Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / mtd / devices / mtd_dataflash.c
blob624069de4f28c067260fc4fec75c35b713fc5c84
1 /*
2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
23 #include <linux/spi/spi.h>
24 #include <linux/spi/flash.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
30 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
31 * each chip, which may be used for double buffered I/O; but this driver
32 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
34 * Sometimes DataFlash is packaged in MMC-format cards, although the
35 * MMC stack can't (yet?) distinguish between MMC and DataFlash
36 * protocols during enumeration.
39 /* reads can bypass the buffers */
40 #define OP_READ_CONTINUOUS 0xE8
41 #define OP_READ_PAGE 0xD2
43 /* group B requests can run even while status reports "busy" */
44 #define OP_READ_STATUS 0xD7 /* group B */
46 /* move data between host and buffer */
47 #define OP_READ_BUFFER1 0xD4 /* group B */
48 #define OP_READ_BUFFER2 0xD6 /* group B */
49 #define OP_WRITE_BUFFER1 0x84 /* group B */
50 #define OP_WRITE_BUFFER2 0x87 /* group B */
52 /* erasing flash */
53 #define OP_ERASE_PAGE 0x81
54 #define OP_ERASE_BLOCK 0x50
56 /* move data between buffer and flash */
57 #define OP_TRANSFER_BUF1 0x53
58 #define OP_TRANSFER_BUF2 0x55
59 #define OP_MREAD_BUFFER1 0xD4
60 #define OP_MREAD_BUFFER2 0xD6
61 #define OP_MWERASE_BUFFER1 0x83
62 #define OP_MWERASE_BUFFER2 0x86
63 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
64 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
66 /* write to buffer, then write-erase to flash */
67 #define OP_PROGRAM_VIA_BUF1 0x82
68 #define OP_PROGRAM_VIA_BUF2 0x85
70 /* compare buffer to flash */
71 #define OP_COMPARE_BUF1 0x60
72 #define OP_COMPARE_BUF2 0x61
74 /* read flash to buffer, then write-erase to flash */
75 #define OP_REWRITE_VIA_BUF1 0x58
76 #define OP_REWRITE_VIA_BUF2 0x59
78 /* newer chips report JEDEC manufacturer and device IDs; chip
79 * serial number and OTP bits; and per-sector writeprotect.
81 #define OP_READ_ID 0x9F
82 #define OP_READ_SECURITY 0x77
83 #define OP_WRITE_SECURITY_REVC 0x9A
84 #define OP_WRITE_SECURITY 0x9B /* revision D */
87 struct dataflash {
88 uint8_t command[4];
89 char name[24];
91 unsigned short page_offset; /* offset in flash address */
92 unsigned int page_size; /* of bytes per page */
94 struct mutex lock;
95 struct spi_device *spi;
97 struct mtd_info mtd;
100 #ifdef CONFIG_OF
101 static const struct of_device_id dataflash_dt_ids[] = {
102 { .compatible = "atmel,at45", },
103 { .compatible = "atmel,dataflash", },
104 { /* sentinel */ }
106 #endif
108 /* ......................................................................... */
111 * Return the status of the DataFlash device.
113 static inline int dataflash_status(struct spi_device *spi)
115 /* NOTE: at45db321c over 25 MHz wants to write
116 * a dummy byte after the opcode...
118 return spi_w8r8(spi, OP_READ_STATUS);
122 * Poll the DataFlash device until it is READY.
123 * This usually takes 5-20 msec or so; more for sector erase.
125 static int dataflash_waitready(struct spi_device *spi)
127 int status;
129 for (;;) {
130 status = dataflash_status(spi);
131 if (status < 0) {
132 pr_debug("%s: status %d?\n",
133 dev_name(&spi->dev), status);
134 status = 0;
137 if (status & (1 << 7)) /* RDY/nBSY */
138 return status;
140 msleep(3);
144 /* ......................................................................... */
147 * Erase pages of flash.
