Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / space-info.c
blob67e55c5479b8e2b66024d4d5525867dc3ee0e567
1 // SPDX-License-Identifier: GPL-2.0
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
14 * HOW DOES SPACE RESERVATION WORK
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
18 * works generally.
20 * BASIC CONCEPTS
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
40 * MAKING RESERVATIONS, THE NORMAL CASE
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
46 * ->reserve
47 * space_info->bytes_may_reserve += num_bytes
49 * ->extent allocation
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
54 * ->insert reference
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61 * Assume we are unable to simply make the reservation because we do not have
62 * enough space
64 * -> __reserve_bytes
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 * on the ticket.
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
83 * -> ticket wakeup
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 * were interrupted.)
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
95 * THE FLUSHING STATES
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
110 * metadata space.
112 * FLUSH_DELALLOC
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
118 * FLUSH_DELAYED_REFS
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
125 * ALLOC_CHUNK
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
130 * RUN_DELAYED_IPUTS
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
135 * COMMIT_TRANS
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
141 * of metadata.
143 * OVERCOMMIT
145 * Because we hold so many reservations for metadata we will allow you to
146 * reserve more space than is currently free in the currently allocate
147 * metadata space. This only happens with metadata, data does not allow
148 * overcommitting.
150 * You can see the current logic for when we allow overcommit in
151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
152 * is no unallocated space to be had, all reservations are kept within the
153 * free space in the allocated metadata chunks.
155 * Because of overcommitting, you generally want to use the
156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 * thing with or without extra unallocated space.
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 bool may_use_included)
163 ASSERT(s_info);
164 return s_info->bytes_used + s_info->bytes_reserved +
165 s_info->bytes_pinned + s_info->bytes_readonly +
166 (may_use_included ? s_info->bytes_may_use : 0);
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
175 struct list_head *head = &info->space_info;
176 struct btrfs_space_info *found;
178 list_for_each_entry(found, head, list)
179 found->full = 0;
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 struct btrfs_space_info *space_info;
186 int i;
187 int ret;
189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190 if (!space_info)
191 return -ENOMEM;
193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194 GFP_KERNEL);
195 if (ret) {
196 kfree(space_info);
197 return ret;
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 INIT_LIST_HEAD(&space_info->block_groups[i]);
202 init_rwsem(&space_info->groups_sem);
203 spin_lock_init(&space_info->lock);
204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206 INIT_LIST_HEAD(&space_info->ro_bgs);
207 INIT_LIST_HEAD(&space_info->tickets);
208 INIT_LIST_HEAD(&space_info->priority_tickets);
210 ret = btrfs_sysfs_add_space_info_type(info, space_info);
211 if (ret)
212 return ret;
214 list_add(&space_info->list, &info->space_info);
215 if (flags & BTRFS_BLOCK_GROUP_DATA)
216 info->data_sinfo = space_info;
218 return ret;
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
223 struct btrfs_super_block *disk_super;
224 u64 features;
225 u64 flags;
226 int mixed = 0;
227 int ret;
229 disk_super = fs_info->super_copy;
230 if (!btrfs_super_root(disk_super))
231 return -EINVAL;
233 features = btrfs_super_incompat_flags(disk_super);
234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235 mixed = 1;
237 flags = BTRFS_BLOCK_GROUP_SYSTEM;
238 ret = create_space_info(fs_info, flags);
239 if (ret)
240 goto out;
242 if (mixed) {
243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244 ret = create_space_info(fs_info, flags);
245 } else {
246 flags = BTRFS_BLOCK_GROUP_METADATA;
247 ret = create_space_info(fs_info, flags);
248 if (ret)
249 goto out;
251 flags = BTRFS_BLOCK_GROUP_DATA;
252 ret = create_space_info(fs_info, flags);
254 out:
255 return ret;
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259 u64 total_bytes, u64 bytes_used,
260 u64 bytes_readonly,
261 struct btrfs_space_info **space_info)
263 struct btrfs_space_info *found;
264 int factor;
266 factor = btrfs_bg_type_to_factor(flags);
268 found = btrfs_find_space_info(info, flags);
269 ASSERT(found);
270 spin_lock(&found->lock);
271 found->total_bytes += total_bytes;
272 found->disk_total += total_bytes * factor;
273 found->bytes_used += bytes_used;
274 found->disk_used += bytes_used * factor;
275 found->bytes_readonly += bytes_readonly;
276 if (total_bytes > 0)
277 found->full = 0;
278 btrfs_try_granting_tickets(info, found);
279 spin_unlock(&found->lock);
280 *space_info = found;
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284 u64 flags)
286 struct list_head *head = &info->space_info;
287 struct btrfs_space_info *found;
289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
291 list_for_each_entry(found, head, list) {
292 if (found->flags & flags)
293 return found;
295 return NULL;
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299 struct btrfs_space_info *space_info,
300 enum btrfs_reserve_flush_enum flush)
302 u64 profile;
303 u64 avail;
304 int factor;
306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307 profile = btrfs_system_alloc_profile(fs_info);
308 else
309 profile = btrfs_metadata_alloc_profile(fs_info);
311 avail = atomic64_read(&fs_info->free_chunk_space);
314 * If we have dup, raid1 or raid10 then only half of the free
315 * space is actually usable. For raid56, the space info used
316 * doesn't include the parity drive, so we don't have to
317 * change the math
319 factor = btrfs_bg_type_to_factor(profile);
320 avail = div_u64(avail, factor);
323 * If we aren't flushing all things, let us overcommit up to
324 * 1/2th of the space. If we can flush, don't let us overcommit
325 * too much, let it overcommit up to 1/8 of the space.
