(1, "CPU thread siblings %d and %d don't belong"
588 " to the same node!\n", cpu
, sibling
);
594 static int cpu_numa_callback(struct notifier_block
*nfb
, unsigned long action
,
597 unsigned long lcpu
= (unsigned long)hcpu
;
598 int ret
= NOTIFY_DONE
, nid
;
602 case CPU_UP_PREPARE_FROZEN
:
603 nid
= numa_setup_cpu(lcpu
);
604 verify_cpu_node_mapping((int)lcpu
, nid
);
607 #ifdef CONFIG_HOTPLUG_CPU
609 case CPU_DEAD_FROZEN
:
610 case CPU_UP_CANCELED
:
611 case CPU_UP_CANCELED_FROZEN
:
612 unmap_cpu_from_node(lcpu
);
621 * Check and possibly modify a memory region to enforce the memory limit.
623 * Returns the size the region should have to enforce the memory limit.
624 * This will either be the original value of size, a truncated value,
625 * or zero. If the returned value of size is 0 the region should be
626 * discarded as it lies wholly above the memory limit.
628 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
632 * We use memblock_end_of_DRAM() in here instead of memory_limit because
633 * we've already adjusted it for the limit and it takes care of
634 * having memory holes below the limit. Also, in the case of
635 * iommu_is_off, memory_limit is not set but is implicitly enforced.
638 if (start
+ size
<= memblock_end_of_DRAM())
641 if (start
>= memblock_end_of_DRAM())
644 return memblock_end_of_DRAM() - start
;
648 * Reads the counter for a given entry in
649 * linux,drconf-usable-memory property
651 static inline int __init
read_usm_ranges(const __be32
**usm
)
654 * For each lmb in ibm,dynamic-memory a corresponding
655 * entry in linux,drconf-usable-memory property contains
656 * a counter followed by that many (base, size) duple.
657 * read the counter from linux,drconf-usable-memory
659 return read_n_cells(n_mem_size_cells
, usm
);
663 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
664 * node. This assumes n_mem_{addr,size}_cells have been set.
666 static void __init
parse_drconf_memory(struct device_node
*memory
)
668 const __be32
*uninitialized_var(dm
), *usm
;
669 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
670 unsigned long lmb_size
, base
, size
, sz
;
672 struct assoc_arrays aa
= { .arrays
= NULL
};
674 n
= of_get_drconf_memory(memory
, &dm
);
678 lmb_size
= of_get_lmb_size(memory
);
682 rc
= of_get_assoc_arrays(memory
, &aa
);
686 /* check if this is a kexec/kdump kernel */
687 usm
= of_get_usable_memory(memory
);
691 for (; n
!= 0; --n
) {
692 struct of_drconf_cell drmem
;
694 read_drconf_cell(&drmem
, &dm
);
696 /* skip this block if the reserved bit is set in flags (0x80)
697 or if the block is not assigned to this partition (0x8) */
698 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
699 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
702 base
= drmem
.base_addr
;
706 if (is_kexec_kdump
) {
707 ranges
= read_usm_ranges(&usm
);
708 if (!ranges
) /* there are no (base, size) duple */
712 if (is_kexec_kdump
) {
713 base
= read_n_cells(n_mem_addr_cells
, &usm
);
714 size
= read_n_cells(n_mem_size_cells
, &usm
);
716 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
717 fake_numa_create_new_node(
718 ((base
+ size
) >> PAGE_SHIFT
),
720 node_set_online(nid
);
721 sz
= numa_enforce_memory_limit(base
, size
);
723 memblock_set_node(base
, sz
,
724 &memblock
.memory
, nid
);
729 static int __init
parse_numa_properties(void)
731 struct device_node
*memory
;
735 if (numa_enabled
== 0) {
736 printk(KERN_WARNING
"NUMA disabled by user\n");
740 min_common_depth
= find_min_common_depth();
742 if (min_common_depth
< 0)
743 return min_common_depth
;
745 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
748 * Even though we connect cpus to numa domains later in SMP
749 * init, we need to know the node ids now. This is because
750 * each node to be onlined must have NODE_DATA etc backing it.
