2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
41 #include <asm/starfire.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
46 #include <asm/hypervisor.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
54 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
76 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
83 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
86 static unsigned long cpu_pgsz_mask
;
90 static struct linux_prom64_registers pavail
[MAX_BANKS
];
91 static int pavail_ents
;
93 static int cmp_p64(const void *a
, const void *b
)
95 const struct linux_prom64_registers
*x
= a
, *y
= b
;
97 if (x
->phys_addr
> y
->phys_addr
)
99 if (x
->phys_addr
< y
->phys_addr
)
104 static void __init
read_obp_memory(const char *property
,
105 struct linux_prom64_registers
*regs
,
108 phandle node
= prom_finddevice("/memory");
109 int prop_size
= prom_getproplen(node
, property
);
112 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
113 if (ents
> MAX_BANKS
) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property
, MAX_BANKS
);
120 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
122 prom_printf("Couldn't get %s property from /memory.\n",
127 /* Sanitize what we got from the firmware, by page aligning
130 for (i
= 0; i
< ents
; i
++) {
131 unsigned long base
, size
;
133 base
= regs
[i
].phys_addr
;
134 size
= regs
[i
].reg_size
;
137 if (base
& ~PAGE_MASK
) {
138 unsigned long new_base
= PAGE_ALIGN(base
);
140 size
-= new_base
- base
;
141 if ((long) size
< 0L)
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
150 memmove(®s
[i
], ®s
[i
+ 1],
151 (ents
- i
- 1) * sizeof(regs
[0]));
156 regs
[i
].phys_addr
= base
;
157 regs
[i
].reg_size
= size
;
162 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
166 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly
;
172 unsigned long kern_size __read_mostly
;
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64
;
176 extern unsigned int sparc_ramdisk_image
;
177 extern unsigned int sparc_ramdisk_size
;
179 struct page
*mem_map_zero __read_mostly
;
180 EXPORT_SYMBOL(mem_map_zero
);
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
184 unsigned long sparc64_kern_pri_context __read_mostly
;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
186 unsigned long sparc64_kern_sec_context __read_mostly
;
188 int num_kernel_image_mappings
;
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
193 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
197 inline void flush_dcache_page_impl(struct page
*page
)
199 BUG_ON(tlb_type
== hypervisor
);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes
);
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page
),
206 ((tlb_type
== spitfire
) &&
207 page_mapping(page
) != NULL
));
209 if (page_mapping(page
) != NULL
&&
210 tlb_type
== spitfire
)
211 __flush_icache_page(__pa(page_address(page
)));
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
225 unsigned long mask
= this_cpu
;
226 unsigned long non_cpu_bits
;
228 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
229 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
231 __asm__
__volatile__("1:\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
240 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
244 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
246 unsigned long mask
= (1UL << PG_dcache_dirty
);
248 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
262 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
263 "i" (PG_dcache_cpu_mask
),
264 "i" (PG_dcache_cpu_shift
)
268 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
270 unsigned long tsb_addr
= (unsigned long) ent
;
272 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
273 tsb_addr
= __pa(tsb_addr
);
275 __tsb_insert(tsb_addr
, tag
, pte
);
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
280 static void flush_dcache(unsigned long pfn
)
284 page
= pfn_to_page(pfn
);
286 unsigned long pg_flags
;
288 pg_flags
= page
->flags
;
289 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
290 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
292 int this_cpu
= get_cpu();
294 /* This is just to optimize away some function calls
298 flush_dcache_page_impl(page
);
300 smp_flush_dcache_page_impl(page
, cpu
);
302 clear_dcache_dirty_cpu(page
, cpu
);
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
311 unsigned long tsb_hash_shift
, unsigned long address
,
314 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
320 tsb
+= ((address
>> tsb_hash_shift
) &
321 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
322 tag
= (address
>> 22UL);
323 tsb_insert(tsb
, tag
, tte
);
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte
)
329 if ((tlb_type
== hypervisor
&&
330 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
331 (tlb_type
!= hypervisor
&&
332 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
))
338 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
340 struct mm_struct
*mm
;
344 if (tlb_type
!= hypervisor
) {
345 unsigned long pfn
= pte_pfn(pte
);
353 spin_lock_irqsave(&mm
->context
.lock
, flags
);
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm
->context
.huge_pte_count
&& is_hugetlb_pte(pte
))
357 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
358 address
, pte_val(pte
));
361 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
362 address
, pte_val(pte
));
364 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
367 void flush_dcache_page(struct page
*page
)
369 struct address_space
*mapping
;
372 if (tlb_type
== hypervisor
)
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
379 if (page
== ZERO_PAGE(0))
382 this_cpu
= get_cpu();
384 mapping
= page_mapping(page
);
385 if (mapping
&& !mapping_mapped(mapping
)) {
386 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
388 int dirty_cpu
= dcache_dirty_cpu(page
);
390 if (dirty_cpu
== this_cpu
)
392 smp_flush_dcache_page_impl(page
, dirty_cpu
);
394 set_dcache_dirty(page
, this_cpu
);
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
401 flush_dcache_page_impl(page
);
407 EXPORT_SYMBOL(flush_dcache_page
);
409 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type
== spitfire
) {
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
418 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
419 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
421 if (kaddr
>= PAGE_OFFSET
)
422 paddr
= kaddr
& mask
;
424 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
425 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
426 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
427 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
429 paddr
= pte_val(*ptep
) & mask
;
431 __flush_icache_page(paddr
);
435 EXPORT_SYMBOL(flush_icache_range
);
437 void mmu_info(struct seq_file
*m
)
439 static const char *pgsz_strings
[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
445 if (tlb_type
== cheetah
)
446 seq_printf(m
, "MMU Type\t: Cheetah\n");