327 if (flush == BTRFS_RESERVE_FLUSH_ALL)
328 avail >>= 3;
329 else
330 avail >>= 1;
331 return avail;
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335 struct btrfs_space_info *space_info, u64 bytes,
336 enum btrfs_reserve_flush_enum flush)
338 u64 avail;
339 u64 used;
341 /* Don't overcommit when in mixed mode */
342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343 return 0;
345 used = btrfs_space_info_used(space_info, true);
346 avail = calc_available_free_space(fs_info, space_info, flush);
348 if (used + bytes < space_info->total_bytes + avail)
349 return 1;
350 return 0;
353 static void remove_ticket(struct btrfs_space_info *space_info,
354 struct reserve_ticket *ticket)
356 if (!list_empty(&ticket->list)) {
357 list_del_init(&ticket->list);
358 ASSERT(space_info->reclaim_size >= ticket->bytes);
359 space_info->reclaim_size -= ticket->bytes;
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368 struct btrfs_space_info *space_info)
370 struct list_head *head;
371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373 lockdep_assert_held(&space_info->lock);
375 head = &space_info->priority_tickets;
376 again:
377 while (!list_empty(head)) {
378 struct reserve_ticket *ticket;
379 u64 used = btrfs_space_info_used(space_info, true);
381 ticket = list_first_entry(head, struct reserve_ticket, list);
383 /* Check and see if our ticket can be satisified now. */
384 if ((used + ticket->bytes <= space_info->total_bytes) ||
385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386 flush)) {
387 btrfs_space_info_update_bytes_may_use(fs_info,
388 space_info,
389 ticket->bytes);
390 remove_ticket(space_info, ticket);
391 ticket->bytes = 0;
392 space_info->tickets_id++;
393 wake_up(&ticket->wait);
394 } else {
395 break;
399 if (head == &space_info->priority_tickets) {
400 head = &space_info->tickets;
401 flush = BTRFS_RESERVE_FLUSH_ALL;
402 goto again;
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
407 do { \
408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
409 spin_lock(&__rsv->lock); \
410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
411 __rsv->size, __rsv->reserved); \
412 spin_unlock(&__rsv->lock); \
413 } while (0)
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416 struct btrfs_space_info *info)
418 lockdep_assert_held(&info->lock);
420 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
421 info->flags,
422 info->total_bytes - btrfs_space_info_used(info, true),
423 info->full ? "" : "not ");
424 btrfs_info(fs_info,
425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426 info->total_bytes, info->bytes_used, info->bytes_pinned,
427 info->bytes_reserved, info->bytes_may_use,
428 info->bytes_readonly);
430 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
431 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
432 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
433 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
434 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
439 struct btrfs_space_info *info, u64 bytes,
440 int dump_block_groups)
442 struct btrfs_block_group *cache;
443 int index = 0;
445 spin_lock(&info->lock);
446 __btrfs_dump_space_info(fs_info, info);
447 spin_unlock(&info->lock);
449 if (!dump_block_groups)
450 return;
452 down_read(&info->groups_sem);
453 again:
454 list_for_each_entry(cache, &info->block_groups[index], list) {
455 spin_lock(&cache->lock);
456 btrfs_info(fs_info,
457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458 cache->start, cache->length, cache->used, cache->pinned,
459 cache->reserved, cache->ro ? "[readonly]" : "");
460 spin_unlock(&cache->lock);
461 btrfs_dump_free_space(cache, bytes);
463 if (++index < BTRFS_NR_RAID_TYPES)
464 goto again;
465 up_read(&info->groups_sem);
468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
469 u64 to_reclaim)
471 u64 bytes;
472 u64 nr;
474 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
475 nr = div64_u64(to_reclaim, bytes);
476 if (!nr)
477 nr = 1;
478 return nr;
481 #define EXTENT_SIZE_PER_ITEM SZ_256K
484 * shrink metadata reservation for delalloc
486 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
487 struct btrfs_space_info *space_info,
488 u64 to_reclaim, bool wait_ordered)
490 struct btrfs_trans_handle *trans;
491 u64 delalloc_bytes;
492 u64 dio_bytes;
493 u64 items;
494 long time_left;
495 int loops;
497 /* Calc the number of the pages we need flush for space reservation */
498 if (to_reclaim == U64_MAX) {
499 items = U64_MAX;
500 } else {
502 * to_reclaim is set to however much metadata we need to
503 * reclaim, but reclaiming that much data doesn't really track
504 * exactly, so increase the amount to reclaim by 2x in order to
505 * make sure we're flushing enough delalloc to hopefully reclaim
506 * some metadata reservations.
