2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node
);
75 EXPORT_PER_CPU_SYMBOL(numa_node
);
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
85 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 * Array of node states.
92 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
93 [N_POSSIBLE
] = NODE_MASK_ALL
,
94 [N_ONLINE
] = { { [0] = 1UL } },
96 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
98 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY
] = { { [0] = 1UL } },
103 [N_CPU
] = { { [0] = 1UL } },
106 EXPORT_SYMBOL(node_states
);
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock
);
111 unsigned long totalram_pages __read_mostly
;
112 unsigned long totalreserve_pages __read_mostly
;
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
119 unsigned long dirty_balance_reserve __read_mostly
;
121 int percpu_pagelist_fraction
;
122 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
124 #ifdef CONFIG_PM_SLEEP
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
134 static gfp_t saved_gfp_mask
;
136 void pm_restore_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 if (saved_gfp_mask
) {
140 gfp_allowed_mask
= saved_gfp_mask
;
145 void pm_restrict_gfp_mask(void)
147 WARN_ON(!mutex_is_locked(&pm_mutex
));
148 WARN_ON(saved_gfp_mask
);
149 saved_gfp_mask
= gfp_allowed_mask
;
150 gfp_allowed_mask
&= ~GFP_IOFS
;
153 bool pm_suspended_storage(void)
155 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
159 #endif /* CONFIG_PM_SLEEP */
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly
;
165 static void __free_pages_ok(struct page
*page
, unsigned int order
);
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
178 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
185 #ifdef CONFIG_HIGHMEM
191 EXPORT_SYMBOL(totalram_pages
);
193 static char * const zone_names
[MAX_NR_ZONES
] = {
194 #ifdef CONFIG_ZONE_DMA
197 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 int min_free_kbytes
= 1024;
208 int user_min_free_kbytes
= -1;
210 static unsigned long __meminitdata nr_kernel_pages
;
211 static unsigned long __meminitdata nr_all_pages
;
212 static unsigned long __meminitdata dma_reserve
;
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __initdata required_kernelcore
;
218 static unsigned long __initdata required_movablecore
;
219 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 EXPORT_SYMBOL(movable_zone
);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
228 int nr_online_nodes __read_mostly
= 1;
229 EXPORT_SYMBOL(nr_node_ids
);
230 EXPORT_SYMBOL(nr_online_nodes
);
233 int page_group_by_mobility_disabled __read_mostly
;
235 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
&&
238 migratetype
< MIGRATE_PCPTYPES
))
239 migratetype
= MIGRATE_UNMOVABLE
;
241 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
242 PB_migrate
, PB_migrate_end
);
245 bool oom_killer_disabled __read_mostly
;
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
252 unsigned long pfn
= page_to_pfn(page
);
253 unsigned long sp
, start_pfn
;
256 seq
= zone_span_seqbegin(zone
);
257 start_pfn
= zone
->zone_start_pfn
;
258 sp
= zone
->spanned_pages
;
259 if (!zone_spans_pfn(zone
, pfn
))
261 } while (zone_span_seqretry(zone
, seq
));
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn
, start_pfn
, start_pfn
+ sp
);
270 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
272 if (!pfn_valid_within(page_to_pfn(page
)))
274 if (zone
!= page_zone(page
))
280 * Temporary debugging check for pages not lying within a given zone.
282 static int bad_range(struct zone
*zone
, struct page
*page
)
284 if (page_outside_zone_boundaries(zone
, page
))
286 if (!page_is_consistent(zone
, page
))
292 static inline int bad_range(struct zone
*zone
, struct page
*page
)
298 static void bad_page(struct page
*page
, char *reason
, unsigned long bad_flags
)
300 static unsigned long resume
;
301 static unsigned long nr_shown
;
302 static unsigned long nr_unshown
;
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page
)) {
306 page_mapcount_reset(page
); /* remove PageBuddy */
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
314 if (nr_shown
== 60) {
315 if (time_before(jiffies
, resume
)) {
321 "BUG: Bad page state: %lu messages suppressed\n",
328 resume
= jiffies
+ 60 * HZ
;
330 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
331 current
->comm
, page_to_pfn(page
));
332 dump_page_badflags(page
, reason
, bad_flags
);
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page
); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
343 * Higher-order pages are called "compound pages". They are structured thusly:
345 * The first PAGE_SIZE page is called the "head page".
347 * The remaining PAGE_SIZE pages are called "tail pages".
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
357 static void free_compound_page(struct page
*page
)
359 __free_pages_ok(page
, compound_order(page
));
362 void prep_compound_page(struct page
*page
, unsigned long order
)
365 int nr_pages
= 1 << order
;
367 set_compound_page_dtor(page
, free_compound_page
);
368 set_compound_order(page
, order
);
370 for (i
= 1; i
< nr_pages
; i
++) {
371 struct page
*p
= page
+ i
;
373 set_page_count(p
, 0);
374 p
->first_page
= page
;
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page
*page
, unsigned long order
)
382 int nr_pages
= 1 << order
;
385 if (unlikely(compound_order(page
) != order
)) {
386 bad_page(page
, "wrong compound order", 0);
390 __ClearPageHead(page
);
392 for (i
= 1; i
< nr_pages
; i
++) {
393 struct page
*p
= page
+ i
;
395 if (unlikely(!PageTail(p
))) {
396 bad_page(page
, "PageTail not set", 0);
398 } else if (unlikely(p
->first_page
!= page
)) {
399 bad_page(page
, "first_page not consistent", 0);
408 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
413 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
414 * and __GFP_HIGHMEM from hard or soft interrupt context.
416 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
417 for (i
= 0; i
< (1 << order
); i
++)
418 clear_highpage(page
+ i
);
421 #ifdef CONFIG_DEBUG_PAGEALLOC
422 unsigned int _debug_guardpage_minorder
;
424 static int __init
debug_guardpage_minorder_setup(char *buf
)
428 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
429 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
432 _debug_guardpage_minorder
= res
;
433 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
436 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
438 static inline void set_page_guard_flag(struct page
*page
)
440 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
443 static inline void clear_page_guard_flag(struct page
*page
)
445 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
448 static inline void set_page_guard_flag(struct page
*page
) { }
449 static inline void clear_page_guard_flag(struct page
*page
) { }
452 static inline void set_page_order(struct page
*page
, int order
)
454 set_page_private(page
, order
);
455 __SetPageBuddy(page
);
458 static inline void rmv_page_order(struct page
*page
)
460 __ClearPageBuddy(page
);
461 set_page_private(page
, 0);
465 * Locate the struct page for both the matching buddy in our
466 * pair (buddy1) and the combined O(n+1) page they form (page).
468 * 1) Any buddy B1 will have an order O twin B2 which satisfies
469 * the following equation:
471 * For example, if the starting buddy (buddy2) is #8 its order
473 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
475 * 2) Any buddy B will have an order O+1 parent P which
476 * satisfies the following equation:
479 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
481 static inline unsigned long
482 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
484 return page_idx
^ (1 << order
);
488 * This function checks whether a page is free && is the buddy
489 * we can do coalesce a page and its buddy if
490 * (a) the buddy is not in a hole &&
491 * (b) the buddy is in the buddy system &&
492 * (c) a page and its buddy have the same order &&
493 * (d) a page and its buddy are in the same zone.
495 * For recording whether a page is in the buddy system, we set ->_mapcount
496 * PAGE_BUDDY_MAPCOUNT_VALUE.
497 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
498 * serialized by zone->lock.
500 * For recording page's order, we use page_private(page).
502 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
505 if (!pfn_valid_within(page_to_pfn(buddy
)))
508 if (page_zone_id(page
) != page_zone_id(buddy
))
511 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
512 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
516 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
517 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
524 * Freeing function for a buddy system allocator.
526 * The concept of a buddy system is to maintain direct-mapped table
527 * (containing bit values) for memory blocks of various "orders".
528 * The bottom level table contains the map for the smallest allocatable
529 * units of memory (here, pages), and each level above it describes
530 * pairs of units from the levels below, hence, "buddies".
531 * At a high level, all that happens here is marking the table entry
532 * at the bottom level available, and propagating the changes upward
533 * as necessary, plus some accounting needed to play nicely with other
534 * parts of the VM system.
535 * At each level, we keep a list of pages, which are heads of continuous
536 * free pages of length of (1 << order) and marked with _mapcount
537 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
539 * So when we are allocating or freeing one, we can derive the state of the
540 * other. That is, if we allocate a small block, and both were
541 * free, the remainder of the region must be split into blocks.
542 * If a block is freed, and its buddy is also free, then this
543 * triggers coalescing into a block of larger size.
548 static inline void __free_one_page(struct page
*page
,
549 struct zone
*zone
, unsigned int order
,
552 unsigned long page_idx
;
553 unsigned long combined_idx
;
554 unsigned long uninitialized_var(buddy_idx
);
557 VM_BUG_ON(!zone_is_initialized(zone
));
559 if (unlikely(PageCompound(page
)))
560 if (unlikely(destroy_compound_page(page
, order
)))
563 VM_BUG_ON(migratetype
== -1);
565 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
567 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
568 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
570 while (order
< MAX_ORDER
-1) {
571 buddy_idx
= __find_buddy_index(page_idx
, order
);
572 buddy
= page
+ (buddy_idx
- page_idx
);
573 if (!page_is_buddy(page
, buddy
, order
))
576 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
577 * merge with it and move up one order.
579 if (page_is_guard(buddy
)) {
580 clear_page_guard_flag(buddy
);
581 set_page_private(page
, 0);
582 __mod_zone_freepage_state(zone
, 1 << order
,
585 list_del(&buddy
->lru
);
586 zone
->free_area
[order
].nr_free
--;
587 rmv_page_order(buddy
);
589 combined_idx
= buddy_idx
& page_idx
;
590 page
= page
+ (combined_idx
- page_idx
);
591 page_idx
= combined_idx
;
594 set_page_order(page
, order
);
597 * If this is not the largest possible page, check if the buddy
598 * of the next-highest order is free. If it is, it's possible
599 * that pages are being freed that will coalesce soon. In case,
600 * that is happening, add the free page to the tail of the list
601 * so it's less likely to be used soon and more likely to be merged
602 * as a higher order page
604 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
605 struct page
*higher_page
, *higher_buddy
;
606 combined_idx
= buddy_idx
& page_idx
;
607 higher_page
= page
+ (combined_idx
- page_idx
);
608 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
609 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
610 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
611 list_add_tail(&page
->lru
,
612 &zone
->free_area
[order
].free_list
[migratetype
]);
617 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
619 zone
->free_area
[order
].nr_free
++;
622 static inline int free_pages_check(struct page
*page
)
624 char *bad_reason
= NULL
;
625 unsigned long bad_flags
= 0;
627 if (unlikely(page_mapcount(page
)))
628 bad_reason
= "nonzero mapcount";
629 if (unlikely(page
->mapping
!= NULL
))
630 bad_reason
= "non-NULL mapping";
631 if (unlikely(atomic_read(&page
->_count
) != 0))
632 bad_reason
= "nonzero _count";
633 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
634 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
635 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
637 if (unlikely(mem_cgroup_bad_page_check(page
)))
638 bad_reason
= "cgroup check failed";
639 if (unlikely(bad_reason
)) {
640 bad_page(page
, bad_reason
, bad_flags
);
643 page_cpupid_reset_last(page
);
644 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
645 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
650 * Frees a number of pages from the PCP lists
651 * Assumes all pages on list are in same zone, and of same order.
652 * count is the number of pages to free.
654 * If the zone was previously in an "all pages pinned" state then look to
655 * see if this freeing clears that state.
657 * And clear the zone's pages_scanned counter, to hold off the "all pages are
658 * pinned" detection logic.
660 static void free_pcppages_bulk(struct zone
*zone
, int count
,
661 struct per_cpu_pages
*pcp
)
667 spin_lock(&zone
->lock
);
668 zone
->pages_scanned
= 0;
672 struct list_head
*list
;
675 * Remove pages from lists in a round-robin fashion. A
676 * batch_free count is maintained that is incremented when an
677 * empty list is encountered. This is so more pages are freed
678 * off fuller lists instead of spinning excessively around empty
683 if (++migratetype
== MIGRATE_PCPTYPES
)
685 list
= &pcp
->lists
[migratetype
];
686 } while (list_empty(list
));
688 /* This is the only non-empty list. Free them all. */
689 if (batch_free
== MIGRATE_PCPTYPES
)
690 batch_free
= to_free
;
693 int mt
; /* migratetype of the to-be-freed page */
695 page
= list_entry(list
->prev
, struct page
, lru
);
696 /* must delete as __free_one_page list manipulates */
697 list_del(&page
->lru
);
698 mt
= get_freepage_migratetype(page
);
699 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
700 __free_one_page(page
, zone
, 0, mt
);
701 trace_mm_page_pcpu_drain(page
, 0, mt
);
702 if (likely(!is_migrate_isolate_page(page
))) {
703 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
704 if (is_migrate_cma(mt
))
705 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
707 } while (--to_free
&& --batch_free
&& !list_empty(list
));
709 spin_unlock(&zone
->lock
);
712 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
715 spin_lock(&zone
->lock
);
716 zone
->pages_scanned
= 0;
718 __free_one_page(page
, zone
, order
, migratetype
);
719 if (unlikely(!is_migrate_isolate(migratetype
)))
720 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
721 spin_unlock(&zone
->lock
);
724 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
729 trace_mm_page_free(page
, order
);
730 kmemcheck_free_shadow(page
, order
);
733 page
->mapping
= NULL
;
734 for (i
= 0; i
< (1 << order
); i
++)
735 bad
+= free_pages_check(page
+ i
);
739 if (!PageHighMem(page
)) {
740 debug_check_no_locks_freed(page_address(page
),
742 debug_check_no_obj_freed(page_address(page
),
745 arch_free_page(page
, order
);
746 kernel_map_pages(page
, 1 << order
, 0);
751 static void __free_pages_ok(struct page
*page
, unsigned int order
)
756 if (!free_pages_prepare(page
, order
))
759 local_irq_save(flags
);
760 __count_vm_events(PGFREE
, 1 << order
);
761 migratetype
= get_pageblock_migratetype(page
);
762 set_freepage_migratetype(page
, migratetype
);
763 free_one_page(page_zone(page
), page
, order
, migratetype
);
764 local_irq_restore(flags
);
767 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
769 unsigned int nr_pages
= 1 << order
;
770 struct page
*p
= page
;
774 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
776 __ClearPageReserved(p
);
777 set_page_count(p
, 0);
779 __ClearPageReserved(p
);
780 set_page_count(p
, 0);
782 page_zone(page
)->managed_pages
+= nr_pages
;
783 set_page_refcounted(page
);
784 __free_pages(page
, order
);
788 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
789 void __init
init_cma_reserved_pageblock(struct page
*page
)
791 unsigned i
= pageblock_nr_pages
;
792 struct page
*p
= page
;
795 __ClearPageReserved(p
);
796 set_page_count(p
, 0);
799 set_page_refcounted(page
);
800 set_pageblock_migratetype(page
, MIGRATE_CMA
);
801 __free_pages(page
, pageblock_order
);
802 adjust_managed_page_count(page
, pageblock_nr_pages
);
807 * The order of subdivision here is critical for the IO subsystem.
808 * Please do not alter this order without good reasons and regression
809 * testing. Specifically, as large blocks of memory are subdivided,
810 * the order in which smaller blocks are delivered depends on the order
811 * they're subdivided in this function. This is the primary factor
812 * influencing the order in which pages are delivered to the IO
813 * subsystem according to empirical testing, and this is also justified
814 * by considering the behavior of a buddy system containing a single
815 * large block of memory acted on by a series of small allocations.
816 * This behavior is a critical factor in sglist merging's success.
820 static inline void expand(struct zone
*zone
, struct page
*page
,
821 int low
, int high
, struct free_area
*area
,
824 unsigned long size
= 1 << high
;
830 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 if (high
< debug_guardpage_minorder()) {
835 * Mark as guard pages (or page), that will allow to
836 * merge back to allocator when buddy will be freed.
837 * Corresponding page table entries will not be touched,
838 * pages will stay not present in virtual address space
840 INIT_LIST_HEAD(&page
[size
].lru
);
841 set_page_guard_flag(&page
[size
]);
842 set_page_private(&page
[size
], high
);
843 /* Guard pages are not available for any usage */
844 __mod_zone_freepage_state(zone
, -(1 << high
),
849 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
851 set_page_order(&page
[size
], high
);
856 * This page is about to be returned from the page allocator
858 static inline int check_new_page(struct page
*page
)
860 char *bad_reason
= NULL
;
861 unsigned long bad_flags
= 0;
863 if (unlikely(page_mapcount(page
)))
864 bad_reason
= "nonzero mapcount";
865 if (unlikely(page
->mapping
!= NULL
))
866 bad_reason
= "non-NULL mapping";
867 if (unlikely(atomic_read(&page
->_count
) != 0))
868 bad_reason
= "nonzero _count";
869 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
870 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
871 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
873 if (unlikely(mem_cgroup_bad_page_check(page
)))
874 bad_reason
= "cgroup check failed";
875 if (unlikely(bad_reason
)) {
876 bad_page(page
, bad_reason
, bad_flags
);
882 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
886 for (i
= 0; i
< (1 << order
); i
++) {
887 struct page
*p
= page
+ i
;
888 if (unlikely(check_new_page(p
)))
892 set_page_private(page
, 0);
893 set_page_refcounted(page
);
895 arch_alloc_page(page
, order
);
896 kernel_map_pages(page
, 1 << order
, 1);
898 if (gfp_flags
& __GFP_ZERO
)
899 prep_zero_page(page
, order
, gfp_flags
);
901 if (order
&& (gfp_flags
& __GFP_COMP
))
902 prep_compound_page(page
, order
);
908 * Go through the free lists for the given migratetype and remove
909 * the smallest available page from the freelists
912 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
915 unsigned int current_order
;
916 struct free_area
*area
;
919 /* Find a page of the appropriate size in the preferred list */
920 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
921 area
= &(zone
->free_area
[current_order
]);
922 if (list_empty(&area
->free_list
[migratetype
]))
925 page
= list_entry(area
->free_list
[migratetype
].next
,
927 list_del(&page
->lru
);
928 rmv_page_order(page
);
930 expand(zone
, page
, order
, current_order
, area
, migratetype
);
939 * This array describes the order lists are fallen back to when
940 * the free lists for the desirable migrate type are depleted
942 static int fallbacks
[MIGRATE_TYPES
][4] = {
943 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
944 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
946 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
947 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
949 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
951 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
952 #ifdef CONFIG_MEMORY_ISOLATION
953 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
958 * Move the free pages in a range to the free lists of the requested type.