752 for_each_present_cpu(i
) {
753 struct device_node
*cpu
;
756 cpu
= of_get_cpu_node(i
, NULL
);
758 nid
= of_node_to_nid_single(cpu
);
762 * Don't fall back to default_nid yet -- we will plug
763 * cpus into nodes once the memory scan has discovered
768 node_set_online(nid
);
771 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
773 for_each_node_by_type(memory
, "memory") {
778 const __be32
*memcell_buf
;
781 memcell_buf
= of_get_property(memory
,
782 "linux,usable-memory", &len
);
783 if (!memcell_buf
|| len
<= 0)
784 memcell_buf
= of_get_property(memory
, "reg", &len
);
785 if (!memcell_buf
|| len
<= 0)
789 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
791 /* these are order-sensitive, and modify the buffer pointer */
792 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
793 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
796 * Assumption: either all memory nodes or none will
797 * have associativity properties. If none, then
798 * everything goes to default_nid.
800 nid
= of_node_to_nid_single(memory
);
804 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
805 node_set_online(nid
);
807 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
814 memblock_set_node(start
, size
, &memblock
.memory
, nid
);
821 * Now do the same thing for each MEMBLOCK listed in the
822 * ibm,dynamic-memory property in the
823 * ibm,dynamic-reconfiguration-memory node.
825 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
827 parse_drconf_memory(memory
);
832 static void __init
setup_nonnuma(void)
834 unsigned long top_of_ram
= memblock_end_of_DRAM();
835 unsigned long total_ram
= memblock_phys_mem_size();
836 unsigned long start_pfn
, end_pfn
;
837 unsigned int nid
= 0;
838 struct memblock_region
*reg
;
840 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
841 top_of_ram
, total_ram
);
842 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
843 (top_of_ram
- total_ram
) >> 20);
845 for_each_memblock(memory
, reg
) {
846 start_pfn
= memblock_region_memory_base_pfn(reg
);
847 end_pfn
= memblock_region_memory_end_pfn(reg
);
849 fake_numa_create_new_node(end_pfn
, &nid
);
850 memblock_set_node(PFN_PHYS(start_pfn
),
851 PFN_PHYS(end_pfn
- start_pfn
),
852 &memblock
.memory
, nid
);
853 node_set_online(nid
);
857 void __init
dump_numa_cpu_topology(void)
860 unsigned int cpu
, count
;
862 if (min_common_depth
== -1 || !numa_enabled
)
865 for_each_online_node(node
) {
866 printk(KERN_DEBUG
"Node %d CPUs:", node
);
870 * If we used a CPU iterator here we would miss printing
871 * the holes in the cpumap.
873 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
874 if (cpumask_test_cpu(cpu
,
875 node_to_cpumask_map
[node
])) {
881 printk("-%u", cpu
- 1);
887 printk("-%u", nr_cpu_ids
- 1);
892 static void __init
dump_numa_memory_topology(void)
897 if (min_common_depth
== -1 || !numa_enabled
)
900 for_each_online_node(node
) {
903 printk(KERN_DEBUG
"Node %d Memory:", node
);
907 for (i
= 0; i
< memblock_end_of_DRAM();
908 i
+= (1 << SECTION_SIZE_BITS
)) {
909 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
927 * Allocate some memory, satisfying the memblock or bootmem allocator where
928 * required. nid is the preferred node and end is the physical address of
929 * the highest address in the node.
931 * Returns the virtual address of the memory.
933 static void __init
*careful_zallocation(int nid
, unsigned long size
,
935 unsigned long end_pfn
)
939 unsigned long ret_paddr
;
941 ret_paddr
= __memblock_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
943 /* retry over all memory */
945 ret_paddr
= __memblock_alloc_base(size
, align
, memblock_end_of_DRAM());
948 panic("numa.c: cannot allocate %lu bytes for node %d",
951 ret
= __va(ret_paddr
);
954 * We initialize the nodes in numeric order: 0, 1, 2...