149 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
151 struct dataflash *priv = mtd->priv;
152 struct spi_device *spi = priv->spi;
153 struct spi_transfer x = { .tx_dma = 0, };
154 struct spi_message msg;
155 unsigned blocksize = priv->page_size << 3;
156 uint8_t *command;
157 uint32_t rem;
159 pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
160 dev_name(&spi->dev), (long long)instr->addr,
161 (long long)instr->len);
163 div_u64_rem(instr->len, priv->page_size, &rem);
164 if (rem)
165 return -EINVAL;
166 div_u64_rem(instr->addr, priv->page_size, &rem);
167 if (rem)
168 return -EINVAL;
170 spi_message_init(&msg);
172 x.tx_buf = command = priv->command;
173 x.len = 4;
174 spi_message_add_tail(&x, &msg);
176 mutex_lock(&priv->lock);
177 while (instr->len > 0) {
178 unsigned int pageaddr;
179 int status;
180 int do_block;
182 /* Calculate flash page address; use block erase (for speed) if
183 * we're at a block boundary and need to erase the whole block.
185 pageaddr = div_u64(instr->addr, priv->page_size);
186 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
187 pageaddr = pageaddr << priv->page_offset;
189 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
190 command[1] = (uint8_t)(pageaddr >> 16);
191 command[2] = (uint8_t)(pageaddr >> 8);
192 command[3] = 0;
194 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
195 do_block ? "block" : "page",
196 command[0], command[1], command[2], command[3],
197 pageaddr);
199 status = spi_sync(spi, &msg);
200 (void) dataflash_waitready(spi);
202 if (status < 0) {
203 printk(KERN_ERR "%s: erase %x, err %d\n",
204 dev_name(&spi->dev), pageaddr, status);
205 /* REVISIT: can retry instr->retries times; or
206 * giveup and instr->fail_addr = instr->addr;
208 continue;
211 if (do_block) {
212 instr->addr += blocksize;
213 instr->len -= blocksize;
214 } else {
215 instr->addr += priv->page_size;
216 instr->len -= priv->page_size;
219 mutex_unlock(&priv->lock);
221 /* Inform MTD subsystem that erase is complete */
222 instr->state = MTD_ERASE_DONE;
223 mtd_erase_callback(instr);
225 return 0;
229 * Read from the DataFlash device.
230 * from : Start offset in flash device
231 * len : Amount to read
232 * retlen : About of data actually read
233 * buf : Buffer containing the data
235 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
236 size_t *retlen, u_char *buf)
238 struct dataflash *priv = mtd->priv;
239 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
240 struct spi_message msg;
241 unsigned int addr;
242 uint8_t *command;
243 int status;
245 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
246 (unsigned)from, (unsigned)(from + len));
248 /* Calculate flash page/byte address */
249 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
250 + ((unsigned)from % priv->page_size);
252 command = priv->command;
254 pr_debug("READ: (%x) %x %x %x\n",
255 command[0], command[1], command[2], command[3]);
257 spi_message_init(&msg);
259 x[0].tx_buf = command;
260 x[0].len = 8;
261 spi_message_add_tail(&x[0], &msg);
263 x[1].rx_buf = buf;
264 x[1].len = len;
265 spi_message_add_tail(&x[1], &msg);
267 mutex_lock(&priv->lock);
269 /* Continuous read, max clock = f(car) which may be less than
270 * the peak rate available. Some chips support commands with
271 * fewer "don't care" bytes. Both buffers stay unchanged.
273 command[0] = OP_READ_CONTINUOUS;
274 command[1] = (uint8_t)(addr >> 16);
275 command[2] = (uint8_t)(addr >> 8);
276 command[3] = (uint8_t)(addr >> 0);
277 /* plus 4 "don't care" bytes */
279 status = spi_sync(priv->spi, &msg);
280 mutex_unlock(&priv->lock);
282 if (status >= 0) {
283 *retlen = msg.actual_length - 8;
284 status = 0;
285 } else
286 pr_debug("%s: read %x..%x --> %d\n",
287 dev_name(&priv->spi->dev),
288 (unsigned)from, (unsigned)(from + len),
289 status);
290 return status;
294 * Write to the DataFlash device.