508 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
509 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
512 trans = (struct btrfs_trans_handle *)current->journal_info;
514 delalloc_bytes = percpu_counter_sum_positive(
515 &fs_info->delalloc_bytes);
516 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
517 if (delalloc_bytes == 0 && dio_bytes == 0) {
518 if (trans)
519 return;
520 if (wait_ordered)
521 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
522 return;
526 * If we are doing more ordered than delalloc we need to just wait on
527 * ordered extents, otherwise we'll waste time trying to flush delalloc
528 * that likely won't give us the space back we need.
530 if (dio_bytes > delalloc_bytes)
531 wait_ordered = true;
533 loops = 0;
534 while ((delalloc_bytes || dio_bytes) && loops < 3) {
535 btrfs_start_delalloc_roots(fs_info, items, true);
537 loops++;
538 if (wait_ordered && !trans) {
539 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
540 } else {
541 time_left = schedule_timeout_killable(1);
542 if (time_left)
543 break;
546 spin_lock(&space_info->lock);
547 if (list_empty(&space_info->tickets) &&
548 list_empty(&space_info->priority_tickets)) {
549 spin_unlock(&space_info->lock);
550 break;
552 spin_unlock(&space_info->lock);
554 delalloc_bytes = percpu_counter_sum_positive(
555 &fs_info->delalloc_bytes);
556 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
561 * maybe_commit_transaction - possibly commit the transaction if its ok to
562 * @root - the root we're allocating for
563 * @bytes - the number of bytes we want to reserve
564 * @force - force the commit
566 * This will check to make sure that committing the transaction will actually
567 * get us somewhere and then commit the transaction if it does. Otherwise it
568 * will return -ENOSPC.
570 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
571 struct btrfs_space_info *space_info)
573 struct reserve_ticket *ticket = NULL;
574 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
575 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
576 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
577 struct btrfs_trans_handle *trans;
578 u64 reclaim_bytes = 0;
579 u64 bytes_needed = 0;
580 u64 cur_free_bytes = 0;
582 trans = (struct btrfs_trans_handle *)current->journal_info;
583 if (trans)
584 return -EAGAIN;
586 spin_lock(&space_info->lock);
587 cur_free_bytes = btrfs_space_info_used(space_info, true);
588 if (cur_free_bytes < space_info->total_bytes)
589 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
590 else
591 cur_free_bytes = 0;
593 if (!list_empty(&space_info->priority_tickets))
594 ticket = list_first_entry(&space_info->priority_tickets,
595 struct reserve_ticket, list);
596 else if (!list_empty(&space_info->tickets))
597 ticket = list_first_entry(&space_info->tickets,
598 struct reserve_ticket, list);
599 if (ticket)
600 bytes_needed = ticket->bytes;
602 if (bytes_needed > cur_free_bytes)
603 bytes_needed -= cur_free_bytes;
604 else
605 bytes_needed = 0;
606 spin_unlock(&space_info->lock);
608 if (!bytes_needed)
609 return 0;
611 trans = btrfs_join_transaction(fs_info->extent_root);
612 if (IS_ERR(trans))
613 return PTR_ERR(trans);
616 * See if there is enough pinned space to make this reservation, or if
617 * we have block groups that are going to be freed, allowing us to
618 * possibly do a chunk allocation the next loop through.
620 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
621 __percpu_counter_compare(&space_info->total_bytes_pinned,
622 bytes_needed,
623 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
624 goto commit;
627 * See if there is some space in the delayed insertion reserve for this
628 * reservation. If the space_info's don't match (like for DATA or
629 * SYSTEM) then just go enospc, reclaiming this space won't recover any
630 * space to satisfy those reservations.
632 if (space_info != delayed_rsv->space_info)
633 goto enospc;
635 spin_lock(&delayed_rsv->lock);
636 reclaim_bytes += delayed_rsv->reserved;
637 spin_unlock(&delayed_rsv->lock);
639 spin_lock(&delayed_refs_rsv->lock);
640 reclaim_bytes += delayed_refs_rsv->reserved;
641 spin_unlock(&delayed_refs_rsv->lock);
643 spin_lock(&trans_rsv->lock);
644 reclaim_bytes += trans_rsv->reserved;
645 spin_unlock(&trans_rsv->lock);
647 if (reclaim_bytes >= bytes_needed)
648 goto commit;
649 bytes_needed -= reclaim_bytes;
651 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
652 bytes_needed,
653 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
654 goto enospc;
656 commit:
657 return btrfs_commit_transaction(trans);
658 enospc:
659 btrfs_end_transaction(trans);
660 return -ENOSPC;
664 * Try to flush some data based on policy set by @state. This is only advisory
665 * and may fail for various reasons. The caller is supposed to examine the
666 * state of @space_info to detect the outcome.