955 * and hand over control from the MEMBLOCK allocator to the
956 * bootmem allocator. If this function is called for
957 * node 5, then we know that all nodes <5 are using the
958 * bootmem allocator instead of the MEMBLOCK allocator.
960 * So, check the nid from which this allocation came
961 * and double check to see if we need to use bootmem
962 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
963 * since it would be useless.
965 new_nid
= early_pfn_to_nid(ret_paddr
>> PAGE_SHIFT
);
967 ret
= __alloc_bootmem_node(NODE_DATA(new_nid
),
970 dbg("alloc_bootmem %p %lx\n", ret
, size
);
973 memset(ret
, 0, size
);
977 static struct notifier_block ppc64_numa_nb
= {
978 .notifier_call
= cpu_numa_callback
,
979 .priority
= 1 /* Must run before sched domains notifier. */
982 static void __init
mark_reserved_regions_for_nid(int nid
)
984 struct pglist_data
*node
= NODE_DATA(nid
);
985 struct memblock_region
*reg
;
987 for_each_memblock(reserved
, reg
) {
988 unsigned long physbase
= reg
->base
;
989 unsigned long size
= reg
->size
;
990 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
991 unsigned long end_pfn
= PFN_UP(physbase
+ size
);
992 struct node_active_region node_ar
;
993 unsigned long node_end_pfn
= pgdat_end_pfn(node
);
996 * Check to make sure that this memblock.reserved area is
997 * within the bounds of the node that we care about.
998 * Checking the nid of the start and end points is not
999 * sufficient because the reserved area could span the
1002 if (end_pfn
<= node
->node_start_pfn
||
1003 start_pfn
>= node_end_pfn
)
1006 get_node_active_region(start_pfn
, &node_ar
);
1007 while (start_pfn
< end_pfn
&&
1008 node_ar
.start_pfn
< node_ar
.end_pfn
) {
1009 unsigned long reserve_size
= size
;
1011 * if reserved region extends past active region
1012 * then trim size to active region
1014 if (end_pfn
> node_ar
.end_pfn
)
1015 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
1018 * Only worry about *this* node, others may not
1019 * yet have valid NODE_DATA().
1021 if (node_ar
.nid
== nid
) {
1022 dbg("reserve_bootmem %lx %lx nid=%d\n",
1023 physbase
, reserve_size
, node_ar
.nid
);
1024 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
1025 physbase
, reserve_size
,
1029 * if reserved region is contained in the active region
1032 if (end_pfn
<= node_ar
.end_pfn
)
1036 * reserved region extends past the active region
1037 * get next active region that contains this
1040 start_pfn
= node_ar
.end_pfn
;
1041 physbase
= start_pfn
<< PAGE_SHIFT
;
1042 size
= size
- reserve_size
;
1043 get_node_active_region(start_pfn
, &node_ar
);
1049 void __init
do_init_bootmem(void)
1054 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1055 max_pfn
= max_low_pfn
;
1057 if (parse_numa_properties())
1060 dump_numa_memory_topology();
1062 for_each_online_node(nid
) {
1063 unsigned long start_pfn
, end_pfn
;
1064 void *bootmem_vaddr
;
1065 unsigned long bootmap_pages
;
1067 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1070 * Allocate the node structure node local if possible
1072 * Be careful moving this around, as it relies on all
1073 * previous nodes' bootmem to be initialized and have
1074 * all reserved areas marked.
1076 NODE_DATA(nid
) = careful_zallocation(nid
,
1077 sizeof(struct pglist_data
),
1078 SMP_CACHE_BYTES
, end_pfn
);
1080 dbg("node %d\n", nid
);
1081 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
1083 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
1084 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
1085 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
1087 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
1090 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
1091 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
1093 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
1094 bootmem_vaddr
= careful_zallocation(nid
,
1095 bootmap_pages
<< PAGE_SHIFT
,
1096 PAGE_SIZE
, end_pfn
);
1098 dbg("bootmap_vaddr = %p\n", bootmem_vaddr
);
1100 init_bootmem_node(NODE_DATA(nid
),
1101 __pa(bootmem_vaddr
) >> PAGE_SHIFT
,
1102 start_pfn
, end_pfn
);
1104 free_bootmem_with_active_regions(nid
, end_pfn
);
1106 * Be very careful about moving this around. Future
1107 * calls to careful_zallocation() depend on this getting
1110 mark_reserved_regions_for_nid(nid
);
1111 sparse_memory_present_with_active_regions(nid
);
1114 init_bootmem_done
= 1;
1117 * Now bootmem is initialised we can create the node to cpumask
1118 * lookup tables and setup the cpu callback to populate them.
