2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION
);
78 MODULE_LICENSE("GPL");
80 static int hpsa_allow_any
;
81 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
82 MODULE_PARM_DESC(hpsa_allow_any
,
83 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode
;
85 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
86 MODULE_PARM_DESC(hpsa_simple_mode
,
87 "Use 'simple mode' rather than 'performant mode'");
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id
[] = {
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
131 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
132 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
133 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
134 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
137 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
138 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
139 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
140 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
141 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
142 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
143 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
147 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
149 /* board_id = Subsystem Device ID & Vendor ID
150 * product = Marketing Name for the board
151 * access = Address of the struct of function pointers
153 static struct board_type products
[] = {
154 {0x3241103C, "Smart Array P212", &SA5_access
},
155 {0x3243103C, "Smart Array P410", &SA5_access
},
156 {0x3245103C, "Smart Array P410i", &SA5_access
},
157 {0x3247103C, "Smart Array P411", &SA5_access
},
158 {0x3249103C, "Smart Array P812", &SA5_access
},
159 {0x324A103C, "Smart Array P712m", &SA5_access
},
160 {0x324B103C, "Smart Array P711m", &SA5_access
},
161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
162 {0x3350103C, "Smart Array P222", &SA5_access
},
163 {0x3351103C, "Smart Array P420", &SA5_access
},
164 {0x3352103C, "Smart Array P421", &SA5_access
},
165 {0x3353103C, "Smart Array P822", &SA5_access
},
166 {0x3354103C, "Smart Array P420i", &SA5_access
},
167 {0x3355103C, "Smart Array P220i", &SA5_access
},
168 {0x3356103C, "Smart Array P721m", &SA5_access
},
169 {0x1921103C, "Smart Array P830i", &SA5_access
},
170 {0x1922103C, "Smart Array P430", &SA5_access
},
171 {0x1923103C, "Smart Array P431", &SA5_access
},
172 {0x1924103C, "Smart Array P830", &SA5_access
},
173 {0x1926103C, "Smart Array P731m", &SA5_access
},
174 {0x1928103C, "Smart Array P230i", &SA5_access
},
175 {0x1929103C, "Smart Array P530", &SA5_access
},
176 {0x21BD103C, "Smart Array P244br", &SA5_access
},
177 {0x21BE103C, "Smart Array P741m", &SA5_access
},
178 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
179 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
180 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
181 {0x21C2103C, "Smart Array P440", &SA5_access
},
182 {0x21C3103C, "Smart Array P441", &SA5_access
},
183 {0x21C4103C, "Smart Array", &SA5_access
},
184 {0x21C5103C, "Smart Array P841", &SA5_access
},
185 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
186 {0x21C7103C, "Smart HBA H240", &SA5_access
},
187 {0x21C8103C, "Smart HBA H241", &SA5_access
},
188 {0x21C9103C, "Smart Array", &SA5_access
},
189 {0x21CA103C, "Smart Array P246br", &SA5_access
},
190 {0x21CB103C, "Smart Array P840", &SA5_access
},
191 {0x21CC103C, "Smart Array", &SA5_access
},
192 {0x21CD103C, "Smart Array", &SA5_access
},
193 {0x21CE103C, "Smart HBA", &SA5_access
},
194 {0x05809005, "SmartHBA-SA", &SA5_access
},
195 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
197 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
198 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
205 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy
;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle
;
212 static int number_of_controllers
;
214 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
215 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
216 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
219 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
223 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
224 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
225 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
226 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
227 struct scsi_cmnd
*scmd
);
228 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
229 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
231 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
232 #define VPD_PAGE (1 << 8)
234 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
235 static void hpsa_scan_start(struct Scsi_Host
*);
236 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
237 unsigned long elapsed_time
);
238 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
241 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
242 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
243 static int hpsa_slave_configure(struct scsi_device
*sdev
);
244 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
246 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
247 static int check_for_unit_attention(struct ctlr_info
*h
,
248 struct CommandList
*c
);
249 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
250 struct CommandList
*c
);
251 /* performant mode helper functions */
252 static void calc_bucket_map(int *bucket
, int num_buckets
,
253 int nsgs
, int min_blocks
, u32
*bucket_map
);
254 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
256 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
257 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
258 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
260 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
261 unsigned long *memory_bar
);
262 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
263 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
265 static inline void finish_cmd(struct CommandList
*c
);
266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
267 #define BOARD_NOT_READY 0
268 #define BOARD_READY 1
269 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
270 static void hpsa_flush_cache(struct ctlr_info
*h
);
271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
272 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
273 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
274 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
275 static u32
lockup_detected(struct ctlr_info
*h
);
276 static int detect_controller_lockup(struct ctlr_info
*h
);
277 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
);
279 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
281 unsigned long *priv
= shost_priv(sdev
->host
);
282 return (struct ctlr_info
*) *priv
;
285 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
287 unsigned long *priv
= shost_priv(sh
);
288 return (struct ctlr_info
*) *priv
;
291 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
293 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
296 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
298 return c
->abort_pending
|| c
->reset_pending
;
301 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
302 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
303 u8
*sense_key
, u8
*asc
, u8
*ascq
)
305 struct scsi_sense_hdr sshdr
;
312 if (sense_data_len
< 1)
315 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
317 *sense_key
= sshdr
.sense_key
;
323 static int check_for_unit_attention(struct ctlr_info
*h
,
324 struct CommandList
*c
)
326 u8 sense_key
, asc
, ascq
;
329 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
330 sense_len
= sizeof(c
->err_info
->SenseInfo
);
332 sense_len
= c
->err_info
->SenseLen
;
334 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
335 &sense_key
, &asc
, &ascq
);
336 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
341 dev_warn(&h
->pdev
->dev
,
342 "%s: a state change detected, command retried\n",
346 dev_warn(&h
->pdev
->dev
,
347 "%s: LUN failure detected\n", h
->devname
);
349 case REPORT_LUNS_CHANGED
:
350 dev_warn(&h
->pdev
->dev
,
351 "%s: report LUN data changed\n", h
->devname
);
353 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
354 * target (array) devices.
358 dev_warn(&h
->pdev
->dev
,
359 "%s: a power on or device reset detected\n",
362 case UNIT_ATTENTION_CLEARED
:
363 dev_warn(&h
->pdev
->dev
,
364 "%s: unit attention cleared by another initiator\n",
368 dev_warn(&h
->pdev
->dev
,
369 "%s: unknown unit attention detected\n",
376 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
378 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
379 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
380 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
382 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
386 static u32
lockup_detected(struct ctlr_info
*h
);
387 static ssize_t
host_show_lockup_detected(struct device
*dev
,
388 struct device_attribute
*attr
, char *buf
)
392 struct Scsi_Host
*shost
= class_to_shost(dev
);
394 h
= shost_to_hba(shost
);
395 ld
= lockup_detected(h
);
397 return sprintf(buf
, "ld=%d\n", ld
);
400 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
401 struct device_attribute
*attr
,
402 const char *buf
, size_t count
)
406 struct Scsi_Host
*shost
= class_to_shost(dev
);
409 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
411 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
412 strncpy(tmpbuf
, buf
, len
);
414 if (sscanf(tmpbuf
, "%d", &status
) != 1)
416 h
= shost_to_hba(shost
);
417 h
->acciopath_status
= !!status
;
418 dev_warn(&h
->pdev
->dev
,
419 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
420 h
->acciopath_status
? "enabled" : "disabled");
424 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
425 struct device_attribute
*attr
,
426 const char *buf
, size_t count
)
428 int debug_level
, len
;
430 struct Scsi_Host
*shost
= class_to_shost(dev
);
433 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
435 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
436 strncpy(tmpbuf
, buf
, len
);
438 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
442 h
= shost_to_hba(shost
);
443 h
->raid_offload_debug
= debug_level
;
444 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
445 h
->raid_offload_debug
);
449 static ssize_t
host_store_rescan(struct device
*dev
,
450 struct device_attribute
*attr
,
451 const char *buf
, size_t count
)
454 struct Scsi_Host
*shost
= class_to_shost(dev
);
455 h
= shost_to_hba(shost
);
456 hpsa_scan_start(h
->scsi_host
);
460 static ssize_t
host_show_firmware_revision(struct device
*dev
,
461 struct device_attribute
*attr
, char *buf
)
464 struct Scsi_Host
*shost
= class_to_shost(dev
);
465 unsigned char *fwrev
;
467 h
= shost_to_hba(shost
);
468 if (!h
->hba_inquiry_data
)
470 fwrev
= &h
->hba_inquiry_data
[32];
471 return snprintf(buf
, 20, "%c%c%c%c\n",
472 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
475 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
476 struct device_attribute
*attr
, char *buf
)
478 struct Scsi_Host
*shost
= class_to_shost(dev
);
479 struct ctlr_info
*h
= shost_to_hba(shost
);
481 return snprintf(buf
, 20, "%d\n",
482 atomic_read(&h
->commands_outstanding
));
485 static ssize_t
host_show_transport_mode(struct device
*dev
,
486 struct device_attribute
*attr
, char *buf
)
489 struct Scsi_Host
*shost
= class_to_shost(dev
);
491 h
= shost_to_hba(shost
);
492 return snprintf(buf
, 20, "%s\n",
493 h
->transMethod
& CFGTBL_Trans_Performant
?
494 "performant" : "simple");
497 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
498 struct device_attribute
*attr
, char *buf
)
501 struct Scsi_Host
*shost
= class_to_shost(dev
);
503 h
= shost_to_hba(shost
);
504 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
505 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
508 /* List of controllers which cannot be hard reset on kexec with reset_devices */
509 static u32 unresettable_controller
[] = {
510 0x324a103C, /* Smart Array P712m */
511 0x324b103C, /* Smart Array P711m */
512 0x3223103C, /* Smart Array P800 */
513 0x3234103C, /* Smart Array P400 */
514 0x3235103C, /* Smart Array P400i */
515 0x3211103C, /* Smart Array E200i */
516 0x3212103C, /* Smart Array E200 */
517 0x3213103C, /* Smart Array E200i */
518 0x3214103C, /* Smart Array E200i */
519 0x3215103C, /* Smart Array E200i */
520 0x3237103C, /* Smart Array E500 */
521 0x323D103C, /* Smart Array P700m */
522 0x40800E11, /* Smart Array 5i */
523 0x409C0E11, /* Smart Array 6400 */
524 0x409D0E11, /* Smart Array 6400 EM */
525 0x40700E11, /* Smart Array 5300 */
526 0x40820E11, /* Smart Array 532 */
527 0x40830E11, /* Smart Array 5312 */
528 0x409A0E11, /* Smart Array 641 */
529 0x409B0E11, /* Smart Array 642 */
530 0x40910E11, /* Smart Array 6i */
533 /* List of controllers which cannot even be soft reset */
534 static u32 soft_unresettable_controller
[] = {
535 0x40800E11, /* Smart Array 5i */
536 0x40700E11, /* Smart Array 5300 */
537 0x40820E11, /* Smart Array 532 */
538 0x40830E11, /* Smart Array 5312 */
539 0x409A0E11, /* Smart Array 641 */
540 0x409B0E11, /* Smart Array 642 */
541 0x40910E11, /* Smart Array 6i */
542 /* Exclude 640x boards. These are two pci devices in one slot
543 * which share a battery backed cache module. One controls the
544 * cache, the other accesses the cache through the one that controls
545 * it. If we reset the one controlling the cache, the other will
546 * likely not be happy. Just forbid resetting this conjoined mess.
547 * The 640x isn't really supported by hpsa anyway.
549 0x409C0E11, /* Smart Array 6400 */
550 0x409D0E11, /* Smart Array 6400 EM */
553 static u32 needs_abort_tags_swizzled
[] = {
554 0x323D103C, /* Smart Array P700m */
555 0x324a103C, /* Smart Array P712m */
556 0x324b103C, /* SmartArray P711m */
559 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
563 for (i
= 0; i
< nelems
; i
++)
564 if (a
[i
] == board_id
)
569 static int ctlr_is_hard_resettable(u32 board_id
)
571 return !board_id_in_array(unresettable_controller
,
572 ARRAY_SIZE(unresettable_controller
), board_id
);
575 static int ctlr_is_soft_resettable(u32 board_id
)
577 return !board_id_in_array(soft_unresettable_controller
,
578 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
581 static int ctlr_is_resettable(u32 board_id
)
583 return ctlr_is_hard_resettable(board_id
) ||
584 ctlr_is_soft_resettable(board_id
);
587 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
589 return board_id_in_array(needs_abort_tags_swizzled
,
590 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
593 static ssize_t
host_show_resettable(struct device
*dev
,
594 struct device_attribute
*attr
, char *buf
)
597 struct Scsi_Host
*shost
= class_to_shost(dev
);
599 h
= shost_to_hba(shost
);
600 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
605 return (scsi3addr
[3] & 0xC0) == 0x40;
608 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
609 "1(+0)ADM", "UNKNOWN"
611 #define HPSA_RAID_0 0
612 #define HPSA_RAID_4 1
613 #define HPSA_RAID_1 2 /* also used for RAID 10 */
614 #define HPSA_RAID_5 3 /* also used for RAID 50 */
615 #define HPSA_RAID_51 4
616 #define HPSA_RAID_6 5 /* also used for RAID 60 */
617 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
620 static ssize_t
raid_level_show(struct device
*dev
,
621 struct device_attribute
*attr
, char *buf
)
624 unsigned char rlevel
;
626 struct scsi_device
*sdev
;
627 struct hpsa_scsi_dev_t
*hdev
;
630 sdev
= to_scsi_device(dev
);
631 h
= sdev_to_hba(sdev
);
632 spin_lock_irqsave(&h
->lock
, flags
);
633 hdev
= sdev
->hostdata
;
635 spin_unlock_irqrestore(&h
->lock
, flags
);
639 /* Is this even a logical drive? */
640 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
641 spin_unlock_irqrestore(&h
->lock
, flags
);
642 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
646 rlevel
= hdev
->raid_level
;
647 spin_unlock_irqrestore(&h
->lock
, flags
);
648 if (rlevel
> RAID_UNKNOWN
)
649 rlevel
= RAID_UNKNOWN
;
650 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
654 static ssize_t
lunid_show(struct device
*dev
,
655 struct device_attribute
*attr
, char *buf
)
658 struct scsi_device
*sdev
;
659 struct hpsa_scsi_dev_t
*hdev
;
661 unsigned char lunid
[8];
663 sdev
= to_scsi_device(dev
);
664 h
= sdev_to_hba(sdev
);
665 spin_lock_irqsave(&h
->lock
, flags
);
666 hdev
= sdev
->hostdata
;
668 spin_unlock_irqrestore(&h
->lock
, flags
);
671 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
672 spin_unlock_irqrestore(&h
->lock
, flags
);
673 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
674 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
675 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
678 static ssize_t
unique_id_show(struct device
*dev
,
679 struct device_attribute
*attr
, char *buf
)
682 struct scsi_device
*sdev
;
683 struct hpsa_scsi_dev_t
*hdev
;
685 unsigned char sn
[16];
687 sdev
= to_scsi_device(dev
);
688 h
= sdev_to_hba(sdev
);
689 spin_lock_irqsave(&h
->lock
, flags
);
690 hdev
= sdev
->hostdata
;
692 spin_unlock_irqrestore(&h
->lock
, flags
);
695 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
696 spin_unlock_irqrestore(&h
->lock
, flags
);
697 return snprintf(buf
, 16 * 2 + 2,
698 "%02X%02X%02X%02X%02X%02X%02X%02X"
699 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
700 sn
[0], sn
[1], sn
[2], sn
[3],
701 sn
[4], sn
[5], sn
[6], sn
[7],
702 sn
[8], sn
[9], sn
[10], sn
[11],
703 sn
[12], sn
[13], sn
[14], sn
[15]);
706 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
707 struct device_attribute
*attr
, char *buf
)
710 struct scsi_device
*sdev
;
711 struct hpsa_scsi_dev_t
*hdev
;
715 sdev
= to_scsi_device(dev
);
716 h
= sdev_to_hba(sdev
);
717 spin_lock_irqsave(&h
->lock
, flags
);
718 hdev
= sdev
->hostdata
;
720 spin_unlock_irqrestore(&h
->lock
, flags
);
723 offload_enabled
= hdev
->offload_enabled
;
724 spin_unlock_irqrestore(&h
->lock
, flags
);
725 return snprintf(buf
, 20, "%d\n", offload_enabled
);
729 #define PATH_STRING_LEN 50
731 static ssize_t
path_info_show(struct device
*dev
,
732 struct device_attribute
*attr
, char *buf
)
735 struct scsi_device
*sdev
;
736 struct hpsa_scsi_dev_t
*hdev
;
742 u8 path_map_index
= 0;
744 unsigned char phys_connector
[2];
745 unsigned char path
[MAX_PATHS
][PATH_STRING_LEN
];
747 memset(path
, 0, MAX_PATHS
* PATH_STRING_LEN
);
748 sdev
= to_scsi_device(dev
);
749 h
= sdev_to_hba(sdev
);
750 spin_lock_irqsave(&h
->devlock
, flags
);
751 hdev
= sdev
->hostdata
;
753 spin_unlock_irqrestore(&h
->devlock
, flags
);
758 for (i
= 0; i
< MAX_PATHS
; i
++) {
759 path_map_index
= 1<<i
;
760 if (i
== hdev
->active_path_index
)
762 else if (hdev
->path_map
& path_map_index
)
767 output_len
= snprintf(path
[i
],
768 PATH_STRING_LEN
, "[%d:%d:%d:%d] %20.20s ",
769 h
->scsi_host
->host_no
,
770 hdev
->bus
, hdev
->target
, hdev
->lun
,
771 scsi_device_type(hdev
->devtype
));
773 if (is_ext_target(h
, hdev
) ||
774 (hdev
->devtype
== TYPE_RAID
) ||
775 is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
776 output_len
+= snprintf(path
[i
] + output_len
,
777 PATH_STRING_LEN
, "%s\n",
783 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
784 sizeof(phys_connector
));
785 if (phys_connector
[0] < '0')
786 phys_connector
[0] = '0';
787 if (phys_connector
[1] < '0')
788 phys_connector
[1] = '0';
789 if (hdev
->phys_connector
[i
] > 0)
790 output_len
+= snprintf(path
[i
] + output_len
,
794 if (hdev
->devtype
== TYPE_DISK
&&
795 hdev
->expose_state
!= HPSA_DO_NOT_EXPOSE
) {
796 if (box
== 0 || box
== 0xFF) {
797 output_len
+= snprintf(path
[i
] + output_len
,
802 output_len
+= snprintf(path
[i
] + output_len
,
804 "BOX: %hhu BAY: %hhu %s\n",
807 } else if (box
!= 0 && box
!= 0xFF) {
808 output_len
+= snprintf(path
[i
] + output_len
,
809 PATH_STRING_LEN
, "BOX: %hhu %s\n",
812 output_len
+= snprintf(path
[i
] + output_len
,
813 PATH_STRING_LEN
, "%s\n", active
);
816 spin_unlock_irqrestore(&h
->devlock
, flags
);
817 return snprintf(buf
, output_len
+1, "%s%s%s%s%s%s%s%s",
818 path
[0], path
[1], path
[2], path
[3],
819 path
[4], path
[5], path
[6], path
[7]);
822 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
823 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
824 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
825 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
826 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
827 host_show_hp_ssd_smart_path_enabled
, NULL
);
828 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
829 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
830 host_show_hp_ssd_smart_path_status
,
831 host_store_hp_ssd_smart_path_status
);
832 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
833 host_store_raid_offload_debug
);
834 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
835 host_show_firmware_revision
, NULL
);
836 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
837 host_show_commands_outstanding
, NULL
);
838 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
839 host_show_transport_mode
, NULL
);
840 static DEVICE_ATTR(resettable
, S_IRUGO
,
841 host_show_resettable
, NULL
);
842 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
843 host_show_lockup_detected
, NULL
);
845 static struct device_attribute
*hpsa_sdev_attrs
[] = {
846 &dev_attr_raid_level
,
849 &dev_attr_hp_ssd_smart_path_enabled
,
851 &dev_attr_lockup_detected
,
855 static struct device_attribute
*hpsa_shost_attrs
[] = {
857 &dev_attr_firmware_revision
,
858 &dev_attr_commands_outstanding
,
859 &dev_attr_transport_mode
,
860 &dev_attr_resettable
,
861 &dev_attr_hp_ssd_smart_path_status
,
862 &dev_attr_raid_offload_debug
,
866 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
867 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
869 static struct scsi_host_template hpsa_driver_template
= {
870 .module
= THIS_MODULE
,
873 .queuecommand
= hpsa_scsi_queue_command
,
874 .scan_start
= hpsa_scan_start
,
875 .scan_finished
= hpsa_scan_finished
,
876 .change_queue_depth
= hpsa_change_queue_depth
,
878 .use_clustering
= ENABLE_CLUSTERING
,
879 .eh_abort_handler
= hpsa_eh_abort_handler
,
880 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
882 .slave_alloc
= hpsa_slave_alloc
,
883 .slave_configure
= hpsa_slave_configure
,
884 .slave_destroy
= hpsa_slave_destroy
,
886 .compat_ioctl
= hpsa_compat_ioctl
,
888 .sdev_attrs
= hpsa_sdev_attrs
,
889 .shost_attrs
= hpsa_shost_attrs
,
894 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
897 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
899 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
900 return h
->access
.command_completed(h
, q
);
902 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
903 return h
->access
.command_completed(h
, q
);
905 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
906 a
= rq
->head
[rq
->current_entry
];
908 atomic_dec(&h
->commands_outstanding
);
912 /* Check for wraparound */
913 if (rq
->current_entry
== h
->max_commands
) {
914 rq
->current_entry
= 0;
921 * There are some special bits in the bus address of the
922 * command that we have to set for the controller to know
923 * how to process the command:
925 * Normal performant mode:
926 * bit 0: 1 means performant mode, 0 means simple mode.
927 * bits 1-3 = block fetch table entry
928 * bits 4-6 = command type (== 0)
931 * bit 0 = "performant mode" bit.
932 * bits 1-3 = block fetch table entry
933 * bits 4-6 = command type (== 110)
934 * (command type is needed because ioaccel1 mode
935 * commands are submitted through the same register as normal
936 * mode commands, so this is how the controller knows whether
937 * the command is normal mode or ioaccel1 mode.)
940 * bit 0 = "performant mode" bit.
941 * bits 1-4 = block fetch table entry (note extra bit)
942 * bits 4-6 = not needed, because ioaccel2 mode has
943 * a separate special register for submitting commands.
947 * set_performant_mode: Modify the tag for cciss performant
948 * set bit 0 for pull model, bits 3-1 for block fetch
951 #define DEFAULT_REPLY_QUEUE (-1)
952 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
955 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
956 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
957 if (unlikely(!h
->msix_vector
))
959 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
960 c
->Header
.ReplyQueue
=
961 raw_smp_processor_id() % h
->nreply_queues
;
963 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
967 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
968 struct CommandList
*c
,
971 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
974 * Tell the controller to post the reply to the queue for this
975 * processor. This seems to give the best I/O throughput.
977 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
978 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
980 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
982 * Set the bits in the address sent down to include:
983 * - performant mode bit (bit 0)
984 * - pull count (bits 1-3)
985 * - command type (bits 4-6)
987 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
988 IOACCEL1_BUSADDR_CMDTYPE
;
991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
992 struct CommandList
*c
,
995 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
996 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
998 /* Tell the controller to post the reply to the queue for this
999 * processor. This seems to give the best I/O throughput.
1001 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1002 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1004 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1005 /* Set the bits in the address sent down to include:
1006 * - performant mode bit not used in ioaccel mode 2
1007 * - pull count (bits 0-3)
1008 * - command type isn't needed for ioaccel2
1010 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1013 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1014 struct CommandList
*c
,
1017 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1020 * Tell the controller to post the reply to the queue for this
1021 * processor. This seems to give the best I/O throughput.
1023 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1024 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1026 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1028 * Set the bits in the address sent down to include:
1029 * - performant mode bit not used in ioaccel mode 2
1030 * - pull count (bits 0-3)
1031 * - command type isn't needed for ioaccel2
1033 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1036 static int is_firmware_flash_cmd(u8
*cdb
)
1038 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1042 * During firmware flash, the heartbeat register may not update as frequently
1043 * as it should. So we dial down lockup detection during firmware flash. and
1044 * dial it back up when firmware flash completes.
1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1049 struct CommandList
*c
)
1051 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1053 atomic_inc(&h
->firmware_flash_in_progress
);
1054 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1058 struct CommandList
*c
)
1060 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1061 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1062 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1065 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1066 struct CommandList
*c
, int reply_queue
)
1068 dial_down_lockup_detection_during_fw_flash(h
, c
);
1069 atomic_inc(&h
->commands_outstanding
);
1070 switch (c
->cmd_type
) {
1072 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1073 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1076 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1077 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1080 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1081 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1084 set_performant_mode(h
, c
, reply_queue
);
1085 h
->access
.submit_command(h
, c
);
1089 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1091 if (unlikely(hpsa_is_pending_event(c
)))
1092 return finish_cmd(c
);
1094 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1097 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1099 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1102 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1104 if (!h
->hba_inquiry_data
)
1106 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1111 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1112 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1114 /* finds an unused bus, target, lun for a new physical device
1115 * assumes h->devlock is held
1118 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1120 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1122 for (i
= 0; i
< h
->ndevices
; i
++) {
1123 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1124 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1127 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1128 if (i
< HPSA_MAX_DEVICES
) {
1137 static inline void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1138 struct hpsa_scsi_dev_t
*dev
, char *description
)
1140 dev_printk(level
, &h
->pdev
->dev
,
1141 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1142 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1144 scsi_device_type(dev
->devtype
),
1147 dev
->raid_level
> RAID_UNKNOWN
?