668 static void flush_space(struct btrfs_fs_info *fs_info,
669 struct btrfs_space_info *space_info, u64 num_bytes,
670 int state)
672 struct btrfs_root *root = fs_info->extent_root;
673 struct btrfs_trans_handle *trans;
674 int nr;
675 int ret = 0;
677 switch (state) {
678 case FLUSH_DELAYED_ITEMS_NR:
679 case FLUSH_DELAYED_ITEMS:
680 if (state == FLUSH_DELAYED_ITEMS_NR)
681 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
682 else
683 nr = -1;
685 trans = btrfs_join_transaction(root);
686 if (IS_ERR(trans)) {
687 ret = PTR_ERR(trans);
688 break;
690 ret = btrfs_run_delayed_items_nr(trans, nr);
691 btrfs_end_transaction(trans);
692 break;
693 case FLUSH_DELALLOC:
694 case FLUSH_DELALLOC_WAIT:
695 shrink_delalloc(fs_info, space_info, num_bytes,
696 state == FLUSH_DELALLOC_WAIT);
697 break;
698 case FLUSH_DELAYED_REFS_NR:
699 case FLUSH_DELAYED_REFS:
700 trans = btrfs_join_transaction(root);
701 if (IS_ERR(trans)) {
702 ret = PTR_ERR(trans);
703 break;
705 if (state == FLUSH_DELAYED_REFS_NR)
706 nr = calc_reclaim_items_nr(fs_info, num_bytes);
707 else
708 nr = 0;
709 btrfs_run_delayed_refs(trans, nr);
710 btrfs_end_transaction(trans);
711 break;
712 case ALLOC_CHUNK:
713 case ALLOC_CHUNK_FORCE:
714 trans = btrfs_join_transaction(root);
715 if (IS_ERR(trans)) {
716 ret = PTR_ERR(trans);
717 break;
719 ret = btrfs_chunk_alloc(trans,
720 btrfs_get_alloc_profile(fs_info, space_info->flags),
721 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
722 CHUNK_ALLOC_FORCE);
723 btrfs_end_transaction(trans);
724 if (ret > 0 || ret == -ENOSPC)
725 ret = 0;
726 break;
727 case RUN_DELAYED_IPUTS:
729 * If we have pending delayed iputs then we could free up a
730 * bunch of pinned space, so make sure we run the iputs before
731 * we do our pinned bytes check below.
733 btrfs_run_delayed_iputs(fs_info);
734 btrfs_wait_on_delayed_iputs(fs_info);
735 break;
736 case COMMIT_TRANS:
737 ret = may_commit_transaction(fs_info, space_info);
738 break;
739 default:
740 ret = -ENOSPC;
741 break;
744 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
745 ret);
746 return;
749 static inline u64
750 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
751 struct btrfs_space_info *space_info)
753 u64 used;
754 u64 avail;
755 u64 expected;
756 u64 to_reclaim = space_info->reclaim_size;
758 lockdep_assert_held(&space_info->lock);
760 avail = calc_available_free_space(fs_info, space_info,
761 BTRFS_RESERVE_FLUSH_ALL);
762 used = btrfs_space_info_used(space_info, true);
765 * We may be flushing because suddenly we have less space than we had
766 * before, and now we're well over-committed based on our current free
767 * space. If that's the case add in our overage so we make sure to put
768 * appropriate pressure on the flushing state machine.
770 if (space_info->total_bytes + avail < used)
771 to_reclaim += used - (space_info->total_bytes + avail);
773 if (to_reclaim)
774 return to_reclaim;
776 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
777 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
778 BTRFS_RESERVE_FLUSH_ALL))
779 return 0;
781 used = btrfs_space_info_used(space_info, true);
783 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
784 BTRFS_RESERVE_FLUSH_ALL))
785 expected = div_factor_fine(space_info->total_bytes, 95);
786 else
787 expected = div_factor_fine(space_info->total_bytes, 90);
789 if (used > expected)
790 to_reclaim = used - expected;
791 else
792 to_reclaim = 0;
793 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
794 space_info->bytes_reserved);
795 return to_reclaim;
798 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
799 struct btrfs_space_info *space_info,
800 u64 used)
802 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
804 /* If we're just plain full then async reclaim just slows us down. */
805 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
806 return 0;
808 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
809 return 0;
811 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
812 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
815 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
816 struct btrfs_space_info *space_info,
817 struct reserve_ticket *ticket)
819 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
820 u64 min_bytes;
822 if (global_rsv->space_info != space_info)
823 return false;
825 spin_lock(&global_rsv->lock);
826 min_bytes = div_factor(global_rsv->size, 1);
827 if (global_rsv->reserved < min_bytes + ticket->bytes) {
828 spin_unlock(&global_rsv->lock);
829 return false;
831 global_rsv->reserved -= ticket->bytes;
832 remove_ticket(space_info, ticket);
833 ticket->bytes = 0;
834 wake_up(&ticket->wait);
835 space_info->tickets_id++;
836 if (global_rsv->reserved < global_rsv->size)
837 global_rsv->full = 0;
838 spin_unlock(&global_rsv->lock);
840 return true;
844 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
845 * @fs_info - fs_info for this fs
846 * @space_info - the space info we were flushing
848 * We call this when we've exhausted our flushing ability and haven't made
849 * progress in satisfying tickets. The reservation code handles tickets in
850 * order, so if there is a large ticket first and then smaller ones we could
851 * very well satisfy the smaller tickets. This will attempt to wake up any
852 * tickets in the list to catch this case.