295 * to : Start offset in flash device
296 * len : Amount to write
297 * retlen : Amount of data actually written
298 * buf : Buffer containing the data
300 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
301 size_t * retlen, const u_char * buf)
303 struct dataflash *priv = mtd->priv;
304 struct spi_device *spi = priv->spi;
305 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
306 struct spi_message msg;
307 unsigned int pageaddr, addr, offset, writelen;
308 size_t remaining = len;
309 u_char *writebuf = (u_char *) buf;
310 int status = -EINVAL;
311 uint8_t *command;
313 pr_debug("%s: write 0x%x..0x%x\n",
314 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
316 spi_message_init(&msg);
318 x[0].tx_buf = command = priv->command;
319 x[0].len = 4;
320 spi_message_add_tail(&x[0], &msg);
322 pageaddr = ((unsigned)to / priv->page_size);
323 offset = ((unsigned)to % priv->page_size);
324 if (offset + len > priv->page_size)
325 writelen = priv->page_size - offset;
326 else
327 writelen = len;
329 mutex_lock(&priv->lock);
330 while (remaining > 0) {
331 pr_debug("write @ %i:%i len=%i\n",
332 pageaddr, offset, writelen);
334 /* REVISIT:
335 * (a) each page in a sector must be rewritten at least
336 * once every 10K sibling erase/program operations.
337 * (b) for pages that are already erased, we could
338 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
339 * (c) WRITE to buffer could be done while waiting for
340 * a previous MWRITE/MWERASE to complete ...
341 * (d) error handling here seems to be mostly missing.
343 * Two persistent bits per page, plus a per-sector counter,
344 * could support (a) and (b) ... we might consider using
345 * the second half of sector zero, which is just one block,
346 * to track that state. (On AT91, that sector should also
347 * support boot-from-DataFlash.)
350 addr = pageaddr << priv->page_offset;
352 /* (1) Maybe transfer partial page to Buffer1 */
353 if (writelen != priv->page_size) {
354 command[0] = OP_TRANSFER_BUF1;
355 command[1] = (addr & 0x00FF0000) >> 16;
356 command[2] = (addr & 0x0000FF00) >> 8;
357 command[3] = 0;
359 pr_debug("TRANSFER: (%x) %x %x %x\n",
360 command[0], command[1], command[2], command[3]);
362 status = spi_sync(spi, &msg);
363 if (status < 0)
364 pr_debug("%s: xfer %u -> %d\n",
365 dev_name(&spi->dev), addr, status);
367 (void) dataflash_waitready(priv->spi);
370 /* (2) Program full page via Buffer1 */
371 addr += offset;
372 command[0] = OP_PROGRAM_VIA_BUF1;
373 command[1] = (addr & 0x00FF0000) >> 16;
374 command[2] = (addr & 0x0000FF00) >> 8;
375 command[3] = (addr & 0x000000FF);
377 pr_debug("PROGRAM: (%x) %x %x %x\n",
378 command[0], command[1], command[2], command[3]);
380 x[1].tx_buf = writebuf;
381 x[1].len = writelen;
382 spi_message_add_tail(x + 1, &msg);
383 status = spi_sync(spi, &msg);
384 spi_transfer_del(x + 1);
385 if (status < 0)
386 pr_debug("%s: pgm %u/%u -> %d\n",
387 dev_name(&spi->dev), addr, writelen, status);
389 (void) dataflash_waitready(priv->spi);
392 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
394 /* (3) Compare to Buffer1 */
395 addr = pageaddr << priv->page_offset;
396 command[0] = OP_COMPARE_BUF1;
397 command[1] = (addr & 0x00FF0000) >> 16;
398 command[2] = (addr & 0x0000FF00) >> 8;
399 command[3] = 0;
401 pr_debug("COMPARE: (%x) %x %x %x\n",
402 command[0], command[1], command[2], command[3]);
404 status = spi_sync(spi, &msg);
405 if (status < 0)
406 pr_debug("%s: compare %u -> %d\n",
407 dev_name(&spi->dev), addr, status);
409 status = dataflash_waitready(priv->spi);
411 /* Check result of the compare operation */
412 if (status & (1 << 6)) {
413 printk(KERN_ERR "%s: compare page %u, err %d\n",
414 dev_name(&spi->dev), pageaddr, status);
415 remaining = 0;
416 status = -EIO;
417 break;
418 } else
419 status = 0;
421 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
423 remaining = remaining - writelen;
424 pageaddr++;
425 offset = 0;
426 writebuf += writelen;
427 *retlen += writelen;
429 if (remaining > priv->page_size)
430 writelen = priv->page_size;
431 else
432 writelen = remaining;
434 mutex_unlock(&priv->lock);
436 return status;
439 /* ......................................................................... */
441 #ifdef CONFIG_MTD_DATAFLASH_OTP
443 static int dataflash_get_otp_info(struct mtd_info *mtd,
444 struct otp_info *info, size_t len)
446 /* Report both blocks as identical: bytes 0..64, locked.