1148 "RAID-?" : raid_label
[dev
->raid_level
],
1149 dev
->offload_config
? '+' : '-',
1150 dev
->offload_enabled
? '+' : '-',
1154 /* Add an entry into h->dev[] array. */
1155 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
1156 struct hpsa_scsi_dev_t
*device
,
1157 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1159 /* assumes h->devlock is held */
1160 int n
= h
->ndevices
;
1162 unsigned char addr1
[8], addr2
[8];
1163 struct hpsa_scsi_dev_t
*sd
;
1165 if (n
>= HPSA_MAX_DEVICES
) {
1166 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1171 /* physical devices do not have lun or target assigned until now. */
1172 if (device
->lun
!= -1)
1173 /* Logical device, lun is already assigned. */
1176 /* If this device a non-zero lun of a multi-lun device
1177 * byte 4 of the 8-byte LUN addr will contain the logical
1178 * unit no, zero otherwise.
1180 if (device
->scsi3addr
[4] == 0) {
1181 /* This is not a non-zero lun of a multi-lun device */
1182 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1183 device
->bus
, &device
->target
, &device
->lun
) != 0)
1188 /* This is a non-zero lun of a multi-lun device.
1189 * Search through our list and find the device which
1190 * has the same 8 byte LUN address, excepting byte 4 and 5.
1191 * Assign the same bus and target for this new LUN.
1192 * Use the logical unit number from the firmware.
1194 memcpy(addr1
, device
->scsi3addr
, 8);
1197 for (i
= 0; i
< n
; i
++) {
1199 memcpy(addr2
, sd
->scsi3addr
, 8);
1202 /* differ only in byte 4 and 5? */
1203 if (memcmp(addr1
, addr2
, 8) == 0) {
1204 device
->bus
= sd
->bus
;
1205 device
->target
= sd
->target
;
1206 device
->lun
= device
->scsi3addr
[4];
1210 if (device
->lun
== -1) {
1211 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1212 " suspect firmware bug or unsupported hardware "
1213 "configuration.\n");
1221 added
[*nadded
] = device
;
1223 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1224 device
->expose_state
& HPSA_SCSI_ADD
? "added" : "masked");
1225 device
->offload_to_be_enabled
= device
->offload_enabled
;
1226 device
->offload_enabled
= 0;
1230 /* Update an entry in h->dev[] array. */
1231 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
1232 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1234 int offload_enabled
;
1235 /* assumes h->devlock is held */
1236 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1238 /* Raid level changed. */
1239 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1241 /* Raid offload parameters changed. Careful about the ordering. */
1242 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1244 * if drive is newly offload_enabled, we want to copy the
1245 * raid map data first. If previously offload_enabled and
1246 * offload_config were set, raid map data had better be
1247 * the same as it was before. if raid map data is changed
1248 * then it had better be the case that
1249 * h->dev[entry]->offload_enabled is currently 0.
1251 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1252 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1254 if (new_entry
->hba_ioaccel_enabled
) {
1255 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1256 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1258 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1259 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1260 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1261 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1264 * We can turn off ioaccel offload now, but need to delay turning
1265 * it on until we can update h->dev[entry]->phys_disk[], but we
1266 * can't do that until all the devices are updated.
1268 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1269 if (!new_entry
->offload_enabled
)
1270 h
->dev
[entry
]->offload_enabled
= 0;
1272 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1273 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1274 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1275 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1278 /* Replace an entry from h->dev[] array. */
1279 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
1280 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1281 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1282 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1284 /* assumes h->devlock is held */
1285 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1286 removed
[*nremoved
] = h
->dev
[entry
];
1290 * New physical devices won't have target/lun assigned yet
1291 * so we need to preserve the values in the slot we are replacing.
1293 if (new_entry
->target
== -1) {
1294 new_entry
->target
= h
->dev
[entry
]->target
;
1295 new_entry
->lun
= h
->dev
[entry
]->lun
;
1298 h
->dev
[entry
] = new_entry
;
1299 added
[*nadded
] = new_entry
;
1301 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1302 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1303 new_entry
->offload_enabled
= 0;
1306 /* Remove an entry from h->dev[] array. */
1307 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
1308 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1310 /* assumes h->devlock is held */
1312 struct hpsa_scsi_dev_t
*sd
;
1314 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1317 removed
[*nremoved
] = h
->dev
[entry
];
1320 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1321 h
->dev
[i
] = h
->dev
[i
+1];
1323 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1326 #define SCSI3ADDR_EQ(a, b) ( \
1327 (a)[7] == (b)[7] && \
1328 (a)[6] == (b)[6] && \
1329 (a)[5] == (b)[5] && \
1330 (a)[4] == (b)[4] && \
1331 (a)[3] == (b)[3] && \
1332 (a)[2] == (b)[2] && \
1333 (a)[1] == (b)[1] && \
1336 static void fixup_botched_add(struct ctlr_info
*h
,
1337 struct hpsa_scsi_dev_t
*added
)
1339 /* called when scsi_add_device fails in order to re-adjust
1340 * h->dev[] to match the mid layer's view.
1342 unsigned long flags
;
1345 spin_lock_irqsave(&h
->lock
, flags
);
1346 for (i
= 0; i
< h
->ndevices
; i
++) {
1347 if (h
->dev
[i
] == added
) {
1348 for (j
= i
; j
< h
->ndevices
-1; j
++)
1349 h
->dev
[j
] = h
->dev
[j
+1];
1354 spin_unlock_irqrestore(&h
->lock
, flags
);
1358 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1359 struct hpsa_scsi_dev_t
*dev2
)
1361 /* we compare everything except lun and target as these
1362 * are not yet assigned. Compare parts likely
1365 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1366 sizeof(dev1
->scsi3addr
)) != 0)
1368 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1369 sizeof(dev1
->device_id
)) != 0)
1371 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1373 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1375 if (dev1
->devtype
!= dev2
->devtype
)
1377 if (dev1
->bus
!= dev2
->bus
)
1382 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1383 struct hpsa_scsi_dev_t
*dev2
)
1385 /* Device attributes that can change, but don't mean
1386 * that the device is a different device, nor that the OS
1387 * needs to be told anything about the change.
1389 if (dev1
->raid_level
!= dev2
->raid_level
)
1391 if (dev1
->offload_config
!= dev2
->offload_config
)
1393 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1395 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1396 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1401 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1402 * and return needle location in *index. If scsi3addr matches, but not
1403 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1404 * location in *index.
1405 * In the case of a minor device attribute change, such as RAID level, just
1406 * return DEVICE_UPDATED, along with the updated device's location in index.
1407 * If needle not found, return DEVICE_NOT_FOUND.
1409 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1410 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1414 #define DEVICE_NOT_FOUND 0
1415 #define DEVICE_CHANGED 1
1416 #define DEVICE_SAME 2
1417 #define DEVICE_UPDATED 3
1418 for (i
= 0; i
< haystack_size
; i
++) {
1419 if (haystack
[i
] == NULL
) /* previously removed. */
1421 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1423 if (device_is_the_same(needle
, haystack
[i
])) {
1424 if (device_updated(needle
, haystack
[i
]))
1425 return DEVICE_UPDATED
;
1428 /* Keep offline devices offline */
1429 if (needle
->volume_offline
)
1430 return DEVICE_NOT_FOUND
;
1431 return DEVICE_CHANGED
;
1436 return DEVICE_NOT_FOUND
;
1439 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1440 unsigned char scsi3addr
[])
1442 struct offline_device_entry
*device
;
1443 unsigned long flags
;
1445 /* Check to see if device is already on the list */
1446 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1447 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1448 if (memcmp(device
->scsi3addr
, scsi3addr
,
1449 sizeof(device
->scsi3addr
)) == 0) {
1450 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1454 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1456 /* Device is not on the list, add it. */
1457 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1459 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1462 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1463 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1464 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1465 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1468 /* Print a message explaining various offline volume states */
1469 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1470 struct hpsa_scsi_dev_t
*sd
)
1472 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1473 dev_info(&h
->pdev
->dev
,
1474 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1475 h
->scsi_host
->host_no
,
1476 sd
->bus
, sd
->target
, sd
->lun
);
1477 switch (sd
->volume_offline
) {
1480 case HPSA_LV_UNDERGOING_ERASE
:
1481 dev_info(&h
->pdev
->dev
,
1482 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1483 h
->scsi_host
->host_no
,
1484 sd
->bus
, sd
->target
, sd
->lun
);
1486 case HPSA_LV_NOT_AVAILABLE
:
1487 dev_info(&h
->pdev
->dev
,
1488 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1489 h
->scsi_host
->host_no
,
1490 sd
->bus
, sd
->target
, sd
->lun
);
1492 case HPSA_LV_UNDERGOING_RPI
:
1493 dev_info(&h
->pdev
->dev
,
1494 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1495 h
->scsi_host
->host_no
,
1496 sd
->bus
, sd
->target
, sd
->lun
);
1498 case HPSA_LV_PENDING_RPI
:
1499 dev_info(&h
->pdev
->dev
,
1500 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1501 h
->scsi_host
->host_no
,
1502 sd
->bus
, sd
->target
, sd
->lun
);
1504 case HPSA_LV_ENCRYPTED_NO_KEY
:
1505 dev_info(&h
->pdev
->dev
,
1506 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1507 h
->scsi_host
->host_no
,
1508 sd
->bus
, sd
->target
, sd
->lun
);
1510 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1511 dev_info(&h
->pdev
->dev
,
1512 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1513 h
->scsi_host
->host_no
,
1514 sd
->bus
, sd
->target
, sd
->lun
);
1516 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1517 dev_info(&h
->pdev
->dev
,
1518 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1519 h
->scsi_host
->host_no
,
1520 sd
->bus
, sd
->target
, sd
->lun
);
1522 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1523 dev_info(&h
->pdev
->dev
,
1524 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1525 h
->scsi_host
->host_no
,
1526 sd
->bus
, sd
->target
, sd
->lun
);
1528 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1529 dev_info(&h
->pdev
->dev
,
1530 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1531 h
->scsi_host
->host_no
,
1532 sd
->bus
, sd
->target
, sd
->lun
);
1534 case HPSA_LV_PENDING_ENCRYPTION
:
1535 dev_info(&h
->pdev
->dev
,
1536 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1537 h
->scsi_host
->host_no
,
1538 sd
->bus
, sd
->target
, sd
->lun
);
1540 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1541 dev_info(&h
->pdev
->dev
,
1542 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1543 h
->scsi_host
->host_no
,
1544 sd
->bus
, sd
->target
, sd
->lun
);
1550 * Figure the list of physical drive pointers for a logical drive with
1551 * raid offload configured.
1553 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1554 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1555 struct hpsa_scsi_dev_t
*logical_drive
)
1557 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1558 struct raid_map_disk_data
*dd
= &map
->data
[0];
1560 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1561 le16_to_cpu(map
->metadata_disks_per_row
);
1562 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1563 le16_to_cpu(map
->layout_map_count
) *
1564 total_disks_per_row
;
1565 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1566 total_disks_per_row
;
1569 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1570 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1572 logical_drive
->nphysical_disks
= nraid_map_entries
;
1575 for (i
= 0; i
< nraid_map_entries
; i
++) {
1576 logical_drive
->phys_disk
[i
] = NULL
;
1577 if (!logical_drive
->offload_config
)
1579 for (j
= 0; j
< ndevices
; j
++) {
1580 if (dev
[j
]->devtype
!= TYPE_DISK
)
1582 if (is_logical_dev_addr_mode(dev
[j
]->scsi3addr
))
1584 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1587 logical_drive
->phys_disk
[i
] = dev
[j
];
1589 qdepth
= min(h
->nr_cmds
, qdepth
+
1590 logical_drive
->phys_disk
[i
]->queue_depth
);
1595 * This can happen if a physical drive is removed and
1596 * the logical drive is degraded. In that case, the RAID
1597 * map data will refer to a physical disk which isn't actually
1598 * present. And in that case offload_enabled should already
1599 * be 0, but we'll turn it off here just in case
1601 if (!logical_drive
->phys_disk
[i
]) {
1602 logical_drive
->offload_enabled
= 0;
1603 logical_drive
->offload_to_be_enabled
= 0;
1604 logical_drive
->queue_depth
= 8;
1607 if (nraid_map_entries
)
1609 * This is correct for reads, too high for full stripe writes,
1610 * way too high for partial stripe writes
1612 logical_drive
->queue_depth
= qdepth
;
1614 logical_drive
->queue_depth
= h
->nr_cmds
;
1617 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1618 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1622 for (i
= 0; i
< ndevices
; i
++) {
1623 if (dev
[i
]->devtype
!= TYPE_DISK
)
1625 if (!is_logical_dev_addr_mode(dev
[i
]->scsi3addr
))
1629 * If offload is currently enabled, the RAID map and
1630 * phys_disk[] assignment *better* not be changing
1631 * and since it isn't changing, we do not need to
1634 if (dev
[i
]->offload_enabled
)
1637 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1641 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
1642 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1644 /* sd contains scsi3 addresses and devtypes, and inquiry
1645 * data. This function takes what's in sd to be the current
1646 * reality and updates h->dev[] to reflect that reality.
1648 int i
, entry
, device_change
, changes
= 0;
1649 struct hpsa_scsi_dev_t
*csd
;
1650 unsigned long flags
;
1651 struct hpsa_scsi_dev_t
**added
, **removed
;
1652 int nadded
, nremoved
;
1653 struct Scsi_Host
*sh
= NULL
;
1655 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1656 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1658 if (!added
|| !removed
) {
1659 dev_warn(&h
->pdev
->dev
, "out of memory in "
1660 "adjust_hpsa_scsi_table\n");
1664 spin_lock_irqsave(&h
->devlock
, flags
);
1666 /* find any devices in h->dev[] that are not in
1667 * sd[] and remove them from h->dev[], and for any
1668 * devices which have changed, remove the old device
1669 * info and add the new device info.
1670 * If minor device attributes change, just update
1671 * the existing device structure.
1676 while (i
< h
->ndevices
) {
1678 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1679 if (device_change
== DEVICE_NOT_FOUND
) {
1681 hpsa_scsi_remove_entry(h
, hostno
, i
,
1682 removed
, &nremoved
);
1683 continue; /* remove ^^^, hence i not incremented */
1684 } else if (device_change
== DEVICE_CHANGED
) {
1686 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
1687 added
, &nadded
, removed
, &nremoved
);
1688 /* Set it to NULL to prevent it from being freed
1689 * at the bottom of hpsa_update_scsi_devices()
1692 } else if (device_change
== DEVICE_UPDATED
) {
1693 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1698 /* Now, make sure every device listed in sd[] is also
1699 * listed in h->dev[], adding them if they aren't found
1702 for (i
= 0; i
< nsds
; i
++) {
1703 if (!sd
[i
]) /* if already added above. */
1706 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1707 * as the SCSI mid-layer does not handle such devices well.
1708 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1709 * at 160Hz, and prevents the system from coming up.
1711 if (sd
[i
]->volume_offline
) {
1712 hpsa_show_volume_status(h
, sd
[i
]);
1713 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1717 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1718 h
->ndevices
, &entry
);
1719 if (device_change
== DEVICE_NOT_FOUND
) {
1721 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1722 added
, &nadded
) != 0)
1724 sd
[i
] = NULL
; /* prevent from being freed later. */
1725 } else if (device_change
== DEVICE_CHANGED
) {
1726 /* should never happen... */
1728 dev_warn(&h
->pdev
->dev
,
1729 "device unexpectedly changed.\n");
1730 /* but if it does happen, we just ignore that device */
1733 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1735 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1736 * any logical drives that need it enabled.
1738 for (i
= 0; i
< h
->ndevices
; i
++)
1739 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1741 spin_unlock_irqrestore(&h
->devlock
, flags
);
1743 /* Monitor devices which are in one of several NOT READY states to be
1744 * brought online later. This must be done without holding h->devlock,
1745 * so don't touch h->dev[]
1747 for (i
= 0; i
< nsds
; i
++) {
1748 if (!sd
[i
]) /* if already added above. */
1750 if (sd
[i
]->volume_offline
)
1751 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1754 /* Don't notify scsi mid layer of any changes the first time through
1755 * (or if there are no changes) scsi_scan_host will do it later the
1756 * first time through.
1758 if (hostno
== -1 || !changes
)
1762 /* Notify scsi mid layer of any removed devices */
1763 for (i
= 0; i
< nremoved
; i
++) {
1764 if (removed
[i
]->expose_state
& HPSA_SCSI_ADD
) {
1765 struct scsi_device
*sdev
=
1766 scsi_device_lookup(sh
, removed
[i
]->bus
,
1767 removed
[i
]->target
, removed
[i
]->lun
);
1769 scsi_remove_device(sdev
);
1770 scsi_device_put(sdev
);
1773 * We don't expect to get here.
1774 * future cmds to this device will get selection
1775 * timeout as if the device was gone.
1777 hpsa_show_dev_msg(KERN_WARNING
, h
, removed
[i
],
1778 "didn't find device for removal.");
1785 /* Notify scsi mid layer of any added devices */
1786 for (i
= 0; i
< nadded
; i
++) {
1787 if (!(added
[i
]->expose_state
& HPSA_SCSI_ADD
))
1789 if (scsi_add_device(sh
, added
[i
]->bus
,
1790 added
[i
]->target
, added
[i
]->lun
) == 0)
1792 hpsa_show_dev_msg(KERN_WARNING
, h
, added
[i
],
1793 "addition failed, device not added.");
1794 /* now we have to remove it from h->dev,
1795 * since it didn't get added to scsi mid layer
1797 fixup_botched_add(h
, added
[i
]);
1807 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1808 * Assume's h->devlock is held.
1810 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1811 int bus
, int target
, int lun
)
1814 struct hpsa_scsi_dev_t
*sd
;
1816 for (i
= 0; i
< h
->ndevices
; i
++) {
1818 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1824 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1826 struct hpsa_scsi_dev_t
*sd
;
1827 unsigned long flags
;
1828 struct ctlr_info
*h
;
1830 h
= sdev_to_hba(sdev
);
1831 spin_lock_irqsave(&h
->devlock
, flags
);
1832 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1833 sdev_id(sdev
), sdev
->lun
);
1835 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1836 sdev
->hostdata
= (sd
->expose_state
& HPSA_SCSI_ADD
) ? sd
: NULL
;
1838 sdev
->hostdata
= NULL
;
1839 spin_unlock_irqrestore(&h
->devlock
, flags
);
1843 /* configure scsi device based on internal per-device structure */
1844 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1846 struct hpsa_scsi_dev_t
*sd
;
1849 sd
= sdev
->hostdata
;
1850 sdev
->no_uld_attach
= !sd
|| !(sd
->expose_state
& HPSA_ULD_ATTACH
);
1853 queue_depth
= sd
->queue_depth
!= 0 ?
1854 sd
->queue_depth
: sdev
->host
->can_queue
;
1856 queue_depth
= sdev
->host
->can_queue
;
1858 scsi_change_queue_depth(sdev
, queue_depth
);
1863 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1865 /* nothing to do. */
1868 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1872 if (!h
->ioaccel2_cmd_sg_list
)
1874 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1875 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1876 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1878 kfree(h
->ioaccel2_cmd_sg_list
);
1879 h
->ioaccel2_cmd_sg_list
= NULL
;
1882 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1886 if (h
->chainsize
<= 0)
1889 h
->ioaccel2_cmd_sg_list
=
1890 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
1892 if (!h
->ioaccel2_cmd_sg_list
)
1894 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1895 h
->ioaccel2_cmd_sg_list
[i
] =
1896 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
1897 h
->maxsgentries
, GFP_KERNEL
);
1898 if (!h
->ioaccel2_cmd_sg_list
[i
])
1904 hpsa_free_ioaccel2_sg_chain_blocks(h
);
1908 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1912 if (!h
->cmd_sg_list
)
1914 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1915 kfree(h
->cmd_sg_list
[i
]);
1916 h
->cmd_sg_list
[i
] = NULL
;
1918 kfree(h
->cmd_sg_list
);
1919 h
->cmd_sg_list
= NULL
;
1922 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
1926 if (h
->chainsize
<= 0)
1929 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1931 if (!h
->cmd_sg_list
) {
1932 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
1935 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1936 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1937 h
->chainsize
, GFP_KERNEL
);
1938 if (!h
->cmd_sg_list
[i
]) {
1939 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
1946 hpsa_free_sg_chain_blocks(h
);
1950 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1951 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
1953 struct ioaccel2_sg_element
*chain_block
;
1957 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
1958 chain_size
= le32_to_cpu(cp
->data_len
);
1959 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
1961 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1962 /* prevent subsequent unmapping */
1963 cp
->sg
->address
= 0;
1966 cp
->sg
->address
= cpu_to_le64(temp64
);
1970 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1971 struct io_accel2_cmd
*cp
)
1973 struct ioaccel2_sg_element
*chain_sg
;
1978 temp64
= le64_to_cpu(chain_sg
->address
);
1979 chain_size
= le32_to_cpu(cp
->data_len
);
1980 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
1983 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1984 struct CommandList
*c
)
1986 struct SGDescriptor
*chain_sg
, *chain_block
;
1990 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1991 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1992 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
1993 chain_len
= sizeof(*chain_sg
) *
1994 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
1995 chain_sg
->Len
= cpu_to_le32(chain_len
);
1996 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
1998 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1999 /* prevent subsequent unmapping */
2000 chain_sg
->Addr
= cpu_to_le64(0);
2003 chain_sg
->Addr
= cpu_to_le64(temp64
);
2007 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2008 struct CommandList
*c
)
2010 struct SGDescriptor
*chain_sg
;
2012 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2015 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2016 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2017 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2021 /* Decode the various types of errors on ioaccel2 path.
2022 * Return 1 for any error that should generate a RAID path retry.
2023 * Return 0 for errors that don't require a RAID path retry.
2025 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2026 struct CommandList
*c
,
2027 struct scsi_cmnd
*cmd
,
2028 struct io_accel2_cmd
*c2
)
2032 u32 ioaccel2_resid
= 0;
2034 switch (c2
->error_data
.serv_response
) {
2035 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2036 switch (c2
->error_data
.status
) {
2037 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2039 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2040 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2041 if (c2
->error_data
.data_present
!=
2042 IOACCEL2_SENSE_DATA_PRESENT
) {
2043 memset(cmd
->sense_buffer
, 0,
2044 SCSI_SENSE_BUFFERSIZE
);
2047 /* copy the sense data */
2048 data_len
= c2
->error_data
.sense_data_len
;
2049 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2050 data_len
= SCSI_SENSE_BUFFERSIZE
;
2051 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2053 sizeof(c2
->error_data
.sense_data_buff
);
2054 memcpy(cmd
->sense_buffer
,
2055 c2
->error_data
.sense_data_buff
, data_len
);
2058 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2061 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2064 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2067 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2075 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2076 switch (c2
->error_data
.status
) {
2077 case IOACCEL2_STATUS_SR_IO_ERROR
:
2078 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2079 case IOACCEL2_STATUS_SR_OVERRUN
:
2082 case IOACCEL2_STATUS_SR_UNDERRUN
:
2083 cmd
->result
= (DID_OK
<< 16); /* host byte */
2084 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2085 ioaccel2_resid
= get_unaligned_le32(
2086 &c2
->error_data
.resid_cnt
[0]);
2087 scsi_set_resid(cmd
, ioaccel2_resid
);
2089 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2090 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2091 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2092 /* We will get an event from ctlr to trigger rescan */
2099 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2101 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2103 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2106 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2113 return retry
; /* retry on raid path? */
2116 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2117 struct CommandList
*c
)
2119 bool do_wake
= false;
2122 * Prevent the following race in the abort handler:
2124 * 1. LLD is requested to abort a SCSI command
2125 * 2. The SCSI command completes
2126 * 3. The struct CommandList associated with step 2 is made available
2127 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2128 * 5. Abort handler follows scsi_cmnd->host_scribble and
2129 * finds struct CommandList and tries to aborts it
2130 * Now we have aborted the wrong command.
2132 * Reset c->scsi_cmd here so that the abort or reset handler will know
2133 * this command has completed. Then, check to see if the handler is
2134 * waiting for this command, and, if so, wake it.
2136 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2137 mb(); /* Declare command idle before checking for pending events. */
2138 if (c
->abort_pending
) {
2140 c
->abort_pending
= false;
2142 if (c
->reset_pending
) {
2143 unsigned long flags
;
2144 struct hpsa_scsi_dev_t
*dev
;
2147 * There appears to be a reset pending; lock the lock and
2148 * reconfirm. If so, then decrement the count of outstanding
2149 * commands and wake the reset command if this is the last one.
2151 spin_lock_irqsave(&h
->lock
, flags
);
2152 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2153 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2155 c
->reset_pending
= NULL
;
2156 spin_unlock_irqrestore(&h
->lock
, flags
);
2160 wake_up_all(&h
->event_sync_wait_queue
);
2163 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2164 struct CommandList
*c
)
2166 hpsa_cmd_resolve_events(h
, c
);
2167 cmd_tagged_free(h
, c
);
2170 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2171 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2173 hpsa_cmd_resolve_and_free(h
, c
);
2174 cmd
->scsi_done(cmd
);
2177 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2179 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2180 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2183 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2185 cmd
->result
= DID_ABORT
<< 16;
2188 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2189 struct scsi_cmnd
*cmd
)
2191 hpsa_set_scsi_cmd_aborted(cmd
);
2192 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2193 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2194 hpsa_cmd_resolve_and_free(h
, c
);
2197 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2198 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2199 struct hpsa_scsi_dev_t
*dev
)
2201 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2203 /* check for good status */
2204 if (likely(c2
->error_data
.serv_response
== 0 &&
2205 c2
->error_data
.status
== 0))
2206 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2209 * Any RAID offload error results in retry which will use
2210 * the normal I/O path so the controller can handle whatever's
2213 if (is_logical_dev_addr_mode(dev
->scsi3addr
) &&
2214 c2
->error_data
.serv_response
==
2215 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2216 if (c2
->error_data
.status
==
2217 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2218 dev
->offload_enabled
= 0;
2220 return hpsa_retry_cmd(h
, c
);
2223 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2224 return hpsa_retry_cmd(h
, c
);
2226 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2229 /* Returns 0 on success, < 0 otherwise. */
2230 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2231 struct CommandList
*cp
)
2233 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2235 switch (tmf_status
) {
2236 case CISS_TMF_COMPLETE
:
2238 * CISS_TMF_COMPLETE never happens, instead,
2239 * ei->CommandStatus == 0 for this case.