959 * Note that start_page and end_pages are not aligned on a pageblock
960 * boundary. If alignment is required, use move_freepages_block()
962 int move_freepages(struct zone
*zone
,
963 struct page
*start_page
, struct page
*end_page
,
970 #ifndef CONFIG_HOLES_IN_ZONE
972 * page_zone is not safe to call in this context when
973 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
974 * anyway as we check zone boundaries in move_freepages_block().
975 * Remove at a later date when no bug reports exist related to
976 * grouping pages by mobility
978 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
981 for (page
= start_page
; page
<= end_page
;) {
982 /* Make sure we are not inadvertently changing nodes */
983 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
985 if (!pfn_valid_within(page_to_pfn(page
))) {
990 if (!PageBuddy(page
)) {
995 order
= page_order(page
);
996 list_move(&page
->lru
,
997 &zone
->free_area
[order
].free_list
[migratetype
]);
998 set_freepage_migratetype(page
, migratetype
);
1000 pages_moved
+= 1 << order
;
1006 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1009 unsigned long start_pfn
, end_pfn
;
1010 struct page
*start_page
, *end_page
;
1012 start_pfn
= page_to_pfn(page
);
1013 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1014 start_page
= pfn_to_page(start_pfn
);
1015 end_page
= start_page
+ pageblock_nr_pages
- 1;
1016 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1018 /* Do not cross zone boundaries */
1019 if (!zone_spans_pfn(zone
, start_pfn
))
1021 if (!zone_spans_pfn(zone
, end_pfn
))
1024 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1027 static void change_pageblock_range(struct page
*pageblock_page
,
1028 int start_order
, int migratetype
)
1030 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1032 while (nr_pageblocks
--) {
1033 set_pageblock_migratetype(pageblock_page
, migratetype
);
1034 pageblock_page
+= pageblock_nr_pages
;
1039 * If breaking a large block of pages, move all free pages to the preferred
1040 * allocation list. If falling back for a reclaimable kernel allocation, be
1041 * more aggressive about taking ownership of free pages.
1043 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1044 * nor move CMA pages to different free lists. We don't want unmovable pages
1045 * to be allocated from MIGRATE_CMA areas.
1047 * Returns the new migratetype of the pageblock (or the same old migratetype
1048 * if it was unchanged).
1050 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1051 int start_type
, int fallback_type
)
1053 int current_order
= page_order(page
);
1056 * When borrowing from MIGRATE_CMA, we need to release the excess
1057 * buddy pages to CMA itself.
1059 if (is_migrate_cma(fallback_type
))
1060 return fallback_type
;
1062 /* Take ownership for orders >= pageblock_order */
1063 if (current_order
>= pageblock_order
) {
1064 change_pageblock_range(page
, current_order
, start_type
);
1068 if (current_order
>= pageblock_order
/ 2 ||
1069 start_type
== MIGRATE_RECLAIMABLE
||
1070 page_group_by_mobility_disabled
) {
1073 pages
= move_freepages_block(zone
, page
, start_type
);
1075 /* Claim the whole block if over half of it is free */
1076 if (pages
>= (1 << (pageblock_order
-1)) ||
1077 page_group_by_mobility_disabled
) {
1079 set_pageblock_migratetype(page
, start_type
);
1085 return fallback_type
;
1088 /* Remove an element from the buddy allocator from the fallback list */
1089 static inline struct page
*
1090 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1092 struct free_area
*area
;
1095 int migratetype
, new_type
, i
;
1097 /* Find the largest possible block of pages in the other list */
1098 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1101 migratetype
= fallbacks
[start_migratetype
][i
];
1103 /* MIGRATE_RESERVE handled later if necessary */
1104 if (migratetype
== MIGRATE_RESERVE
)
1107 area
= &(zone
->free_area
[current_order
]);
1108 if (list_empty(&area
->free_list
[migratetype
]))
1111 page
= list_entry(area
->free_list
[migratetype
].next
,
1115 new_type
= try_to_steal_freepages(zone
, page
,
1119 /* Remove the page from the freelists */
1120 list_del(&page
->lru
);
1121 rmv_page_order(page
);
1123 expand(zone
, page
, order
, current_order
, area
,
1126 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1127 start_migratetype
, migratetype
, new_type
);
1137 * Do the hard work of removing an element from the buddy allocator.
1138 * Call me with the zone->lock already held.
1140 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1146 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1148 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1149 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1152 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1153 * is used because __rmqueue_smallest is an inline function
1154 * and we want just one call site
1157 migratetype
= MIGRATE_RESERVE
;
1162 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1167 * Obtain a specified number of elements from the buddy allocator, all under
1168 * a single hold of the lock, for efficiency. Add them to the supplied list.
1169 * Returns the number of new pages which were placed at *list.
1171 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1172 unsigned long count
, struct list_head
*list
,
1173 int migratetype
, int cold
)
1175 int mt
= migratetype
, i
;
1177 spin_lock(&zone
->lock
);
1178 for (i
= 0; i
< count
; ++i
) {
1179 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1180 if (unlikely(page
== NULL
))
1184 * Split buddy pages returned by expand() are received here
1185 * in physical page order. The page is added to the callers and
1186 * list and the list head then moves forward. From the callers
1187 * perspective, the linked list is ordered by page number in
1188 * some conditions. This is useful for IO devices that can
1189 * merge IO requests if the physical pages are ordered
1192 if (likely(cold
== 0))
1193 list_add(&page
->lru
, list
);
1195 list_add_tail(&page
->lru
, list
);
1196 if (IS_ENABLED(CONFIG_CMA
)) {
1197 mt
= get_pageblock_migratetype(page
);
1198 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1201 set_freepage_migratetype(page
, mt
);
1203 if (is_migrate_cma(mt
))
1204 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1207 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1208 spin_unlock(&zone
->lock
);
1214 * Called from the vmstat counter updater to drain pagesets of this
1215 * currently executing processor on remote nodes after they have
1218 * Note that this function must be called with the thread pinned to
1219 * a single processor.
1221 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1223 unsigned long flags
;
1225 unsigned long batch
;
1227 local_irq_save(flags
);
1228 batch
= ACCESS_ONCE(pcp
->batch
);
1229 if (pcp
->count
>= batch
)
1232 to_drain
= pcp
->count
;
1234 free_pcppages_bulk(zone
, to_drain
, pcp
);
1235 pcp
->count
-= to_drain
;
1237 local_irq_restore(flags
);
1242 * Drain pages of the indicated processor.
1244 * The processor must either be the current processor and the
1245 * thread pinned to the current processor or a processor that
1248 static void drain_pages(unsigned int cpu
)
1250 unsigned long flags
;
1253 for_each_populated_zone(zone
) {
1254 struct per_cpu_pageset
*pset
;
1255 struct per_cpu_pages
*pcp
;
1257 local_irq_save(flags
);
1258 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1262 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1265 local_irq_restore(flags
);
1270 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1272 void drain_local_pages(void *arg
)
1274 drain_pages(smp_processor_id());
1278 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1280 * Note that this code is protected against sending an IPI to an offline
1281 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1282 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1283 * nothing keeps CPUs from showing up after we populated the cpumask and
1284 * before the call to on_each_cpu_mask().
1286 void drain_all_pages(void)
1289 struct per_cpu_pageset
*pcp
;
1293 * Allocate in the BSS so we wont require allocation in
1294 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1296 static cpumask_t cpus_with_pcps
;
1299 * We don't care about racing with CPU hotplug event
1300 * as offline notification will cause the notified
1301 * cpu to drain that CPU pcps and on_each_cpu_mask
1302 * disables preemption as part of its processing
1304 for_each_online_cpu(cpu
) {
1305 bool has_pcps
= false;
1306 for_each_populated_zone(zone
) {
1307 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1308 if (pcp
->pcp
.count
) {
1314 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1316 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1318 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1321 #ifdef CONFIG_HIBERNATION
1323 void mark_free_pages(struct zone
*zone
)
1325 unsigned long pfn
, max_zone_pfn
;
1326 unsigned long flags
;
1328 struct list_head
*curr
;
1330 if (zone_is_empty(zone
))
1333 spin_lock_irqsave(&zone
->lock
, flags
);
1335 max_zone_pfn
= zone_end_pfn(zone
);
1336 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1337 if (pfn_valid(pfn
)) {
1338 struct page
*page
= pfn_to_page(pfn
);
1340 if (!swsusp_page_is_forbidden(page
))
1341 swsusp_unset_page_free(page
);
1344 for_each_migratetype_order(order
, t
) {
1345 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1348 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1349 for (i
= 0; i
< (1UL << order
); i
++)
1350 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1353 spin_unlock_irqrestore(&zone
->lock
, flags
);
1355 #endif /* CONFIG_PM */
1358 * Free a 0-order page
1359 * cold == 1 ? free a cold page : free a hot page
1361 void free_hot_cold_page(struct page
*page
, int cold
)
1363 struct zone
*zone
= page_zone(page
);
1364 struct per_cpu_pages
*pcp
;
1365 unsigned long flags
;
1368 if (!free_pages_prepare(page
, 0))
1371 migratetype
= get_pageblock_migratetype(page
);
1372 set_freepage_migratetype(page
, migratetype
);
1373 local_irq_save(flags
);
1374 __count_vm_event(PGFREE
);
1377 * We only track unmovable, reclaimable and movable on pcp lists.
1378 * Free ISOLATE pages back to the allocator because they are being
1379 * offlined but treat RESERVE as movable pages so we can get those
1380 * areas back if necessary. Otherwise, we may have to free
1381 * excessively into the page allocator
1383 if (migratetype
>= MIGRATE_PCPTYPES
) {
1384 if (unlikely(is_migrate_isolate(migratetype
))) {
1385 free_one_page(zone
, page
, 0, migratetype
);
1388 migratetype
= MIGRATE_MOVABLE
;
1391 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1393 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1395 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1397 if (pcp
->count
>= pcp
->high
) {
1398 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1399 free_pcppages_bulk(zone
, batch
, pcp
);
1400 pcp
->count
-= batch
;
1404 local_irq_restore(flags
);
1408 * Free a list of 0-order pages
1410 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1412 struct page
*page
, *next
;
1414 list_for_each_entry_safe(page
, next
, list
, lru
) {
1415 trace_mm_page_free_batched(page
, cold
);
1416 free_hot_cold_page(page
, cold
);
1421 * split_page takes a non-compound higher-order page, and splits it into
1422 * n (1<<order) sub-pages: page[0..n]
1423 * Each sub-page must be freed individually.
1425 * Note: this is probably too low level an operation for use in drivers.
1426 * Please consult with lkml before using this in your driver.
1428 void split_page(struct page
*page
, unsigned int order
)
1432 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1433 VM_BUG_ON_PAGE(!page_count(page
), page
);
1435 #ifdef CONFIG_KMEMCHECK
1437 * Split shadow pages too, because free(page[0]) would
1438 * otherwise free the whole shadow.
1440 if (kmemcheck_page_is_tracked(page
))
1441 split_page(virt_to_page(page
[0].shadow
), order
);
1444 for (i
= 1; i
< (1 << order
); i
++)
1445 set_page_refcounted(page
+ i
);
1447 EXPORT_SYMBOL_GPL(split_page
);
1449 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1451 unsigned long watermark
;
1455 BUG_ON(!PageBuddy(page
));
1457 zone
= page_zone(page
);
1458 mt
= get_pageblock_migratetype(page
);
1460 if (!is_migrate_isolate(mt
)) {
1461 /* Obey watermarks as if the page was being allocated */
1462 watermark
= low_wmark_pages(zone
) + (1 << order
);
1463 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1466 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1469 /* Remove page from free list */
1470 list_del(&page
->lru
);
1471 zone
->free_area
[order
].nr_free
--;
1472 rmv_page_order(page
);
1474 /* Set the pageblock if the isolated page is at least a pageblock */
1475 if (order
>= pageblock_order
- 1) {
1476 struct page
*endpage
= page
+ (1 << order
) - 1;
1477 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1478 int mt
= get_pageblock_migratetype(page
);
1479 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1480 set_pageblock_migratetype(page
,
1485 return 1UL << order
;
1489 * Similar to split_page except the page is already free. As this is only
1490 * being used for migration, the migratetype of the block also changes.
1491 * As this is called with interrupts disabled, the caller is responsible
1492 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1495 * Note: this is probably too low level an operation for use in drivers.
1496 * Please consult with lkml before using this in your driver.
1498 int split_free_page(struct page
*page
)
1503 order
= page_order(page
);
1505 nr_pages
= __isolate_free_page(page
, order
);
1509 /* Split into individual pages */
1510 set_page_refcounted(page
);
1511 split_page(page
, order
);
1516 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1517 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1521 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1522 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1525 unsigned long flags
;
1527 int cold
= !!(gfp_flags
& __GFP_COLD
);
1530 if (likely(order
== 0)) {
1531 struct per_cpu_pages
*pcp
;
1532 struct list_head
*list
;
1534 local_irq_save(flags
);
1535 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1536 list
= &pcp
->lists
[migratetype
];
1537 if (list_empty(list
)) {
1538 pcp
->count
+= rmqueue_bulk(zone
, 0,
1541 if (unlikely(list_empty(list
)))
1546 page
= list_entry(list
->prev
, struct page
, lru
);
1548 page
= list_entry(list
->next
, struct page
, lru
);
1550 list_del(&page
->lru
);
1553 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1555 * __GFP_NOFAIL is not to be used in new code.
1557 * All __GFP_NOFAIL callers should be fixed so that they
1558 * properly detect and handle allocation failures.
1560 * We most definitely don't want callers attempting to
1561 * allocate greater than order-1 page units with
1564 WARN_ON_ONCE(order
> 1);
1566 spin_lock_irqsave(&zone
->lock
, flags
);
1567 page
= __rmqueue(zone
, order
, migratetype
);
1568 spin_unlock(&zone
->lock
);
1571 __mod_zone_freepage_state(zone
, -(1 << order
),
1572 get_pageblock_migratetype(page
));
1575 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1576 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1577 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1578 local_irq_restore(flags
);
1580 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1581 if (prep_new_page(page
, order
, gfp_flags
))
1586 local_irq_restore(flags
);
1590 #ifdef CONFIG_FAIL_PAGE_ALLOC
1593 struct fault_attr attr
;
1595 u32 ignore_gfp_highmem
;
1596 u32 ignore_gfp_wait
;
1598 } fail_page_alloc
= {
1599 .attr
= FAULT_ATTR_INITIALIZER
,
1600 .ignore_gfp_wait
= 1,
1601 .ignore_gfp_highmem
= 1,
1605 static int __init
setup_fail_page_alloc(char *str
)
1607 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1609 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1611 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1613 if (order
< fail_page_alloc
.min_order
)
1615 if (gfp_mask
& __GFP_NOFAIL
)
1617 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1619 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1622 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1625 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1627 static int __init
fail_page_alloc_debugfs(void)
1629 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1632 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1633 &fail_page_alloc
.attr
);
1635 return PTR_ERR(dir
);
1637 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1638 &fail_page_alloc
.ignore_gfp_wait
))
1640 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1641 &fail_page_alloc
.ignore_gfp_highmem
))
1643 if (!debugfs_create_u32("min-order", mode
, dir
,
1644 &fail_page_alloc
.min_order
))
1649 debugfs_remove_recursive(dir
);
1654 late_initcall(fail_page_alloc_debugfs
);
1656 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1658 #else /* CONFIG_FAIL_PAGE_ALLOC */
1660 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1665 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1668 * Return true if free pages are above 'mark'. This takes into account the order
1669 * of the allocation.
1671 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1672 int classzone_idx
, int alloc_flags
, long free_pages
)
1674 /* free_pages my go negative - that's OK */
1676 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1680 free_pages
-= (1 << order
) - 1;
1681 if (alloc_flags
& ALLOC_HIGH
)
1683 if (alloc_flags
& ALLOC_HARDER
)
1686 /* If allocation can't use CMA areas don't use free CMA pages */
1687 if (!(alloc_flags
& ALLOC_CMA
))
1688 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1691 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1693 for (o
= 0; o
< order
; o
++) {
1694 /* At the next order, this order's pages become unavailable */
1695 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1697 /* Require fewer higher order pages to be free */
1700 if (free_pages
<= min
)
1706 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1707 int classzone_idx
, int alloc_flags
)
1709 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1710 zone_page_state(z
, NR_FREE_PAGES
));
1713 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1714 int classzone_idx
, int alloc_flags
)
1716 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1718 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1719 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1721 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1727 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1728 * skip over zones that are not allowed by the cpuset, or that have
1729 * been recently (in last second) found to be nearly full. See further
1730 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1731 * that have to skip over a lot of full or unallowed zones.
1733 * If the zonelist cache is present in the passed zonelist, then
1734 * returns a pointer to the allowed node mask (either the current
1735 * tasks mems_allowed, or node_states[N_MEMORY].)
1737 * If the zonelist cache is not available for this zonelist, does
1738 * nothing and returns NULL.
1740 * If the fullzones BITMAP in the zonelist cache is stale (more than
1741 * a second since last zap'd) then we zap it out (clear its bits.)
1743 * We hold off even calling zlc_setup, until after we've checked the
1744 * first zone in the zonelist, on the theory that most allocations will
1745 * be satisfied from that first zone, so best to examine that zone as
1746 * quickly as we can.
1748 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1750 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1751 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1753 zlc
= zonelist
->zlcache_ptr
;
1757 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1758 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1759 zlc
->last_full_zap
= jiffies
;
1762 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1763 &cpuset_current_mems_allowed
:
1764 &node_states
[N_MEMORY
];
1765 return allowednodes
;
1769 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1770 * if it is worth looking at further for free memory:
1771 * 1) Check that the zone isn't thought to be full (doesn't have its
1772 * bit set in the zonelist_cache fullzones BITMAP).