447 * Unless the user block changed from all-ones, we can't
448 * tell whether it's still writable; so we assume it isn't.
450 info->start = 0;
451 info->length = 64;
452 info->locked = 1;
453 return sizeof(*info);
456 static ssize_t otp_read(struct spi_device *spi, unsigned base,
457 uint8_t *buf, loff_t off, size_t len)
459 struct spi_message m;
460 size_t l;
461 uint8_t *scratch;
462 struct spi_transfer t;
463 int status;
465 if (off > 64)
466 return -EINVAL;
468 if ((off + len) > 64)
469 len = 64 - off;
471 spi_message_init(&m);
473 l = 4 + base + off + len;
474 scratch = kzalloc(l, GFP_KERNEL);
475 if (!scratch)
476 return -ENOMEM;
478 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
479 * IN: ignore 4 bytes, data bytes 0..N (max 127)
481 scratch[0] = OP_READ_SECURITY;
483 memset(&t, 0, sizeof t);
484 t.tx_buf = scratch;
485 t.rx_buf = scratch;
486 t.len = l;
487 spi_message_add_tail(&t, &m);
489 dataflash_waitready(spi);
491 status = spi_sync(spi, &m);
492 if (status >= 0) {
493 memcpy(buf, scratch + 4 + base + off, len);
494 status = len;
497 kfree(scratch);
498 return status;
501 static int dataflash_read_fact_otp(struct mtd_info *mtd,
502 loff_t from, size_t len, size_t *retlen, u_char *buf)
504 struct dataflash *priv = mtd->priv;
505 int status;
507 /* 64 bytes, from 0..63 ... start at 64 on-chip */
508 mutex_lock(&priv->lock);
509 status = otp_read(priv->spi, 64, buf, from, len);
510 mutex_unlock(&priv->lock);
512 if (status < 0)
513 return status;
514 *retlen = status;
515 return 0;
518 static int dataflash_read_user_otp(struct mtd_info *mtd,
519 loff_t from, size_t len, size_t *retlen, u_char *buf)
521 struct dataflash *priv = mtd->priv;
522 int status;
524 /* 64 bytes, from 0..63 ... start at 0 on-chip */
525 mutex_lock(&priv->lock);
526 status = otp_read(priv->spi, 0, buf, from, len);
527 mutex_unlock(&priv->lock);
529 if (status < 0)
530 return status;
531 *retlen = status;
532 return 0;
535 static int dataflash_write_user_otp(struct mtd_info *mtd,
536 loff_t from, size_t len, size_t *retlen, u_char *buf)
538 struct spi_message m;
539 const size_t l = 4 + 64;
540 uint8_t *scratch;
541 struct spi_transfer t;
542 struct dataflash *priv = mtd->priv;
543 int status;
545 if (len > 64)
546 return -EINVAL;
548 /* Strictly speaking, we *could* truncate the write ... but
549 * let's not do that for the only write that's ever possible.
551 if ((from + len) > 64)
552 return -EINVAL;
554 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
555 * IN: ignore all
557 scratch = kzalloc(l, GFP_KERNEL);
558 if (!scratch)
559 return -ENOMEM;
560 scratch[0] = OP_WRITE_SECURITY;
561 memcpy(scratch + 4 + from, buf, len);
563 spi_message_init(&m);
565 memset(&t, 0, sizeof t);
566 t.tx_buf = scratch;
567 t.len = l;
568 spi_message_add_tail(&t, &m);
570 /* Write the OTP bits, if they've not yet been written.
571 * This modifies SRAM buffer1.
573 mutex_lock(&priv->lock);
574 dataflash_waitready(priv->spi);
575 status = spi_sync(priv->spi, &m);
576 mutex_unlock(&priv->lock);
578 kfree(scratch);
580 if (status >= 0) {
581 status = 0;
582 *retlen = len;
584 return status;
587 static char *otp_setup(struct mtd_info *device, char revision)
589 device->_get_fact_prot_info = dataflash_get_otp_info;
590 device->_read_fact_prot_reg = dataflash_read_fact_otp;
591 device->_get_user_prot_info = dataflash_get_otp_info;
592 device->_read_user_prot_reg = dataflash_read_user_otp;
594 /* rev c parts (at45db321c and at45db1281 only!) use a
595 * different write procedure; not (yet?) implemented.