2241 case CISS_TMF_SUCCESS
:
2243 case CISS_TMF_INVALID_FRAME
:
2244 case CISS_TMF_NOT_SUPPORTED
:
2245 case CISS_TMF_FAILED
:
2246 case CISS_TMF_WRONG_LUN
:
2247 case CISS_TMF_OVERLAPPED_TAG
:
2250 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2257 static void complete_scsi_command(struct CommandList
*cp
)
2259 struct scsi_cmnd
*cmd
;
2260 struct ctlr_info
*h
;
2261 struct ErrorInfo
*ei
;
2262 struct hpsa_scsi_dev_t
*dev
;
2263 struct io_accel2_cmd
*c2
;
2266 u8 asc
; /* additional sense code */
2267 u8 ascq
; /* additional sense code qualifier */
2268 unsigned long sense_data_size
;
2273 dev
= cmd
->device
->hostdata
;
2274 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2276 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2277 if ((cp
->cmd_type
== CMD_SCSI
) &&
2278 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2279 hpsa_unmap_sg_chain_block(h
, cp
);
2281 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2282 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2283 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2285 cmd
->result
= (DID_OK
<< 16); /* host byte */
2286 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2288 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2289 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2292 * We check for lockup status here as it may be set for
2293 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2294 * fail_all_oustanding_cmds()
2296 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2297 /* DID_NO_CONNECT will prevent a retry */
2298 cmd
->result
= DID_NO_CONNECT
<< 16;
2299 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2302 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2303 if (cp
->reset_pending
)
2304 return hpsa_cmd_resolve_and_free(h
, cp
);
2305 if (cp
->abort_pending
)
2306 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2309 if (cp
->cmd_type
== CMD_IOACCEL2
)
2310 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2312 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2313 if (ei
->CommandStatus
== 0)
2314 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2316 /* For I/O accelerator commands, copy over some fields to the normal
2317 * CISS header used below for error handling.
2319 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2320 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2321 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2322 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2323 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2324 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2325 cp
->Header
.tag
= c
->tag
;
2326 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2327 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2329 /* Any RAID offload error results in retry which will use
2330 * the normal I/O path so the controller can handle whatever's
2333 if (is_logical_dev_addr_mode(dev
->scsi3addr
)) {
2334 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2335 dev
->offload_enabled
= 0;
2336 return hpsa_retry_cmd(h
, cp
);
2340 /* an error has occurred */
2341 switch (ei
->CommandStatus
) {
2343 case CMD_TARGET_STATUS
:
2344 cmd
->result
|= ei
->ScsiStatus
;
2345 /* copy the sense data */
2346 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2347 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2349 sense_data_size
= sizeof(ei
->SenseInfo
);
2350 if (ei
->SenseLen
< sense_data_size
)
2351 sense_data_size
= ei
->SenseLen
;
2352 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2354 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2355 &sense_key
, &asc
, &ascq
);
2356 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2357 if (sense_key
== ABORTED_COMMAND
) {
2358 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2363 /* Problem was not a check condition
2364 * Pass it up to the upper layers...
2366 if (ei
->ScsiStatus
) {
2367 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2368 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2369 "Returning result: 0x%x\n",
2371 sense_key
, asc
, ascq
,
2373 } else { /* scsi status is zero??? How??? */
2374 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2375 "Returning no connection.\n", cp
),
2377 /* Ordinarily, this case should never happen,
2378 * but there is a bug in some released firmware
2379 * revisions that allows it to happen if, for
2380 * example, a 4100 backplane loses power and
2381 * the tape drive is in it. We assume that
2382 * it's a fatal error of some kind because we
2383 * can't show that it wasn't. We will make it
2384 * look like selection timeout since that is
2385 * the most common reason for this to occur,
2386 * and it's severe enough.
2389 cmd
->result
= DID_NO_CONNECT
<< 16;
2393 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2395 case CMD_DATA_OVERRUN
:
2396 dev_warn(&h
->pdev
->dev
,
2397 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2400 /* print_bytes(cp, sizeof(*cp), 1, 0);
2402 /* We get CMD_INVALID if you address a non-existent device
2403 * instead of a selection timeout (no response). You will
2404 * see this if you yank out a drive, then try to access it.
2405 * This is kind of a shame because it means that any other
2406 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2407 * missing target. */
2408 cmd
->result
= DID_NO_CONNECT
<< 16;
2411 case CMD_PROTOCOL_ERR
:
2412 cmd
->result
= DID_ERROR
<< 16;
2413 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2416 case CMD_HARDWARE_ERR
:
2417 cmd
->result
= DID_ERROR
<< 16;
2418 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2421 case CMD_CONNECTION_LOST
:
2422 cmd
->result
= DID_ERROR
<< 16;
2423 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2427 /* Return now to avoid calling scsi_done(). */
2428 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2429 case CMD_ABORT_FAILED
:
2430 cmd
->result
= DID_ERROR
<< 16;
2431 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2434 case CMD_UNSOLICITED_ABORT
:
2435 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2436 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2440 cmd
->result
= DID_TIME_OUT
<< 16;
2441 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2444 case CMD_UNABORTABLE
:
2445 cmd
->result
= DID_ERROR
<< 16;
2446 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2448 case CMD_TMF_STATUS
:
2449 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2450 cmd
->result
= DID_ERROR
<< 16;
2452 case CMD_IOACCEL_DISABLED
:
2453 /* This only handles the direct pass-through case since RAID
2454 * offload is handled above. Just attempt a retry.
2456 cmd
->result
= DID_SOFT_ERROR
<< 16;
2457 dev_warn(&h
->pdev
->dev
,
2458 "cp %p had HP SSD Smart Path error\n", cp
);
2461 cmd
->result
= DID_ERROR
<< 16;
2462 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2463 cp
, ei
->CommandStatus
);
2466 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2469 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2470 struct CommandList
*c
, int sg_used
, int data_direction
)
2474 for (i
= 0; i
< sg_used
; i
++)
2475 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2476 le32_to_cpu(c
->SG
[i
].Len
),
2480 static int hpsa_map_one(struct pci_dev
*pdev
,
2481 struct CommandList
*cp
,
2488 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2489 cp
->Header
.SGList
= 0;
2490 cp
->Header
.SGTotal
= cpu_to_le16(0);
2494 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2495 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2496 /* Prevent subsequent unmap of something never mapped */
2497 cp
->Header
.SGList
= 0;
2498 cp
->Header
.SGTotal
= cpu_to_le16(0);
2501 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2502 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2503 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2504 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2505 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2509 #define NO_TIMEOUT ((unsigned long) -1)
2510 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2511 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2512 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2514 DECLARE_COMPLETION_ONSTACK(wait
);
2517 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2518 if (timeout_msecs
== NO_TIMEOUT
) {
2519 /* TODO: get rid of this no-timeout thing */
2520 wait_for_completion_io(&wait
);
2523 if (!wait_for_completion_io_timeout(&wait
,
2524 msecs_to_jiffies(timeout_msecs
))) {
2525 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2531 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2532 int reply_queue
, unsigned long timeout_msecs
)
2534 if (unlikely(lockup_detected(h
))) {
2535 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2538 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2541 static u32
lockup_detected(struct ctlr_info
*h
)
2544 u32 rc
, *lockup_detected
;
2547 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2548 rc
= *lockup_detected
;
2553 #define MAX_DRIVER_CMD_RETRIES 25
2554 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2555 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2557 int backoff_time
= 10, retry_count
= 0;
2561 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2562 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2567 if (retry_count
> 3) {
2568 msleep(backoff_time
);
2569 if (backoff_time
< 1000)
2572 } while ((check_for_unit_attention(h
, c
) ||
2573 check_for_busy(h
, c
)) &&
2574 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2575 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2576 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2581 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2582 struct CommandList
*c
)
2584 const u8
*cdb
= c
->Request
.CDB
;
2585 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2587 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2588 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2589 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2590 lun
[4], lun
[5], lun
[6], lun
[7],
2591 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2592 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2593 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2594 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2597 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2598 struct CommandList
*cp
)
2600 const struct ErrorInfo
*ei
= cp
->err_info
;
2601 struct device
*d
= &cp
->h
->pdev
->dev
;
2602 u8 sense_key
, asc
, ascq
;
2605 switch (ei
->CommandStatus
) {
2606 case CMD_TARGET_STATUS
:
2607 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2608 sense_len
= sizeof(ei
->SenseInfo
);
2610 sense_len
= ei
->SenseLen
;
2611 decode_sense_data(ei
->SenseInfo
, sense_len
,
2612 &sense_key
, &asc
, &ascq
);
2613 hpsa_print_cmd(h
, "SCSI status", cp
);
2614 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2615 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2616 sense_key
, asc
, ascq
);
2618 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2619 if (ei
->ScsiStatus
== 0)
2620 dev_warn(d
, "SCSI status is abnormally zero. "
2621 "(probably indicates selection timeout "
2622 "reported incorrectly due to a known "
2623 "firmware bug, circa July, 2001.)\n");
2625 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2627 case CMD_DATA_OVERRUN
:
2628 hpsa_print_cmd(h
, "overrun condition", cp
);
2631 /* controller unfortunately reports SCSI passthru's
2632 * to non-existent targets as invalid commands.
2634 hpsa_print_cmd(h
, "invalid command", cp
);
2635 dev_warn(d
, "probably means device no longer present\n");
2638 case CMD_PROTOCOL_ERR
:
2639 hpsa_print_cmd(h
, "protocol error", cp
);
2641 case CMD_HARDWARE_ERR
:
2642 hpsa_print_cmd(h
, "hardware error", cp
);
2644 case CMD_CONNECTION_LOST
:
2645 hpsa_print_cmd(h
, "connection lost", cp
);
2648 hpsa_print_cmd(h
, "aborted", cp
);
2650 case CMD_ABORT_FAILED
:
2651 hpsa_print_cmd(h
, "abort failed", cp
);
2653 case CMD_UNSOLICITED_ABORT
:
2654 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2657 hpsa_print_cmd(h
, "timed out", cp
);
2659 case CMD_UNABORTABLE
:
2660 hpsa_print_cmd(h
, "unabortable", cp
);
2662 case CMD_CTLR_LOCKUP
:
2663 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2666 hpsa_print_cmd(h
, "unknown status", cp
);
2667 dev_warn(d
, "Unknown command status %x\n",
2672 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2673 u16 page
, unsigned char *buf
,
2674 unsigned char bufsize
)
2677 struct CommandList
*c
;
2678 struct ErrorInfo
*ei
;
2682 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2683 page
, scsi3addr
, TYPE_CMD
)) {
2687 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2688 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2692 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2693 hpsa_scsi_interpret_error(h
, c
);
2701 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2702 u8 reset_type
, int reply_queue
)
2705 struct CommandList
*c
;
2706 struct ErrorInfo
*ei
;
2711 /* fill_cmd can't fail here, no data buffer to map. */
2712 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
2713 scsi3addr
, TYPE_MSG
);
2714 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to LUN reset */
2715 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2717 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2720 /* no unmap needed here because no data xfer. */
2723 if (ei
->CommandStatus
!= 0) {
2724 hpsa_scsi_interpret_error(h
, c
);
2732 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2733 struct hpsa_scsi_dev_t
*dev
,
2734 unsigned char *scsi3addr
)
2738 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2739 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2741 if (hpsa_is_cmd_idle(c
))
2744 switch (c
->cmd_type
) {
2746 case CMD_IOCTL_PEND
:
2747 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2748 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2753 if (c
->phys_disk
== dev
) {
2754 /* HBA mode match */
2757 /* Possible RAID mode -- check each phys dev. */
2758 /* FIXME: Do we need to take out a lock here? If
2759 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2761 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2762 /* FIXME: an alternate test might be
2764 * match = dev->phys_disk[i]->ioaccel_handle
2765 * == c2->scsi_nexus; */
2766 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2772 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2773 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2774 le32_to_cpu(ac
->it_nexus
);
2778 case 0: /* The command is in the middle of being initialized. */
2783 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2791 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2792 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2797 /* We can really only handle one reset at a time */
2798 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2799 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2803 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2805 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2806 struct CommandList
*c
= h
->cmd_pool
+ i
;
2807 int refcount
= atomic_inc_return(&c
->refcount
);
2809 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2810 unsigned long flags
;
2813 * Mark the target command as having a reset pending,
2814 * then lock a lock so that the command cannot complete
2815 * while we're considering it. If the command is not
2816 * idle then count it; otherwise revoke the event.
2818 c
->reset_pending
= dev
;
2819 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2820 if (!hpsa_is_cmd_idle(c
))
2821 atomic_inc(&dev
->reset_cmds_out
);
2823 c
->reset_pending
= NULL
;
2824 spin_unlock_irqrestore(&h
->lock
, flags
);
2830 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2832 wait_event(h
->event_sync_wait_queue
,
2833 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2834 lockup_detected(h
));
2836 if (unlikely(lockup_detected(h
))) {
2837 dev_warn(&h
->pdev
->dev
,
2838 "Controller lockup detected during reset wait\n");
2843 atomic_set(&dev
->reset_cmds_out
, 0);
2845 mutex_unlock(&h
->reset_mutex
);
2849 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2850 unsigned char *scsi3addr
, unsigned char *raid_level
)
2855 *raid_level
= RAID_UNKNOWN
;
2856 buf
= kzalloc(64, GFP_KERNEL
);
2859 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2861 *raid_level
= buf
[8];
2862 if (*raid_level
> RAID_UNKNOWN
)
2863 *raid_level
= RAID_UNKNOWN
;
2868 #define HPSA_MAP_DEBUG
2869 #ifdef HPSA_MAP_DEBUG
2870 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2871 struct raid_map_data
*map_buff
)
2873 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2875 u16 map_cnt
, row_cnt
, disks_per_row
;
2880 /* Show details only if debugging has been activated. */
2881 if (h
->raid_offload_debug
< 2)
2884 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
2885 le32_to_cpu(map_buff
->structure_size
));
2886 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
2887 le32_to_cpu(map_buff
->volume_blk_size
));
2888 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
2889 le64_to_cpu(map_buff
->volume_blk_cnt
));
2890 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
2891 map_buff
->phys_blk_shift
);
2892 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
2893 map_buff
->parity_rotation_shift
);
2894 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
2895 le16_to_cpu(map_buff
->strip_size
));
2896 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
2897 le64_to_cpu(map_buff
->disk_starting_blk
));
2898 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
2899 le64_to_cpu(map_buff
->disk_blk_cnt
));
2900 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
2901 le16_to_cpu(map_buff
->data_disks_per_row
));
2902 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
2903 le16_to_cpu(map_buff
->metadata_disks_per_row
));
2904 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
2905 le16_to_cpu(map_buff
->row_cnt
));
2906 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
2907 le16_to_cpu(map_buff
->layout_map_count
));
2908 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
2909 le16_to_cpu(map_buff
->flags
));
2910 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
2911 le16_to_cpu(map_buff
->flags
) &
2912 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
2913 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
2914 le16_to_cpu(map_buff
->dekindex
));
2915 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
2916 for (map
= 0; map
< map_cnt
; map
++) {
2917 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
2918 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
2919 for (row
= 0; row
< row_cnt
; row
++) {
2920 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
2922 le16_to_cpu(map_buff
->data_disks_per_row
);
2923 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2924 dev_info(&h
->pdev
->dev
,
2925 " D%02u: h=0x%04x xor=%u,%u\n",
2926 col
, dd
->ioaccel_handle
,
2927 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2929 le16_to_cpu(map_buff
->metadata_disks_per_row
);
2930 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2931 dev_info(&h
->pdev
->dev
,
2932 " M%02u: h=0x%04x xor=%u,%u\n",
2933 col
, dd
->ioaccel_handle
,
2934 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2939 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
2940 __attribute__((unused
)) int rc
,
2941 __attribute__((unused
)) struct raid_map_data
*map_buff
)
2946 static int hpsa_get_raid_map(struct ctlr_info
*h
,
2947 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2950 struct CommandList
*c
;
2951 struct ErrorInfo
*ei
;
2955 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
2956 sizeof(this_device
->raid_map
), 0,
2957 scsi3addr
, TYPE_CMD
)) {
2958 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
2962 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2963 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2967 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2968 hpsa_scsi_interpret_error(h
, c
);
2974 /* @todo in the future, dynamically allocate RAID map memory */
2975 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
2976 sizeof(this_device
->raid_map
)) {
2977 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
2980 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
2987 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
2988 unsigned char scsi3addr
[], u16 bmic_device_index
,
2989 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
2992 struct CommandList
*c
;
2993 struct ErrorInfo
*ei
;
2996 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
2997 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3001 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3002 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3004 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3007 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3008 hpsa_scsi_interpret_error(h
, c
);
3016 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3017 unsigned char scsi3addr
[], u8 page
)
3022 unsigned char *buf
, bufsize
;
3024 buf
= kzalloc(256, GFP_KERNEL
);
3028 /* Get the size of the page list first */
3029 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3030 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3031 buf
, HPSA_VPD_HEADER_SZ
);
3033 goto exit_unsupported
;
3035 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3036 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3040 /* Get the whole VPD page list */
3041 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3042 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3045 goto exit_unsupported
;
3048 for (i
= 1; i
<= pages
; i
++)
3049 if (buf
[3 + i
] == page
)
3050 goto exit_supported
;
3059 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3060 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3066 this_device
->offload_config
= 0;
3067 this_device
->offload_enabled
= 0;
3068 this_device
->offload_to_be_enabled
= 0;
3070 buf
= kzalloc(64, GFP_KERNEL
);
3073 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3075 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3076 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3080 #define IOACCEL_STATUS_BYTE 4
3081 #define OFFLOAD_CONFIGURED_BIT 0x01
3082 #define OFFLOAD_ENABLED_BIT 0x02
3083 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3084 this_device
->offload_config
=
3085 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3086 if (this_device
->offload_config
) {
3087 this_device
->offload_enabled
=
3088 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3089 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3090 this_device
->offload_enabled
= 0;
3092 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3098 /* Get the device id from inquiry page 0x83 */
3099 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3100 unsigned char *device_id
, int buflen
)
3107 buf
= kzalloc(64, GFP_KERNEL
);
3110 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3112 memcpy(device_id
, &buf
[8], buflen
);
3117 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3118 void *buf
, int bufsize
,
3119 int extended_response
)
3122 struct CommandList
*c
;
3123 unsigned char scsi3addr
[8];
3124 struct ErrorInfo
*ei
;
3128 /* address the controller */
3129 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3130 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3131 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3135 if (extended_response
)
3136 c
->Request
.CDB
[1] = extended_response
;
3137 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3138 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3142 if (ei
->CommandStatus
!= 0 &&
3143 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3144 hpsa_scsi_interpret_error(h
, c
);
3147 struct ReportLUNdata
*rld
= buf
;
3149 if (rld
->extended_response_flag
!= extended_response
) {
3150 dev_err(&h
->pdev
->dev
,
3151 "report luns requested format %u, got %u\n",
3153 rld
->extended_response_flag
);
3162 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3163 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3165 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3166 HPSA_REPORT_PHYS_EXTENDED
);
3169 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3170 struct ReportLUNdata
*buf
, int bufsize
)
3172 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3175 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3176 int bus
, int target
, int lun
)
3179 device
->target
= target
;
3183 /* Use VPD inquiry to get details of volume status */
3184 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3185 unsigned char scsi3addr
[])
3192 buf
= kzalloc(64, GFP_KERNEL
);
3194 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3196 /* Does controller have VPD for logical volume status? */
3197 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3200 /* Get the size of the VPD return buffer */
3201 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3202 buf
, HPSA_VPD_HEADER_SZ
);
3207 /* Now get the whole VPD buffer */
3208 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3209 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3212 status
= buf
[4]; /* status byte */
3218 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3221 /* Determine offline status of a volume.
3224 * 0xff (offline for unknown reasons)
3225 * # (integer code indicating one of several NOT READY states
3226 * describing why a volume is to be kept offline)
3228 static int hpsa_volume_offline(struct ctlr_info
*h
,
3229 unsigned char scsi3addr
[])
3231 struct CommandList
*c
;
3232 unsigned char *sense
;
3233 u8 sense_key
, asc
, ascq
;
3238 #define ASC_LUN_NOT_READY 0x04
3239 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3240 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3244 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3245 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3250 sense
= c
->err_info
->SenseInfo
;
3251 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3252 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3254 sense_len
= c
->err_info
->SenseLen
;
3255 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3256 cmd_status
= c
->err_info
->CommandStatus
;
3257 scsi_status
= c
->err_info
->ScsiStatus
;
3259 /* Is the volume 'not ready'? */
3260 if (cmd_status
!= CMD_TARGET_STATUS
||
3261 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3262 sense_key
!= NOT_READY
||
3263 asc
!= ASC_LUN_NOT_READY
) {
3267 /* Determine the reason for not ready state */
3268 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3270 /* Keep volume offline in certain cases: */
3272 case HPSA_LV_UNDERGOING_ERASE
:
3273 case HPSA_LV_NOT_AVAILABLE
:
3274 case HPSA_LV_UNDERGOING_RPI
:
3275 case HPSA_LV_PENDING_RPI
:
3276 case HPSA_LV_ENCRYPTED_NO_KEY
:
3277 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3278 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3279 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3280 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3282 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3283 /* If VPD status page isn't available,
3284 * use ASC/ASCQ to determine state
3286 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3287 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3297 * Find out if a logical device supports aborts by simply trying one.
3298 * Smart Array may claim not to support aborts on logical drives, but
3299 * if a MSA2000 * is connected, the drives on that will be presented
3300 * by the Smart Array as logical drives, and aborts may be sent to
3301 * those devices successfully. So the simplest way to find out is
3302 * to simply try an abort and see how the device responds.
3304 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3305 unsigned char *scsi3addr
)
3307 struct CommandList
*c
;
3308 struct ErrorInfo
*ei
;
3311 u64 tag
= (u64
) -1; /* bogus tag */
3313 /* Assume that physical devices support aborts */
3314 if (!is_logical_dev_addr_mode(scsi3addr
))
3319 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3320 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3321 /* no unmap needed here because no data xfer. */
3323 switch (ei
->CommandStatus
) {
3327 case CMD_UNABORTABLE
:
3328 case CMD_ABORT_FAILED
:
3331 case CMD_TMF_STATUS
:
3332 rc
= hpsa_evaluate_tmf_status(h
, c
);
3342 static int hpsa_update_device_info(struct ctlr_info
*h
,
3343 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3344 unsigned char *is_OBDR_device
)
3347 #define OBDR_SIG_OFFSET 43
3348 #define OBDR_TAPE_SIG "$DR-10"
3349 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3350 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3352 unsigned char *inq_buff
;
3353 unsigned char *obdr_sig
;
3355 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3359 /* Do an inquiry to the device to see what it is. */
3360 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3361 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3362 /* Inquiry failed (msg printed already) */
3363 dev_err(&h
->pdev
->dev
,
3364 "hpsa_update_device_info: inquiry failed\n");
3368 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3369 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3370 memcpy(this_device
->vendor
, &inq_buff
[8],
3371 sizeof(this_device
->vendor
));
3372 memcpy(this_device
->model
, &inq_buff
[16],
3373 sizeof(this_device
->model
));
3374 memset(this_device
->device_id
, 0,
3375 sizeof(this_device
->device_id
));
3376 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
3377 sizeof(this_device
->device_id
));
3379 if (this_device
->devtype
== TYPE_DISK
&&
3380 is_logical_dev_addr_mode(scsi3addr
)) {
3383 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3384 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3385 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3386 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3387 if (volume_offline
< 0 || volume_offline
> 0xff)
3388 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3389 this_device
->volume_offline
= volume_offline
& 0xff;
3391 this_device
->raid_level
= RAID_UNKNOWN
;
3392 this_device
->offload_config
= 0;
3393 this_device
->offload_enabled
= 0;
3394 this_device
->offload_to_be_enabled
= 0;
3395 this_device
->hba_ioaccel_enabled
= 0;
3396 this_device
->volume_offline
= 0;
3397 this_device
->queue_depth
= h
->nr_cmds
;
3400 if (is_OBDR_device
) {
3401 /* See if this is a One-Button-Disaster-Recovery device
3402 * by looking for "$DR-10" at offset 43 in inquiry data.
3404 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3405 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3406 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3407 OBDR_SIG_LEN
) == 0);
3417 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3418 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3420 unsigned long flags
;
3423 * See if this device supports aborts. If we already know
3424 * the device, we already know if it supports aborts, otherwise
3425 * we have to find out if it supports aborts by trying one.
3427 spin_lock_irqsave(&h
->devlock
, flags
);
3428 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3429 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3430 entry
>= 0 && entry
< h
->ndevices
) {
3431 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3432 spin_unlock_irqrestore(&h
->devlock
, flags
);
3434 spin_unlock_irqrestore(&h
->devlock
, flags
);
3435 dev
->supports_aborts
=
3436 hpsa_device_supports_aborts(h
, scsi3addr
);
3437 if (dev
->supports_aborts
< 0)
3438 dev
->supports_aborts
= 0;
3442 static unsigned char *ext_target_model
[] = {
3452 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
3456 for (i
= 0; ext_target_model
[i
]; i
++)
3457 if (strncmp(device
->model
, ext_target_model
[i
],
3458 strlen(ext_target_model
[i
])) == 0)
3463 /* Helper function to assign bus, target, lun mapping of devices.