1773 * 2) Check that the zones node (obtained from the zonelist_cache
1774 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1775 * Return true (non-zero) if zone is worth looking at further, or
1776 * else return false (zero) if it is not.
1778 * This check -ignores- the distinction between various watermarks,
1779 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1780 * found to be full for any variation of these watermarks, it will
1781 * be considered full for up to one second by all requests, unless
1782 * we are so low on memory on all allowed nodes that we are forced
1783 * into the second scan of the zonelist.
1785 * In the second scan we ignore this zonelist cache and exactly
1786 * apply the watermarks to all zones, even it is slower to do so.
1787 * We are low on memory in the second scan, and should leave no stone
1788 * unturned looking for a free page.
1790 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1791 nodemask_t
*allowednodes
)
1793 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1794 int i
; /* index of *z in zonelist zones */
1795 int n
; /* node that zone *z is on */
1797 zlc
= zonelist
->zlcache_ptr
;
1801 i
= z
- zonelist
->_zonerefs
;
1804 /* This zone is worth trying if it is allowed but not full */
1805 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1809 * Given 'z' scanning a zonelist, set the corresponding bit in
1810 * zlc->fullzones, so that subsequent attempts to allocate a page
1811 * from that zone don't waste time re-examining it.
1813 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1815 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1816 int i
; /* index of *z in zonelist zones */
1818 zlc
= zonelist
->zlcache_ptr
;
1822 i
= z
- zonelist
->_zonerefs
;
1824 set_bit(i
, zlc
->fullzones
);
1828 * clear all zones full, called after direct reclaim makes progress so that
1829 * a zone that was recently full is not skipped over for up to a second
1831 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1833 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1835 zlc
= zonelist
->zlcache_ptr
;
1839 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1842 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1844 return local_zone
->node
== zone
->node
;
1847 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1849 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1852 static void __paginginit
init_zone_allows_reclaim(int nid
)
1856 for_each_online_node(i
)
1857 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1858 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1860 zone_reclaim_mode
= 1;
1863 #else /* CONFIG_NUMA */
1865 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1870 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1871 nodemask_t
*allowednodes
)
1876 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1880 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1884 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1889 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1894 static inline void init_zone_allows_reclaim(int nid
)
1897 #endif /* CONFIG_NUMA */
1900 * get_page_from_freelist goes through the zonelist trying to allocate
1903 static struct page
*
1904 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1905 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1906 struct zone
*preferred_zone
, int migratetype
)
1909 struct page
*page
= NULL
;
1912 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1913 int zlc_active
= 0; /* set if using zonelist_cache */
1914 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1916 classzone_idx
= zone_idx(preferred_zone
);
1919 * Scan zonelist, looking for a zone with enough free.
1920 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1922 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1923 high_zoneidx
, nodemask
) {
1926 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1927 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1929 if ((alloc_flags
& ALLOC_CPUSET
) &&
1930 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1932 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1933 if (unlikely(alloc_flags
& ALLOC_NO_WATERMARKS
))
1936 * Distribute pages in proportion to the individual
1937 * zone size to ensure fair page aging. The zone a
1938 * page was allocated in should have no effect on the
1939 * time the page has in memory before being reclaimed.
1941 * Try to stay in local zones in the fastpath. If
1942 * that fails, the slowpath is entered, which will do
1943 * another pass starting with the local zones, but
1944 * ultimately fall back to remote zones that do not
1945 * partake in the fairness round-robin cycle of this
1948 if (alloc_flags
& ALLOC_WMARK_LOW
) {
1949 if (zone_page_state(zone
, NR_ALLOC_BATCH
) <= 0)
1951 if (!zone_local(preferred_zone
, zone
))
1955 * When allocating a page cache page for writing, we
1956 * want to get it from a zone that is within its dirty
1957 * limit, such that no single zone holds more than its
1958 * proportional share of globally allowed dirty pages.
1959 * The dirty limits take into account the zone's
1960 * lowmem reserves and high watermark so that kswapd
1961 * should be able to balance it without having to
1962 * write pages from its LRU list.
1964 * This may look like it could increase pressure on
1965 * lower zones by failing allocations in higher zones
1966 * before they are full. But the pages that do spill
1967 * over are limited as the lower zones are protected
1968 * by this very same mechanism. It should not become
1969 * a practical burden to them.
1971 * XXX: For now, allow allocations to potentially
1972 * exceed the per-zone dirty limit in the slowpath
1973 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1974 * which is important when on a NUMA setup the allowed
1975 * zones are together not big enough to reach the
1976 * global limit. The proper fix for these situations
1977 * will require awareness of zones in the
1978 * dirty-throttling and the flusher threads.
1980 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1981 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1982 goto this_zone_full
;
1984 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1985 if (!zone_watermark_ok(zone
, order
, mark
,
1986 classzone_idx
, alloc_flags
)) {
1989 if (IS_ENABLED(CONFIG_NUMA
) &&
1990 !did_zlc_setup
&& nr_online_nodes
> 1) {
1992 * we do zlc_setup if there are multiple nodes
1993 * and before considering the first zone allowed
1996 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2001 if (zone_reclaim_mode
== 0 ||
2002 !zone_allows_reclaim(preferred_zone
, zone
))
2003 goto this_zone_full
;
2006 * As we may have just activated ZLC, check if the first
2007 * eligible zone has failed zone_reclaim recently.
2009 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2010 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2013 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2015 case ZONE_RECLAIM_NOSCAN
:
2018 case ZONE_RECLAIM_FULL
:
2019 /* scanned but unreclaimable */
2022 /* did we reclaim enough */
2023 if (zone_watermark_ok(zone
, order
, mark
,
2024 classzone_idx
, alloc_flags
))
2028 * Failed to reclaim enough to meet watermark.
2029 * Only mark the zone full if checking the min
2030 * watermark or if we failed to reclaim just
2031 * 1<<order pages or else the page allocator
2032 * fastpath will prematurely mark zones full
2033 * when the watermark is between the low and
2036 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2037 ret
== ZONE_RECLAIM_SOME
)
2038 goto this_zone_full
;
2045 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2046 gfp_mask
, migratetype
);
2050 if (IS_ENABLED(CONFIG_NUMA
))
2051 zlc_mark_zone_full(zonelist
, z
);
2054 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
2055 /* Disable zlc cache for second zonelist scan */
2062 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2063 * necessary to allocate the page. The expectation is
2064 * that the caller is taking steps that will free more
2065 * memory. The caller should avoid the page being used
2066 * for !PFMEMALLOC purposes.
2068 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2074 * Large machines with many possible nodes should not always dump per-node
2075 * meminfo in irq context.
2077 static inline bool should_suppress_show_mem(void)
2082 ret
= in_interrupt();
2087 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2088 DEFAULT_RATELIMIT_INTERVAL
,
2089 DEFAULT_RATELIMIT_BURST
);
2091 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2093 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2095 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2096 debug_guardpage_minorder() > 0)
2100 * This documents exceptions given to allocations in certain
2101 * contexts that are allowed to allocate outside current's set
2104 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2105 if (test_thread_flag(TIF_MEMDIE
) ||
2106 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2107 filter
&= ~SHOW_MEM_FILTER_NODES
;
2108 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2109 filter
&= ~SHOW_MEM_FILTER_NODES
;
2112 struct va_format vaf
;
2115 va_start(args
, fmt
);
2120 pr_warn("%pV", &vaf
);
2125 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2126 current
->comm
, order
, gfp_mask
);
2129 if (!should_suppress_show_mem())
2134 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2135 unsigned long did_some_progress
,
2136 unsigned long pages_reclaimed
)
2138 /* Do not loop if specifically requested */
2139 if (gfp_mask
& __GFP_NORETRY
)
2142 /* Always retry if specifically requested */
2143 if (gfp_mask
& __GFP_NOFAIL
)
2147 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2148 * making forward progress without invoking OOM. Suspend also disables
2149 * storage devices so kswapd will not help. Bail if we are suspending.
2151 if (!did_some_progress
&& pm_suspended_storage())
2155 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2156 * means __GFP_NOFAIL, but that may not be true in other
2159 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2163 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2164 * specified, then we retry until we no longer reclaim any pages
2165 * (above), or we've reclaimed an order of pages at least as
2166 * large as the allocation's order. In both cases, if the
2167 * allocation still fails, we stop retrying.
2169 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2175 static inline struct page
*
2176 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2177 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2178 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2183 /* Acquire the OOM killer lock for the zones in zonelist */
2184 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2185 schedule_timeout_uninterruptible(1);
2190 * Go through the zonelist yet one more time, keep very high watermark
2191 * here, this is only to catch a parallel oom killing, we must fail if
2192 * we're still under heavy pressure.
2194 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2195 order
, zonelist
, high_zoneidx
,
2196 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2197 preferred_zone
, migratetype
);
2201 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2202 /* The OOM killer will not help higher order allocs */
2203 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2205 /* The OOM killer does not needlessly kill tasks for lowmem */
2206 if (high_zoneidx
< ZONE_NORMAL
)
2209 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2210 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2211 * The caller should handle page allocation failure by itself if
2212 * it specifies __GFP_THISNODE.
2213 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2215 if (gfp_mask
& __GFP_THISNODE
)
2218 /* Exhausted what can be done so it's blamo time */
2219 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2222 clear_zonelist_oom(zonelist
, gfp_mask
);
2226 #ifdef CONFIG_COMPACTION
2227 /* Try memory compaction for high-order allocations before reclaim */
2228 static struct page
*
2229 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2230 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2231 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2232 int migratetype
, bool sync_migration
,
2233 bool *contended_compaction
, bool *deferred_compaction
,
2234 unsigned long *did_some_progress
)
2239 if (compaction_deferred(preferred_zone
, order
)) {
2240 *deferred_compaction
= true;
2244 current
->flags
|= PF_MEMALLOC
;
2245 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2246 nodemask
, sync_migration
,
2247 contended_compaction
);
2248 current
->flags
&= ~PF_MEMALLOC
;
2250 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2253 /* Page migration frees to the PCP lists but we want merging */
2254 drain_pages(get_cpu());
2257 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2258 order
, zonelist
, high_zoneidx
,
2259 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2260 preferred_zone
, migratetype
);
2262 preferred_zone
->compact_blockskip_flush
= false;
2263 compaction_defer_reset(preferred_zone
, order
, true);
2264 count_vm_event(COMPACTSUCCESS
);
2269 * It's bad if compaction run occurs and fails.
2270 * The most likely reason is that pages exist,
2271 * but not enough to satisfy watermarks.
2273 count_vm_event(COMPACTFAIL
);
2276 * As async compaction considers a subset of pageblocks, only
2277 * defer if the failure was a sync compaction failure.
2280 defer_compaction(preferred_zone
, order
);
2288 static inline struct page
*
2289 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2290 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2291 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2292 int migratetype
, bool sync_migration
,
2293 bool *contended_compaction
, bool *deferred_compaction
,
2294 unsigned long *did_some_progress
)
2298 #endif /* CONFIG_COMPACTION */
2300 /* Perform direct synchronous page reclaim */
2302 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2303 nodemask_t
*nodemask
)
2305 struct reclaim_state reclaim_state
;
2310 /* We now go into synchronous reclaim */
2311 cpuset_memory_pressure_bump();
2312 current
->flags
|= PF_MEMALLOC
;
2313 lockdep_set_current_reclaim_state(gfp_mask
);
2314 reclaim_state
.reclaimed_slab
= 0;
2315 current
->reclaim_state
= &reclaim_state
;
2317 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2319 current
->reclaim_state
= NULL
;
2320 lockdep_clear_current_reclaim_state();
2321 current
->flags
&= ~PF_MEMALLOC
;
2328 /* The really slow allocator path where we enter direct reclaim */
2329 static inline struct page
*
2330 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2331 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2332 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2333 int migratetype
, unsigned long *did_some_progress
)
2335 struct page
*page
= NULL
;
2336 bool drained
= false;
2338 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2340 if (unlikely(!(*did_some_progress
)))
2343 /* After successful reclaim, reconsider all zones for allocation */
2344 if (IS_ENABLED(CONFIG_NUMA
))
2345 zlc_clear_zones_full(zonelist
);
2348 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2349 zonelist
, high_zoneidx
,
2350 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2351 preferred_zone
, migratetype
);
2354 * If an allocation failed after direct reclaim, it could be because
2355 * pages are pinned on the per-cpu lists. Drain them and try again
2357 if (!page
&& !drained
) {
2367 * This is called in the allocator slow-path if the allocation request is of
2368 * sufficient urgency to ignore watermarks and take other desperate measures
2370 static inline struct page
*
2371 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2372 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2373 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2379 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2380 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2381 preferred_zone
, migratetype
);
2383 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2384 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2385 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2390 static void prepare_slowpath(gfp_t gfp_mask
, unsigned int order
,
2391 struct zonelist
*zonelist
,
2392 enum zone_type high_zoneidx
,
2393 struct zone
*preferred_zone
)
2398 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
2399 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2400 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2402 * Only reset the batches of zones that were actually
2403 * considered in the fast path, we don't want to
2404 * thrash fairness information for zones that are not
2405 * actually part of this zonelist's round-robin cycle.
2407 if (!zone_local(preferred_zone
, zone
))
2409 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2410 high_wmark_pages(zone
) -
2411 low_wmark_pages(zone
) -
2412 zone_page_state(zone
, NR_ALLOC_BATCH
));
2417 gfp_to_alloc_flags(gfp_t gfp_mask
)
2419 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2420 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2422 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2423 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2426 * The caller may dip into page reserves a bit more if the caller
2427 * cannot run direct reclaim, or if the caller has realtime scheduling
2428 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2429 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2431 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2435 * Not worth trying to allocate harder for
2436 * __GFP_NOMEMALLOC even if it can't schedule.
2438 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2439 alloc_flags
|= ALLOC_HARDER
;
2441 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2442 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2444 alloc_flags
&= ~ALLOC_CPUSET
;
2445 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2446 alloc_flags
|= ALLOC_HARDER
;
2448 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2449 if (gfp_mask
& __GFP_MEMALLOC
)
2450 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2451 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2452 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2453 else if (!in_interrupt() &&
2454 ((current
->flags
& PF_MEMALLOC
) ||
2455 unlikely(test_thread_flag(TIF_MEMDIE
))))
2456 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2459 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2460 alloc_flags
|= ALLOC_CMA
;
2465 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2467 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2470 static inline struct page
*
2471 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2472 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2473 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2476 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2477 struct page
*page
= NULL
;
2479 unsigned long pages_reclaimed
= 0;
2480 unsigned long did_some_progress
;
2481 bool sync_migration
= false;
2482 bool deferred_compaction
= false;
2483 bool contended_compaction
= false;
2486 * In the slowpath, we sanity check order to avoid ever trying to
2487 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2488 * be using allocators in order of preference for an area that is
2491 if (order
>= MAX_ORDER
) {
2492 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2497 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2498 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2499 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2500 * using a larger set of nodes after it has established that the
2501 * allowed per node queues are empty and that nodes are
2504 if (IS_ENABLED(CONFIG_NUMA
) &&
2505 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2509 prepare_slowpath(gfp_mask
, order
, zonelist
,
2510 high_zoneidx
, preferred_zone
);
2513 * OK, we're below the kswapd watermark and have kicked background
2514 * reclaim. Now things get more complex, so set up alloc_flags according
2515 * to how we want to proceed.
2517 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2520 * Find the true preferred zone if the allocation is unconstrained by
2523 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2524 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2528 /* This is the last chance, in general, before the goto nopage. */
2529 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2530 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2531 preferred_zone
, migratetype
);
2535 /* Allocate without watermarks if the context allows */
2536 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2538 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2539 * the allocation is high priority and these type of
2540 * allocations are system rather than user orientated
2542 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2544 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2545 zonelist
, high_zoneidx
, nodemask
,
2546 preferred_zone
, migratetype
);
2552 /* Atomic allocations - we can't balance anything */
2555 * All existing users of the deprecated __GFP_NOFAIL are
2556 * blockable, so warn of any new users that actually allow this
2557 * type of allocation to fail.
2559 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2563 /* Avoid recursion of direct reclaim */
2564 if (current
->flags
& PF_MEMALLOC
)
2567 /* Avoid allocations with no watermarks from looping endlessly */
2568 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2572 * Try direct compaction. The first pass is asynchronous. Subsequent
2573 * attempts after direct reclaim are synchronous
2575 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2576 zonelist
, high_zoneidx
,
2578 alloc_flags
, preferred_zone
,
2579 migratetype
, sync_migration
,
2580 &contended_compaction
,
2581 &deferred_compaction
,
2582 &did_some_progress
);
2585 sync_migration
= true;
2588 * If compaction is deferred for high-order allocations, it is because
2589 * sync compaction recently failed. In this is the case and the caller
2590 * requested a movable allocation that does not heavily disrupt the
2591 * system then fail the allocation instead of entering direct reclaim.
2593 if ((deferred_compaction
|| contended_compaction
) &&
2594 (gfp_mask
& __GFP_NO_KSWAPD
))
2597 /* Try direct reclaim and then allocating */
2598 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2599 zonelist
, high_zoneidx
,
2601 alloc_flags
, preferred_zone
,
2602 migratetype
, &did_some_progress
);
2607 * If we failed to make any progress reclaiming, then we are
2608 * running out of options and have to consider going OOM
2610 if (!did_some_progress
) {
2611 if (oom_gfp_allowed(gfp_mask
)) {
2612 if (oom_killer_disabled
)
2614 /* Coredumps can quickly deplete all memory reserves */
2615 if ((current
->flags
& PF_DUMPCORE
) &&
2616 !(gfp_mask
& __GFP_NOFAIL
))
2618 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2619 zonelist
, high_zoneidx
,
2620 nodemask
, preferred_zone
,
2625 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2627 * The oom killer is not called for high-order
2628 * allocations that may fail, so if no progress
2629 * is being made, there are no other options and
2630 * retrying is unlikely to help.