1120 setup_node_to_cpumask_map();
1122 reset_numa_cpu_lookup_table();
1123 register_cpu_notifier(&ppc64_numa_nb
);
1124 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
1125 (void *)(unsigned long)boot_cpuid
);
1128 void __init
paging_init(void)
1130 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1131 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1132 max_zone_pfns
[ZONE_DMA
] = memblock_end_of_DRAM() >> PAGE_SHIFT
;
1133 free_area_init_nodes(max_zone_pfns
);
1136 static int __init
early_numa(char *p
)
1141 if (strstr(p
, "off"))
1144 if (strstr(p
, "debug"))
1147 p
= strstr(p
, "fake=");
1149 cmdline
= p
+ strlen("fake=");
1153 early_param("numa", early_numa
);
1155 #ifdef CONFIG_MEMORY_HOTPLUG
1157 * Find the node associated with a hot added memory section for
1158 * memory represented in the device tree by the property
1159 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1161 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1162 unsigned long scn_addr
)
1165 unsigned int drconf_cell_cnt
, rc
;
1166 unsigned long lmb_size
;
1167 struct assoc_arrays aa
;
1170 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1171 if (!drconf_cell_cnt
)
1174 lmb_size
= of_get_lmb_size(memory
);
1178 rc
= of_get_assoc_arrays(memory
, &aa
);
1182 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1183 struct of_drconf_cell drmem
;
1185 read_drconf_cell(&drmem
, &dm
);
1187 /* skip this block if it is reserved or not assigned to
1189 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1190 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1193 if ((scn_addr
< drmem
.base_addr
)
1194 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1197 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1205 * Find the node associated with a hot added memory section for memory
1206 * represented in the device tree as a node (i.e. memory@XXXX) for
1209 static int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1211 struct device_node
*memory
;
1214 for_each_node_by_type(memory
, "memory") {
1215 unsigned long start
, size
;
1217 const __be32
*memcell_buf
;
1220 memcell_buf
= of_get_property(memory
, "reg", &len
);
1221 if (!memcell_buf
|| len
<= 0)
1224 /* ranges in cell */
1225 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1228 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1229 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1231 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1234 nid
= of_node_to_nid_single(memory
);
1242 of_node_put(memory
);
1248 * Find the node associated with a hot added memory section. Section
1249 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1250 * sections are fully contained within a single MEMBLOCK.
1252 int hot_add_scn_to_nid(unsigned long scn_addr
)
1254 struct device_node
*memory
= NULL
;
1257 if (!numa_enabled
|| (min_common_depth
< 0))
1258 return first_online_node
;
1260 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1262 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1263 of_node_put(memory
);
1265 nid
= hot_add_node_scn_to_nid(scn_addr
);
1268 if (nid
< 0 || !node_online(nid
))
1269 nid
= first_online_node
;
1271 if (NODE_DATA(nid
)->node_spanned_pages
)
1274 for_each_online_node(nid
) {
1275 if (NODE_DATA(nid
)->node_spanned_pages
) {
1285 static u64
hot_add_drconf_memory_max(void)
1287 struct device_node
*memory
= NULL
;
1288 unsigned int drconf_cell_cnt
= 0;
1290 const __be32
*dm
= NULL
;
1292 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1294 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1295 lmb_size
= of_get_lmb_size(memory
);
1296 of_node_put(memory
);
1298 return lmb_size
* drconf_cell_cnt
;
1302 * memory_hotplug_max - return max address of memory that may be added
1304 * This is currently only used on systems that support drconfig memory
1307 u64
memory_hotplug_max(void)
1309 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1311 #endif /* CONFIG_MEMORY_HOTPLUG */
1313 /* Virtual Processor Home Node (VPHN) support */
1314 #ifdef CONFIG_PPC_SPLPAR
1315 struct topology_update_data
{
1316 struct topology_update_data
*next
;
1322 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1323 static cpumask_t cpu_associativity_changes_mask
;
1324 static int vphn_enabled
;
1325 static int prrn_enabled
;
1326 static void reset_topology_timer(void);
1329 * Store the current values of the associativity change counters in the
1332 static void setup_cpu_associativity_change_counters(void)
1336 /* The VPHN feature supports a maximum of 8 reference points */
1337 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1339 for_each_possible_cpu(cpu
) {
1341 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1342 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1344 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1345 counts
[i
] = hypervisor_counts
[i
];
1350 * The hypervisor maintains a set of 8 associativity change counters in
1351 * the VPA of each cpu that correspond to the associativity levels in the
1352 * ibm,associativity-reference-points property. When an associativity
1353 * level changes, the corresponding counter is incremented.