3464 * Puts non-external target logical volumes on bus 0, external target logical
3465 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3466 * Logical drive target and lun are assigned at this time, but
3467 * physical device lun and target assignment are deferred (assigned
3468 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3470 static void figure_bus_target_lun(struct ctlr_info
*h
,
3471 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3473 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
3475 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3476 /* physical device, target and lun filled in later */
3477 if (is_hba_lunid(lunaddrbytes
))
3478 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
3480 /* defer target, lun assignment for physical devices */
3481 hpsa_set_bus_target_lun(device
, 2, -1, -1);
3484 /* It's a logical device */
3485 if (is_ext_target(h
, device
)) {
3486 /* external target way, put logicals on bus 1
3487 * and match target/lun numbers box
3488 * reports, other smart array, bus 0, target 0, match lunid
3490 hpsa_set_bus_target_lun(device
,
3491 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
3494 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
3498 * If there is no lun 0 on a target, linux won't find any devices.
3499 * For the external targets (arrays), we have to manually detect the enclosure
3500 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3501 * it for some reason. *tmpdevice is the target we're adding,
3502 * this_device is a pointer into the current element of currentsd[]
3503 * that we're building up in update_scsi_devices(), below.
3504 * lunzerobits is a bitmap that tracks which targets already have a
3506 * Returns 1 if an enclosure was added, 0 if not.
3508 static int add_ext_target_dev(struct ctlr_info
*h
,
3509 struct hpsa_scsi_dev_t
*tmpdevice
,
3510 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
3511 unsigned long lunzerobits
[], int *n_ext_target_devs
)
3513 unsigned char scsi3addr
[8];
3515 if (test_bit(tmpdevice
->target
, lunzerobits
))
3516 return 0; /* There is already a lun 0 on this target. */
3518 if (!is_logical_dev_addr_mode(lunaddrbytes
))
3519 return 0; /* It's the logical targets that may lack lun 0. */
3521 if (!is_ext_target(h
, tmpdevice
))
3522 return 0; /* Only external target devices have this problem. */
3524 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
3527 memset(scsi3addr
, 0, 8);
3528 scsi3addr
[3] = tmpdevice
->target
;
3529 if (is_hba_lunid(scsi3addr
))
3530 return 0; /* Don't add the RAID controller here. */
3532 if (is_scsi_rev_5(h
))
3533 return 0; /* p1210m doesn't need to do this. */
3535 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
3536 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
3537 "target devices exceeded. Check your hardware "
3542 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
3544 (*n_ext_target_devs
)++;
3545 hpsa_set_bus_target_lun(this_device
,
3546 tmpdevice
->bus
, tmpdevice
->target
, 0);
3547 hpsa_update_device_supports_aborts(h
, this_device
, scsi3addr
);
3548 set_bit(tmpdevice
->target
, lunzerobits
);
3553 * Get address of physical disk used for an ioaccel2 mode command:
3554 * 1. Extract ioaccel2 handle from the command.
3555 * 2. Find a matching ioaccel2 handle from list of physical disks.
3557 * 1 and set scsi3addr to address of matching physical
3558 * 0 if no matching physical disk was found.
3560 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3561 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3563 struct io_accel2_cmd
*c2
=
3564 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3565 unsigned long flags
;
3568 spin_lock_irqsave(&h
->devlock
, flags
);
3569 for (i
= 0; i
< h
->ndevices
; i
++)
3570 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3571 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3572 sizeof(h
->dev
[i
]->scsi3addr
));
3573 spin_unlock_irqrestore(&h
->devlock
, flags
);
3576 spin_unlock_irqrestore(&h
->devlock
, flags
);
3581 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3582 * logdev. The number of luns in physdev and logdev are returned in
3583 * *nphysicals and *nlogicals, respectively.
3584 * Returns 0 on success, -1 otherwise.
3586 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3587 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3588 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3590 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3591 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3594 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3595 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3596 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3597 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3598 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3600 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3601 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3604 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3605 /* Reject Logicals in excess of our max capability. */
3606 if (*nlogicals
> HPSA_MAX_LUN
) {
3607 dev_warn(&h
->pdev
->dev
,
3608 "maximum logical LUNs (%d) exceeded. "
3609 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3610 *nlogicals
- HPSA_MAX_LUN
);
3611 *nlogicals
= HPSA_MAX_LUN
;
3613 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3614 dev_warn(&h
->pdev
->dev
,
3615 "maximum logical + physical LUNs (%d) exceeded. "
3616 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3617 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3618 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3623 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3624 int i
, int nphysicals
, int nlogicals
,
3625 struct ReportExtendedLUNdata
*physdev_list
,
3626 struct ReportLUNdata
*logdev_list
)
3628 /* Helper function, figure out where the LUN ID info is coming from
3629 * given index i, lists of physical and logical devices, where in
3630 * the list the raid controller is supposed to appear (first or last)
3633 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3634 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3636 if (i
== raid_ctlr_position
)
3637 return RAID_CTLR_LUNID
;
3639 if (i
< logicals_start
)
3640 return &physdev_list
->LUN
[i
-
3641 (raid_ctlr_position
== 0)].lunid
[0];
3643 if (i
< last_device
)
3644 return &logdev_list
->LUN
[i
- nphysicals
-
3645 (raid_ctlr_position
== 0)][0];
3650 /* get physical drive ioaccel handle and queue depth */
3651 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3652 struct hpsa_scsi_dev_t
*dev
,
3654 struct bmic_identify_physical_device
*id_phys
)
3657 struct ext_report_lun_entry
*rle
=
3658 (struct ext_report_lun_entry
*) lunaddrbytes
;
3660 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3661 if (PHYS_IOACCEL(lunaddrbytes
) && dev
->ioaccel_handle
)
3662 dev
->hba_ioaccel_enabled
= 1;
3663 memset(id_phys
, 0, sizeof(*id_phys
));
3664 rc
= hpsa_bmic_id_physical_device(h
, lunaddrbytes
,
3665 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
), id_phys
,
3668 /* Reserve space for FW operations */
3669 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3670 #define DRIVE_QUEUE_DEPTH 7
3672 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3673 DRIVE_CMDS_RESERVED_FOR_FW
;
3675 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3676 atomic_set(&dev
->ioaccel_cmds_out
, 0);
3677 atomic_set(&dev
->reset_cmds_out
, 0);
3680 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
3682 struct bmic_identify_physical_device
*id_phys
)
3684 if (PHYS_IOACCEL(lunaddrbytes
)
3685 && this_device
->ioaccel_handle
)
3686 this_device
->hba_ioaccel_enabled
= 1;
3688 memcpy(&this_device
->active_path_index
,
3689 &id_phys
->active_path_number
,
3690 sizeof(this_device
->active_path_index
));
3691 memcpy(&this_device
->path_map
,
3692 &id_phys
->redundant_path_present_map
,
3693 sizeof(this_device
->path_map
));
3694 memcpy(&this_device
->box
,
3695 &id_phys
->alternate_paths_phys_box_on_port
,
3696 sizeof(this_device
->box
));
3697 memcpy(&this_device
->phys_connector
,
3698 &id_phys
->alternate_paths_phys_connector
,
3699 sizeof(this_device
->phys_connector
));
3700 memcpy(&this_device
->bay
,
3701 &id_phys
->phys_bay_in_box
,
3702 sizeof(this_device
->bay
));
3705 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
3707 /* the idea here is we could get notified
3708 * that some devices have changed, so we do a report
3709 * physical luns and report logical luns cmd, and adjust
3710 * our list of devices accordingly.
3712 * The scsi3addr's of devices won't change so long as the
3713 * adapter is not reset. That means we can rescan and
3714 * tell which devices we already know about, vs. new
3715 * devices, vs. disappearing devices.
3717 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
3718 struct ReportLUNdata
*logdev_list
= NULL
;
3719 struct bmic_identify_physical_device
*id_phys
= NULL
;
3722 u32 ndev_allocated
= 0;
3723 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
3725 int i
, n_ext_target_devs
, ndevs_to_allocate
;
3726 int raid_ctlr_position
;
3727 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
3729 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
3730 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
3731 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
3732 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
3733 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3735 if (!currentsd
|| !physdev_list
|| !logdev_list
||
3736 !tmpdevice
|| !id_phys
) {
3737 dev_err(&h
->pdev
->dev
, "out of memory\n");
3740 memset(lunzerobits
, 0, sizeof(lunzerobits
));
3742 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
3743 logdev_list
, &nlogicals
))
3746 /* We might see up to the maximum number of logical and physical disks
3747 * plus external target devices, and a device for the local RAID
3750 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
3752 /* Allocate the per device structures */
3753 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
3754 if (i
>= HPSA_MAX_DEVICES
) {
3755 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
3756 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
3757 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
3761 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
3762 if (!currentsd
[i
]) {
3763 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
3764 __FILE__
, __LINE__
);
3770 if (is_scsi_rev_5(h
))
3771 raid_ctlr_position
= 0;
3773 raid_ctlr_position
= nphysicals
+ nlogicals
;
3775 /* adjust our table of devices */
3776 n_ext_target_devs
= 0;
3777 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
3778 u8
*lunaddrbytes
, is_OBDR
= 0;
3780 /* Figure out where the LUN ID info is coming from */
3781 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
3782 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
3784 /* skip masked non-disk devices */
3785 if (MASKED_DEVICE(lunaddrbytes
))
3786 if (i
< nphysicals
+ (raid_ctlr_position
== 0) &&
3787 NON_DISK_PHYS_DEV(lunaddrbytes
))
3790 /* Get device type, vendor, model, device id */
3791 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
3793 continue; /* skip it if we can't talk to it. */
3794 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
3795 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
3796 this_device
= currentsd
[ncurrent
];
3799 * For external target devices, we have to insert a LUN 0 which
3800 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3801 * is nonetheless an enclosure device there. We have to
3802 * present that otherwise linux won't find anything if
3803 * there is no lun 0.
3805 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
3806 lunaddrbytes
, lunzerobits
,
3807 &n_ext_target_devs
)) {
3809 this_device
= currentsd
[ncurrent
];
3812 *this_device
= *tmpdevice
;
3814 /* do not expose masked devices */
3815 if (MASKED_DEVICE(lunaddrbytes
) &&
3816 i
< nphysicals
+ (raid_ctlr_position
== 0)) {
3817 this_device
->expose_state
= HPSA_DO_NOT_EXPOSE
;
3819 this_device
->expose_state
=
3820 HPSA_SG_ATTACH
| HPSA_ULD_ATTACH
;
3823 switch (this_device
->devtype
) {
3825 /* We don't *really* support actual CD-ROM devices,
3826 * just "One Button Disaster Recovery" tape drive
3827 * which temporarily pretends to be a CD-ROM drive.
3828 * So we check that the device is really an OBDR tape
3829 * device by checking for "$DR-10" in bytes 43-48 of
3836 if (i
< nphysicals
+ (raid_ctlr_position
== 0)) {
3837 /* The disk is in HBA mode. */
3838 /* Never use RAID mapper in HBA mode. */
3839 this_device
->offload_enabled
= 0;
3840 hpsa_get_ioaccel_drive_info(h
, this_device
,
3841 lunaddrbytes
, id_phys
);
3842 hpsa_get_path_info(this_device
, lunaddrbytes
,
3848 case TYPE_MEDIUM_CHANGER
:
3849 case TYPE_ENCLOSURE
:
3853 /* Only present the Smartarray HBA as a RAID controller.
3854 * If it's a RAID controller other than the HBA itself
3855 * (an external RAID controller, MSA500 or similar)
3858 if (!is_hba_lunid(lunaddrbytes
))
3865 if (ncurrent
>= HPSA_MAX_DEVICES
)
3868 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
3871 for (i
= 0; i
< ndev_allocated
; i
++)
3872 kfree(currentsd
[i
]);
3874 kfree(physdev_list
);
3879 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
3880 struct scatterlist
*sg
)
3882 u64 addr64
= (u64
) sg_dma_address(sg
);
3883 unsigned int len
= sg_dma_len(sg
);
3885 desc
->Addr
= cpu_to_le64(addr64
);
3886 desc
->Len
= cpu_to_le32(len
);
3891 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3892 * dma mapping and fills in the scatter gather entries of the
3895 static int hpsa_scatter_gather(struct ctlr_info
*h
,
3896 struct CommandList
*cp
,
3897 struct scsi_cmnd
*cmd
)
3899 struct scatterlist
*sg
;
3900 int use_sg
, i
, sg_limit
, chained
, last_sg
;
3901 struct SGDescriptor
*curr_sg
;
3903 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
3905 use_sg
= scsi_dma_map(cmd
);
3910 goto sglist_finished
;
3913 * If the number of entries is greater than the max for a single list,
3914 * then we have a chained list; we will set up all but one entry in the
3915 * first list (the last entry is saved for link information);
3916 * otherwise, we don't have a chained list and we'll set up at each of
3917 * the entries in the one list.
3920 chained
= use_sg
> h
->max_cmd_sg_entries
;
3921 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
3922 last_sg
= scsi_sg_count(cmd
) - 1;
3923 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
3924 hpsa_set_sg_descriptor(curr_sg
, sg
);
3930 * Continue with the chained list. Set curr_sg to the chained
3931 * list. Modify the limit to the total count less the entries
3932 * we've already set up. Resume the scan at the list entry
3933 * where the previous loop left off.
3935 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
3936 sg_limit
= use_sg
- sg_limit
;
3937 for_each_sg(sg
, sg
, sg_limit
, i
) {
3938 hpsa_set_sg_descriptor(curr_sg
, sg
);
3943 /* Back the pointer up to the last entry and mark it as "last". */
3944 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3946 if (use_sg
+ chained
> h
->maxSG
)
3947 h
->maxSG
= use_sg
+ chained
;
3950 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
3951 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
3952 if (hpsa_map_sg_chain_block(h
, cp
)) {
3953 scsi_dma_unmap(cmd
);
3961 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
3962 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
3966 #define IO_ACCEL_INELIGIBLE (1)
3967 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
3973 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3980 if (*cdb_len
== 6) {
3981 block
= (((u32
) cdb
[2]) << 8) | cdb
[3];
3984 BUG_ON(*cdb_len
!= 12);
3985 block
= (((u32
) cdb
[2]) << 24) |
3986 (((u32
) cdb
[3]) << 16) |
3987 (((u32
) cdb
[4]) << 8) |
3990 (((u32
) cdb
[6]) << 24) |
3991 (((u32
) cdb
[7]) << 16) |
3992 (((u32
) cdb
[8]) << 8) |
3995 if (block_cnt
> 0xffff)
3996 return IO_ACCEL_INELIGIBLE
;
3998 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4000 cdb
[2] = (u8
) (block
>> 24);
4001 cdb
[3] = (u8
) (block
>> 16);
4002 cdb
[4] = (u8
) (block
>> 8);
4003 cdb
[5] = (u8
) (block
);
4005 cdb
[7] = (u8
) (block_cnt
>> 8);
4006 cdb
[8] = (u8
) (block_cnt
);
4014 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4015 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4016 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4018 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4019 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4021 unsigned int total_len
= 0;
4022 struct scatterlist
*sg
;
4025 struct SGDescriptor
*curr_sg
;
4026 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4028 /* TODO: implement chaining support */
4029 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4030 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4031 return IO_ACCEL_INELIGIBLE
;
4034 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4036 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4037 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4038 return IO_ACCEL_INELIGIBLE
;
4041 c
->cmd_type
= CMD_IOACCEL1
;
4043 /* Adjust the DMA address to point to the accelerated command buffer */
4044 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4045 (c
->cmdindex
* sizeof(*cp
));
4046 BUG_ON(c
->busaddr
& 0x0000007F);
4048 use_sg
= scsi_dma_map(cmd
);
4050 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4056 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4057 addr64
= (u64
) sg_dma_address(sg
);
4058 len
= sg_dma_len(sg
);
4060 curr_sg
->Addr
= cpu_to_le64(addr64
);
4061 curr_sg
->Len
= cpu_to_le32(len
);
4062 curr_sg
->Ext
= cpu_to_le32(0);
4065 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4067 switch (cmd
->sc_data_direction
) {
4069 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4071 case DMA_FROM_DEVICE
:
4072 control
|= IOACCEL1_CONTROL_DATA_IN
;
4075 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4078 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4079 cmd
->sc_data_direction
);
4084 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4087 c
->Header
.SGList
= use_sg
;
4088 /* Fill out the command structure to submit */
4089 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4090 cp
->transfer_len
= cpu_to_le32(total_len
);
4091 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4092 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4093 cp
->control
= cpu_to_le32(control
);
4094 memcpy(cp
->CDB
, cdb
, cdb_len
);
4095 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4096 /* Tag was already set at init time. */
4097 enqueue_cmd_and_start_io(h
, c
);
4102 * Queue a command directly to a device behind the controller using the
4103 * I/O accelerator path.
4105 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4106 struct CommandList
*c
)
4108 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4109 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4113 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4114 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4118 * Set encryption parameters for the ioaccel2 request
4120 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4121 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4123 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4124 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4125 struct raid_map_data
*map
= &dev
->raid_map
;
4128 /* Are we doing encryption on this device */
4129 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4131 /* Set the data encryption key index. */
4132 cp
->dekindex
= map
->dekindex
;
4134 /* Set the encryption enable flag, encoded into direction field. */
4135 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4137 /* Set encryption tweak values based on logical block address
4138 * If block size is 512, tweak value is LBA.
4139 * For other block sizes, tweak is (LBA * block size)/ 512)
4141 switch (cmd
->cmnd
[0]) {
4142 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4145 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4149 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4152 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4156 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4159 dev_err(&h
->pdev
->dev
,
4160 "ERROR: %s: size (0x%x) not supported for encryption\n",
4161 __func__
, cmd
->cmnd
[0]);
4166 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4167 first_block
= first_block
*
4168 le32_to_cpu(map
->volume_blk_size
)/512;
4170 cp
->tweak_lower
= cpu_to_le32(first_block
);
4171 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4174 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4175 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4176 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4178 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4179 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4180 struct ioaccel2_sg_element
*curr_sg
;
4182 struct scatterlist
*sg
;
4187 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4189 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4190 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4191 return IO_ACCEL_INELIGIBLE
;
4194 c
->cmd_type
= CMD_IOACCEL2
;
4195 /* Adjust the DMA address to point to the accelerated command buffer */
4196 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4197 (c
->cmdindex
* sizeof(*cp
));
4198 BUG_ON(c
->busaddr
& 0x0000007F);
4200 memset(cp
, 0, sizeof(*cp
));
4201 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4203 use_sg
= scsi_dma_map(cmd
);
4205 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4211 if (use_sg
> h
->ioaccel_maxsg
) {
4212 addr64
= le64_to_cpu(
4213 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4214 curr_sg
->address
= cpu_to_le64(addr64
);
4215 curr_sg
->length
= 0;
4216 curr_sg
->reserved
[0] = 0;
4217 curr_sg
->reserved
[1] = 0;
4218 curr_sg
->reserved
[2] = 0;
4219 curr_sg
->chain_indicator
= 0x80;
4221 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4223 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4224 addr64
= (u64
) sg_dma_address(sg
);
4225 len
= sg_dma_len(sg
);
4227 curr_sg
->address
= cpu_to_le64(addr64
);
4228 curr_sg
->length
= cpu_to_le32(len
);
4229 curr_sg
->reserved
[0] = 0;
4230 curr_sg
->reserved
[1] = 0;
4231 curr_sg
->reserved
[2] = 0;
4232 curr_sg
->chain_indicator
= 0;
4236 switch (cmd
->sc_data_direction
) {
4238 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4239 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4241 case DMA_FROM_DEVICE
:
4242 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4243 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4246 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4247 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4250 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4251 cmd
->sc_data_direction
);
4256 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4257 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4260 /* Set encryption parameters, if necessary */
4261 set_encrypt_ioaccel2(h
, c
, cp
);
4263 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4264 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4265 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4267 cp
->data_len
= cpu_to_le32(total_len
);
4268 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4269 offsetof(struct io_accel2_cmd
, error_data
));
4270 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4272 /* fill in sg elements */
4273 if (use_sg
> h
->ioaccel_maxsg
) {
4275 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4276 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4277 scsi_dma_unmap(cmd
);
4281 cp
->sg_count
= (u8
) use_sg
;
4283 enqueue_cmd_and_start_io(h
, c
);
4288 * Queue a command to the correct I/O accelerator path.
4290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4291 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4292 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4294 /* Try to honor the device's queue depth */
4295 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4296 phys_disk
->queue_depth
) {
4297 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4298 return IO_ACCEL_INELIGIBLE
;
4300 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4301 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4302 cdb
, cdb_len
, scsi3addr
,
4305 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4306 cdb
, cdb_len
, scsi3addr
,
4310 static void raid_map_helper(struct raid_map_data
*map
,
4311 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4313 if (offload_to_mirror
== 0) {
4314 /* use physical disk in the first mirrored group. */
4315 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4319 /* determine mirror group that *map_index indicates */
4320 *current_group
= *map_index
/
4321 le16_to_cpu(map
->data_disks_per_row
);
4322 if (offload_to_mirror
== *current_group
)
4324 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4325 /* select map index from next group */
4326 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4329 /* select map index from first group */
4330 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4333 } while (offload_to_mirror
!= *current_group
);
4337 * Attempt to perform offload RAID mapping for a logical volume I/O.
4339 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4340 struct CommandList
*c
)
4342 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4343 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4344 struct raid_map_data
*map
= &dev
->raid_map
;
4345 struct raid_map_disk_data
*dd
= &map
->data
[0];
4348 u64 first_block
, last_block
;
4351 u64 first_row
, last_row
;
4352 u32 first_row_offset
, last_row_offset
;
4353 u32 first_column
, last_column
;
4354 u64 r0_first_row
, r0_last_row
;
4355 u32 r5or6_blocks_per_row
;
4356 u64 r5or6_first_row
, r5or6_last_row
;
4357 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4358 u32 r5or6_first_column
, r5or6_last_column
;
4359 u32 total_disks_per_row
;
4361 u32 first_group
, last_group
, current_group
;
4369 #if BITS_PER_LONG == 32
4372 int offload_to_mirror
;
4374 /* check for valid opcode, get LBA and block count */
4375 switch (cmd
->cmnd
[0]) {
4380 (((u64
) cmd
->cmnd
[2]) << 8) |
4382 block_cnt
= cmd
->cmnd
[4];
4390 (((u64
) cmd
->cmnd
[2]) << 24) |
4391 (((u64
) cmd
->cmnd
[3]) << 16) |
4392 (((u64
) cmd
->cmnd
[4]) << 8) |
4395 (((u32
) cmd
->cmnd
[7]) << 8) |
4402 (((u64
) cmd
->cmnd
[2]) << 24) |
4403 (((u64
) cmd
->cmnd
[3]) << 16) |
4404 (((u64
) cmd
->cmnd
[4]) << 8) |
4407 (((u32
) cmd
->cmnd
[6]) << 24) |
4408 (((u32
) cmd
->cmnd
[7]) << 16) |
4409 (((u32
) cmd
->cmnd
[8]) << 8) |
4416 (((u64
) cmd
->cmnd
[2]) << 56) |
4417 (((u64
) cmd
->cmnd
[3]) << 48) |
4418 (((u64
) cmd
->cmnd
[4]) << 40) |
4419 (((u64
) cmd
->cmnd
[5]) << 32) |
4420 (((u64
) cmd
->cmnd
[6]) << 24) |
4421 (((u64
) cmd
->cmnd
[7]) << 16) |
4422 (((u64
) cmd
->cmnd
[8]) << 8) |
4425 (((u32
) cmd
->cmnd
[10]) << 24) |
4426 (((u32
) cmd
->cmnd
[11]) << 16) |
4427 (((u32
) cmd
->cmnd
[12]) << 8) |
4431 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4433 last_block
= first_block
+ block_cnt
- 1;
4435 /* check for write to non-RAID-0 */
4436 if (is_write
&& dev
->raid_level
!= 0)
4437 return IO_ACCEL_INELIGIBLE
;
4439 /* check for invalid block or wraparound */
4440 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4441 last_block
< first_block
)
4442 return IO_ACCEL_INELIGIBLE
;
4444 /* calculate stripe information for the request */
4445 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4446 le16_to_cpu(map
->strip_size
);
4447 strip_size
= le16_to_cpu(map
->strip_size
);
4448 #if BITS_PER_LONG == 32
4449 tmpdiv
= first_block
;
4450 (void) do_div(tmpdiv
, blocks_per_row
);
4452 tmpdiv
= last_block
;
4453 (void) do_div(tmpdiv
, blocks_per_row
);
4455 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4456 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4457 tmpdiv
= first_row_offset
;
4458 (void) do_div(tmpdiv
, strip_size
);
4459 first_column
= tmpdiv
;
4460 tmpdiv
= last_row_offset
;
4461 (void) do_div(tmpdiv
, strip_size
);
4462 last_column
= tmpdiv
;
4464 first_row
= first_block
/ blocks_per_row
;
4465 last_row
= last_block
/ blocks_per_row
;
4466 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4467 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4468 first_column
= first_row_offset
/ strip_size
;
4469 last_column
= last_row_offset
/ strip_size
;
4472 /* if this isn't a single row/column then give to the controller */
4473 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4474 return IO_ACCEL_INELIGIBLE
;
4476 /* proceeding with driver mapping */
4477 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4478 le16_to_cpu(map
->metadata_disks_per_row
);
4479 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4480 le16_to_cpu(map
->row_cnt
);
4481 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4483 switch (dev
->raid_level
) {
4485 break; /* nothing special to do */
4487 /* Handles load balance across RAID 1 members.
4488 * (2-drive R1 and R10 with even # of drives.)
4489 * Appropriate for SSDs, not optimal for HDDs
4491 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4492 if (dev
->offload_to_mirror
)
4493 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4494 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4497 /* Handles N-way mirrors (R1-ADM)
4498 * and R10 with # of drives divisible by 3.)
4500 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4502 offload_to_mirror
= dev
->offload_to_mirror
;
4503 raid_map_helper(map
, offload_to_mirror
,
4504 &map_index
, ¤t_group
);
4505 /* set mirror group to use next time */
4507 (offload_to_mirror
>=
4508 le16_to_cpu(map
->layout_map_count
) - 1)
4509 ? 0 : offload_to_mirror
+ 1;
4510 dev
->offload_to_mirror
= offload_to_mirror
;
4511 /* Avoid direct use of dev->offload_to_mirror within this
4512 * function since multiple threads might simultaneously
4513 * increment it beyond the range of dev->layout_map_count -1.