2632 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2635 * The oom killer is not called for lowmem
2636 * allocations to prevent needlessly killing
2639 if (high_zoneidx
< ZONE_NORMAL
)
2647 /* Check if we should retry the allocation */
2648 pages_reclaimed
+= did_some_progress
;
2649 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2651 /* Wait for some write requests to complete then retry */
2652 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2656 * High-order allocations do not necessarily loop after
2657 * direct reclaim and reclaim/compaction depends on compaction
2658 * being called after reclaim so call directly if necessary
2660 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2661 zonelist
, high_zoneidx
,
2663 alloc_flags
, preferred_zone
,
2664 migratetype
, sync_migration
,
2665 &contended_compaction
,
2666 &deferred_compaction
,
2667 &did_some_progress
);
2673 warn_alloc_failed(gfp_mask
, order
, NULL
);
2676 if (kmemcheck_enabled
)
2677 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2683 * This is the 'heart' of the zoned buddy allocator.
2686 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2687 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2689 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2690 struct zone
*preferred_zone
;
2691 struct page
*page
= NULL
;
2692 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2693 unsigned int cpuset_mems_cookie
;
2694 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
;
2695 struct mem_cgroup
*memcg
= NULL
;
2697 gfp_mask
&= gfp_allowed_mask
;
2699 lockdep_trace_alloc(gfp_mask
);
2701 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2703 if (should_fail_alloc_page(gfp_mask
, order
))
2707 * Check the zones suitable for the gfp_mask contain at least one
2708 * valid zone. It's possible to have an empty zonelist as a result
2709 * of GFP_THISNODE and a memoryless node
2711 if (unlikely(!zonelist
->_zonerefs
->zone
))
2715 * Will only have any effect when __GFP_KMEMCG is set. This is
2716 * verified in the (always inline) callee
2718 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2722 cpuset_mems_cookie
= get_mems_allowed();
2724 /* The preferred zone is used for statistics later */
2725 first_zones_zonelist(zonelist
, high_zoneidx
,
2726 nodemask
? : &cpuset_current_mems_allowed
,
2728 if (!preferred_zone
)
2732 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2733 alloc_flags
|= ALLOC_CMA
;
2735 /* First allocation attempt */
2736 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2737 zonelist
, high_zoneidx
, alloc_flags
,
2738 preferred_zone
, migratetype
);
2739 if (unlikely(!page
)) {
2741 * Runtime PM, block IO and its error handling path
2742 * can deadlock because I/O on the device might not
2745 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2746 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2747 zonelist
, high_zoneidx
, nodemask
,
2748 preferred_zone
, migratetype
);
2751 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2755 * When updating a task's mems_allowed, it is possible to race with
2756 * parallel threads in such a way that an allocation can fail while
2757 * the mask is being updated. If a page allocation is about to fail,
2758 * check if the cpuset changed during allocation and if so, retry.
2760 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2763 memcg_kmem_commit_charge(page
, memcg
, order
);
2767 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2770 * Common helper functions.
2772 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2777 * __get_free_pages() returns a 32-bit address, which cannot represent
2780 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2782 page
= alloc_pages(gfp_mask
, order
);
2785 return (unsigned long) page_address(page
);
2787 EXPORT_SYMBOL(__get_free_pages
);
2789 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2791 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2793 EXPORT_SYMBOL(get_zeroed_page
);
2795 void __free_pages(struct page
*page
, unsigned int order
)
2797 if (put_page_testzero(page
)) {
2799 free_hot_cold_page(page
, 0);
2801 __free_pages_ok(page
, order
);
2805 EXPORT_SYMBOL(__free_pages
);
2807 void free_pages(unsigned long addr
, unsigned int order
)
2810 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2811 __free_pages(virt_to_page((void *)addr
), order
);
2815 EXPORT_SYMBOL(free_pages
);
2818 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2819 * pages allocated with __GFP_KMEMCG.
2821 * Those pages are accounted to a particular memcg, embedded in the
2822 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2823 * for that information only to find out that it is NULL for users who have no
2824 * interest in that whatsoever, we provide these functions.
2826 * The caller knows better which flags it relies on.
2828 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2830 memcg_kmem_uncharge_pages(page
, order
);
2831 __free_pages(page
, order
);
2834 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2837 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2838 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2842 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2845 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2846 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2848 split_page(virt_to_page((void *)addr
), order
);
2849 while (used
< alloc_end
) {
2854 return (void *)addr
;
2858 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2859 * @size: the number of bytes to allocate
2860 * @gfp_mask: GFP flags for the allocation
2862 * This function is similar to alloc_pages(), except that it allocates the
2863 * minimum number of pages to satisfy the request. alloc_pages() can only
2864 * allocate memory in power-of-two pages.
2866 * This function is also limited by MAX_ORDER.
2868 * Memory allocated by this function must be released by free_pages_exact().
2870 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2872 unsigned int order
= get_order(size
);
2875 addr
= __get_free_pages(gfp_mask
, order
);
2876 return make_alloc_exact(addr
, order
, size
);
2878 EXPORT_SYMBOL(alloc_pages_exact
);
2881 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2883 * @nid: the preferred node ID where memory should be allocated
2884 * @size: the number of bytes to allocate
2885 * @gfp_mask: GFP flags for the allocation
2887 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2889 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2892 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2894 unsigned order
= get_order(size
);
2895 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2898 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2900 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2903 * free_pages_exact - release memory allocated via alloc_pages_exact()
2904 * @virt: the value returned by alloc_pages_exact.
2905 * @size: size of allocation, same value as passed to alloc_pages_exact().
2907 * Release the memory allocated by a previous call to alloc_pages_exact.
2909 void free_pages_exact(void *virt
, size_t size
)
2911 unsigned long addr
= (unsigned long)virt
;
2912 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2914 while (addr
< end
) {
2919 EXPORT_SYMBOL(free_pages_exact
);
2922 * nr_free_zone_pages - count number of pages beyond high watermark
2923 * @offset: The zone index of the highest zone
2925 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2926 * high watermark within all zones at or below a given zone index. For each
2927 * zone, the number of pages is calculated as:
2928 * managed_pages - high_pages
2930 static unsigned long nr_free_zone_pages(int offset
)
2935 /* Just pick one node, since fallback list is circular */
2936 unsigned long sum
= 0;
2938 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2940 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2941 unsigned long size
= zone
->managed_pages
;
2942 unsigned long high
= high_wmark_pages(zone
);
2951 * nr_free_buffer_pages - count number of pages beyond high watermark
2953 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2954 * watermark within ZONE_DMA and ZONE_NORMAL.
2956 unsigned long nr_free_buffer_pages(void)
2958 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2960 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2963 * nr_free_pagecache_pages - count number of pages beyond high watermark
2965 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2966 * high watermark within all zones.
2968 unsigned long nr_free_pagecache_pages(void)
2970 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2973 static inline void show_node(struct zone
*zone
)
2975 if (IS_ENABLED(CONFIG_NUMA
))
2976 printk("Node %d ", zone_to_nid(zone
));
2979 void si_meminfo(struct sysinfo
*val
)
2981 val
->totalram
= totalram_pages
;
2983 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2984 val
->bufferram
= nr_blockdev_pages();
2985 val
->totalhigh
= totalhigh_pages
;
2986 val
->freehigh
= nr_free_highpages();
2987 val
->mem_unit
= PAGE_SIZE
;
2990 EXPORT_SYMBOL(si_meminfo
);
2993 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2995 int zone_type
; /* needs to be signed */
2996 unsigned long managed_pages
= 0;
2997 pg_data_t
*pgdat
= NODE_DATA(nid
);
2999 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3000 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3001 val
->totalram
= managed_pages
;
3002 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3003 #ifdef CONFIG_HIGHMEM
3004 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3005 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3011 val
->mem_unit
= PAGE_SIZE
;
3016 * Determine whether the node should be displayed or not, depending on whether
3017 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3019 bool skip_free_areas_node(unsigned int flags
, int nid
)
3022 unsigned int cpuset_mems_cookie
;
3024 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3028 cpuset_mems_cookie
= get_mems_allowed();
3029 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3030 } while (!put_mems_allowed(cpuset_mems_cookie
));
3035 #define K(x) ((x) << (PAGE_SHIFT-10))
3037 static void show_migration_types(unsigned char type
)
3039 static const char types
[MIGRATE_TYPES
] = {
3040 [MIGRATE_UNMOVABLE
] = 'U',
3041 [MIGRATE_RECLAIMABLE
] = 'E',
3042 [MIGRATE_MOVABLE
] = 'M',
3043 [MIGRATE_RESERVE
] = 'R',
3045 [MIGRATE_CMA
] = 'C',
3047 #ifdef CONFIG_MEMORY_ISOLATION
3048 [MIGRATE_ISOLATE
] = 'I',
3051 char tmp
[MIGRATE_TYPES
+ 1];
3055 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3056 if (type
& (1 << i
))
3061 printk("(%s) ", tmp
);
3065 * Show free area list (used inside shift_scroll-lock stuff)
3066 * We also calculate the percentage fragmentation. We do this by counting the
3067 * memory on each free list with the exception of the first item on the list.
3068 * Suppresses nodes that are not allowed by current's cpuset if
3069 * SHOW_MEM_FILTER_NODES is passed.
3071 void show_free_areas(unsigned int filter
)
3076 for_each_populated_zone(zone
) {
3077 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3080 printk("%s per-cpu:\n", zone
->name
);
3082 for_each_online_cpu(cpu
) {
3083 struct per_cpu_pageset
*pageset
;
3085 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3087 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3088 cpu
, pageset
->pcp
.high
,
3089 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3093 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3094 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3096 " dirty:%lu writeback:%lu unstable:%lu\n"
3097 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3098 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3100 global_page_state(NR_ACTIVE_ANON
),
3101 global_page_state(NR_INACTIVE_ANON
),
3102 global_page_state(NR_ISOLATED_ANON
),
3103 global_page_state(NR_ACTIVE_FILE
),
3104 global_page_state(NR_INACTIVE_FILE
),
3105 global_page_state(NR_ISOLATED_FILE
),
3106 global_page_state(NR_UNEVICTABLE
),
3107 global_page_state(NR_FILE_DIRTY
),
3108 global_page_state(NR_WRITEBACK
),
3109 global_page_state(NR_UNSTABLE_NFS
),
3110 global_page_state(NR_FREE_PAGES
),
3111 global_page_state(NR_SLAB_RECLAIMABLE
),
3112 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3113 global_page_state(NR_FILE_MAPPED
),
3114 global_page_state(NR_SHMEM
),
3115 global_page_state(NR_PAGETABLE
),
3116 global_page_state(NR_BOUNCE
),
3117 global_page_state(NR_FREE_CMA_PAGES
));
3119 for_each_populated_zone(zone
) {
3122 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3130 " active_anon:%lukB"
3131 " inactive_anon:%lukB"
3132 " active_file:%lukB"
3133 " inactive_file:%lukB"
3134 " unevictable:%lukB"
3135 " isolated(anon):%lukB"
3136 " isolated(file):%lukB"
3144 " slab_reclaimable:%lukB"
3145 " slab_unreclaimable:%lukB"
3146 " kernel_stack:%lukB"
3151 " writeback_tmp:%lukB"
3152 " pages_scanned:%lu"
3153 " all_unreclaimable? %s"
3156 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3157 K(min_wmark_pages(zone
)),
3158 K(low_wmark_pages(zone
)),
3159 K(high_wmark_pages(zone
)),
3160 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3161 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3162 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3163 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3164 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3165 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3166 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3167 K(zone
->present_pages
),
3168 K(zone
->managed_pages
),
3169 K(zone_page_state(zone
, NR_MLOCK
)),
3170 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3171 K(zone_page_state(zone
, NR_WRITEBACK
)),
3172 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3173 K(zone_page_state(zone
, NR_SHMEM
)),
3174 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3175 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3176 zone_page_state(zone
, NR_KERNEL_STACK
) *
3178 K(zone_page_state(zone
, NR_PAGETABLE
)),
3179 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3180 K(zone_page_state(zone
, NR_BOUNCE
)),
3181 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3182 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3183 zone
->pages_scanned
,
3184 (!zone_reclaimable(zone
) ? "yes" : "no")
3186 printk("lowmem_reserve[]:");
3187 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3188 printk(" %lu", zone
->lowmem_reserve
[i
]);
3192 for_each_populated_zone(zone
) {
3193 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3194 unsigned char types
[MAX_ORDER
];
3196 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3199 printk("%s: ", zone
->name
);
3201 spin_lock_irqsave(&zone
->lock
, flags
);
3202 for (order
= 0; order
< MAX_ORDER
; order
++) {
3203 struct free_area
*area
= &zone
->free_area
[order
];
3206 nr
[order
] = area
->nr_free
;
3207 total
+= nr
[order
] << order
;
3210 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3211 if (!list_empty(&area
->free_list
[type
]))
3212 types
[order
] |= 1 << type
;
3215 spin_unlock_irqrestore(&zone
->lock
, flags
);
3216 for (order
= 0; order
< MAX_ORDER
; order
++) {
3217 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3219 show_migration_types(types
[order
]);
3221 printk("= %lukB\n", K(total
));
3224 hugetlb_show_meminfo();
3226 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3228 show_swap_cache_info();
3231 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3233 zoneref
->zone
= zone
;
3234 zoneref
->zone_idx
= zone_idx(zone
);
3238 * Builds allocation fallback zone lists.
3240 * Add all populated zones of a node to the zonelist.
3242 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3246 enum zone_type zone_type
= MAX_NR_ZONES
;
3250 zone
= pgdat
->node_zones
+ zone_type
;
3251 if (populated_zone(zone
)) {
3252 zoneref_set_zone(zone
,
3253 &zonelist
->_zonerefs
[nr_zones
++]);
3254 check_highest_zone(zone_type
);
3256 } while (zone_type
);
3264 * 0 = automatic detection of better ordering.
3265 * 1 = order by ([node] distance, -zonetype)
3266 * 2 = order by (-zonetype, [node] distance)
3268 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3269 * the same zonelist. So only NUMA can configure this param.
3271 #define ZONELIST_ORDER_DEFAULT 0
3272 #define ZONELIST_ORDER_NODE 1
3273 #define ZONELIST_ORDER_ZONE 2
3275 /* zonelist order in the kernel.
3276 * set_zonelist_order() will set this to NODE or ZONE.
3278 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3279 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3283 /* The value user specified ....changed by config */
3284 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3285 /* string for sysctl */
3286 #define NUMA_ZONELIST_ORDER_LEN 16
3287 char numa_zonelist_order
[16] = "default";
3290 * interface for configure zonelist ordering.
3291 * command line option "numa_zonelist_order"
3292 * = "[dD]efault - default, automatic configuration.
3293 * = "[nN]ode - order by node locality, then by zone within node
3294 * = "[zZ]one - order by zone, then by locality within zone
3297 static int __parse_numa_zonelist_order(char *s
)
3299 if (*s
== 'd' || *s
== 'D') {
3300 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3301 } else if (*s
== 'n' || *s
== 'N') {
3302 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3303 } else if (*s
== 'z' || *s
== 'Z') {
3304 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3307 "Ignoring invalid numa_zonelist_order value: "
3314 static __init
int setup_numa_zonelist_order(char *s
)
3321 ret
= __parse_numa_zonelist_order(s
);
3323 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3327 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3330 * sysctl handler for numa_zonelist_order
3332 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3333 void __user
*buffer
, size_t *length
,
3336 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3338 static DEFINE_MUTEX(zl_order_mutex
);
3340 mutex_lock(&zl_order_mutex
);
3342 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3346 strcpy(saved_string
, (char *)table
->data
);
3348 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3352 int oldval
= user_zonelist_order
;
3354 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3357 * bogus value. restore saved string
3359 strncpy((char *)table
->data
, saved_string
,
3360 NUMA_ZONELIST_ORDER_LEN
);
3361 user_zonelist_order
= oldval
;
3362 } else if (oldval
!= user_zonelist_order
) {
3363 mutex_lock(&zonelists_mutex
);
3364 build_all_zonelists(NULL
, NULL
);
3365 mutex_unlock(&zonelists_mutex
);
3369 mutex_unlock(&zl_order_mutex
);
3374 #define MAX_NODE_LOAD (nr_online_nodes)
3375 static int node_load
[MAX_NUMNODES
];
3378 * find_next_best_node - find the next node that should appear in a given node's fallback list
3379 * @node: node whose fallback list we're appending
3380 * @used_node_mask: nodemask_t of already used nodes
3382 * We use a number of factors to determine which is the next node that should
3383 * appear on a given node's fallback list. The node should not have appeared
3384 * already in @node's fallback list, and it should be the next closest node
3385 * according to the distance array (which contains arbitrary distance values
3386 * from each node to each node in the system), and should also prefer nodes
3387 * with no CPUs, since presumably they'll have very little allocation pressure
3388 * on them otherwise.
3389 * It returns -1 if no node is found.
3391 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3394 int min_val
= INT_MAX
;
3395 int best_node
= NUMA_NO_NODE
;
3396 const struct cpumask
*tmp
= cpumask_of_node(0);
3398 /* Use the local node if we haven't already */
3399 if (!node_isset(node
, *used_node_mask
)) {
3400 node_set(node
, *used_node_mask
);
3404 for_each_node_state(n
, N_MEMORY
) {
3406 /* Don't want a node to appear more than once */
3407 if (node_isset(n
, *used_node_mask
))
3410 /* Use the distance array to find the distance */
3411 val
= node_distance(node
, n
);
3413 /* Penalize nodes under us ("prefer the next node") */
3416 /* Give preference to headless and unused nodes */
3417 tmp
= cpumask_of_node(n
);
3418 if (!cpumask_empty(tmp
))
3419 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3421 /* Slight preference for less loaded node */
3422 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3423 val
+= node_load
[n
];
3425 if (val
< min_val
) {
3432 node_set(best_node
, *used_node_mask
);
3439 * Build zonelists ordered by node and zones within node.
3440 * This results in maximum locality--normal zone overflows into local
3441 * DMA zone, if any--but risks exhausting DMA zone.
3443 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3446 struct zonelist
*zonelist
;
3448 zonelist
= &pgdat
->node_zonelists
[0];
3449 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3451 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3452 zonelist
->_zonerefs
[j
].zone
= NULL
;
3453 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3457 * Build gfp_thisnode zonelists
3459 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3462 struct zonelist
*zonelist
;
3464 zonelist
= &pgdat
->node_zonelists
[1];
3465 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3466 zonelist
->_zonerefs
[j
].zone
= NULL
;
3467 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3471 * Build zonelists ordered by zone and nodes within zones.