447 else if (tlb_type
== cheetah_plus
)
448 seq_printf(m
, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type
== spitfire
)
450 seq_printf(m
, "MMU Type\t: Spitfire\n");
451 else if (tlb_type
== hypervisor
)
452 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
454 seq_printf(m
, "MMU Type\t: ???\n");
456 seq_printf(m
, "MMU PGSZs\t: ");
458 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
459 if (cpu_pgsz_mask
& (1UL << i
)) {
460 seq_printf(m
, "%s%s",
461 printed
? "," : "", pgsz_strings
[i
]);
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m
, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes
));
471 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall
));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
477 struct linux_prom_translation prom_trans
[512] __read_mostly
;
478 unsigned int prom_trans_ents __read_mostly
;
480 unsigned long kern_locked_tte_data
;
482 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
486 static inline int in_obp_range(unsigned long vaddr
)
488 return (vaddr
>= LOW_OBP_ADDRESS
&&
489 vaddr
< HI_OBP_ADDRESS
);
492 static int cmp_ptrans(const void *a
, const void *b
)
494 const struct linux_prom_translation
*x
= a
, *y
= b
;
496 if (x
->virt
> y
->virt
)
498 if (x
->virt
< y
->virt
)
503 /* Read OBP translations property into 'prom_trans[]'. */
504 static void __init
read_obp_translations(void)
506 int n
, node
, ents
, first
, last
, i
;
508 node
= prom_finddevice("/virtual-memory");
509 n
= prom_getproplen(node
, "translations");
510 if (unlikely(n
== 0 || n
== -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
514 if (unlikely(n
> sizeof(prom_trans
))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n
);
519 if ((n
= prom_getproperty(node
, "translations",
520 (char *)&prom_trans
[0],
521 sizeof(prom_trans
))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
526 n
= n
/ sizeof(struct linux_prom_translation
);
530 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
533 /* Now kick out all the non-OBP entries. */
534 for (i
= 0; i
< ents
; i
++) {
535 if (in_obp_range(prom_trans
[i
].virt
))
539 for (; i
< ents
; i
++) {
540 if (!in_obp_range(prom_trans
[i
].virt
))
545 for (i
= 0; i
< (last
- first
); i
++) {
546 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
547 struct linux_prom_translation
*dest
= &prom_trans
[i
];
551 for (; i
< ents
; i
++) {
552 struct linux_prom_translation
*dest
= &prom_trans
[i
];
553 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
556 prom_trans_ents
= last
- first
;
558 if (tlb_type
== spitfire
) {
559 /* Clear diag TTE bits. */
560 for (i
= 0; i
< prom_trans_ents
; i
++)
561 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
564 /* Force execute bit on. */
565 for (i
= 0; i
< prom_trans_ents
; i
++)
566 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
567 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
570 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
574 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
583 static unsigned long kern_large_tte(unsigned long paddr
);
585 static void __init
remap_kernel(void)
587 unsigned long phys_page
, tte_vaddr
, tte_data
;
588 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
590 tte_vaddr
= (unsigned long) KERNBASE
;
591 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
592 tte_data
= kern_large_tte(phys_page
);
594 kern_locked_tte_data
= tte_data
;
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type
== hypervisor
) {
598 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
599 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
600 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
601 tte_vaddr
+= 0x400000;
602 tte_data
+= 0x400000;
605 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
606 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
607 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
608 tte_vaddr
+= 0x400000;
609 tte_data
+= 0x400000;
611 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
613 if (tlb_type
== cheetah_plus
) {
614 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
615 CTX_CHEETAH_PLUS_NUC
);
616 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
617 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
622 static void __init
inherit_prom_mappings(void)
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
630 void prom_world(int enter
)
635 __asm__
__volatile__("flushw");
638 void __flush_dcache_range(unsigned long start
, unsigned long end
)
642 if (tlb_type
== spitfire
) {
645 for (va
= start
; va
< end
; va
+= 32) {
646 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
650 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
653 for (va
= start
; va
< end
; va
+= 32)
654 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
658 "i" (ASI_DCACHE_INVALIDATE
));
661 EXPORT_SYMBOL(__flush_dcache_range
);
663 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock
);
665 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
670 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
678 * Always invoked with interrupts disabled.
680 void get_new_mmu_context(struct mm_struct
*mm
)
682 unsigned long ctx
, new_ctx
;
683 unsigned long orig_pgsz_bits
;
686 spin_lock(&ctx_alloc_lock
);
687 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
688 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
689 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
691 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
692 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
693 if (new_ctx
>= ctx
) {
695 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
698 new_ctx
= CTX_FIRST_VERSION
;
700 /* Don't call memset, for 16 entries that's just
703 mmu_context_bmap
[0] = 3;
704 mmu_context_bmap
[1] = 0;
705 mmu_context_bmap
[2] = 0;
706 mmu_context_bmap
[3] = 0;
707 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
708 mmu_context_bmap
[i
+ 0] = 0;
709 mmu_context_bmap
[i
+ 1] = 0;
710 mmu_context_bmap
[i
+ 2] = 0;
711 mmu_context_bmap
[i
+ 3] = 0;
717 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
718 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
720 tlb_context_cache
= new_ctx
;
721 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
722 spin_unlock(&ctx_alloc_lock
);
724 if (unlikely(new_version
))
725 smp_new_mmu_context_version();
728 static int numa_enabled
= 1;
729 static int numa_debug
;
731 static int __init
early_numa(char *p
)
736 if (strstr(p
, "off"))
739 if (strstr(p
, "debug"))
744 early_param("numa", early_numa
);
746 #define numadbg(f, a...) \
747 do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \
751 static void __init
find_ramdisk(unsigned long phys_base
)
753 #ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
755 unsigned long ramdisk_image
;
757 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64.
764 ramdisk_image
= sparc_ramdisk_image
;
766 ramdisk_image
= sparc_ramdisk_image64
;
768 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address.