4518 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4521 /* Verify first and last block are in same RAID group */
4522 r5or6_blocks_per_row
=
4523 le16_to_cpu(map
->strip_size
) *
4524 le16_to_cpu(map
->data_disks_per_row
);
4525 BUG_ON(r5or6_blocks_per_row
== 0);
4526 stripesize
= r5or6_blocks_per_row
*
4527 le16_to_cpu(map
->layout_map_count
);
4528 #if BITS_PER_LONG == 32
4529 tmpdiv
= first_block
;
4530 first_group
= do_div(tmpdiv
, stripesize
);
4531 tmpdiv
= first_group
;
4532 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4533 first_group
= tmpdiv
;
4534 tmpdiv
= last_block
;
4535 last_group
= do_div(tmpdiv
, stripesize
);
4536 tmpdiv
= last_group
;
4537 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4538 last_group
= tmpdiv
;
4540 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4541 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4543 if (first_group
!= last_group
)
4544 return IO_ACCEL_INELIGIBLE
;
4546 /* Verify request is in a single row of RAID 5/6 */
4547 #if BITS_PER_LONG == 32
4548 tmpdiv
= first_block
;
4549 (void) do_div(tmpdiv
, stripesize
);
4550 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4551 tmpdiv
= last_block
;
4552 (void) do_div(tmpdiv
, stripesize
);
4553 r5or6_last_row
= r0_last_row
= tmpdiv
;
4555 first_row
= r5or6_first_row
= r0_first_row
=
4556 first_block
/ stripesize
;
4557 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4559 if (r5or6_first_row
!= r5or6_last_row
)
4560 return IO_ACCEL_INELIGIBLE
;
4563 /* Verify request is in a single column */
4564 #if BITS_PER_LONG == 32
4565 tmpdiv
= first_block
;
4566 first_row_offset
= do_div(tmpdiv
, stripesize
);
4567 tmpdiv
= first_row_offset
;
4568 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4569 r5or6_first_row_offset
= first_row_offset
;
4570 tmpdiv
= last_block
;
4571 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4572 tmpdiv
= r5or6_last_row_offset
;
4573 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4574 tmpdiv
= r5or6_first_row_offset
;
4575 (void) do_div(tmpdiv
, map
->strip_size
);
4576 first_column
= r5or6_first_column
= tmpdiv
;
4577 tmpdiv
= r5or6_last_row_offset
;
4578 (void) do_div(tmpdiv
, map
->strip_size
);
4579 r5or6_last_column
= tmpdiv
;
4581 first_row_offset
= r5or6_first_row_offset
=
4582 (u32
)((first_block
% stripesize
) %
4583 r5or6_blocks_per_row
);
4585 r5or6_last_row_offset
=
4586 (u32
)((last_block
% stripesize
) %
4587 r5or6_blocks_per_row
);
4589 first_column
= r5or6_first_column
=
4590 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4592 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4594 if (r5or6_first_column
!= r5or6_last_column
)
4595 return IO_ACCEL_INELIGIBLE
;
4597 /* Request is eligible */
4598 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4599 le16_to_cpu(map
->row_cnt
);
4601 map_index
= (first_group
*
4602 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4603 (map_row
* total_disks_per_row
) + first_column
;
4606 return IO_ACCEL_INELIGIBLE
;
4609 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4610 return IO_ACCEL_INELIGIBLE
;
4612 c
->phys_disk
= dev
->phys_disk
[map_index
];
4614 disk_handle
= dd
[map_index
].ioaccel_handle
;
4615 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4616 first_row
* le16_to_cpu(map
->strip_size
) +
4617 (first_row_offset
- first_column
*
4618 le16_to_cpu(map
->strip_size
));
4619 disk_block_cnt
= block_cnt
;
4621 /* handle differing logical/physical block sizes */
4622 if (map
->phys_blk_shift
) {
4623 disk_block
<<= map
->phys_blk_shift
;
4624 disk_block_cnt
<<= map
->phys_blk_shift
;
4626 BUG_ON(disk_block_cnt
> 0xffff);
4628 /* build the new CDB for the physical disk I/O */
4629 if (disk_block
> 0xffffffff) {
4630 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4632 cdb
[2] = (u8
) (disk_block
>> 56);
4633 cdb
[3] = (u8
) (disk_block
>> 48);
4634 cdb
[4] = (u8
) (disk_block
>> 40);
4635 cdb
[5] = (u8
) (disk_block
>> 32);
4636 cdb
[6] = (u8
) (disk_block
>> 24);
4637 cdb
[7] = (u8
) (disk_block
>> 16);
4638 cdb
[8] = (u8
) (disk_block
>> 8);
4639 cdb
[9] = (u8
) (disk_block
);
4640 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
4641 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
4642 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
4643 cdb
[13] = (u8
) (disk_block_cnt
);
4648 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4650 cdb
[2] = (u8
) (disk_block
>> 24);
4651 cdb
[3] = (u8
) (disk_block
>> 16);
4652 cdb
[4] = (u8
) (disk_block
>> 8);
4653 cdb
[5] = (u8
) (disk_block
);
4655 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
4656 cdb
[8] = (u8
) (disk_block_cnt
);
4660 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
4662 dev
->phys_disk
[map_index
]);
4666 * Submit commands down the "normal" RAID stack path
4667 * All callers to hpsa_ciss_submit must check lockup_detected
4668 * beforehand, before (opt.) and after calling cmd_alloc
4670 static int hpsa_ciss_submit(struct ctlr_info
*h
,
4671 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4672 unsigned char scsi3addr
[])
4674 cmd
->host_scribble
= (unsigned char *) c
;
4675 c
->cmd_type
= CMD_SCSI
;
4677 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4678 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
4679 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
4681 /* Fill in the request block... */
4683 c
->Request
.Timeout
= 0;
4684 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
4685 c
->Request
.CDBLen
= cmd
->cmd_len
;
4686 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
4687 switch (cmd
->sc_data_direction
) {
4689 c
->Request
.type_attr_dir
=
4690 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
4692 case DMA_FROM_DEVICE
:
4693 c
->Request
.type_attr_dir
=
4694 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
4697 c
->Request
.type_attr_dir
=
4698 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
4700 case DMA_BIDIRECTIONAL
:
4701 /* This can happen if a buggy application does a scsi passthru
4702 * and sets both inlen and outlen to non-zero. ( see
4703 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4706 c
->Request
.type_attr_dir
=
4707 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
4708 /* This is technically wrong, and hpsa controllers should
4709 * reject it with CMD_INVALID, which is the most correct
4710 * response, but non-fibre backends appear to let it
4711 * slide by, and give the same results as if this field
4712 * were set correctly. Either way is acceptable for
4713 * our purposes here.
4719 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4720 cmd
->sc_data_direction
);
4725 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
4726 hpsa_cmd_resolve_and_free(h
, c
);
4727 return SCSI_MLQUEUE_HOST_BUSY
;
4729 enqueue_cmd_and_start_io(h
, c
);
4730 /* the cmd'll come back via intr handler in complete_scsi_command() */
4734 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
4735 struct CommandList
*c
)
4737 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4739 /* Zero out all of commandlist except the last field, refcount */
4740 memset(c
, 0, offsetof(struct CommandList
, refcount
));
4741 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
4742 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4743 c
->err_info
= h
->errinfo_pool
+ index
;
4744 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4745 err_dma_handle
= h
->errinfo_pool_dhandle
4746 + index
* sizeof(*c
->err_info
);
4747 c
->cmdindex
= index
;
4748 c
->busaddr
= (u32
) cmd_dma_handle
;
4749 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
4750 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
4752 c
->scsi_cmd
= SCSI_CMD_IDLE
;
4755 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
4759 for (i
= 0; i
< h
->nr_cmds
; i
++) {
4760 struct CommandList
*c
= h
->cmd_pool
+ i
;
4762 hpsa_cmd_init(h
, i
, c
);
4763 atomic_set(&c
->refcount
, 0);
4767 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
4768 struct CommandList
*c
)
4770 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4772 BUG_ON(c
->cmdindex
!= index
);
4774 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
4775 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4776 c
->busaddr
= (u32
) cmd_dma_handle
;
4779 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
4780 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4781 unsigned char *scsi3addr
)
4783 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4784 int rc
= IO_ACCEL_INELIGIBLE
;
4786 cmd
->host_scribble
= (unsigned char *) c
;
4788 if (dev
->offload_enabled
) {
4789 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4790 c
->cmd_type
= CMD_SCSI
;
4792 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
4793 if (rc
< 0) /* scsi_dma_map failed. */
4794 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4795 } else if (dev
->hba_ioaccel_enabled
) {
4796 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4797 c
->cmd_type
= CMD_SCSI
;
4799 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
4800 if (rc
< 0) /* scsi_dma_map failed. */
4801 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4806 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
4808 struct scsi_cmnd
*cmd
;
4809 struct hpsa_scsi_dev_t
*dev
;
4810 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
4813 dev
= cmd
->device
->hostdata
;
4815 cmd
->result
= DID_NO_CONNECT
<< 16;
4816 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
4818 if (c
->reset_pending
)
4819 return hpsa_cmd_resolve_and_free(c
->h
, c
);
4820 if (c
->abort_pending
)
4821 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
4822 if (c
->cmd_type
== CMD_IOACCEL2
) {
4823 struct ctlr_info
*h
= c
->h
;
4824 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4827 if (c2
->error_data
.serv_response
==
4828 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
4829 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
4832 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4834 * If we get here, it means dma mapping failed.
4835 * Try again via scsi mid layer, which will
4836 * then get SCSI_MLQUEUE_HOST_BUSY.
4838 cmd
->result
= DID_IMM_RETRY
<< 16;
4839 return hpsa_cmd_free_and_done(h
, c
, cmd
);
4841 /* else, fall thru and resubmit down CISS path */
4844 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
4845 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
4847 * If we get here, it means dma mapping failed. Try
4848 * again via scsi mid layer, which will then get
4849 * SCSI_MLQUEUE_HOST_BUSY.
4851 * hpsa_ciss_submit will have already freed c
4852 * if it encountered a dma mapping failure.
4854 cmd
->result
= DID_IMM_RETRY
<< 16;
4855 cmd
->scsi_done(cmd
);
4859 /* Running in struct Scsi_Host->host_lock less mode */
4860 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
4862 struct ctlr_info
*h
;
4863 struct hpsa_scsi_dev_t
*dev
;
4864 unsigned char scsi3addr
[8];
4865 struct CommandList
*c
;
4868 /* Get the ptr to our adapter structure out of cmd->host. */
4869 h
= sdev_to_hba(cmd
->device
);
4871 BUG_ON(cmd
->request
->tag
< 0);
4873 dev
= cmd
->device
->hostdata
;
4875 cmd
->result
= DID_NO_CONNECT
<< 16;
4876 cmd
->scsi_done(cmd
);
4880 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
4882 if (unlikely(lockup_detected(h
))) {
4883 cmd
->result
= DID_NO_CONNECT
<< 16;
4884 cmd
->scsi_done(cmd
);
4887 c
= cmd_tagged_alloc(h
, cmd
);
4890 * Call alternate submit routine for I/O accelerated commands.
4891 * Retries always go down the normal I/O path.
4893 if (likely(cmd
->retries
== 0 &&
4894 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
4895 h
->acciopath_status
)) {
4896 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
4899 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4900 hpsa_cmd_resolve_and_free(h
, c
);
4901 return SCSI_MLQUEUE_HOST_BUSY
;
4904 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
4907 static void hpsa_scan_complete(struct ctlr_info
*h
)
4909 unsigned long flags
;
4911 spin_lock_irqsave(&h
->scan_lock
, flags
);
4912 h
->scan_finished
= 1;
4913 wake_up_all(&h
->scan_wait_queue
);
4914 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4917 static void hpsa_scan_start(struct Scsi_Host
*sh
)
4919 struct ctlr_info
*h
= shost_to_hba(sh
);
4920 unsigned long flags
;
4923 * Don't let rescans be initiated on a controller known to be locked
4924 * up. If the controller locks up *during* a rescan, that thread is
4925 * probably hosed, but at least we can prevent new rescan threads from
4926 * piling up on a locked up controller.
4928 if (unlikely(lockup_detected(h
)))
4929 return hpsa_scan_complete(h
);
4931 /* wait until any scan already in progress is finished. */
4933 spin_lock_irqsave(&h
->scan_lock
, flags
);
4934 if (h
->scan_finished
)
4936 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4937 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
4938 /* Note: We don't need to worry about a race between this
4939 * thread and driver unload because the midlayer will
4940 * have incremented the reference count, so unload won't
4941 * happen if we're in here.
4944 h
->scan_finished
= 0; /* mark scan as in progress */
4945 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4947 if (unlikely(lockup_detected(h
)))
4948 return hpsa_scan_complete(h
);
4950 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
4952 hpsa_scan_complete(h
);
4955 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
4957 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
4964 else if (qdepth
> logical_drive
->queue_depth
)
4965 qdepth
= logical_drive
->queue_depth
;
4967 return scsi_change_queue_depth(sdev
, qdepth
);
4970 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
4971 unsigned long elapsed_time
)
4973 struct ctlr_info
*h
= shost_to_hba(sh
);
4974 unsigned long flags
;
4977 spin_lock_irqsave(&h
->scan_lock
, flags
);
4978 finished
= h
->scan_finished
;
4979 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4983 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
4985 struct Scsi_Host
*sh
;
4988 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
4990 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
4997 sh
->max_channel
= 3;
4998 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
4999 sh
->max_lun
= HPSA_MAX_LUN
;
5000 sh
->max_id
= HPSA_MAX_LUN
;
5001 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5002 sh
->cmd_per_lun
= sh
->can_queue
;
5003 sh
->sg_tablesize
= h
->maxsgentries
;
5004 sh
->hostdata
[0] = (unsigned long) h
;
5005 sh
->irq
= h
->intr
[h
->intr_mode
];
5006 sh
->unique_id
= sh
->irq
;
5007 error
= scsi_init_shared_tag_map(sh
, sh
->can_queue
);
5009 dev_err(&h
->pdev
->dev
,
5010 "%s: scsi_init_shared_tag_map failed for controller %d\n",
5019 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5023 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5025 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5028 scsi_scan_host(h
->scsi_host
);
5033 * The block layer has already gone to the trouble of picking out a unique,
5034 * small-integer tag for this request. We use an offset from that value as
5035 * an index to select our command block. (The offset allows us to reserve the
5036 * low-numbered entries for our own uses.)
5038 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5040 int idx
= scmd
->request
->tag
;
5045 /* Offset to leave space for internal cmds. */
5046 return idx
+= HPSA_NRESERVED_CMDS
;
5050 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5051 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5053 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5054 struct CommandList
*c
, unsigned char lunaddr
[],
5059 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5060 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5061 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5062 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5065 /* no unmap needed here because no data xfer. */
5067 /* Check if the unit is already ready. */
5068 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5072 * The first command sent after reset will receive "unit attention" to
5073 * indicate that the LUN has been reset...this is actually what we're
5074 * looking for (but, success is good too).
5076 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5077 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5078 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5079 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5086 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5087 * returns zero when the unit is ready, and non-zero when giving up.
5089 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5090 struct CommandList
*c
,
5091 unsigned char lunaddr
[], int reply_queue
)
5095 int waittime
= 1; /* seconds */
5097 /* Send test unit ready until device ready, or give up. */
5098 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5101 * Wait for a bit. do this first, because if we send
5102 * the TUR right away, the reset will just abort it.
5104 msleep(1000 * waittime
);
5106 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5110 /* Increase wait time with each try, up to a point. */
5111 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5114 dev_warn(&h
->pdev
->dev
,
5115 "waiting %d secs for device to become ready.\n",
5122 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5123 unsigned char lunaddr
[],
5130 struct CommandList
*c
;
5135 * If no specific reply queue was requested, then send the TUR
5136 * repeatedly, requesting a reply on each reply queue; otherwise execute
5137 * the loop exactly once using only the specified queue.
5139 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5141 last_queue
= h
->nreply_queues
- 1;
5143 first_queue
= reply_queue
;
5144 last_queue
= reply_queue
;
5147 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5148 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5154 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5156 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5162 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5163 * complaining. Doing a host- or bus-reset can't do anything good here.
5165 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5168 struct ctlr_info
*h
;
5169 struct hpsa_scsi_dev_t
*dev
;
5172 /* find the controller to which the command to be aborted was sent */
5173 h
= sdev_to_hba(scsicmd
->device
);
5174 if (h
== NULL
) /* paranoia */
5177 if (lockup_detected(h
))
5180 dev
= scsicmd
->device
->hostdata
;
5182 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5186 /* if controller locked up, we can guarantee command won't complete */
5187 if (lockup_detected(h
)) {
5188 snprintf(msg
, sizeof(msg
),
5189 "cmd %d RESET FAILED, lockup detected",
5190 hpsa_get_cmd_index(scsicmd
));
5191 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5195 /* this reset request might be the result of a lockup; check */
5196 if (detect_controller_lockup(h
)) {
5197 snprintf(msg
, sizeof(msg
),
5198 "cmd %d RESET FAILED, new lockup detected",
5199 hpsa_get_cmd_index(scsicmd
));
5200 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5204 /* Do not attempt on controller */
5205 if (is_hba_lunid(dev
->scsi3addr
))
5208 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "resetting");
5210 /* send a reset to the SCSI LUN which the command was sent to */
5211 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, HPSA_RESET_TYPE_LUN
,
5212 DEFAULT_REPLY_QUEUE
);
5213 snprintf(msg
, sizeof(msg
), "reset %s",
5214 rc
== 0 ? "completed successfully" : "failed");
5215 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5216 return rc
== 0 ? SUCCESS
: FAILED
;
5219 static void swizzle_abort_tag(u8
*tag
)
5223 memcpy(original_tag
, tag
, 8);
5224 tag
[0] = original_tag
[3];
5225 tag
[1] = original_tag
[2];
5226 tag
[2] = original_tag
[1];
5227 tag
[3] = original_tag
[0];
5228 tag
[4] = original_tag
[7];
5229 tag
[5] = original_tag
[6];
5230 tag
[6] = original_tag
[5];
5231 tag
[7] = original_tag
[4];
5234 static void hpsa_get_tag(struct ctlr_info
*h
,
5235 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5238 if (c
->cmd_type
== CMD_IOACCEL1
) {
5239 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5240 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5241 tag
= le64_to_cpu(cm1
->tag
);
5242 *tagupper
= cpu_to_le32(tag
>> 32);
5243 *taglower
= cpu_to_le32(tag
);
5246 if (c
->cmd_type
== CMD_IOACCEL2
) {
5247 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5248 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5249 /* upper tag not used in ioaccel2 mode */
5250 memset(tagupper
, 0, sizeof(*tagupper
));
5251 *taglower
= cm2
->Tag
;
5254 tag
= le64_to_cpu(c
->Header
.tag
);
5255 *tagupper
= cpu_to_le32(tag
>> 32);
5256 *taglower
= cpu_to_le32(tag
);
5259 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5260 struct CommandList
*abort
, int reply_queue
)
5263 struct CommandList
*c
;
5264 struct ErrorInfo
*ei
;
5265 __le32 tagupper
, taglower
;
5269 /* fill_cmd can't fail here, no buffer to map */
5270 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5271 0, 0, scsi3addr
, TYPE_MSG
);
5272 if (h
->needs_abort_tags_swizzled
)
5273 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5274 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5275 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5276 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5277 __func__
, tagupper
, taglower
);
5278 /* no unmap needed here because no data xfer. */
5281 switch (ei
->CommandStatus
) {
5284 case CMD_TMF_STATUS
:
5285 rc
= hpsa_evaluate_tmf_status(h
, c
);
5287 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5291 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5292 __func__
, tagupper
, taglower
);
5293 hpsa_scsi_interpret_error(h
, c
);
5298 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5299 __func__
, tagupper
, taglower
);
5303 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5304 struct CommandList
*command_to_abort
, int reply_queue
)
5306 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5307 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5308 struct io_accel2_cmd
*c2a
=
5309 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5310 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5311 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5314 * We're overlaying struct hpsa_tmf_struct on top of something which
5315 * was allocated as a struct io_accel2_cmd, so we better be sure it
5316 * actually fits, and doesn't overrun the error info space.
5318 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5319 sizeof(struct io_accel2_cmd
));
5320 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5321 offsetof(struct hpsa_tmf_struct
, error_len
) +
5322 sizeof(ac
->error_len
));
5324 c
->cmd_type
= IOACCEL2_TMF
;
5325 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5327 /* Adjust the DMA address to point to the accelerated command buffer */
5328 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5329 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5330 BUG_ON(c
->busaddr
& 0x0000007F);
5332 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5333 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5334 ac
->reply_queue
= reply_queue
;
5335 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5336 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5337 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5338 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5339 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5340 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5341 offsetof(struct io_accel2_cmd
, error_data
));
5342 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5345 /* ioaccel2 path firmware cannot handle abort task requests.
5346 * Change abort requests to physical target reset, and send to the
5347 * address of the physical disk used for the ioaccel 2 command.
5348 * Return 0 on success (IO_OK)
5352 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5353 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5356 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5357 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5358 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5359 unsigned char *psa
= &phys_scsi3addr
[0];
5361 /* Get a pointer to the hpsa logical device. */
5362 scmd
= abort
->scsi_cmd
;
5363 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5365 dev_warn(&h
->pdev
->dev
,
5366 "Cannot abort: no device pointer for command.\n");
5367 return -1; /* not abortable */
5370 if (h
->raid_offload_debug
> 0)
5371 dev_info(&h
->pdev
->dev
,
5372 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5373 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5375 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5376 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5378 if (!dev
->offload_enabled
) {
5379 dev_warn(&h
->pdev
->dev
,
5380 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5381 return -1; /* not abortable */
5384 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5385 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5386 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5387 return -1; /* not abortable */
5390 /* send the reset */
5391 if (h
->raid_offload_debug
> 0)
5392 dev_info(&h
->pdev
->dev
,
5393 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5394 psa
[0], psa
[1], psa
[2], psa
[3],
5395 psa
[4], psa
[5], psa
[6], psa
[7]);
5396 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5398 dev_warn(&h
->pdev
->dev
,
5399 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5400 psa
[0], psa
[1], psa
[2], psa
[3],
5401 psa
[4], psa
[5], psa
[6], psa
[7]);
5402 return rc
; /* failed to reset */
5405 /* wait for device to recover */
5406 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5407 dev_warn(&h
->pdev
->dev
,
5408 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5409 psa
[0], psa
[1], psa
[2], psa
[3],
5410 psa
[4], psa
[5], psa
[6], psa
[7]);
5411 return -1; /* failed to recover */
5414 /* device recovered */
5415 dev_info(&h
->pdev
->dev
,
5416 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5417 psa
[0], psa
[1], psa
[2], psa
[3],
5418 psa
[4], psa
[5], psa
[6], psa
[7]);
5420 return rc
; /* success */
5423 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5424 struct CommandList
*abort
, int reply_queue
)
5427 struct CommandList
*c
;
5428 __le32 taglower
, tagupper
;
5429 struct hpsa_scsi_dev_t
*dev
;
5430 struct io_accel2_cmd
*c2
;
5432 dev
= abort
->scsi_cmd
->device
->hostdata
;
5433 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5437 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5438 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5439 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5440 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5441 dev_dbg(&h
->pdev
->dev
,
5442 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5443 __func__
, tagupper
, taglower
);
5444 /* no unmap needed here because no data xfer. */
5446 dev_dbg(&h
->pdev
->dev
,
5447 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5448 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5449 switch (c2
->error_data
.serv_response
) {
5450 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5451 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5454 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5455 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5456 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5460 dev_warn(&h
->pdev
->dev
,
5461 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5462 __func__
, tagupper
, taglower
,
5463 c2
->error_data
.serv_response
);
5467 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5468 tagupper
, taglower
);
5472 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5473 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5476 * ioccelerator mode 2 commands should be aborted via the
5477 * accelerated path, since RAID path is unaware of these commands,
5478 * but not all underlying firmware can handle abort TMF.
5479 * Change abort to physical device reset when abort TMF is unsupported.
5481 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5482 if (HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
)
5483 return hpsa_send_abort_ioaccel2(h
, abort
,
5486 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
,
5487 abort
, reply_queue
);
5489 return hpsa_send_abort(h
, scsi3addr
, abort
, reply_queue
);
5492 /* Find out which reply queue a command was meant to return on */
5493 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5494 struct CommandList
*c
)
5496 if (c
->cmd_type
== CMD_IOACCEL2
)
5497 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5498 return c
->Header
.ReplyQueue
;
5502 * Limit concurrency of abort commands to prevent
5503 * over-subscription of commands
5505 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5507 #define ABORT_CMD_WAIT_MSECS 5000
5508 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5509 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5510 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5513 /* Send an abort for the specified command.
5514 * If the device and controller support it,
5515 * send a task abort request.
5517 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5521 struct ctlr_info
*h
;
5522 struct hpsa_scsi_dev_t
*dev
;
5523 struct CommandList
*abort
; /* pointer to command to be aborted */
5524 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5525 char msg
[256]; /* For debug messaging. */
5527 __le32 tagupper
, taglower
;
5528 int refcount
, reply_queue
;
5533 if (sc
->device
== NULL
)
5536 /* Find the controller of the command to be aborted */
5537 h
= sdev_to_hba(sc
->device
);
5541 /* Find the device of the command to be aborted */
5542 dev
= sc
->device
->hostdata
;
5544 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5549 /* If controller locked up, we can guarantee command won't complete */
5550 if (lockup_detected(h
)) {
5551 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5552 "ABORT FAILED, lockup detected");
5556 /* This is a good time to check if controller lockup has occurred */
5557 if (detect_controller_lockup(h
)) {
5558 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5559 "ABORT FAILED, new lockup detected");
5563 /* Check that controller supports some kind of task abort */
5564 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5565 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5568 memset(msg
, 0, sizeof(msg
));
5569 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5570 h
->scsi_host
->host_no
, sc
->device
->channel
,
5571 sc
->device
->id
, sc
->device
->lun
,
5572 "Aborting command", sc
);
5574 /* Get SCSI command to be aborted */
5575 abort
= (struct CommandList
*) sc
->host_scribble
;
5576 if (abort
== NULL
) {
5577 /* This can happen if the command already completed. */
5580 refcount
= atomic_inc_return(&abort
->refcount
);
5581 if (refcount
== 1) { /* Command is done already. */
5586 /* Don't bother trying the abort if we know it won't work. */
5587 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5588 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5594 * Check that we're aborting the right command.