3472 * This results in conserving DMA zone[s] until all Normal memory is
3473 * exhausted, but results in overflowing to remote node while memory
3474 * may still exist in local DMA zone.
3476 static int node_order
[MAX_NUMNODES
];
3478 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3481 int zone_type
; /* needs to be signed */
3483 struct zonelist
*zonelist
;
3485 zonelist
= &pgdat
->node_zonelists
[0];
3487 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3488 for (j
= 0; j
< nr_nodes
; j
++) {
3489 node
= node_order
[j
];
3490 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3491 if (populated_zone(z
)) {
3493 &zonelist
->_zonerefs
[pos
++]);
3494 check_highest_zone(zone_type
);
3498 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3499 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3502 static int default_zonelist_order(void)
3505 unsigned long low_kmem_size
, total_size
;
3509 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3510 * If they are really small and used heavily, the system can fall
3511 * into OOM very easily.
3512 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3514 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3517 for_each_online_node(nid
) {
3518 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3519 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3520 if (populated_zone(z
)) {
3521 if (zone_type
< ZONE_NORMAL
)
3522 low_kmem_size
+= z
->managed_pages
;
3523 total_size
+= z
->managed_pages
;
3524 } else if (zone_type
== ZONE_NORMAL
) {
3526 * If any node has only lowmem, then node order
3527 * is preferred to allow kernel allocations
3528 * locally; otherwise, they can easily infringe
3529 * on other nodes when there is an abundance of
3530 * lowmem available to allocate from.
3532 return ZONELIST_ORDER_NODE
;
3536 if (!low_kmem_size
|| /* there are no DMA area. */
3537 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3538 return ZONELIST_ORDER_NODE
;
3540 * look into each node's config.
3541 * If there is a node whose DMA/DMA32 memory is very big area on
3542 * local memory, NODE_ORDER may be suitable.
3544 average_size
= total_size
/
3545 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3546 for_each_online_node(nid
) {
3549 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3550 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3551 if (populated_zone(z
)) {
3552 if (zone_type
< ZONE_NORMAL
)
3553 low_kmem_size
+= z
->present_pages
;
3554 total_size
+= z
->present_pages
;
3557 if (low_kmem_size
&&
3558 total_size
> average_size
&& /* ignore small node */
3559 low_kmem_size
> total_size
* 70/100)
3560 return ZONELIST_ORDER_NODE
;
3562 return ZONELIST_ORDER_ZONE
;
3565 static void set_zonelist_order(void)
3567 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3568 current_zonelist_order
= default_zonelist_order();
3570 current_zonelist_order
= user_zonelist_order
;
3573 static void build_zonelists(pg_data_t
*pgdat
)
3577 nodemask_t used_mask
;
3578 int local_node
, prev_node
;
3579 struct zonelist
*zonelist
;
3580 int order
= current_zonelist_order
;
3582 /* initialize zonelists */
3583 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3584 zonelist
= pgdat
->node_zonelists
+ i
;
3585 zonelist
->_zonerefs
[0].zone
= NULL
;
3586 zonelist
->_zonerefs
[0].zone_idx
= 0;
3589 /* NUMA-aware ordering of nodes */
3590 local_node
= pgdat
->node_id
;
3591 load
= nr_online_nodes
;
3592 prev_node
= local_node
;
3593 nodes_clear(used_mask
);
3595 memset(node_order
, 0, sizeof(node_order
));
3598 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3600 * We don't want to pressure a particular node.
3601 * So adding penalty to the first node in same
3602 * distance group to make it round-robin.
3604 if (node_distance(local_node
, node
) !=
3605 node_distance(local_node
, prev_node
))
3606 node_load
[node
] = load
;
3610 if (order
== ZONELIST_ORDER_NODE
)
3611 build_zonelists_in_node_order(pgdat
, node
);
3613 node_order
[j
++] = node
; /* remember order */
3616 if (order
== ZONELIST_ORDER_ZONE
) {
3617 /* calculate node order -- i.e., DMA last! */
3618 build_zonelists_in_zone_order(pgdat
, j
);
3621 build_thisnode_zonelists(pgdat
);
3624 /* Construct the zonelist performance cache - see further mmzone.h */
3625 static void build_zonelist_cache(pg_data_t
*pgdat
)
3627 struct zonelist
*zonelist
;
3628 struct zonelist_cache
*zlc
;
3631 zonelist
= &pgdat
->node_zonelists
[0];
3632 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3633 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3634 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3635 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3638 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3640 * Return node id of node used for "local" allocations.
3641 * I.e., first node id of first zone in arg node's generic zonelist.
3642 * Used for initializing percpu 'numa_mem', which is used primarily
3643 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3645 int local_memory_node(int node
)
3649 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3650 gfp_zone(GFP_KERNEL
),
3657 #else /* CONFIG_NUMA */
3659 static void set_zonelist_order(void)
3661 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3664 static void build_zonelists(pg_data_t
*pgdat
)
3666 int node
, local_node
;
3668 struct zonelist
*zonelist
;
3670 local_node
= pgdat
->node_id
;
3672 zonelist
= &pgdat
->node_zonelists
[0];
3673 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3676 * Now we build the zonelist so that it contains the zones
3677 * of all the other nodes.
3678 * We don't want to pressure a particular node, so when
3679 * building the zones for node N, we make sure that the
3680 * zones coming right after the local ones are those from
3681 * node N+1 (modulo N)
3683 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3684 if (!node_online(node
))
3686 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3688 for (node
= 0; node
< local_node
; node
++) {
3689 if (!node_online(node
))
3691 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3694 zonelist
->_zonerefs
[j
].zone
= NULL
;
3695 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3698 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3699 static void build_zonelist_cache(pg_data_t
*pgdat
)
3701 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3704 #endif /* CONFIG_NUMA */
3707 * Boot pageset table. One per cpu which is going to be used for all
3708 * zones and all nodes. The parameters will be set in such a way
3709 * that an item put on a list will immediately be handed over to
3710 * the buddy list. This is safe since pageset manipulation is done
3711 * with interrupts disabled.
3713 * The boot_pagesets must be kept even after bootup is complete for
3714 * unused processors and/or zones. They do play a role for bootstrapping
3715 * hotplugged processors.
3717 * zoneinfo_show() and maybe other functions do
3718 * not check if the processor is online before following the pageset pointer.
3719 * Other parts of the kernel may not check if the zone is available.
3721 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3722 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3723 static void setup_zone_pageset(struct zone
*zone
);
3726 * Global mutex to protect against size modification of zonelists
3727 * as well as to serialize pageset setup for the new populated zone.
3729 DEFINE_MUTEX(zonelists_mutex
);
3731 /* return values int ....just for stop_machine() */
3732 static int __build_all_zonelists(void *data
)
3736 pg_data_t
*self
= data
;
3739 memset(node_load
, 0, sizeof(node_load
));
3742 if (self
&& !node_online(self
->node_id
)) {
3743 build_zonelists(self
);
3744 build_zonelist_cache(self
);
3747 for_each_online_node(nid
) {
3748 pg_data_t
*pgdat
= NODE_DATA(nid
);
3750 build_zonelists(pgdat
);
3751 build_zonelist_cache(pgdat
);
3755 * Initialize the boot_pagesets that are going to be used
3756 * for bootstrapping processors. The real pagesets for
3757 * each zone will be allocated later when the per cpu
3758 * allocator is available.
3760 * boot_pagesets are used also for bootstrapping offline
3761 * cpus if the system is already booted because the pagesets
3762 * are needed to initialize allocators on a specific cpu too.
3763 * F.e. the percpu allocator needs the page allocator which
3764 * needs the percpu allocator in order to allocate its pagesets
3765 * (a chicken-egg dilemma).
3767 for_each_possible_cpu(cpu
) {
3768 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3772 * We now know the "local memory node" for each node--
3773 * i.e., the node of the first zone in the generic zonelist.
3774 * Set up numa_mem percpu variable for on-line cpus. During
3775 * boot, only the boot cpu should be on-line; we'll init the
3776 * secondary cpus' numa_mem as they come on-line. During
3777 * node/memory hotplug, we'll fixup all on-line cpus.
3779 if (cpu_online(cpu
))
3780 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3788 * Called with zonelists_mutex held always
3789 * unless system_state == SYSTEM_BOOTING.
3791 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3793 set_zonelist_order();
3795 if (system_state
== SYSTEM_BOOTING
) {
3796 __build_all_zonelists(NULL
);
3797 mminit_verify_zonelist();
3798 cpuset_init_current_mems_allowed();
3800 #ifdef CONFIG_MEMORY_HOTPLUG
3802 setup_zone_pageset(zone
);
3804 /* we have to stop all cpus to guarantee there is no user
3806 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3807 /* cpuset refresh routine should be here */
3809 vm_total_pages
= nr_free_pagecache_pages();
3811 * Disable grouping by mobility if the number of pages in the
3812 * system is too low to allow the mechanism to work. It would be
3813 * more accurate, but expensive to check per-zone. This check is
3814 * made on memory-hotadd so a system can start with mobility
3815 * disabled and enable it later
3817 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3818 page_group_by_mobility_disabled
= 1;
3820 page_group_by_mobility_disabled
= 0;
3822 printk("Built %i zonelists in %s order, mobility grouping %s. "
3823 "Total pages: %ld\n",
3825 zonelist_order_name
[current_zonelist_order
],
3826 page_group_by_mobility_disabled
? "off" : "on",
3829 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3834 * Helper functions to size the waitqueue hash table.
3835 * Essentially these want to choose hash table sizes sufficiently
3836 * large so that collisions trying to wait on pages are rare.
3837 * But in fact, the number of active page waitqueues on typical
3838 * systems is ridiculously low, less than 200. So this is even
3839 * conservative, even though it seems large.
3841 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3842 * waitqueues, i.e. the size of the waitq table given the number of pages.
3844 #define PAGES_PER_WAITQUEUE 256
3846 #ifndef CONFIG_MEMORY_HOTPLUG
3847 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3849 unsigned long size
= 1;
3851 pages
/= PAGES_PER_WAITQUEUE
;
3853 while (size
< pages
)
3857 * Once we have dozens or even hundreds of threads sleeping
3858 * on IO we've got bigger problems than wait queue collision.
3859 * Limit the size of the wait table to a reasonable size.
3861 size
= min(size
, 4096UL);
3863 return max(size
, 4UL);
3867 * A zone's size might be changed by hot-add, so it is not possible to determine
3868 * a suitable size for its wait_table. So we use the maximum size now.
3870 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3872 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3873 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3874 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3876 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3877 * or more by the traditional way. (See above). It equals:
3879 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3880 * ia64(16K page size) : = ( 8G + 4M)byte.
3881 * powerpc (64K page size) : = (32G +16M)byte.
3883 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3890 * This is an integer logarithm so that shifts can be used later
3891 * to extract the more random high bits from the multiplicative
3892 * hash function before the remainder is taken.
3894 static inline unsigned long wait_table_bits(unsigned long size
)
3900 * Check if a pageblock contains reserved pages
3902 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3906 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3907 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3914 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3915 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3916 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3917 * higher will lead to a bigger reserve which will get freed as contiguous
3918 * blocks as reclaim kicks in
3920 static void setup_zone_migrate_reserve(struct zone
*zone
)
3922 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3924 unsigned long block_migratetype
;
3929 * Get the start pfn, end pfn and the number of blocks to reserve
3930 * We have to be careful to be aligned to pageblock_nr_pages to
3931 * make sure that we always check pfn_valid for the first page in
3934 start_pfn
= zone
->zone_start_pfn
;
3935 end_pfn
= zone_end_pfn(zone
);
3936 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3937 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3941 * Reserve blocks are generally in place to help high-order atomic
3942 * allocations that are short-lived. A min_free_kbytes value that
3943 * would result in more than 2 reserve blocks for atomic allocations
3944 * is assumed to be in place to help anti-fragmentation for the
3945 * future allocation of hugepages at runtime.
3947 reserve
= min(2, reserve
);
3948 old_reserve
= zone
->nr_migrate_reserve_block
;
3950 /* When memory hot-add, we almost always need to do nothing */
3951 if (reserve
== old_reserve
)
3953 zone
->nr_migrate_reserve_block
= reserve
;
3955 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3956 if (!pfn_valid(pfn
))
3958 page
= pfn_to_page(pfn
);
3960 /* Watch out for overlapping nodes */
3961 if (page_to_nid(page
) != zone_to_nid(zone
))
3964 block_migratetype
= get_pageblock_migratetype(page
);
3966 /* Only test what is necessary when the reserves are not met */
3969 * Blocks with reserved pages will never free, skip
3972 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3973 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3976 /* If this block is reserved, account for it */
3977 if (block_migratetype
== MIGRATE_RESERVE
) {
3982 /* Suitable for reserving if this block is movable */
3983 if (block_migratetype
== MIGRATE_MOVABLE
) {
3984 set_pageblock_migratetype(page
,
3986 move_freepages_block(zone
, page
,
3991 } else if (!old_reserve
) {
3993 * At boot time we don't need to scan the whole zone
3994 * for turning off MIGRATE_RESERVE.
4000 * If the reserve is met and this is a previous reserved block,
4003 if (block_migratetype
== MIGRATE_RESERVE
) {
4004 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4005 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4011 * Initially all pages are reserved - free ones are freed
4012 * up by free_all_bootmem() once the early boot process is
4013 * done. Non-atomic initialization, single-pass.
4015 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4016 unsigned long start_pfn
, enum memmap_context context
)
4019 unsigned long end_pfn
= start_pfn
+ size
;
4023 if (highest_memmap_pfn
< end_pfn
- 1)
4024 highest_memmap_pfn
= end_pfn
- 1;
4026 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4027 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4029 * There can be holes in boot-time mem_map[]s
4030 * handed to this function. They do not
4031 * exist on hotplugged memory.
4033 if (context
== MEMMAP_EARLY
) {
4034 if (!early_pfn_valid(pfn
))
4036 if (!early_pfn_in_nid(pfn
, nid
))
4039 page
= pfn_to_page(pfn
);
4040 set_page_links(page
, zone
, nid
, pfn
);
4041 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4042 init_page_count(page
);
4043 page_mapcount_reset(page
);
4044 page_cpupid_reset_last(page
);
4045 SetPageReserved(page
);
4047 * Mark the block movable so that blocks are reserved for
4048 * movable at startup. This will force kernel allocations
4049 * to reserve their blocks rather than leaking throughout
4050 * the address space during boot when many long-lived
4051 * kernel allocations are made. Later some blocks near
4052 * the start are marked MIGRATE_RESERVE by
4053 * setup_zone_migrate_reserve()
4055 * bitmap is created for zone's valid pfn range. but memmap
4056 * can be created for invalid pages (for alignment)
4057 * check here not to call set_pageblock_migratetype() against
4060 if ((z
->zone_start_pfn
<= pfn
)
4061 && (pfn
< zone_end_pfn(z
))
4062 && !(pfn
& (pageblock_nr_pages
- 1)))
4063 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4065 INIT_LIST_HEAD(&page
->lru
);
4066 #ifdef WANT_PAGE_VIRTUAL
4067 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4068 if (!is_highmem_idx(zone
))
4069 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4074 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4077 for_each_migratetype_order(order
, t
) {
4078 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4079 zone
->free_area
[order
].nr_free
= 0;
4083 #ifndef __HAVE_ARCH_MEMMAP_INIT
4084 #define memmap_init(size, nid, zone, start_pfn) \
4085 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4088 static int __meminit
zone_batchsize(struct zone
*zone
)
4094 * The per-cpu-pages pools are set to around 1000th of the
4095 * size of the zone. But no more than 1/2 of a meg.
4097 * OK, so we don't know how big the cache is. So guess.
4099 batch
= zone
->managed_pages
/ 1024;
4100 if (batch
* PAGE_SIZE
> 512 * 1024)
4101 batch
= (512 * 1024) / PAGE_SIZE
;
4102 batch
/= 4; /* We effectively *= 4 below */
4107 * Clamp the batch to a 2^n - 1 value. Having a power
4108 * of 2 value was found to be more likely to have
4109 * suboptimal cache aliasing properties in some cases.
4111 * For example if 2 tasks are alternately allocating
4112 * batches of pages, one task can end up with a lot
4113 * of pages of one half of the possible page colors
4114 * and the other with pages of the other colors.
4116 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4121 /* The deferral and batching of frees should be suppressed under NOMMU
4124 * The problem is that NOMMU needs to be able to allocate large chunks
4125 * of contiguous memory as there's no hardware page translation to
4126 * assemble apparent contiguous memory from discontiguous pages.
4128 * Queueing large contiguous runs of pages for batching, however,
4129 * causes the pages to actually be freed in smaller chunks. As there
4130 * can be a significant delay between the individual batches being
4131 * recycled, this leads to the once large chunks of space being
4132 * fragmented and becoming unavailable for high-order allocations.
4139 * pcp->high and pcp->batch values are related and dependent on one another:
4140 * ->batch must never be higher then ->high.
4141 * The following function updates them in a safe manner without read side
4144 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4145 * those fields changing asynchronously (acording the the above rule).
4147 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4148 * outside of boot time (or some other assurance that no concurrent updaters
4151 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4152 unsigned long batch
)
4154 /* start with a fail safe value for batch */
4158 /* Update high, then batch, in order */
4165 /* a companion to pageset_set_high() */
4166 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4168 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4171 static void pageset_init(struct per_cpu_pageset
*p
)
4173 struct per_cpu_pages
*pcp
;
4176 memset(p
, 0, sizeof(*p
));
4180 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4181 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4184 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4187 pageset_set_batch(p
, batch
);
4191 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4192 * to the value high for the pageset p.
4194 static void pageset_set_high(struct per_cpu_pageset
*p
,
4197 unsigned long batch
= max(1UL, high
/ 4);
4198 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4199 batch
= PAGE_SHIFT
* 8;
4201 pageset_update(&p
->pcp
, high
, batch
);
4204 static void __meminit
pageset_set_high_and_batch(struct zone
*zone
,
4205 struct per_cpu_pageset
*pcp
)
4207 if (percpu_pagelist_fraction
)
4208 pageset_set_high(pcp
,
4209 (zone
->managed_pages
/
4210 percpu_pagelist_fraction
));
4212 pageset_set_batch(pcp
, zone_batchsize(zone
));
4215 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4217 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4220 pageset_set_high_and_batch(zone
, pcp
);
4223 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4226 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4227 for_each_possible_cpu(cpu
)
4228 zone_pageset_init(zone
, cpu
);
4232 * Allocate per cpu pagesets and initialize them.