773 ramdisk_image
-= KERNBASE
;
774 ramdisk_image
+= phys_base
;
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image
, sparc_ramdisk_size
);
779 initrd_start
= ramdisk_image
;
780 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
782 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
784 initrd_start
+= PAGE_OFFSET
;
785 initrd_end
+= PAGE_OFFSET
;
790 struct node_mem_mask
{
794 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
795 static int num_node_masks
;
797 int numa_cpu_lookup_table
[NR_CPUS
];
798 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
802 struct mdesc_mblock
{
805 u64 offset
; /* RA-to-PA */
807 static struct mdesc_mblock
*mblocks
;
808 static int num_mblocks
;
810 static unsigned long ra_to_pa(unsigned long addr
)
814 for (i
= 0; i
< num_mblocks
; i
++) {
815 struct mdesc_mblock
*m
= &mblocks
[i
];
817 if (addr
>= m
->base
&&
818 addr
< (m
->base
+ m
->size
)) {
826 static int find_node(unsigned long addr
)
830 addr
= ra_to_pa(addr
);
831 for (i
= 0; i
< num_node_masks
; i
++) {
832 struct node_mem_mask
*p
= &node_masks
[i
];
834 if ((addr
& p
->mask
) == p
->val
)
840 static u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
842 *nid
= find_node(start
);
844 while (start
< end
) {
845 int n
= find_node(start
);
859 /* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
863 static void __init
allocate_node_data(int nid
)
865 struct pglist_data
*p
;
866 unsigned long start_pfn
, end_pfn
;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES
870 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
875 NODE_DATA(nid
) = __va(paddr
);
876 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
878 NODE_DATA(nid
)->node_id
= nid
;
883 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
884 p
->node_start_pfn
= start_pfn
;
885 p
->node_spanned_pages
= end_pfn
- start_pfn
;
888 static void init_node_masks_nonnuma(void)
892 numadbg("Initializing tables for non-numa.\n");
894 node_masks
[0].mask
= node_masks
[0].val
= 0;
897 for (i
= 0; i
< NR_CPUS
; i
++)
898 numa_cpu_lookup_table
[i
] = 0;
900 cpumask_setall(&numa_cpumask_lookup_table
[0]);
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data
*node_data
[MAX_NUMNODES
];
906 EXPORT_SYMBOL(numa_cpu_lookup_table
);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
908 EXPORT_SYMBOL(node_data
);
910 struct mdesc_mlgroup
{
916 static struct mdesc_mlgroup
*mlgroups
;
917 static int num_mlgroups
;
919 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
924 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
925 u64 target
= mdesc_arc_target(md
, arc
);
928 val
= mdesc_get_property(md
, target
,
930 if (val
&& *val
== cfg_handle
)
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
939 u64 arc
, candidate
, best_latency
= ~(u64
)0;
941 candidate
= MDESC_NODE_NULL
;
942 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
943 u64 target
= mdesc_arc_target(md
, arc
);
944 const char *name
= mdesc_node_name(md
, target
);
947 if (strcmp(name
, "pio-latency-group"))
950 val
= mdesc_get_property(md
, target
, "latency", NULL
);
954 if (*val
< best_latency
) {
960 if (candidate
== MDESC_NODE_NULL
)
963 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
966 int of_node_to_nid(struct device_node
*dp
)
968 const struct linux_prom64_registers
*regs
;
969 struct mdesc_handle
*md
;
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
981 regs
= of_get_property(dp
, "reg", NULL
);
985 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
991 mdesc_for_each_node_by_name(md
, grp
, "group") {
992 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1004 static void __init
add_node_ranges(void)
1006 struct memblock_region
*reg
;
1008 for_each_memblock(memory
, reg
) {
1009 unsigned long size
= reg
->size
;
1010 unsigned long start
, end
;
1014 while (start
< end
) {
1015 unsigned long this_end
;
1018 this_end
= memblock_nid_range(start
, end
, &nid
);
1020 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n",
1022 nid
, start
, this_end
);
1024 memblock_set_node(start
, this_end
- start
,
1025 &memblock
.memory
, nid
);
1031 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1033 unsigned long paddr
;
1037 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1042 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1047 mlgroups
= __va(paddr
);
1048 num_mlgroups
= count
;
1051 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1052 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1057 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1059 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1061 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1064 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 "match[%llx] mask[%llx]\n",
1066 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1072 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1074 unsigned long paddr
;
1078 mdesc_for_each_node_by_name(md
, node
, "mblock")
1083 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1088 mblocks
= __va(paddr
);
1089 num_mblocks
= count
;
1092 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1093 struct mdesc_mblock
*m
= &mblocks
[count
++];
1096 val
= mdesc_get_property(md
, node
, "base", NULL
);
1098 val
= mdesc_get_property(md
, node
, "size", NULL
);
1100 val
= mdesc_get_property(md
, node
,
1101 "address-congruence-offset", NULL
);
1103 /* The address-congruence-offset property is optional.
1104 * Explicity zero it be identifty this.
1111 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112 count
- 1, m
->base
, m
->size
, m
->offset
);
1118 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1119 u64 grp
, cpumask_t
*mask
)
1123 cpumask_clear(mask
);
1125 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1126 u64 target
= mdesc_arc_target(md
, arc
);
1127 const char *name
= mdesc_node_name(md
, target
);
1130 if (strcmp(name
, "cpu"))
1132 id
= mdesc_get_property(md
, target
, "id", NULL
);
1133 if (*id
< nr_cpu_ids
)
1134 cpumask_set_cpu(*id
, mask
);
1138 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1142 for (i
= 0; i
< num_mlgroups
; i
++) {
1143 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1144 if (m
->node
== node
)
1150 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1153 struct mdesc_mlgroup
*candidate
= NULL
;
1154 u64 arc
, best_latency
= ~(u64
)0;
1155 struct node_mem_mask
*n
;
1157 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1158 u64 target
= mdesc_arc_target(md
, arc
);
1159 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1162 if (m
->latency
< best_latency
) {
1164 best_latency
= m
->latency
;
1170 if (num_node_masks
!= index
) {
1171 printk(KERN_ERR
"Inconsistent NUMA state, "
1172 "index[%d] != num_node_masks[%d]\n",
1173 index
, num_node_masks
);
1177 n
= &node_masks
[num_node_masks
++];
1179 n
->mask
= candidate
->mask
;
1180 n
->val
= candidate
->match
;
1182 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1183 index
, n
->mask
, n
->val
, candidate
->latency
);