5595 * It's possible the CommandList already completed and got re-used.
5597 if (abort
->scsi_cmd
!= sc
) {
5602 abort
->abort_pending
= true;
5603 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5604 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5605 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5606 as
= abort
->scsi_cmd
;
5608 ml
+= sprintf(msg
+ml
,
5609 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5610 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5612 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5613 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5616 * Command is in flight, or possibly already completed
5617 * by the firmware (but not to the scsi mid layer) but we can't
5618 * distinguish which. Send the abort down.
5620 if (wait_for_available_abort_cmd(h
)) {
5621 dev_warn(&h
->pdev
->dev
,
5622 "%s FAILED, timeout waiting for an abort command to become available.\n",
5627 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
, reply_queue
);
5628 atomic_inc(&h
->abort_cmds_available
);
5629 wake_up_all(&h
->abort_cmd_wait_queue
);
5631 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
5632 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5633 "FAILED to abort command");
5637 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
5638 wait_event(h
->event_sync_wait_queue
,
5639 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
5641 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
5645 * For operations with an associated SCSI command, a command block is allocated
5646 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5647 * block request tag as an index into a table of entries. cmd_tagged_free() is
5648 * the complement, although cmd_free() may be called instead.
5650 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5651 struct scsi_cmnd
*scmd
)
5653 int idx
= hpsa_get_cmd_index(scmd
);
5654 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5656 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5657 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5658 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5659 /* The index value comes from the block layer, so if it's out of
5660 * bounds, it's probably not our bug.
5665 atomic_inc(&c
->refcount
);
5666 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5668 * We expect that the SCSI layer will hand us a unique tag
5669 * value. Thus, there should never be a collision here between
5670 * two requests...because if the selected command isn't idle
5671 * then someone is going to be very disappointed.
5673 dev_err(&h
->pdev
->dev
,
5674 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5676 if (c
->scsi_cmd
!= NULL
)
5677 scsi_print_command(c
->scsi_cmd
);
5678 scsi_print_command(scmd
);
5681 hpsa_cmd_partial_init(h
, idx
, c
);
5685 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5688 * Release our reference to the block. We don't need to do anything
5689 * else to free it, because it is accessed by index. (There's no point
5690 * in checking the result of the decrement, since we cannot guarantee
5691 * that there isn't a concurrent abort which is also accessing it.)
5693 (void)atomic_dec(&c
->refcount
);
5697 * For operations that cannot sleep, a command block is allocated at init,
5698 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5699 * which ones are free or in use. Lock must be held when calling this.
5700 * cmd_free() is the complement.
5701 * This function never gives up and returns NULL. If it hangs,
5702 * another thread must call cmd_free() to free some tags.
5705 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5707 struct CommandList
*c
;
5712 * There is some *extremely* small but non-zero chance that that
5713 * multiple threads could get in here, and one thread could
5714 * be scanning through the list of bits looking for a free
5715 * one, but the free ones are always behind him, and other
5716 * threads sneak in behind him and eat them before he can
5717 * get to them, so that while there is always a free one, a
5718 * very unlucky thread might be starved anyway, never able to
5719 * beat the other threads. In reality, this happens so
5720 * infrequently as to be indistinguishable from never.
5722 * Note that we start allocating commands before the SCSI host structure
5723 * is initialized. Since the search starts at bit zero, this
5724 * all works, since we have at least one command structure available;
5725 * however, it means that the structures with the low indexes have to be
5726 * reserved for driver-initiated requests, while requests from the block
5727 * layer will use the higher indexes.
5731 i
= find_next_zero_bit(h
->cmd_pool_bits
,
5732 HPSA_NRESERVED_CMDS
,
5734 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
5738 c
= h
->cmd_pool
+ i
;
5739 refcount
= atomic_inc_return(&c
->refcount
);
5740 if (unlikely(refcount
> 1)) {
5741 cmd_free(h
, c
); /* already in use */
5742 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
5745 set_bit(i
& (BITS_PER_LONG
- 1),
5746 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5747 break; /* it's ours now. */
5749 hpsa_cmd_partial_init(h
, i
, c
);
5754 * This is the complementary operation to cmd_alloc(). Note, however, in some
5755 * corner cases it may also be used to free blocks allocated by
5756 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5757 * the clear-bit is harmless.
5759 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
5761 if (atomic_dec_and_test(&c
->refcount
)) {
5764 i
= c
- h
->cmd_pool
;
5765 clear_bit(i
& (BITS_PER_LONG
- 1),
5766 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5770 #ifdef CONFIG_COMPAT
5772 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
5775 IOCTL32_Command_struct __user
*arg32
=
5776 (IOCTL32_Command_struct __user
*) arg
;
5777 IOCTL_Command_struct arg64
;
5778 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
5782 memset(&arg64
, 0, sizeof(arg64
));
5784 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5785 sizeof(arg64
.LUN_info
));
5786 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5787 sizeof(arg64
.Request
));
5788 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5789 sizeof(arg64
.error_info
));
5790 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5791 err
|= get_user(cp
, &arg32
->buf
);
5792 arg64
.buf
= compat_ptr(cp
);
5793 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5798 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
5801 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5802 sizeof(arg32
->error_info
));
5808 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
5809 int cmd
, void __user
*arg
)
5811 BIG_IOCTL32_Command_struct __user
*arg32
=
5812 (BIG_IOCTL32_Command_struct __user
*) arg
;
5813 BIG_IOCTL_Command_struct arg64
;
5814 BIG_IOCTL_Command_struct __user
*p
=
5815 compat_alloc_user_space(sizeof(arg64
));
5819 memset(&arg64
, 0, sizeof(arg64
));
5821 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5822 sizeof(arg64
.LUN_info
));
5823 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5824 sizeof(arg64
.Request
));
5825 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5826 sizeof(arg64
.error_info
));
5827 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5828 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
5829 err
|= get_user(cp
, &arg32
->buf
);
5830 arg64
.buf
= compat_ptr(cp
);
5831 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5836 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
5839 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5840 sizeof(arg32
->error_info
));
5846 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
5849 case CCISS_GETPCIINFO
:
5850 case CCISS_GETINTINFO
:
5851 case CCISS_SETINTINFO
:
5852 case CCISS_GETNODENAME
:
5853 case CCISS_SETNODENAME
:
5854 case CCISS_GETHEARTBEAT
:
5855 case CCISS_GETBUSTYPES
:
5856 case CCISS_GETFIRMVER
:
5857 case CCISS_GETDRIVVER
:
5858 case CCISS_REVALIDVOLS
:
5859 case CCISS_DEREGDISK
:
5860 case CCISS_REGNEWDISK
:
5862 case CCISS_RESCANDISK
:
5863 case CCISS_GETLUNINFO
:
5864 return hpsa_ioctl(dev
, cmd
, arg
);
5866 case CCISS_PASSTHRU32
:
5867 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
5868 case CCISS_BIG_PASSTHRU32
:
5869 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
5872 return -ENOIOCTLCMD
;
5877 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5879 struct hpsa_pci_info pciinfo
;
5883 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
5884 pciinfo
.bus
= h
->pdev
->bus
->number
;
5885 pciinfo
.dev_fn
= h
->pdev
->devfn
;
5886 pciinfo
.board_id
= h
->board_id
;
5887 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
5892 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5894 DriverVer_type DriverVer
;
5895 unsigned char vmaj
, vmin
, vsubmin
;
5898 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
5899 &vmaj
, &vmin
, &vsubmin
);
5901 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
5902 "unrecognized.", HPSA_DRIVER_VERSION
);
5907 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
5910 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
5915 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5917 IOCTL_Command_struct iocommand
;
5918 struct CommandList
*c
;
5925 if (!capable(CAP_SYS_RAWIO
))
5927 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
5929 if ((iocommand
.buf_size
< 1) &&
5930 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
5933 if (iocommand
.buf_size
> 0) {
5934 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
5937 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
5938 /* Copy the data into the buffer we created */
5939 if (copy_from_user(buff
, iocommand
.buf
,
5940 iocommand
.buf_size
)) {
5945 memset(buff
, 0, iocommand
.buf_size
);
5950 /* Fill in the command type */
5951 c
->cmd_type
= CMD_IOCTL_PEND
;
5952 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5953 /* Fill in Command Header */
5954 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5955 if (iocommand
.buf_size
> 0) { /* buffer to fill */
5956 c
->Header
.SGList
= 1;
5957 c
->Header
.SGTotal
= cpu_to_le16(1);
5958 } else { /* no buffers to fill */
5959 c
->Header
.SGList
= 0;
5960 c
->Header
.SGTotal
= cpu_to_le16(0);
5962 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
5964 /* Fill in Request block */
5965 memcpy(&c
->Request
, &iocommand
.Request
,
5966 sizeof(c
->Request
));
5968 /* Fill in the scatter gather information */
5969 if (iocommand
.buf_size
> 0) {
5970 temp64
= pci_map_single(h
->pdev
, buff
,
5971 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
5972 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
5973 c
->SG
[0].Addr
= cpu_to_le64(0);
5974 c
->SG
[0].Len
= cpu_to_le32(0);
5978 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
5979 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
5980 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
5982 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
5983 if (iocommand
.buf_size
> 0)
5984 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
5985 check_ioctl_unit_attention(h
, c
);
5991 /* Copy the error information out */
5992 memcpy(&iocommand
.error_info
, c
->err_info
,
5993 sizeof(iocommand
.error_info
));
5994 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
5998 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
5999 iocommand
.buf_size
> 0) {
6000 /* Copy the data out of the buffer we created */
6001 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6013 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6015 BIG_IOCTL_Command_struct
*ioc
;
6016 struct CommandList
*c
;
6017 unsigned char **buff
= NULL
;
6018 int *buff_size
= NULL
;
6024 BYTE __user
*data_ptr
;
6028 if (!capable(CAP_SYS_RAWIO
))
6030 ioc
= (BIG_IOCTL_Command_struct
*)
6031 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6036 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6040 if ((ioc
->buf_size
< 1) &&
6041 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6045 /* Check kmalloc limits using all SGs */
6046 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6050 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6054 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6059 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6064 left
= ioc
->buf_size
;
6065 data_ptr
= ioc
->buf
;
6067 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6068 buff_size
[sg_used
] = sz
;
6069 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6070 if (buff
[sg_used
] == NULL
) {
6074 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6075 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6080 memset(buff
[sg_used
], 0, sz
);
6087 c
->cmd_type
= CMD_IOCTL_PEND
;
6088 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6089 c
->Header
.ReplyQueue
= 0;
6090 c
->Header
.SGList
= (u8
) sg_used
;
6091 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6092 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6093 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6094 if (ioc
->buf_size
> 0) {
6096 for (i
= 0; i
< sg_used
; i
++) {
6097 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6098 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6099 if (dma_mapping_error(&h
->pdev
->dev
,
6100 (dma_addr_t
) temp64
)) {
6101 c
->SG
[i
].Addr
= cpu_to_le64(0);
6102 c
->SG
[i
].Len
= cpu_to_le32(0);
6103 hpsa_pci_unmap(h
->pdev
, c
, i
,
6104 PCI_DMA_BIDIRECTIONAL
);
6108 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6109 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6110 c
->SG
[i
].Ext
= cpu_to_le32(0);
6112 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6114 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6116 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6117 check_ioctl_unit_attention(h
, c
);
6123 /* Copy the error information out */
6124 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6125 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6129 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6132 /* Copy the data out of the buffer we created */
6133 BYTE __user
*ptr
= ioc
->buf
;
6134 for (i
= 0; i
< sg_used
; i
++) {
6135 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6139 ptr
+= buff_size
[i
];
6149 for (i
= 0; i
< sg_used
; i
++)
6158 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6159 struct CommandList
*c
)
6161 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6162 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6163 (void) check_for_unit_attention(h
, c
);
6169 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6171 struct ctlr_info
*h
;
6172 void __user
*argp
= (void __user
*)arg
;
6175 h
= sdev_to_hba(dev
);
6178 case CCISS_DEREGDISK
:
6179 case CCISS_REGNEWDISK
:
6181 hpsa_scan_start(h
->scsi_host
);
6183 case CCISS_GETPCIINFO
:
6184 return hpsa_getpciinfo_ioctl(h
, argp
);
6185 case CCISS_GETDRIVVER
:
6186 return hpsa_getdrivver_ioctl(h
, argp
);
6187 case CCISS_PASSTHRU
:
6188 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6190 rc
= hpsa_passthru_ioctl(h
, argp
);
6191 atomic_inc(&h
->passthru_cmds_avail
);
6193 case CCISS_BIG_PASSTHRU
:
6194 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6196 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6197 atomic_inc(&h
->passthru_cmds_avail
);
6204 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6207 struct CommandList
*c
;
6211 /* fill_cmd can't fail here, no data buffer to map */
6212 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6213 RAID_CTLR_LUNID
, TYPE_MSG
);
6214 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6216 enqueue_cmd_and_start_io(h
, c
);
6217 /* Don't wait for completion, the reset won't complete. Don't free
6218 * the command either. This is the last command we will send before
6219 * re-initializing everything, so it doesn't matter and won't leak.
6224 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6225 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6228 int pci_dir
= XFER_NONE
;
6229 u64 tag
; /* for commands to be aborted */
6231 c
->cmd_type
= CMD_IOCTL_PEND
;
6232 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6233 c
->Header
.ReplyQueue
= 0;
6234 if (buff
!= NULL
&& size
> 0) {
6235 c
->Header
.SGList
= 1;
6236 c
->Header
.SGTotal
= cpu_to_le16(1);
6238 c
->Header
.SGList
= 0;
6239 c
->Header
.SGTotal
= cpu_to_le16(0);
6241 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6243 if (cmd_type
== TYPE_CMD
) {
6246 /* are we trying to read a vital product page */
6247 if (page_code
& VPD_PAGE
) {
6248 c
->Request
.CDB
[1] = 0x01;
6249 c
->Request
.CDB
[2] = (page_code
& 0xff);
6251 c
->Request
.CDBLen
= 6;
6252 c
->Request
.type_attr_dir
=
6253 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6254 c
->Request
.Timeout
= 0;
6255 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6256 c
->Request
.CDB
[4] = size
& 0xFF;
6258 case HPSA_REPORT_LOG
:
6259 case HPSA_REPORT_PHYS
:
6260 /* Talking to controller so It's a physical command
6261 mode = 00 target = 0. Nothing to write.
6263 c
->Request
.CDBLen
= 12;
6264 c
->Request
.type_attr_dir
=
6265 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6266 c
->Request
.Timeout
= 0;
6267 c
->Request
.CDB
[0] = cmd
;
6268 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6269 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6270 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6271 c
->Request
.CDB
[9] = size
& 0xFF;
6273 case HPSA_CACHE_FLUSH
:
6274 c
->Request
.CDBLen
= 12;
6275 c
->Request
.type_attr_dir
=
6276 TYPE_ATTR_DIR(cmd_type
,
6277 ATTR_SIMPLE
, XFER_WRITE
);
6278 c
->Request
.Timeout
= 0;
6279 c
->Request
.CDB
[0] = BMIC_WRITE
;
6280 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6281 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6282 c
->Request
.CDB
[8] = size
& 0xFF;
6284 case TEST_UNIT_READY
:
6285 c
->Request
.CDBLen
= 6;
6286 c
->Request
.type_attr_dir
=
6287 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6288 c
->Request
.Timeout
= 0;
6290 case HPSA_GET_RAID_MAP
:
6291 c
->Request
.CDBLen
= 12;
6292 c
->Request
.type_attr_dir
=
6293 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6294 c
->Request
.Timeout
= 0;
6295 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6296 c
->Request
.CDB
[1] = cmd
;
6297 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6298 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6299 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6300 c
->Request
.CDB
[9] = size
& 0xFF;
6302 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6303 c
->Request
.CDBLen
= 10;
6304 c
->Request
.type_attr_dir
=
6305 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6306 c
->Request
.Timeout
= 0;
6307 c
->Request
.CDB
[0] = BMIC_READ
;
6308 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6309 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6310 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6312 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6313 c
->Request
.CDBLen
= 10;
6314 c
->Request
.type_attr_dir
=
6315 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6316 c
->Request
.Timeout
= 0;
6317 c
->Request
.CDB
[0] = BMIC_READ
;
6318 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6319 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6320 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6323 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6327 } else if (cmd_type
== TYPE_MSG
) {
6330 case HPSA_DEVICE_RESET_MSG
:
6331 c
->Request
.CDBLen
= 16;
6332 c
->Request
.type_attr_dir
=
6333 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6334 c
->Request
.Timeout
= 0; /* Don't time out */
6335 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6336 c
->Request
.CDB
[0] = cmd
;
6337 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6338 /* If bytes 4-7 are zero, it means reset the */
6340 c
->Request
.CDB
[4] = 0x00;
6341 c
->Request
.CDB
[5] = 0x00;
6342 c
->Request
.CDB
[6] = 0x00;
6343 c
->Request
.CDB
[7] = 0x00;
6345 case HPSA_ABORT_MSG
:
6346 memcpy(&tag
, buff
, sizeof(tag
));
6347 dev_dbg(&h
->pdev
->dev
,
6348 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6349 tag
, c
->Header
.tag
);
6350 c
->Request
.CDBLen
= 16;
6351 c
->Request
.type_attr_dir
=
6352 TYPE_ATTR_DIR(cmd_type
,
6353 ATTR_SIMPLE
, XFER_WRITE
);
6354 c
->Request
.Timeout
= 0; /* Don't time out */
6355 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6356 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6357 c
->Request
.CDB
[2] = 0x00; /* reserved */
6358 c
->Request
.CDB
[3] = 0x00; /* reserved */
6359 /* Tag to abort goes in CDB[4]-CDB[11] */
6360 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6361 c
->Request
.CDB
[12] = 0x00; /* reserved */
6362 c
->Request
.CDB
[13] = 0x00; /* reserved */
6363 c
->Request
.CDB
[14] = 0x00; /* reserved */
6364 c
->Request
.CDB
[15] = 0x00; /* reserved */
6367 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6372 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6376 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6378 pci_dir
= PCI_DMA_FROMDEVICE
;
6381 pci_dir
= PCI_DMA_TODEVICE
;
6384 pci_dir
= PCI_DMA_NONE
;
6387 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6389 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6395 * Map (physical) PCI mem into (virtual) kernel space
6397 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6399 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6400 ulong page_offs
= ((ulong
) base
) - page_base
;
6401 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6404 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6407 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6409 return h
->access
.command_completed(h
, q
);
6412 static inline bool interrupt_pending(struct ctlr_info
*h
)
6414 return h
->access
.intr_pending(h
);
6417 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6419 return (h
->access
.intr_pending(h
) == 0) ||
6420 (h
->interrupts_enabled
== 0);
6423 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6426 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6427 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6433 static inline void finish_cmd(struct CommandList
*c
)
6435 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6436 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6437 || c
->cmd_type
== CMD_IOACCEL2
))
6438 complete_scsi_command(c
);
6439 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6440 complete(c
->waiting
);
6444 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
6446 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6447 #define HPSA_SIMPLE_ERROR_BITS 0x03
6448 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
6449 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
6450 return tag
& ~HPSA_PERF_ERROR_BITS
;
6453 /* process completion of an indexed ("direct lookup") command */
6454 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6458 struct CommandList
*c
;
6460 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6461 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6462 c
= h
->cmd_pool
+ tag_index
;
6467 /* Some controllers, like p400, will give us one interrupt
6468 * after a soft reset, even if we turned interrupts off.
6469 * Only need to check for this in the hpsa_xxx_discard_completions
6472 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6474 if (likely(!reset_devices
))
6477 if (likely(h
->interrupts_enabled
))
6480 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6481 "(known firmware bug.) Ignoring.\n");
6487 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6488 * Relies on (h-q[x] == x) being true for x such that
6489 * 0 <= x < MAX_REPLY_QUEUES.
6491 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6493 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6496 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6498 struct ctlr_info
*h
= queue_to_hba(queue
);
6499 u8 q
= *(u8
*) queue
;
6502 if (ignore_bogus_interrupt(h
))
6505 if (interrupt_not_for_us(h
))
6507 h
->last_intr_timestamp
= get_jiffies_64();
6508 while (interrupt_pending(h
)) {
6509 raw_tag
= get_next_completion(h
, q
);
6510 while (raw_tag
!= FIFO_EMPTY
)
6511 raw_tag
= next_command(h
, q
);
6516 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6518 struct ctlr_info
*h
= queue_to_hba(queue
);
6520 u8 q
= *(u8
*) queue
;
6522 if (ignore_bogus_interrupt(h
))
6525 h
->last_intr_timestamp
= get_jiffies_64();
6526 raw_tag
= get_next_completion(h
, q
);
6527 while (raw_tag
!= FIFO_EMPTY
)
6528 raw_tag
= next_command(h
, q
);
6532 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6534 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6536 u8 q
= *(u8
*) queue
;
6538 if (interrupt_not_for_us(h
))
6540 h
->last_intr_timestamp
= get_jiffies_64();
6541 while (interrupt_pending(h
)) {
6542 raw_tag
= get_next_completion(h
, q
);
6543 while (raw_tag
!= FIFO_EMPTY
) {
6544 process_indexed_cmd(h
, raw_tag
);
6545 raw_tag
= next_command(h
, q
);
6551 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6553 struct ctlr_info
*h
= queue_to_hba(queue
);
6555 u8 q
= *(u8
*) queue
;
6557 h
->last_intr_timestamp
= get_jiffies_64();
6558 raw_tag
= get_next_completion(h
, q
);
6559 while (raw_tag
!= FIFO_EMPTY
) {
6560 process_indexed_cmd(h
, raw_tag
);
6561 raw_tag
= next_command(h
, q
);
6566 /* Send a message CDB to the firmware. Careful, this only works
6567 * in simple mode, not performant mode due to the tag lookup.
6568 * We only ever use this immediately after a controller reset.
6570 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6574 struct CommandListHeader CommandHeader
;
6575 struct RequestBlock Request
;
6576 struct ErrDescriptor ErrorDescriptor
;
6578 struct Command
*cmd
;
6579 static const size_t cmd_sz
= sizeof(*cmd
) +
6580 sizeof(cmd
->ErrorDescriptor
);
6584 void __iomem
*vaddr
;
6587 vaddr
= pci_ioremap_bar(pdev
, 0);
6591 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6592 * CCISS commands, so they must be allocated from the lower 4GiB of
6595 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6601 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6607 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6608 * although there's no guarantee, we assume that the address is at
6609 * least 4-byte aligned (most likely, it's page-aligned).
6611 paddr32
= cpu_to_le32(paddr64
);
6613 cmd
->CommandHeader
.ReplyQueue
= 0;
6614 cmd
->CommandHeader
.SGList
= 0;
6615 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6616 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6617 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6619 cmd
->Request
.CDBLen
= 16;
6620 cmd
->Request
.type_attr_dir
=
6621 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6622 cmd
->Request
.Timeout
= 0; /* Don't time out */
6623 cmd
->Request
.CDB
[0] = opcode
;
6624 cmd
->Request
.CDB
[1] = type
;
6625 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6626 cmd
->ErrorDescriptor
.Addr
=
6627 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6628 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6630 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6632 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6633 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6634 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6636 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6641 /* we leak the DMA buffer here ... no choice since the controller could
6642 * still complete the command.
6644 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6645 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6650 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6652 if (tag
& HPSA_ERROR_BIT
) {
6653 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6658 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6663 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6665 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6666 void __iomem
*vaddr
, u32 use_doorbell
)
6670 /* For everything after the P600, the PCI power state method
6671 * of resetting the controller doesn't work, so we have this
6672 * other way using the doorbell register.
6674 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
6675 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
6677 /* PMC hardware guys tell us we need a 10 second delay after
6678 * doorbell reset and before any attempt to talk to the board
6679 * at all to ensure that this actually works and doesn't fall
6680 * over in some weird corner cases.
6683 } else { /* Try to do it the PCI power state way */
6685 /* Quoting from the Open CISS Specification: "The Power
6686 * Management Control/Status Register (CSR) controls the power
6687 * state of the device. The normal operating state is D0,
6688 * CSR=00h. The software off state is D3, CSR=03h. To reset
6689 * the controller, place the interface device in D3 then to D0,
6690 * this causes a secondary PCI reset which will reset the
6695 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
6697 /* enter the D3hot power management state */
6698 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
6704 /* enter the D0 power management state */
6705 rc
= pci_set_power_state(pdev
, PCI_D0
);
6710 * The P600 requires a small delay when changing states.
6711 * Otherwise we may think the board did not reset and we bail.
6712 * This for kdump only and is particular to the P600.
6719 static void init_driver_version(char *driver_version
, int len
)
6721 memset(driver_version
, 0, len
);
6722 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
6725 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
6727 char *driver_version
;
6728 int i
, size
= sizeof(cfgtable
->driver_version
);
6730 driver_version
= kmalloc(size
, GFP_KERNEL
);
6731 if (!driver_version
)
6734 init_driver_version(driver_version
, size
);
6735 for (i
= 0; i
< size
; i
++)
6736 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
6737 kfree(driver_version
);
6741 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
6742 unsigned char *driver_ver
)
6746 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
6747 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
6750 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
6753 char *driver_ver
, *old_driver_ver
;
6754 int rc
, size
= sizeof(cfgtable
->driver_version
);
6756 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
6757 if (!old_driver_ver
)
6759 driver_ver
= old_driver_ver
+ size
;
6761 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6762 * should have been changed, otherwise we know the reset failed.