854 * This function returns true if it was able to make progress by clearing out
855 * other tickets, or if it stumbles across a ticket that was smaller than the
856 * first ticket.
858 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
859 struct btrfs_space_info *space_info)
861 struct reserve_ticket *ticket;
862 u64 tickets_id = space_info->tickets_id;
863 u64 first_ticket_bytes = 0;
865 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
866 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
867 __btrfs_dump_space_info(fs_info, space_info);
870 while (!list_empty(&space_info->tickets) &&
871 tickets_id == space_info->tickets_id) {
872 ticket = list_first_entry(&space_info->tickets,
873 struct reserve_ticket, list);
875 if (ticket->steal &&
876 steal_from_global_rsv(fs_info, space_info, ticket))
877 return true;
880 * may_commit_transaction will avoid committing the transaction
881 * if it doesn't feel like the space reclaimed by the commit
882 * would result in the ticket succeeding. However if we have a
883 * smaller ticket in the queue it may be small enough to be
884 * satisified by committing the transaction, so if any
885 * subsequent ticket is smaller than the first ticket go ahead
886 * and send us back for another loop through the enospc flushing
887 * code.
889 if (first_ticket_bytes == 0)
890 first_ticket_bytes = ticket->bytes;
891 else if (first_ticket_bytes > ticket->bytes)
892 return true;
894 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
895 btrfs_info(fs_info, "failing ticket with %llu bytes",
896 ticket->bytes);
898 remove_ticket(space_info, ticket);
899 ticket->error = -ENOSPC;
900 wake_up(&ticket->wait);
903 * We're just throwing tickets away, so more flushing may not
904 * trip over btrfs_try_granting_tickets, so we need to call it
905 * here to see if we can make progress with the next ticket in
906 * the list.
908 btrfs_try_granting_tickets(fs_info, space_info);
910 return (tickets_id != space_info->tickets_id);
914 * This is for normal flushers, we can wait all goddamned day if we want to. We
915 * will loop and continuously try to flush as long as we are making progress.
916 * We count progress as clearing off tickets each time we have to loop.
918 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
920 struct btrfs_fs_info *fs_info;
921 struct btrfs_space_info *space_info;
922 u64 to_reclaim;
923 int flush_state;
924 int commit_cycles = 0;
925 u64 last_tickets_id;
927 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
928 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
930 spin_lock(&space_info->lock);
931 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
932 if (!to_reclaim) {
933 space_info->flush = 0;
934 spin_unlock(&space_info->lock);
935 return;
937 last_tickets_id = space_info->tickets_id;
938 spin_unlock(&space_info->lock);
940 flush_state = FLUSH_DELAYED_ITEMS_NR;
941 do {
942 flush_space(fs_info, space_info, to_reclaim, flush_state);
943 spin_lock(&space_info->lock);
944 if (list_empty(&space_info->tickets)) {
945 space_info->flush = 0;
946 spin_unlock(&space_info->lock);
947 return;
949 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
950 space_info);
951 if (last_tickets_id == space_info->tickets_id) {
952 flush_state++;
953 } else {
954 last_tickets_id = space_info->tickets_id;
955 flush_state = FLUSH_DELAYED_ITEMS_NR;
956 if (commit_cycles)
957 commit_cycles--;
961 * We don't want to force a chunk allocation until we've tried
962 * pretty hard to reclaim space. Think of the case where we
963 * freed up a bunch of space and so have a lot of pinned space
964 * to reclaim. We would rather use that than possibly create a
965 * underutilized metadata chunk. So if this is our first run
966 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
967 * commit the transaction. If nothing has changed the next go
968 * around then we can force a chunk allocation.
970 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
971 flush_state++;
973 if (flush_state > COMMIT_TRANS) {
974 commit_cycles++;
975 if (commit_cycles > 2) {
976 if (maybe_fail_all_tickets(fs_info, space_info)) {
977 flush_state = FLUSH_DELAYED_ITEMS_NR;
978 commit_cycles--;
979 } else {
980 space_info->flush = 0;
982 } else {
983 flush_state = FLUSH_DELAYED_ITEMS_NR;
986 spin_unlock(&space_info->lock);
987 } while (flush_state <= COMMIT_TRANS);
991 * FLUSH_DELALLOC_WAIT:
992 * Space is freed from flushing delalloc in one of two ways.