1188 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1194 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1196 for_each_cpu(cpu
, &mask
)
1197 numa_cpu_lookup_table
[cpu
] = index
;
1198 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1201 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1202 for_each_cpu(cpu
, &mask
)
1207 return numa_attach_mlgroup(md
, grp
, index
);
1210 static int __init
numa_parse_mdesc(void)
1212 struct mdesc_handle
*md
= mdesc_grab();
1216 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1217 if (node
== MDESC_NODE_NULL
) {
1222 err
= grab_mblocks(md
);
1226 err
= grab_mlgroups(md
);
1231 mdesc_for_each_node_by_name(md
, node
, "group") {
1232 err
= numa_parse_mdesc_group(md
, node
, count
);
1240 for (i
= 0; i
< num_node_masks
; i
++) {
1241 allocate_node_data(i
);
1251 static int __init
numa_parse_jbus(void)
1253 unsigned long cpu
, index
;
1255 /* NUMA node id is encoded in bits 36 and higher, and there is
1256 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1259 for_each_present_cpu(cpu
) {
1260 numa_cpu_lookup_table
[cpu
] = index
;
1261 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1262 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1263 node_masks
[index
].val
= cpu
<< 36UL;
1267 num_node_masks
= index
;
1271 for (index
= 0; index
< num_node_masks
; index
++) {
1272 allocate_node_data(index
);
1273 node_set_online(index
);
1279 static int __init
numa_parse_sun4u(void)
1281 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1284 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1285 if ((ver
>> 32UL) == __JALAPENO_ID
||
1286 (ver
>> 32UL) == __SERRANO_ID
)
1287 return numa_parse_jbus();
1292 static int __init
bootmem_init_numa(void)
1296 numadbg("bootmem_init_numa()\n");
1299 if (tlb_type
== hypervisor
)
1300 err
= numa_parse_mdesc();
1302 err
= numa_parse_sun4u();
1309 static int bootmem_init_numa(void)
1316 static void __init
bootmem_init_nonnuma(void)
1318 unsigned long top_of_ram
= memblock_end_of_DRAM();
1319 unsigned long total_ram
= memblock_phys_mem_size();
1321 numadbg("bootmem_init_nonnuma()\n");
1323 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1324 top_of_ram
, total_ram
);
1325 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1326 (top_of_ram
- total_ram
) >> 20);
1328 init_node_masks_nonnuma();
1329 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, &memblock
.memory
, 0);
1330 allocate_node_data(0);
1334 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1336 unsigned long end_pfn
;
1338 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1339 max_pfn
= max_low_pfn
= end_pfn
;
1340 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1342 if (bootmem_init_numa() < 0)
1343 bootmem_init_nonnuma();
1345 /* Dump memblock with node info. */
1346 memblock_dump_all();
1348 /* XXX cpu notifier XXX */
1350 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1356 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1357 static int pall_ents __initdata
;
1359 #ifdef CONFIG_DEBUG_PAGEALLOC
1360 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1361 unsigned long pend
, pgprot_t prot
)
1363 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1364 unsigned long vend
= PAGE_OFFSET
+ pend
;
1365 unsigned long alloc_bytes
= 0UL;
1367 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1368 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1373 while (vstart
< vend
) {
1374 unsigned long this_end
, paddr
= __pa(vstart
);
1375 pgd_t
*pgd
= pgd_offset_k(vstart
);
1380 pud
= pud_offset(pgd
, vstart
);
1381 if (pud_none(*pud
)) {
1384 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1385 alloc_bytes
+= PAGE_SIZE
;
1386 pud_populate(&init_mm
, pud
, new);
1389 pmd
= pmd_offset(pud
, vstart
);
1390 if (!pmd_present(*pmd
)) {
1393 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1394 alloc_bytes
+= PAGE_SIZE
;
1395 pmd_populate_kernel(&init_mm
, pmd
, new);
1398 pte
= pte_offset_kernel(pmd
, vstart
);
1399 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1400 if (this_end
> vend
)
1403 while (vstart
< this_end
) {
1404 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1406 vstart
+= PAGE_SIZE
;
1415 extern unsigned int kvmap_linear_patch
[1];
1416 #endif /* CONFIG_DEBUG_PAGEALLOC */
1418 static void __init
kpte_set_val(unsigned long index
, unsigned long val
)
1420 unsigned long *ptr
= kpte_linear_bitmap
;
1422 val
<<= ((index
% (BITS_PER_LONG
/ 2)) * 2);
1423 ptr
+= (index
/ (BITS_PER_LONG
/ 2));
1428 static const unsigned long kpte_shift_min
= 28; /* 256MB */
1429 static const unsigned long kpte_shift_max
= 34; /* 16GB */
1430 static const unsigned long kpte_shift_incr
= 3;
1432 static unsigned long kpte_mark_using_shift(unsigned long start
, unsigned long end
,
1433 unsigned long shift
)
1435 unsigned long size
= (1UL << shift
);
1436 unsigned long mask
= (size
- 1UL);
1437 unsigned long remains
= end
- start
;
1440 if (remains
< size
|| (start
& mask
))
1445 * shift 28 --> kern_linear_pte_xor index 1
1446 * shift 31 --> kern_linear_pte_xor index 2
1447 * shift 34 --> kern_linear_pte_xor index 3
1449 val
= ((shift
- kpte_shift_min
) / kpte_shift_incr
) + 1;
1452 if (shift
!= kpte_shift_max
)
1456 unsigned long index
= start
>> kpte_shift_min
;
1458 kpte_set_val(index
, val
);
1460 start
+= 1UL << kpte_shift_min
;
1461 remains
-= 1UL << kpte_shift_min
;
1467 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1469 unsigned long smallest_size
, smallest_mask
;
1472 smallest_size
= (1UL << kpte_shift_min
);
1473 smallest_mask
= (smallest_size
- 1UL);
1475 while (start
< end
) {
1476 unsigned long orig_start
= start
;
1478 for (s
= kpte_shift_max
; s
>= kpte_shift_min
; s
-= kpte_shift_incr
) {
1479 start
= kpte_mark_using_shift(start
, end
, s
);
1481 if (start
!= orig_start
)
1485 if (start
== orig_start
)
1486 start
= (start
+ smallest_size
) & ~smallest_mask
;
1490 static void __init
init_kpte_bitmap(void)
1494 for (i
= 0; i
< pall_ents
; i
++) {
1495 unsigned long phys_start
, phys_end
;
1497 phys_start
= pall
[i
].phys_addr
;
1498 phys_end
= phys_start
+ pall
[i
].reg_size
;
1500 mark_kpte_bitmap(phys_start
, phys_end
);
1504 static void __init
kernel_physical_mapping_init(void)
1506 #ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i
, mem_alloced
= 0UL;
1509 for (i
= 0; i
< pall_ents
; i
++) {
1510 unsigned long phys_start
, phys_end
;
1512 phys_start
= pall
[i
].phys_addr
;
1513 phys_end
= phys_start
+ pall
[i
].reg_size
;
1515 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1519 printk("Allocated %ld bytes for kernel page tables.\n",
1522 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch
[0]);
1529 #ifdef CONFIG_DEBUG_PAGEALLOC
1530 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1532 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1533 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1535 kernel_map_range(phys_start
, phys_end
,
1536 (enable
? PAGE_KERNEL
: __pgprot(0)));
1538 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1539 PAGE_OFFSET
+ phys_end
);
1541 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu.
