2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
24 #include <linux/context_tracking.h>
27 #include <asm/pgtable.h>
28 #include <asm/openprom.h>
29 #include <asm/oplib.h>
30 #include <asm/uaccess.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
36 int show_unhandled_signals
= 1;
38 static inline __kprobes
int notify_page_fault(struct pt_regs
*regs
)
42 /* kprobe_running() needs smp_processor_id() */
43 if (kprobes_built_in() && !user_mode(regs
)) {
45 if (kprobe_running() && kprobe_fault_handler(regs
, 0))
52 static void __kprobes
unhandled_fault(unsigned long address
,
53 struct task_struct
*tsk
,
56 if ((unsigned long) address
< PAGE_SIZE
) {
57 printk(KERN_ALERT
"Unable to handle kernel NULL "
58 "pointer dereference\n");
60 printk(KERN_ALERT
"Unable to handle kernel paging request "
61 "at virtual address %016lx\n", (unsigned long)address
);
63 printk(KERN_ALERT
"tsk->{mm,active_mm}->context = %016lx\n",
65 CTX_HWBITS(tsk
->mm
->context
) :
66 CTX_HWBITS(tsk
->active_mm
->context
)));
67 printk(KERN_ALERT
"tsk->{mm,active_mm}->pgd = %016lx\n",
68 (tsk
->mm
? (unsigned long) tsk
->mm
->pgd
:
69 (unsigned long) tsk
->active_mm
->pgd
));
70 die_if_kernel("Oops", regs
);
73 static void __kprobes
bad_kernel_pc(struct pt_regs
*regs
, unsigned long vaddr
)
75 printk(KERN_CRIT
"OOPS: Bogus kernel PC [%016lx] in fault handler\n",
77 printk(KERN_CRIT
"OOPS: RPC [%016lx]\n", regs
->u_regs
[15]);
78 printk("OOPS: RPC <%pS>\n", (void *) regs
->u_regs
[15]);
79 printk(KERN_CRIT
"OOPS: Fault was to vaddr[%lx]\n", vaddr
);
81 unhandled_fault(regs
->tpc
, current
, regs
);
85 * We now make sure that mmap_sem is held in all paths that call
86 * this. Additionally, to prevent kswapd from ripping ptes from
87 * under us, raise interrupts around the time that we look at the
88 * pte, kswapd will have to wait to get his smp ipi response from
89 * us. vmtruncate likewise. This saves us having to get pte lock.
91 static unsigned int get_user_insn(unsigned long tpc
)
93 pgd_t
*pgdp
= pgd_offset(current
->mm
, tpc
);
103 pudp
= pud_offset(pgdp
, tpc
);
106 pmdp
= pmd_offset(pudp
, tpc
);
110 /* This disables preemption for us as well. */
111 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
112 __asm__
__volatile__("wrpr %0, %1, %%pstate"
113 : : "r" (pstate
), "i" (PSTATE_IE
));
114 ptep
= pte_offset_map(pmdp
, tpc
);
116 if (!pte_present(pte
))
119 pa
= (pte_pfn(pte
) << PAGE_SHIFT
);
120 pa
+= (tpc
& ~PAGE_MASK
);
122 /* Use phys bypass so we don't pollute dtlb/dcache. */
123 __asm__
__volatile__("lduwa [%1] %2, %0"
125 : "r" (pa
), "i" (ASI_PHYS_USE_EC
));
129 __asm__
__volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate
));
135 show_signal_msg(struct pt_regs
*regs
, int sig
, int code
,
136 unsigned long address
, struct task_struct
*tsk
)
138 if (!unhandled_signal(tsk
, sig
))
141 if (!printk_ratelimit())
144 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
145 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
146 tsk
->comm
, task_pid_nr(tsk
), address
,
147 (void *)regs
->tpc
, (void *)regs
->u_regs
[UREG_I7
],
148 (void *)regs
->u_regs
[UREG_FP
], code
);
150 print_vma_addr(KERN_CONT
" in ", regs
->tpc
);
152 printk(KERN_CONT
"\n");
155 static void do_fault_siginfo(int code
, int sig
, struct pt_regs
*regs
,
156 unsigned int insn
, int fault_code
)
164 if (fault_code
& FAULT_CODE_ITLB
)
167 addr
= compute_effective_address(regs
, insn
, 0);
168 info
.si_addr
= (void __user
*) addr
;
171 if (unlikely(show_unhandled_signals
))
172 show_signal_msg(regs
, sig
, code
, addr
, current
);
174 force_sig_info(sig
, &info
, current
);
177 extern int handle_ldf_stq(u32
, struct pt_regs
*);
178 extern int handle_ld_nf(u32
, struct pt_regs
*);
180 static unsigned int get_fault_insn(struct pt_regs
*regs
, unsigned int insn