994 * 1) compression is on and we allocate less space than we reserved
995 * 2) we are overwriting existing space
997 * For #1 that extra space is reclaimed as soon as the delalloc pages are
998 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
999 * length to ->bytes_reserved, and subtracts the reserved space from
1000 * ->bytes_may_use.
1002 * For #2 this is trickier. Once the ordered extent runs we will drop the
1003 * extent in the range we are overwriting, which creates a delayed ref for
1004 * that freed extent. This however is not reclaimed until the transaction
1005 * commits, thus the next stages.
1007 * RUN_DELAYED_IPUTS
1008 * If we are freeing inodes, we want to make sure all delayed iputs have
1009 * completed, because they could have been on an inode with i_nlink == 0, and
1010 * thus have been truncated and freed up space. But again this space is not
1011 * immediately re-usable, it comes in the form of a delayed ref, which must be
1012 * run and then the transaction must be committed.
1014 * FLUSH_DELAYED_REFS
1015 * The above two cases generate delayed refs that will affect
1016 * ->total_bytes_pinned. However this counter can be inconsistent with
1017 * reality if there are outstanding delayed refs. This is because we adjust
1018 * the counter based solely on the current set of delayed refs and disregard
1019 * any on-disk state which might include more refs. So for example, if we
1020 * have an extent with 2 references, but we only drop 1, we'll see that there
1021 * is a negative delayed ref count for the extent and assume that the space
1022 * will be freed, and thus increase ->total_bytes_pinned.
1024 * Running the delayed refs gives us the actual real view of what will be
1025 * freed at the transaction commit time. This stage will not actually free
1026 * space for us, it just makes sure that may_commit_transaction() has all of
1027 * the information it needs to make the right decision.
1029 * COMMIT_TRANS
1030 * This is where we reclaim all of the pinned space generated by the previous
1031 * two stages. We will not commit the transaction if we don't think we're
1032 * likely to satisfy our request, which means if our current free space +
1033 * total_bytes_pinned < reservation we will not commit. This is why the
1034 * previous states are actually important, to make sure we know for sure
1035 * whether committing the transaction will allow us to make progress.
1037 * ALLOC_CHUNK_FORCE
1038 * For data we start with alloc chunk force, however we could have been full
1039 * before, and then the transaction commit could have freed new block groups,
1040 * so if we now have space to allocate do the force chunk allocation.
1042 static const enum btrfs_flush_state data_flush_states[] = {
1043 FLUSH_DELALLOC_WAIT,
1044 RUN_DELAYED_IPUTS,
1045 FLUSH_DELAYED_REFS,
1046 COMMIT_TRANS,
1047 ALLOC_CHUNK_FORCE,
1050 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1052 struct btrfs_fs_info *fs_info;
1053 struct btrfs_space_info *space_info;
1054 u64 last_tickets_id;
1055 int flush_state = 0;
1057 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1058 space_info = fs_info->data_sinfo;
1060 spin_lock(&space_info->lock);
1061 if (list_empty(&space_info->tickets)) {
1062 space_info->flush = 0;
1063 spin_unlock(&space_info->lock);
1064 return;
1066 last_tickets_id = space_info->tickets_id;
1067 spin_unlock(&space_info->lock);
1069 while (!space_info->full) {
1070 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1071 spin_lock(&space_info->lock);
1072 if (list_empty(&space_info->tickets)) {
1073 space_info->flush = 0;
1074 spin_unlock(&space_info->lock);
1075 return;
1077 last_tickets_id = space_info->tickets_id;
1078 spin_unlock(&space_info->lock);
1081 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1082 flush_space(fs_info, space_info, U64_MAX,
1083 data_flush_states[flush_state]);
1084 spin_lock(&space_info->lock);
1085 if (list_empty(&space_info->tickets)) {
1086 space_info->flush = 0;
1087 spin_unlock(&space_info->lock);
1088 return;
1091 if (last_tickets_id == space_info->tickets_id) {
1092 flush_state++;
1093 } else {
1094 last_tickets_id = space_info->tickets_id;
1095 flush_state = 0;
1098 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1099 if (space_info->full) {
1100 if (maybe_fail_all_tickets(fs_info, space_info))
1101 flush_state = 0;
1102 else
1103 space_info->flush = 0;
1104 } else {
1105 flush_state = 0;
1108 spin_unlock(&space_info->lock);
1112 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1114 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1115 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1118 static const enum btrfs_flush_state priority_flush_states[] = {
1119 FLUSH_DELAYED_ITEMS_NR,
1120 FLUSH_DELAYED_ITEMS,
1121 ALLOC_CHUNK,
1124 static const enum btrfs_flush_state evict_flush_states[] = {
1125 FLUSH_DELAYED_ITEMS_NR,
1126 FLUSH_DELAYED_ITEMS,
1127 FLUSH_DELAYED_REFS_NR,
1128 FLUSH_DELAYED_REFS,
1129 FLUSH_DELALLOC,
1130 FLUSH_DELALLOC_WAIT,
1131 ALLOC_CHUNK,
1132 COMMIT_TRANS,
1135 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1136 struct btrfs_space_info *space_info,
1137 struct reserve_ticket *ticket,