1544 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1545 PAGE_OFFSET
+ phys_end
);
1549 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1553 for (i
= 0; i
< pavail_ents
; i
++) {
1554 if (pavail
[i
].reg_size
>= size
)
1555 return pavail
[i
].phys_addr
;
1561 unsigned long PAGE_OFFSET
;
1562 EXPORT_SYMBOL(PAGE_OFFSET
);
1564 static void __init
page_offset_shift_patch_one(unsigned int *insn
, unsigned long phys_bits
)
1566 unsigned long final_shift
;
1567 unsigned int val
= *insn
;
1570 /* We are patching in ilog2(max_supported_phys_address), and
1571 * we are doing so in a manner similar to a relocation addend.
1572 * That is, we are adding the shift value to whatever value
1573 * is in the shift instruction count field already.
1578 /* If we are trying to shift >= 64 bits, clear the destination
1579 * register. This can happen when phys_bits ends up being equal
1580 * to MAX_PHYS_ADDRESS_BITS.
1582 final_shift
= (cnt
+ (64 - phys_bits
));
1583 if (final_shift
>= 64) {
1584 unsigned int rd
= (val
>> 25) & 0x1f;
1586 val
= 0x80100000 | (rd
<< 25);
1592 __asm__
__volatile__("flush %0"
1597 static void __init
page_offset_shift_patch(unsigned long phys_bits
)
1599 extern unsigned int __page_offset_shift_patch
;
1600 extern unsigned int __page_offset_shift_patch_end
;
1603 p
= &__page_offset_shift_patch
;
1604 while (p
< &__page_offset_shift_patch_end
) {
1605 unsigned int *insn
= (unsigned int *)(unsigned long)*p
;
1607 page_offset_shift_patch_one(insn
, phys_bits
);
1613 static void __init
setup_page_offset(void)
1615 unsigned long max_phys_bits
= 40;
1617 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1619 } else if (tlb_type
== hypervisor
) {
1620 switch (sun4v_chip_type
) {
1621 case SUN4V_CHIP_NIAGARA1
:
1622 case SUN4V_CHIP_NIAGARA2
:
1625 case SUN4V_CHIP_NIAGARA3
:
1628 case SUN4V_CHIP_NIAGARA4
:
1629 case SUN4V_CHIP_NIAGARA5
:
1630 case SUN4V_CHIP_SPARC64X
:
1637 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
1638 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1643 PAGE_OFFSET
= PAGE_OFFSET_BY_BITS(max_phys_bits
);
1645 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1646 PAGE_OFFSET
, max_phys_bits
);
1648 page_offset_shift_patch(max_phys_bits
);
1651 static void __init
tsb_phys_patch(void)
1653 struct tsb_ldquad_phys_patch_entry
*pquad
;
1654 struct tsb_phys_patch_entry
*p
;
1656 pquad
= &__tsb_ldquad_phys_patch
;
1657 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1658 unsigned long addr
= pquad
->addr
;
1660 if (tlb_type
== hypervisor
)
1661 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1663 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1665 __asm__
__volatile__("flush %0"
1672 p
= &__tsb_phys_patch
;
1673 while (p
< &__tsb_phys_patch_end
) {
1674 unsigned long addr
= p
->addr
;
1676 *(unsigned int *) addr
= p
->insn
;
1678 __asm__
__volatile__("flush %0"
1686 /* Don't mark as init, we give this to the Hypervisor. */
1687 #ifndef CONFIG_DEBUG_PAGEALLOC
1688 #define NUM_KTSB_DESCR 2
1690 #define NUM_KTSB_DESCR 1
1692 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1693 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1695 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1697 pa
>>= KTSB_PHYS_SHIFT
;
1699 while (start
< end
) {
1700 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1702 ia
[0] = (ia
[0] & ~0x3fffff) | (pa
>> 10);
1703 __asm__
__volatile__("flush %0" : : "r" (ia
));
1705 ia
[1] = (ia
[1] & ~0x3ff) | (pa
& 0x3ff);
1706 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1712 static void ktsb_phys_patch(void)
1714 extern unsigned int __swapper_tsb_phys_patch
;
1715 extern unsigned int __swapper_tsb_phys_patch_end
;
1716 unsigned long ktsb_pa
;
1718 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1719 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1720 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1721 #ifndef CONFIG_DEBUG_PAGEALLOC
1723 extern unsigned int __swapper_4m_tsb_phys_patch
;
1724 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1725 ktsb_pa
= (kern_base
+
1726 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1727 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1728 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1733 static void __init
sun4v_ktsb_init(void)
1735 unsigned long ktsb_pa
;
1737 /* First KTSB for PAGE_SIZE mappings. */
1738 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1740 switch (PAGE_SIZE
) {
1743 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1744 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1748 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1749 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1753 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1754 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1757 case 4 * 1024 * 1024:
1758 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1759 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1763 ktsb_descr
[0].assoc
= 1;
1764 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1765 ktsb_descr
[0].ctx_idx
= 0;
1766 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1767 ktsb_descr
[0].resv
= 0;
1769 #ifndef CONFIG_DEBUG_PAGEALLOC
1770 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1771 ktsb_pa
= (kern_base
+
1772 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1774 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1775 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
1776 HV_PGSZ_MASK_256MB
|
1778 HV_PGSZ_MASK_16GB
) &
1780 ktsb_descr
[1].assoc
= 1;
1781 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1782 ktsb_descr
[1].ctx_idx
= 0;
1783 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1784 ktsb_descr
[1].resv
= 0;
1788 void sun4v_ktsb_register(void)
1790 unsigned long pa
, ret
;
1792 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1794 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1796 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1797 "errors with %lx\n", pa
, ret
);
1802 static void __init
sun4u_linear_pte_xor_finalize(void)
1804 #ifndef CONFIG_DEBUG_PAGEALLOC
1805 /* This is where we would add Panther support for
1806 * 32MB and 256MB pages.