597 if (revision > 'c')
598 device->_write_user_prot_reg = dataflash_write_user_otp;
600 return ", OTP";
603 #else
605 static char *otp_setup(struct mtd_info *device, char revision)
607 return " (OTP)";
610 #endif
612 /* ......................................................................... */
615 * Register DataFlash device with MTD subsystem.
617 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
618 int pagesize, int pageoffset, char revision)
620 struct dataflash *priv;
621 struct mtd_info *device;
622 struct mtd_part_parser_data ppdata;
623 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
624 char *otp_tag = "";
625 int err = 0;
627 priv = kzalloc(sizeof *priv, GFP_KERNEL);
628 if (!priv)
629 return -ENOMEM;
631 mutex_init(&priv->lock);
632 priv->spi = spi;
633 priv->page_size = pagesize;
634 priv->page_offset = pageoffset;
636 /* name must be usable with cmdlinepart */
637 sprintf(priv->name, "spi%d.%d-%s",
638 spi->master->bus_num, spi->chip_select,
639 name);
641 device = &priv->mtd;
642 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
643 device->size = nr_pages * pagesize;
644 device->erasesize = pagesize;
645 device->writesize = pagesize;
646 device->owner = THIS_MODULE;
647 device->type = MTD_DATAFLASH;
648 device->flags = MTD_WRITEABLE;
649 device->_erase = dataflash_erase;
650 device->_read = dataflash_read;
651 device->_write = dataflash_write;
652 device->priv = priv;
654 device->dev.parent = &spi->dev;
656 if (revision >= 'c')
657 otp_tag = otp_setup(device, revision);
659 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
660 name, (long long)((device->size + 1023) >> 10),
661 pagesize, otp_tag);
662 spi_set_drvdata(spi, priv);
664 ppdata.of_node = spi->dev.of_node;
665 err = mtd_device_parse_register(device, NULL, &ppdata,
666 pdata ? pdata->parts : NULL,
667 pdata ? pdata->nr_parts : 0);
669 if (!err)
670 return 0;
672 kfree(priv);
673 return err;
676 static inline int add_dataflash(struct spi_device *spi, char *name,
677 int nr_pages, int pagesize, int pageoffset)
679 return add_dataflash_otp(spi, name, nr_pages, pagesize,
680 pageoffset, 0);
683 struct flash_info {
684 char *name;
686 /* JEDEC id has a high byte of zero plus three data bytes:
687 * the manufacturer id, then a two byte device id.
689 uint32_t jedec_id;
691 /* The size listed here is what works with OP_ERASE_PAGE. */
692 unsigned nr_pages;
693 uint16_t pagesize;
694 uint16_t pageoffset;
696 uint16_t flags;
697 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
698 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
701 static struct flash_info dataflash_data[] = {
704 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
705 * one with IS_POW2PS and the other without. The entry with the
706 * non-2^N byte page size can't name exact chip revisions without
707 * losing backwards compatibility for cmdlinepart.
709 * These newer chips also support 128-byte security registers (with
710 * 64 bytes one-time-programmable) and software write-protection.
712 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
713 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
715 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
716 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
718 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
719 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
721 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
722 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
724 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
725 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
727 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
729 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
730 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
732 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
733 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
736 static struct flash_info *jedec_probe(struct spi_device *spi)
738 int tmp;
739 uint8_t code = OP_READ_ID;
740 uint8_t id[3];
741 uint32_t jedec;
742 struct flash_info *info;
743 int status;
745 /* JEDEC also defines an optional "extended device information"
746 * string for after vendor-specific data, after the three bytes
747 * we use here. Supporting some chips might require using it.
749 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
750 * That's not an error; only rev C and newer chips handle it, and
751 * only Atmel sells these chips.