1355 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1356 * node associativity levels have changed.
1358 * Returns the number of cpus with unhandled associativity changes.
1360 static int update_cpu_associativity_changes_mask(void)
1363 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1365 for_each_possible_cpu(cpu
) {
1367 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1368 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1370 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1371 if (hypervisor_counts
[i
] != counts
[i
]) {
1372 counts
[i
] = hypervisor_counts
[i
];
1377 cpumask_or(changes
, changes
, cpu_sibling_mask(cpu
));
1378 cpu
= cpu_last_thread_sibling(cpu
);
1382 return cpumask_weight(changes
);
1386 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1387 * the complete property we have to add the length in the first cell.
1389 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1392 * Convert the associativity domain numbers returned from the hypervisor
1393 * to the sequence they would appear in the ibm,associativity property.
1395 static int vphn_unpack_associativity(const long *packed
, __be32
*unpacked
)
1397 int i
, nr_assoc_doms
= 0;
1398 const __be16
*field
= (const __be16
*) packed
;
1400 #define VPHN_FIELD_UNUSED (0xffff)
1401 #define VPHN_FIELD_MSB (0x8000)
1402 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1404 for (i
= 1; i
< VPHN_ASSOC_BUFSIZE
; i
++) {
1405 if (be16_to_cpup(field
) == VPHN_FIELD_UNUSED
) {
1406 /* All significant fields processed, and remaining
1407 * fields contain the reserved value of all 1's.
1410 unpacked
[i
] = *((__be32
*)field
);
1412 } else if (be16_to_cpup(field
) & VPHN_FIELD_MSB
) {
1413 /* Data is in the lower 15 bits of this field */
1414 unpacked
[i
] = cpu_to_be32(
1415 be16_to_cpup(field
) & VPHN_FIELD_MASK
);
1419 /* Data is in the lower 15 bits of this field
1420 * concatenated with the next 16 bit field
1422 unpacked
[i
] = *((__be32
*)field
);
1428 /* The first cell contains the length of the property */
1429 unpacked
[0] = cpu_to_be32(nr_assoc_doms
);
1431 return nr_assoc_doms
;
1435 * Retrieve the new associativity information for a virtual processor's
1438 static long hcall_vphn(unsigned long cpu
, __be32
*associativity
)
1441 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1443 int hwcpu
= get_hard_smp_processor_id(cpu
);
1445 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1446 vphn_unpack_associativity(retbuf
, associativity
);
1451 static long vphn_get_associativity(unsigned long cpu
,
1452 __be32
*associativity
)
1456 rc
= hcall_vphn(cpu
, associativity
);
1461 "VPHN is not supported. Disabling polling...\n");
1462 stop_topology_update();
1466 "hcall_vphn() experienced a hardware fault "
1467 "preventing VPHN. Disabling polling...\n");
1468 stop_topology_update();
1475 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1476 * characteristics change. This function doesn't perform any locking and is
1477 * only safe to call from stop_machine().