1811 static void __init
sun4v_linear_pte_xor_finalize(void)
1813 #ifndef CONFIG_DEBUG_PAGEALLOC
1814 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
1815 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1817 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1818 _PAGE_P_4V
| _PAGE_W_4V
);
1820 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1823 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
1824 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
1826 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1827 _PAGE_P_4V
| _PAGE_W_4V
);
1829 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
1832 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
1833 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
1835 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1836 _PAGE_P_4V
| _PAGE_W_4V
);
1838 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
1843 /* paging_init() sets up the page tables */
1845 static unsigned long last_valid_pfn
;
1846 pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
1848 static void sun4u_pgprot_init(void);
1849 static void sun4v_pgprot_init(void);
1851 void __init
paging_init(void)
1853 unsigned long end_pfn
, shift
, phys_base
;
1854 unsigned long real_end
, i
;
1857 setup_page_offset();
1859 /* These build time checkes make sure that the dcache_dirty_cpu()
1860 * page->flags usage will work.
1862 * When a page gets marked as dcache-dirty, we store the
1863 * cpu number starting at bit 32 in the page->flags. Also,
1864 * functions like clear_dcache_dirty_cpu use the cpu mask
1865 * in 13-bit signed-immediate instruction fields.
1869 * Page flags must not reach into upper 32 bits that are used
1870 * for the cpu number
1872 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1875 * The bit fields placed in the high range must not reach below
1876 * the 32 bit boundary. Otherwise we cannot place the cpu field
1877 * at the 32 bit boundary.
1879 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1880 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1882 BUILD_BUG_ON(NR_CPUS
> 4096);
1884 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1885 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1887 /* Invalidate both kernel TSBs. */
1888 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1889 #ifndef CONFIG_DEBUG_PAGEALLOC
1890 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1893 if (tlb_type
== hypervisor
)
1894 sun4v_pgprot_init();
1896 sun4u_pgprot_init();
1898 if (tlb_type
== cheetah_plus
||
1899 tlb_type
== hypervisor
) {
1904 if (tlb_type
== hypervisor
)
1905 sun4v_patch_tlb_handlers();
1907 /* Find available physical memory...
1909 * Read it twice in order to work around a bug in openfirmware.
1910 * The call to grab this table itself can cause openfirmware to
1911 * allocate memory, which in turn can take away some space from
1912 * the list of available memory. Reading it twice makes sure
1913 * we really do get the final value.
1915 read_obp_translations();
1916 read_obp_memory("reg", &pall
[0], &pall_ents
);
1917 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1918 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1920 phys_base
= 0xffffffffffffffffUL
;
1921 for (i
= 0; i
< pavail_ents
; i
++) {
1922 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1923 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1926 memblock_reserve(kern_base
, kern_size
);
1928 find_ramdisk(phys_base
);
1930 memblock_enforce_memory_limit(cmdline_memory_size
);
1932 memblock_allow_resize();
1933 memblock_dump_all();
1935 set_bit(0, mmu_context_bmap
);
1937 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1939 real_end
= (unsigned long)_end
;
1940 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1941 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1942 num_kernel_image_mappings
);
1944 /* Set kernel pgd to upper alias so physical page computations
1947 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1949 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1951 /* Now can init the kernel/bad page tables. */
1952 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1953 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1955 inherit_prom_mappings();
1959 /* Ok, we can use our TLB miss and window trap handlers safely. */
1964 prom_build_devicetree();
1965 of_populate_present_mask();
1967 of_fill_in_cpu_data();
1970 if (tlb_type
== hypervisor
) {
1972 mdesc_populate_present_mask(cpu_all_mask
);
1974 mdesc_fill_in_cpu_data(cpu_all_mask
);
1976 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
1978 sun4v_linear_pte_xor_finalize();
1981 sun4v_ktsb_register();
1983 unsigned long impl
, ver
;
1985 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
1986 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
1988 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
1989 impl
= ((ver
>> 32) & 0xffff);
1990 if (impl
== PANTHER_IMPL
)
1991 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
1992 HV_PGSZ_MASK_256MB
);
1994 sun4u_linear_pte_xor_finalize();
1997 /* Flush the TLBs and the 4M TSB so that the updated linear
1998 * pte XOR settings are realized for all mappings.
2001 #ifndef CONFIG_DEBUG_PAGEALLOC
2002 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2006 /* Setup bootmem... */
2007 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2009 /* Once the OF device tree and MDESC have been setup, we know
2010 * the list of possible cpus. Therefore we can allocate the
2013 for_each_possible_cpu(i
) {
2014 node
= cpu_to_node(i
);
2016 softirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2019 hardirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2024 kernel_physical_mapping_init();
2027 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2029 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2031 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2033 free_area_init_nodes(max_zone_pfns
);
2036 printk("Booting Linux...\n");
2039 int page_in_phys_avail(unsigned long paddr
)
2045 for (i
= 0; i
< pavail_ents
; i
++) {
2046 unsigned long start
, end
;
2048 start
= pavail
[i
].phys_addr
;
2049 end
= start
+ pavail
[i
].reg_size
;
2051 if (paddr
>= start
&& paddr
< end
)
2054 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2056 #ifdef CONFIG_BLK_DEV_INITRD
2057 if (paddr
>= __pa(initrd_start
) &&
2058 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2065 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
2066 static int pavail_rescan_ents __initdata
;
2068 /* Certain OBP calls, such as fetching "available" properties, can
2069 * claim physical memory. So, along with initializing the valid
2070 * address bitmap, what we do here is refetch the physical available
2071 * memory list again, and make sure it provides at least as much
2072 * memory as 'pavail' does.