)
183 if (!regs
->tpc
|| (regs
->tpc
& 0x3))
185 if (regs
->tstate
& TSTATE_PRIV
) {
186 insn
= *(unsigned int *) regs
->tpc
;
188 insn
= get_user_insn(regs
->tpc
);
194 static void __kprobes
do_kernel_fault(struct pt_regs
*regs
, int si_code
,
195 int fault_code
, unsigned int insn
,
196 unsigned long address
)
198 unsigned char asi
= ASI_P
;
200 if ((!insn
) && (regs
->tstate
& TSTATE_PRIV
))
203 /* If user insn could be read (thus insn is zero), that
204 * is fine. We will just gun down the process with a signal
208 if (!(fault_code
& (FAULT_CODE_WRITE
|FAULT_CODE_ITLB
)) &&
209 (insn
& 0xc0800000) == 0xc0800000) {
211 asi
= (regs
->tstate
>> 24);
214 if ((asi
& 0xf2) == 0x82) {
215 if (insn
& 0x1000000) {
216 handle_ldf_stq(insn
, regs
);
218 /* This was a non-faulting load. Just clear the
219 * destination register(s) and continue with the next
222 handle_ld_nf(insn
, regs
);
228 /* Is this in ex_table? */
229 if (regs
->tstate
& TSTATE_PRIV
) {
230 const struct exception_table_entry
*entry
;
232 entry
= search_exception_tables(regs
->tpc
);
234 regs
->tpc
= entry
->fixup
;
235 regs
->tnpc
= regs
->tpc
+ 4;
239 /* The si_code was set to make clear whether
240 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
242 do_fault_siginfo(si_code
, SIGSEGV
, regs
, insn
, fault_code
);
247 unhandled_fault (address
, current
, regs
);
250 static void noinline __kprobes
bogus_32bit_fault_tpc(struct pt_regs
*regs
)
255 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process reports "
256 "64-bit TPC [%lx]\n",
257 current
->comm
, current
->pid
,
262 static void noinline __kprobes
bogus_32bit_fault_address(struct pt_regs
*regs
,
268 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process "
269 "reports 64-bit fault address [%lx]\n",
270 current
->comm
, current
->pid
, addr
);
274 asmlinkage
void __kprobes
do_sparc64_fault(struct pt_regs
*regs
)
276 enum ctx_state prev_state
= exception_enter();
277 struct mm_struct
*mm
= current
->mm
;
278 struct vm_area_struct
*vma
;
279 unsigned int insn
= 0;
280 int si_code
, fault_code
, fault
;
281 unsigned long address
, mm_rss
;
282 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
284 fault_code
= get_thread_fault_code();
286 if (notify_page_fault(regs
))
289 si_code
= SEGV_MAPERR
;
290 address
= current_thread_info()->fault_address
;
292 if ((fault_code
& FAULT_CODE_ITLB
) &&
293 (fault_code
& FAULT_CODE_DTLB
))
296 if (test_thread_flag(TIF_32BIT
)) {
297 if (!(regs
->tstate
& TSTATE_PRIV
)) {
298 if (unlikely((regs
->tpc
>> 32) != 0)) {
299 bogus_32bit_fault_tpc(regs
);
303 if (unlikely((address
>> 32) != 0)) {
304 bogus_32bit_fault_address(regs
, address
);
309 if (regs
->tstate
& TSTATE_PRIV
) {
310 unsigned long tpc
= regs
->tpc
;
312 /* Sanity check the PC. */
313 if ((tpc
>= KERNBASE
&& tpc
< (unsigned long) __init_end
) ||
314 (tpc
>= MODULES_VADDR
&& tpc
< MODULES_END
)) {
315 /* Valid, no problems... */
317 bad_kernel_pc(regs
, address
);
321 flags
|= FAULT_FLAG_USER
;
324 * If we're in an interrupt or have no user
325 * context, we must not take the fault..
327 if (in_atomic() || !mm
)
330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
332 if (!down_read_trylock(&mm
->mmap_sem
)) {
333 if ((regs
->tstate
& TSTATE_PRIV
) &&
334 !search_exception_tables(regs
->tpc
)) {
335 insn
= get_fault_insn(regs
, insn
);
336 goto handle_kernel_fault
;
340 down_read(&mm
->mmap_sem
);
343 vma
= find_vma(mm
, address
);
347 /* Pure DTLB misses do not tell us whether the fault causing
348 * load/store/atomic was a write or not, it only says that there
349 * was no match. So in such a case we (carefully) read the
350 * instruction to try and figure this out. It's an optimization
351 * so it's ok if we can't do this.
353 * Special hack, window spill/fill knows the exact fault type.