6764 init_driver_version(old_driver_ver
, size
);
6765 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
6766 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
6767 kfree(old_driver_ver
);
6770 /* This does a hard reset of the controller using PCI power management
6771 * states or the using the doorbell register.
6773 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
6777 u64 cfg_base_addr_index
;
6778 void __iomem
*vaddr
;
6779 unsigned long paddr
;
6780 u32 misc_fw_support
;
6782 struct CfgTable __iomem
*cfgtable
;
6784 u16 command_register
;
6786 /* For controllers as old as the P600, this is very nearly
6789 * pci_save_state(pci_dev);
6790 * pci_set_power_state(pci_dev, PCI_D3hot);
6791 * pci_set_power_state(pci_dev, PCI_D0);
6792 * pci_restore_state(pci_dev);
6794 * For controllers newer than the P600, the pci power state
6795 * method of resetting doesn't work so we have another way
6796 * using the doorbell register.
6799 if (!ctlr_is_resettable(board_id
)) {
6800 dev_warn(&pdev
->dev
, "Controller not resettable\n");
6804 /* if controller is soft- but not hard resettable... */
6805 if (!ctlr_is_hard_resettable(board_id
))
6806 return -ENOTSUPP
; /* try soft reset later. */
6808 /* Save the PCI command register */
6809 pci_read_config_word(pdev
, 4, &command_register
);
6810 pci_save_state(pdev
);
6812 /* find the first memory BAR, so we can find the cfg table */
6813 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
6816 vaddr
= remap_pci_mem(paddr
, 0x250);
6820 /* find cfgtable in order to check if reset via doorbell is supported */
6821 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
6822 &cfg_base_addr_index
, &cfg_offset
);
6825 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
6826 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
6831 rc
= write_driver_ver_to_cfgtable(cfgtable
);
6833 goto unmap_cfgtable
;
6835 /* If reset via doorbell register is supported, use that.
6836 * There are two such methods. Favor the newest method.
6838 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
6839 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
6841 use_doorbell
= DOORBELL_CTLR_RESET2
;
6843 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
6845 dev_warn(&pdev
->dev
,
6846 "Soft reset not supported. Firmware update is required.\n");
6847 rc
= -ENOTSUPP
; /* try soft reset */
6848 goto unmap_cfgtable
;
6852 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
6854 goto unmap_cfgtable
;
6856 pci_restore_state(pdev
);
6857 pci_write_config_word(pdev
, 4, command_register
);
6859 /* Some devices (notably the HP Smart Array 5i Controller)
6860 need a little pause here */
6861 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
6863 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
6865 dev_warn(&pdev
->dev
,
6866 "Failed waiting for board to become ready after hard reset\n");
6867 goto unmap_cfgtable
;
6870 rc
= controller_reset_failed(vaddr
);
6872 goto unmap_cfgtable
;
6874 dev_warn(&pdev
->dev
, "Unable to successfully reset "
6875 "controller. Will try soft reset.\n");
6878 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
6890 * We cannot read the structure directly, for portability we must use
6892 * This is for debug only.
6894 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
6900 dev_info(dev
, "Controller Configuration information\n");
6901 dev_info(dev
, "------------------------------------\n");
6902 for (i
= 0; i
< 4; i
++)
6903 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
6904 temp_name
[4] = '\0';
6905 dev_info(dev
, " Signature = %s\n", temp_name
);
6906 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
6907 dev_info(dev
, " Transport methods supported = 0x%x\n",
6908 readl(&(tb
->TransportSupport
)));
6909 dev_info(dev
, " Transport methods active = 0x%x\n",
6910 readl(&(tb
->TransportActive
)));
6911 dev_info(dev
, " Requested transport Method = 0x%x\n",
6912 readl(&(tb
->HostWrite
.TransportRequest
)));
6913 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
6914 readl(&(tb
->HostWrite
.CoalIntDelay
)));
6915 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
6916 readl(&(tb
->HostWrite
.CoalIntCount
)));
6917 dev_info(dev
, " Max outstanding commands = %d\n",
6918 readl(&(tb
->CmdsOutMax
)));
6919 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
6920 for (i
= 0; i
< 16; i
++)
6921 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
6922 temp_name
[16] = '\0';
6923 dev_info(dev
, " Server Name = %s\n", temp_name
);
6924 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
6925 readl(&(tb
->HeartBeat
)));
6926 #endif /* HPSA_DEBUG */
6929 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
6931 int i
, offset
, mem_type
, bar_type
;
6933 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
6936 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
6937 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
6938 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
6941 mem_type
= pci_resource_flags(pdev
, i
) &
6942 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
6944 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
6945 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
6946 offset
+= 4; /* 32 bit */
6948 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
6951 default: /* reserved in PCI 2.2 */
6952 dev_warn(&pdev
->dev
,
6953 "base address is invalid\n");
6958 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
6964 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
6966 if (h
->msix_vector
) {
6967 if (h
->pdev
->msix_enabled
)
6968 pci_disable_msix(h
->pdev
);
6970 } else if (h
->msi_vector
) {
6971 if (h
->pdev
->msi_enabled
)
6972 pci_disable_msi(h
->pdev
);
6977 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6978 * controllers that are capable. If not, we use legacy INTx mode.
6980 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
6982 #ifdef CONFIG_PCI_MSI
6984 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
6986 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
6987 hpsa_msix_entries
[i
].vector
= 0;
6988 hpsa_msix_entries
[i
].entry
= i
;
6991 /* Some boards advertise MSI but don't really support it */
6992 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
6993 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
6994 goto default_int_mode
;
6995 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
6996 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
6997 h
->msix_vector
= MAX_REPLY_QUEUES
;
6998 if (h
->msix_vector
> num_online_cpus())
6999 h
->msix_vector
= num_online_cpus();
7000 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7003 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7005 goto single_msi_mode
;
7006 } else if (err
< h
->msix_vector
) {
7007 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7008 "available\n", err
);
7010 h
->msix_vector
= err
;
7011 for (i
= 0; i
< h
->msix_vector
; i
++)
7012 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7016 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7017 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7018 if (!pci_enable_msi(h
->pdev
))
7021 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7024 #endif /* CONFIG_PCI_MSI */
7025 /* if we get here we're going to use the default interrupt mode */
7026 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7029 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7032 u32 subsystem_vendor_id
, subsystem_device_id
;
7034 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7035 subsystem_device_id
= pdev
->subsystem_device
;
7036 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7037 subsystem_vendor_id
;
7039 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7040 if (*board_id
== products
[i
].board_id
)
7043 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7044 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7046 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7047 "0x%08x, ignoring.\n", *board_id
);
7050 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7053 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7054 unsigned long *memory_bar
)
7058 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7059 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7060 /* addressing mode bits already removed */
7061 *memory_bar
= pci_resource_start(pdev
, i
);
7062 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7066 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7070 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7076 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7078 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7080 for (i
= 0; i
< iterations
; i
++) {
7081 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7082 if (wait_for_ready
) {
7083 if (scratchpad
== HPSA_FIRMWARE_READY
)
7086 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7089 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7091 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7095 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7096 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7099 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7100 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7101 *cfg_base_addr
&= (u32
) 0x0000ffff;
7102 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7103 if (*cfg_base_addr_index
== -1) {
7104 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7110 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7112 if (h
->transtable
) {
7113 iounmap(h
->transtable
);
7114 h
->transtable
= NULL
;
7117 iounmap(h
->cfgtable
);
7122 /* Find and map CISS config table and transfer table
7123 + * several items must be unmapped (freed) later
7125 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7129 u64 cfg_base_addr_index
;
7133 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7134 &cfg_base_addr_index
, &cfg_offset
);
7137 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7138 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7140 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7143 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7146 /* Find performant mode table. */
7147 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7148 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7149 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7150 sizeof(*h
->transtable
));
7151 if (!h
->transtable
) {
7152 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7153 hpsa_free_cfgtables(h
);
7159 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7161 #define MIN_MAX_COMMANDS 16
7162 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7164 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7166 /* Limit commands in memory limited kdump scenario. */
7167 if (reset_devices
&& h
->max_commands
> 32)
7168 h
->max_commands
= 32;
7170 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7171 dev_warn(&h
->pdev
->dev
,
7172 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7175 h
->max_commands
= MIN_MAX_COMMANDS
;
7179 /* If the controller reports that the total max sg entries is greater than 512,
7180 * then we know that chained SG blocks work. (Original smart arrays did not
7181 * support chained SG blocks and would return zero for max sg entries.)
7183 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7185 return h
->maxsgentries
> 512;
7188 /* Interrogate the hardware for some limits:
7189 * max commands, max SG elements without chaining, and with chaining,
7190 * SG chain block size, etc.
7192 static void hpsa_find_board_params(struct ctlr_info
*h
)
7194 hpsa_get_max_perf_mode_cmds(h
);
7195 h
->nr_cmds
= h
->max_commands
;
7196 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7197 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7198 if (hpsa_supports_chained_sg_blocks(h
)) {
7199 /* Limit in-command s/g elements to 32 save dma'able memory. */
7200 h
->max_cmd_sg_entries
= 32;
7201 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7202 h
->maxsgentries
--; /* save one for chain pointer */
7205 * Original smart arrays supported at most 31 s/g entries
7206 * embedded inline in the command (trying to use more
7207 * would lock up the controller)
7209 h
->max_cmd_sg_entries
= 31;
7210 h
->maxsgentries
= 31; /* default to traditional values */
7214 /* Find out what task management functions are supported and cache */
7215 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7216 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7217 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7218 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7219 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7220 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7221 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7224 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7226 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7227 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7233 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7237 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7238 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7240 driver_support
|= ENABLE_SCSI_PREFETCH
;
7242 driver_support
|= ENABLE_UNIT_ATTN
;
7243 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7246 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7247 * in a prefetch beyond physical memory.
7249 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7253 if (h
->board_id
!= 0x3225103C)
7255 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7256 dma_prefetch
|= 0x8000;
7257 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7260 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7264 unsigned long flags
;
7265 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7266 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7267 spin_lock_irqsave(&h
->lock
, flags
);
7268 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7269 spin_unlock_irqrestore(&h
->lock
, flags
);
7270 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7272 /* delay and try again */
7273 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7280 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7284 unsigned long flags
;
7286 /* under certain very rare conditions, this can take awhile.
7287 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7288 * as we enter this code.)
7290 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7291 if (h
->remove_in_progress
)
7293 spin_lock_irqsave(&h
->lock
, flags
);
7294 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7295 spin_unlock_irqrestore(&h
->lock
, flags
);
7296 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7298 /* delay and try again */
7299 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7306 /* return -ENODEV or other reason on error, 0 on success */
7307 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7311 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7312 if (!(trans_support
& SIMPLE_MODE
))
7315 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7317 /* Update the field, and then ring the doorbell */
7318 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7319 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7320 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7321 if (hpsa_wait_for_mode_change_ack(h
))
7323 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7324 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7326 h
->transMethod
= CFGTBL_Trans_Simple
;
7329 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7333 /* free items allocated or mapped by hpsa_pci_init */
7334 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7336 hpsa_free_cfgtables(h
); /* pci_init 4 */
7337 iounmap(h
->vaddr
); /* pci_init 3 */
7339 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7341 * call pci_disable_device before pci_release_regions per
7342 * Documentation/PCI/pci.txt
7344 pci_disable_device(h
->pdev
); /* pci_init 1 */
7345 pci_release_regions(h
->pdev
); /* pci_init 2 */
7348 /* several items must be freed later */
7349 static int hpsa_pci_init(struct ctlr_info
*h
)
7351 int prod_index
, err
;
7353 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7356 h
->product_name
= products
[prod_index
].product_name
;
7357 h
->access
= *(products
[prod_index
].access
);
7359 h
->needs_abort_tags_swizzled
=
7360 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7362 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7363 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7365 err
= pci_enable_device(h
->pdev
);
7367 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7368 pci_disable_device(h
->pdev
);
7372 err
= pci_request_regions(h
->pdev
, HPSA
);
7374 dev_err(&h
->pdev
->dev
,
7375 "failed to obtain PCI resources\n");
7376 pci_disable_device(h
->pdev
);
7380 pci_set_master(h
->pdev
);
7382 hpsa_interrupt_mode(h
);
7383 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7385 goto clean2
; /* intmode+region, pci */
7386 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7388 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7390 goto clean2
; /* intmode+region, pci */
7392 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7394 goto clean3
; /* vaddr, intmode+region, pci */
7395 err
= hpsa_find_cfgtables(h
);
7397 goto clean3
; /* vaddr, intmode+region, pci */
7398 hpsa_find_board_params(h
);
7400 if (!hpsa_CISS_signature_present(h
)) {
7402 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7404 hpsa_set_driver_support_bits(h
);
7405 hpsa_p600_dma_prefetch_quirk(h
);
7406 err
= hpsa_enter_simple_mode(h
);
7408 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7411 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7412 hpsa_free_cfgtables(h
);
7413 clean3
: /* vaddr, intmode+region, pci */
7416 clean2
: /* intmode+region, pci */
7417 hpsa_disable_interrupt_mode(h
);
7419 * call pci_disable_device before pci_release_regions per
7420 * Documentation/PCI/pci.txt
7422 pci_disable_device(h
->pdev
);
7423 pci_release_regions(h
->pdev
);
7427 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7431 #define HBA_INQUIRY_BYTE_COUNT 64
7432 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7433 if (!h
->hba_inquiry_data
)
7435 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7436 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7438 kfree(h
->hba_inquiry_data
);
7439 h
->hba_inquiry_data
= NULL
;
7443 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7446 void __iomem
*vaddr
;
7451 /* kdump kernel is loading, we don't know in which state is
7452 * the pci interface. The dev->enable_cnt is equal zero
7453 * so we call enable+disable, wait a while and switch it on.
7455 rc
= pci_enable_device(pdev
);
7457 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7460 pci_disable_device(pdev
);
7461 msleep(260); /* a randomly chosen number */
7462 rc
= pci_enable_device(pdev
);
7464 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7468 pci_set_master(pdev
);
7470 vaddr
= pci_ioremap_bar(pdev
, 0);
7471 if (vaddr
== NULL
) {
7475 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7478 /* Reset the controller with a PCI power-cycle or via doorbell */
7479 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7481 /* -ENOTSUPP here means we cannot reset the controller
7482 * but it's already (and still) up and running in
7483 * "performant mode". Or, it might be 640x, which can't reset
7484 * due to concerns about shared bbwc between 6402/6404 pair.
7489 /* Now try to get the controller to respond to a no-op */
7490 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7491 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7492 if (hpsa_noop(pdev
) == 0)
7495 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7496 (i
< 11 ? "; re-trying" : ""));
7501 pci_disable_device(pdev
);
7505 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7507 kfree(h
->cmd_pool_bits
);
7508 h
->cmd_pool_bits
= NULL
;
7510 pci_free_consistent(h
->pdev
,
7511 h
->nr_cmds
* sizeof(struct CommandList
),
7513 h
->cmd_pool_dhandle
);
7515 h
->cmd_pool_dhandle
= 0;
7517 if (h
->errinfo_pool
) {
7518 pci_free_consistent(h
->pdev
,
7519 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7521 h
->errinfo_pool_dhandle
);
7522 h
->errinfo_pool
= NULL
;
7523 h
->errinfo_pool_dhandle
= 0;
7527 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7529 h
->cmd_pool_bits
= kzalloc(
7530 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7531 sizeof(unsigned long), GFP_KERNEL
);
7532 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7533 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7534 &(h
->cmd_pool_dhandle
));
7535 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7536 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7537 &(h
->errinfo_pool_dhandle
));
7538 if ((h
->cmd_pool_bits
== NULL
)
7539 || (h
->cmd_pool
== NULL
)
7540 || (h
->errinfo_pool
== NULL
)) {
7541 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7544 hpsa_preinitialize_commands(h
);
7547 hpsa_free_cmd_pool(h
);
7551 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7555 cpu
= cpumask_first(cpu_online_mask
);
7556 for (i
= 0; i
< h
->msix_vector
; i
++) {
7557 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7558 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7562 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7563 static void hpsa_free_irqs(struct ctlr_info
*h
)
7567 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7568 /* Single reply queue, only one irq to free */
7570 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7571 free_irq(h
->intr
[i
], &h
->q
[i
]);
7576 for (i
= 0; i
< h
->msix_vector
; i
++) {
7577 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7578 free_irq(h
->intr
[i
], &h
->q
[i
]);
7581 for (; i
< MAX_REPLY_QUEUES
; i
++)
7585 /* returns 0 on success; cleans up and returns -Enn on error */
7586 static int hpsa_request_irqs(struct ctlr_info
*h
,
7587 irqreturn_t (*msixhandler
)(int, void *),
7588 irqreturn_t (*intxhandler
)(int, void *))
7593 * initialize h->q[x] = x so that interrupt handlers know which
7596 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7599 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
7600 /* If performant mode and MSI-X, use multiple reply queues */
7601 for (i
= 0; i
< h
->msix_vector
; i
++) {
7602 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7603 rc
= request_irq(h
->intr
[i
], msixhandler
,
7609 dev_err(&h
->pdev
->dev
,
7610 "failed to get irq %d for %s\n",
7611 h
->intr
[i
], h
->devname
);
7612 for (j
= 0; j
< i
; j
++) {
7613 free_irq(h
->intr
[j
], &h
->q
[j
]);
7616 for (; j
< MAX_REPLY_QUEUES
; j
++)
7621 hpsa_irq_affinity_hints(h
);
7623 /* Use single reply pool */
7624 if (h
->msix_vector
> 0 || h
->msi_vector
) {
7626 sprintf(h
->intrname
[h
->intr_mode
],
7627 "%s-msix", h
->devname
);
7629 sprintf(h
->intrname
[h
->intr_mode
],
7630 "%s-msi", h
->devname
);
7631 rc
= request_irq(h
->intr
[h
->intr_mode
],
7633 h
->intrname
[h
->intr_mode
],
7634 &h
->q
[h
->intr_mode
]);
7636 sprintf(h
->intrname
[h
->intr_mode
],
7637 "%s-intx", h
->devname
);
7638 rc
= request_irq(h
->intr
[h
->intr_mode
],
7639 intxhandler
, IRQF_SHARED
,
7640 h
->intrname
[h
->intr_mode
],
7641 &h
->q
[h
->intr_mode
]);
7643 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
7646 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7647 h
->intr
[h
->intr_mode
], h
->devname
);
7654 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7657 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7659 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7660 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7662 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7666 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7667 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7669 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
7670 "after soft reset.\n");
7677 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
7681 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7682 if (!h
->reply_queue
[i
].head
)
7684 pci_free_consistent(h
->pdev
,
7685 h
->reply_queue_size
,
7686 h
->reply_queue
[i
].head
,
7687 h
->reply_queue
[i
].busaddr
);
7688 h
->reply_queue
[i
].head
= NULL
;
7689 h
->reply_queue
[i
].busaddr
= 0;
7691 h
->reply_queue_size
= 0;
7694 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
7696 hpsa_free_performant_mode(h
); /* init_one 7 */
7697 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
7698 hpsa_free_cmd_pool(h
); /* init_one 5 */
7699 hpsa_free_irqs(h
); /* init_one 4 */
7700 scsi_host_put(h
->scsi_host
); /* init_one 3 */
7701 h
->scsi_host
= NULL
; /* init_one 3 */
7702 hpsa_free_pci_init(h
); /* init_one 2_5 */
7703 free_percpu(h
->lockup_detected
); /* init_one 2 */
7704 h
->lockup_detected
= NULL
; /* init_one 2 */
7705 if (h
->resubmit_wq
) {
7706 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
7707 h
->resubmit_wq
= NULL
;
7709 if (h
->rescan_ctlr_wq
) {
7710 destroy_workqueue(h
->rescan_ctlr_wq
);
7711 h
->rescan_ctlr_wq
= NULL
;
7713 kfree(h
); /* init_one 1 */
7716 /* Called when controller lockup detected. */
7717 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
7720 struct CommandList
*c
;
7723 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
7724 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7725 c
= h
->cmd_pool
+ i
;
7726 refcount
= atomic_inc_return(&c
->refcount
);
7728 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
7730 atomic_dec(&h
->commands_outstanding
);
7735 dev_warn(&h
->pdev
->dev
,
7736 "failed %d commands in fail_all\n", failcount
);
7739 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
7743 for_each_online_cpu(cpu
) {
7744 u32
*lockup_detected
;
7745 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
7746 *lockup_detected
= value
;
7748 wmb(); /* be sure the per-cpu variables are out to memory */
7751 static void controller_lockup_detected(struct ctlr_info
*h
)
7753 unsigned long flags
;
7754 u32 lockup_detected
;
7756 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7757 spin_lock_irqsave(&h
->lock
, flags
);
7758 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7759 if (!lockup_detected
) {
7760 /* no heartbeat, but controller gave us a zero. */
7761 dev_warn(&h
->pdev
->dev
,
7762 "lockup detected after %d but scratchpad register is zero\n",
7763 h
->heartbeat_sample_interval
/ HZ
);
7764 lockup_detected
= 0xffffffff;
7766 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
7767 spin_unlock_irqrestore(&h
->lock
, flags
);
7768 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
7769 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
7770 pci_disable_device(h
->pdev
);
7771 fail_all_outstanding_cmds(h
);
7774 static int detect_controller_lockup(struct ctlr_info
*h
)
7778 unsigned long flags
;
7780 now
= get_jiffies_64();
7781 /* If we've received an interrupt recently, we're ok. */
7782 if (time_after64(h
->last_intr_timestamp
+
7783 (h
->heartbeat_sample_interval
), now
))
7787 * If we've already checked the heartbeat recently, we're ok.
7788 * This could happen if someone sends us a signal. We
7789 * otherwise don't care about signals in this thread.
7791 if (time_after64(h
->last_heartbeat_timestamp
+
7792 (h
->heartbeat_sample_interval
), now
))
7795 /* If heartbeat has not changed since we last looked, we're not ok. */
7796 spin_lock_irqsave(&h
->lock
, flags
);
7797 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
7798 spin_unlock_irqrestore(&h
->lock
, flags
);
7799 if (h
->last_heartbeat
== heartbeat
) {
7800 controller_lockup_detected(h
);
7805 h
->last_heartbeat
= heartbeat
;
7806 h
->last_heartbeat_timestamp
= now
;
7810 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
7815 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7818 /* Ask the controller to clear the events we're handling. */
7819 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
7820 | CFGTBL_Trans_io_accel2
)) &&
7821 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
7822 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
7824 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
7825 event_type
= "state change";
7826 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
7827 event_type
= "configuration change";
7828 /* Stop sending new RAID offload reqs via the IO accelerator */
7829 scsi_block_requests(h
->scsi_host
);
7830 for (i
= 0; i
< h
->ndevices
; i
++)
7831 h
->dev
[i
]->offload_enabled
= 0;
7832 hpsa_drain_accel_commands(h
);
7833 /* Set 'accelerator path config change' bit */
7834 dev_warn(&h
->pdev
->dev
,
7835 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7836 h
->events
, event_type
);
7837 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7838 /* Set the "clear event notify field update" bit 6 */
7839 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7840 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7841 hpsa_wait_for_clear_event_notify_ack(h
);
7842 scsi_unblock_requests(h
->scsi_host
);
7844 /* Acknowledge controller notification events. */
7845 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7846 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7847 hpsa_wait_for_clear_event_notify_ack(h
);
7849 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7850 hpsa_wait_for_mode_change_ack(h
);
7856 /* Check a register on the controller to see if there are configuration
7857 * changes (added/changed/removed logical drives, etc.) which mean that
7858 * we should rescan the controller for devices.
7859 * Also check flag for driver-initiated rescan.
7861 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
7863 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7866 h
->events
= readl(&(h
->cfgtable
->event_notify
));
7867 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
7871 * Check if any of the offline devices have become ready
7873 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
7875 unsigned long flags
;
7876 struct offline_device_entry
*d
;
7877 struct list_head
*this, *tmp
;
7879 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7880 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
7881 d
= list_entry(this, struct offline_device_entry
,
7883 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7884 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
7885 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7886 list_del(&d
->offline_list
);
7887 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7890 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7892 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7896 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
7898 unsigned long flags
;
7899 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7900 struct ctlr_info
, rescan_ctlr_work
);
7903 if (h
->remove_in_progress
)
7906 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
7907 scsi_host_get(h
->scsi_host
);
7908 hpsa_ack_ctlr_events(h
);
7909 hpsa_scan_start(h
->scsi_host
);
7910 scsi_host_put(h
->scsi_host
);
7912 spin_lock_irqsave(&h
->lock
, flags
);
7913 if (!h
->remove_in_progress
)
7914 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
7915 h
->heartbeat_sample_interval
);
7916 spin_unlock_irqrestore(&h
->lock
, flags
);
7919 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
7921 unsigned long flags
;
7922 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7923 struct ctlr_info
, monitor_ctlr_work
);
7925 detect_controller_lockup(h
);
7926 if (lockup_detected(h
))
7929 spin_lock_irqsave(&h
->lock
, flags
);
7930 if (!h
->remove_in_progress
)
7931 schedule_delayed_work(&h
->monitor_ctlr_work
,
7932 h
->heartbeat_sample_interval
);
7933 spin_unlock_irqrestore(&h
->lock
, flags
);
7936 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
7939 struct workqueue_struct
*wq
= NULL
;
7941 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
7943 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
7948 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7951 struct ctlr_info
*h
;
7952 int try_soft_reset
= 0;
7953 unsigned long flags
;
7956 if (number_of_controllers
== 0)
7957 printk(KERN_INFO DRIVER_NAME
"\n");
7959 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
7961 dev_warn(&pdev
->dev
, "Board ID not found\n");
7965 rc
= hpsa_init_reset_devices(pdev
, board_id
);
7967 if (rc
!= -ENOTSUPP
)
7969 /* If the reset fails in a particular way (it has no way to do
7970 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7971 * a soft reset once we get the controller configured up to the
7972 * point that it can accept a command.