2074 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
2078 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
2080 for (i
= 0; i
< pavail_ents
; i
++) {
2081 unsigned long old_start
, old_end
;
2083 old_start
= pavail
[i
].phys_addr
;
2084 old_end
= old_start
+ pavail
[i
].reg_size
;
2085 while (old_start
< old_end
) {
2088 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
2089 unsigned long new_start
, new_end
;
2091 new_start
= pavail_rescan
[n
].phys_addr
;
2092 new_end
= new_start
+
2093 pavail_rescan
[n
].reg_size
;
2095 if (new_start
<= old_start
&&
2096 new_end
>= (old_start
+ PAGE_SIZE
)) {
2097 set_bit(old_start
>> 22, bitmap
);
2102 prom_printf("mem_init: Lost memory in pavail\n");
2103 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2104 pavail
[i
].phys_addr
,
2105 pavail
[i
].reg_size
);
2106 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2107 pavail_rescan
[i
].phys_addr
,
2108 pavail_rescan
[i
].reg_size
);
2109 prom_printf("mem_init: Cannot continue, aborting.\n");
2113 old_start
+= PAGE_SIZE
;
2118 static void __init
patch_tlb_miss_handler_bitmap(void)
2120 extern unsigned int valid_addr_bitmap_insn
[];
2121 extern unsigned int valid_addr_bitmap_patch
[];
2123 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
2125 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
2126 flushi(&valid_addr_bitmap_insn
[0]);
2129 static void __init
register_page_bootmem_info(void)
2131 #ifdef CONFIG_NEED_MULTIPLE_NODES
2134 for_each_online_node(i
)
2135 if (NODE_DATA(i
)->node_spanned_pages
)
2136 register_page_bootmem_info_node(NODE_DATA(i
));
2139 void __init
mem_init(void)
2141 unsigned long addr
, last
;
2143 addr
= PAGE_OFFSET
+ kern_base
;
2144 last
= PAGE_ALIGN(kern_size
) + addr
;
2145 while (addr
< last
) {
2146 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
2150 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
2151 patch_tlb_miss_handler_bitmap();
2153 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2155 register_page_bootmem_info();
2159 * Set up the zero page, mark it reserved, so that page count
2160 * is not manipulated when freeing the page from user ptes.
2162 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2163 if (mem_map_zero
== NULL
) {
2164 prom_printf("paging_init: Cannot alloc zero page.\n");
2167 mark_page_reserved(mem_map_zero
);
2169 mem_init_print_info(NULL
);
2171 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2172 cheetah_ecache_flush_init();
2175 void free_initmem(void)
2177 unsigned long addr
, initend
;
2180 /* If the physical memory maps were trimmed by kernel command
2181 * line options, don't even try freeing this initmem stuff up.
2182 * The kernel image could have been in the trimmed out region
2183 * and if so the freeing below will free invalid page structs.
2185 if (cmdline_memory_size
)
2189 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2191 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2192 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2193 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2197 ((unsigned long) __va(kern_base
)) -
2198 ((unsigned long) KERNBASE
));
2199 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2202 free_reserved_page(virt_to_page(page
));
2206 #ifdef CONFIG_BLK_DEV_INITRD
2207 void free_initrd_mem(unsigned long start
, unsigned long end
)
2209 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2214 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2215 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2216 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2217 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2218 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2219 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2221 pgprot_t PAGE_KERNEL __read_mostly
;
2222 EXPORT_SYMBOL(PAGE_KERNEL
);
2224 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2225 pgprot_t PAGE_COPY __read_mostly
;
2227 pgprot_t PAGE_SHARED __read_mostly
;
2228 EXPORT_SYMBOL(PAGE_SHARED
);
2230 unsigned long pg_iobits __read_mostly
;
2232 unsigned long _PAGE_IE __read_mostly
;
2233 EXPORT_SYMBOL(_PAGE_IE
);
2235 unsigned long _PAGE_E __read_mostly
;
2236 EXPORT_SYMBOL(_PAGE_E
);
2238 unsigned long _PAGE_CACHE __read_mostly
;
2239 EXPORT_SYMBOL(_PAGE_CACHE
);
2241 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2242 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2244 static long __meminitdata addr_start
, addr_end
;
2245 static int __meminitdata node_start
;
2247 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2250 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2251 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2252 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2253 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2254 unsigned long pte_base
;
2256 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2257 _PAGE_CP_4U
| _PAGE_CV_4U
|
2258 _PAGE_P_4U
| _PAGE_W_4U
);
2259 if (tlb_type
== hypervisor
)
2260 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2261 _PAGE_CP_4V
| _PAGE_CV_4V
|
2262 _PAGE_P_4V
| _PAGE_W_4V
);
2264 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2265 unsigned long *vmem_pp
=
2266 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2269 if (!(*vmem_pp
& _PAGE_VALID
)) {
2270 block
= vmemmap_alloc_block(1UL << 22, node
);
2274 *vmem_pp
= pte_base
| __pa(block
);
2276 /* check to see if we have contiguous blocks */
2277 if (addr_end
!= addr
|| node_start
!= node
) {
2279 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2280 addr_start
, addr_end
-1, node_start
);
2284 addr_end
= addr
+ VMEMMAP_CHUNK
;
2290 void __meminit
vmemmap_populate_print_last(void)
2293 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2294 addr_start
, addr_end
-1, node_start
);
2301 void vmemmap_free(unsigned long start
, unsigned long end
)
2305 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2307 static void prot_init_common(unsigned long page_none
,
2308 unsigned long page_shared
,
2309 unsigned long page_copy
,
2310 unsigned long page_readonly
,
2311 unsigned long page_exec_bit
)
2313 PAGE_COPY
= __pgprot(page_copy
);
2314 PAGE_SHARED
= __pgprot(page_shared
);
2316 protection_map
[0x0] = __pgprot(page_none
);
2317 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2318 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2319 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2320 protection_map
[0x4] = __pgprot(page_readonly
);
2321 protection_map
[0x5] = __pgprot(page_readonly
);
2322 protection_map
[0x6] = __pgprot(page_copy
);
2323 protection_map
[0x7] = __pgprot(page_copy
);
2324 protection_map
[0x8] = __pgprot(page_none
);
2325 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2326 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2327 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2328 protection_map
[0xc] = __pgprot(page_readonly
);
2329 protection_map
[0xd] = __pgprot(page_readonly
);
2330 protection_map
[0xe] = __pgprot(page_shared
);
2331 protection_map
[0xf] = __pgprot(page_shared
);
2334 static void __init
sun4u_pgprot_init(void)
2336 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2337 unsigned long page_exec_bit
;
2340 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2341 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2342 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2344 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2345 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2346 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2347 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2349 _PAGE_IE
= _PAGE_IE_4U
;
2350 _PAGE_E
= _PAGE_E_4U
;
2351 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2353 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2354 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2356 #ifdef CONFIG_DEBUG_PAGEALLOC
2357 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2359 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2362 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2363 _PAGE_P_4U