4233 * Before this call only boot pagesets were available.
4235 void __init
setup_per_cpu_pageset(void)
4239 for_each_populated_zone(zone
)
4240 setup_zone_pageset(zone
);
4243 static noinline __init_refok
4244 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4250 * The per-page waitqueue mechanism uses hashed waitqueues
4253 zone
->wait_table_hash_nr_entries
=
4254 wait_table_hash_nr_entries(zone_size_pages
);
4255 zone
->wait_table_bits
=
4256 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4257 alloc_size
= zone
->wait_table_hash_nr_entries
4258 * sizeof(wait_queue_head_t
);
4260 if (!slab_is_available()) {
4261 zone
->wait_table
= (wait_queue_head_t
*)
4262 memblock_virt_alloc_node_nopanic(
4263 alloc_size
, zone
->zone_pgdat
->node_id
);
4266 * This case means that a zone whose size was 0 gets new memory
4267 * via memory hot-add.
4268 * But it may be the case that a new node was hot-added. In
4269 * this case vmalloc() will not be able to use this new node's
4270 * memory - this wait_table must be initialized to use this new
4271 * node itself as well.
4272 * To use this new node's memory, further consideration will be
4275 zone
->wait_table
= vmalloc(alloc_size
);
4277 if (!zone
->wait_table
)
4280 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4281 init_waitqueue_head(zone
->wait_table
+ i
);
4286 static __meminit
void zone_pcp_init(struct zone
*zone
)
4289 * per cpu subsystem is not up at this point. The following code
4290 * relies on the ability of the linker to provide the
4291 * offset of a (static) per cpu variable into the per cpu area.
4293 zone
->pageset
= &boot_pageset
;
4295 if (populated_zone(zone
))
4296 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4297 zone
->name
, zone
->present_pages
,
4298 zone_batchsize(zone
));
4301 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4302 unsigned long zone_start_pfn
,
4304 enum memmap_context context
)
4306 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4308 ret
= zone_wait_table_init(zone
, size
);
4311 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4313 zone
->zone_start_pfn
= zone_start_pfn
;
4315 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4316 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4318 (unsigned long)zone_idx(zone
),
4319 zone_start_pfn
, (zone_start_pfn
+ size
));
4321 zone_init_free_lists(zone
);
4326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4327 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4329 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4330 * Architectures may implement their own version but if add_active_range()
4331 * was used and there are no special requirements, this is a convenient
4334 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4336 unsigned long start_pfn
, end_pfn
;
4339 * NOTE: The following SMP-unsafe globals are only used early in boot
4340 * when the kernel is running single-threaded.
4342 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4343 static int __meminitdata last_nid
;
4345 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4348 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4350 last_start_pfn
= start_pfn
;
4351 last_end_pfn
= end_pfn
;
4357 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4359 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4363 nid
= __early_pfn_to_nid(pfn
);
4366 /* just returns 0 */
4370 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4371 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4375 nid
= __early_pfn_to_nid(pfn
);
4376 if (nid
>= 0 && nid
!= node
)
4383 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4384 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4385 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4387 * If an architecture guarantees that all ranges registered with
4388 * add_active_ranges() contain no holes and may be freed, this
4389 * this function may be used instead of calling memblock_free_early_nid()
4392 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4394 unsigned long start_pfn
, end_pfn
;
4397 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4398 start_pfn
= min(start_pfn
, max_low_pfn
);
4399 end_pfn
= min(end_pfn
, max_low_pfn
);
4401 if (start_pfn
< end_pfn
)
4402 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4403 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4409 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4410 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4412 * If an architecture guarantees that all ranges registered with
4413 * add_active_ranges() contain no holes and may be freed, this
4414 * function may be used instead of calling memory_present() manually.
4416 void __init
sparse_memory_present_with_active_regions(int nid
)
4418 unsigned long start_pfn
, end_pfn
;
4421 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4422 memory_present(this_nid
, start_pfn
, end_pfn
);
4426 * get_pfn_range_for_nid - Return the start and end page frames for a node
4427 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4428 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4429 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4431 * It returns the start and end page frame of a node based on information
4432 * provided by an arch calling add_active_range(). If called for a node
4433 * with no available memory, a warning is printed and the start and end
4436 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4437 unsigned long *start_pfn
, unsigned long *end_pfn
)
4439 unsigned long this_start_pfn
, this_end_pfn
;
4445 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4446 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4447 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4450 if (*start_pfn
== -1UL)
4455 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4456 * assumption is made that zones within a node are ordered in monotonic
4457 * increasing memory addresses so that the "highest" populated zone is used
4459 static void __init
find_usable_zone_for_movable(void)
4462 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4463 if (zone_index
== ZONE_MOVABLE
)
4466 if (arch_zone_highest_possible_pfn
[zone_index
] >
4467 arch_zone_lowest_possible_pfn
[zone_index
])
4471 VM_BUG_ON(zone_index
== -1);
4472 movable_zone
= zone_index
;
4476 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4477 * because it is sized independent of architecture. Unlike the other zones,
4478 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4479 * in each node depending on the size of each node and how evenly kernelcore
4480 * is distributed. This helper function adjusts the zone ranges
4481 * provided by the architecture for a given node by using the end of the
4482 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4483 * zones within a node are in order of monotonic increases memory addresses
4485 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4486 unsigned long zone_type
,
4487 unsigned long node_start_pfn
,
4488 unsigned long node_end_pfn
,
4489 unsigned long *zone_start_pfn
,
4490 unsigned long *zone_end_pfn
)
4492 /* Only adjust if ZONE_MOVABLE is on this node */
4493 if (zone_movable_pfn
[nid
]) {
4494 /* Size ZONE_MOVABLE */
4495 if (zone_type
== ZONE_MOVABLE
) {
4496 *zone_start_pfn
= zone_movable_pfn
[nid
];
4497 *zone_end_pfn
= min(node_end_pfn
,
4498 arch_zone_highest_possible_pfn
[movable_zone
]);
4500 /* Adjust for ZONE_MOVABLE starting within this range */
4501 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4502 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4503 *zone_end_pfn
= zone_movable_pfn
[nid
];
4505 /* Check if this whole range is within ZONE_MOVABLE */
4506 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4507 *zone_start_pfn
= *zone_end_pfn
;
4512 * Return the number of pages a zone spans in a node, including holes
4513 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4515 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4516 unsigned long zone_type
,
4517 unsigned long node_start_pfn
,
4518 unsigned long node_end_pfn
,
4519 unsigned long *ignored
)
4521 unsigned long zone_start_pfn
, zone_end_pfn
;
4523 /* Get the start and end of the zone */
4524 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4525 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4526 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4527 node_start_pfn
, node_end_pfn
,
4528 &zone_start_pfn
, &zone_end_pfn
);
4530 /* Check that this node has pages within the zone's required range */
4531 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4534 /* Move the zone boundaries inside the node if necessary */
4535 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4536 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4538 /* Return the spanned pages */
4539 return zone_end_pfn
- zone_start_pfn
;
4543 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4544 * then all holes in the requested range will be accounted for.
4546 unsigned long __meminit
__absent_pages_in_range(int nid
,
4547 unsigned long range_start_pfn
,
4548 unsigned long range_end_pfn
)
4550 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4551 unsigned long start_pfn
, end_pfn
;
4554 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4555 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4556 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4557 nr_absent
-= end_pfn
- start_pfn
;
4563 * absent_pages_in_range - Return number of page frames in holes within a range
4564 * @start_pfn: The start PFN to start searching for holes
4565 * @end_pfn: The end PFN to stop searching for holes
4567 * It returns the number of pages frames in memory holes within a range.
4569 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4570 unsigned long end_pfn
)
4572 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4575 /* Return the number of page frames in holes in a zone on a node */
4576 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4577 unsigned long zone_type
,
4578 unsigned long node_start_pfn
,
4579 unsigned long node_end_pfn
,
4580 unsigned long *ignored
)
4582 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4583 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4584 unsigned long zone_start_pfn
, zone_end_pfn
;
4586 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4587 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4589 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4590 node_start_pfn
, node_end_pfn
,
4591 &zone_start_pfn
, &zone_end_pfn
);
4592 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4595 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4596 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4597 unsigned long zone_type
,
4598 unsigned long node_start_pfn
,
4599 unsigned long node_end_pfn
,
4600 unsigned long *zones_size
)
4602 return zones_size
[zone_type
];
4605 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4606 unsigned long zone_type
,
4607 unsigned long node_start_pfn
,
4608 unsigned long node_end_pfn
,
4609 unsigned long *zholes_size
)
4614 return zholes_size
[zone_type
];
4617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4619 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4620 unsigned long node_start_pfn
,
4621 unsigned long node_end_pfn
,
4622 unsigned long *zones_size
,
4623 unsigned long *zholes_size
)
4625 unsigned long realtotalpages
, totalpages
= 0;
4628 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4629 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4633 pgdat
->node_spanned_pages
= totalpages
;
4635 realtotalpages
= totalpages
;
4636 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4638 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4639 node_start_pfn
, node_end_pfn
,
4641 pgdat
->node_present_pages
= realtotalpages
;
4642 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4646 #ifndef CONFIG_SPARSEMEM
4648 * Calculate the size of the zone->blockflags rounded to an unsigned long
4649 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4650 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4651 * round what is now in bits to nearest long in bits, then return it in
4654 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4656 unsigned long usemapsize
;
4658 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4659 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4660 usemapsize
= usemapsize
>> pageblock_order
;
4661 usemapsize
*= NR_PAGEBLOCK_BITS
;
4662 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4664 return usemapsize
/ 8;
4667 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4669 unsigned long zone_start_pfn
,
4670 unsigned long zonesize
)
4672 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4673 zone
->pageblock_flags
= NULL
;
4675 zone
->pageblock_flags
=
4676 memblock_virt_alloc_node_nopanic(usemapsize
,
4680 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4681 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4682 #endif /* CONFIG_SPARSEMEM */
4684 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4686 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4687 void __paginginit
set_pageblock_order(void)
4691 /* Check that pageblock_nr_pages has not already been setup */
4692 if (pageblock_order
)
4695 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4696 order
= HUGETLB_PAGE_ORDER
;
4698 order
= MAX_ORDER
- 1;
4701 * Assume the largest contiguous order of interest is a huge page.
4702 * This value may be variable depending on boot parameters on IA64 and
4705 pageblock_order
= order
;
4707 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4710 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4711 * is unused as pageblock_order is set at compile-time. See
4712 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4715 void __paginginit
set_pageblock_order(void)
4719 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4721 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4722 unsigned long present_pages
)
4724 unsigned long pages
= spanned_pages
;
4727 * Provide a more accurate estimation if there are holes within
4728 * the zone and SPARSEMEM is in use. If there are holes within the
4729 * zone, each populated memory region may cost us one or two extra
4730 * memmap pages due to alignment because memmap pages for each
4731 * populated regions may not naturally algined on page boundary.
4732 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4734 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4735 IS_ENABLED(CONFIG_SPARSEMEM
))
4736 pages
= present_pages
;
4738 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4742 * Set up the zone data structures:
4743 * - mark all pages reserved
4744 * - mark all memory queues empty
4745 * - clear the memory bitmaps
4747 * NOTE: pgdat should get zeroed by caller.
4749 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4750 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4751 unsigned long *zones_size
, unsigned long *zholes_size
)
4754 int nid
= pgdat
->node_id
;
4755 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4758 pgdat_resize_init(pgdat
);
4759 #ifdef CONFIG_NUMA_BALANCING
4760 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4761 pgdat
->numabalancing_migrate_nr_pages
= 0;
4762 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4764 init_waitqueue_head(&pgdat
->kswapd_wait
);
4765 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4766 pgdat_page_cgroup_init(pgdat
);
4768 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4769 struct zone
*zone
= pgdat
->node_zones
+ j
;
4770 unsigned long size
, realsize
, freesize
, memmap_pages
;
4772 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4773 node_end_pfn
, zones_size
);
4774 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4780 * Adjust freesize so that it accounts for how much memory
4781 * is used by this zone for memmap. This affects the watermark
4782 * and per-cpu initialisations
4784 memmap_pages
= calc_memmap_size(size
, realsize
);
4785 if (freesize
>= memmap_pages
) {
4786 freesize
-= memmap_pages
;
4789 " %s zone: %lu pages used for memmap\n",
4790 zone_names
[j
], memmap_pages
);
4793 " %s zone: %lu pages exceeds freesize %lu\n",
4794 zone_names
[j
], memmap_pages
, freesize
);
4796 /* Account for reserved pages */
4797 if (j
== 0 && freesize
> dma_reserve
) {
4798 freesize
-= dma_reserve
;
4799 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4800 zone_names
[0], dma_reserve
);
4803 if (!is_highmem_idx(j
))
4804 nr_kernel_pages
+= freesize
;
4805 /* Charge for highmem memmap if there are enough kernel pages */
4806 else if (nr_kernel_pages
> memmap_pages
* 2)
4807 nr_kernel_pages
-= memmap_pages
;
4808 nr_all_pages
+= freesize
;
4810 zone
->spanned_pages
= size
;
4811 zone
->present_pages
= realsize
;
4813 * Set an approximate value for lowmem here, it will be adjusted
4814 * when the bootmem allocator frees pages into the buddy system.
4815 * And all highmem pages will be managed by the buddy system.
4817 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4820 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4822 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4824 zone
->name
= zone_names
[j
];
4825 spin_lock_init(&zone
->lock
);
4826 spin_lock_init(&zone
->lru_lock
);
4827 zone_seqlock_init(zone
);
4828 zone
->zone_pgdat
= pgdat
;
4829 zone_pcp_init(zone
);
4831 /* For bootup, initialized properly in watermark setup */
4832 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4834 lruvec_init(&zone
->lruvec
);
4838 set_pageblock_order();
4839 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4840 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4841 size
, MEMMAP_EARLY
);
4843 memmap_init(size
, nid
, j
, zone_start_pfn
);
4844 zone_start_pfn
+= size
;
4848 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4850 /* Skip empty nodes */
4851 if (!pgdat
->node_spanned_pages
)
4854 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4855 /* ia64 gets its own node_mem_map, before this, without bootmem */
4856 if (!pgdat
->node_mem_map
) {
4857 unsigned long size
, start
, end
;
4861 * The zone's endpoints aren't required to be MAX_ORDER
4862 * aligned but the node_mem_map endpoints must be in order
4863 * for the buddy allocator to function correctly.
4865 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4866 end
= pgdat_end_pfn(pgdat
);
4867 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4868 size
= (end
- start
) * sizeof(struct page
);
4869 map
= alloc_remap(pgdat
->node_id
, size
);
4871 map
= memblock_virt_alloc_node_nopanic(size
,
4873 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4875 #ifndef CONFIG_NEED_MULTIPLE_NODES
4877 * With no DISCONTIG, the global mem_map is just set as node 0's
4879 if (pgdat
== NODE_DATA(0)) {
4880 mem_map
= NODE_DATA(0)->node_mem_map
;
4881 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4882 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4883 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4884 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4887 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4890 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4891 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4893 pg_data_t
*pgdat
= NODE_DATA(nid
);
4894 unsigned long start_pfn
= 0;
4895 unsigned long end_pfn
= 0;
4897 /* pg_data_t should be reset to zero when it's allocated */
4898 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4900 pgdat
->node_id
= nid
;
4901 pgdat
->node_start_pfn
= node_start_pfn
;
4902 init_zone_allows_reclaim(nid
);
4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4906 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4907 zones_size
, zholes_size
);
4909 alloc_node_mem_map(pgdat
);
4910 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4911 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4912 nid
, (unsigned long)pgdat
,
4913 (unsigned long)pgdat
->node_mem_map
);
4916 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4917 zones_size
, zholes_size
);
4920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4922 #if MAX_NUMNODES > 1
4924 * Figure out the number of possible node ids.
4926 void __init
setup_nr_node_ids(void)
4929 unsigned int highest
= 0;
4931 for_each_node_mask(node
, node_possible_map
)
4933 nr_node_ids
= highest
+ 1;
4938 * node_map_pfn_alignment - determine the maximum internode alignment
4940 * This function should be called after node map is populated and sorted.
4941 * It calculates the maximum power of two alignment which can distinguish
4944 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4945 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4946 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4947 * shifted, 1GiB is enough and this function will indicate so.
4949 * This is used to test whether pfn -> nid mapping of the chosen memory
4950 * model has fine enough granularity to avoid incorrect mapping for the
4951 * populated node map.
4953 * Returns the determined alignment in pfn's. 0 if there is no alignment
4954 * requirement (single node).
4956 unsigned long __init
node_map_pfn_alignment(void)
4958 unsigned long accl_mask
= 0, last_end
= 0;
4959 unsigned long start
, end
, mask
;
4963 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4964 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4971 * Start with a mask granular enough to pin-point to the
4972 * start pfn and tick off bits one-by-one until it becomes
4973 * too coarse to separate the current node from the last.
4975 mask
= ~((1 << __ffs(start
)) - 1);
4976 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4979 /* accumulate all internode masks */
4983 /* convert mask to number of pages */
4984 return ~accl_mask
+ 1;
4987 /* Find the lowest pfn for a node */
4988 static unsigned long __init
find_min_pfn_for_node(int nid
)
4990 unsigned long min_pfn
= ULONG_MAX
;
4991 unsigned long start_pfn
;
4994 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4995 min_pfn
= min(min_pfn
, start_pfn
);
4997 if (min_pfn
== ULONG_MAX
) {
4999 "Could not find start_pfn for node %d\n", nid
);
5007 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5009 * It returns the minimum PFN based on information provided via
5010 * add_active_range().
5012 unsigned long __init
find_min_pfn_with_active_regions(void)
5014 return find_min_pfn_for_node(MAX_NUMNODES
);
5018 * early_calculate_totalpages()
5019 * Sum pages in active regions for movable zone.
5020 * Populate N_MEMORY for calculating usable_nodes.