356 (FAULT_CODE_DTLB
| FAULT_CODE_WRITE
| FAULT_CODE_WINFIXUP
)) == FAULT_CODE_DTLB
) &&
357 (vma
->vm_flags
& VM_WRITE
) != 0) {
358 insn
= get_fault_insn(regs
, 0);
361 /* All loads, stores and atomics have bits 30 and 31 both set
362 * in the instruction. Bit 21 is set in all stores, but we
363 * have to avoid prefetches which also have bit 21 set.
365 if ((insn
& 0xc0200000) == 0xc0200000 &&
366 (insn
& 0x01780000) != 0x01680000) {
367 /* Don't bother updating thread struct value,
368 * because update_mmu_cache only cares which tlb
369 * the access came from.
371 fault_code
|= FAULT_CODE_WRITE
;
376 if (vma
->vm_start
<= address
)
378 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
380 if (!(fault_code
& FAULT_CODE_WRITE
)) {
381 /* Non-faulting loads shouldn't expand stack. */
382 insn
= get_fault_insn(regs
, insn
);
383 if ((insn
& 0xc0800000) == 0xc0800000) {
387 asi
= (regs
->tstate
>> 24);
390 if ((asi
& 0xf2) == 0x82)
394 if (expand_stack(vma
, address
))
397 * Ok, we have a good vm_area for this memory access, so
401 si_code
= SEGV_ACCERR
;
403 /* If we took a ITLB miss on a non-executable page, catch
406 if ((fault_code
& FAULT_CODE_ITLB
) && !(vma
->vm_flags
& VM_EXEC
)) {
407 BUG_ON(address
!= regs
->tpc
);
408 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
412 if (fault_code
& FAULT_CODE_WRITE
) {
413 if (!(vma
->vm_flags
& VM_WRITE
))
416 /* Spitfire has an icache which does not snoop
417 * processor stores. Later processors do...
419 if (tlb_type
== spitfire
&&
420 (vma
->vm_flags
& VM_EXEC
) != 0 &&
421 vma
->vm_file
!= NULL
)
422 set_thread_fault_code(fault_code
|
423 FAULT_CODE_BLKCOMMIT
);
425 flags
|= FAULT_FLAG_WRITE
;
427 /* Allow reads even for write-only mappings */
428 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
)))
432 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
434 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
437 if (unlikely(fault
& VM_FAULT_ERROR
)) {
438 if (fault
& VM_FAULT_OOM
)
440 else if (fault
& VM_FAULT_SIGBUS
)
445 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
446 if (fault
& VM_FAULT_MAJOR
) {
448 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
,
452 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
,
455 if (fault
& VM_FAULT_RETRY
) {
456 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
457 flags
|= FAULT_FLAG_TRIED
;
459 /* No need to up_read(&mm->mmap_sem) as we would
460 * have already released it in __lock_page_or_retry
467 up_read(&mm
->mmap_sem
);
469 mm_rss
= get_mm_rss(mm
);
470 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
471 mm_rss
-= (mm
->context
.huge_pte_count
* (HPAGE_SIZE
/ PAGE_SIZE
));
473 if (unlikely(mm_rss
>
474 mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_rss_limit
))
475 tsb_grow(mm
, MM_TSB_BASE
, mm_rss
);
476 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
477 mm_rss
= mm
->context
.huge_pte_count
;
478 if (unlikely(mm_rss
>
479 mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_rss_limit
)) {
480 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
)
481 tsb_grow(mm
, MM_TSB_HUGE
, mm_rss
);
488 exception_exit(prev_state
);
492 * Something tried to access memory that isn't in our memory map..
493 * Fix it, but check if it's kernel or user first..
496 insn
= get_fault_insn(regs
, insn
);
497 up_read(&mm
->mmap_sem
);
500 do_kernel_fault(regs
, si_code
, fault_code
, insn
, address
);
504 * We ran out of memory, or some other thing happened to us that made
505 * us unable to handle the page fault gracefully.
508 insn
= get_fault_insn(regs
, insn
);
509 up_read(&mm
->mmap_sem
);
510 if (!(regs
->tstate
& TSTATE_PRIV
)) {
511 pagefault_out_of_memory();
514 goto handle_kernel_fault
;
517 insn
= get_fault_insn(regs
, 0);
518 goto handle_kernel_fault
;
521 insn
= get_fault_insn(regs
, insn
);
522 up_read(&mm
->mmap_sem
);
525 * Send a sigbus, regardless of whether we were in kernel
528 do_fault_siginfo(BUS_ADRERR
, SIGBUS
, regs
, insn
, fault_code
);
530 /* Kernel mode? Handle exceptions or die */
531 if (regs
->tstate
& TSTATE_PRIV
)
532 goto handle_kernel_fault
;