| _PAGE_W_4U
);
2365 for (i
= 1; i
< 4; i
++)
2366 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2368 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2369 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2370 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2373 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2374 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2375 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2376 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2377 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2378 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2379 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2381 page_exec_bit
= _PAGE_EXEC_4U
;
2383 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2387 static void __init
sun4v_pgprot_init(void)
2389 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2390 unsigned long page_exec_bit
;
2393 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2394 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2395 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2397 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2399 _PAGE_IE
= _PAGE_IE_4V
;
2400 _PAGE_E
= _PAGE_E_4V
;
2401 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2403 #ifdef CONFIG_DEBUG_PAGEALLOC
2404 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2406 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2409 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2410 _PAGE_P_4V
| _PAGE_W_4V
);
2412 for (i
= 1; i
< 4; i
++)
2413 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2415 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2416 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2418 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2419 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2420 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2421 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2423 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2424 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2425 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2426 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2427 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2428 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2429 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2431 page_exec_bit
= _PAGE_EXEC_4V
;
2433 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2437 unsigned long pte_sz_bits(unsigned long sz
)
2439 if (tlb_type
== hypervisor
) {
2443 return _PAGE_SZ8K_4V
;
2445 return _PAGE_SZ64K_4V
;
2447 return _PAGE_SZ512K_4V
;
2448 case 4 * 1024 * 1024:
2449 return _PAGE_SZ4MB_4V
;
2455 return _PAGE_SZ8K_4U
;
2457 return _PAGE_SZ64K_4U
;
2459 return _PAGE_SZ512K_4U
;
2460 case 4 * 1024 * 1024:
2461 return _PAGE_SZ4MB_4U
;
2466 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2470 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2471 pte_val(pte
) |= (((unsigned long)space
) << 32);
2472 pte_val(pte
) |= pte_sz_bits(page_size
);
2477 static unsigned long kern_large_tte(unsigned long paddr
)
2481 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2482 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2483 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2484 if (tlb_type
== hypervisor
)
2485 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2486 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2487 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2492 /* If not locked, zap it. */
2493 void __flush_tlb_all(void)
2495 unsigned long pstate
;
2498 __asm__
__volatile__("flushw\n\t"
2499 "rdpr %%pstate, %0\n\t"
2500 "wrpr %0, %1, %%pstate"
2503 if (tlb_type
== hypervisor
) {
2504 sun4v_mmu_demap_all();
2505 } else if (tlb_type
== spitfire
) {
2506 for (i
= 0; i
< 64; i
++) {
2507 /* Spitfire Errata #32 workaround */
2508 /* NOTE: Always runs on spitfire, so no
2509 * cheetah+ page size encodings.
2511 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2515 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2517 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2518 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2521 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2522 spitfire_put_dtlb_data(i
, 0x0UL
);
2525 /* Spitfire Errata #32 workaround */
2526 /* NOTE: Always runs on spitfire, so no
2527 * cheetah+ page size encodings.
2529 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2533 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2535 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2536 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2539 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2540 spitfire_put_itlb_data(i
, 0x0UL
);
2543 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2544 cheetah_flush_dtlb_all();
2545 cheetah_flush_itlb_all();
2547 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2551 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
,
2552 unsigned long address
)
2554 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
2555 __GFP_REPEAT
| __GFP_ZERO
);
2559 pte
= (pte_t
*) page_address(page
);
2564 pgtable_t
pte_alloc_one(struct mm_struct
*mm
,
2565 unsigned long address
)
2567 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
2568 __GFP_REPEAT
| __GFP_ZERO
);
2571 if (!pgtable_page_ctor(page
)) {
2572 free_hot_cold_page(page
, 0);
2575 return (pte_t
*) page_address(page
);
2578 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2580 free_page((unsigned long)pte
);
2583 static void __pte_free(pgtable_t pte
)
2585 struct page
*page
= virt_to_page(pte
);
2587 pgtable_page_dtor(page
);
2591 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2596 void pgtable_free(void *table
, bool is_page
)
2601 kmem_cache_free(pgtable_cache
, table
);
2604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2608 unsigned long pte
, flags
;
2609 struct mm_struct
*mm
;
2612 if (!pmd_large(entry
) || !pmd_young(entry
))
2615 pte
= pmd_val(entry
);
2617 /* We are fabricating 8MB pages using 4MB real hw pages. */
2618 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2622 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2624 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2625 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2628 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2632 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2633 static void context_reload(void *__data
)
2635 struct mm_struct
*mm
= __data
;
2637 if (mm
== current
->mm
)
2638 load_secondary_context(mm
);
2641 void hugetlb_setup(struct pt_regs
*regs
)
2643 struct mm_struct
*mm
= current
->mm
;
2644 struct tsb_config
*tp
;
2646 if (in_atomic() || !mm
) {
2647 const struct exception_table_entry
*entry
;
2649 entry
= search_exception_tables(regs
->tpc
);
2651 regs
->tpc
= entry
->fixup
;
2652 regs
->tnpc
= regs
->tpc
+ 4;
2655 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2656 die_if_kernel("HugeTSB in atomic", regs
);
2659 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
2660 if (likely(tp
->tsb
== NULL
))
2661 tsb_grow(mm
, MM_TSB_HUGE
, 0);
2663 tsb_context_switch(mm
);
2666 /* On UltraSPARC-III+ and later, configure the second half of
2667 * the Data-TLB for huge pages.
2669 if (tlb_type
== cheetah_plus
) {
2672 spin_lock(&ctx_alloc_lock
);
2673 ctx
= mm
->context
.sparc64_ctx_val
;
2674 ctx
&= ~CTX_PGSZ_MASK
;
2675 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
2676 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
2678 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
2679 /* When changing the page size fields, we
2680 * must perform a context flush so that no
2681 * stale entries match. This flush must
2682 * occur with the original context register
2685 do_flush_tlb_mm(mm
);
2687 /* Reload the context register of all processors
2688 * also executing in this address space.
2690 mm
->context
.sparc64_ctx_val
= ctx
;
2691 on_each_cpu(context_reload
, mm
, 0);
2693 spin_unlock(&ctx_alloc_lock
);