5022 static unsigned long __init
early_calculate_totalpages(void)
5024 unsigned long totalpages
= 0;
5025 unsigned long start_pfn
, end_pfn
;
5028 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5029 unsigned long pages
= end_pfn
- start_pfn
;
5031 totalpages
+= pages
;
5033 node_set_state(nid
, N_MEMORY
);
5039 * Find the PFN the Movable zone begins in each node. Kernel memory
5040 * is spread evenly between nodes as long as the nodes have enough
5041 * memory. When they don't, some nodes will have more kernelcore than
5044 static void __init
find_zone_movable_pfns_for_nodes(void)
5047 unsigned long usable_startpfn
;
5048 unsigned long kernelcore_node
, kernelcore_remaining
;
5049 /* save the state before borrow the nodemask */
5050 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5051 unsigned long totalpages
= early_calculate_totalpages();
5052 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5053 struct memblock_type
*type
= &memblock
.memory
;
5055 /* Need to find movable_zone earlier when movable_node is specified. */
5056 find_usable_zone_for_movable();
5059 * If movable_node is specified, ignore kernelcore and movablecore
5062 if (movable_node_is_enabled()) {
5063 for (i
= 0; i
< type
->cnt
; i
++) {
5064 if (!memblock_is_hotpluggable(&type
->regions
[i
]))
5067 nid
= type
->regions
[i
].nid
;
5069 usable_startpfn
= PFN_DOWN(type
->regions
[i
].base
);
5070 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5071 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5079 * If movablecore=nn[KMG] was specified, calculate what size of
5080 * kernelcore that corresponds so that memory usable for
5081 * any allocation type is evenly spread. If both kernelcore
5082 * and movablecore are specified, then the value of kernelcore
5083 * will be used for required_kernelcore if it's greater than
5084 * what movablecore would have allowed.
5086 if (required_movablecore
) {
5087 unsigned long corepages
;
5090 * Round-up so that ZONE_MOVABLE is at least as large as what
5091 * was requested by the user
5093 required_movablecore
=
5094 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5095 corepages
= totalpages
- required_movablecore
;
5097 required_kernelcore
= max(required_kernelcore
, corepages
);
5100 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5101 if (!required_kernelcore
)
5104 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5105 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5108 /* Spread kernelcore memory as evenly as possible throughout nodes */
5109 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5110 for_each_node_state(nid
, N_MEMORY
) {
5111 unsigned long start_pfn
, end_pfn
;
5114 * Recalculate kernelcore_node if the division per node
5115 * now exceeds what is necessary to satisfy the requested
5116 * amount of memory for the kernel
5118 if (required_kernelcore
< kernelcore_node
)
5119 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5122 * As the map is walked, we track how much memory is usable
5123 * by the kernel using kernelcore_remaining. When it is
5124 * 0, the rest of the node is usable by ZONE_MOVABLE
5126 kernelcore_remaining
= kernelcore_node
;
5128 /* Go through each range of PFNs within this node */
5129 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5130 unsigned long size_pages
;
5132 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5133 if (start_pfn
>= end_pfn
)
5136 /* Account for what is only usable for kernelcore */
5137 if (start_pfn
< usable_startpfn
) {
5138 unsigned long kernel_pages
;
5139 kernel_pages
= min(end_pfn
, usable_startpfn
)
5142 kernelcore_remaining
-= min(kernel_pages
,
5143 kernelcore_remaining
);
5144 required_kernelcore
-= min(kernel_pages
,
5145 required_kernelcore
);
5147 /* Continue if range is now fully accounted */
5148 if (end_pfn
<= usable_startpfn
) {
5151 * Push zone_movable_pfn to the end so
5152 * that if we have to rebalance
5153 * kernelcore across nodes, we will
5154 * not double account here
5156 zone_movable_pfn
[nid
] = end_pfn
;
5159 start_pfn
= usable_startpfn
;
5163 * The usable PFN range for ZONE_MOVABLE is from
5164 * start_pfn->end_pfn. Calculate size_pages as the
5165 * number of pages used as kernelcore
5167 size_pages
= end_pfn
- start_pfn
;
5168 if (size_pages
> kernelcore_remaining
)
5169 size_pages
= kernelcore_remaining
;
5170 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5173 * Some kernelcore has been met, update counts and
5174 * break if the kernelcore for this node has been
5177 required_kernelcore
-= min(required_kernelcore
,
5179 kernelcore_remaining
-= size_pages
;
5180 if (!kernelcore_remaining
)
5186 * If there is still required_kernelcore, we do another pass with one
5187 * less node in the count. This will push zone_movable_pfn[nid] further
5188 * along on the nodes that still have memory until kernelcore is
5192 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5196 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5197 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5198 zone_movable_pfn
[nid
] =
5199 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5202 /* restore the node_state */
5203 node_states
[N_MEMORY
] = saved_node_state
;
5206 /* Any regular or high memory on that node ? */
5207 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5209 enum zone_type zone_type
;
5211 if (N_MEMORY
== N_NORMAL_MEMORY
)
5214 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5215 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5216 if (populated_zone(zone
)) {
5217 node_set_state(nid
, N_HIGH_MEMORY
);
5218 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5219 zone_type
<= ZONE_NORMAL
)
5220 node_set_state(nid
, N_NORMAL_MEMORY
);
5227 * free_area_init_nodes - Initialise all pg_data_t and zone data
5228 * @max_zone_pfn: an array of max PFNs for each zone
5230 * This will call free_area_init_node() for each active node in the system.
5231 * Using the page ranges provided by add_active_range(), the size of each
5232 * zone in each node and their holes is calculated. If the maximum PFN
5233 * between two adjacent zones match, it is assumed that the zone is empty.
5234 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5235 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5236 * starts where the previous one ended. For example, ZONE_DMA32 starts
5237 * at arch_max_dma_pfn.
5239 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5241 unsigned long start_pfn
, end_pfn
;
5244 /* Record where the zone boundaries are */
5245 memset(arch_zone_lowest_possible_pfn
, 0,
5246 sizeof(arch_zone_lowest_possible_pfn
));
5247 memset(arch_zone_highest_possible_pfn
, 0,
5248 sizeof(arch_zone_highest_possible_pfn
));
5249 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5250 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5251 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5252 if (i
== ZONE_MOVABLE
)
5254 arch_zone_lowest_possible_pfn
[i
] =
5255 arch_zone_highest_possible_pfn
[i
-1];
5256 arch_zone_highest_possible_pfn
[i
] =
5257 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5259 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5260 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5262 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5263 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5264 find_zone_movable_pfns_for_nodes();
5266 /* Print out the zone ranges */
5267 printk("Zone ranges:\n");
5268 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5269 if (i
== ZONE_MOVABLE
)
5271 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5272 if (arch_zone_lowest_possible_pfn
[i
] ==
5273 arch_zone_highest_possible_pfn
[i
])
5274 printk(KERN_CONT
"empty\n");
5276 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5277 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5278 (arch_zone_highest_possible_pfn
[i
]
5279 << PAGE_SHIFT
) - 1);
5282 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5283 printk("Movable zone start for each node\n");
5284 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5285 if (zone_movable_pfn
[i
])
5286 printk(" Node %d: %#010lx\n", i
,
5287 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5290 /* Print out the early node map */
5291 printk("Early memory node ranges\n");
5292 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5293 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5294 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5296 /* Initialise every node */
5297 mminit_verify_pageflags_layout();
5298 setup_nr_node_ids();
5299 for_each_online_node(nid
) {
5300 pg_data_t
*pgdat
= NODE_DATA(nid
);
5301 free_area_init_node(nid
, NULL
,
5302 find_min_pfn_for_node(nid
), NULL
);
5304 /* Any memory on that node */
5305 if (pgdat
->node_present_pages
)
5306 node_set_state(nid
, N_MEMORY
);
5307 check_for_memory(pgdat
, nid
);
5311 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5313 unsigned long long coremem
;
5317 coremem
= memparse(p
, &p
);
5318 *core
= coremem
>> PAGE_SHIFT
;
5320 /* Paranoid check that UL is enough for the coremem value */
5321 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5327 * kernelcore=size sets the amount of memory for use for allocations that
5328 * cannot be reclaimed or migrated.
5330 static int __init
cmdline_parse_kernelcore(char *p
)
5332 return cmdline_parse_core(p
, &required_kernelcore
);
5336 * movablecore=size sets the amount of memory for use for allocations that
5337 * can be reclaimed or migrated.
5339 static int __init
cmdline_parse_movablecore(char *p
)
5341 return cmdline_parse_core(p
, &required_movablecore
);
5344 early_param("kernelcore", cmdline_parse_kernelcore
);
5345 early_param("movablecore", cmdline_parse_movablecore
);
5347 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5349 void adjust_managed_page_count(struct page
*page
, long count
)
5351 spin_lock(&managed_page_count_lock
);
5352 page_zone(page
)->managed_pages
+= count
;
5353 totalram_pages
+= count
;
5354 #ifdef CONFIG_HIGHMEM
5355 if (PageHighMem(page
))
5356 totalhigh_pages
+= count
;
5358 spin_unlock(&managed_page_count_lock
);
5360 EXPORT_SYMBOL(adjust_managed_page_count
);
5362 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5365 unsigned long pages
= 0;
5367 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5368 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5369 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5370 if ((unsigned int)poison
<= 0xFF)
5371 memset(pos
, poison
, PAGE_SIZE
);
5372 free_reserved_page(virt_to_page(pos
));
5376 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5377 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5381 EXPORT_SYMBOL(free_reserved_area
);
5383 #ifdef CONFIG_HIGHMEM
5384 void free_highmem_page(struct page
*page
)
5386 __free_reserved_page(page
);
5388 page_zone(page
)->managed_pages
++;
5394 void __init
mem_init_print_info(const char *str
)
5396 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5397 unsigned long init_code_size
, init_data_size
;
5399 physpages
= get_num_physpages();
5400 codesize
= _etext
- _stext
;
5401 datasize
= _edata
- _sdata
;
5402 rosize
= __end_rodata
- __start_rodata
;
5403 bss_size
= __bss_stop
- __bss_start
;
5404 init_data_size
= __init_end
- __init_begin
;
5405 init_code_size
= _einittext
- _sinittext
;
5408 * Detect special cases and adjust section sizes accordingly:
5409 * 1) .init.* may be embedded into .data sections
5410 * 2) .init.text.* may be out of [__init_begin, __init_end],
5411 * please refer to arch/tile/kernel/vmlinux.lds.S.
5412 * 3) .rodata.* may be embedded into .text or .data sections.
5414 #define adj_init_size(start, end, size, pos, adj) \
5416 if (start <= pos && pos < end && size > adj) \
5420 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5421 _sinittext
, init_code_size
);
5422 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5423 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5424 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5425 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5427 #undef adj_init_size
5429 printk("Memory: %luK/%luK available "
5430 "(%luK kernel code, %luK rwdata, %luK rodata, "
5431 "%luK init, %luK bss, %luK reserved"
5432 #ifdef CONFIG_HIGHMEM
5436 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5437 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5438 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5439 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5440 #ifdef CONFIG_HIGHMEM
5441 totalhigh_pages
<< (PAGE_SHIFT
-10),
5443 str
? ", " : "", str
? str
: "");
5447 * set_dma_reserve - set the specified number of pages reserved in the first zone
5448 * @new_dma_reserve: The number of pages to mark reserved
5450 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5451 * In the DMA zone, a significant percentage may be consumed by kernel image
5452 * and other unfreeable allocations which can skew the watermarks badly. This
5453 * function may optionally be used to account for unfreeable pages in the
5454 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5455 * smaller per-cpu batchsize.
5457 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5459 dma_reserve
= new_dma_reserve
;
5462 void __init
free_area_init(unsigned long *zones_size
)
5464 free_area_init_node(0, zones_size
,
5465 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5468 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5469 unsigned long action
, void *hcpu
)
5471 int cpu
= (unsigned long)hcpu
;
5473 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5474 lru_add_drain_cpu(cpu
);
5478 * Spill the event counters of the dead processor
5479 * into the current processors event counters.
5480 * This artificially elevates the count of the current
5483 vm_events_fold_cpu(cpu
);
5486 * Zero the differential counters of the dead processor
5487 * so that the vm statistics are consistent.
5489 * This is only okay since the processor is dead and cannot
5490 * race with what we are doing.
5492 cpu_vm_stats_fold(cpu
);
5497 void __init
page_alloc_init(void)
5499 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5503 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5504 * or min_free_kbytes changes.
5506 static void calculate_totalreserve_pages(void)
5508 struct pglist_data
*pgdat
;
5509 unsigned long reserve_pages
= 0;
5510 enum zone_type i
, j
;
5512 for_each_online_pgdat(pgdat
) {
5513 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5514 struct zone
*zone
= pgdat
->node_zones
+ i
;
5515 unsigned long max
= 0;
5517 /* Find valid and maximum lowmem_reserve in the zone */
5518 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5519 if (zone
->lowmem_reserve
[j
] > max
)
5520 max
= zone
->lowmem_reserve
[j
];
5523 /* we treat the high watermark as reserved pages. */
5524 max
+= high_wmark_pages(zone
);
5526 if (max
> zone
->managed_pages
)
5527 max
= zone
->managed_pages
;
5528 reserve_pages
+= max
;
5530 * Lowmem reserves are not available to
5531 * GFP_HIGHUSER page cache allocations and
5532 * kswapd tries to balance zones to their high
5533 * watermark. As a result, neither should be
5534 * regarded as dirtyable memory, to prevent a
5535 * situation where reclaim has to clean pages
5536 * in order to balance the zones.
5538 zone
->dirty_balance_reserve
= max
;
5541 dirty_balance_reserve
= reserve_pages
;
5542 totalreserve_pages
= reserve_pages
;
5546 * setup_per_zone_lowmem_reserve - called whenever
5547 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5548 * has a correct pages reserved value, so an adequate number of
5549 * pages are left in the zone after a successful __alloc_pages().
5551 static void setup_per_zone_lowmem_reserve(void)
5553 struct pglist_data
*pgdat
;
5554 enum zone_type j
, idx
;
5556 for_each_online_pgdat(pgdat
) {
5557 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5558 struct zone
*zone
= pgdat
->node_zones
+ j
;
5559 unsigned long managed_pages
= zone
->managed_pages
;
5561 zone
->lowmem_reserve
[j
] = 0;
5565 struct zone
*lower_zone
;
5569 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5570 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5572 lower_zone
= pgdat
->node_zones
+ idx
;
5573 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5574 sysctl_lowmem_reserve_ratio
[idx
];
5575 managed_pages
+= lower_zone
->managed_pages
;
5580 /* update totalreserve_pages */
5581 calculate_totalreserve_pages();
5584 static void __setup_per_zone_wmarks(void)
5586 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5587 unsigned long lowmem_pages
= 0;
5589 unsigned long flags
;
5591 /* Calculate total number of !ZONE_HIGHMEM pages */
5592 for_each_zone(zone
) {
5593 if (!is_highmem(zone
))
5594 lowmem_pages
+= zone
->managed_pages
;
5597 for_each_zone(zone
) {
5600 spin_lock_irqsave(&zone
->lock
, flags
);
5601 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5602 do_div(tmp
, lowmem_pages
);
5603 if (is_highmem(zone
)) {
5605 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5606 * need highmem pages, so cap pages_min to a small
5609 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5610 * deltas controls asynch page reclaim, and so should
5611 * not be capped for highmem.
5613 unsigned long min_pages
;
5615 min_pages
= zone
->managed_pages
/ 1024;
5616 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5617 zone
->watermark
[WMARK_MIN
] = min_pages
;
5620 * If it's a lowmem zone, reserve a number of pages
5621 * proportionate to the zone's size.
5623 zone
->watermark
[WMARK_MIN
] = tmp
;
5626 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5627 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5629 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5630 high_wmark_pages(zone
) -
5631 low_wmark_pages(zone
) -
5632 zone_page_state(zone
, NR_ALLOC_BATCH
));
5634 setup_zone_migrate_reserve(zone
);
5635 spin_unlock_irqrestore(&zone
->lock
, flags
);
5638 /* update totalreserve_pages */
5639 calculate_totalreserve_pages();
5643 * setup_per_zone_wmarks - called when min_free_kbytes changes
5644 * or when memory is hot-{added|removed}
5646 * Ensures that the watermark[min,low,high] values for each zone are set
5647 * correctly with respect to min_free_kbytes.
5649 void setup_per_zone_wmarks(void)
5651 mutex_lock(&zonelists_mutex
);
5652 __setup_per_zone_wmarks();
5653 mutex_unlock(&zonelists_mutex
);
5657 * The inactive anon list should be small enough that the VM never has to
5658 * do too much work, but large enough that each inactive page has a chance
5659 * to be referenced again before it is swapped out.
5661 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5662 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5663 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5664 * the anonymous pages are kept on the inactive list.
5667 * memory ratio inactive anon
5668 * -------------------------------------
5677 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5679 unsigned int gb
, ratio
;
5681 /* Zone size in gigabytes */
5682 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5684 ratio
= int_sqrt(10 * gb
);
5688 zone
->inactive_ratio
= ratio
;
5691 static void __meminit
setup_per_zone_inactive_ratio(void)
5696 calculate_zone_inactive_ratio(zone
);
5700 * Initialise min_free_kbytes.
5702 * For small machines we want it small (128k min). For large machines
5703 * we want it large (64MB max). But it is not linear, because network
5704 * bandwidth does not increase linearly with machine size. We use
5706 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5707 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5723 int __meminit
init_per_zone_wmark_min(void)
5725 unsigned long lowmem_kbytes
;
5726 int new_min_free_kbytes
;
5728 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5729 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5731 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5732 min_free_kbytes
= new_min_free_kbytes
;
5733 if (min_free_kbytes
< 128)
5734 min_free_kbytes
= 128;
5735 if (min_free_kbytes
> 65536)
5736 min_free_kbytes
= 65536;
5738 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5739 new_min_free_kbytes
, user_min_free_kbytes
);
5741 setup_per_zone_wmarks();
5742 refresh_zone_stat_thresholds();
5743 setup_per_zone_lowmem_reserve();
5744 setup_per_zone_inactive_ratio();
5747 module_init(init_per_zone_wmark_min
)
5750 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5751 * that we can call two helper functions whenever min_free_kbytes
5754 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5755 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5759 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5764 user_min_free_kbytes
= min_free_kbytes
;
5765 setup_per_zone_wmarks();
5771 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5772 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5777 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5782 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5783 sysctl_min_unmapped_ratio
) / 100;
5787 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5788 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5793 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5798 zone
->min_slab_pages
= (zone
->managed_pages
*
5799 sysctl_min_slab_ratio
) / 100;
5805 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5806 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5807 * whenever sysctl_lowmem_reserve_ratio changes.