1138 const enum btrfs_flush_state *states,
1139 int states_nr)
1141 u64 to_reclaim;
1142 int flush_state;
1144 spin_lock(&space_info->lock);
1145 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1146 if (!to_reclaim) {
1147 spin_unlock(&space_info->lock);
1148 return;
1150 spin_unlock(&space_info->lock);
1152 flush_state = 0;
1153 do {
1154 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1155 flush_state++;
1156 spin_lock(&space_info->lock);
1157 if (ticket->bytes == 0) {
1158 spin_unlock(&space_info->lock);
1159 return;
1161 spin_unlock(&space_info->lock);
1162 } while (flush_state < states_nr);
1165 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1166 struct btrfs_space_info *space_info,
1167 struct reserve_ticket *ticket)
1169 while (!space_info->full) {
1170 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1171 spin_lock(&space_info->lock);
1172 if (ticket->bytes == 0) {
1173 spin_unlock(&space_info->lock);
1174 return;
1176 spin_unlock(&space_info->lock);
1180 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1181 struct btrfs_space_info *space_info,
1182 struct reserve_ticket *ticket)
1185 DEFINE_WAIT(wait);
1186 int ret = 0;
1188 spin_lock(&space_info->lock);
1189 while (ticket->bytes > 0 && ticket->error == 0) {
1190 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1191 if (ret) {
1193 * Delete us from the list. After we unlock the space
1194 * info, we don't want the async reclaim job to reserve
1195 * space for this ticket. If that would happen, then the
1196 * ticket's task would not known that space was reserved
1197 * despite getting an error, resulting in a space leak
1198 * (bytes_may_use counter of our space_info).
1200 remove_ticket(space_info, ticket);
1201 ticket->error = -EINTR;
1202 break;
1204 spin_unlock(&space_info->lock);
1206 schedule();
1208 finish_wait(&ticket->wait, &wait);
1209 spin_lock(&space_info->lock);
1211 spin_unlock(&space_info->lock);
1215 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1216 * @fs_info - the fs
1217 * @space_info - the space_info for the reservation
1218 * @ticket - the ticket for the reservation
1219 * @flush - how much we can flush
1221 * This does the work of figuring out how to flush for the ticket, waiting for
1222 * the reservation, and returning the appropriate error if there is one.
1224 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1225 struct btrfs_space_info *space_info,
1226 struct reserve_ticket *ticket,
1227 enum btrfs_reserve_flush_enum flush)
1229 int ret;
1231 switch (flush) {
1232 case BTRFS_RESERVE_FLUSH_DATA:
1233 case BTRFS_RESERVE_FLUSH_ALL:
1234 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1235 wait_reserve_ticket(fs_info, space_info, ticket);
1236 break;
1237 case BTRFS_RESERVE_FLUSH_LIMIT:
1238 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1239 priority_flush_states,
1240 ARRAY_SIZE(priority_flush_states));
1241 break;
1242 case BTRFS_RESERVE_FLUSH_EVICT:
1243 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1244 evict_flush_states,
1245 ARRAY_SIZE(evict_flush_states));
1246 break;
1247 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1248 priority_reclaim_data_space(fs_info, space_info, ticket);
1249 break;
1250 default:
1251 ASSERT(0);
1252 break;
1255 spin_lock(&space_info->lock);
1256 ret = ticket->error;
1257 if (ticket->bytes || ticket->error) {
1259 * We were a priority ticket, so we need to delete ourselves
1260 * from the list. Because we could have other priority tickets
1261 * behind us that require less space, run
1262 * btrfs_try_granting_tickets() to see if their reservations can
1263 * now be made.
1265 if (!list_empty(&ticket->list)) {
1266 remove_ticket(space_info, ticket);
1267 btrfs_try_granting_tickets(fs_info, space_info);
1270 if (!ret)
1271 ret = -ENOSPC;
1273 spin_unlock(&space_info->lock);
1274 ASSERT(list_empty(&ticket->list));
1276 * Check that we can't have an error set if the reservation succeeded,
1277 * as that would confuse tasks and lead them to error out without
1278 * releasing reserved space (if an error happens the expectation is that
1279 * space wasn't reserved at all).
1281 ASSERT(!(ticket->bytes == 0 && ticket->error));
1282 return ret;
1286 * This returns true if this flush state will go through the ordinary flushing
1287 * code.
1289 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1291 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1292 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1296 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1297 * @root - the root we're allocating for
1298 * @space_info - the space info we want to allocate from
1299 * @orig_bytes - the number of bytes we want
1300 * @flush - whether or not we can flush to make our reservation
1302 * This will reserve orig_bytes number of bytes from the space info associated
1303 * with the block_rsv. If there is not enough space it will make an attempt to
1304 * flush out space to make room. It will do this by flushing delalloc if
1305 * possible or committing the transaction. If flush is 0 then no attempts to
1306 * regain reservations will be made and this will fail if there is not enough
1307 * space already.