1479 static int update_cpu_topology(void *data
)
1481 struct topology_update_data
*update
;
1487 cpu
= smp_processor_id();
1489 for (update
= data
; update
; update
= update
->next
) {
1490 if (cpu
!= update
->cpu
)
1493 unmap_cpu_from_node(update
->cpu
);
1494 map_cpu_to_node(update
->cpu
, update
->new_nid
);
1501 static int update_lookup_table(void *data
)
1503 struct topology_update_data
*update
;
1509 * Upon topology update, the numa-cpu lookup table needs to be updated
1510 * for all threads in the core, including offline CPUs, to ensure that
1511 * future hotplug operations respect the cpu-to-node associativity
1514 for (update
= data
; update
; update
= update
->next
) {
1517 nid
= update
->new_nid
;
1518 base
= cpu_first_thread_sibling(update
->cpu
);
1520 for (j
= 0; j
< threads_per_core
; j
++) {
1521 update_numa_cpu_lookup_table(base
+ j
, nid
);
1529 * Update the node maps and sysfs entries for each cpu whose home node
1530 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1532 int arch_update_cpu_topology(void)
1534 unsigned int cpu
, sibling
, changed
= 0;
1535 struct topology_update_data
*updates
, *ud
;
1536 __be32 associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1537 cpumask_t updated_cpus
;
1539 int weight
, new_nid
, i
= 0;
1541 weight
= cpumask_weight(&cpu_associativity_changes_mask
);
1545 updates
= kzalloc(weight
* (sizeof(*updates
)), GFP_KERNEL
);
1549 cpumask_clear(&updated_cpus
);
1551 for_each_cpu(cpu
, &cpu_associativity_changes_mask
) {
1553 * If siblings aren't flagged for changes, updates list
1554 * will be too short. Skip on this update and set for next
1557 if (!cpumask_subset(cpu_sibling_mask(cpu
),
1558 &cpu_associativity_changes_mask
)) {
1559 pr_info("Sibling bits not set for associativity "
1560 "change, cpu%d\n", cpu
);
1561 cpumask_or(&cpu_associativity_changes_mask
,
1562 &cpu_associativity_changes_mask
,
1563 cpu_sibling_mask(cpu
));
1564 cpu
= cpu_last_thread_sibling(cpu
);
1568 /* Use associativity from first thread for all siblings */
1569 vphn_get_associativity(cpu
, associativity
);
1570 new_nid
= associativity_to_nid(associativity
);
1571 if (new_nid
< 0 || !node_online(new_nid
))
1572 new_nid
= first_online_node
;
1574 if (new_nid
== numa_cpu_lookup_table
[cpu
]) {
1575 cpumask_andnot(&cpu_associativity_changes_mask
,
1576 &cpu_associativity_changes_mask
,
1577 cpu_sibling_mask(cpu
));
1578 cpu
= cpu_last_thread_sibling(cpu
);
1582 for_each_cpu(sibling
, cpu_sibling_mask(cpu
)) {
1585 ud
->new_nid
= new_nid
;
1586 ud
->old_nid
= numa_cpu_lookup_table
[sibling
];
1587 cpumask_set_cpu(sibling
, &updated_cpus
);
1589 ud
->next
= &updates
[i
];
1591 cpu
= cpu_last_thread_sibling(cpu
);
1594 stop_machine(update_cpu_topology
, &updates
[0], &updated_cpus
);
1597 * Update the numa-cpu lookup table with the new mappings, even for
1598 * offline CPUs. It is best to perform this update from the stop-
1601 stop_machine(update_lookup_table
, &updates
[0],
1602 cpumask_of(raw_smp_processor_id()));
1604 for (ud
= &updates
[0]; ud
; ud
= ud
->next
) {
1605 unregister_cpu_under_node(ud
->cpu
, ud
->old_nid
);
1606 register_cpu_under_node(ud
->cpu
, ud
->new_nid
);
1608 dev
= get_cpu_device(ud
->cpu
);
1610 kobject_uevent(&dev
->kobj
, KOBJ_CHANGE
);
1611 cpumask_clear_cpu(ud
->cpu
, &cpu_associativity_changes_mask
);
1619 static void topology_work_fn(struct work_struct
*work
)