7978 reinit_after_soft_reset
:
7980 /* Command structures must be aligned on a 32-byte boundary because
7981 * the 5 lower bits of the address are used by the hardware. and by
7982 * the driver. See comments in hpsa.h for more info.
7984 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
7985 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
7987 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
7993 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
7994 INIT_LIST_HEAD(&h
->offline_device_list
);
7995 spin_lock_init(&h
->lock
);
7996 spin_lock_init(&h
->offline_device_lock
);
7997 spin_lock_init(&h
->scan_lock
);
7998 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
7999 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8001 /* Allocate and clear per-cpu variable lockup_detected */
8002 h
->lockup_detected
= alloc_percpu(u32
);
8003 if (!h
->lockup_detected
) {
8004 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8006 goto clean1
; /* aer/h */
8008 set_lockup_detected_for_all_cpus(h
, 0);
8010 rc
= hpsa_pci_init(h
);
8012 goto clean2
; /* lu, aer/h */
8014 /* relies on h-> settings made by hpsa_pci_init, including
8015 * interrupt_mode h->intr */
8016 rc
= hpsa_scsi_host_alloc(h
);
8018 goto clean2_5
; /* pci, lu, aer/h */
8020 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8021 h
->ctlr
= number_of_controllers
;
8022 number_of_controllers
++;
8024 /* configure PCI DMA stuff */
8025 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8029 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8033 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8034 goto clean3
; /* shost, pci, lu, aer/h */
8038 /* make sure the board interrupts are off */
8039 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8041 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8043 goto clean3
; /* shost, pci, lu, aer/h */
8044 rc
= hpsa_alloc_cmd_pool(h
);
8046 goto clean4
; /* irq, shost, pci, lu, aer/h */
8047 rc
= hpsa_alloc_sg_chain_blocks(h
);
8049 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8050 init_waitqueue_head(&h
->scan_wait_queue
);
8051 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8052 init_waitqueue_head(&h
->event_sync_wait_queue
);
8053 mutex_init(&h
->reset_mutex
);
8054 h
->scan_finished
= 1; /* no scan currently in progress */
8056 pci_set_drvdata(pdev
, h
);
8059 spin_lock_init(&h
->devlock
);
8060 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8062 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8064 /* hook into SCSI subsystem */
8065 rc
= hpsa_scsi_add_host(h
);
8067 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8069 /* create the resubmit workqueue */
8070 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8071 if (!h
->rescan_ctlr_wq
) {
8076 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8077 if (!h
->resubmit_wq
) {
8079 goto clean7
; /* aer/h */
8083 * At this point, the controller is ready to take commands.
8084 * Now, if reset_devices and the hard reset didn't work, try
8085 * the soft reset and see if that works.
8087 if (try_soft_reset
) {
8089 /* This is kind of gross. We may or may not get a completion
8090 * from the soft reset command, and if we do, then the value
8091 * from the fifo may or may not be valid. So, we wait 10 secs
8092 * after the reset throwing away any completions we get during
8093 * that time. Unregister the interrupt handler and register
8094 * fake ones to scoop up any residual completions.
8096 spin_lock_irqsave(&h
->lock
, flags
);
8097 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8098 spin_unlock_irqrestore(&h
->lock
, flags
);
8100 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8101 hpsa_intx_discard_completions
);
8103 dev_warn(&h
->pdev
->dev
,
8104 "Failed to request_irq after soft reset.\n");
8106 * cannot goto clean7 or free_irqs will be called
8107 * again. Instead, do its work
8109 hpsa_free_performant_mode(h
); /* clean7 */
8110 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8111 hpsa_free_cmd_pool(h
); /* clean5 */
8113 * skip hpsa_free_irqs(h) clean4 since that
8114 * was just called before request_irqs failed
8119 rc
= hpsa_kdump_soft_reset(h
);
8121 /* Neither hard nor soft reset worked, we're hosed. */
8124 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8125 dev_info(&h
->pdev
->dev
,
8126 "Waiting for stale completions to drain.\n");
8127 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8129 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8131 rc
= controller_reset_failed(h
->cfgtable
);
8133 dev_info(&h
->pdev
->dev
,
8134 "Soft reset appears to have failed.\n");
8136 /* since the controller's reset, we have to go back and re-init
8137 * everything. Easiest to just forget what we've done and do it
8140 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8143 /* don't goto clean, we already unallocated */
8146 goto reinit_after_soft_reset
;
8149 /* Enable Accelerated IO path at driver layer */
8150 h
->acciopath_status
= 1;
8153 /* Turn the interrupts on so we can service requests */
8154 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8156 hpsa_hba_inquiry(h
);
8158 /* Monitor the controller for firmware lockups */
8159 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8160 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8161 schedule_delayed_work(&h
->monitor_ctlr_work
,
8162 h
->heartbeat_sample_interval
);
8163 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8164 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8165 h
->heartbeat_sample_interval
);
8168 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8169 hpsa_free_performant_mode(h
);
8170 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8171 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8172 hpsa_free_sg_chain_blocks(h
);
8173 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8174 hpsa_free_cmd_pool(h
);
8175 clean4
: /* irq, shost, pci, lu, aer/h */
8177 clean3
: /* shost, pci, lu, aer/h */
8178 scsi_host_put(h
->scsi_host
);
8179 h
->scsi_host
= NULL
;
8180 clean2_5
: /* pci, lu, aer/h */
8181 hpsa_free_pci_init(h
);
8182 clean2
: /* lu, aer/h */
8183 if (h
->lockup_detected
) {
8184 free_percpu(h
->lockup_detected
);
8185 h
->lockup_detected
= NULL
;
8187 clean1
: /* wq/aer/h */
8188 if (h
->resubmit_wq
) {
8189 destroy_workqueue(h
->resubmit_wq
);
8190 h
->resubmit_wq
= NULL
;
8192 if (h
->rescan_ctlr_wq
) {
8193 destroy_workqueue(h
->rescan_ctlr_wq
);
8194 h
->rescan_ctlr_wq
= NULL
;
8200 static void hpsa_flush_cache(struct ctlr_info
*h
)
8203 struct CommandList
*c
;
8206 if (unlikely(lockup_detected(h
)))
8208 flush_buf
= kzalloc(4, GFP_KERNEL
);
8214 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8215 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8218 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8219 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8222 if (c
->err_info
->CommandStatus
!= 0)
8224 dev_warn(&h
->pdev
->dev
,
8225 "error flushing cache on controller\n");
8230 static void hpsa_shutdown(struct pci_dev
*pdev
)
8232 struct ctlr_info
*h
;
8234 h
= pci_get_drvdata(pdev
);
8235 /* Turn board interrupts off and send the flush cache command
8236 * sendcmd will turn off interrupt, and send the flush...
8237 * To write all data in the battery backed cache to disks
8239 hpsa_flush_cache(h
);
8240 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8241 hpsa_free_irqs(h
); /* init_one 4 */
8242 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8245 static void hpsa_free_device_info(struct ctlr_info
*h
)
8249 for (i
= 0; i
< h
->ndevices
; i
++) {
8255 static void hpsa_remove_one(struct pci_dev
*pdev
)
8257 struct ctlr_info
*h
;
8258 unsigned long flags
;
8260 if (pci_get_drvdata(pdev
) == NULL
) {
8261 dev_err(&pdev
->dev
, "unable to remove device\n");
8264 h
= pci_get_drvdata(pdev
);
8266 /* Get rid of any controller monitoring work items */
8267 spin_lock_irqsave(&h
->lock
, flags
);
8268 h
->remove_in_progress
= 1;
8269 spin_unlock_irqrestore(&h
->lock
, flags
);
8270 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8271 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8272 destroy_workqueue(h
->rescan_ctlr_wq
);
8273 destroy_workqueue(h
->resubmit_wq
);
8276 * Call before disabling interrupts.
8277 * scsi_remove_host can trigger I/O operations especially
8278 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8279 * operations which cannot complete and will hang the system.
8282 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8283 /* includes hpsa_free_irqs - init_one 4 */
8284 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8285 hpsa_shutdown(pdev
);
8287 hpsa_free_device_info(h
); /* scan */
8289 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8290 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8291 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8292 hpsa_free_performant_mode(h
); /* init_one 7 */
8293 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8294 hpsa_free_cmd_pool(h
); /* init_one 5 */
8296 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8298 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8299 h
->scsi_host
= NULL
; /* init_one 3 */
8301 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8302 hpsa_free_pci_init(h
); /* init_one 2.5 */
8304 free_percpu(h
->lockup_detected
); /* init_one 2 */
8305 h
->lockup_detected
= NULL
; /* init_one 2 */
8306 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8307 kfree(h
); /* init_one 1 */
8310 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8311 __attribute__((unused
)) pm_message_t state
)
8316 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8321 static struct pci_driver hpsa_pci_driver
= {
8323 .probe
= hpsa_init_one
,
8324 .remove
= hpsa_remove_one
,
8325 .id_table
= hpsa_pci_device_id
, /* id_table */
8326 .shutdown
= hpsa_shutdown
,
8327 .suspend
= hpsa_suspend
,
8328 .resume
= hpsa_resume
,
8331 /* Fill in bucket_map[], given nsgs (the max number of
8332 * scatter gather elements supported) and bucket[],
8333 * which is an array of 8 integers. The bucket[] array
8334 * contains 8 different DMA transfer sizes (in 16
8335 * byte increments) which the controller uses to fetch
8336 * commands. This function fills in bucket_map[], which
8337 * maps a given number of scatter gather elements to one of
8338 * the 8 DMA transfer sizes. The point of it is to allow the
8339 * controller to only do as much DMA as needed to fetch the
8340 * command, with the DMA transfer size encoded in the lower
8341 * bits of the command address.
8343 static void calc_bucket_map(int bucket
[], int num_buckets
,
8344 int nsgs
, int min_blocks
, u32
*bucket_map
)
8348 /* Note, bucket_map must have nsgs+1 entries. */
8349 for (i
= 0; i
<= nsgs
; i
++) {
8350 /* Compute size of a command with i SG entries */
8351 size
= i
+ min_blocks
;
8352 b
= num_buckets
; /* Assume the biggest bucket */
8353 /* Find the bucket that is just big enough */
8354 for (j
= 0; j
< num_buckets
; j
++) {
8355 if (bucket
[j
] >= size
) {
8360 /* for a command with i SG entries, use bucket b. */
8366 * return -ENODEV on err, 0 on success (or no action)
8367 * allocates numerous items that must be freed later
8369 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8372 unsigned long register_value
;
8373 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8374 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8375 CFGTBL_Trans_enable_directed_msix
|
8376 (trans_support
& (CFGTBL_Trans_io_accel1
|
8377 CFGTBL_Trans_io_accel2
));
8378 struct access_method access
= SA5_performant_access
;
8380 /* This is a bit complicated. There are 8 registers on
8381 * the controller which we write to to tell it 8 different
8382 * sizes of commands which there may be. It's a way of
8383 * reducing the DMA done to fetch each command. Encoded into
8384 * each command's tag are 3 bits which communicate to the controller
8385 * which of the eight sizes that command fits within. The size of
8386 * each command depends on how many scatter gather entries there are.
8387 * Each SG entry requires 16 bytes. The eight registers are programmed
8388 * with the number of 16-byte blocks a command of that size requires.
8389 * The smallest command possible requires 5 such 16 byte blocks.
8390 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8391 * blocks. Note, this only extends to the SG entries contained
8392 * within the command block, and does not extend to chained blocks
8393 * of SG elements. bft[] contains the eight values we write to
8394 * the registers. They are not evenly distributed, but have more
8395 * sizes for small commands, and fewer sizes for larger commands.
8397 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8398 #define MIN_IOACCEL2_BFT_ENTRY 5
8399 #define HPSA_IOACCEL2_HEADER_SZ 4
8400 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8401 13, 14, 15, 16, 17, 18, 19,
8402 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8403 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8404 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8405 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8406 16 * MIN_IOACCEL2_BFT_ENTRY
);
8407 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8408 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8409 /* 5 = 1 s/g entry or 4k
8410 * 6 = 2 s/g entry or 8k
8411 * 8 = 4 s/g entry or 16k
8412 * 10 = 6 s/g entry or 24k
8415 /* If the controller supports either ioaccel method then
8416 * we can also use the RAID stack submit path that does not
8417 * perform the superfluous readl() after each command submission.
8419 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8420 access
= SA5_performant_access_no_read
;
8422 /* Controller spec: zero out this buffer. */
8423 for (i
= 0; i
< h
->nreply_queues
; i
++)
8424 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8426 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8427 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8428 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8429 for (i
= 0; i
< 8; i
++)
8430 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8432 /* size of controller ring buffer */
8433 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8434 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8435 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8436 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8438 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8439 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8440 writel(h
->reply_queue
[i
].busaddr
,
8441 &h
->transtable
->RepQAddr
[i
].lower
);
8444 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8445 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8447 * enable outbound interrupt coalescing in accelerator mode;
8449 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8450 access
= SA5_ioaccel_mode1_access
;
8451 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8452 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8454 if (trans_support
& CFGTBL_Trans_io_accel2
) {
8455 access
= SA5_ioaccel_mode2_access
;
8456 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8457 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8460 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8461 if (hpsa_wait_for_mode_change_ack(h
)) {
8462 dev_err(&h
->pdev
->dev
,
8463 "performant mode problem - doorbell timeout\n");
8466 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8467 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8468 dev_err(&h
->pdev
->dev
,
8469 "performant mode problem - transport not active\n");
8472 /* Change the access methods to the performant access methods */
8474 h
->transMethod
= transMethod
;
8476 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8477 (trans_support
& CFGTBL_Trans_io_accel2
)))
8480 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8481 /* Set up I/O accelerator mode */
8482 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8483 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8484 h
->reply_queue
[i
].current_entry
=
8485 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8487 bft
[7] = h
->ioaccel_maxsg
+ 8;
8488 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8489 h
->ioaccel1_blockFetchTable
);
8491 /* initialize all reply queue entries to unused */
8492 for (i
= 0; i
< h
->nreply_queues
; i
++)
8493 memset(h
->reply_queue
[i
].head
,
8494 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8495 h
->reply_queue_size
);
8497 /* set all the constant fields in the accelerator command
8498 * frames once at init time to save CPU cycles later.
8500 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8501 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8503 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8504 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8505 (i
* sizeof(struct ErrorInfo
)));
8506 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8507 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8508 cp
->host_context_flags
=
8509 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8510 cp
->timeout_sec
= 0;
8513 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8515 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8516 (i
* sizeof(struct io_accel1_cmd
)));
8518 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8519 u64 cfg_offset
, cfg_base_addr_index
;
8520 u32 bft2_offset
, cfg_base_addr
;
8523 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8524 &cfg_base_addr_index
, &cfg_offset
);
8525 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8526 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8527 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8528 4, h
->ioaccel2_blockFetchTable
);
8529 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8530 BUILD_BUG_ON(offsetof(struct CfgTable
,
8531 io_accel_request_size_offset
) != 0xb8);
8532 h
->ioaccel2_bft2_regs
=
8533 remap_pci_mem(pci_resource_start(h
->pdev
,
8534 cfg_base_addr_index
) +
8535 cfg_offset
+ bft2_offset
,
8537 sizeof(*h
->ioaccel2_bft2_regs
));
8538 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8539 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
8541 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8542 if (hpsa_wait_for_mode_change_ack(h
)) {
8543 dev_err(&h
->pdev
->dev
,
8544 "performant mode problem - enabling ioaccel mode\n");
8550 /* Free ioaccel1 mode command blocks and block fetch table */
8551 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8553 if (h
->ioaccel_cmd_pool
) {
8554 pci_free_consistent(h
->pdev
,
8555 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8556 h
->ioaccel_cmd_pool
,
8557 h
->ioaccel_cmd_pool_dhandle
);
8558 h
->ioaccel_cmd_pool
= NULL
;
8559 h
->ioaccel_cmd_pool_dhandle
= 0;
8561 kfree(h
->ioaccel1_blockFetchTable
);
8562 h
->ioaccel1_blockFetchTable
= NULL
;
8565 /* Allocate ioaccel1 mode command blocks and block fetch table */
8566 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8569 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8570 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
8571 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
8573 /* Command structures must be aligned on a 128-byte boundary
8574 * because the 7 lower bits of the address are used by the
8577 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
8578 IOACCEL1_COMMANDLIST_ALIGNMENT
);
8579 h
->ioaccel_cmd_pool
=
8580 pci_alloc_consistent(h
->pdev
,
8581 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8582 &(h
->ioaccel_cmd_pool_dhandle
));
8584 h
->ioaccel1_blockFetchTable
=
8585 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8586 sizeof(u32
)), GFP_KERNEL
);
8588 if ((h
->ioaccel_cmd_pool
== NULL
) ||
8589 (h
->ioaccel1_blockFetchTable
== NULL
))
8592 memset(h
->ioaccel_cmd_pool
, 0,
8593 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
8597 hpsa_free_ioaccel1_cmd_and_bft(h
);
8601 /* Free ioaccel2 mode command blocks and block fetch table */
8602 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8604 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8606 if (h
->ioaccel2_cmd_pool
) {
8607 pci_free_consistent(h
->pdev
,
8608 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8609 h
->ioaccel2_cmd_pool
,
8610 h
->ioaccel2_cmd_pool_dhandle
);
8611 h
->ioaccel2_cmd_pool
= NULL
;
8612 h
->ioaccel2_cmd_pool_dhandle
= 0;
8614 kfree(h
->ioaccel2_blockFetchTable
);
8615 h
->ioaccel2_blockFetchTable
= NULL
;
8618 /* Allocate ioaccel2 mode command blocks and block fetch table */
8619 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8623 /* Allocate ioaccel2 mode command blocks and block fetch table */
8626 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8627 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
8628 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
8630 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
8631 IOACCEL2_COMMANDLIST_ALIGNMENT
);
8632 h
->ioaccel2_cmd_pool
=
8633 pci_alloc_consistent(h
->pdev
,
8634 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8635 &(h
->ioaccel2_cmd_pool_dhandle
));
8637 h
->ioaccel2_blockFetchTable
=
8638 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8639 sizeof(u32
)), GFP_KERNEL
);
8641 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
8642 (h
->ioaccel2_blockFetchTable
== NULL
)) {
8647 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
8651 memset(h
->ioaccel2_cmd_pool
, 0,
8652 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
8656 hpsa_free_ioaccel2_cmd_and_bft(h
);
8660 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8661 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
8663 kfree(h
->blockFetchTable
);
8664 h
->blockFetchTable
= NULL
;
8665 hpsa_free_reply_queues(h
);
8666 hpsa_free_ioaccel1_cmd_and_bft(h
);
8667 hpsa_free_ioaccel2_cmd_and_bft(h
);
8670 /* return -ENODEV on error, 0 on success (or no action)
8671 * allocates numerous items that must be freed later
8673 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
8676 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8677 CFGTBL_Trans_use_short_tags
;
8680 if (hpsa_simple_mode
)
8683 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
8684 if (!(trans_support
& PERFORMANT_MODE
))
8687 /* Check for I/O accelerator mode support */
8688 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8689 transMethod
|= CFGTBL_Trans_io_accel1
|
8690 CFGTBL_Trans_enable_directed_msix
;
8691 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
8694 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8695 transMethod
|= CFGTBL_Trans_io_accel2
|
8696 CFGTBL_Trans_enable_directed_msix
;
8697 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
8702 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
8703 hpsa_get_max_perf_mode_cmds(h
);
8704 /* Performant mode ring buffer and supporting data structures */
8705 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
8707 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8708 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
8709 h
->reply_queue_size
,
8710 &(h
->reply_queue
[i
].busaddr
));
8711 if (!h
->reply_queue
[i
].head
) {
8713 goto clean1
; /* rq, ioaccel */
8715 h
->reply_queue
[i
].size
= h
->max_commands
;
8716 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
8717 h
->reply_queue
[i
].current_entry
= 0;
8720 /* Need a block fetch table for performant mode */
8721 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
8722 sizeof(u32
)), GFP_KERNEL
);
8723 if (!h
->blockFetchTable
) {
8725 goto clean1
; /* rq, ioaccel */
8728 rc
= hpsa_enter_performant_mode(h
, trans_support
);
8730 goto clean2
; /* bft, rq, ioaccel */
8733 clean2
: /* bft, rq, ioaccel */
8734 kfree(h
->blockFetchTable
);
8735 h
->blockFetchTable
= NULL
;
8736 clean1
: /* rq, ioaccel */
8737 hpsa_free_reply_queues(h
);
8738 hpsa_free_ioaccel1_cmd_and_bft(h
);
8739 hpsa_free_ioaccel2_cmd_and_bft(h
);
8743 static int is_accelerated_cmd(struct CommandList
*c
)
8745 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
8748 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
8750 struct CommandList
*c
= NULL
;
8751 int i
, accel_cmds_out
;
8754 do { /* wait for all outstanding ioaccel commands to drain out */
8756 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8757 c
= h
->cmd_pool
+ i
;
8758 refcount
= atomic_inc_return(&c
->refcount
);
8759 if (refcount
> 1) /* Command is allocated */
8760 accel_cmds_out
+= is_accelerated_cmd(c
);
8763 if (accel_cmds_out
<= 0)
8770 * This is it. Register the PCI driver information for the cards we control
8771 * the OS will call our registered routines when it finds one of our cards.
8773 static int __init
hpsa_init(void)
8775 return pci_register_driver(&hpsa_pci_driver
);
8778 static void __exit
hpsa_cleanup(void)
8780 pci_unregister_driver(&hpsa_pci_driver
);
8783 static void __attribute__((unused
)) verify_offsets(void)
8785 #define VERIFY_OFFSET(member, offset) \
8786 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8788 VERIFY_OFFSET(structure_size
, 0);
8789 VERIFY_OFFSET(volume_blk_size
, 4);
8790 VERIFY_OFFSET(volume_blk_cnt
, 8);
8791 VERIFY_OFFSET(phys_blk_shift
, 16);
8792 VERIFY_OFFSET(parity_rotation_shift
, 17);
8793 VERIFY_OFFSET(strip_size
, 18);
8794 VERIFY_OFFSET(disk_starting_blk
, 20);
8795 VERIFY_OFFSET(disk_blk_cnt
, 28);
8796 VERIFY_OFFSET(data_disks_per_row
, 36);
8797 VERIFY_OFFSET(metadata_disks_per_row
, 38);
8798 VERIFY_OFFSET(row_cnt
, 40);
8799 VERIFY_OFFSET(layout_map_count
, 42);
8800 VERIFY_OFFSET(flags
, 44);
8801 VERIFY_OFFSET(dekindex
, 46);
8802 /* VERIFY_OFFSET(reserved, 48 */
8803 VERIFY_OFFSET(data
, 64);
8805 #undef VERIFY_OFFSET
8807 #define VERIFY_OFFSET(member, offset) \
8808 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8810 VERIFY_OFFSET(IU_type
, 0);
8811 VERIFY_OFFSET(direction
, 1);
8812 VERIFY_OFFSET(reply_queue
, 2);
8813 /* VERIFY_OFFSET(reserved1, 3); */
8814 VERIFY_OFFSET(scsi_nexus
, 4);
8815 VERIFY_OFFSET(Tag
, 8);
8816 VERIFY_OFFSET(cdb
, 16);
8817 VERIFY_OFFSET(cciss_lun
, 32);
8818 VERIFY_OFFSET(data_len
, 40);
8819 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
8820 VERIFY_OFFSET(sg_count
, 45);
8821 /* VERIFY_OFFSET(reserved3 */
8822 VERIFY_OFFSET(err_ptr
, 48);
8823 VERIFY_OFFSET(err_len
, 56);
8824 /* VERIFY_OFFSET(reserved4 */
8825 VERIFY_OFFSET(sg
, 64);
8827 #undef VERIFY_OFFSET
8829 #define VERIFY_OFFSET(member, offset) \
8830 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8832 VERIFY_OFFSET(dev_handle
, 0x00);
8833 VERIFY_OFFSET(reserved1
, 0x02);
8834 VERIFY_OFFSET(function
, 0x03);
8835 VERIFY_OFFSET(reserved2
, 0x04);
8836 VERIFY_OFFSET(err_info
, 0x0C);
8837 VERIFY_OFFSET(reserved3
, 0x10);
8838 VERIFY_OFFSET(err_info_len
, 0x12);
8839 VERIFY_OFFSET(reserved4
, 0x13);
8840 VERIFY_OFFSET(sgl_offset
, 0x14);
8841 VERIFY_OFFSET(reserved5
, 0x15);
8842 VERIFY_OFFSET(transfer_len
, 0x1C);
8843 VERIFY_OFFSET(reserved6
, 0x20);
8844 VERIFY_OFFSET(io_flags
, 0x24);
8845 VERIFY_OFFSET(reserved7
, 0x26);
8846 VERIFY_OFFSET(LUN
, 0x34);
8847 VERIFY_OFFSET(control
, 0x3C);
8848 VERIFY_OFFSET(CDB
, 0x40);
8849 VERIFY_OFFSET(reserved8
, 0x50);
8850 VERIFY_OFFSET(host_context_flags
, 0x60);
8851 VERIFY_OFFSET(timeout_sec
, 0x62);
8852 VERIFY_OFFSET(ReplyQueue
, 0x64);
8853 VERIFY_OFFSET(reserved9
, 0x65);
8854 VERIFY_OFFSET(tag
, 0x68);
8855 VERIFY_OFFSET(host_addr
, 0x70);
8856 VERIFY_OFFSET(CISS_LUN
, 0x78);
8857 VERIFY_OFFSET(SG
, 0x78 + 8);
8858 #undef VERIFY_OFFSET
8861 module_init(hpsa_init
);
8862 module_exit(hpsa_cleanup
);