1309 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1310 struct btrfs_space_info *space_info, u64 orig_bytes,
1311 enum btrfs_reserve_flush_enum flush)
1313 struct work_struct *async_work;
1314 struct reserve_ticket ticket;
1315 u64 used;
1316 int ret = 0;
1317 bool pending_tickets;
1319 ASSERT(orig_bytes);
1320 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1322 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1323 async_work = &fs_info->async_data_reclaim_work;
1324 else
1325 async_work = &fs_info->async_reclaim_work;
1327 spin_lock(&space_info->lock);
1328 ret = -ENOSPC;
1329 used = btrfs_space_info_used(space_info, true);
1332 * We don't want NO_FLUSH allocations to jump everybody, they can
1333 * generally handle ENOSPC in a different way, so treat them the same as
1334 * normal flushers when it comes to skipping pending tickets.
1336 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1337 pending_tickets = !list_empty(&space_info->tickets) ||
1338 !list_empty(&space_info->priority_tickets);
1339 else
1340 pending_tickets = !list_empty(&space_info->priority_tickets);
1343 * Carry on if we have enough space (short-circuit) OR call
1344 * can_overcommit() to ensure we can overcommit to continue.
1346 if (!pending_tickets &&
1347 ((used + orig_bytes <= space_info->total_bytes) ||
1348 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1349 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1350 orig_bytes);
1351 ret = 0;
1355 * If we couldn't make a reservation then setup our reservation ticket
1356 * and kick the async worker if it's not already running.
1358 * If we are a priority flusher then we just need to add our ticket to
1359 * the list and we will do our own flushing further down.
1361 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1362 ticket.bytes = orig_bytes;
1363 ticket.error = 0;
1364 space_info->reclaim_size += ticket.bytes;
1365 init_waitqueue_head(&ticket.wait);
1366 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1367 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1368 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1369 flush == BTRFS_RESERVE_FLUSH_DATA) {
1370 list_add_tail(&ticket.list, &space_info->tickets);
1371 if (!space_info->flush) {
1372 space_info->flush = 1;
1373 trace_btrfs_trigger_flush(fs_info,
1374 space_info->flags,
1375 orig_bytes, flush,
1376 "enospc");
1377 queue_work(system_unbound_wq, async_work);
1379 } else {
1380 list_add_tail(&ticket.list,
1381 &space_info->priority_tickets);
1383 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1384 used += orig_bytes;
1386 * We will do the space reservation dance during log replay,
1387 * which means we won't have fs_info->fs_root set, so don't do
1388 * the async reclaim as we will panic.
1390 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1391 need_do_async_reclaim(fs_info, space_info, used) &&
1392 !work_busy(&fs_info->async_reclaim_work)) {
1393 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1394 orig_bytes, flush, "preempt");
1395 queue_work(system_unbound_wq,
1396 &fs_info->async_reclaim_work);
1399 spin_unlock(&space_info->lock);
1400 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1401 return ret;
1403 return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1407 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1408 * @root - the root we're allocating for
1409 * @block_rsv - the block_rsv we're allocating for
1410 * @orig_bytes - the number of bytes we want
1411 * @flush - whether or not we can flush to make our reservation
1413 * This will reserve orig_bytes number of bytes from the space info associated
1414 * with the block_rsv. If there is not enough space it will make an attempt to
1415 * flush out space to make room. It will do this by flushing delalloc if
1416 * possible or committing the transaction. If flush is 0 then no attempts to
1417 * regain reservations will be made and this will fail if there is not enough
1418 * space already.
1420 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1421 struct btrfs_block_rsv *block_rsv,
1422 u64 orig_bytes,
1423 enum btrfs_reserve_flush_enum flush)
1425 struct btrfs_fs_info *fs_info = root->fs_info;
1426 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1427 int ret;
1429 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1430 if (ret == -ENOSPC &&
1431 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1432 if (block_rsv != global_rsv &&
1433 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1434 ret = 0;
1436 if (ret == -ENOSPC) {
1437 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1438 block_rsv->space_info->flags,
1439 orig_bytes, 1);
1441 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1442 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1443 orig_bytes, 0);
1445 return ret;
1449 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1450 * @fs_info - the filesystem
1451 * @bytes - the number of bytes we need
1452 * @flush - how we are allowed to flush
1454 * This will reserve bytes from the data space info. If there is not enough
1455 * space then we will attempt to flush space as specified by flush.
1457 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1458 enum btrfs_reserve_flush_enum flush)
1460 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1461 int ret;
1463 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1464 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1465 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1467 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1468 if (ret == -ENOSPC) {
1469 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1470 data_sinfo->flags, bytes, 1);
1471 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1472 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1474 return ret;