5809 * The reserve ratio obviously has absolutely no relation with the
5810 * minimum watermarks. The lowmem reserve ratio can only make sense
5811 * if in function of the boot time zone sizes.
5813 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5814 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5816 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5817 setup_per_zone_lowmem_reserve();
5822 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5823 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5824 * pagelist can have before it gets flushed back to buddy allocator.
5826 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5827 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5833 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5834 if (!write
|| (ret
< 0))
5837 mutex_lock(&pcp_batch_high_lock
);
5838 for_each_populated_zone(zone
) {
5840 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5841 for_each_possible_cpu(cpu
)
5842 pageset_set_high(per_cpu_ptr(zone
->pageset
, cpu
),
5845 mutex_unlock(&pcp_batch_high_lock
);
5849 int hashdist
= HASHDIST_DEFAULT
;
5852 static int __init
set_hashdist(char *str
)
5856 hashdist
= simple_strtoul(str
, &str
, 0);
5859 __setup("hashdist=", set_hashdist
);
5863 * allocate a large system hash table from bootmem
5864 * - it is assumed that the hash table must contain an exact power-of-2
5865 * quantity of entries
5866 * - limit is the number of hash buckets, not the total allocation size
5868 void *__init
alloc_large_system_hash(const char *tablename
,
5869 unsigned long bucketsize
,
5870 unsigned long numentries
,
5873 unsigned int *_hash_shift
,
5874 unsigned int *_hash_mask
,
5875 unsigned long low_limit
,
5876 unsigned long high_limit
)
5878 unsigned long long max
= high_limit
;
5879 unsigned long log2qty
, size
;
5882 /* allow the kernel cmdline to have a say */
5884 /* round applicable memory size up to nearest megabyte */
5885 numentries
= nr_kernel_pages
;
5887 /* It isn't necessary when PAGE_SIZE >= 1MB */
5888 if (PAGE_SHIFT
< 20)
5889 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5891 /* limit to 1 bucket per 2^scale bytes of low memory */
5892 if (scale
> PAGE_SHIFT
)
5893 numentries
>>= (scale
- PAGE_SHIFT
);
5895 numentries
<<= (PAGE_SHIFT
- scale
);
5897 /* Make sure we've got at least a 0-order allocation.. */
5898 if (unlikely(flags
& HASH_SMALL
)) {
5899 /* Makes no sense without HASH_EARLY */
5900 WARN_ON(!(flags
& HASH_EARLY
));
5901 if (!(numentries
>> *_hash_shift
)) {
5902 numentries
= 1UL << *_hash_shift
;
5903 BUG_ON(!numentries
);
5905 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5906 numentries
= PAGE_SIZE
/ bucketsize
;
5908 numentries
= roundup_pow_of_two(numentries
);
5910 /* limit allocation size to 1/16 total memory by default */
5912 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5913 do_div(max
, bucketsize
);
5915 max
= min(max
, 0x80000000ULL
);
5917 if (numentries
< low_limit
)
5918 numentries
= low_limit
;
5919 if (numentries
> max
)
5922 log2qty
= ilog2(numentries
);
5925 size
= bucketsize
<< log2qty
;
5926 if (flags
& HASH_EARLY
)
5927 table
= memblock_virt_alloc_nopanic(size
, 0);
5929 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5932 * If bucketsize is not a power-of-two, we may free
5933 * some pages at the end of hash table which
5934 * alloc_pages_exact() automatically does
5936 if (get_order(size
) < MAX_ORDER
) {
5937 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5938 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5941 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5944 panic("Failed to allocate %s hash table\n", tablename
);
5946 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5949 ilog2(size
) - PAGE_SHIFT
,
5953 *_hash_shift
= log2qty
;
5955 *_hash_mask
= (1 << log2qty
) - 1;
5960 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5961 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5964 #ifdef CONFIG_SPARSEMEM
5965 return __pfn_to_section(pfn
)->pageblock_flags
;
5967 return zone
->pageblock_flags
;
5968 #endif /* CONFIG_SPARSEMEM */
5971 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5973 #ifdef CONFIG_SPARSEMEM
5974 pfn
&= (PAGES_PER_SECTION
-1);
5975 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5977 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5978 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5979 #endif /* CONFIG_SPARSEMEM */
5983 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5984 * @page: The page within the block of interest
5985 * @start_bitidx: The first bit of interest to retrieve
5986 * @end_bitidx: The last bit of interest
5987 * returns pageblock_bits flags
5989 unsigned long get_pageblock_flags_group(struct page
*page
,
5990 int start_bitidx
, int end_bitidx
)
5993 unsigned long *bitmap
;
5994 unsigned long pfn
, bitidx
;
5995 unsigned long flags
= 0;
5996 unsigned long value
= 1;
5998 zone
= page_zone(page
);
5999 pfn
= page_to_pfn(page
);
6000 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6001 bitidx
= pfn_to_bitidx(zone
, pfn
);
6003 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
6004 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
6011 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6012 * @page: The page within the block of interest
6013 * @start_bitidx: The first bit of interest
6014 * @end_bitidx: The last bit of interest
6015 * @flags: The flags to set
6017 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
6018 int start_bitidx
, int end_bitidx
)
6021 unsigned long *bitmap
;
6022 unsigned long pfn
, bitidx
;
6023 unsigned long value
= 1;
6025 zone
= page_zone(page
);
6026 pfn
= page_to_pfn(page
);
6027 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6028 bitidx
= pfn_to_bitidx(zone
, pfn
);
6029 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6031 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
6033 __set_bit(bitidx
+ start_bitidx
, bitmap
);
6035 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
6039 * This function checks whether pageblock includes unmovable pages or not.
6040 * If @count is not zero, it is okay to include less @count unmovable pages
6042 * PageLRU check without isolation or lru_lock could race so that
6043 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6044 * expect this function should be exact.
6046 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6047 bool skip_hwpoisoned_pages
)
6049 unsigned long pfn
, iter
, found
;
6053 * For avoiding noise data, lru_add_drain_all() should be called
6054 * If ZONE_MOVABLE, the zone never contains unmovable pages
6056 if (zone_idx(zone
) == ZONE_MOVABLE
)
6058 mt
= get_pageblock_migratetype(page
);
6059 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6062 pfn
= page_to_pfn(page
);
6063 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6064 unsigned long check
= pfn
+ iter
;
6066 if (!pfn_valid_within(check
))
6069 page
= pfn_to_page(check
);
6072 * Hugepages are not in LRU lists, but they're movable.
6073 * We need not scan over tail pages bacause we don't
6074 * handle each tail page individually in migration.
6076 if (PageHuge(page
)) {
6077 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6082 * We can't use page_count without pin a page
6083 * because another CPU can free compound page.
6084 * This check already skips compound tails of THP
6085 * because their page->_count is zero at all time.
6087 if (!atomic_read(&page
->_count
)) {
6088 if (PageBuddy(page
))
6089 iter
+= (1 << page_order(page
)) - 1;
6094 * The HWPoisoned page may be not in buddy system, and
6095 * page_count() is not 0.
6097 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6103 * If there are RECLAIMABLE pages, we need to check it.
6104 * But now, memory offline itself doesn't call shrink_slab()
6105 * and it still to be fixed.
6108 * If the page is not RAM, page_count()should be 0.
6109 * we don't need more check. This is an _used_ not-movable page.
6111 * The problematic thing here is PG_reserved pages. PG_reserved
6112 * is set to both of a memory hole page and a _used_ kernel
6121 bool is_pageblock_removable_nolock(struct page
*page
)
6127 * We have to be careful here because we are iterating over memory
6128 * sections which are not zone aware so we might end up outside of
6129 * the zone but still within the section.
6130 * We have to take care about the node as well. If the node is offline
6131 * its NODE_DATA will be NULL - see page_zone.
6133 if (!node_online(page_to_nid(page
)))
6136 zone
= page_zone(page
);
6137 pfn
= page_to_pfn(page
);
6138 if (!zone_spans_pfn(zone
, pfn
))
6141 return !has_unmovable_pages(zone
, page
, 0, true);
6146 static unsigned long pfn_max_align_down(unsigned long pfn
)
6148 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6149 pageblock_nr_pages
) - 1);
6152 static unsigned long pfn_max_align_up(unsigned long pfn
)
6154 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6155 pageblock_nr_pages
));
6158 /* [start, end) must belong to a single zone. */
6159 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6160 unsigned long start
, unsigned long end
)
6162 /* This function is based on compact_zone() from compaction.c. */
6163 unsigned long nr_reclaimed
;
6164 unsigned long pfn
= start
;
6165 unsigned int tries
= 0;
6170 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6171 if (fatal_signal_pending(current
)) {
6176 if (list_empty(&cc
->migratepages
)) {
6177 cc
->nr_migratepages
= 0;
6178 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6185 } else if (++tries
== 5) {
6186 ret
= ret
< 0 ? ret
: -EBUSY
;
6190 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6192 cc
->nr_migratepages
-= nr_reclaimed
;
6194 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6195 0, MIGRATE_SYNC
, MR_CMA
);
6198 putback_movable_pages(&cc
->migratepages
);
6205 * alloc_contig_range() -- tries to allocate given range of pages
6206 * @start: start PFN to allocate
6207 * @end: one-past-the-last PFN to allocate
6208 * @migratetype: migratetype of the underlaying pageblocks (either
6209 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6210 * in range must have the same migratetype and it must
6211 * be either of the two.
6213 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6214 * aligned, however it's the caller's responsibility to guarantee that
6215 * we are the only thread that changes migrate type of pageblocks the
6218 * The PFN range must belong to a single zone.
6220 * Returns zero on success or negative error code. On success all
6221 * pages which PFN is in [start, end) are allocated for the caller and
6222 * need to be freed with free_contig_range().
6224 int alloc_contig_range(unsigned long start
, unsigned long end
,
6225 unsigned migratetype
)
6227 unsigned long outer_start
, outer_end
;
6230 struct compact_control cc
= {
6231 .nr_migratepages
= 0,
6233 .zone
= page_zone(pfn_to_page(start
)),
6235 .ignore_skip_hint
= true,
6237 INIT_LIST_HEAD(&cc
.migratepages
);
6240 * What we do here is we mark all pageblocks in range as
6241 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6242 * have different sizes, and due to the way page allocator
6243 * work, we align the range to biggest of the two pages so
6244 * that page allocator won't try to merge buddies from
6245 * different pageblocks and change MIGRATE_ISOLATE to some
6246 * other migration type.
6248 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6249 * migrate the pages from an unaligned range (ie. pages that
6250 * we are interested in). This will put all the pages in
6251 * range back to page allocator as MIGRATE_ISOLATE.
6253 * When this is done, we take the pages in range from page
6254 * allocator removing them from the buddy system. This way
6255 * page allocator will never consider using them.
6257 * This lets us mark the pageblocks back as
6258 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6259 * aligned range but not in the unaligned, original range are
6260 * put back to page allocator so that buddy can use them.
6263 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6264 pfn_max_align_up(end
), migratetype
,
6269 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6274 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6275 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6276 * more, all pages in [start, end) are free in page allocator.
6277 * What we are going to do is to allocate all pages from
6278 * [start, end) (that is remove them from page allocator).
6280 * The only problem is that pages at the beginning and at the
6281 * end of interesting range may be not aligned with pages that
6282 * page allocator holds, ie. they can be part of higher order
6283 * pages. Because of this, we reserve the bigger range and
6284 * once this is done free the pages we are not interested in.
6286 * We don't have to hold zone->lock here because the pages are
6287 * isolated thus they won't get removed from buddy.
6290 lru_add_drain_all();
6294 outer_start
= start
;
6295 while (!PageBuddy(pfn_to_page(outer_start
))) {
6296 if (++order
>= MAX_ORDER
) {
6300 outer_start
&= ~0UL << order
;
6303 /* Make sure the range is really isolated. */
6304 if (test_pages_isolated(outer_start
, end
, false)) {
6305 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6312 /* Grab isolated pages from freelists. */
6313 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6319 /* Free head and tail (if any) */
6320 if (start
!= outer_start
)
6321 free_contig_range(outer_start
, start
- outer_start
);
6322 if (end
!= outer_end
)
6323 free_contig_range(end
, outer_end
- end
);
6326 undo_isolate_page_range(pfn_max_align_down(start
),
6327 pfn_max_align_up(end
), migratetype
);
6331 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6333 unsigned int count
= 0;
6335 for (; nr_pages
--; pfn
++) {
6336 struct page
*page
= pfn_to_page(pfn
);
6338 count
+= page_count(page
) != 1;
6341 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6345 #ifdef CONFIG_MEMORY_HOTPLUG
6347 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6348 * page high values need to be recalulated.
6350 void __meminit
zone_pcp_update(struct zone
*zone
)
6353 mutex_lock(&pcp_batch_high_lock
);
6354 for_each_possible_cpu(cpu
)
6355 pageset_set_high_and_batch(zone
,
6356 per_cpu_ptr(zone
->pageset
, cpu
));
6357 mutex_unlock(&pcp_batch_high_lock
);
6361 void zone_pcp_reset(struct zone
*zone
)
6363 unsigned long flags
;
6365 struct per_cpu_pageset
*pset
;
6367 /* avoid races with drain_pages() */
6368 local_irq_save(flags
);
6369 if (zone
->pageset
!= &boot_pageset
) {
6370 for_each_online_cpu(cpu
) {
6371 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6372 drain_zonestat(zone
, pset
);
6374 free_percpu(zone
->pageset
);
6375 zone
->pageset
= &boot_pageset
;
6377 local_irq_restore(flags
);
6380 #ifdef CONFIG_MEMORY_HOTREMOVE
6382 * All pages in the range must be isolated before calling this.
6385 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6391 unsigned long flags
;
6392 /* find the first valid pfn */
6393 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6398 zone
= page_zone(pfn_to_page(pfn
));
6399 spin_lock_irqsave(&zone
->lock
, flags
);
6401 while (pfn
< end_pfn
) {
6402 if (!pfn_valid(pfn
)) {
6406 page
= pfn_to_page(pfn
);
6408 * The HWPoisoned page may be not in buddy system, and
6409 * page_count() is not 0.
6411 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6413 SetPageReserved(page
);
6417 BUG_ON(page_count(page
));
6418 BUG_ON(!PageBuddy(page
));
6419 order
= page_order(page
);
6420 #ifdef CONFIG_DEBUG_VM
6421 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6422 pfn
, 1 << order
, end_pfn
);
6424 list_del(&page
->lru
);
6425 rmv_page_order(page
);
6426 zone
->free_area
[order
].nr_free
--;
6427 for (i
= 0; i
< (1 << order
); i
++)
6428 SetPageReserved((page
+i
));
6429 pfn
+= (1 << order
);
6431 spin_unlock_irqrestore(&zone
->lock
, flags
);
6435 #ifdef CONFIG_MEMORY_FAILURE
6436 bool is_free_buddy_page(struct page
*page
)
6438 struct zone
*zone
= page_zone(page
);
6439 unsigned long pfn
= page_to_pfn(page
);
6440 unsigned long flags
;
6443 spin_lock_irqsave(&zone
->lock
, flags
);
6444 for (order
= 0; order
< MAX_ORDER
; order
++) {
6445 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6447 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6450 spin_unlock_irqrestore(&zone
->lock
, flags
);
6452 return order
< MAX_ORDER
;
6456 static const struct trace_print_flags pageflag_names
[] = {
6457 {1UL << PG_locked
, "locked" },
6458 {1UL << PG_error
, "error" },
6459 {1UL << PG_referenced
, "referenced" },
6460 {1UL << PG_uptodate
, "uptodate" },
6461 {1UL << PG_dirty
, "dirty" },
6462 {1UL << PG_lru
, "lru" },
6463 {1UL << PG_active
, "active" },
6464 {1UL << PG_slab
, "slab" },
6465 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6466 {1UL << PG_arch_1
, "arch_1" },
6467 {1UL << PG_reserved
, "reserved" },
6468 {1UL << PG_private
, "private" },
6469 {1UL << PG_private_2
, "private_2" },
6470 {1UL << PG_writeback
, "writeback" },
6471 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6472 {1UL << PG_head
, "head" },
6473 {1UL << PG_tail
, "tail" },
6475 {1UL << PG_compound
, "compound" },
6477 {1UL << PG_swapcache
, "swapcache" },
6478 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6479 {1UL << PG_reclaim
, "reclaim" },
6480 {1UL << PG_swapbacked
, "swapbacked" },
6481 {1UL << PG_unevictable
, "unevictable" },
6483 {1UL << PG_mlocked
, "mlocked" },
6485 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6486 {1UL << PG_uncached
, "uncached" },
6488 #ifdef CONFIG_MEMORY_FAILURE
6489 {1UL << PG_hwpoison
, "hwpoison" },
6491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6492 {1UL << PG_compound_lock
, "compound_lock" },
6496 static void dump_page_flags(unsigned long flags
)
6498 const char *delim
= "";
6502 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6504 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6506 /* remove zone id */
6507 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6509 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6511 mask
= pageflag_names
[i
].mask
;
6512 if ((flags
& mask
) != mask
)
6516 printk("%s%s", delim
, pageflag_names
[i
].name
);
6520 /* check for left over flags */
6522 printk("%s%#lx", delim
, flags
);
6527 void dump_page_badflags(struct page
*page
, char *reason
, unsigned long badflags
)
6530 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6531 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6532 page
->mapping
, page
->index
);
6533 dump_page_flags(page
->flags
);
6535 pr_alert("page dumped because: %s\n", reason
);
6536 if (page
->flags
& badflags
) {
6537 pr_alert("bad because of flags:\n");
6538 dump_page_flags(page
->flags
& badflags
);
6540 mem_cgroup_print_bad_page(page
);
6543 void dump_page(struct page
*page
, char *reason
)
6545 dump_page_badflags(page
, reason
, 0);
6547 EXPORT_SYMBOL_GPL(dump_page
);