1621 rebuild_sched_domains();
1623 static DECLARE_WORK(topology_work
, topology_work_fn
);
1625 static void topology_schedule_update(void)
1627 schedule_work(&topology_work
);
1630 static void topology_timer_fn(unsigned long ignored
)
1632 if (prrn_enabled
&& cpumask_weight(&cpu_associativity_changes_mask
))
1633 topology_schedule_update();
1634 else if (vphn_enabled
) {
1635 if (update_cpu_associativity_changes_mask() > 0)
1636 topology_schedule_update();
1637 reset_topology_timer();
1640 static struct timer_list topology_timer
=
1641 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1643 static void reset_topology_timer(void)
1645 topology_timer
.data
= 0;
1646 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1647 mod_timer(&topology_timer
, topology_timer
.expires
);
1652 static void stage_topology_update(int core_id
)
1654 cpumask_or(&cpu_associativity_changes_mask
,
1655 &cpu_associativity_changes_mask
, cpu_sibling_mask(core_id
));
1656 reset_topology_timer();
1659 static int dt_update_callback(struct notifier_block
*nb
,
1660 unsigned long action
, void *data
)
1662 struct of_prop_reconfig
*update
;
1663 int rc
= NOTIFY_DONE
;
1666 case OF_RECONFIG_UPDATE_PROPERTY
:
1667 update
= (struct of_prop_reconfig
*)data
;
1668 if (!of_prop_cmp(update
->dn
->type
, "cpu") &&
1669 !of_prop_cmp(update
->prop
->name
, "ibm,associativity")) {
1671 of_property_read_u32(update
->dn
, "reg", &core_id
);
1672 stage_topology_update(core_id
);
1681 static struct notifier_block dt_update_nb
= {
1682 .notifier_call
= dt_update_callback
,
1688 * Start polling for associativity changes.
1690 int start_topology_update(void)
1694 if (firmware_has_feature(FW_FEATURE_PRRN
)) {
1695 if (!prrn_enabled
) {
1699 rc
= of_reconfig_notifier_register(&dt_update_nb
);
1702 } else if (firmware_has_feature(FW_FEATURE_VPHN
) &&
1703 lppaca_shared_proc(get_lppaca())) {
1704 if (!vphn_enabled
) {
1707 setup_cpu_associativity_change_counters();
1708 init_timer_deferrable(&topology_timer
);
1709 reset_topology_timer();
1717 * Disable polling for VPHN associativity changes.
1719 int stop_topology_update(void)
1726 rc
= of_reconfig_notifier_unregister(&dt_update_nb
);
1728 } else if (vphn_enabled
) {
1730 rc
= del_timer_sync(&topology_timer
);
1736 int prrn_is_enabled(void)
1738 return prrn_enabled
;
1741 static int topology_read(struct seq_file
*file
, void *v
)
1743 if (vphn_enabled
|| prrn_enabled
)
1744 seq_puts(file
, "on\n");
1746 seq_puts(file
, "off\n");
1751 static int topology_open(struct inode
*inode
, struct file
*file
)
1753 return single_open(file
, topology_read
, NULL
);
1756 static ssize_t
topology_write(struct file
*file
, const char __user
*buf
,
1757 size_t count
, loff_t
*off
)
1759 char kbuf
[4]; /* "on" or "off" plus null. */
1762 read_len
= count
< 3 ? count
: 3;
1763 if (copy_from_user(kbuf
, buf
, read_len
))
1766 kbuf
[read_len
] = '\0';
1768 if (!strncmp(kbuf
, "on", 2))
1769 start_topology_update();
1770 else if (!strncmp(kbuf
, "off", 3))
1771 stop_topology_update();
1778 static const struct file_operations topology_ops
= {
1780 .write
= topology_write
,
1781 .open
= topology_open
,
1782 .release
= single_release
1785 static int topology_update_init(void)
1787 start_topology_update();
1788 proc_create("powerpc/topology_updates", 0644, NULL
, &topology_ops
);
1792 device_initcall(topology_update_init
);
1793 #endif /* CONFIG_PPC_SPLPAR */