753 tmp = spi_write_then_read(spi, &code, 1, id, 3);
754 if (tmp < 0) {
755 pr_debug("%s: error %d reading JEDEC ID\n",
756 dev_name(&spi->dev), tmp);
757 return ERR_PTR(tmp);
759 if (id[0] != 0x1f)
760 return NULL;
762 jedec = id[0];
763 jedec = jedec << 8;
764 jedec |= id[1];
765 jedec = jedec << 8;
766 jedec |= id[2];
768 for (tmp = 0, info = dataflash_data;
769 tmp < ARRAY_SIZE(dataflash_data);
770 tmp++, info++) {
771 if (info->jedec_id == jedec) {
772 pr_debug("%s: OTP, sector protect%s\n",
773 dev_name(&spi->dev),
774 (info->flags & SUP_POW2PS)
775 ? ", binary pagesize" : ""
777 if (info->flags & SUP_POW2PS) {
778 status = dataflash_status(spi);
779 if (status < 0) {
780 pr_debug("%s: status error %d\n",
781 dev_name(&spi->dev), status);
782 return ERR_PTR(status);
784 if (status & 0x1) {
785 if (info->flags & IS_POW2PS)
786 return info;
787 } else {
788 if (!(info->flags & IS_POW2PS))
789 return info;
791 } else
792 return info;
797 * Treat other chips as errors ... we won't know the right page
798 * size (it might be binary) even when we can tell which density
799 * class is involved (legacy chip id scheme).
801 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
802 return ERR_PTR(-ENODEV);
806 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
807 * or else the ID code embedded in the status bits:
809 * Device Density ID code #Pages PageSize Offset
810 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
811 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
812 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
813 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
814 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
815 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
816 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
817 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
819 static int dataflash_probe(struct spi_device *spi)
821 int status;
822 struct flash_info *info;
825 * Try to detect dataflash by JEDEC ID.
826 * If it succeeds we know we have either a C or D part.
827 * D will support power of 2 pagesize option.
828 * Both support the security register, though with different
829 * write procedures.
831 info = jedec_probe(spi);
832 if (IS_ERR(info))
833 return PTR_ERR(info);
834 if (info != NULL)
835 return add_dataflash_otp(spi, info->name, info->nr_pages,
836 info->pagesize, info->pageoffset,
837 (info->flags & SUP_POW2PS) ? 'd' : 'c');
840 * Older chips support only legacy commands, identifing
841 * capacity using bits in the status byte.
843 status = dataflash_status(spi);
844 if (status <= 0 || status == 0xff) {
845 pr_debug("%s: status error %d\n",
846 dev_name(&spi->dev), status);
847 if (status == 0 || status == 0xff)
848 status = -ENODEV;
849 return status;
852 /* if there's a device there, assume it's dataflash.
853 * board setup should have set spi->max_speed_max to
854 * match f(car) for continuous reads, mode 0 or 3.
856 switch (status & 0x3c) {
857 case 0x0c: /* 0 0 1 1 x x */
858 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
859 break;
860 case 0x14: /* 0 1 0 1 x x */
861 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
862 break;
863 case 0x1c: /* 0 1 1 1 x x */
864 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
865 break;
866 case 0x24: /* 1 0 0 1 x x */
867 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
868 break;
869 case 0x2c: /* 1 0 1 1 x x */
870 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
871 break;
872 case 0x34: /* 1 1 0 1 x x */
873 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
874 break;
875 case 0x38: /* 1 1 1 x x x */
876 case 0x3c:
877 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
878 break;
879 /* obsolete AT45DB1282 not (yet?) supported */
880 default:
881 dev_info(&spi->dev, "unsupported device (%x)\n",
882 status & 0x3c);
883 status = -ENODEV;
886 if (status < 0)
887 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
888 status);
890 return status;
893 static int dataflash_remove(struct spi_device *spi)
895 struct dataflash *flash = spi_get_drvdata(spi);
896 int status;
898 pr_debug("%s: remove\n", dev_name(&spi->dev));
900 status = mtd_device_unregister(&flash->mtd);
901 if (status == 0)
902 kfree(flash);
903 return status;
906 static struct spi_driver dataflash_driver = {
907 .driver = {
908 .name = "mtd_dataflash",
909 .owner = THIS_MODULE,
910 .of_match_table = of_match_ptr(dataflash_dt_ids),
913 .probe = dataflash_probe,
914 .remove = dataflash_remove,
916 /* FIXME: investigate suspend and resume... */
919 module_spi_driver(dataflash_driver);
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Andrew Victor, David Brownell");
923 MODULE_DESCRIPTION("MTD DataFlash driver");
924 MODULE_ALIAS("spi:mtd_dataflash");